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MATHEMATICAL ANALYSIS OF THE STABILIZATION
OF LAMELLAR PHASES BY A SHEAR STRESS

V. Torri
1

Abstract. We consider a 2D mathematical model describing the motion of a solution of surfactants
submitted to a high shear stress in a Couette−Taylor system. We are interested in a stabilization
process obtained thanks to the shear. We prove that, if the shear stress is large enough, there exists
global in time solution for small initial data and that the solution of the linearized system (controlled
by a nonconstant parameter) tends to 0 as t goes to infinity. This explains rigorously some experiments.
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1. Introduction

1.1. Description of the experiment

Lamellar phases are structures that are created by adding a large quantity of surfactants in water. Molecules
of surfactants (like soap) have a particular form: an hydrophile part and an hydrophobe one. When the
concentration of surfactants in water is large enough, the molecules organise themselves in order to minimize
the interaction with water. Some bilayers of molecules appear in order to form the lamellar phase as showed in
figure 1.

When such structures are submitted to a shear in a Couette−Taylor experiment, different cases are observed:
if the shear stress is large enough, then these structures are stable. Otherwise some instabilities appear and lead
to the formation of more complicated structures: the layers break themselves and are reorganised in concentric
spheres which size is of order of the micrometer and that are called spherulits or “onions” (they have the
structure of an onion!) (cf. [5, 6]). Recently, a mathematical model has been written in order to try to explain
this instability (see [3]). It relies on the fact that the Couette−Taylor system (cf. Fig. 2: two coaxial cylinders:
the solution being between the cylinders) is never perfect and that the cylinders are never really coaxial. Even
if the strain is not large (1%), this can induce huge forces acting on the layers since the thickness of the layers
is that of two molecules. The numerical results of [3] show that this is in fact the right explanation for this
instability and correspond to the experiments. It is also observed in the experiments that at high shear, the
instability does not develop and that the small scales are always stable.

The aim of this paper is to prove these facts from the model. We show that the small scales are always
linearly stable (implied by Prop. 3.6) and that when the shear stress is large enough, then the lamellar phase is
linearly and nonlinearly stable (cf. Th. 3.1 and Th. 4.1).
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Figure 1. Structure of lamellar phases.
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Figure 2. Couette−Taylor system.

1.2. Description of the model

We briefly give the physical model that decribes the facts presented in the previous section.
As we neglect the boundary effects, we consider an horizontal section of the Couette−Taylor system. In

Figure 3a is represented the coordinate system. The deplacement field h and the velocity field (u, v) are given
by Figure 3b (the grey rectangles are the inner and the outer cylinders of the Couette−Taylor system, the black
lines are the lamellar phase at equilibrium and one layer is represented around its equilibrium position).

The Navier−Stokes equations link u, v and h and the system is closed by the motion of a layer:

ρ(∂tU + (U.∇)U) = −∇p+ Fvisq +Gz(h)
∇.U = 0

∂t + (U.∇)h = v + λpGz(h),
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where Fvisq is a viscous force, λp a small constant and Gz the force describing the interaction between the layers
and the water:

Gz(h) = −∂F
∂h

where F (h) = B
2

(
∂zh− 1

2 (∂xh)2
)2

+ 1
2K(∂2

xh)2. B is the compression modulus (that is how the layers react
when they are only compressed) and K the curvature modulus (that is how the layers react when they are only
bent).

We consider the system around a steady solution of these equations. After some hypothesis, one of the two
components of the velocity field can be deduced from the other. Then the system is reduced to a system of two
equations with the unkowns v(t, x, z) (the radial velocity) and h(t, x, z) (the relative displacement of a layer
with respect to the state of the rest). Finally, the system is written in a nondimensionnal form (cf. [3] for a
detailed obtention of these equations):

∂tv + z∂xv = λα∂2
xv + λβ∂2

zv + λ2γ1∂
2
zh− λ2δ1∂

2
xh− λ2ε1∂

4
xh

+µλ2θ1∂x (∂xh∂zh) + µλ2θ2∂z (∂xh)2 + ν2λ3θ3∂x (∂xh)3

∂th+ z∂xh = v + λγ2∂
2
zh− λδ2∂2

xh− λε2∂4
xh.

We note by λ−1 the velocity of the outer cylinder. It is suppose to be great, so λ is small. The physical
parameters α, β, γi, δi, εi (i = 1, 2), θi (i = 1, 2, 3), µ and ν are positive and depend on physical constants and
datas (such as density, compression modulus...) (cf. [3]). The last two parameters depend on the velocity of the
shear.

We conclude this description by the boundary conditions:
• v and h are periodic in the x direction (as the solution is between two cylinders);
• They vanish at z = 0, 1.

The main question concerning this system is the stability of the zero solution, that is, do we have global existence
of a bounded solution for small data? The first question is therefore: is zero linearly stable? By changing h in
h̃ = 1

λh and t by λt, the linearized version (around zero) of this system is:

∂tv +
1
λ
z∂xv = α∂2

xv + β∂2
zv + γ1∂

2
zh− δ1∂2

xh− ε1∂4
xh

∂th+
1
λ
z∂xh = v + γ2∂

2
zh− δ2∂2

xh− ε2∂4
xh.
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Recall that 1
λ corresponds to the angular velocity of the outer cylinder of the Couette system. If one takes

1
λ = 0, expanding h and v in Fourier series with respect to x and z gives (k and l are the Fourier variables
corresponding respectively to x and z):

∂tv = −
(
αk2 + βl2

)
v +

(
−γ1l

2 + δ1k
2 − ε1k4

)
h

∂th = v +
(
−γ2l

2 + δ2k
2 − ε2k4

)
h.

The determinant of the matrix of the right-hand-side is equal to(
αk2 + βl2

) (
γ2l

2 − δ2k2 + ε2k
4
)

+
(
γ1l

2 − δ1k2 + ε1k
4
)
,

which can be negative (for small k and small l). Hence, the solution can be unbounded as t goes to infinity.
The aim of this paper is to prove that if λ is small enough, then these small frequencies are stable. Recent

results (cf. [2, 7, 8]) show that skew-symmetric operators with large coefficients have some smoothing effects in
nonlinear problems. Here, since the operator 1

λz∂x does not have constant coefficient, this smoothing appears
in the linear case, see Section 2.3 for a simple example.

2. Statement of the main results

2.1. Functionnal spaces and notations

The system of coordinates is (x, z) ∈ Ω = (−1, 1) × (0, 1). We will consider periodic functions in the x
direction which vanish at z = 0, 1.

Let us define B = R× (0, 1). Let

L(Ω) =
{
f ∈ L2

loc

(
B
)

, 2-periodic in the x direction a.e. in z
}
,

H(Ω) =
{
f ∈ L(Ω), f|Ω ∈ H1 (Ω) , 2-periodic in x, f (x, 0) = f (x, 1) = 0

}
and

K(Ω) =
{
f ∈ H(Ω), ∂2

xf ∈ L2 (Ω)
}
·

We will denote |u|p =
(∫

Ω
|u|p

) 1
p and Hs the usual Sobolev spaces. We note by Cp the Poincaré’s constant,

which verifies

|h|2 6 Cp |∂xh|2 ,

for h ∈ H(Ω).

2.2. Statement of the main results

Let us recall that the system reads as follows:

∂tv + z∂xv = λα∂2
xv + λβ∂2

zv + λ2γ1∂
2
zh− λ2δ1∂

2
xh− λ2ε1∂

4
xh

+ µλ2θ1∂x (∂xh∂zh) + µλ2θ2∂z (∂xh)2 + ν2λ3θ3∂x (∂xh)3 (1)

∂th+ z∂xh = v + λγ2∂
2
zh− λδ2∂2

xh− λε2∂4
xh (2)
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(cf. Sect. 1). By changing h in h̃ = λh and scaling in time (replacing t by λt), we obtain:

∂tv +
1
λ
z∂xv = α∂2

xv + β∂2
zv + γ1∂

2
zh− δ1∂2

xh− ε1∂4
xh

+
µ

λ
θ1∂x (∂xh∂zh) +

µ

λ
θ2∂z (∂xh)2 +

ν2

λ
θ3∂x (∂xh)3

∂th+
1
λ
z∂xh = v + γ2∂

2
zh− δ2∂2

xh− ε2∂4
xh,

and (x, z) ∈ Ω.
For sake of simplicity, we omit the coefficients of the nonlinear terms (θ1, θ2 and θ3) and those of the viscous

terms (α, β, γ1, γ2, ε1 and ε2). They do not have an important role in the proofs and give complicated formulae.
We just keep δ1 and δ2. Here is the system we will study:

∂tv +
1
λ
z∂xv = ∆v + ∂2

zh− δ1∂2
xh− ∂4

xh

+
µ

λ
∂x (∂xh∂zh) +

µ

λ
∂z (∂xh)2 +

ν2

λ
∂x (∂xh)3 (3)

∂th+
1
λ
z∂xh = v + ∂2

zh− δ2∂2
xh− ∂4

xh. (4)

The main result of this paper is the stabilization of the lamellar phase at high shear, i.e. the global existence
of a solution of (3, 4) (therefore of (1, 2)) for small λ and small initial data and convergence to 0 of the solution
of the linearised system as t goes to infinity. More precisely, we have:

Theorem 2.1. There exists λ0 > 0 such that for all λ in (0, λ0), for all (v0, h0) in L(Ω)×H(Ω), the linearised
system of (3, 4) has a unique solution (v, h) defined on R+ and which satisfies v(0) = v0, h(0) = h0 and

(v, h) (t) −−−−→
t→+∞

0 in L(Ω)×K(Ω).

This stabilization result is obtained thanks to energy estimates.

Theorem 2.2. There exists 0 < λ0 < 1 and M > 0 such that, for all 0 < λ < λ0, v0 in L(Ω), h0 in K(Ω) such
that

(
|v0|22 + |h0|22 +

∣∣∂2
xh0

∣∣2
2

+ λ |∂zh0|22
)
< M , for all µ < λ

5
2 , ν < λ

5
4 , there exists v, h : R+ × Ω → R such

that
• v ∈ L∞ (R+; L(Ω)) ∩ L2 (R+; H(Ω)) ∩ C0

(
R+; L2(Ω)

)
;

• h ∈ L∞ (R+; K(Ω)) ∩ L2
(
R+; H(Ω) ∩H2(Ω)

)
∩ C0

(
R+; L2(Ω)

)
;

• ∂2
x∂zh ∈ L2 (R+ × Ω);

• ∂4
xh ∈ L2 (R+ × Ω);

solutions of (3) and (4) such that v(0) = v0 and h(0) = h0.

Remark 2.3. It is not easy to estimate λ0 in terms of the physical parameters. However, in [3], the numerical
value of λ0 corresponds to that of the experiment.

We also give a local existence theorem whatever the velocity of the shear and the initial data are:

Theorem 2.4. There exists Te > 0 such that, for all v0 in L(Ω) and h0 in K(Ω), there exists v, h : [0, Te[×Ω→
R such that for all T in ]0, Te[,
• v ∈ L∞ (0, T ; L(Ω)) ∩ L2 (0, T ; H(Ω)) ∩C0

(
[0, T ]; L2(Ω)

)
;

• h ∈ L∞ (0, T ; K(Ω)) ∩ L2
(
0, T ; H(Ω)∩H2(Ω)

)
∩ C0

(
[0, T ]; L2(Ω)

)
;
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• ∂2
x∂zh ∈ L2 (R+ × Ω);

• ∂4
xh ∈ L2 (R+ × Ω);

solutions of (3) and (4) such that v(0) = v0 and h(0) = h0.

This paper is organised as follows:
• the Section 2.3 gives a short example of an equation which shows the main ideas used to prove Theorem 2.2;
• Section 3 is devoted to energy estimates for the linear case and to the proof of Theorem 2.1. As the system

is periodic in the x direction, we compute the fourier coefficients of v and h. We deal with both local and
global in time cases;
• Section 4 is devoted to a priori estimates of the nonlinear terms that appear in equation (3). Here again

we give estimates for the global and the local in time cases;
• Sections 5 and 6 are devoted respectively to the proof of Theorem 2.2 and Theorem 2.4.

2.3. Example

One of the main difficulties of this paper will be reviewed on the following example: find a bounded solution
of the equation

∂tu+
1
λ
z∂xu = ∆u+ α2u (5)

provided λ small, where α and λ are two positive constants, u : Ω→ R 2-periodic in x and vanishing at z = 0, 1,
with a mean value with respect to x equal to zero. The method used here is the Galerkin method which requires
a priori estimates.

In this section, if u is a solution of (5), then we consider N (t) = |u|22 + |∂xu|22 + λ |∂zu|22 and Ñ (t) =
N (t)− C

√
λ
∫

Ω ∂xu∂zu, where C is a constant wich will be precised later. Then we have the following result:

Theorem 2.5. There exists λ0 > 0 such that, for all λ in (0, λ0), for all u0 in H1 (Ω) with a mean value with
respect to x equal to zero, there exists u in L∞

(
R+; H1 (Ω)

)
∩ C0

(
R+; H1 (Ω)

)
such that u verifies (5) and

u (0) = u0. Moreover,
|u (t)|H1 −−−−→

t→+∞
0.

Proof. This result is a straightforward corollary of the following lemma:

Lemma 2.6. Let C < 1√
2

. There exists A > 0 and λ0 > 0 such that, for all solution u of (5), for all λ in
(0, λ0) and for all t in [0, T ),

Ñ ′ (t) +
1
2
|∂zu|22 + |∂x∂zu|22 + λ

∣∣∂2
zu
∣∣2
2

+
C

2
√
λ
|∂xu|22 6 −AN (t) .

Proof. We first perform a Fourier transform with respect to x, û (k, z) = 1
2

∫ 1

−1
exp (−ikπs)u (s, z) ds, still

denoted by u. Then we get the following equation:

∂tu+
ik

λ
zu = −k2u+ ∂2

zu+ α2u. (6)

Let Ωz = (0, 1) and Nk (t) = |u|22 + k2 |u|22 + λ |∂zu|22 and Ñk (t) = Nk (t) − Ck
√
λIm

∫
Ωz
u∂zu. We compute

Ñ ′k (t):
1
2
∂t |u|22 =

(
α2 − k2

)
|u|22 − |∂zu|

2
2 ,

as the resulting imaginary term is equal to zero. In the same way,

1
2
∂t |∂zu|22 =

k

λ
Im
∫

Ωz

u∂zu+
(
α2 − k2

)
|∂zu|22 −

∣∣∂2
zu
∣∣2
2
.
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Finally,

1
2
∂tIm

∫
Ωz

∂zuu = −k
λ

Re
∫

Ωz

zu∂zu+
(
α2 − k2

)
Im
∫

Ωz

u∂zu+ Im
∫

Ωz

∂2
zu∂zu

=
k

2λ
|u|22 +

(
α2 − k2

)
Im
∫

Ωz

u∂zu+ Im
∫

Ωz

∂2
zu∂zu,

by integrating by parts the first term of the right member. This term is the one which will be significant in the
proof (thanks to the 1

λ |u|2 term). We therefore obtain

1
2
Ñ ′k (t) =

(
α2 − k2

)
|u|22 − |∂zu|

2
2 + k2

(
α2 − k2

)
|u|22 − k2 |∂zu|22

+kIm
∫

Ωz

u∂zu+ λ
(
α2 − k2

)
|∂zu|22 − λ

∣∣∂2
zu
∣∣2
2

−Ck
2

2
√
λ
|u|22 − Ck

√
λ
(
α2 − k2

)
Im
∫

Ωz

u∂zu− Ck
√
λIm

∫
Ωz

∂2
zu∂zu

6
((

α2 − k2

2

)
+
(
C2

2
− 1
)
k4 + k2α2

(
1− C2

)
+

1
2
C2α4

)
|u|22

−1
2
|∂zu|22 + λ

(
α2 − k2

2

)
|∂zu|22 −

λ

2

∣∣∂2
zu
∣∣2
2
− Ck2

2
√
λ
|u|2 . (7)

We now deal separately with high frequencies (k large) and small ones (k small).
• Study for high frequencies: since C < 1√

2
< 1, there exists K > 0 (depending only on α and C) so that,

for all k > K,

Ñ ′k (t) 6 −k
2

2
Nk (t)− |∂zu|22 − k2 |∂zu|2 − λ

∣∣∂2
zu
∣∣2
2
− Ck2

2
√
λ
|u|22 . (8)

• Study for small frequencies: since the mean value of u is equal to zero (it is easy to show, by computing
|u|2 and by using Gronwall’s lemma, that the mean value with respect to x remains equal to 0), we only
need to study Ñ ′k (t) for k between 1 and K. By (7),

Ñk (t) 6 −k2Nk (t) +
(
2λα2 − 1

)
|∂zu|22 − k2 |∂zu|22 − λ

∣∣∂2
zu
∣∣2
2

+
(

2α2 − 2k2
(
2C2α2 − 1

)
+ C2α4 − Ck2

√
λ

)
|u|2 .

So for small λ, for all k between 1 and K, we have

Ñ ′k (t) 6 −Nk (t)− 1
2
|∂zu|22 − k2 |∂zu|22 − λ

∣∣∂2
zu
∣∣2
2
− Ck2

2
√
λ
|u|2 . (9)

Hence, using (8) and (9), we have, for all k > 0

Ñk (t) 6 −ANk (t)− 1
2
|∂zu|22 − k2 |∂zu|22 − λ

∣∣∂2
zu
∣∣2
2
− Ck2

2
√
λ
|u|2 ,

where A = min
(

1, K
2

2

)
. We have the same result for k < 0 by taking the conjugate expression of (6). Then

the Parseval–Bessel’s identity finishes the proof of the lemma.
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To conclude the proof of Theorem 2.5, it suffices to show that Ñ (t) and N (t) are equivalent, which is obvious
if C is sufficiently small (possible as the lemma is valid since C < 1√

2
), and to use a Galerkin method, which is

quite easy to apply as the equation is linear.

Remark 2.7. This stabilization process (obtained thanks to the linear term z
λ∂xu) is the one that will be used

in the physical case.

3. Linear case

In this section, we study the linearized system of (3, 4), i.e.

∂tv +
1
λ
z∂xv = ∆v + ∂2

zh− δ1∂2
xh− ∂4

xh (10)

∂th+
1
λ
z∂xh = v + ∂2

zh− δ2∂2
xh− ∂4

xh (11)

v(0) = v0 (12)
h(0) = h0. (13)

We will show local existence of solutions of such systems and linear stability when λ is sufficently small. As
the arguments are based on the Galerkin method, we will derive energy estimates envolving quantities like |v|22,
|h|22,

∣∣∂2
xh
∣∣2
2

and λ |∂zh|22. Hence the two following results hold:

Theorem 3.1. Let (v0, h0) in L(Ω) × H(Ω). There exists a unique solution (v, h) to (10–13) such that (v, h)
in C0 (R+; L(Ω)×K(Ω)) and v ∈ L2

loc

(
R+; H1

)
, ∂2

xh, ∂zh ∈ L2
loc

(
R+; L2 (Ω)

)
.

Theorem 3.2. There exists λ0 > 0 such that for all λ in (0, λ0), for all (v0, h0) in L(Ω) × H(Ω), the solution
(v, h) given by Theorem 3.1 satisfies

(v, h) (t) −−−−→
t→+∞

0 in L(Ω)×K(Ω).

Remark 3.3. This result is the linear version of what is observed in the experiments: the lamellar phase is
stable at high shear (see [5, 6]). It is also what is observed numerically (see [3]).

As the most important point is the linear stability (Th. 3.2), we begin this section by proving this fact. We
postone to the next paragraph the proof of Theorem 3.1.

3.1. Linear stability

In this section, we apply the stabilization process described in Section 2.3 in order to obtain bounded in time
solutions, provided λ is small enough.

This result need energy estimates on the following quantity: if (v, h) is a solution of (10–13) defined on [0, T ],
sufficently smooth, let

N (t) = |v|22 +E |h|22 +
∣∣∂2
xh
∣∣2
2

+ λ |∂zh|22 + F
(
|V |22 + |∂zH|22

)
and

Ñ (t) = N (t)− C
√
λ

∫
Ω

∂xh∂zh,

where C, E and F are constants that will be precised later on, V (t, z) = 1
2

∫ 1

−1 v (t, x, z) dx, ∂zH (t, z) =
1
2

∫ 1

−1
∂zh (t, x, z) dx are the mean values with respect to x of v and ∂zh respectively.
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Remark 3.4. We have to introduce in this Lyapounov function the quantities V and H (whereas it has not
been the case in Sect. 2.3) because we can not prove a priori that the mean value of v and h are constant,
contrary to the exemple in Section 2.3.

The proof of Theorem 3.2 will follow easily from this proposition:

Proposition 3.5. Let E > 4, F > max
(
E
π4 ,

E
π2

)
and C < min

(
1
2 ,

2
Cp

)
. Then, there exist A > 0 and λ0 > 0

such that, for all λ < λ0,

Ñ ′(t) 6 −AN(t). (14)

The scheme of the proof will be:
• expansion in Fourier series;
• analogous result of (14) is found for large frequencies;
• then for small frequencies;
• finally for the mean value.

3.1.1. Expansion in Fourier series

As in Section 2.3, we expand the equations (10, 11) in Fourier series with respect to x, and we get

∂tv +
ikz

λ
v =− k2v + ∂2

zv + ∂2
zh− k2

(
k2 − δ1

)
h (15)

∂th+
ikz

λ
h =v + ∂2

zh− k2
(
k2 − δ2

)
h. (16)

We note Ωz = (0, 1). For sake of simplicity, v still denotes v̂ (k) = 1
2

∫ 1

−1
v(s) exp (−iπks) ds and h denotes

ĥ (k). Let denote, for k 6= 0,
Nk (t) = |v|22 +E |h|22 + k4 |h|22 + λ |∂zh|22 ,

Ñk (t) = Nk (t)− Ck
√
λIm

∫
Ωz

h∂zh

and
Ñ0 (t) = N0 (t) = |v|22 +E |h|22 + λ |∂zh|22 + F

(
|v|22 + |∂zh|22

)
.

We compute Ñ ′k (t) and Ñ ′0 (t):

1
2
∂t |v|22 = −k2 |v|22 − |∂zv|

2
2 −Re

∫
Ωz

∂zh∂zv − k2
(
k2 − δ1

)
Re
∫

Ωz

hv, (17)

as Re
∫

Ωz
izvv = Re

∫
Ωz
iz |v|2 = 0. The same computation gives:

1
2
∂t |h|22 = Re

∫
Ωz

hv − |∂zh|22 − k2
(
k2 − δ2

)
|h|22 . (18)

1
2
∂t |∂zh|22 = −Re

∫
Ωz

−izk
λ

h∂2
zh− Re

∫
Ωz

v∂2
zh−

∣∣∂2
zh
∣∣2
2
− k2

(
k2 − δ2

)
|∂zh|22

=
k

λ
Im
∫

Ωz

h∂zh+ Re
∫

Ωz

∂zv∂zh−
∣∣∂2
zh
∣∣2
2
− k2

(
k2 − δ2

)
|∂zh|22 , (19)
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by integrating by parts the imaginary term.

1
2
∂tIm

∫
Ωz

h∂zh = Im
∫

Ωz

−ikz
λ

h∂zh+ Im
∫

Ωz

v∂zh+
∫

Ωz

∂2
zh∂zh

−k2
(
k2 − δ2

)
Im
∫

Ωz

h∂zh.

Integrating by parts the first term of the right member gives

1
2
∂tIm

∫
Ωz

h∂zh =
k

2λ
|h|22 + Im

∫
Ωz

v∂zh+ Im
∫

Ωz

∂2
zh∂zh− k2

(
k2 − δ2

)
Im
∫

Ωz

h∂zh. (20)

As in Section 2.3, we study separately high frequencies and small ones. Due to its special behaviour, Ñ0 is
treated separately. By using (17–20) for k 6= 0, we have

1
2
Ñ ′k (t) = −k2 |v|22 − |∂zv|

2
2 + δ1k

2Re
∫

Ωz

hv +ERe
∫

Ωz

hv −E |∂zh|22

−Ek2
(
k2 − δ2

)
|h|22 − k4 |∂zh|22 − k6

(
k2 − δ2

)
|h|22

+kIm
∫

Ωz

h∂zh+ λRe
∫

Ωz

∂zv∂zh− λ
∣∣∂2
zh
∣∣2
2

−λk2
(
k2 − δ2

)
|∂zh|22 −

Ck2

2
√
λ
|h|22 − Ck

√
λIm

∫
Ωz

v∂zh

−Ck
√
λIm

∫
Ωz

∂2
zh∂zh− C

√
λk3

(
k2 − δ2

)
Im
∫

Ωz

h∂zh, (21)

and, using (17–19), for k = 0,

1
2
Ñ ′0 (t) = − |∂zv|22 +ERe

∫
Ωz

hv −E |∂zh|22 + λRe
∫

Ωz

∂zv∂zh

−λ
∣∣∂2
zh
∣∣2
2
− F |∂zv|22 − F

∣∣∂2
zh
∣∣2
2
. (22)

Let note that for this last equation, V is equal to v (let recall that v means v̂(0)) and is a real function. The
same remarks hold for h.

3.1.2. High frequencies

As in Section 2.3, the main idea if that, for k large enough, the viscous terms are dominant. By using the
fact that the sign of a quadratic form does not change if its discriminant is negative, we take each term of (21)
which is not negative and find an associated quadratic form which controls them for large k. Hence, we get the
following result for linear stability for large frequencies:

Proposition 3.6. Let Λ > 0, then there exists K in N, depending only on Λ, C and E, and A1 > 0 such that,
for all λ in (0,Λ), for all k > K and for all t in [0, T ), Ñ ′k (t) 6 −A1Nk (t).

Proof. First, we choose k sufficiently large so that k2 − δ2 is positive.
1. For Re

∫
Ωz
hv:

Q1 = −k
2

4
|v|22 +

(
δ1k

2 +E
)

Re
∫

Ωz

hv − k6

8
(
k2 − δ2

)
|h|22 .
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Using Cauchy−Schwarz’s inequality leads to

Q1 6 −
k2

4
|v|22 +

(
δ1k

2 +E
)
|v|2 |h|2 −

k6

8
(
k2 − δ2

)
|h|22 .

The second member is a quadratic form whose discriminant is ∆1 =
(
δ1k

2 +E
)2 − k8

8

(
k2 − δ2

)
. So for k

sufficiently large, ∆1 < 0 and Q1 6 0. The five following quantities will be treated in the same way.
2. For Re

∫
Ωz
∂zh∂zv:

Q2 = −1
2
|∂zv|22 + (λ− 1) Re

∫
Ωz

∂zh∂zv −
1
8
k4 |∂zh|22 ,

6 −1
2
|∂zv|22 + (λ− 1) |∂zh|2 |∂zv|2 −

1
8
k4 |∂zh|22 .

The discriminant of the second member is ∆2 = (λ− 1)2 − 1
4k

4. Let Λ > 0. Then, for k sufficiently large
and for all λ < Λ, ∆2 < 0 and Q2 6 0.

3. For Im
∫

Ωz
h∂zh:

Q3 = −k
6

8
(
k2 − δ2

)
|h|22 + kIm

∫
Ωz

h∂zh−
k4

8
|∂zh|22

6 −k
6

8
(
k2 − δ2

)
|h|22 + k |h|22 |∂zh|

2
2 −

k4

8
|∂zh|22 .

The discriminant of the second member is ∆3 = k2 − 1
16k

10
(
k2 − δ2

)
, so that for k large enough, ∆3 < 0

and Q3 6 0.
4. For k

√
λIm

∫
Ωz
v∂zh:

Q4 = −1
4
k2 |v|22 − Ck

√
λIm

∫
Ωz

v∂zh−
λ

4
k2
(
k2 − δ2

)
|∂zh|22

6 −1
4
k2 |v|22 + Ck

√
λ |v|22 |∂zh|

2
2 −

λ

4
k2
(
k2 − δ2

)
|∂zh|22 .

The discriminant of the right member is ∆4 = λk2
(
C2 − 1

4k
2
(
k2 − δ2

))
. So for k sufficiently large, ∆4 < 0

and Q4 6 0.
5. For k

√
λIm

∫
Ωz
∂2
zh∂zh:

Q5 = −λ
2

∣∣∂2
zh
∣∣2
2
− Ck

√
λIm

∫
Ωz

∂2
zh∂zh−

1
4
k4 |∂zh|22

6 −λ
2

∣∣∂2
zh
∣∣2
2

+ Ck
√
λ |∂zh|22

∣∣∂2
zh
∣∣2
2
− 1

4
k4 |∂zh|22 .

The discriminant of the second member is ∆5 = λk2
(
C2 − 1

2k
2
)
. So for k large enough, ∆5 < 0 and

Q5 6 0.
6. For k3

√
λ
(
k2 − δ2

)
Im
∫

Ωz
h∂zh:

Q6 =
(
k2 − δ2

)(
−1

4
k6 |h|22 + Ck3

√
λIm

∫
Ωz

h∂zh−
λ

4
k2 |∂zh|22

)
6 k2

(
k2 − δ2

)(
−1

4
k4 |h|22 + Ck

√
λ |h|22 |∂zh|

2
2 −

λ

4
|∂zh|22

)
.
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The discriminant of the second member is ∆6 = λk2
(
C2 − 1

4k
2
)
. So for k sufficiently large, ∆6 < 0 and

Q6 6 0.
Then, using the fact that for k large enough, Q1, Q2, Q3, Q4, Q5 and Q6 are non positive, we have

Ñ ′ (t) + k2 |v|22 + |∂zv|22 +
(
2Ek2 + k6

) (
k2 − δ2

)
|h|22 +

Ck2

√
λ
|h|22

+
(
2E + k4 + λk2

(
k2 − δ2

))
|∂zh|22 + λ

∣∣∂2
zh
∣∣2
2
6 0.

As 1
2k

2 − δ2 > 0, for k large enough,

Ñ ′ (t) 6 −k
2

2

(
|v|22 +

(
Ek2 +

1
2
k6

)
|h|22 + λk2 |∂zh|22

)
−1

2
k2 |v|22 − |∂zv|

2
2 −

1
4
k4
(
2E − k4

)
|h|22

−Ck
2

√
λ
|h|22 −

(
2E − k4

)
|∂zh|22 − λ

∣∣∂2
zh
∣∣2
2
.

Let k large enough such that k2 > 1 and k2
(
2E + k4

)
> 2

(
E + k4

)
. Then there exists K > 0 and µ (depending

on E and C) such that, for all λ < Λ and for all k > K we have

Ñ
′

k (t) + µ
(
k2 |v|22 + |∂zv|22 +

(
k4 + k8

)
|h|22 + |∂zh|22 + k4 |∂zh|22

)
+
Ck2

√
λ
|h|22 + λ

∣∣∂2
zh
∣∣2
2
6 −K

2
Nk (t) . (23)

Hence the proof is finished by choosing A1 = K
2 .

Remark 3.7. Let note that this result has a physical interpretation: high frequencies are always stable, so
that the structures that are created by the instability and that are observed in the experiments have a size that
corresponds to the small waves numbers.

3.1.3. Low frequencies

In this section, we study the frequencies k between 1 and K, the case k = 0 being studied in the next
paragraph. Here, the viscous terms can not control the non negative terms of (21). We however have an a
priori estimates thanks to the term of order λ−

1
2 . The method is strictly the same: we use the same property

of quadratic forms as in the previous lemma.

Lemma 3.8. There exists λ0 > 0 and A2 > 0 depending on E and C such that, for all λ in (0, λ0), for all k
between 1 and K, Ñ ′k (t) 6 −A2Nk (t).

Proof. As in the previous lemma, we control each non negative term by negative terms:
1. For Re

∫
Ωz
hv:

Q1 = −k
2

4
|v|22 +

(
δ1k

2 +E
)

Re
∫

Ωz

hv − Ck2

16
√
λ
|h|22

6 −k
2

4
|v|22 +

(
δ1k

2 +E
)
|v|2 |h|2 −

Ck2

16
√
λ
|h|22 .

The second member is a quadratic form and its discriminant is ∆1 =
(
δ1k

2 +E
)2 − Ck4

16
√
λ

. So for λ small
enough (λ < Λ, Λ fixed in Prop. 3.6) and for all k 6 K, ∆1 < 0 and Q1 6 0.
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2. For Re
∫

Ωz
∂zh∂zv:

Q2 = −1
2
|∂zv|22 + (λ− 1) Re

∫
Ωz

∂zh∂zv −
E

8
|∂zh|22

6 −1
2
|∂zv|22 + (λ− 1) |∂zh|2 |∂zv|2 −

E

8
|∂zh|22 .

The second member is a quadratic form and its discriminant is ∆2 = (λ− 1)2 − E
4 −−−→λ→0

1− E
4 < 0, by

choice of E. So for λ small enough and for all k 6 K, ∆2 < 0 and Q2 6 0.

3. For Im
∫

Ωz
h∂zh:

Q3 = − Ck2

16
√
λ
|h|22 + kIm

∫
Ωz

h∂zh−
E

8
|∂zh|22

6 − Ck2

16
√
λ
|h|22 + k |h|22 |∂zh|

2
2 −

E

8
|∂zh|22 .

The second member is a quadratic form and its discriminant is ∆3 = k2
(

1− CE
32
√
λ

)
, so that for all k 6 K

and for λ small enough, ∆3 < 0 and Q3 6 0.

4. For k
√
λIm

∫
Ωz
v∂zh:

Q4 = −1
4
k2 |v|22 − Ck

√
λIm

∫
Ωz

v∂zh−
E

4
|∂zh|22

6 −1
4
k2 |v|22 + Ck

√
λ |v|22 |∂zh|

2
2 −

E

4
|∂zh|22 .

The second member is a quadratic form and its discriminant is ∆4 = k2
(
C2λ− E

4

)
, so that for all k 6 K

and for λ small enough, ∆4 < 0 and Q4 6 0.

5. For k
√
λIm

∫
Ωz
∂2
zh∂zh:

Q5 = −λ
2

∣∣∂2
zh
∣∣2
2
− Ck

√
λIm

∫
Ωz

∂2
zh∂zh−

1
8
k4 |∂zh|22

6 −λ
2

∣∣∂2
zh
∣∣2
2

+ Ck
√
λ |∂zh|22

∣∣∂2
zh
∣∣2
2
− 1

8
k4 |∂zh|22 .

The second member is a quadratic form and its discriminant is ∆5 = λk2
(
C2 − 1

4k
2
)

(as we choose
C < 1

2 ), so that for all k 6 K and for λ small enough, ∆5 < 0 and Q5 6 0.

6. For k3
√
λ
(
k2 − δ2

)
Im
∫

Ωz
h∂zh:

Q6 = −1
8
k4 |∂zh|22 + Ck3

√
λ
(
k2 − δ2

)
Im
∫

Ωz

h∂zh−
Ck2

16
√
λ
|h|22

6 −1
8
k4 |∂zh|22 + Ck3

√
λ
(
k2 − δ2

)
|h|22 |∂zh|

2
2 −

Ck2

16
√
λ
|h|22 .



252 V. TORRI

The second member is a quadratic form and its discriminant is

∆6 = C2λk6
(
k2 + δ2

)2 − Ck6

32
√
λ
6 C2λK6

(
K2 + δ2

)2 − C

32
√
λ
,

so that for all k 6 K and for λ small enough, ∆6 < 0 and Q6 6 0.

By using the fact that, for λ small enough and for all k 6 K, Q1, . . . , Q6 are non positive, we have

Ñ ′k (t) 6 −k2 |v|22 − |∂zv|
2
2 − 2k2

(
k2 − δ2

) (
E + k4

)
|h|22 −

3Ck2

4
√
λ
|h|22

−
(
E +

3
2
k4

)
|∂zh|22 − 2λk2

(
k2 − δ2

)
|∂zh|22 − λ

∣∣∂2
zh
∣∣2
2
.

It remains some terms (in |h|22 and in |∂zh|22) which are not necessarily negative. As usual, we control them by
using the term of order λ−

1
2 :

For λ small enough, we have C
8
√
λ
> 2Eδ2 + 2δ2K4, then, for all k 6 K,

2Eδ2k2 + 2δ2k6 − Ck2

8
√
λ
6 0.

For λ small enough, we have 2λδ2 < 1
2 , then, for all k 6 K, 2λδ2k2 − 1

2γ2k
4 < 0.

Hence, there exists µ > 0 such that for λ small enough, for all k 6 K,

Ñ ′k (t) + µ

(
k2 |v|22 + |∂zv|22 +

(
k4 + k8 +

Ck2

2
√
λ

)
|h|22 +

(
1 + k4

)
|∂zh|22

)
+ λ

∣∣∂2
zh
∣∣2
2
6

− 1
2
k2 |v|22 −Ek4 |h|22 − k8 |h|22 −

Ck2

8
√
λ
|h|22 − 2λk4 |∂zh|22 .

It is easy to show that, for λ small enough and for all k in {1, . . . ,K}, the right member of this inequality is
less or equal than −A2Nk (t), for some A2 > 0 depending on E, C and λ0.

Then, we have the following result:

Ñ ′k (t) + µ

(
k2 |v|22 + |∂zv|22 +

(
k4 + k8 +

Ck2

2
√
λ

)
|h|22 +

(
1 + k4

)
|∂zh|22

)
+ λ

∣∣∂2
zh
∣∣2
2
6 −A2Nk (t) , (24)

which obviously concludes the proof.

3.1.4. The mean value

As N0 (and of course Ñ0) has a different form than Nk, for k 6= 0, we study this case here and we have the
following lemma:

Lemma 3.9. There exists λ0 > 0 and A3 > 0 such that, for all λ in (0, λ0), Ñ ′0 (t) 6 −A3N0 (t).

Proof. This result is based on the symmetry of the system. Indeed, the evolution of |v|2 and |∂zh|2 is given by

1
2
∂t |v|22 = − |∂zv|22 −Re

∫
Ωz

∂zh∂zv,
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and
1
2
∂t |∂zh|22 = Re

∫
Ωz

∂zh∂zv −
∣∣∂2
zh
∣∣2
2
.

It is obvious that by taking a linear combination, we eliminate the Re
∫

Ωz
∂zh∂zv term, allowing us to control |v|22

and |∂zh|22 and the other terms ofN0. As v and h verify |v|2 6 Cp |∂zv|2, |h|2 6 C2
p

∣∣∂2
zh
∣∣
2

and |∂zh|2 6 Cp
∣∣∂2
zh
∣∣
2
,

the choice of F and the fact that λ0 can be as small as we want (here λ0 < 1) imply that (22) becomes:

Ñ ′0 (t) +
1
2
|∂zv|22 +E |∂zh|22 + (λ+ 1)

∣∣∂2
zh
∣∣2
2
6 −A3N0 (t) , (25)

where A3 is a positif real. The proof is finished.

3.1.5. Conclusion

To establish the stability result, we need the following embedding lemma:

Lemma 3.10. Let H1 ↪→ H ↪→ H2 three hilbert spaces so that the first embedding is compact. Then for any
p > 1, the embedding {

f ∈ L∞ (0, T ; H1) ,
df
dt
∈ Lp (0, T ; H2)

}
↪→ C0 ([0, T ];H)

is compact.

(For a proof, see [12], p. 85.) This lemma will also be used in the proof of Theorems 2.2 and 2.4.

Proof of Theorem 3.2. By Proposition 3.6, Lemmas 3.8 and 3.9, choosing A = min (A1, A2, A3) implies that
for all λ in (0, λ0) and for all k > 0, then Ñ ′k (t) 6 −ANk (t). By taking the conjugate expression of (15) and
(16), we have the same result for k < 0 (the proof is exactly the same). The choice of C implies that Ñk (t)
and Nk (t) are equivalent. Then, by adding the last inequality for k in Z and by using the Parseval−Bessel’s
identity, one get Ñ ′ (t) 6 −AÑ (t).

More precisely, using inequalities (23–25), for some B > 0, we have

Ñ
′
(t) +B

(
|∂xv|22 + |∂zv|22 +

∣∣∂2
xh
∣∣2
2

+
∣∣∂4
xh
∣∣2
2

+
1√
λ
|∂xh|22 + |∂zh|22 +

∣∣∂2
x∂zh

∣∣2
2

+ λ
∣∣∂2
zh
∣∣2
2

)
6 −AÑ (t) . (26)

This inequality will be also used to perform the limit in the Galerkin method for the global in time existence
theorem.

As the system is linear, the Galerkin method gives a sequence of approximated solution of (10−13), denoted
(vn, hn), which verify

vn is in a bounded set of L∞ (R+; L(Ω)) ∩ L2 (R+; H(Ω)) ,

hn is in a bounded set of L∞ (R+; K(Ω)) ∩ L2
(
R+; H2 (Ω) ∩H(Ω)

)
.

Then there exists
v ∈ L∞ (R+; L(Ω)) ∩ L2 (R+; H(Ω))

and
h ∈ L∞ (R+; K(Ω)) ∩ L2

(
R+; H2 (Ω) ∩H(Ω)

)
such that

vn ⇀ v weak * in L∞ (R+; L(Ω)) and weakly in L2 (R+; H(Ω)) ,
hn ⇀ h weak * in L∞ (R+; K(Ω)) and

weakly in L2
(
R+; H2 (Ω) ∩H(Ω)

)
.
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The system being linear, it is straightforward to conclude that (v, h) is a solution. We now deal with the fact
that (v, h)(t) tends to 0. The proof is the same for v and h, so we only show the result for v. It is easy to see
that ∂tvn and ∂thn are bounded in L2

(
0, T ; H−1

)
. So Lemma 3.10 implies that

(vn, hn)→ (v, h) in C0
(
[0, T ]; L2(Ω)× L2(Ω)

)
. (27)

Let ε > 0. There exists T > 0 such that, for all t > T ,

‖vn(t)‖L(Ω) 6 N(0) exp(−At) < ε

2
·

The fact that this a priori estimate is independant of n is the most important argument. Let t > T . Then (27)
implies that

sup
[0,t+1]

‖vn − v‖L(Ω) −→n→+∞
0,

i.e. there exists n such that ‖vn − v‖L(Ω) <
ε
2 . So

‖v(t)‖L(Ω) 6 ‖vn − v‖L(Ω) + ‖vn(t)‖L(Ω) 6
ε

2
+N(0) exp(−At) 6 ε.

�
Remark 3.11. This result can be obtained without expandind v and h in Fourier series, but this method gives
us a better understanding of the physical processes that are involved in the experiment:
• The symmetry of the system controls the mean value:

1
2
∂t
(
|V |22 + |∂zH|22

)
6 − |∂zV |22 −

∣∣∂2
zH
∣∣2
2
,

(cf. Lem. 3.9).
• The instabilities can not have a size corresponding to large waves numbers (cf. Prop. 3.6).
• Small frequencies are controlled by the skew-symmetric operator z

λ∂x when λ is small (cf. Lem. 3.8), that
is to say by the shear.

3.2. Construction of the semi-group

The aim of this paragraph is to prove Theorem 3.1. At this stage, we are not concerned with bounded in
time solutions, so we do not try to apply the method described in Section 2.3.

Proof of Theorem 3.1. As usual, we work on some energy estimates. By computingN (t) = |v|22+ε1
∣∣∂2
xh
∣∣2
2
+|∂zh|22

with (10) and (11) we have

1
2
N ′ (t) = − |∂xv|22 − |∂zv|

2
2 −

∫
Ω

∂zh∂zv + δ1

∫
Ω

∂xh∂xv

−
∫

Ω

v∂4
xh+

∫
Ω

v∂4
xh−

∣∣∂2
x∂zh

∣∣2
2

−δ2
∫

Ω

∂2
xh∂

4
xh−

∣∣∂4
xh
∣∣2
2

+
1
λ

∫
Ω

∂xh∂zh

−
∫

Ω

v∂2
zh−

∣∣∂2
zh
∣∣2
2

+ δ2

∫
Ω

∂2
xh∂

2
zh−

∣∣∂2
x∂zh

∣∣2
2
.
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Here, C2 will be a constant. Using Young’s inequality, one obtains the following inequalities:
• −

∫
Ω ∂zh∂zv 6

1
2 |∂zv|

2
2 + C2 |∂zh|22;

• δ1
∫

Ω ∂xh∂xv 6
1
2 |∂xv|

2
2 + C2 |∂xh|22;

• −δ2
∫

Ω
∂2
xh∂

4
xh 6 1

2

∣∣∂4
xh
∣∣2
2

+ C2

∣∣∂2
xh
∣∣2
2
;

• 1
λ

∫
Ω
∂xh∂zh 6 C2 |∂xh|22 + C2 |∂zh|22 6 C2

∣∣∂2
xh
∣∣2
2

+ C2 |∂zh|22, by Poincaré’s inequality;

• −
∫

Ω
v∂2
zh 6 1

4

∣∣∂2
zh
∣∣2
2

+ C2 |v|22;

• δ2
∫

Ω
∂2
xh∂

2
zh 6 1

4

∣∣∂2
zh
∣∣2
2

+ C2

∣∣∂2
xh
∣∣2
2
.

By taking and A = max
(
C2,

1
2

)
, we get

N ′ (t) + |∂xv|22 + |∂zv|22 +
∣∣∂2
zh
∣∣2
2

+
∣∣∂2
x∂zh

∣∣2
2

+
∣∣∂4
xh
∣∣2
2
6 AN (t) (28)

which finishes the proof. �

4. Nonlinear results

We deal now with a priori estimates of the nonlinear terms, for both local and global in time cases. This
last one require bounds on

N (t) = |v|22 +E |h|22 +
∣∣∂2
xh
∣∣2
2

+ λ |∂zh|22 + F
(
|V |22 + |∂zH|22

)
.

Here is the result:

Theorem 4.1. Let E > 4, F > max
(
E
π4 ,

E
π2

)
and C < min

(
1
2 ,

2
Cp

)
. Then there exists λ0, A > 0, B > 0

(all depending on E, F , C and the parameters of the system) and Q a 2-valuated polynomial with positive
coefficients, so that for all (v, h) being a solution of the problem (3, 4) defined on [0, T ), for all t in [0, T ) and
for all λ in (0, λ0),

Ñ
′
(t) +B

(
|∂xv|22 + |∂zv|22 +

∣∣∂2
xh
∣∣2
2

+
∣∣∂4
xh
∣∣2
2

+ |∂zh|22 +
∣∣∂2
x∂zh

∣∣2
2

+ λ
∣∣∂2
zh
∣∣2
2

)
6 −AÑ (t) +Q

(
Ñ (t)

)
.

The local in time case can be interpreted as a particular form of the global one, as λ does not play an important
role and can be considered just as a physical parameter. Let

N (t) = |v|22 +
∣∣∂2
xh
∣∣2
2

+ |∂zh|22 .

Then we have the

Theorem 4.2. Let T > 0. Suppose that (v, h) is a solution of the problem (3, 4). Then for all λ > 0, there
exists A > 0 and Q a 1-valuated polynomial with positive coefficients, so that for all t ∈ [0, T ),

N ′ (t) +A
(
|∂xv|22 + |∂zv|22 +

∣∣∂4
xh
∣∣2
2

+
∣∣∂2
x∂zh

∣∣2
2

+
∣∣∂2
zh
∣∣2
2

)
6 Q (N (t)) .

Hence, we devote this section mainly to the proof of Theorem 4.1 which needs some inequalities we give in the
next paragraph.

4.1. Some inequalities

The inequalities used to prove those theorems are Propositions 4.5 and 4.6 and its Corollary 4.7. Their proof
are based on the Young’s inequality (if p, q > 1, p−1 + q−1 = 1, a, b > 0 and ε > 0 then ab 6 εap + bq/(4ε)) and
the two following lemmas. Proposition 4.9 will be used later, to give compactness to the Galerkin sequence.
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Lemma 4.3. For all p > 1, there exists C > 0 such that, for all u ∈ C∞(B), 2-periodic in x, vanishing at
z = 0, 1,

|u|2p2p 6 C |u|
2p−2
2p−2 |∇u|

2
2 .

The proof is based on the one given by Ladyzhenskaya in [9], which can be easily adapted for periodic functions.
Due to the anisotropic nature of the energy involved in the studied system (1, 2), we need the following

Sobolev-type inequality:

Lemma 4.4. There exists C > 0 such that for all u ∈ C∞(B), 2-periodic in x, vanishing at z = 0, 1 and for
all p ∈ [2, 6],

|∂xu|p 6 C
(
|∂xu|2 + |∂zu|2 +

∣∣∂2
xu
∣∣
2

)
.

For a proof, cf. [1] (p. 323). This kind of inequality is also used for the K.P. equation in [4].

Proposition 4.5. For all C1 > 0, there exists C2 > 0 such that for all u ∈ C∞
(
Ω
)
, 2-periodic in x and

vanishing at z = 0, 1,
|∂zu|34 6 C2 |∂zu|62 + C1

(∣∣∂2
xu
∣∣2
2

+
∣∣∂2
zu
∣∣2
2

)
.

Proof. First, the result of the Lemma 4.3 remains for ∂zu as its mean value with respect to z is equal to zero.
Then it suffices to reuse the arguments used for the x variable. The Lemma 4.3 and Young’s inequality leads to

|∂zu|34 6 C2 |∂zu|62 + C1

(
|∂x∂zu|22 +

∣∣∂2
zu
∣∣2
2

)
.

|∂x∂zu|22 =
∫

Ω

∂2
xu∂

2
zu 6

1
2

(∣∣∂2
xu
∣∣2
2

+
∣∣∂2
zu
∣∣2
2

)
,

by Cauchy−Schwartz’s inequality. This concludes the proof.

Proposition 4.6. There exists C > 0 such that for all u ∈ C∞
(
Ω
)
, 2-periodic in x and vanishing at z = 0, 1

and for all p ∈ [2, 6],
|∂xu|p 6 C

(
|∂zu|2 +

∣∣∂2
xu
∣∣
2

)
.

Proof. We use the Lemma 4.4 and the Poincaré’s inequality.

Corollary 4.7. There exists C > 0 such that for all u ∈ C∞
(
Ω
)
, 2-periodic in x and vanishing at z = 0, 1 and

for all p ∈ [2, 6] and q > 0,

|∂xu|2qp 6 C
(
|∂zu|22 +

∣∣∂2
xu
∣∣2
2

)q
.

Proof. We use the Proposition 4.6 and the equivalence of norms in finite dimension.

Remark 4.8. By changing the constant C of this corollary, we can adjust the coefficients of |∂zu|22 and
∣∣∂2
xu
∣∣2
2
.

Proposition 4.9. There exists C > 0 such that for all u ∈ C∞
(
Ω
)
, 2-periodic in x and vanishing at z = 0, 1,

∣∣∂2
xu
∣∣
4
6 C |∂xu|

1
2
4

∣∣∂2
xu
∣∣ 1

16

2

∣∣∂4
xu
∣∣ 1

16

2

∣∣∂3
xu
∣∣ 3

8

6
.

Proof. Integrating by parts and using Hölder’s inequality give

∣∣∂2
xu
∣∣4
4

= −3
∫

Ω

∂zu∂
3
xu
∣∣∂2
xu
∣∣2 6 3 |∂xu|4

∣∣∂3
xu
∣∣
4

∣∣∂2
xu
∣∣2
4
.

Classical results on interpolation inequalities give
∣∣∂3
xu
∣∣
4
6
∣∣∂3
xu
∣∣ 14
2

∣∣∂3
xu
∣∣ 34
6
. By integration by parts and using

Cauchy−Schwartz’s inequality we have
∣∣∂3
xu
∣∣
2
6
∣∣∂2
xu
∣∣ 1

2

2

∣∣∂4
xu
∣∣ 1

2

2
. This concludes the proof, with C =

√
3.
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4.2. Nonlinear a priori estimates for global existence

We complete in this paragraph the linear a priori estimate found in Section 3 (cf. Th. 3.2), by adding the
one of nonlinear terms.

Basically, we will bound all nonlinear terms by polynomial in N , which will lead to the estimate of
Theorem 4.1:

Ñ
′
(t) +B

(
|∂xv|22 + |∂zv|22 +

∣∣∂2
xh
∣∣2
2

+
∣∣∂4
xh
∣∣2
2

+ |∂zh|22 +
∣∣∂2
x∂zh

∣∣2
2

+ λ
∣∣∂2
zh
∣∣2
2

)
6 −AÑ (t) +Q

(
Ñ (t)

)
where Q is the polynomial.

Remark 4.10. • It is equivalent to work on N(t) or Ñ(t) as they are equivalent.
• The fact that Q is a 2-valuated polynomial is quite important: the linear part of the inequality of

Theorem 4.1 as a negative coefficient. This is this fact that will give existence of the solution on R+.
• The others terms on the left-hand-side of this inequality are necessary to prove the convergence of the

Galerkin sequence (see 5.3).

Theorem 4.1 is easily proved if the three nonlinear terms of (3) are bounded in a suitable way. The following
proposition gives these bounds.

Proposition 4.11. Let C1 > 0. Then there exists C2 > 0 such that, for all (v, h) being a solution of the
problem (3, 4) and for µ < λ2 and ν2 < λ

5
2 ,

−
µ

λ

∫
Ω

∂xv∂xh∂zh−
µ

λ

∫
Ω

∂zv (∂xh)2 +
ν2

λ

∫
Ω

∂xv (∂xh)3 6 C1

(
|∂xv|22 + |∂zv|22 +

∣∣∂2
xh
∣∣2
2

+ λ
∣∣∂2
zh
∣∣2
2

)
+ C2

((∣∣∂2
xh
∣∣2
2

+ λ |∂zh|22
)2

+
(∣∣∂2

xh
∣∣2
2

+ λ |∂zh|22
)3
)
.

Proof. We study separately the three terms of the left-hand-side.
• The

∫
Ω ∂xv∂xh∂zh term:

Let µ = λ2. I = µ
λ

∫
Ω ∂xv∂xh∂zh 6 λ |∂xv|2 |∂zh|4 |∂xh|4. By Proposition 4.6 and Young’s inequality,

we have
I 6 C1 |∂xv|22 + λ

3
2 |∂zh|34 + C2λ

3 |∂xh|64 .
With Proposition 4.5 and Corollary 4.7 we obtain:

I 6 C1

(
|∂xv|22 +

∣∣∂2
xh
∣∣2
2

+ λ
∣∣∂2
zh
∣∣2
2

)
+ C2

(
λ3 |∂zh|62 +

(∣∣∂2
xh
∣∣2
2

+ λ |∂zh|22
)3
)
.

So, with the equivalence of norms in finite dimension:

I 6 C1

(
|∂xv|22 +

∣∣∂2
xh
∣∣2
2

+ λ
∣∣∂2
zh
∣∣2
2

)
+ C2

(∣∣∂2
xh
∣∣2
2

+ λ |∂zh|22
)3

.

• The
∫

Ω ∂zv (∂xh)2 term:
Let µ = λ2.

I =
µ

λ

∫
Ω

∂zv (∂xh)2 6 λ |∂zv|2 |∂xh|
2
4 6 C1 |∂zv|22 + C2λ

2 |∂xh|44 ,

by Young’s inequality. By Corollary 4.7, we obtain:

I 6 C1 |∂zv|22 + C2

(
λ |∂zh|22 +

∣∣∂2
xh
∣∣2
2

)2

.
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• The
∫

Ω
∂xv (∂xh)3 term:

Let ν2 = λ
5
2 .

I =
ν2

λ

∫
Ω

∂xv (∂xh)3 6 λ 3
2 |∂xv|2 |∂xh|

3
6 6 C1 |∂xv|22 + C2λ

3 |∂xh|66 ,

by Young’s inequality. With Corollary 4.7 we have:

I 6 C1 |∂xv|22 + C2

(∣∣∂2
xh
∣∣2
2

+ λ |∂zh|22
)3

.

Proof of Theorem 4.1. Thanks to Theorem 3.2, we get (26) and A1, B, and λ0. Let C1 < B. Proposition
4.11 gives C2 > 0 such that nonlinear terms are bounded by C2

(
N2 +N3

)
. So Theorem 4.1 is proved with

Q = C2

(
X2 +X3

)
. �

4.3. Nonlinear a priori estimates for local existence

The result for the local case needs few modifications. As it was said, λ does not play any important role and
is considered as a physical parameter. The proof is quite simple:

Proof of Theorem 4.2. The conclusion of Proposition 4.11 can be reused to obtain the result in combination to
the inequality (28) of Theorem 3.1. �

5. Proof of the global existence

In this section, we apply the Galerkin method (cf. [10]) to prove Theorem 2.2. This proof is completed in 4
points:

• we found a sequence of solutions of approximated PDE’s of (3, 4). These solutions are denoted by (vn, hn);
• we use a priori estimates found in Section 4 with (vn, hn) to show that vn and hn are in a bounded set of

some spaces;
• we show then the existence of a limit of a subsequence of (vn, hn), denoted (v, h), as well as their spatial

derivatives. The difficult point is to show the strong convergence of nonlinecar terms;
• we conclude by the fact that (v, h) is a solution of (3, 4).

5.1. Approximation of the solution

Let en,p = sin (nπz) exp (ipπx) the usual complete orthonormal basis of L2 (Ω), eigenvectors of ∆ with
boundary conditions used in this paper: periodic in x and vanishing at z = 0, 1. For sake of simplicity, these
eigenvectors will be indexed by N. Let n ∈ N, En = Span (e0, . . . , en) and Πn the orthogonal projector on En.
Let vn =

∑n
i=0 ai (t) ei, hn =

∑n
i=0 bi (t) ei, where ai and bi are smooth real valued functions, v0 ∈ L(Ω) and

h0 ∈ K(Ω).
So, we can note Πn (v0) =

∑n
i=0 a

0
i ei and Πn (h0) =

∑n
i=0 b

0
i ei, where a0

i and b0i are real constants.
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We consider the Galerkin approximation of (3) and (4):

∂tvn +
1
λ

Πn (z∂xvn) = ∆vn + ∂2
zhn − δ1∂2

xhn − ∂4
xhn

+ Πn

(
µ

λ
∂x (∂xhn∂zhn) +

µ

λ
∂z (∂xhn)2 +

ν2

λ
∂x (∂xhn)3

)
(29)

∂thn +
1
λ

Πn (z∂xhn) = vn + ∂2
zhn − δ2∂2

xhn + ∂4
xhn, (30)

with the following initial conditions:

vn (0) = Πn (v0) (31)

and

hn (0) = Πn (h0) . (32)

Let j ∈ {0, . . . , n}; we multiply (29) and (30) by ej , then, since (en)n∈N is an orthonormal system and Πn is
self-adjoint,

∂taj +
1
λ

n∑
k=0

ak

∫
Ω

zej∂xek =
n∑
k=0

ak

∫
Ω

ej∂
2
xek +

n∑
k=0

ak

∫
Ω

ej∂
2
zek

+
n∑
k=0

bk

∫
Ω

ej∂
2
zek − δ1

n∑
k=0

bk

∫
Ω

ej∂
2
xek

+
n∑
k=0

bk

∫
Ω

ej∂
4
xek − F

(µ
λ
,
µ

λ
,
ν

λ

)
(X) (33)

∂tbj +
1
λ

n∑
k=0

bk

∫
Ω

zej∂xek =aj +
n∑
k=0

bk

∫
Ω

ej∂
2
zek − δ2

n∑
k=0

bk

∫
Ω

ej∂
2
xek

+
n∑
k=0

bk

∫
Ω

ej∂
4
xek, (34)

where X is the column vector (b0 . . . bn) and

F (r, s, t) (X) =
n∑

k,l=0

bkbl

(
r

∫
Ω

∂xek∂zel∂xej + s

∫
Ω

∂xek∂xel∂zej

)
+

n∑
k,l,m=0

bkblbmt

∫
Ω

∂xek∂xel∂xem∂xej .

In the same way, we obtain the following initial conditions:

aj (0) = a0
j (35)

and

bj (0) = b0j . (36)
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Hence, by Cauchy−Lipschitz’s theorem, we can conclude that there is a unique maximal solution of (33–36),
denoted by vn and hn according to the previous definitions, defined on [0, tn[, and which verify vn (0) = Πn (v0)
and hn (0) = Πn (h0).

5.2. A priori estimates

In this section, we show that vn and hn (built in the previous section) are defined on R provided the initial
conditions are small enough, and are uniformly bounded in n. As in Section 3.1, we note Vn and Hn the mean
value with respect to x of the respective functions vn and hn.

Proposition 5.1. Let E > 4, F > max
(
E
π4 ,

E
π2

)
, v0 in L(Ω), h0 in K(Ω), and Nn (t) the following quantity:

Nn (t) = |vn|22 +E |hn|22 +
∣∣∂2
xhn

∣∣2
2

+ λ |∂zhn|22 + F
(
|Vn|22 + |Hn|22

)
.

Then there exists X0 > 0, λ0 > 0 such that, if the quantity

N0 = |v0|22 +
∣∣∂2
xh0

∣∣2
2

+E |h0|22 + λ0 |∂zh0|22 + F
(
|V0|22 + |H0|22

)
is less that X0, then for all n in N, Nn is defined on R and there exists M > 0 such that, for all λ in (0, λ0),
for all t > 0 and for all n in N, Nn (t) 6MN0.

This proposition needs two lemmas:

Lemma 5.2. Let A a positive real, Q a 2-valuated polynomial with positive coefficients and X0 the first positive
root of f(z) = −Az +Q (z). For all z0 in ]0, X0[, let z (t) be the maximal solution of the Cauchy problem{

z′ (t) = f (z (t))
z (0) = z0.

Then z is defined on R+, is decreasing and tends to 0 as t tends to +∞.

Lemma 5.3. For all n in N, Nn (0) 6 N0.

Proof. The norm of Πn is equal to 1. So, |Πn (v0)|2 6 |v0|2 and |Πn (h0)|2 6 |h0|2. As
[
Πn, ∂

2
x

]
= 0,

∣∣∂2
xΠnh0

∣∣
2

=∣∣Πn∂
2
xh0

∣∣
2
6
∣∣∂2
xh0

∣∣
2
.

|∂zΠnh0|22 = −
∫

Ω
Πnh0∂

2
zΠnh0. As

[
Πn, ∂

2
z

]
= 0 and Πn is a self-adjoint projector,

|∂zΠnh0|22 = −
∫

Ω

Πnh0∂
2
zh0 =

∫
Ω

∂zΠnh0∂zh0 6 |∂zΠnh0|2 |∂zh0|2 .

This concludes the proof.

Proof of Proposition 5.1. Thanks to Section 5.1, Nn (t) is defined on [0, tn[. We apply Theorem 4.1 with
C < min

(
1
2 ,

2
Cp

)
and we get A, λ0 and Q, independant of n such that, for all n, for all t in [0, tn[ and for all λ

in (0, λ0),

Ñ ′n (t) 6 −AÑn (t) +Q
(
Ñn (t)

)
.

Let y = Ñn. As Ñn and Nn are equivalent, there exists M > 0 such that y (0) 6 MNn (0). By Lemma 5.3,
y (0) 6MN0. So, y satisfies: {

y′ (t) 6 f (y (t))
y (0) 6MN0.
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Let z0 = MN0 and z the solution of the differential equation of Lemma 5.2. If we take X0 = x0
M , where x0 is the

first positive root of −Az +Q (z), the conclusion of Lemma 5.2 remains. Then classical results on differential
equations give y defined on R and for all t ∈ R, 0 6 y (t) 6 z (t). As z is decreasing, for all t ∈ R, y (t) 6MN0.
The fact that Nn and Ñn are equivalent finishes the proof. �

5.3. Existence of the limit

We define here two functions v and h which are the limit of vn and hn, thanks to compactness of the weak*
topology.

From Proposition 5.1 and from the viscous terms given by (26), we get the following bounds:

vn is in a bounded set of L∞ (R+; L(Ω)) ∩ L2 (R+; H(Ω)) , (37)

hn is in a bounded set of L∞ (R+; K(Ω)) ∩ L2
(
R+; H2 (Ω) ∩H(Ω)

)
, (38)

∂2
x∂zhn is in a bounded set of L2 (R+ × Ω) , (39)

∂4
xhn is in a bounded set of L2 (R+ × Ω) . (40)

Then, up to an extraction of a subsequence, inclusions (37–40) imply that there exists

v ∈ L∞ (R+; L(Ω)) ∩ L2 (R+; H(Ω))

and
h ∈ L∞ (R+; K(Ω)) ∩ L2

(
R+; H2 (Ω) ∩H(Ω)

)
such that ∂2

x∂zh ∈ L2 (R+ × Ω) and ∂4
xh ∈ L2 (R+ × Ω) and

vn ⇀ v weak * in L∞ (R+; L(Ω)) and weakly in L2 (R+; H(Ω)) , (41)
hn ⇀ h weak * in L∞ (R+; K(Ω)) and

weakly in L2
(
R+; H2 (Ω) ∩H(Ω)

)
, (42)

∂2
x∂zhn ⇀ ∂2

x∂zh weakly in L2 (R+ × Ω) , (43)
∂4
xhn ⇀ ∂4

xh weakly in L2 (R+ × Ω) . (44)

To conclude that vn and hn verify (3–4), we will use compactness in L2(0,T; X), that is to say:

Proposition 5.4. Up to an extraction of a subsequence, for T > 0,

vn → v (45)
hn → h (46)

∂xhn → ∂xh (47)
∂zhn → ∂zh (48)

strong in L2((0,T)× Ω) and a.e.

This proposition requires the fact that ∂tvn, ∂thn, ∂t∂xhn and ∂t∂zhn are bounded in L2(0,T; H(Ω)′) and
needs the following lemma:

Lemma 5.5. Let H1 ↪→ H ↪→ H2 three hilbert spaces so that the first embedding is compact. Then for any p1

and p2 in (1,+∞), the embedding{
f ∈ Lp1 (0, T ; H1) ,

df
dt
∈ Lp2 (0, T ; H2)

}
↪→ Lp1 (0, T ; H)

is compact.
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For a proof, see [10] (p. 58).
Hence, nonlinear terms must lay in a bounded set of L2((0, T )× Ω):

Lemma 5.6. The nonlinear terms in equations (29) and (30) verified by vn and hn are in a bounded set of
L2((0, T )× Ω).

Proof. For sake of simplicity, we note h instead of hn. As h is periodic in the direction x, integrating by parts
with respect to x does not add any boundary terms. We first show three inequalities we will use throughout
this proof.

We recall that h verifies (38–40). This fact and Lemma 4.4 show that there exists M > 0 such that, for all
p ∈ [2, 6] and for all t ∈ [0, T ],

|∂xh|p 6M. (49)

In the same way, Lemma 4.3 implies that, for p > 1, there exists M > 0 such that, for all t ∈ [0, T ],

|h|pp 6M |h|
p−2
p−2

(
|∂xh|22 + |∂zh|22

)
6M |h|p−2

p−2 , (50)

and that there exists M > 0 such that

|∂zh|
15
4

4 6M
(
|∂zh|30

2 +
∣∣∂2
xh
∣∣2
2

+
∣∣∂2
zh
∣∣2
2

)
. (51)

• First, let show the result on ∂z
(

(∂xh)2
)

:

As ∂z
(

(∂xh)2
)

= 2∂x∂zh∂xh, let

I =
∫

Ω

(∂x∂zh)2 (∂xh)2 = −2
∫

Ω

∂zh∂x∂zh∂
2
xh∂xh− 2

∫
Ω

∂zh∂
2
x∂zh (∂xh)2

,

by integrating by parts with respect to x. Let −2I1 be equal to the first integral and −2I2 to the second.
It is sufficient to show that I1 and I2 are in a bounded set of L1(0, T ).

By integrating I1 by parts with respect to x, we get I1 = −I1 − I3 − I4 where I3 =
∫

Ω
(∂zh)2

∂3
xh∂xh

and I4 =
∫

Ω
(∂zh)2 (∂2

xh
)2.

I3 6 |∂zh|24 |∂xh|4
∣∣∂3
xh
∣∣
4
, and the proof of Proposition 4.9 shows that

∣∣∂3
xh
∣∣
4
6M

∣∣∂2
xh
∣∣ 18
2

∣∣∂4
xh
∣∣ 1

8

2

∣∣∂3
xh
∣∣ 3

4

6
.

Hence

I3 6 M |∂zh|24 |∂xh|4
∣∣∂2
xh
∣∣ 1

8

2

∣∣∂4
xh
∣∣ 18
2

∣∣∂3
xh
∣∣ 34
6

6 M
(
|∂zh|

15
4

4 +
∣∣∂4
xh
∣∣2
2

+ |∂xh|60
4 +

∣∣∂2
xh
∣∣80

2
+
∣∣∂3
xh
∣∣2
6

)
6 M

(
|∂zh|

15
4

4 +
∣∣∂4
xh
∣∣2
2

+ |∂xh|60
4 +

∣∣∂2
xh
∣∣80

2
+
∣∣∂2
x∂zh

∣∣2
2

+
∣∣∂4
xh
∣∣2
2

)
,

by using Lemma 4.4 for the last term of the second inequality. According to (38–40, 49, 51), I3 is in a
bounded set of L1(0, T ) (we recall that h replaces hn).

Now, let us show that I4 is in a bounded set of L1(0, T ) to conclude that I1 verifies the same property:

I4 6 |∂zh|24
∣∣∂2
xh
∣∣2
4
6M

(
|∂zh|

15
4

4 +
∣∣∂2
xh
∣∣ 30

7

4

)
.
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Using Proposition 4.9 and the fact that
∣∣∂2
xh
∣∣
2

is in a bounded set of L∞(0, T ) (cf. (38)) leads to

I4 6 M
(
|∂zh|

15
4

4 + |∂xh|
240
7

4 +
∣∣∂4
xh
∣∣2
2

+
∣∣∂3
xh
∣∣2
6

)
6 M

(
|∂zh|

15
4

4 + |∂xh|
240
7

4

∣∣∂2
x∂zh

∣∣2
2

+
∣∣∂4
xh
∣∣2
2

)
,

by using Lemma 4.4 for the last term of the first inequality. Hence it is easy to conclude that I4 is in a
bounded set of L1(0, T ) with (39, 40, 49, 51), so does I1.

Finally,
I2 6

∣∣∂2
x∂zh

∣∣
2
|∂zh|4 |∂xh|

2
8 .

Using Lemma 4.3 leads to

I2 6M
∣∣∂2
x∂zh

∣∣
2

(∣∣∂2
xh
∣∣2
2

+
∣∣∂2
zh
∣∣2
2

) 1
2 |∂zh|

1
2
2 |∂xh|

3
2
6 .

Using (49) and (38) leads to

I2 6M
(∣∣∂2

x∂zh
∣∣2
2

+
∣∣∂2
xh
∣∣2
2

+
∣∣∂2
zh
∣∣2
2

)
,

which is in a bounded set of L1(0, T ) thanks to (38) and (39).
• Now we deal with ∂x (∂xh∂zh) which is equal to ∂2

xh∂zh + ∂x∂zh∂xh. The last term is the one treated
previously and showing the result on the first one is dealing with I4. Hence ∂x (∂xh∂zh) is in a bounded
set of L2((0, T )× Ω).
• Finally, ∂x

(
(∂xh)3

)
= 3∂2

xh (∂xh)2. Let I =
∫

Ω

(
∂2
xh
)2 (∂xh)4. By integrating by parts with respect to x,

one has I = −3I5−2I6, where I5 =
∫

Ω h
(
∂2
xh
)3 (∂xh)2 and I6 =

∫
Ω h∂

3
xh∂

2
xh (∂xh)3. Using Proposition 4.9

leads to

I5 6 |h|12 |∂xh|
2
6

∣∣∂2
xh
∣∣3
4

6 |h|12 |∂xh|
2
6 |∂xh|

3
2
4

∣∣∂2
xh
∣∣ 3

16

2

∣∣∂4
xh
∣∣ 3

16

2

∣∣∂3
xh
∣∣ 98
6
.

Using (49) and (50) leads to

I5 6 M |h|
2
3
2 |∂xh|

3
2
4

∣∣∂2
xh
∣∣ 3

16

2

∣∣∂4
xh
∣∣ 3

16

2

∣∣∂3
xh
∣∣ 98
6

6 M
(∣∣∂2

xh
∣∣2
2

+
∣∣∂4
xh
∣∣2
2

+
∣∣∂3
xh
∣∣2
6

)
6 M

(∣∣∂2
xh
∣∣2
2

+
∣∣∂2
x∂zh

∣∣2
2

+
∣∣∂4
xh
∣∣2
2

)
,

according to Lemma 4.4. Then, it is easy to conclude that I5 is in a bounded set of L1(0, T ) thanks to
(38–40).

Now, we deal with I6 which is equal to −I6 − I7 − I8 − 2I9 by integrating by parts with respect to x,
where I7 =

∫
Ω
h2∂4

xh∂
2
xh (∂xh)2, I8 =

∫
Ω
h2
(
∂3
xh
)2 (∂xh)2 and I9 =

∫
Ω
h2∂xh

(
∂2
xh
)2
∂3
xh. Then

I7 6 |h|215

∣∣∂4
xh
∣∣
2
|∂xh|26

∣∣∂2
xh
∣∣
5

6 |h|215

∣∣∂4
xh
∣∣
2
|∂xh|26

∣∣∂2
xh
∣∣ 1

10

2

∣∣∂2
xh
∣∣ 9

10

6
,
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by using classical results on interpolation. As |h|15 is in a bounded set of L∞(0, T ) (thanks to (50) and (38))

as well as |∂xh|6 (thanks to (49) and (38)), I7 6M
∣∣∂4
xh
∣∣
2

∣∣∂2
xh
∣∣ 1

10

2

∣∣∂3
xh
∣∣ 9

10

6
6M

(∣∣∂4
xh
∣∣2
2

+
∣∣∂2
xh
∣∣2
2

+
∣∣∂3
xh
∣∣2
6

)
.

To conclude that I7 is in a bounded set of L1(0, T ), it suffices to apply Lemma 4.4 to the last term of this
inequality and to conclude with (38) and (39).

Now we estimate I8 which is less or equal than |h|212 |∂xh|
2
6

∣∣∂3
xh
∣∣2
4
. We have already seen that

∣∣∂3
xh
∣∣
4
6

M
∣∣∂2
xh
∣∣ 1

8
2

∣∣∂4
xh
∣∣ 1

8
2

∣∣∂3
xh
∣∣ 34
6

. Then

I8 6M |h|212 |∂xh|
2
6

∣∣∂2
xh
∣∣ 14
2

∣∣∂4
xh
∣∣ 1

4

2

∣∣∂3
xh
∣∣ 3

2

6
.

As usual, |h|212 |∂xh|
2
6 is in a bounded set of L∞(0, T ). Then

I8 6M
∣∣∂2
xh
∣∣ 14
2

∣∣∂4
xh
∣∣ 1

4

2

∣∣∂3
xh
∣∣ 3

2

6
6M

(∣∣∂2
xh
∣∣2
2

+
∣∣∂4
xh
∣∣2
2

+
∣∣∂3
xh
∣∣2
6

)
.

We conclude as for I7.
It remains I9 which is less or equal than |h|224 |∂xh|6

∣∣∂3
xh
∣∣
4

∣∣∂2
xh
∣∣2
4
. By using Proposition 4.9 and the

bound of
∣∣∂3
xh
∣∣
4
, we get

I9 6M |h|224 |∂xh|6 |∂xh|4
∣∣∂2
xh
∣∣ 1

4

2

∣∣∂4
xh
∣∣ 14
2

∣∣∂3
xh
∣∣ 32
6
.

As usual, |h|224 |∂xh|6 |∂xh|4 is in a bounded set of L∞(0, T ) and I9 6 M
(∣∣∂2

xh
∣∣2
2

+
∣∣∂4
xh
∣∣2
2

+
∣∣∂3
xh
∣∣2
6

)
. We

conclude as for I7 and the proof is finished.

Proof of Proposition 5.4. From Lemma 5.5 (with p1 = p2 = 2, H1 = H(Ω), H2 = H(Ω)′, H = L2(Ω)), it’s easy
to see that we only need that

• For all T > 0, ∂tvn and ∂thn are bounded in L2
(
0, T ; H(Ω)′

)
:

Let us fix T > 0. (37) implies that vn, ∂2
xvn and ∂2

zvn are in a bounded set of L2
(
(0, T ) ,H(Ω)′

)
.

As z lies in (0, 1), the same conclusion remains for z
λ∂xvn.

Thanks to (38) and (40), zλ∂xhn, ∂2
xhn, ∂2

zhn and ∂4
xhn remain in a bounded set of L2 ((0, T )× Ω) which

is continuously embedded in L2
(
(0, T ) ; H(Ω)′

)
.

It only remains the nonlinear terms. Lemma 5.6 shows that they are in a bounded set of L2((0, T )×Ω),
therefore in a bounded set of L2

(
(0, T ) ; H(Ω)′

)
.

Then, up to an extraction of a subsequence, for all T > 0, vn → v strong in L2 ((0, T )× Ω) and a.e.
Obviously, the same result holds on h. So (45) and (46) are proved.
• For all T positive real, ∂t∂xhn and ∂t∂zhn are in a bounded set of L2

(
0, T ; H(Ω)′

)
:

Lemma 5.6 shows that they are in a bounded set of L2((0, T ) × Ω), therefore their derivatives with
respect to x and z are in a bounded set of L2

(
(0, T ) ; H(Ω)′

)
.

So, as for vn, we conclude that, for all T > 0, ∂xhn → ∂xh and ∂zhn → ∂zh strong in L2 ((0, T )× Ω)
and a.e., and (47) and (48) are proved.

�

Remark 5.7. v and h depend a priori on T . With a diagonal extraction, we eliminate this fact (up to an
extraction of a subsequence...).
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5.4. Conclusion of the proof of Theorem 2.2

We first show that ∂tvn tends to ∂tv so that equation (3) holds:

Proposition 5.8. Let T > 0. Then, ∂tvn tends towards ∂tv in L2
(
0, T ; H(Ω)′

)
and v and h satisfy the equa-

tion (3). In addition, v ∈ C0
(
[0, T ]; L2(Ω)

)
.

Proof. Let N ∈ N, Φ : [0, T ]×Ω→ R, C∞ with respect to time, so that Φ (T ) = Φ (0) = 0 and, for all t ∈ [0, T ],
Φ (t, .) ∈ EN . Here, (., .) will denote the inner product on L2(Ω) and n will be an integer greater than N . The
linear terms of

∫ T
0 (∂tvn,Φ) do not hold any problem (we use (41–44, 45) and Lebesgue’s theorem). Let us

focus on the nonlinear terms of
∫ T

0 (∂tvn,Φ), which are
∫ T

0

∫
Ω ∂x (∂xhn∂zhn) Φ dt,

∫ T
0

∫
Ω ∂z

(
(∂xhn)2

)
Φ dt and∫ T

0

∫
Ω ∂x

(
(∂xhn)3

)
Φ dt. Thanks to (47, 48) and Lebesgue’s theorem, we have:∫ T

0

∫
Ω

∂xhn∂zhn∂xΦ dt −−−→
n→∞

∫ T

0

∫
Ω

∂xh∂zh∂xΦ dt,∫ T

0

∫
Ω

(∂xhn)2
∂zΦ dt −−−→

n→∞

∫ T

0

∫
Ω

(∂xh)2
∂zΦ dt

and ∫ T

0

∫
Ω

(∂xhn)3
∂xΦ dt −−−→

n→∞

∫ T

0

∫
Ω

(∂xh)3
∂xΦ dt.

As, (∂tvn,Φ) =< ∂tvn,Φ >H(Ω)′,H(Ω) and

∫ T

0

(∂tvn,Φ) dt = −
∫ T

0

(vn, ∂tΦ) dt −−−→
n→∞

−
∫ T

0

(v, ∂tΦ) dt.

We have perform the limit for each Φ in EN and for all N , this means that v and h verify the equation (3) in
a weak sense, in L2

(
0, T ; H(Ω)′

)
.

Finally, Lemma 3.10 involves v ∈ C0
(
[0, T ]; L2(Ω)

)
, which concludes the proof of the proposition.

The initial conditions are treated in the usual way and we have v (0) = v0.
The same result holds for equation (4):

Proposition 5.9. Let T > 0. Then, ∂thn tends to ∂th in L2
(
0, T ; H(Ω)′

)
and v and h verify the equation (4).

In addition, h ∈ C0
(
[0, T ]; L2(Ω)

)
.

Proof. We choose N and Φ as in Proposition 5.8. The linear terms do not hold any problem: we use (45) and
Lebesgue’s theorem. Then, v and h verify the equation (4) in a weak sense. We apply Lemma 3.10 to conclude
that h ∈ C0

(
[0, T ]; L2(Ω)

)
, hence the proof is finished.

Finally, the initial condition of h is treated as for v and we have h (0) = h0. This concludes the proof of
Theorem 2.2.

6. Proof of the local existence

We will use exactly the same arguments as for the global existence.

6.1. Approximation of the solution

As in Section 5.1, we find vn and hn in C∞ ([0, tn);En), unique maximal solution of (29) and (30), verifying
vn (0) = Πn (v0) and hn (0) = Πn (h0). Of course, vn and hn are 2-periodic in x and vanish at z = 0, 1.
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6.2. A priori estimates

We denote Nn (t) the quantity |vn|22 + ε1k
4 |hn|22 + |hn|22. As for global existence, this section shows that Nn

is uniformly bounded in n:

Proposition 6.1. Let v0 in L(Ω), h0, in K(Ω). There exists Te > 0 such that, for all T in [0, Te), there exists
M > 0 such that, for all n in N, for all t in [0, T ], Nn (t) 6 NoM .

Proof. We make the same computations as in Theorem 4.2 and this gives Q (1-valuated polynomial with positive
coefficients) such that N ′n (t) 6 Q (Nn (t)), whose time existence is tn. As for global existence, let us consider
the maximal solution z of the differential equation{

z′ (t) = Q (z (t))
z (0) = |v0|2 2 + ε1

∣∣∂2
xh0

∣∣2
2

+ |∂zh0|22 ,

whose time definition is denoted Te. By classical results on differential equations, tn > Te and Nn (t) 6 z (t),
for all t in [0, Te[. Let T ∈]0, Te[, Q̃ such that Q (X) = XQ̃ (X) (possible since Q is a 1-valuated polynomial),
M1 (T ) = sup

[0,T ]

z (t), M (T ) = Q̃ (M1 (T )) and M = exp (TM (T )). Since Nn (t) 6 z (t), we have

N ′n (t) 6 NnQ̃ (Nn) 6 NnQ̃ (z) 6 y = NnQ̃ (M1 (T )) 6 NnM (T ) .

By Gronwall’s lemma, for all t in [0, T ],

Nn (t) 6 Nn (0) exp (TM (T )) 6 z (0) exp (TM (T )) .

The same arguments as in Theorem 5.3 give Nn (0) 6 N0 = z (0). So

sup
t∈[0,T ]

(Nn (t)) 6 N0M.

This result and the viscous terms given by the Theorem 4.2 imply that, for all T < Te,

vn is in a bounded set of L∞ (0, T ; L(Ω)) ∩ L2 (0, T ; H(Ω)) , (52)

hn is in a bounded set of L∞ (0, T ; K(Ω)) ∩ L2
(
0, T ; H2 (Ω) ∩H(Ω)

)
, (53)

∂2
x∂zhn is in a bounded set of L2 ((0, T )× Ω) , (54)

∂4
xhn is in a bounded set of L2 ((0, T )× Ω) . (55)

6.3. Existence of the limit

Up to an extraction of a subsequence, equations (52–55) imply that there exists

v in L∞ (0, T ; L(Ω)) ∩ L2 (0, T ; H(Ω))

and

h in L∞ (0, T ; K(Ω)) ∩ L2
(
0, T ; H2 (Ω) ∩H(Ω)

)
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such that ∂2
x∂zh ∈ L2 ((0, T )× Ω) and ∂4

xh ∈ L2 ((0, T )× Ω) and

vn ⇀v weak * in L∞ (0, T ; L(Ω)) and weakly in L2 (0, T ; H(Ω)) , (56)

hn ⇀h weak * in L∞ (0, T ; K(Ω)) and

weakly in L2
(
0, T ; H2 (Ω) ∩H(Ω)

)
, (57)

∂2
x∂zhn ⇀∂2

x∂zh weakly in L2 ((0, T )× Ω) , (58)

∂4
xhn ⇀∂4

xh weakly in L2 ((0, T )× Ω) . (59)

As for the global existence, v and h will verify the equations (3) and (4) by using compactness in the time
spaces (Arguments of Prop. 5.4 remain). Hence we conclude that (45–47) and (48) hold.

Remark 6.2. Of course it is possible to find v and h independant of T by using a diagonal extraction.

6.4. Conclusion

The arguments given in the proof of the global existence are valid but instead of using (41–44), we use
(56–59). The case of the initial condition (t = 0) is proved in the same way. So the proof of Theorem 2.4 is
completed.

7. Conclusion

The mathematical results exposed in this paper explain the stabilization of lamellar phases observed in the
experiments (Th. 2.2): instabilities does not develop. More over, the linear system is controlled by a nonconstant
parameter and is stable at high shear, i.e. when this parameter is high (Th. 2.1). It shows that small scales are
always stable and that the linear system tends to its rest state.

The author would like to thank A. Colin and D. Roux for their physical discussions on the model and especially

Professor T. Colin for his patience and his interest for this work.
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