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OPTIMAL CONTROL OF A ROTATING BODY BEAM ∗

Weijiu Liu
1

Abstract. In this paper we consider the problem of optimal control of the model for a rotating body
beam, which describes the dynamics of motion of a beam attached perpendicularly to the center of
a rigid cylinder and rotating with the cylinder. The control is applied on the cylinder via a torque
to suppress the vibrations of the beam. We prove that there exists at least one optimal control and
derive a necessary condition for the control. Furthermore, on the basis of iteration method, we propose
numerical approximation scheme to calculate the optimal control and give numeric examples.
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1. Introduction

The purpose of this paper is to study the optimal control of the model for a rotating body beam (see,
e.g. [2, 3, 6, 15])

utt(x, t) + uxxxx(x, t) = ω2(t)u(x, t) in (0, 1)× (0, T ), (1.1)

d
dt

[
ω(t)

(
1 +

∫ 1

0

u2(x, t)dx
)]

= γ(t) in (0, T ), (1.2)

u(0, t) = ux(0, t) = uxx(1, t) = uxxx(1, t) = 0 in (0, T ), (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), ω(0) = ω0 in (0, 1). (1.4)

In (1.1–1.4), the subscripts denote the derivatives with respect to the time variable t or the space variable x,
ω(t) = θ̇(t) is the angular velocity of the cylinder at time t, u(x, t) is the beam’s displacement in the rotating
plane at time t and point x and γ(t) is the torque control variable applied to the cylinder at time t. This
model describes the dynamics of motion of a beam attached perpendicularly to the center of a rigid cylinder
and rotating with the cylinder (see Fig. 1.1). As explained in [2,4], it has applications in aerospace engineering.
Indeed, we can imagine Figure 1.1 a satellite, the beam being its antenna.

As the cylinder rotates, the beam deviates from its equilibrium and becomes unstable. So control mechanisms
are needed to stabilize it. Indeed, extensive attention has been paid to the problem of stabilization for (1.1–1.4).
Applying the Lyapunov analysis and backstepping method, feedback torque control laws were proposed (see,
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Figure 1.1. A rotating body beam.

e.g. [5, 6, 9, 15]) to globally asymptotically stabilize the equilibrium point (0, ω̄) provided

ω̄ ∈ (−ωc, ωc), (1.5)

where ωc is an explicit critical angular velocity (see, e.g. [6, 15]). It was also proved in [15] that there is no
stabilizing control law if |ω| ≥ ωc. This is physically reasonable because if the cylinder spins too fast the
beam shall be out of control and can not be stabilized by feedback control laws. In the above problem of
stabilization, it was required that the stabilizing control laws drive the beam eventually to its equilibrium, that
is, limt→∞ u(t, x) = 0. Such a requirement is quite strict. So we relax it and we just require controls to drive the
beam to approach its equilibrium as closely as possible. Therefore, we consider the problem of optimal control
with the cost function defined by

J(γ) =
∫ T

0

∫ 1

0

[u2(x, t, γ) + (ω(t, γ) − ω̄)2]dxdt+
∫ T

0

γ2(t)dt. (1.6)

In this case, the angular velocity ω̄ can be an arbitrary number. We might want to consider a cost function
over an infinite time interval

J∞(γ) =
∫ ∞

0

∫ 1

0

[u2(x, t, γ) + (ω(t, γ) − ω̄)2]dxdt+
∫ ∞

0

γ2(t)dt. (1.7)

This cost function does make more sense than J(γ) as the beam is needed to be controlled over a long time,
not a short time, in reality. However J∞(γ) is difficult to be handled as it is not clear whether J∞(γ) is proper,
that is, J∞(γ) <∞ for some γ.

Concerning the optimal control for large space structures, important results have been established (see,
e.g. [4, 7]). Indeed, Biswas and Ahmed [4] addressed the model for a spacecraft consisting of a rigid bus and
a flexible beam and developed necessary conditions for determining the control torque and forces for optimal
regulation of attitude maneuvers of the spacecraft along with simultaneous suppression of elastic vibrations of
the flexible beam.

Let Γ be a closed and convex subset of L2(0, T ) (for the notation appearing in the introduction, see the next
section). The optimal control problem of (1.1–1.4) is to minimize J(γ)

inf
γ∈Γ

J(γ). (1.8)
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This means that we want to find a torque control γ of the least cost to drive the system to approach the
equilibrium point (0, ω̄) as closely as possible. Any element γo such that

J(γo) = inf
γ∈Γ

J(γ) (1.9)

is called a solution of problem (1.8). The element γo is termed an optimal control, the corresponding state
(u(γo), ω(γ0)) termed an optimal state and the pair (γo, u(γo), ω(γ0)) termed an optimal pair. We call the
subset Γ a set of admissible controls.

We are also interested in an optimal obstacle problem. We can imagine that any controls are subject to
certain circumstances such as physical locations and available resources, which obstruct us to implement the
controls arbitrarily. For instance, when we use a unidirectional jet to implement the torque control, the control
would be subject to certain constraint of a limited range, e.g. γ ≥ 0. So we introduce the following obstacle
problem. For any θ ∈ L2(0, T ), we denote

Γ(θ) = {γ ∈ L2(0, T ) : γ ≥ θ a.e. on (0, T )}·

We call θ an obstacle. If θ ≡ 0, this means that the torque control is implemented by a unidirectional jet. We
can imagine that different jets would produce different obstacles θ. The problem of optimal obstacle is to find
a θo (corresponding to an optimal jet) such that

inf
γ∈Γ(θo)

J(γ) ≤ inf
γ∈Γ(θ)

J(γ) ∀θ ∈ L2(0, T ). (1.10)

If we define the cost function F (θ) by

F (θ) = inf
γ∈Γ(θ)

J(γ), (1.11)

then optimal obstacle problem (1.10) becomes the following minimization problem

inf
θ∈L2(0,T )

F (θ). (1.12)

We note that the obstacle θ is not taken into account in (1.12), that is, while we try to minimize the pair
(u, ω, γ), the obstacle θ may be large. To ensure that the obstacle is not too large, we introduce the following
cost funtion G(θ)

G(θ) = F (θ) +
∫ T

0

θ2(t)dt (1.13)

and minimize it:

inf
θ∈L2(0,T )

G(θ). (1.14)

To further minimize the corresponding state (u(θ), ω(θ)), we can consider the cost function

H(θ) = F (θ) + J(θ) (1.15)

and the minimization problem

inf
θ∈L2(0,T )

H(θ). (1.16)
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Applying the theory of semigroups, we prove that problem (1.1–1.4) is well posed in Section 2. We then solve
optimal control problems (1.8, 1.12, 1.14) and (1.16) by employing the theory of optimization in Section 3.
On the basis of the iteration method, we propose a numerical approximation scheme to calculate the optimal
control in Section 4.

2. Global strong solutions

We now introduce notation used throughout the paper. For −∞ < a < b < ∞, we denote by Hs(a, b)
the usual Sobolev space (see [1, 11]) for any s ∈ R. For s ≥ 0, Hs

0(a, b) denotes the completion of C∞0 (a, b)
in Hs(a, b), where C∞0 (a, b) denotes the space of all infinitely differentiable functions on (a, b) with compact
support in (a, b). Set

H2
0−(0, 1) = {ϕ ∈ H2(0, 1) : ϕ(0) = ϕx(0) = 0}, (2.1)

H4
0−(0, 1) = {ϕ ∈ H4(0, 1) : ϕ(0) = ϕx(0) = ϕxx(1) = ϕxxx(1) = 0}, (2.2)

H = H2
0−(0, 1)× L2(0, 1). (2.3)

We use the following H2 norm of H2
0−(0, 1)

‖ϕ‖H2 =
(∫ 1

0

ϕ2
xx dx

)1/2

, ϕ ∈ H2
0−(0, 1), (2.4)

which are equivalent to the usual one. The norm on L2(0, 1) is denoted by ‖ · ‖. Let X be a Banach space. We
denote by Cn([0, T ];X) the space of n times continuously differentiable functions defined on [0, T ] with values
in X, and write C([0, T ];X) for C0([0, T ];X).

Applying the theory of semigroups, we prove that problem (1.1–1.4) is well posed. For the definitions of
mild and strong solutions below, we refer to [12] (p. 106), Definition 2.3 (p. 109), Definition 2.8. The following
theorem is a slight extension of Lemma 1 of [15] and its proof is similar.

Theorem 2.1. (i) For the initial condition (u0, u1, ω0) ∈ H × R, control γ ∈ L1(0, T ) and any T > 0,
problem (1.1–1.4) has a unique mild solution satisfying

u = u(x, t, γ) ∈ C([0, T ];H2
0−((0, 1)) ∩ C1([0, T ];L2(0, 1)), (2.5)

ω = ω(x, t, γ) ∈ C([0, T ];R). (2.6)

Moreover, for two solutions (u1, ω1) and (u2, ω2) of (1.1–1.4) corresponding to (u0
1, u

1
1, ω

0
1) ∈ H × R, γ1 ∈

L1(0, T ) and (u0
2, u

1
2, ω

0
2) ∈ H×R, γ2 ∈ L1(0, T ), respectively, there exists a positive constant C = C(‖u0

1‖, |ω0
1|,

‖γ1‖L1(0,T ), ‖u0
2‖, |ω0

2|, ‖γ2‖L1(0,T ), T ), continuously depending on its arguments, such that for 0 ≤ t ≤ T

‖u1xx(t)− u2xx(t)‖+ ‖u1t(t) − u2t(t)‖ + |ω1(t) − ω2(t)|
≤ C(‖u0

1xx− u0
2xx‖+ ‖u1

1 − u1
2‖+ |ω0

1 − ω0
2|+ ‖γ1 − γ2‖L1(0,T )).

(2.7)

(ii) For the initial condition (u0, u1, ω0) ∈ H4
0−(0, 1)×H2

0−(0, 1)× R and γ ∈ C[0, T ], problem (1.1–1.4) has a
unique strong solution satisfying

u ∈ L1((0, T );H4
0−((0, 1))) ∩ C([0, T ];H2

0−((0, 1)), (2.8)

ut ∈ L1((0, T );H2
0−((0, 1))) ∩ C([0, T ];L2(0, 1)), (2.9)

utt ∈ L1((0, T );L2(0, 1)), (2.10)
ω ∈ C1([0, T ];R). (2.11)
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Proof. (i) Integrating (1.2) from 0 to t, we obtain

ω(t) =

∫ t
0
γ(s)ds + a0

1 + ‖u(t)‖2 , (2.12)

where

a0 = ω0
(

1 + ‖u0‖2
)
. (2.13)

Substituting ω into (1.1), we obtain

utt(x, t) + uxxxx(x, t) =

(∫ t
0
γ(s)ds + a0

)2

u(x, t)(
1 + ‖u(t)‖2

)2
in (0, 1)× (0, T ), (2.14)

u(0, t) = ux(0, t) = uxx(1, t) = uxxx(1, t) = 0 in (0, T ), (2.15)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1). (2.16)

Set

f(t, ϕ, γ, a0) =

( ∫ t
0 γ(s)ds + a0

)2

ϕ(x)(
1 + ‖ϕ‖2

)2 · (2.17)

One can readily verify that, for any fixed γ ∈ L1(0, T ) and a0, f : [0, T ]× L2(0, 1) → L2(0, 1) is continuous
in t on [0, T ] and uniformly Lipschitz continuous on L2(0, 1). Moreover, it is well known that the operator A
defined by

A(ϕ, ψ) = (ψ,−ϕxxxx) (2.18)

with domain D(A) = H4
0−(0, 1)×H2

0−(0, 1) generates a C0 semigroup S(t) on H2
0−(0, 1)× L2(0, 1). Therefore,

by the classical theory of semigroups (see, e.g. [12], p. 184, Th. 1.2), problem (2.14–2.16) has a unique mild
solution with

u ∈ C([0, T ];H2
0−((0, 1))∩ C1([0, T ];L2(0, 1)). (2.19)

Since

ω(t) =

∫ t
0
γ(s)ds + a0

1 + ‖u(t)‖2 , (2.20)

problem (1.1–1.4) has a unique mild solution satisfing (2.5) and (2.6).
Let (u1, ω1) and (u2, ω2) be two solutions of (1.1–1.4) corresponding to (u0

1, u
1
1, ω

0
1) ∈ H × R, γ1 ∈ L1(0, T )

and (u0
2, u

1
2, ω

0
2) ∈ H ×R, γ2 ∈ L1(0, T ), respectively. Set

y = u1 − u2.

Then we have

ytt + yxxxx = f(t, u1(x, t), γ1, a1)− f(t, u2(x, t), γ2, a2), (2.21)
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where

a1 = ω0
1

(
1 + ‖u0

1‖2
)
, (2.22)

a2 = ω0
2

(
1 + ‖u0

2‖2
)
. (2.23)

Multiplying (2.21) by yt and integrating over (0, 1) by parts, we obtain

d
dt

(‖yt(t)‖2 + ‖yxx(t)‖2) = 2
∫ 1

0

[f(t, u1(x, t), γ1, a1)− f(t, u2(x, t), γ2, a2)]yt(x, t)dx. (2.24)

In what follows, C = C(‖u0
1‖, |ω0

1|, ‖γ1‖L1(0,T ), ‖u0
2‖, |ω0

2|, ‖γ2‖L1(0,T ), T ) denotes a generic positive constant
which continuously depends on its arguments and may vary from line to line. Since

|f(t, u1(x, t), γ1, a1) − f(t, u2(x, t), γ2, a2)|

=
∣∣∣
( ∫ t

0
γ1(s)ds + a1

)2

u1(x, t)(
1 + ‖u1(t)‖2

)2 −

(∫ t
0
γ2(s)ds+ a2

)2

u2(x, t)(
1 + ‖u2(t)‖2

)2

∣∣∣
≤

( ∫ t
0 γ1(s)ds + a1

)2

|u1(x, t)− u2(x, t)|(
1 + ‖u1(t)‖2

)2

+ |u2(x, t)|
∣∣∣
( ∫ t

0
γ1(s)ds+ a1

)2

(
1 + ‖u1(t)‖2

)2
−

(∫ t
0
γ2(s)ds+ a2

)2

(
1 + ‖u2(t)‖2

)2

∣∣∣
≤ C|y(x, t)|+ |u2(x, t)|

[(
1 + ‖u1(t)‖2

)(∫ t

0

|γ1(s) − γ2(s)|ds+ |a1 − a2|
)

+
(∫ 1

0

|u2
1(x, t)− u2

2(x, t)|dx
)(∫ t

0

γ1(s)ds+ a1

)]
×

(
1 + ‖u2(t)‖2

)( ∫ t
0
γ1(s)ds + a1

)
+
(

1 + ‖u1(t)‖2
)( ∫ t

0
γ2(s)ds + a2

)
(

1 + ‖u1(t)‖2
)2(

1 + ‖u2(t)‖2
)2

≤ C|y(x, t)|+C
[(

1 + ‖u1(t)‖2
)(∫ t

0

|γ1(s)− γ2(s)|ds+ |a1 − a2|
)

+ ‖u1(t) − u2(t)‖‖u1(t) + u2(t)‖
]
|u2(x, t)|

×

(
1 + ‖u2(t)‖2

)
+
(

1 + ‖u1(t)‖2
)

(
1 + ‖u1(t)‖2

)2(
1 + ‖u2(t)‖2

)2

≤ C|y(x, t)|+
C
(
‖y(t)‖ +

∫ t
0
|γ1(s) − γ2(s)|ds+ |a1 − a2|

)
|u2(x, t)|(

1 + ‖u2(t)‖2
)1/2

,

(2.25)
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we deduce that

d
dt

(‖yt(t)‖2 + ‖yxx(t)‖2) ≤ 2
∫ 1

0

|f(t, u1(x, t), γ1, a1)− f(t, u2(x, t), γ2, a2)||yt(x, t)|dx

≤ C
(
‖yt(t)‖2 + ‖y(t)‖2 + ‖γ1 − γ2‖2L1(0,T ) + |a1 − a2|2

)
≤ C

(
‖yt(t)‖2 + ‖yxx(t)‖2 + ‖γ1 − γ2‖2L1(0,T ) + |a1 − a2|2

)
.

(2.26)

It therefore follows from Gronwall’s inequality (see, e.g. [14], p. 90) that for 0 ≤ t ≤ T

‖u1xx(t)− u2xx(t)‖+ ‖u1t(t) − u2t(t)‖ ≤ C(‖u0
1xx− u0

2xx‖+ ‖u1
1 − u1

2‖+ |ω0
1 − ω0

2|+ ‖γ1 − γ2‖L1(0,T )).
(2.27)

Furthermore, since

|ω1(t) − ω2(t)| =
∣∣∣ ∫ t0 γ1(s)ds + a1

1 + ‖u1(t)‖2 −
∫ t

0 γ2(s)ds+ a2

1 + ‖u2(t)‖2
∣∣∣

≤ C(‖u1(t)− u2(t)‖ + ‖u0
1xx − u0

2xx‖+ ‖u1
1 − u1

2‖+ |ω0
1 − ω0

2|+ ‖γ1 − γ2‖L1(0,T )),
(2.28)

equation (2.7) follows from (2.27).
(ii) By Theorem 1.6 of [12] (p. 189), to prove that problem (1.1–1.4) has a unique strong solution for the

initial condition (u0, u1, ω0) ∈ H4
0−(0, 1)×H2

0−(0, 1)×R and γ ∈ C[0, T ], it suffices to prove that, for any fixed
γ ∈ C[0, T ] and a0, f : [0, T ]× L2(0, 1) → L2(0, 1) is Lipschitz continuous in both variables t and ϕ. This is
true since

‖f(t1, ϕ1, γ, a0)− f(t2, ϕ2, γ, a0)‖ =
∥∥∥
( ∫ t1

0 γ(s)ds + a0

)2

ϕ1(x)(
1 + ‖ϕ1‖2

)2 −

( ∫ t2
0 γ(s)ds + a0

)2

ϕ2(x)(
1 + ‖ϕ2‖2

)2

∥∥∥
≤
(∫ t2

0

|γ(s)|ds+ |a0|
)2

∥∥∥ϕ1(x)
(

1 + ‖ϕ2‖2
)2

− ϕ2(x)
(

1 + ‖ϕ1‖2
)2∥∥∥(

1 + ‖ϕ1‖2
)2(

1 + ‖ϕ2‖2
)2

+
‖ϕ1(x)‖(

1 + ‖ϕ1‖2
)2

∣∣∣ ∫ t2

t1

γ(s)ds
∣∣∣( ∫ t1

0

|γ(s)|ds +
∫ t2

0

|γ(s)|ds + 2|a0|
)

≤
(∫ t2

0

|γ(s)|ds+ |a0|
)2 ‖ϕ1 − ϕ2‖(

1 + ‖ϕ1‖2
)2

+
(∫ t2

0

|γ(s)|ds+ |a0|
)2 ‖ϕ2‖|‖ϕ2‖2 − ‖ϕ1‖2|(2 + ‖ϕ2‖2 + ‖ϕ1‖2)(

1 + ‖ϕ1‖2
)2(

1 + ‖ϕ2‖2
)2

+
∣∣∣ ∫ t2

t1

γ(s)ds
∣∣∣(∫ t1

0

|γ(s)|ds+
∫ t2

0

|γ(s)|ds+ 2|a0|
)

≤ C(|t2 − t1|+ ‖ϕ1 − ϕ2‖),
(2.29)

where C = C(‖γ‖L1(0,T ), ‖γ‖C[0,T ], |a0|) is a positive constant independent of ϕ1 and ϕ2.
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Remark 2.1. Part (ii) of Theorem 2.1 will be used in the next section. When we prove a result, we will first
assume that the initial data are smooth and then the equations have a strong solution so that computations are
valid. We then apply a density argument in the case that the initial data are in H.

3. Optimal control

This section is devoted to optimal control problem (1.8). The difficulty in dealing with the problem is that
we can not prove whether the cost function J(γ) is convex. It appears quite possible that J(γ) is not. Thus
we have to show that J(γ) is weakly lower semi-continuous and then use a minimizing sequence to show the
existence of an optimal control.

Theorem 3.1. For the initial condition (u0, u1, ω0) ∈ H, problem (1.8) has at least one solution γ∗. Moreover,
γ∗ can be characterized by

∫ T

0

(γ(s) − γ∗(s))

γ∗(s) +
∫ T

s

∫ 1

0
p(x, t)u∗(x, t)dx

(∫ t
0
γ∗(τ)dτ + a0

)
(

1 + ‖u∗(t)‖2
)2 dt

 ds

+
∫ T

0

(γ(s) − γ∗(s))
∫ T

s

∫ t
0
γ∗(τ)dτ + a0 − ω̄(1 + ‖u∗(t)‖2)(

1 + ‖u∗(t)‖2
)2 dtds ≥ 0

(3.1)

for all γ ∈ Γ, where u∗ is a solution of (2.14–2.16) corresponding to γ∗, and p is the solution of

ptt(x, t) + pxxxx(x, t) = h(x, t, γ∗, u∗, a0, p), (3.2)

p(0, t) = px(0, t) = pxx(1, t) = pxxx(1, t) = 0, (3.3)

p(x, T ) = 0, pt(x, T ) = 0, (3.4)

with

h = h(x, t, γ∗, u∗, a0, p)

= 2u∗(x, t) +
p(x, t)

(∫ t
0 γ
∗(s)ds + a0

)2

(
1 + ‖u∗(t)‖2

)2

−
4u∗(x, t)

(∫ t
0
γ∗(s)ds+ a0

)
(

1 + ‖u∗(t)‖2
)2

(∫ t
0
γ∗(s)ds + a0

1 + ‖u∗(t)‖2 − ω̄
)

−
4u∗(x, t)

(∫ t
0
γ∗(s)ds+ a0

)2 ∫ 1

0
p(x, t)u∗(x, t)dx(

1 + ‖u∗(t)‖2
)3 ·

(3.5)

Furthermore, if Γ = L2(0, T ), then γ∗ satisfies

γ∗(s) +
∫ T

s

∫ 1

0
p(x, t)u∗(x, t)dx

(∫ t
0
γ∗(τ)dτ + a0

)
(

1 + ‖u∗(t)‖2
)2 dt+

∫ T

s

∫ t
0 γ
∗(τ)dτ + a0 − ω̄(1 + ‖u∗(t)‖2)(

1 + ‖u∗(t)‖2
)2 dt = 0. (3.6)

Remark 3.1. Whether the solution of (1.8) is unique or not is an open problem. However, we guess that the
solution is not unique since for ω0 = 0 (then a0 = 0) and ω̄ = 0 we have J(−γ) = J(γ).
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Remark 3.2. Equation (3.6) shows that the optimal control γ∗ ∈ C1[0, T ]. This is a sort of regularity property
of the optimal control.

To prove this theorem, we first prove that the cost function J(γ) is Gâteaux-differentiable and calculate its
differential.

Lemma 3.1. The cost function J(γ) is Gâteaux-differentiable. Furthermore, the differential at γo in the direc-
tion γ is given by

〈J ′(γ0), γ〉 = 2
∫ T

0

∫ 1

0

u0(x, t)η(x, t; γ)dxdt+ 2
∫ T

0

γ0(t)γ(t)dt

+ 2
∫ T

0

∫ t
0
γ(s)ds

1 + ‖u0(t)‖2

(∫ t
0
γ0(s)ds+ a0

1 + ‖u0(t)‖2 − ω̄
)

dt

− 4
∫ T

0

∫ 1

0
u0(x, t)η(x, t; γ)dx

(∫ t
0
γ0(s)ds + a0

)
(

1 + ‖u0(t)‖2
)2

(∫ t
0 γ0(s)ds+ a0

1 + ‖u0(t)‖2 − ω̄
)

dt,

(3.7)

where u0 = u0(x, t) is the solution of (2.14–2.16) corresponding to γ0, and η = η(x, t; γ) is the solution of

ηtt(x, t) + ηxxxx(x, t) = g(x, t, γ0, γ, a0, η) in (0, 1)× (0, T ), (3.8)

η(0, t) = ηx(0, t) = ηxx(1, t) = ηxxx(1, t) = 0 in (0, T ), (3.9)

η(x, 0) = 0, ηt(x, 0) = 0 in (0, 1), (3.10)

with

g = g(x, t, γ0, γ, a0, η)

=
η(x, t)

(∫ t
0
γ0(s)ds + a0

)2

(
1 + ‖u0(t)‖2

)2
+

2u0(x, t)
(∫ t

0
γ0(s)ds+ a0

) ∫ t
0
γ(s)ds(

1 + ‖u0(t)‖2
)2

−
4u0(x, t)

(∫ t
0
γ0(s)ds + a0

)2 ∫ 1

0
ηu0dx(

1 + ‖u0(t)‖2
)3 ·

(3.11)

Proof. We may as well assume that the initial data and γ are smooth since the general case can be handled by
a density argument. For the smooth data, Theorem 2.1 ensures that the equations have a strong solution and
then computations performed below are valid.

For λ > 0 and γ, γ0 ∈ C[0, T ], let uλ and u0 denote the solutions of (2.14–2.16) corresponding to γ0 + λγ
and γ0, respectively, and set

yλ =
uλ − u0

λ
, (3.12)

zλ = yλ − η. (3.13)
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We are going to prove that (zλ, zλt) → (0, 0) in C([0, T ];H2(0, 1)) × C([0, T ];L2(0, 1)) as λ → 0+. It is clear
that zλ satisfies

ztt(x, t) + zxxxx(x, t) =
f(t, uλ, γ0 + λγ, a0)− f(t, u0, γ0, a0)

λ
− g in (0, 1)× (0, T ), (3.14)

z(0, t) = zx(0, t) = zxx(1, t) = zxxx(1, t) = 0 in (0, T ), (3.15)

z(x, 0) = 0, zt(x, 0) = 0 in (0, 1). (3.16)

To estimate zλ, we first estimate f(t,uλ,γ0+λγ,a0)−f(t,u0,γ0,a0)
λ − g. Set

I(ϕ) = 1 + ‖ϕ‖2. (3.17)

Then we have

f(t, uλ, γ0 + λγ, a0)− f(t, u0, γ0, a0)

=

(∫ t
0
(γ0(s) + λγ(s))ds + a0

)2

uλ

I2(uλ(t))
−

( ∫ t
0
γ0(s)ds+ a0

)2

u0

I2(u0(t))

=

(∫ t
0
(γ0(s) + λγ(s))ds + a0

)2

(uλ − u0)

I2(uλ(t))

+


(∫ t

0
(γ0(s) + λγ(s))ds + a0

)2

I2(uλ(t))
−

(∫ t
0
γ0(s)ds+ a0

)2

I2(u0(t))

u0

= λyλ

( ∫ t
0 (γ0(s) + λγ(s))ds + a0

)2

I2(uλ(t))

+ u0

[
I(u0(t))

(∫ t

0

(γ0(s) + λγ(s))ds + a0

)
− I(uλ(t))

(∫ t

0

γ0(s)ds+ a0

)]

×

[
I(u0(t))

( ∫ t
0
(γ0(s) + λγ(s))ds + a0

)
+ I(uλ(t))

( ∫ t
0
γ0(s)ds + a0

)]
I2(uλ(t))I2(u0(t))

= λyλ

( ∫ t
0
(γ0(s) + λγ(s))ds + a0

)2

I2(uλ(t))

+ λu0I(u0(t))
∫ t

0

γ(s)ds

×

[
I(u0(t))

( ∫ t
0
(γ0(s) + λγ(s))ds + a0

)
+ I(uλ(t))

( ∫ t
0
γ0(s)ds + a0

)]
I2(uλ(t))I2(u0(t))

− λu0

∫ 1

0

yλ(u0 + uλ)dx
(∫ t

0

γ0(s)ds+ a0

)

×

[
I(u0(t))

( ∫ t
0
(γ0(s) + λγ(s))ds + a0

)
+ I(uλ(t))

( ∫ t
0
γ0(s)ds + a0

)]
I2(uλ(t))I2(u0(t))

·

(3.18)
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Set

I1 = yλ

( ∫ t
0
(γ0(s) + λγ(s))ds + a0

)2

I2(uλ(t))
−
η
( ∫ t

0
γ0(s)ds+ a0

)2

I2(u0(t))
,

I2 = u0I(u0(t))
∫ t

0

γ(s)ds

×

[
I(u0(t))

( ∫ t
0 (γ0(s) + λγ(s))ds + a0

)
+ I(uλ(t))

( ∫ t
0 γ0(s)ds+ a0

)]
I2(uλ(t))I2(u0(t))

−
2u0

( ∫ t
0
γ0(s)ds + a0

)∫ t
0
γ(s)ds

I2(u0(t))
,

I3 = −u0

∫ 1

0

yλ(u0 + uλ)dx
(∫ t

0

γ0(s)ds + a0

)

×

[
I(u0(t))

( ∫ t
0
(γ0(s) + λγ(s))ds + a0

)
+ I(uλ(t))

( ∫ t
0
γ0(s)ds+ a0

)]
I2(uλ(t))I2(u0(t))

+
4u0

( ∫ t
0
γ0(s)ds + a0

)2 ∫ 1

0
ηu0dx

I3(u0(t))
·

(3.19)

It then follows from (3.18) that

f(t, uλ, γ0 + λγ, a0)− f(t, u0, γ0, a0)
λ

− g = I1 + I2 + I3. (3.20)

We now want to estimate I1, I2 and I3. Firstly, by (2.7), we obtain

‖uλ(t)− u0(t)‖ ≤ λC‖γ − γ0‖L1(0,T ) (3.21)

and

‖yλ(t)‖ ≤ C‖γ − γ0‖L1(0,T ). (3.22)

For I1, we have

I1 = yλ


( ∫ t

0 (γ0(s) + λγ(s))ds + a0

)2

I2(uλ(t))
−

(∫ t
0 γ0(s)ds+ a0

)2

I2(u0(t))

+
zλ
( ∫ t

0 γ0(s)ds + a0

)2

I2(u0(t))
(3.23)

and then

‖I1(t)‖ ≤ C1(λ)‖yλ(t)‖ +C2‖zλ(t)‖, (3.24)
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where

C1(λ) = C1(λ, u0, uλ, γ, γ0, a0, T )

= max
0≤t≤T

∣∣∣∣∣∣∣
( ∫ t

0 (γ0(s) + λγ(s))ds + a0

)2

I2(uλ(t))
−

( ∫ t
0 γ0(s)ds + a0

)2

I2(u0(t))

∣∣∣∣∣∣∣ , (3.25)

C2 = C2(u0, γ0, a0, T )

= max
0≤t≤T

( ∫ t
0
|γ0(s)|ds+ |a0|

)2

I2(u0(t))
· (3.26)

By (3.21), we deduce

lim
λ→0

C1(λ) = 0. (3.27)

For I2, it follows from (3.21) that

lim
λ→0

max
0≤t≤T

‖I2(t, λ)‖ = 0. (3.28)

For I3, we have

‖I3(t, λ)‖ ≤ ‖u0(t)‖‖zλ(t)‖‖u0(t) + uλ(t)‖
(∫ t

0

|γ0(s)|ds+ |a0|
)

×

[
I(u0(t))

( ∫ t
0
|γ0(s) + λγ(s)|ds + |a0|

)
+ I(uλ(t))

( ∫ t
0
|γ0(s)|ds+ |a0|

)]
I2(uλ(t))I2(u0(t))

+

∥∥∥∥∥u0

∫ 1

0

η(u0 + uλ)dx
(∫ t

0

γ0(s)ds+ a0

)

×

[
I(u0(t))

( ∫ t
0
(γ0(s) + λγ(s))ds + a0

)
+ I(uλ(t))

( ∫ t
0
γ0(s)ds+ a0

)]
I2(uλ(t))I2(u0(t))

−
4u0

( ∫ t
0
γ0(s)ds + a0

)2 ∫ 1

0
ηu0dx

I3(u0(t))

∥∥∥∥∥
≤ C3‖zλ(t)‖ +C4(λ),

(3.29)

where

C3 = C3(λ, u0, uλ, γ, γ0, a0, T )

= max
0≤t≤T

‖u0(t)‖‖u0(t) + uλ(t)‖
(∫ t

0

|γ0(s)|ds+ |a0|
)

×

[
I(u0(t))

( ∫ t
0
|γ0(s) + λγ(s)|ds + |a0|

)
+ I(uλ(t))

( ∫ t
0
|γ0(s)|ds+ |a0|

)]
I2(uλ(t))I2(u0(t))

, (3.30)
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C4(λ) = C4(λ, η, u0, uλ, γ, γ0, a0, T )

= max
0≤t≤T

∥∥∥∥∥u0(t)
∫ 1

0

η(u0 + uλ)dx
(∫ t

0

γ0(s)ds+ a0

)

×

[
I(u0(t))

( ∫ t
0
(γ0(s) + λγ(s))ds + a0

)
+ I(uλ(t))

( ∫ t
0
γ0(s)ds + a0

)]
I2(uλ(t))I2(u0(t))

−
4u0(t)

( ∫ t
0
γ0(s)ds+ a0

)2 ∫ 1

0
ηu0dx

I3(u0(t))

∥∥∥∥∥· (3.31)

By (3.21), we deduce

lim
λ→0

C4(λ) = 0. (3.32)

Multiplying (3.14) by zλt and integrating over (0, 1) by parts, it follows from (3.22, 3.24, 3.27–3.29) and (3.32)
that

d
dt

(‖zλt(t)‖2 + ‖zλxx(t)‖2) = 2
∫ 1

0

(I1 + I2 + I3)zλtds

≤ C5(λ) +C6(‖zλt(t)‖2 + ‖zλxx(t)‖2),
(3.33)

where C5(λ)→ 0 as λ→ 0+. It therefore follows from Gronwall’s inequality that

‖zλt(t)‖2 + ‖zλxx(t)‖2 ≤ C5(λ)TeC6t, ∀t ∈ [0, T ]. (3.34)

Hence we have

lim
λ→0+

(‖zλt(t)‖2 + ‖zλxx(t)‖2) = 0 (3.35)

unformly for t ∈ [0, T ]. Since

J(γ0 + λγ) − J(γ0)
λ

=
∫ T

0

∫ 1

0

u2
λ(x, t)− u2

0(x, t) + [ωλ(t)− ω̄]2 − [ω0(t)− ω̄]2

λ
dxdt

+
∫ T

0

(γ0 + λγ)2 − γ2
0

λ
dt

=
∫ T

0

∫ 1

0

[2u0(x, t)yλ(x, t) + λy2
λ(x, t)]dxdt

+
∫ T

0

1
λ

(∫ t
0
(γ0(s) + λγ(s))ds + a0

1 + ‖uλ(t)‖2 −
∫ t

0
γ0(s)ds+ a0

1 + ‖u0(t)‖2

)

×
(∫ t

0
(γ0(s) + λγ(s))ds + a0

1 + ‖uλ(t)‖2 +

∫ t
0
γ0(s)ds + a0

1 + ‖u0(t)‖2 − 2ω̄

)
dt

+
∫ T

0

[2γ0(s)γ(s) + λγ2(s)]dt
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=
∫ T

0

∫ 1

0

[2u0(x, t)yλ(x, t) + λy2
λ(x, t)]dxdt

+
∫ T

0

(
1 + ‖u0(t)‖2

) ∫ t
0
γ(s)ds(

1 + ‖uλ(t)‖2
)(

1 + ‖u0(t)‖2
)

×
(∫ t

0
(γ0(s) + λγ(s))ds + a0

1 + ‖uλ(t)‖2 +

∫ t
0
γ0(s)ds+ a0

1 + ‖u0(t)‖2 − 2ω̄

)
dt

−
∫ T

0

∫ 1

0
yλ(uλ + u0)dx

(∫ t
0
γ0(s)ds+ a0

)
(

1 + ‖uλ(t)‖2
)(

1 + ‖u0(t)‖2
)

×
(∫ t

0 (γ0(s) + λγ(s))ds + a0

1 + ‖uλ(t)‖2 +

∫ t
0 γ0(s)ds+ a0

1 + ‖u0(t)‖2 − 2ω̄

)
dt

+
∫ T

0

[2γ0(s)γ(s) + λγ2(s)]dt,

(3.36)

it follows from (3.21) and (3.35) that

〈J ′(γ0), γ〉 = lim
λ→0+

J(γ0 + λγ) − J(γ0)
λ

= 2
∫ T

0

∫ 1

0

u0(x, t)η(x, t; γ)dxdt+ 2
∫ T

0

γ0(t)γ(t)dt

+ 2
∫ T

0

(
1 + ‖u0(t)‖2

)∫ t
0
γ(s)ds − 2

∫ 1

0
u0(x, t)η(x, t; γ)dx

(∫ t
0
γ0(s)ds+ a0

)
(

1 + ‖u0(t)‖2
)2

×
(∫ t

0
γ0(s)ds + a0

1 + ‖u0(t)‖2 − ω̄
)

dt.

(3.37)

We then show that the cost function J(γ) is weakly lower semi-continuous on L2(0, T ) (for definition, see,
e.g. [8], pp. 9-11).

Lemma 3.2. The cost function J(γ) is weakly lower semi-continuous on L2(0, T ).

Proof. Let {γn} weakly converges to γ0 in L2(0, T ). Let (un, ωn) and (u∗, ω∗) denote the solutions of (1.1–1.4)
corresponding to γn and γ0, respectively. By (2.7), the sequence {un, unt, ωn} is bounded in C([0, T ];H× R).
Therefore, there exists a subsequence, still denoted by {un, unt, ωn}, converges to (ũ, ũt, ω̃) star-weakly in
C([0, T ];H× R). Moreover, it follows from the compact embedding theorem (see, e.g. [13], Th. 3, p. 80) that
there exists a subsequence, still denoted by {un}, strongly converges to ũ in C([0, T ];L2(0, 1)). We now prove
that u∗ = ũ. We note that un satisfies the following integral equation

(un, unt) = S(t)(u0, u1) +
∫ t

0

S(t − s)
(

0,

∫ s
0
γn(τ)dτ + a0

1 + ‖un(s)‖2 un(s)

)
ds. (3.38)
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Taking

θ(t) =
{

1, if 0 ≤ t ≤ s,
0, if s < t ≤ T , (3.39)

we deduce that

lim
n→∞

∫ s

0

γn(τ)dτ = lim
n→∞

∫ T

0

γn(τ)θ(τ)dτ =
∫ T

0

γ0(τ)θ(τ)dτ =
∫ s

0

γ0(τ)dτ (3.40)

since {γn} weakly converges to γ0 in L2(0, T ). Letting n→∞ in (3.38), we obtain

(ũ, ũt) = S(t)(u0, u1) +
∫ t

0

S(t − s)
(

0,

∫ s
0 γ0(τ)dτ + a0

1 + ‖ũ2(s)‖2 ũ(s)

)
ds, (3.41)

which implies that ũ = u∗. Moreover, we have

ω̃(s) = lim
n→∞

ωn(s) = lim
n→∞

∫ s
0
γn(τ)dτ + a0

1 + ‖u2
n(s)‖2 =

∫ s
0
γ0(τ)dτ + a0

1 + ‖u∗(s)‖2 = ω∗(s). (3.42)

It therefore follows that

J(γ0) =
∫ T

0

∫ 1

0

[u2(x, t, γ0) + (ω(t, γ0)− ω̄)2]dxdt+
∫ T

0

|γ0|2(t)dt

≤ lim
n→∞

∫ T

0

∫ 1

0

[u2
n(x, t) + (ωn(t) − ω̄)2]dxdt+ lim inf

n→∞

∫ T

0

|γn|2(t)dt

≤ lim inf
n→∞

J(γn).

(3.43)

Hence, J(γ) is weakly lower semi-continuous on L2(0, T ).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let γn ∈ Γ be a minimizing sequence such that

lim
n→∞

J(γn) = inf
γ∈Γ

J(γ). (3.44)

Then the sequence {γn} is bounded in L2(0, T ). Hence, there exists a subsequence, still denoted by {γn}, weakly
converges to γ∗ in L2(0, T ). By Lemma 3.2, we deduce that

J(γ∗) ≤ lim inf
n→∞

J(γn) = inf
γ∈Γ

J(γ). (3.45)

Hence, γ∗ is a solution of (1.8).
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Since, by Lemma 3.1, J(γ) is Gâteaux-differentiable, it follows from Theorem 1.3 of [10] (p. 10) (or Props. 1.2
and 2.1 of [8], pp. 35-36) that

〈J ′(γ∗), γ − γ∗〉

= 2
∫ T

0

γ∗(t)(γ(t) − γ∗(t))dt + 2
∫ T

0

∫ 1

0

u∗(x, t)η(x, t; γ− γ∗)dxdt

+ 2
∫ T

0

(
1 + ‖u∗(t)‖2

) ∫ t
0
(γ(s) − γ∗(s))ds(

1 + ‖u∗(t)‖2
)2

(∫ t
0
γ∗(s)ds + a0

1 + ‖u∗(t)‖2 − ω̄
)

dt

− 4
∫ T

0

∫ 1

0
u∗(x, t)η(x, t; γ − γ∗)dx

( ∫ t
0
γ∗(s)ds+ a0

)
(

1 + ‖u∗(t)‖2
)2

(∫ t
0
γ∗(s)ds + a0

1 + ‖u∗(t)‖2 − ω̄
)

dt

≥ 0

(3.46)

for all γ ∈ Γ. Multiplying (3.2) by η and integrating over (0, 1)× (0, T ) by parts, we obtain

∫ T

0

∫ 1

0

2u∗ +
p
( ∫ t

0
γ∗(s)ds+ a0

)2

(
1 + ‖u∗(t)‖2

)2 −
4u∗
( ∫ t

0
γ∗(s)ds+ a0

)
(

1 + ‖u∗(t)‖2
)2

(∫ t
0
γ∗(s)ds + a0

1 + ‖u∗(t)‖2 − ω̄
)

−
4u∗
(∫ t

0 γ
∗(s)ds+ a0

)2 ∫ 1

0 pu
∗dx(

1 + ‖u∗(t)‖2
)3

 ηdxdt

=
∫ T

0

∫ 1

0

p(ηtt + ηxxxx)dxdt

=
∫ T

0

∫ 1

0

pη
( ∫ t

0
γ∗(s)ds+ a0

)2

(
1 + ‖u∗(t)‖2

)2 dxdt

+
∫ T

0

∫ 1

0

2pu∗
( ∫ t

0
γ∗(s)ds + a0

)∫ t
0
(γ(s) − γ∗(s))ds(

1 + ‖u∗(t)‖2
)2 dxdt

−
∫ T

0

∫ 1

0

4pu∗
( ∫ t

0 γ
∗(s)ds + a0

)2 ∫ 1

0 ηu
∗dx(

1 + ‖u∗(t)‖2
)3 dxdt.

(3.47)
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Hence we have ∫ T

0

∫ 1

0

u∗ηdxdt− 2
∫ T

0

∫ 1

0 u
∗ηdx

( ∫ t
0 γ
∗(s)ds+ a0

)
(

1 + ‖u∗(t)‖2
)2

(∫ t
0
γ∗(s)ds + a0

1 + ‖u∗(t)‖2 − ω̄
)

dt

=
∫ T

0

∫ 1

0

pu∗
(∫ t

0
γ∗(s)ds + a0

) ∫ t
0
(γ(s) − γ∗(s))ds(

1 + ‖u∗(t)‖2
)2 dxdt

=
∫ T

0

(γ(s) − γ∗(s))
∫ T

s

∫ 1

0
p(t)u∗(t)dx

( ∫ t
0
γ∗(τ)dτ + a0

)
(

1 + ‖u∗(t)‖2
)2 dtds.

(3.48)

It therefore follows from (3.46) that

∫ T

0

(γ(s) − γ∗(s))

γ∗(s) +
∫ T

s

∫ 1

0 p(x, t)u
∗(x, t)dx

(∫ t
0 γ
∗(τ)dτ + a0

)
(

1 + ‖u∗(t)‖2
)2 dt

 ds

+
∫ T

0

(γ(s) − γ∗(s))
∫ T

s

(1 + ‖u∗(t)‖2)
( R

t
0 γ
∗(τ)dτ+a0

1+‖u∗(t)‖2 − ω̄
)

(
1 + ‖u∗(t)‖2

)2 dtds

≥ 0

(3.49)

for all γ ∈ Γ. Hence, if Γ = L2(0, T ), we deduce that

γ∗(s) +
∫ T

s

∫ 1

0 p(x, t)u
∗(x, t)dx

(∫ t
0 γ
∗(τ)dτ + a0

)
(

1 + ‖u∗(t)‖2
)2 dt

+
∫ T

s

(1 + ‖u∗(t)‖2)
( R t

0 γ
∗(τ)dτ+a0

1+‖u∗(t)‖2 − ω̄
)

(
1 + ‖u∗(t)‖2

)2 dt = 0.

(3.50)

We now turn to obstacle problems (1.12, 1.14) and (1.16).

Theorem 3.2. Suppose the initial condition (u0, u1, ω0) ∈ H and let γ∗ be the solution of (1.8) with Γ =
L2(0, T ). Then γ∗ is also a solution of problems (1.12) and (1.16).

Proof. Since

J(γ∗) = inf
γ∈L2(0,T )

J(γ) ≤ F (γ∗) = inf
γ∈Γ(γ∗)

J(γ) ≤ J(γ∗), (3.51)

we have

J(γ∗) = F (γ∗). (3.52)

It therefore follows that

F (γ∗) = J(γ∗) ≤ inf
γ∈Γ(θ)

J(γ) = F (θ) ∀θ ∈ L2(0, T ) (3.53)
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and

H(γ∗) = F (γ∗) + J(γ∗) ≤ F (θ) + J(θ) = H(θ) ∀θ ∈ L2(0, T ). (3.54)

Theorem 3.3. For the initial condition (u0, u1, ω0) ∈ H, problem (1.14) has at least one solution.

Proof. Let θn ∈ L2(0, T ) be a minimizing sequence such that

lim
n→∞

G(θn) = inf
θ∈L2(0,T )

G(θ). (3.55)

By Theorem 3.1, there exists a γn ∈ L2(0, T ) such that

J(γn) = F (θn). (3.56)

Since

G(θn) = F (θn) +
∫ T

0

θ2
n(t)ds = J(γn) +

∫ T

0

θ2
n(t)ds,

the sequences {θn} and {γn} are bounded in L2(0, T ). Therefore there exist subsequences {θni} and {γni} such
that θni and γni converge to θ̄ and γ∗ weakly in L2(0, T ), respectively. It therefore follows from Lemma 3.2
that

J(γ∗) + ‖θ̄‖2L2(0,T ) ≤ lim inf
i→∞

J(γni ) + lim inf
i→∞

‖θni‖2L2(0,T ) ≤ lim inf
i→∞

G(θni) = inf
θ∈L2(0,T )

G(θ). (3.57)

Since

γni ≥ θni a.e. on (0, T ),

we deduce that for every φ ∈ L2(0, T ) with φ ≥ 0 a.e. on (0, T )

∫ T

0

(γ∗ − θ̄)φdt = lim
i→∞

∫ T

0

(γni − θni)φdt ≥ 0. (3.58)

This shows that γ∗ ≥ θ̄ a.e. on (0, T ) and then γ∗ ∈ Γ(θ̄). It therefore follows from (3.57) that

G(θ̄) = F (θ̄) + ‖θ̄‖2L2(0,T ) ≤ J(γ∗) + ‖θ̄‖2L2(0,T ) ≤ inf
θ∈L2(0,T )

G(θ). (3.59)

4. Numerical simulations

On the basis of iteration method, we propose a numerical approximation scheme to calculate the optimal
control. For a given control γ, we first solve equations (2.14–2.16), which, by the difference method, can be
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discretized as follows

ui,0 = u0(i/m), i = 0, · · · , m, (4.1)

ui,1 = u0(i/m) + δu1(i/m), i = 0, · · · , m, (4.2)
u0,j = 0, j = 0, · · · , n, (4.3)
u1,j = 0, j = 0, · · · , n, (4.4)

ui,j+1 = −(ui−2,j − 4ui−1,j + 6ui,j − 4ui+1,j + ui+2,j)δ2/h4 + 2ui,j − ui,j−1

+δ2ui,j

(∫ jδ

0

γ(s)ds + a0

)2

/(1 + ‖u(jδ)‖2)2,

i = 2, · · · , m− 2, j = 1, · · · , n− 1, (4.5)
um−1,j+1 = 2um−2,j+1 − um−3,j+1, j = 1, · · · , n− 1, (4.6)
um,j+1 = 3um−2,j+1 − 2um−3,j+1, j = 1, · · · , n− 1, (4.7)

where m and n are positive integers and

h = 1/m, (4.8)
δ = T/n, (4.9)

ui,j = u(ih, jδ), i = 0, · · · , m, j = 0, · · · , n. (4.10)

The integrals
∫ jδ

0 γ(s)ds and ‖u(jδ)‖2 can be numerically calculated. In analogy, we then discretize the adjoint
equations (3.2–3.4) and solve them by using the solution of (2.14–2.16). Finally, we solve control equation (3.6).
For this, we set

y(t) =
∫ t

0

γ(τ)dτ.

Then (3.6) can be equivalently tranformed to

y′′ −
∫ 1

0
p(x, t)u∗(x, t)dx+ 1
(1 + ‖u∗(t)‖2)2

y =
a0

∫ 1

0
p(x, t)u∗(x, t)dx+ a0 − ω̄(1 + ‖u∗(t)‖2)

(1 + ‖u∗(t)‖2)2
(4.11)

with y(0) = 0 and y′(T ) = 0. This equation can be numerically solved by the difference method. With this
new control, we repeat the above procedure. The following numeric examples show that this scheme works very
well. We take the initial data as follows

u0 = 100x[(x− 1)4 − 1],
u1 = −100x[(x− 1)4 − 1],
ω0 = 100.0,
ω̄ = 1000.0,

and start iterations with three quite different initial controls

γ0 = 10000(3− t), 0, −10000 sin(10π(3− t)),

respectively. In this case, the critical angular velocity ωc =
√
µ1 ≈ 2.47 according to Theorem 3 of [15], where

µ1 is the smallest eigenvalue of the self-adjoint operator d4/dx4 with the domain H4
0−(0, 1). Thus ω̄ = 1000.0

is quite away from ωc.
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Table 4.1. Iteration procedures start with three quite different initial controls γ0 = 10000(3−
t), 0, −10000 sin(10π(3 − t)), respectively. Costs J(γi) (defined by (1.6)) starting from each
initial control tend to 5199745.1524 approximately and the iteration procedures are quite stable,
where γi is the control obtained at the ith iteration.

u0 = 100x[(x− 1)4 − 1], u1 = −u0, ω0 = 100.0, ω̄ = 1000.0
Initial controls γ0 of iterations

Costs γ0 = 10000(3− t) γ0 = 0 γ0 = −10000 sin(10π(3− t))
J(γ0) 9.057124937905327E8 5168797.134532931 1.551708593258652E8
J(γ1) 5518012.550900402 5199774.96504609) 5200304.111160588
J(γ2) 5198119.7475106 5199744.2495877575 5199752.349029758
J(γ3) 5199730.987997696 5199745.147392863 5199745.2070749495
J(γ4) 5199745.03486864 5199745.152405544 5199745.152939232
J(γ5) 5199745.151464502 5199745.152431915 5199745.152484191
J(γ6) 5199745.152485731 5199745.152409619 5199745.152427603
J(γ7) 5199745.152470749 5199745.152436701 5199745.1523675015
J(γ8) 5199745.152435771 5199745.152431848 5199745.152398524
J(γ9) 5199745.152435782 5199745.1523830015 5199745.15244074
J(γ10) 5199745.152427421 5199745.152397803 5199745.15244536
J(γ11) 5199745.152365553 5199745.152396315 5199745.152459322
J(γ12) 5199745.15240079 5199745.152411937 5199745.152441221
J(γ13) 5199745.152441801 5199745.152458425 5199745.152410811
J(γ14) 5199745.15244327 5199745.152439428 5199745.152403285
J(γ15) 5199745.15244552 5199745.152435335 5199745.152392513
J(γ16) 5199745.152474231 5199745.152455318 5199745.152425697
J(γ17) 5199745.152458648 5199745.152434166 5199745.15244514
J(γ18) 5199745.152442513 5199745.152427262 5199745.152393454
J(γ19) 5199745.152466581 5199745.152467447 5199745.152394731

It can be seen from Table 4.1 that the costs J(γi) (defined by (1.6)) starting from each initial control tend
to 5199745.1524 approximately and the iteration procedures are quite stable, where γi is the control obtained
at the i-th iteration. Moreover, Figures 4.1, 4.2 and 4.3 show that all optimal controls and optimal solutions
obtained from the iterations starting at these initial controls are almost same. In these figures, gamma denotes
the control γ(t), E is defined by

E(t) =
∫ 1

0

u2(x, t)dx,

and omega the solution ω(t). The Java program for the simulations is available at
http://www.mscs.dal.ca/~ weiliu/beam/beamSimCtrl.java

5. Conclusions

In this paper we have proved the existence of an optimal control for the model of a rotating body beam,
which is attached perpendicularly to the center of a rigid cylinder and rotates with the cylinder. The control is
applied on the cylinder via a torque to suppress the vibrations of the beam. We have also derived a necessary
condition for the control. Furthermore, on the basis of iteration method, we propose numerical approximation
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Figure 4.1. Approximate optimal control and solution obtained via 19 iterations starting at
γ0 = 10000(3− t).
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Figure 4.2. Approximate optimal control and solution obtained via 19 iterations starting at
γ0 = 0.

scheme to calculate the optimal control and give numeric examples to show that the scheme works well. Hence
the control is implementable in real problems such as the control of a spacecraft.

In the study of stabilization for the beam via a feedback torque control, it is required that ω̄ of the equilibrium
point (0, ω̄) be less than a critical angular velocity ωc. In our discussion of optimal control, this requirement is
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Figure 4.3. Approximate optimal control and solution obtained via 19 iterations starting at
γ0 = −10000 sin(10π(3− t)).

not needed. However, what we can achieve is less satisfactory, just driving the beam to approach its equilibrium
0 as closely as possible rather than exactly to its equilibrium as in the case of stabilization.

I thank the referees for their valuable criticisms and comments.
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