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AN EXISTENCE RESULT
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Abstract. Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is
obtained when the integrands are convex with respect to the gradient variable, but are not necessarily
uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems
with non-homogeneous integrands nonconvex with respect to the gradient variable. The x-dependence,
explicitly appearing in the integrands, adds significant technical difficulties in the proof.
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1. Introduction

In this paper we establish existence and regularity of minimizers of energy integrals of the type∫
Ω

f (x,Du(x)) dx, (1)

subject to Dirichlet boundary conditions. The main feature of our problem is the fact that the integrand
f = f(x, ξ) is not convex with respect to the gradient variable ξ.

In recent years the study of non convex variational problems has undergone remarkable developments, moti-
vated in part by advances in the study of material stability and instability. Contemporary issues such as phase
transitions in certain alloys (see [3,4]), nucleation [20], the onset of microstructure, and optimal design problems
for thin films [18], require a good understanding of existence of (classical or generalized) equilibrium solutions
for nonconvex energies. In addition, qualitative information on quasistatic solutions (e.g. regularity, hysteresis,
oscillatory behavior) are needed in order to develop the evolutionary framework, and, in particular, to search
for the dynamical evolution of phase boundaries. These issues have challenged traditional theories.
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Within this setting, a relevant example has been considered by Ball–James [3, 4], who studied the two
“potential wells” problem:

minimize
∫

Ω

f (Du(x)) dx,

where u : Ω ⊂ Rn → Rn is a vector-valued function, f : Rn×n → [0,+∞) is identically zero on two distinct
potential wells SO(n)ξ, SO(n)η and f > 0 elsewhere. Here ξ, η ∈ Rn×n and SO(n) stands for the special
orthogonal group. The existence of minimizers for the two potential wells problem has been obtained in two
dimensions (i.e., n = 2) by Dacorogna–Marcellini [10] and by Müller–Šverák [26] (for the case n = 3 see also
Dolzmann–Kirchheim–Müller–Šverák [15]). Nothing is known in higher dimension or for general integrands f
as in (1).

In this paper we restrict ourselves to the scalar-valued case, as a starting point to approach the vectorial
setting. Also, the scalar-valued case is still far from being completely understood, unless the integrand f depends
only on the gradient variable ξ and some special assumptions are made on the boundary data (see the references
quoted below). Here we consider general boundary data u0 ∈ W 1,p (Ω), p > 1, and we allow the nonconvex
integrands f to explicitly depend on x as in (1). In the proofs of the attainment results presented below the
x-dependence introduces substantial technical difficulties.

The proof of the existence results for nonconvex variational problems considered in this paper hinges on
the local Lipschitz continuity of minimizers of the relaxed problem associated to the bipolar f∗∗ of f . These
regularity results are presented in Section 2, and they apply to minimizers of some integrals of the Calculus
of Variations with integrands f∗∗(x, ξ) convex with respect to ξ ∈ Rn, but not everywhere uniformly convex ;
hence, we believe that the regularity results presented in Section 2 should be of interest by themselves.

In Section 3 we consider the variational problem

inf
{∫

Ω

f (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}
, (2)

where u0 ∈ W 1,p (Ω) is a given boundary datum and f = f(x, ξ) is a continuous function satisfying some
growth conditions similar to the ones considered in the previous Section 2, so as to ensure Lipschitz continuity
of minimizers of the relaxed problem. Here the most relevant fact is that f may be nonconvex with respect to
the variable ξ ∈ Rn.

It is known that the variational problem (2) may lack a minimizer (see Marcellini [22]; see also [6, 12, 21]).
In the examples of nonexistence the following condition, expressed in terms of the bipolar f∗∗ of f , is violated:
for every x ∈ Ω the function f∗∗(x, ·) is affine on the set

A(x) = {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)} ,

i.e., there exist a continuous function q and a vector field m of class C1, defined in the open set ΩA :=
{x ∈ Ω : A(x) 6= ∅}, such that

f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉 , ∀ x ∈ ΩA, ξ ∈ A(x). (3)

We also assume that the boundary (more precisely, the part of the boundary in Ω) of the set

{x ∈ ΩA : divm(x) = 0} (4)

has zero (n-dimensional) measure.
In this paper we prove that (3, 4) (see also the more general assumptions made in Sect. 3.2) are sufficient

conditions for existence of minimizers to the variational problem (2). We emphasize that we do not require any
other condition on the vector field m other than (4); in particular, we do not assume that the vector field m has
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null divergence. We notice that, while condition (3) is necessary for guaranteeing the existence of minimizers
(see [6, 21,22]), we do not know whether condition (4) may be removed.

Existence theorems without convexity assumptions have been widely investigated in the one-dimensional case
n = 1 (see [12] for an extensive list of references). Theorem 3.1 in Section 3 is specific to the case n ≥ 2, and
it is an extension of some analogous results, obtained under more restrictive assumptions, by Marcellini [22],
Mascolo–Schianchi [23], Cellina [7] and Friesecke [21]. In particular, Theorem 3.1 is an extension of related
results recently proved by Sychev [28] and Zagatti [29] for integrands independent of x and under a strong
assumption on the growth of f which ensures the almost everywhere differentiability of minimizers, i.e., p > n,
by Celada–Perrotta [5] for p > 1, and by Dacorogna–Marcellini in [12,13].

Finally we recall that Marcellini [22] pointed out the necessity of the condition of affinity (3) of the function
f∗∗ on the set where f 6= f∗∗ to guarantee existence of minimizers. Cellina [6, 7] and Friesecke [21] proved the
necessity and sufficiency of the condition of affinity for linear boundary data u0. The explicit dependence of
the integrand on the variable x was first considered by Mascolo–Schianchi in [24], assuming that the divergence
of the vector field m in (3) is identically equal to zero in Ω, in addition to other strong assumptions on the
boundary data u0. Also, in [27] Raymond studied a case where the divergence of the vector field m in (3) is
always different from zero in Ω, and some type of explicit dependence on u is allowed.

2. Local Lipschitz Continuity

2.1. Preliminary results

Let f : Rn → [0,+∞) be a continuous function such that

0 ≤ f(ξ) ≤ L(1 + |ξ|p) , (5)

where L > 0, p > 1. We say that f is uniformly convex at infinity if there exist R, ν > 0 such that, if the
segment with endpoints ξ1, ξ2 (that we will denote by [ξ1, ξ2]) is contained in the complement of the closed ball
BR , then

f

(
ξ1 + ξ2

2

)
≤ 1

2
f(ξ1) +

1
2
f(ξ2)− ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2 . (6)

Note that (6) is equivalent to

f

(
ξ1 + ξ2

2

)
≤ 1

2
f(ξ1) +

1
2
f(ξ2)− ν′(|ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2 ,

for some ν′ > 0, since |ξ1| , |ξ2| > R > 0.
If the above inequality (6) is satisfied for any ξ1, ξ2 ∈ Rn, then we say that f is uniformly convex in Rn. A

form of uniform convexity at infinity was also considered by Mascolo and Schianchi in [25].
The lemma below is proved in [1].

Lemma 2.1. If γ > −1/2 then there exist positive constants c1 = c1(γ), c2 = c2(γ) such that, for all ξ, η ∈ Rn,

c1(1 + |ξ|2 + |η|2)γ ≤
∫ 1

0

t(1 + |tξ + (1− t)η|2)γ dt ≤ c2(1 + |ξ|2 + |η|2)γ .

The following result provides two conditions which are equivalent to uniform convexity in Rn.

Proposition 2.2. Let f : Rn → [0,+∞) be a continuous function satisfying (5). The following conditions are
equivalent:

(i) f is uniformly convex in Rn;
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(ii) f(ξ) = c1ν(1 + |ξ|2)p/2 + g(ξ), for some c1 = c1(p) > 0, where g(ξ) is a convex function such that
0 ≤ g(ξ) ≤ L(1 + |ξ|p) for all ξ;

(iii)
∫
Q

[f(ξ +Dϕ(x)) − f(ξ)] dx ≥ c2ν
∫
Q

(1 + |ξ|2 + |Dϕ|2)
p−2

2 |Dϕ(x)|2 dx, for all ξ ∈ Rn, ϕ ∈ C1
0 (Q), where

Q = (0, 1)n and c2 = c2(p) is a suitable constant.

Remark 2.3. The condition (iii) in Proposition 2.2 is related to the notion of uniform quasiconvexity, intro-
duced by Evans [16] and later studied by Evans–Gariepy [17].

Proof of Proposition 2.2. (i) =⇒ (ii). We define g(ξ) := f(ξ) − c1ν(1 + |ξ|2)p/2, where c1 will be chosen later,
and we show that g is convex. Given ξ1, ξ2 ∈ Rn we set ξ := (ξ1 + ξ2)/2. From (i) we easily get that

1
2
g(ξ1) +

1
2
g(ξ2) ≥ g(ξ) + ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2+

c1ν

2

[
2(1 + |ξ|2)p/2 − (1 + |ξ1|2)p/2 − (1 + |ξ2|2)p/2

]
.

Thus the assertion follows immediately from the fact that there exists a constant c = c(p) such that

(1 + |ξ1|2)p/2 + (1 + |ξ2|2)p/2 − 2(1 + |ξ|2)p/2 ≤ c(1 + |ξ1|2 + |ξ2|2)
p−2

2 |ξ1 − ξ2|2 ,

and by setting c1 := c−1. To establish this inequality we write, for i = 1, 2,

h (ξi) = h (ξ) + 〈Dh (ξ) , ξi − ξ〉+
∫ 1

0

(1− t)
〈
D2h (ξ + t (ξi − ξ)) (ξi − ξ) , ξi − ξ

〉
dt

where h (ξ) := (1 + |ξ|2)p/2, yielding

(1 + |ξi|2)p/2 − (1 + |ξ|2)p/2 ≤ p(1 + |ξ|2)
p−2

2 〈ξi − ξ, ξ〉+ c(p)|ξi − ξ|2
∫ 1

0

(1− t)(1 + |ξ + t(ξi − ξ)|2)
p−2

2 dt .

It suffices now to sum the above inequalities for i = 1, 2 and apply Lemma 2.1.
(ii) =⇒ (iii). From Lemma 2.1 we easily get that (iii) holds for the function ξ 7→ (1 + |ξ|2)p/2. Hence the

general case follows from Jensen’s inequality applied to g.
(iii) =⇒ (i). See the proof of Proposition 2.5 with θ = 1/2 in [19].

Lemma 2.4. Let f : Rn → [0,+∞) be a C2 function. Then f satisfies (6) if and only if there exists a constant
c0 such that for all ξ ∈ Rn \BR

〈D2f(ξ)λ, λ〉 ≥ c0 ν (1 + |ξ|2)
p−2

2 |λ|2 ∀λ ∈ Rn. (7)

The proof of Lemma 2.4 is straightforward and it is left to the reader.

Lemma 2.5. Let f : Rn → [0,+∞) be a continuous function satisfying (5) and (6). Then there exist
R0, ν0, C0 > 0, depending only on R, ν and L, such that for all ξ ∈ Rn \ BR0 there exists qξ ∈ Rn such
that |qξ| ≤ C0(1 + |ξ|p−1) and

f(η) ≥ f(ξ) + 〈qξ, η − ξ〉+ ν0(1 + |ξ|2 + |η|2)
p−2

2 |ξ − η|2 ∀η ∈ Rn . (8)

Moreover, if |ξ| > R0 , then f∗∗(ξ) = f(ξ).

Proof. For 0 < ε < 1 set fε := ρε∗f , where ρε(η) := ε−nρ(η/ε) and ρ(η) = ρ̂(|η|) is a positive radially symmetric
mollifier with support equal to B, with B := B1, ρ(η) > 0 if |η| < 1 and

∫
B
ρ(η)dη = 1. From (6) it follows

easily that if [ξ1, ξ2] ⊂ Rn \BR+1, ξ := (ξ1 + ξ2)/2, then

1
2

[fε(ξ1) +fε(ξ2)] ≥ fε(ξ)+ν|ξ1−ξ2|2
∫
B

ρ(η)(1+|ξ1+εη|2+|ξ2+εη|2)
p−2

2 dη .
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The integral above can be estimated from below by∫
B∩{〈ξ,η〉≥0}

ρ(η)(1 + |ξ1|2 + |ξ2|2 + 2ε2|η|2 + 4ε〈ξ, η〉)
p−2

2 dη ≥ 1
2

(1 + |ξ1|2 + |ξ2|2)
p−2

2

if p ≥ 2, and by ∫
B

ρ(η)(1 + 2|ξ1|2 + 2|ξ2|2 + 4ε2|η|2)
p−2

2 dη ≥ 5(p−2)/2(1 + |ξ1|2 + |ξ2|2)
p−2

2

when 1 < p < 2. In both cases

1
2

[fε(ξ1) + fε(ξ2)] ≥ fε(ξ) + cν(1 + |ξ1|2 + |ξ2|2)
p−2

2 |ξ1 − ξ2|2 ;

hence, by Lemma 2.4, if |ξ| ≥ R+ 1 then

〈D2fε(ξ)λ, λ〉 ≥ cν (1 + |ξ|2)
p−2

2 |λ|2, ∀λ ∈ Rn. (9)

Moreover, it can be easily checked that 0 ≤ fε(ξ) ≤ C(L)(1 + |ξ|p) for all ξ, and a simple argument based on
the convexity of fε in Rn \BR+1 shows that there exists a constant C1(L,R) such that

|Dfε(ξ)| ≤ C1(1 + |ξ|p−1), ∀ ξ ∈ Rn \BR+2 . (10)

We claim that there exists R0 � 1 such that if |ξ| > R0 then

fε(η) ≥ fε(ξ) + 〈Dfε(ξ), η − ξ〉+ c(1 + |ξ|2 + |η|2)
p−2

2 |ξ − η|2 (11)

for all η ∈ Rn. Assume that (11) holds. Notice that, if |ξ| > R0 > R + 2, then by (10) there exists a sequence
(εh) converging to 0 such that Dfεh(ξ)→ qξ for some qξ ∈ Rn such that |qξ| ≤ C1(1+ |ξ|p−1). Hence (8) follows
from (11), letting ε go to 0+. The equality f∗∗(ξ) = f(ξ) for |ξ| > R0 then follows at once from (8).

The remaining of the proof concerns the assertion of the claim (11). Fix ξ such that |ξ| > R0, with R0 >
2(R+ 3) to be chosen later, and denote by Cξ the open cone with vertex at ξ, tangent to the ball BR+3.
Case 1: If η ∈ Rn \ Cξ or η ∈ Cξ \ BR+3 and 〈η, ξ〉 ≥ 0, then fε is convex along the line t → ξ + t(η − ξ)
provided R0 is sufficiently large, and (11) follows from (9).

Case 2: If η ∈ BR+3 we consider ξ := ξ(R+ 3)/|ξ| and a constant M := C(L)(1 + (R+ 3)p) such that

0 ≤ fε(η) ≤M

for all η ∈ BR+3 and all ε ∈ (0, 1); by Case 1 we may apply (11) to ξ (notice that ξ ∈ ∂BR+3, 〈ξ, ξ〉 > 0), thus
getting

fε(η) = fε(ξ) + fε(η)− fε(ξ)

≥ fε(ξ) + 〈Dfε(ξ), ξ − ξ〉 −M + c (1 + (R+ 3)2 + |ξ|2)
p−2

2 (|ξ| −R − 3)2

≥ fε(ξ) + 〈Dfε(ξ), η − ξ〉 − |Dfε(ξ)||η − ξ| −M + c̃ (1 + |η|2 + |ξ|2)
p−2

2 |ξ − η|2.
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The estimate (11) now follows for η and ξ from the previous inequalities, together with the estimate

|Dfε(ξ)||η − ξ|+M ≤ 1
2
c̃(1 + |η|2 + |ξ|2)

p−2
2 |ξ − η|2,

and the latter holds by virtue of (10), and provided ξ > R0 and R0 > 2 (R+ 3) are sufficiently large.
Case 3: Finally, let us assume that η ∈ Cξ \ BR+3, 〈η, ξ〉 < 0. In this case we have |ξ − η|2 > |ξ|2 + |η|2, and
denoting by η̃ the projection of η on the boundary of the cone, and by αξ the half angle at the vertex of Cξ,

|η − η̃| ≤ |ξ − η| sinαξ =
R+ 3
|ξ| |ξ − η| ≤

1
2
|ξ − η| . (12)

Notice that if R0 is sufficiently large then [η, η̃] ⊂ Rn\BR+2 ; therefore we may use (10) to estimate fε(η)−fε(η̃).
This, together with (11) applied to η̃ ∈ ∂Cξ, yields

fε(η) = fε(η̃) + fε(η)− fε(η̃) ≥ fε(ξ) + 〈Dfε(ξ), η̃ − ξ〉 − C1(1 + |η|p−1 + |η̃|p−1)|η − η̃|

+ c(1 + |η̃|2 + |ξ|2)
p−2

2 |ξ − η̃|2.

Since, by (12), |ξ − η| ≤ 2|ξ − η̃| ≤ 3|ξ − η|, for any p > 1 we have easily

c(1 + |η̃|2 + |ξ|2)
p−2

2 |ξ − η̃|2 ≥ c(p)(1 + |η|2 + |ξ|2)
p−2

2 |ξ − η|2 ,

and, using (10) once more, we obtain

fε(η) ≥ fε(ξ) + 〈Dfε(ξ), η − ξ〉 − C1|η − η̃|
[
(1 + |ξ|p−1) + (1 + |η|p−1 + |η̃|p−1)

]
(13)

+ c(p)(1 + |η|2 + |ξ|2)
p−2

2 |ξ − η|2 .

By virtue of (12), and recalling that |ξ|2 + |η|2 < |ξ − η|2, we have

C1|η − η̃|
[
(1 + |ξ|p−1) + (1 + |η|p−1 + |η̃|p−1)

]
≤ cR+ 3

|ξ| |ξ − η|(1 + |η|p−1 + |ξ|p−1)

≤ c′R+ 3
|ξ| |ξ − η|

2(1 + |η|2 + |ξ|2)
p−2

2

≤ (c(p)/2)(1 + |η|2 + |ξ|2)
p−2

2 |ξ − η|2

if |ξ| > R0, with R0 large enough. This, together with (13), concludes the proof of (11).

Remark 2.6. Let f satisfy (5) and (6), and fix a point ξ0 such that R0 < |ξ0| < 2R0. Applying (8) with ξ = ξ0
and recalling that |qξ| ≤ C0(1 + |ξ|p−1), for all η such that |η| > 2R0 it holds

f(η) ≥ c̃1(R0, ν0, C0) |η|p − c̃2(R0, ν0, C0) .

Hence, f(ξ) ≥ c1|ξ|p − c2 for all ξ ∈ Rn, with c1, c2 depending only on R, ν, L.

2.2. A regularity result

In this section we assume that f : Ω×Rn → [0,+∞) is a continuous function satisfying the growth condition

0 ≤ f(x, ξ) ≤ L(1 + |ξ|p), ∀ (x, ξ) ∈ Ω× Rn (14)
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and for some L > 0. Let us denote by f∗∗ := f∗∗(x, ξ) the bipolar of f , that is the convex envelope of f(x, ·).
We assume that f∗∗ is continuous and that f is uniformly convex at infinity with respect to ξ (see (6)), i.e.,
there exist R, ν > 0 such that if the segment ξ1, ξ2 is contained in the complement of the closed ball BR, then
for all x ∈ Ω

f

(
x,
ξ1 + ξ2

2

)
≤ 1

2
f(x, ξ1) +

1
2
f(x, ξ2)− ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2. (15)

Finally we assume further that if |ξ| > R then the vector field x ∈ Ω 7→ fξ(x, ξ) is weakly differentiable and

|Dxfξ(x, ξ)| ≤ L(1 + |ξ|p−1), ∀ (x, ξ) ∈ Ω× (Rn \BR). (16)

If u ∈W 1,p
loc (Ω) and A ⊂ Ω is open, then we set

F (u,A) :=
∫
A

f(x,Du(x)) dx .

The main result of this section is Theorem 2.7 below. We recall that u is said to be a local minimizer of F in
Ω if

F (u,BR(x0)) ≤ F (v,BR(x0))

whenever BR(x0) ⊂⊂ Ω and v ∈ u+W 1,p
0 (BR(x0)).

Theorem 2.7. Let f : Ω×Rn → [0,+∞) be a continuous function satisfying (14, 15) and (16). If u ∈W 1,p
loc (Ω)

is a local minimizer of the functional F , then u is locally Lipschitz continuous in Ω. Moreover, there exists a
constant C0, depending on L, p, ν,R, such that if Br(x0) ⊂ Ω then

sup
Br/2(x0)

|Du|p ≤ C0

(
1 +−

∫
Br(x0)

|Du|p dx

)
. (17)

We first show in Lemma 2.8 that, provided we know already that u is locally Lipschitz, equation (17) holds
with a constant C0 depending only on L, p, ν,R. Once the a priori estimate (17) is established, the regularity
result is obtained using an approximation argument.

Lemma 2.8. Let f satisfy the assumptions of Theorem 2.7. Assume, in addition, that f is C2 and that, for
all x ∈ Ω, ξ, λ ∈ Rn,

Dξiξjf(x, ξ)λiλj ≥ ε0(1 + |ξ|2)
p−2

2 |λ|2, (18)

and that u ∈W 1,p
loc (Ω) is a locally Lipschitz local minimizer of F in Ω. Then (17) holds with a constant depending

only on L, p, ν,R and, in particular, independent on ε0.

Proof. Step 1: From Lemma 2.4 we have that for every x ∈ Ω, ξ, λ ∈ Rn, with |ξ| > R,

Dξiξjf(x, ξ)λiλj ≥ cν(1 + |ξ|2)
p−2

2 |λ|2 . (19)

Since ũ(y) := u(x0 + ry)/r is a local minimizer in (Ω − x0)/r of the functional F̃ , where F̃ (v) :=∫
(Ω−x0)/r f(x0 +ry,Dv(y))dy still satisfies the assumptions of Theorem 2.7, it is clear that in order to prove (17)

we may always assume, with no loss of generality, that B := B1 ⊂ Ω. Since u satisfies the Euler equation for F ,∫
B

Dξif(x,Du)Diφdx = 0 , ∀ φ ∈ C1
0 (B),
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using (18) and the fact that Dξiξjf(x,Du(x)) are locally bounded in B (which follows from the C2 regularity
of f , together with the fact that Du is locally bounded) we have that u ∈ W 2,2

loc (B), by a standard different
quotient argument.

We fix s ∈ {1, . . . , n}, η ∈ C1
0 (B), 0 ≤ η ≤ 1, ψ ∈ C2(B), and in the above Euler equation we take φ = η2Dsψ

to obtain ∫
B

Dξif(x,Du)Ds(Diψ)η2 dx = −2
∫
B

ηDξif(x,Du)DsψDiη dx .

Integrating by parts the first integral, we have∫
B

Dξiξjf(x,Du)Dj(Dsu)Diψη
2 dx = 2

∫
B

ηDξif(x,Du)DsψDiη dx

−2
∫
B

Dxsξif(x,Du)Diψη
2 dx− 2

∫
B

ηDξif(x,Du)DiψDsη dx(20)

for all functions ψ ∈W 1,2(B). Set

V+(x) := 1 +R2 +
n∑
h=1

[(Dhu(x)−R)+]2, V−(x) := 1 +R2 +
n∑
h=1

[(Dhu(x) +R)−]2,

and notice that there exist constants c1, c2, depending only on n, such that

c1(V+(x) + V−(x)) ≤ 1 +R2 + |Du(x)|2 ≤ c2(V+(x) + V−(x)) . (21)

Let ψ := V β+ (Dsu−R)+, where β ≥ 0. By (14) and the convexity of f (x, ·) we get |Dξf(x, ξ)| ≤ c(1 + |ξ|2)
p−1

2 ;
this inequality, together with (16) and (20), yields∫
B

Dξiξjf(x,Du)Dj(Dsu−R)+Di(Dsu−R)+V β+ η
2 dx

+ β

∫
B

Dξiξjf(x,Du)Dj(Dsu−R)+(Dsu−R)+Di

(
n∑
h=1

[(Dhu−R)+]2
)
V β−1

+ η2dx

≤ c
∫
B

η(η + |Dη|)(1 + |Du|p−1)|D(Dsu−R)+|V β+ dx

+ cβ

∫
B

η(η + |Dη|)(1 + |Du|p−1)

∣∣∣∣∣D
(

n∑
h=1

[(Dhu−R)+]2
)∣∣∣∣∣ (Dsu−R)+V β−1

+ dx .

Since all the integrals are evaluated in the set where |Du| > R, summing up on s, using (19), the fact that
(Dsu−R)+ ≤ V 1/2

+ and Young’s inequality, it follows easily that

∫
B

(1 + |Du|2)
p−2

2

∣∣∣∣∣D
(

n∑
h=1

[(Dhu−R)+]2
)∣∣∣∣∣

2

V β−1
+ η2 dx ≤ c

ν2

∫
B

(1 + |Du|p)V β+ (η2 + |Dη|2) dx ,

where the constant c depends only on n, p, L. Since the integral on the left hand side is evaluated in the set
where |Du| > R, in turn this last inequality is equivalent to the following one:

∫
B

(1 +R2 + |Du|2)
p−2

2

∣∣∣∣∣D
(

n∑
h=1

[(Dhu−R)+]2
)∣∣∣∣∣

2

V β−1
+ η2 dx ≤ c

ν2

∫
B

(1 +R2 + |Du|2)p/2 V β+ (η2 + |Dη|2) dx.
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Inserting ψ = V β− (Dsu+R)− in (20), and using a similar argument, we get also

∫
B

(1 +R2 + |Du|2)
p−2

2

∣∣∣∣∣D
(

n∑
h=1

[(Diu+R)−]2
)∣∣∣∣∣

2

V β−1
− η2 dx ≤ c

ν2

∫
B

(1 +R2 + |Du|2)p/2 V β− (η2 + |Dη|2) dx .

Therefore, adding the last two inequalities and using (21), we arrive to∫
B

V
p−2

2

[
|DV+|2V β−1

+ + |DV−|2V β−1
−

]
η2 dx ≤ c

ν2

∫
B

V p/2+β(η2 + |Dη|2) dx ,

where V := max {V+;V−}.
Step 2: From the inequality above we deduce that∫

B

|DV p/4+β/2|2η2 dx ≤ c(p+ 2β)2

∫
B

V p/2+β(η2 + |Dη|2) dx .

In turn, this implies that∫
B

|D(V p/4+β/2η)|2 dx ≤ c(p+ 2β)2

∫
B

V p/2+β(η2 + |Dη|2) dx ,

where the constant c depends only on L, p, n, R, ν. Setting γ := p/4 + β/2 ≥ p/4, using the Sobolev–Poincaré
inequality, and the arbitrariness of β ≥ 0, we get that, for any γ ≥ p/4,

‖V γη‖L2χ(B) ≤ cγ ‖V γ (η + |Dη|)‖L2(B) ,

where χ := n/(n− 2) if n ≥ 3, or any number > 1 if n = 2. Considering the sequence of radii ri := 1/2 + 1/2i

for i = 1, . . . , we apply the inequality above to γ = γi := (p/4)χi−1, and choose η ∈ C1
0 (B) such that η = 1 on

Bri+1 , 0 ≤ η ≤ 1, |Dη| ≤ c2i. We obtain

‖V ‖L2γi+1(Bri+1) ≤ (c2iγi)1/γi ‖V ‖L2γi (Bri)
.

Iterating the above formula yields, for every i,

‖V ‖L2γi+1(B1/2) ≤ C ‖V ‖Lp/2(B) ,

where C =
∏∞
i=1(c2iγi)1/γi < +∞. Therefore, letting i go to +∞ and using (21), we obtain (17).

Remark 2.9. It follows immediately from the proof that the estimate (17) may be generalized to read

sup
Bρ(x0)

|Du|p ≤ C(ρ)

(
1 +−

∫
Br(x0)

|Du|p dx

)
,

for all 0 < ρ < r, where C(ρ) depends only on L, p, ν, R and ρ.

We are now in position to prove Theorem 2.7, by using the following approximation lemma.

Lemma 2.10. Let g : Rn → [0,+∞) be a C2 convex function such that for all ξ ∈ Rn

0 ≤ g(ξ) ≤ L(1 + |ξ|p) ,
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where p > 1, L > 0, and assume that there exist R, ν > 0, such that if |ξ| > R, λ ∈ Rn,

Dijg(ξ)λiλj ≥ ν(1 + |ξ|2)
p−2

2 |λ|2 .

Then there exists a constant c = c(n, p) and a sequence gh of C2(Rn) convex functions such that
(a) 0 ≤ gh(ξ) ≤ cL(1 + |ξ|p) ∀ ξ ∈ Rn ;
(b) for any h there exists εh > 0 such that, for all ξ, λ ∈ Rn,

εh(1 + |ξ|2)
p−2

2 |λ|2 ≤ Dijgh(ξ)λiλj ≤ ε−1
h (1 + |ξ|2)

p−2
2 |λ|2;

(c) Dijgh(ξ)λiλj ≥ cν(1 + |ξ|2)
p−2

2 |λ|2, ∀λ ∈ Rn, |ξ| > R+ 1;
(d) gh → g uniformly on compact subset of Rn.

Proof. The proof of this lemma can be obtained arguing as in the Step 2 and Step 3 of the proof of Lemma 3.4
of [19], with the obvious simple modifications needed in the present case. Therefore we omit the details.

Proof of Theorem 2.7. Notice that if u is a local minimizer of F , then u is also a local minimizer of the relaxed
functional v 7→

∫
Ω
f∗∗(x,Dv)dx, where, for all x ∈ Ω , f∗∗(x, ξ) is the bipolar of ξ 7→ f(x, ξ). Indeed, if

v ∈ u+W 1,p
0 (Br(x0)) then∫
Br(x0)

f∗∗(x,Dv) dx = inf

{
lim inf
h→+∞

∫
Br(x0)

f(x,Dvh) dx : vh − v ⇀ 0 in w −W 1,p
0 (Br(x0))

}
·

Also, by virtue of Lemma 2.5, the function f∗∗ satisfies the assumptions of Theorem 2.7. Therefore, with no
loss of generality, we may assume that f is convex in ξ.
Step 1: Let us assume that

f(x, ξ) =
N∑
i=1

ai(x)gi(ξ) ,

where, for i = 1, . . . , N , the function gi ∈ C2(Rn) satisfies the assumptions of Lemma 2.10 for some L,R, ν > 0,
and 〈D2gi(ξ)λ, λ〉 ≥ ε0(1 + |ξ|2)(p−2)/2|λ|2 for all ξ, λ ∈ Rn and for some ε0 > 0. Moreover, let us assume that,
for all i, the function ai is a nonnegative C2 function such that ‖Dai‖∞ ≤M and that γ−1 <

∑N
i=1 ai(x) < γ

for all x ∈ Ω and for some positive constant γ.
For every i let us denote by gi,h a sequence of C2(Rn) functions such that gi,h → gi uniformly on the compact

sets of Rn, satisfying the conditions (a, b) and (c) of Lemma 2.10, and let us set for all (x, ξ) ∈ Ω× Rn

fh(x, ξ) :=
N∑
i=1

ai(x) gi,h(ξ) .

From Remark 2.6 it follows easily that there exist constants c1, c2, depending only on L,R, ν, γ, such that, for
all (x, ξ) and for any h,

f(x, ξ), fh(x, ξ) ≥ c1|ξ|p − c2. (22)

Given Br(x0) ⊂⊂ Ω, we denote by uh the solution of the problem

min

{∫
Br(x0)

fh(x,Dv) dx : v ∈ u+W 1,p
0 (Br(x0))

}
· (23)
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Since the functions gi,h satisfy condition (b) of Lemma 2.10, standard elliptic regularity theory implies that
uh ∈ C1,α(Ω)∩W 2,2

loc (Ω) for any h. From the assumptions on f , from the approximation provided by Lemma 2.10,
and from (22), it follows that the sequence uh is bounded in W 1,p(Br(x0)). Moreover, by Lemma 2.8 (see
Rem. 2.9), for all ρ < r we obtain

sup
Bρ(x0)

|Duh|p ≤ C
(

1 +−
∫
Br(x0)

|Duh|p dx

)
, (24)

where the constant C depends ultimately only on L, p, R, ν, γ, M and ρ, but not on h. Hence we may assume,
up to a subsequence, that uh ⇀ u∞ weakly* in W 1,∞(Bρ(x0)) for any ρ < r. Since fh → f uniformly on
compact sets of Rn and the integrand f is convex, for any ρ < r we have∫

Bρ(x0)

f(x,Du∞)dx ≤ lim inf
h→+∞

∫
Bρ(x0)

f(x,Duh)dx = lim inf
h→+∞

∫
Bρ(x0)

fh(x,Duh)dx

≤ lim inf
h→+∞

∫
Br(x0)

fh(x,Du) dx =
∫
Br(x0)

f(x,Du) dx ,

where we used the fact that uh is a solution for (23). Letting ρ → r and recalling that u is a local minimizer
of the functional F , we deduce that u∞ is also a minimizer of F in Br(x0). Since the functional F is strictly
convex, we have that u = u∞. Passing to the limit as h → +∞ in (24), we conclude that u is also locally
Lipschitz. Indeed, using the minimality of uh and (24), we get

sup
Br/2(x0)

|Du|p ≤ lim inf
h→+∞

(
sup

Br/2(x0)

|Duh|p
)

≤ c lim inf
h→+∞

(
1 +−

∫
Br(x0)

|Duh|p dx

)
≤ c lim inf

h→+∞

(
1 +−

∫
Br(x0)

fh(x,Duh) dx

)

≤ c lim inf
h→+∞

(
1 +−

∫
Br(x0)

fh(x,Du) dx

)
≤ c

(
1 +−

∫
Br(x0)

|Du|p dx

)
.

Step 2: Let us now assume that f ∈ C2(Ω × Rn) and that there exists ε0 > 0 such that Dξiξjf(x, ξ)λiλj ≥
ε0(1 + |ξ|2)(p−2)/2|λ|2 for all (x, ξ) ∈ Ω × Rn and for any λ ∈ Rn. Fix an open set A ⊂⊂ Ω and let us prove
that (17) holds for any ball Br(x0) ⊂ A (with a constant C0 not depending on A).

To this aim let ψ ∈ C∞0 (Rn) be a cut-off function such that 0 ≤ ψ(x) ≤ 1 for all x, suppψ ⊂ (−3, 3)n and
such that ψ(x) ≡ 1 if x ∈ [−1, 1]n. For any h ∈ N we denote by Qi,h(xi,h) the standard covering of Rn with
closed cubes, centered at xi,h , with sides parallel to the coordinates axes, side length equal to 2/h and having
pairwise disjoint interiors. Then, for any i, h, we set ψi,h(x) := ψ (h (x− xi,h)) and

σh(x) :=
∞∑
i=1

ψi,h(x), ϕi,h(x) :=
ψi,h(x)
σh(x)

·

Finally, for all h such that 12
√
n/h <dist(A; ∂Ω), and for every x ∈ A, ξ ∈ Rn, we set

fh(x, ξ) :=
∞∑
i=1

ϕi,h(x)f(xi,h, ξ) .

Notice that the above sum is actually finite (indeed it consists of at most 3n terms), and that each function
fh is of the type considered in Step 1. Moreover, we claim that the functions fh satisfy the assumptions of
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Lemma 2.8 with suitable constants L, ε0, R, ν not depending on h. The verification of our claim in the case of
assumptions (14, 15) (or equivalently (19)) and (18) follows easily by the corresponding assumptions on f . We
limit ourselves to show that for any h

|Dxξfh(x, ξ)| ≤ cL(1 + |ξ|p−1), ∀ (x, ξ) ∈ A× (Rn \BR) , (25)

where L is the constant appearing in (16) (relative to f) and c is a constant depending only on n, ψ, but not on h.
Let us fix x0 ∈ A and ξ ∈ Rn\BR. By construction there exist at most 3n cubes, Qj1,h(xj1,h), . . . , Qj3n ,h(xj3n ,h),
such that for any x in a suitable neighborhood U of x0

fh(x, ξ) =
3n∑
l=1

ϕjl,h(x) f(xjl ,h, ξ),
3n∑
l=1

ϕjl,h(x) = 1 .

Therefore for all x ∈ U we have that

Dxξfh(x, ξ) =
3n∑
l=1

Dxϕjl,h(x)Dξf(xjl,h, ξ) =
3n∑
l=2

Dxϕjl,h(x) [Dξf(xjl,h, ξ)−Dξf(xj1,h, ξ)] . (26)

In view of assumption (16), we have that for all l,

|Dξf(xjl,h, ξ)−Dξf(xj1,h, ξ)| ≤
c(n)L
h

(1 + |ξ|p−1) .

On the other hand, for any j, there exists a set of indices Ij containing j, with #(Ij) = 3n, such that, for all
x ∈ Rn,

Dxϕj,h(x) =
Dxψj,h(x)
σh(x)

− ψj,h(x)
σ2
h(x)

∑
k∈Ij

Dxψk,h(x) .

Therefore, since by construction σh(x) ≥ 1 for all x, we have that, for all x ∈ Rn and any j,

|Dxϕj,h(x)| ≤ (3n + 1)h(‖Dxψ‖∞) .

In view of the above estimates and from (26), we may conclude that for all (x, ξ) ∈ A× (Rn \BR) and for any h

|Dxξfh(x, ξ)| ≤ c(n)L ‖Dxψ‖∞ · (1 + |ξ|p−1) ,

and thus (25) follows. Finally, notice that fh(x, ξ) → f(x, ξ) uniformly in A ×K for every K compact subset
of Rn. Hence the rest of the proof goes as in Step 1, since also in this case the function ξ → f(x, ξ) is strictly
convex for all x ∈ A.
Step 3: Let f satisfy the assumptions of Theorem 2.7. Fix an open set A ⊂⊂ Ω, an infinitesimal sequence εh
of positive numbers and a positive symmetric mollifier ρ. For h large enough we set for all (x, ξ) ∈ A× Rn

fh(x, ξ) :=
∫
B×B

ρ(y)ρ(η)f(x+ εhy, ξ + εhη) dydη + εh(1 + |ξ|p) ,

where B is the unit open ball in Rn. Notice that each function fh is of the type considered in Step 2 and that
fh(x, ξ) → f(x, ξ) uniformly on any set of the type A × K, with K ⊂ Rn compact. Moreover, the functions
fh satisfy the assumptions of Theorem 2.7 with the corresponding constants L, R, ν bounded from above and
away from zero.
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As in Step 1, given a ball Br(x0) ⊂ A we denote by uh the solution of the problem

min

{∫
Br(x0)

fh(x,Dv) dx : v ∈ u+W 1,p(Br(x0))

}
·

From the assumptions on f and the construction of the functions fh it follows easily that the sequence uh is
bounded in W 1,p(Br(x0)). Moreover, by Step 2, for all ρ < r we have

sup
Bρ(x0)

|Duh|p ≤ C
(

1 +−
∫
Br(x0)

|Duh|p dx

)
,

where the constant C depends only on L, p, R, ν and ρ, but not on h. Hence we may assume that, up to a
subsequence, uh ⇀ u∞ weakly* in W 1,∞(Bρ(x0)) for any ρ < r. As in Step 1 we have again that also u∞ is
a minimizer of F in Br(x0). However, in the present case the functional F is not necessarily strictly convex,
hence we may not conclude as before that u∞ = u in Br(x0).

Set E0 := {x ∈ Br(x0) : |Du∞(x) +Du(x)| > 2R0}, where R0 is the constant provided by Lemma 2.5. If E0

has positive measure, then from the convexity of f(x, ·) and Remark 2.6 we have, setting ũ := (u+ u∞)/2,∫
Bρ(x0)\E0

f(x,Dũ) dx ≤ 1
2

∫
Bρ(x0)\E0

f(x,Du) dx+
1
2

∫
Bρ(x0)\E0

f(x,Du∞) dx .

Also, applying twice (8) in Lemma 2.5, first with ξ := Dũ and η := Du, and then with ξ := Dũ and η := Du∞,
adding up these two inequalities yields∫

Bρ(x0)∩E0

f(x,Dũ) dx <
1
2

∫
Bρ(x0)∩E0

f(x,Du)dx+
1
2

∫
Bρ(x0)∩E0

f(x,Du∞)dx .

Adding these two inequalities we get a contradiction with the minimality of u and u∞. Therefore E0 has zero
measure. Applying Step 2 to the functions uh, (8) to the functions fh, and using the minimality of uh, we
deduce that

sup
Br/2(x0)

|Du∞|p ≤ lim inf
h→+∞

(
sup

Br/2(x0)

|Duh|p
)

≤ C̃ lim inf
h→+∞

(
1 +−

∫
Br(x0)

|Duh|p dx

)
≤ c lim inf

h→+∞

(
1 +−

∫
Br(x0)

fh(x,Duh) dx

)

≤ c lim inf
h→+∞

(
1 +−

∫
Br(x0)

fh(x,Du∞) dx

)
≤ c

(
1 +−

∫
Br(x0)

|Du∞|p dx

)
.

Then the result follows, since |Du(x) +Du∞(x)| ≤ 2R0 for a.e. x.

3. Attainment of minima for nonconvex problems

Here we give an existence result for the variational problem

inf
{∫

Ω

f (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}
, (27)
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where Ω is a bounded open set of Rn and u0 ∈ W 1,p(Ω), p > 1. Throughout this section we assume that
f : Ω× Rn → R is a continuous function satisfying the growth condition

c1|ξ|p − c2 ≤ f(x, ξ) ≤ L(1 + |ξ|p), ∀ (x, ξ) ∈ Ω× Rn, (28)

for some constants c1, c2, L > 0, and is uniformly convex at infinity with respect to ξ, i.e., there exist R, ν > 0
such that, if the segment [ξ1, ξ2] is contained in Rn \BR, then

f

(
x,
ξ1 + ξ2

2

)
≤ 1

2
f(x, ξ1) +

1
2
f(x, ξ2)− ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2 (29)

for every x ∈ Ω (see (6)). Notice that, if 0 ≤ f(x, ξ) ≤ L(1 + |ξ|p), then condition (29) implies the coercivity
inequality in the left hand side of (28) (see Rem. 2.6). In addition, we assume that there exists the distributional
derivative Dxξf(x, ξ) and

|Dxξf(x, ξ)| ≤ L(1 + |ξ|p−1), ∀x ∈ Ω, |ξ| > R, (30)

provided L in (28) is chosen to be sufficiently large (see (16)). Let us denote by f∗∗ := f∗∗(x, ξ) the bipolar
of f , that is the convex envelope of f(x, ·) (i.e., the largest convex function in ξ which is less than or equal to
f(x, ·) on Rn). We assume that f∗∗ is continuous; hence, for any x ∈ Ω, the set

A(x) := {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)} (31)

is open.
We shall prove the existence of a minimizer for the problem (27) under the main assumption that f∗∗(x, ·)

is affine on each connected component of A(x). However, in order to present the argument of the proof in a
simplified setting, we shall treat first the case where f∗∗(x, ·) is affine (with the same slope) on the whole set
A(x). We will refer to this situation as the model case. The proof of this case contains all the ideas and technical
tools which are needed to treat the general situation in which f∗∗(x, ·) is affine (with possibly different slopes)
on each connected component of A(x).

3.1. The model case

As before f : Ω× Rn → R is a continuous function satisfying (28–30). We assume that f∗∗ : Ω× Rn → R is
continuous and we denote by A(x) the set defined in (31) and by ΩA := {x ∈ Ω : A(x) 6= ∅}. Since f and f∗∗

are continuous functions, ΩA is open. Here we consider the case where f∗∗(x, ·) is affine in A(x); more precisely,
we assume that there exist a function q ∈ C0 (ΩA) and a vector field m ∈ C1 (ΩA;Rn) such that

f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉 , ∀ x ∈ ΩA, ξ ∈ A(x). (32)

We also assume that the boundary of the set where the divergence of m is equal to zero is negligible, i.e.,

meas (Ω ∩ ∂ {x ∈ ΩA : divm(x) = 0}) = 0. (33)

Finally, for every x ∈ ΩA, we set

E(x) := {ξ ∈ Rn : f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉} ;

note that, by the growth conditions in (28) and by the assumption that f is uniformly convex at infinity
with respect to ξ, then the set E(x) is bounded uniformly for x ∈ ΩA (see also Lem. 2.5). We assume
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there exists an increasing function ω : [0,+∞) → [0,+∞), with ω(t) = 0 if and only if t = 0, such that, if
x ∈ ΩA, ξ ∈ ∂E(x), η ∈ Rn \E(x), then

f∗∗
(
x,
ξ + η

2

)
≤ 1

2
f∗∗(x, ξ) +

1
2
f∗∗(x, η)− ω (|ξ − η|) . (34)

The main result of this section is the following existence theorem:

Theorem 3.1. Let f, f∗∗ : Ω × Rn → R be continuous functions (f not necessarily convex with respect to
ξ ∈ Rn). Under the above assumptions on f and f∗∗ ((28–30) and (32–34)), for any given boundary datum
u0 ∈W 1,p (Ω) the variational problem (27) attains its minimum. Moreover, any minimizers is of classW 1,∞

loc (Ω).

The proof of Theorem 3.1 is obtained using the same method as in the work of Dacorogna–Marcellini [12,13],
who considered integrands independent of x. Our proof however follows from some new lemmas. The first one
concerns the relaxed variational problem

inf
{∫

Ω

f∗∗ (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}
· (35)

Lemma 3.2. The minimum of the relaxed variational problem (35) is attained. Moreover, there exist a mini-
mizer v ∈W 1,∞

loc (Ω) ∩
(
u0 +W 1,p

0 (Ω)
)

of (35) and an open set Ω′ ⊂ Ω (possibly empty) such that

{
Dv(x) ∈ A(x) a.e. x ∈ Ω′

Dv(x) /∈ A(x) a.e. x ∈ Ω \ Ω′ (36)

and divm = 0 in Ω′.

Remark 3.3. Formally, if Dv(x) ∈ A(x) then by (32)

f∗∗(x,Dv(x)) = q(x) + 〈m(x), Dv(x)〉·

Therefore, the Euler’s equation for v gives

n∑
s=1

∂

∂xs
f∗∗ξs (x,Dv) = divm(x) = 0, a.e. x such that Dv(x) ∈ A(x).

Thus (36) would follow if we could define Ω′ := {Dv(x) ∈ A(x)}. A striking feature of Lemma 3.2 is that the
set Ω′ may be chosen to be open, and so Lemma 3.2 may be considered to be a strong form of Euler’s first
variation for the minimizers. The property (36) is a regularity result, and in fact it follows from the regularity
results obtained in Section 2.

The proof of Lemma 3.2 follows the argument by Dacorogna–Marcellini [12] in Theorem 10.9. Previous
arguments related to Lemma 3.2 are due to De Blasi–Pianigiani [14], Sychev [28], and Zagatti [29].

Proof of Lemma 3.2. As before we denote by ΩA the open subset of Ω consisting of those points x such that
A(x) 6= ∅. We split ΩA into three sets (possibly empty),

Ω+
A := {x ∈ ΩA : divm(x) > 0} , Ω−A := {x ∈ ΩA : divm(x) < 0} , (37)

Ω0
A := {x ∈ ΩA : divm(x) = 0} · (38)
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Since divm is a continuous function, Ω+
A ∪ Ω−A ∪ int Ω0

A is an open set and, by (33),

meas
(
ΩA\

(
Ω+
A ∪ Ω−A ∪ int Ω0

A

))
≤ meas

(
Ω ∩ ∂Ω0

A

)
= 0.

By (28–30), Lemma 2.5, and Theorem 2.7 the relaxed variational problem (35) has a minimizer u∗∗ in the
Sobolev class W 1,∞

loc (Ω) ∩
(
u0 +W 1,p(Ω)

)
. Thus, by Rademacher theorem (see, for example, Th. 2.2.1 of [30],

or Th. 2.14 of [2]) u∗∗ is classically differentiable for almost every x ∈ Ω.
Let x0 be a point of ΩA \ ∂Ω0

A where u∗∗ is differentiable. Then

u∗∗(x) = u∗∗(x0) + 〈Du∗∗(x0), x− x0〉+ o (|x− x0|) , x ∈ Ω. (39)

Also, assume that

Du∗∗(x0) ∈ A(x0) = {ξ ∈ Rn : f(x0, ξ) > f∗∗(x0, ξ)} ·

Since ΩA and A(x) are open sets, there exists γ ∈ (0, 1) (depending on u∗∗ and x0) such that

x ∈ ΩA, ξ ∈ A(x), (40)

for all (x, ξ) ∈ Ω× Rn such that

|x− x0| ≤ γ, |ξ −Du∗∗(x0)| ≤ 2γ. (41)

Recall that x0 ∈ ΩA \ ∂Ω0
A; thus we can also assume that γ is sufficiently small so that{

x0 ∈ Ω±A , |x− x0| ≤ γ =⇒ x ∈ Ω±A ,
x0 ∈ int Ω0

A, |x− x0| ≤ γ =⇒ x ∈ int Ω0
A.

(42)

Choose δ ∈ (0, γ] (depending on x0) sufficiently small such that

|o (|x− x0|)|
|x− x0|

≤ γ, ∀x ∈ Bδ(x0), x 6= x0, (43)

and

δ ≤ γ

2 |Du∗∗(x0)|+ 4γ
, Bδ(x0) ⊂ Ω. (44)

By (42) and by the definition of Ω+
A, Ω−A, Ω0

A in (37, 38), we have{
x0 ∈ Ω±A =⇒ divm(x) ≷ 0 ∀x ∈ Bδ(x0),
x0 ∈ int Ω0

A =⇒ divm(x) = 0 ∀x ∈ Bδ(x0).
(45)

For every r ∈ (0, δ], let us define in Ω the function vrx0
by

vrx0
(x) := u∗∗(x0) + 〈Du∗∗(x0), x− x0〉 ± γ · (r − 2 |x− x0|) , x ∈ Ω,

the sign + being chosen if x0 ∈ Ω+
A, while the sign − is selected if x0 ∈ Ω−A. If x0 ∈ int Ω0

A then any sign in
the definition of vrx0

(x) is a good choice; in order to fix the ideas, we choose the sign + if x0 ∈ int Ω0
A. Since

|D |x|| = 1 for everyx ∈ Rn \ {0}, we obtain∣∣Dvrx0
(x)−Du∗∗(x0)

∣∣ = 2γ · |∓D |x− x0|| = 2γ a.e. x ∈ Ω,
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and thus by (40, 41),

Dvrx0
(x) ∈ A(x), a.e. x ∈ Bδ(x0), ∀ r ∈ (0, δ] . (46)

If x0 ∈ Ω+
A ∪ int Ω0

A we set

G(x0, r) :=
{
x ∈ Bδ(x0) ⊂ Ω : vrx0

(x) ≥ u∗∗(x)
}
, (47)

and if x0 ∈ Ω−A we define

G(x0, r) :=
{
x ∈ Bδ(x0) ⊂ Ω : vrx0

(x) ≤ u∗∗(x)
}
· (48)

We claim that G(x0, r) is a closed set satisfying

Br/3(x0) ⊂ G(x0, r) ⊂ Br(x0). (49)

Let us verify (49) when x0 ∈ Ω+
A ∪ int Ω0

A. If x ∈ Bδ(x0) but x /∈ Br(x0) (that is r < |x− x0| ≤ δ) then by (39)
and (43) we get

vrx0
(x)− u∗∗(x) = γ · (r − 2 |x− x0|)− o (|x− x0|) < −γ |x− x0| − o (|x− x0|)

= − |x− x0| ·
(
γ +

o (|x− x0|)
|x− x0|

)
≤ 0.

Thus vrx0
(x)− u∗∗(x) < 0 and x /∈ G(x0, r). On the other hand if x ∈ Br/3(x0), then r/3 ≥ |x− x0| , and again

by (39, 43), we obtain

vrx0
(x) − u∗∗(x) = γ · (r − 2 |x− x0|)− o (|x− x0|) ≥ γ |x− x0| − o (|x− x0|)

= |x− x0|
(
γ − o (|x− x0|)

|x− x0|

)
≥ 0

and x ∈ G(x0, r). Thus (49) is proved.
By (47) and the continuity of u∗∗ and vrx0

we have

∂G(x0, r) ⊂
{
x ∈ Bδ(x0) : vrx0

(x) = u∗∗(x)
}
,

thus ∂G(x0, r) and ∂G(x0, r
′) are disjoint for r 6= r′ and we conclude that only countably many of these

boundary sets can have positive measure. Therefore we can always choose a sequence rh of real numbers such
that  rh → 0 as h→ +∞,

0 < rh ≤ δ, ∀h ∈ N,
meas (∂G(x0, rh)) = 0, ∀h ∈ N.

(50)

Let us consider the measurable subset of Ω

M :=
{
x0 ∈ Ω+

A ∪ Ω−A ∪ int Ω0
A : u∗∗ differentiable at x0, Du∗∗(x0) ∈ A(x0)

}
and consider the family of open sets

G := {intG(x, rh) : x ∈M, rh as in (50)} ·
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Since G is a fine covering of M and each set G(x, r) ∈ G satisfies (49), by Vitali’s covering theorem (see, for
example, Chap. 10 of [12]), there exists in G a (at most) countable subcollection G′ of sets with disjoint closures
such that the open set

Ω′ =
⋃

intG(xk,rk)∈G′
intG(xk, rk), (51)

covers M up to a set of zero measure, i.e. meas (M \ Ω′) = 0. Let us define the function v in Ω by

v(x) :=
{
u∗∗(x) if x ∈ Ω \ Ω′,
vrkxk(x) if x ∈ G(xk, rk), (52)

and introduce the functions

uh(x) :=
{
u∗∗(x) if x ∈ Ω \ ∪hk=1G(xk, rk),
vrkxk(x) if x ∈ G(xk, rk), for some 1 ≤ k ≤ h.

By (47) and (48) the functions uh belong to u∗∗ + W 1,p
0 (Ω) ∩W 1,∞

loc (Ω) for all h, since uh is locally maximum
or minimum of two W 1,p(Ω)∩W 1,∞

loc (Ω) functions. Moreover, we claim that each uh is a minimizer of (35). To
this aim, notice that by (45, 47, 48), we have for all h

divm(x) (uh(x) − u∗∗(x)) ≥ 0 a.e. x ∈ ∪hk=1G(xk, rk). (53)

Moreover, by (46)

Duh(x) ∈ A(x), a.e. x ∈ ∪hk=1G(xk, rk). (54)

and Duh(x) = Du∗∗(x) a.e. in Ω \ ∪hk=1G(xk, rk). By the convexity inequality f∗∗(x, ξ) ≥ q(x) + 〈m(x), ξ〉,
valid for every x ∈ ΩA and every ξ ∈ Rn, we have

inf
{∫

Ω

f∗∗ (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}
=

∫
Ω\∪hk=1G(xk,rk)

f∗∗ (x,Du∗∗(x)) dx

+
∫
∪hk=1G(xk,rk)

f∗∗ (x,Du∗∗(x)) dx

≥
∫

Ω\∪hk=1G(xk,rk)

f∗∗ (x,Du∗∗(x)) dx

+
∫
∪hk=1G(xk,rk)

{q(x) + 〈m(x), Du∗∗(x)〉} dx,

where we have used the fact that ∪hk=1G(xk, rk) ⊂ ΩA (see (40, 41) and (49)).
Since uh ∈ u∗∗ +W 1,p

0 (intG(xk, rk)) for all 1 ≤ k ≤ h, using (53) we obtain

∫
G(xk,rk)

{〈m(x), Du∗∗(x)〉 − 〈m(x), Duh(x)〉} dx = −
∫
G(xk,rk)

divm(x) (u∗∗(x)− uh(x)) dx ≥ 0.
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Therefore we may conclude, from the inequality above and by (54), that

inf
{∫

Ω

f∗∗ (x,Du(x)) dx : u ∈ u0 +W 1,p
0 (Ω)

}
≥

∫
Ω\∪hk=1G(xk,rk)

f∗∗ (x,Du∗∗(x)) dx

+
∫
∪hk=1G(xk,rk)

{q(x) + 〈m(x), Duh(x)〉} dx

=
∫

Ω

f∗∗ (x,Duh(x)) dx.

This proves the minimality of each uh. By (28) the sequence uh is bounded in W 1,p(Ω) and since uh(x) converges
to v(x) a.e. in Ω, it follows that uh converges weakly to v in W 1,p(Ω). In particular, v ∈ u0 +W 1,p

0 (Ω) and, by
lower semicontinuity, v is also a minimizer of (35). Theorem 2.7 now yields v ∈W 1,∞

loc (Ω). By (46) we have

Dv(x) ∈ A(x), a.e. x ∈ Ω′.

On the other hand, since v = u∗∗ in Ω \ Ω′, there exists a negligible set E0 such that, for all x ∈ (Ω \ Ω′) \ E0,
v and u∗∗ are differentiable at x and Dv(x) = Du∗∗(x). Thus, if x /∈ E0 ∪ (M \ Ω′)∪

(
Ω ∩ ∂Ω0

A

)
, which is a set

of measure zero, and if x /∈ Ω \ Ω′, then we have

Dv(x) /∈ A(x).

Finally, let us prove that divm = 0 in Ω′. To this end notice that, since

f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉 whenever x ∈ ΩA and ξ ∈ A(x),

the function ξ → f∗∗(x, ξ) is differentiable in A(x) and Dξf
∗∗(x, ξ) = m(x) for every x ∈ Ω′, ξ ∈ A(x).

Therefore the standard argument used to derive the Euler equation of an integral functional still applies in the
open set Ω′ and the Euler’s equation in weak form gives∫

Ω′
divm(x)ϕ(x) dx = 0 , ∀ ϕ ∈ C1

0 (Ω′) ,

which proves that divm = 0 in Ω′.

The second lemma that we consider in this section uses the notion of Kuratowski convergence, or convergence
in the Hausdorff metric of a sequence of compact sets of Rn. We recall that a sequence Eh of compact sets of
Rn converges, as h → +∞, in the sense of Kuratowski (or in the Hausdorff metric) to a compact set E ⊂ Rn
if, for every ε > 0, there exists h0 such that

Eh ⊂ Iε (E) , E ⊂ Iε (Eh) ∀h > h0,

where Iε (·) denotes the neighborhood of radius ε of the set under consideration. We recall that, if the sequence
Eh is bounded in Rn uniformly with respect to h ∈ N, then Eh → E in the sense of Kuratowski if and only if
the following two properties hold:

(i) for every ξ ∈ E there exists a sequence ξh, with ξh ∈ Eh for every h ∈ N, such that ξh converges to ξ as
h→ +∞;

(ii) if a sequence ξh, with ξh ∈ Eh for every h ∈ N, admits a subsequence ξhk converging to a point ξ, then
ξ ∈ E.
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In the sequel we need some properties of the distance function to a convex set. For the statements and the
proofs, we refer the reader to the Appendix.

Let E(x) 6= ∅ be a compact subset of Rn for every value of a parameter x in an open set ΩA ⊂ Rn. We
say that the set function E(x) is continuous in the sense of Kuratowski if E(xk) converges in the sense of
Kuratowski to E(x) for every x, xk ∈ ΩA such that xk → x.

Lemma 3.4. Let f : ΩA × Rn → R be a continuous function such that the bipolar f∗∗ is also continuous and
satisfies (32) and (34). Let E(x) ⊂ Rn be defined by

E(x) := {ξ ∈ Rn : f∗∗(x, ξ)− [q(x) + 〈m(x), ξ〉] = 0} ·

Then the map x ∈ ΩA 7→ E(x) is continuous in the sense of Kuratowski.

Proof. Let xh be a sequence in ΩA converging to x ∈ ΩA. We claim that, if ξhk ∈ E(xhk) and ξhk → ξ, then
ξ ∈ E(x). In fact, since

f∗∗(xhk , ξhk) = q(xhk) + 〈m(xhk), ξhk〉 ,

the continuity of f∗∗, m, and q yields ξ ∈ E(x).
Let us now show that, given ξ ∈ E(x), there exist ξh ∈ E(xh) such that ξh → ξ. Indeed, if this is not true,

then we can find ε > 0 and a sequence hk such that dist (ξ;E(xhk)) > ε for all k ∈ N. For every k ∈ N choose
ξhk ∈ ∂E(xhk) such that |ξ − ξhk | = dist (ξ;E(xhk)) > ε. Extracting, if necessary, a further subsequence, we
may assume that ξhk → η, and η ∈ E(x) by the first part of the proof. Since ξ /∈E(xhk) and ξhk ∈ ∂E(xhk),
from (34) we get, for all k ∈ N,

f∗∗
(
xhk ,

ξ + ξhk
2

)
≤ 1

2
f∗∗(xhk , ξ) +

1
2
f∗∗(xhk , ξhk)− ω (|ξ − ξhk |) .

Passing to the limit as k → +∞, we get

f∗∗
(
x,
ξ + η

2

)
≤ 1

2
f∗∗(x, ξ) +

1
2
f∗∗(x, η) − ω (ε) .

Since f∗∗(x, ·) is affine on E(x) and ξ, η ∈ E(x), the inequality above implies ω (ε) ≤ 0, which gives a contra-
diction since ω(t) > 0 for all t > 0.

Lemma 3.5. Under the same assumptions of Lemma 3.4 the function F : ΩA × Rn → R, defined by

F (x, ξ) =
{

dist (ξ; ∂E(x)) if ξ ∈ Rn \E(x),
− dist (ξ; ∂E(x)) if ξ ∈ E(x),

is continuous in ΩA × Rn and convex with respect to ξ ∈ Rn.

Proof. The convexity of F (x, ·) follows from Lemma 4.3 and the convexity of E(x). The continuity of F with
respect to x ∈ ΩA is a direct consequence of Lemma 4.2, asserting the continuity of the distance function with
respect to the Kuratowski convergence, and of Lemma 3.4, yielding the continuity of the set function E(x) with
respect to x. The continuity of F with respect to (x, ξ) then follows from the fact that for all x ∈ ΩA, ξ, η ∈ Rn
we have that |F (x, ξ)− F (x, η)| ≤ |ξ − η|.

We are now ready to give the proof of Theorem 3.1.
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Proof of Theorem 3.1. By Lemma 3.2 the minimum of the relaxed variational problem (35) is attained and
there exist a minimizer v and an open set Ω′ ⊂ Ω (possibly empty) such that{

Dv(x) ∈ A(x) a.e. x ∈ Ω′

Dv(x) /∈ A(x) a.e. x ∈ Ω \ Ω′,

with divm = 0 in Ω′.
If Ω′ is an empty set then Dv(x) /∈ A(x) a.e. x ∈ Ω, and so f∗∗(x,Dv(x)) = f(x,Dv(x)) a.e. x ∈ Ω, and v

is also a minimizer for the original problem (27).
Otherwise, recalling (51), we consider for all k the Dirichlet problem for the implicit differential equation{

F (x,Du (x)) = 0, a.e. x ∈ intG(xk, rk) ,
u (x) = v (x) , x ∈ ∂G(xk, rk), (55)

where F : ΩA × Rn → R is the signed distance function defined in Lemma 3.5. Notice that v is Lipschitz
continuous on G(xk, rk), and since A(x) ⊂ E(x) we deduce that

F (x,Dv (x)) ≤ 0 a.e. x ∈ intG(xk, rk). (56)

Therefore, we may apply Theorem 2.3 by Dacorogna–Marcellini [12] (note that (56) is exactly the compatibility
condition (2.6) required in Th. 2.3 in [12]) to obtain the existence of a function vk ∈ W 1,∞ (intG(xk, rk))
satisfying (55). Notice that F (x, ξ) = 0 if and only if ξ ∈ ∂E(x), and thus Dvk(x) ∈ ∂E(x) ⊂ Rn \A(x) almost
everywhere in intG(xk, rk). Therefore

f∗∗(x,Dvk(x)) = f(x,Dvk(x)) a.e. x ∈ intG(xk, rk). (57)

Let us now prove that the functions

wh(x) :=
{
vk (x) if x ∈ G(xk, rk), 1 ≤ k ≤ h ,
v(x) if x ∈ Ω \ ∪hk=1G(xk, rk),

are all minimizers in the class u0 +W 1,p
0 (Ω) of the integral in (35). In fact, by the affinity assumption (32), for

any h we get∫
Ω

f∗∗ (x,Dv(x)) dx−
∫

Ω

f∗∗ (x,Dwh(x)) dx =
h∑
k=1

∫
G(xk,rk)

{f∗∗ (x,Dv(x)) − f∗∗ (x,Dvk(x))} dx (58)

=
h∑
k=1

∫
G(xk,rk)

〈m(x), Dv(x) −Dvk(x)〉dx = 0,

where we have used the fact that v = vk on ∂G(xk, rk), together with the property that divm = 0 in Ω′. The
minimality of the function wh follows immediately.

The proof will be over once we show that wh converges strongly in W 1,p(Ω) to a function w. Indeed, the
limiting function w will then be the required minimizer because by (28, 58), and (57),∫

Ω

f (x,Dw(x)) dx = lim
h→+∞

∫
Ω

f (x,Dwh(x)) dx =
∫

Ω

f∗∗ (x,Dv(x)) dx

+ lim
h→+∞

[∫
Ω

f (x,Dwh(x)) dx−
∫

Ω

f∗∗ (x,Dwh(x)) dx
]

=
∫

Ω

f∗∗ (x,Dv(x)) dx

+ lim
h→+∞

∫
Ω′\(∪k≤hG(xk,rk))

[f (x,Dv(x)) − f∗∗ (x,Dv(x))] dx =
∫

Ω

f∗∗ (x,Dv(x)) dx,
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where we have used the fact that f(x,Dv(x)) = f∗∗(x,Dv(x)) for a.e. x /∈ Ω′. In order to prove that wh
converges in W 1,p(Ω), it suffices to show that Dwh is a Cauchy sequence in Lp. Since vk minimizes the integral∫

G(xk,rk)

f∗∗(x,Du(x)) dx

in the class v +W 1,p
0 (intG(xk, rk)), by (28) there exists a constant c such that for all k∫

G(xk,rk)

|Dvk|p dx ≤ c
∫
G(xk,rk)

(1 + |Dv|p) dx.

Hence, if h > k we get∫
Ω

|Dwh −Dwk|p dx =
h∑

i=k+1

∫
G(xi,ri)

|Dvi −Dv|p dx ≤ c
∫

Ω′\(∪i≤kG(xi,ri))

(1 + |Dv|p) dx,

and the integral on the right hand side converges to zero as k →∞.

3.2. The general case

In the previous section we have proved Theorem 3.1 under the assumption that the bipolar function f∗∗

coincides with the affine function 〈m(·), ξ〉 + q(·) on the set A(x) = {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)} defined
in (31). Here we consider the more general situation where the set A(x) can be split into an union of a (at most
countable) family of pairwise disjoint open sets Aj(x), and that in each Aj(x) the function f∗∗(x, ξ) coincides
with an affine function 〈mj(x), ξ〉+ q(x), where the slopes mj and the functions qj may vary with j.

Precisely, let f : Ω × Rn → R be a continuous function, satisfying the growth condition (28), the uniform
convexity condition (29), and (30). As before, we assume that f∗∗ is continuous and we denote by ΩA the set
of points x ∈ Ω such that A(x) 6= ∅. Moreover, we assume that, for all x ∈ ΩA, there exists a sequence Aj(x)
of pairwise disjoint open sets such that

A(x) = ∪jAj(x), (59)

and that, for every j, the set ΩAj := {x ∈ Ω : Aj(x) 6= ∅} is open. Further, assume that, for all j, there exist a
function qj ∈ C0

(
ΩAj

)
and a vector field mj ∈ C1

(
ΩAj ;Rn

)
such that

f∗∗(x, ξ) = qj(x) + 〈mj(x), ξ〉 , ∀ x ∈ ΩAj , ξ ∈ Aj(x) , (60)

and the boundary of the set where the divergence of mj is equal to zero is negligible; i.e., for all j,

meas
(
Ω ∩ ∂

{
x ∈ ΩAj : divmj(x) = 0

})
= 0.

For all x ∈ ΩAj set

Ej(x) := {ξ ∈ Rn : f∗∗(x, ξ) = qj(x) + 〈mj(x), ξ〉}

and we assume that, for every j ∈ N, there exists an increasing function ωj : [0,+∞)→ [0,+∞), with ωj(t) = 0
if and only if t = 0, such that, if x ∈ ΩA, ξ ∈ ∂Ej(x), η ∈ Rn \Ej(x), then

f∗∗
(
x,
ξ + η

2

)
≤ 1

2
f∗∗(x, ξ) +

1
2
f∗∗(x, η)− ωj (|ξ − η|) . (61)

As in the previous section we have the following existence result.
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Theorem 3.6. Let f, f∗∗ : Ω × Rn → R be continuous functions (f not necessarily convex with respect to
ξ ∈ Rn). Under the above assumptions on f and f∗∗, for any given boundary datum u0 ∈ W 1,p (Ω) the
variational problem (27) attains its minimum. Moreover, any minimizers is of class W 1,∞

loc (Ω).

Remark 3.7. Notice that the assumptions (59) and (60) are equivalent to the following local assumption: for
any (x0, ξ0) ∈ Ω × Rn such that f(x0, ξ0) > f∗∗(x0, ξ0) there exist δ > 0, a function q ∈ C0 (Bδ(x0)), and a
vector field m ∈ C1 (Bδ(x0);Rn) such that, if |x− x0| < δ, |ξ − ξ0| < δ, then

f∗∗(x, ξ) = q(x) + 〈m(x), ξ〉 · (62)

In fact, set D := {(x, ξ) ∈ Ω× Rn : f(x, ξ) > f∗∗(x, ξ)}. The set D is open, hence we may consider its connected
components Dj . For every x ∈ Ω and every j let us set Aj(x) := {ξ ∈ Rn : (x, ξ) ∈ Dj}. For every x the family
{Aj(x)} is a partition of A(x) := {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)}. Moreover, the set ΩAj := {x ∈ Ω : Aj(x) 6= ∅}
is open, since it is equal to the projection of Dj onto Rn. Finally, the existence for every j of a function
qj ∈ C0(ΩAj ) and a vector field mj ∈ C1(ΩAj ;Rn) satisfying (60) is an immediate consequence of the local
assumption (62) and of the connectedness of Dj .

To prove Theorem 3.6 one may follow exactly the same argument used in the proof of Theorem 3.1, with the
obvious changes due to the fact that now we have to deal separately with the different affine representations (60)
of f∗∗. Therefore we shall limit ourselves to point out where the proof has to be modified.

The statement of Lemma 3.2 must be replaced by the following one.

Lemma 3.8. The minimum of the relaxed variational problem (35) is attained. Moreover, there exists a min-
imizer v ∈ W 1,∞

loc (Ω) ∩
(
u0 +W 1,p(Ω)

)
of (35) and there exist pairwise disjoint open sets Ω′j ⊂ Ω (possibly

empty) such that {
Dv(x) ∈ Aj(x) a.e. x ∈ Ω′j
Dv(x) /∈ A(x) a.e. x ∈ Ω \ ∪jΩ′j

and divmj = 0 in Ω′j.

Proof. To proof this lemma we argue as in the proof of Lemma 3.2, splitting each open set ΩAj into the three
open sets

Ω+
Aj

:=
{
x ∈ ΩAj : divmj(x) > 0

}
, Ω−Aj :=

{
x ∈ ΩAj : divmj(x) < 0

}
,

Ω0
Aj :=

{
x ∈ ΩAj : divmj(x) = 0

}
·

Taking a point x0 ∈ ΩAj \ ∂Ω0
Aj

such that u∗∗ is differentiable in x0 and Du∗∗(x0) ∈ Aj(x0) for some j, we
construct the function vrx0

as before, noticing that the parameter γ can be always chosen so small (see (46))
that

Dvrx0
(x) ∈ Aj(x) a.e. x ∈ Bδ(x0), ∀ r ∈ (0, δ] . (63)

Arguing as in the model case, we get again a sequence G(xk, rk) of pairwise disjoint sets such that the open set

Ω′ :=
⋃

intG(xk,rk)∈G′
intG(xk, rk)

covers, up to a set of measure zero, the set of points x0 where u∗∗ is differentiable and Du∗∗(x0) ∈ Aj(x0) for
some j. Therefore, if we define v as in (52) we have again that Dv(x) /∈ A(x) for a.e. x ∈ Ω \ Ω′ and, by (63)
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that for any k there exists jk such that

Dv(x) ∈ Ajk(x) for a.e. x ∈ G(xk, rk).

In particular Ω′ can be written as the disjoint union of the open sets

Ω′j =
⋃{

intG(xs, rs) : Dvrsxs(x) ∈ Aj(x) ∀x ∈ G(xs, rs)
}

and Dv(x) ∈ Aj(x) a.e. x ∈ Ω′j , for all j. The rest of the proof follows with the obvious modifications.

Proof of Theorem 3.6. We claim that, for all j, the set function x ∈ ΩAj 7→ Ej(x) is continuous in the sense of
Kuratowski. It can be easily checked via the same argument used in Lemma 3.4, by virtue of assumption (61)
(this is the only point where this hypothesis is needed). Therefore, in view of Lemma 3.5, for every j the
function Fj defined by

Fj (x, ξ) :=
{

dist (ξ; ∂Ej(x)) if ξ ∈ Rn \Ej(x)
− dist (ξ; ∂Ej(x)) if ξ ∈ Ej(x),

is continuous in ΩAj × Rn and convex with respect to ξ. Then, replacing (46) with (63), the proof goes on
exactly as in the model case.

4. Appendix: Some properties of the distance function

In this section we prove some properties of the signed distance function to a convex set, which have been
used in Section 3 in order to establish Lemma 3.4 and Lemma 3.5. We recall that if E ⊂ Rn then the signed
distance function to E is a function dE : Rn → R defined as follows:

dE(ξ) :=
{

dist (ξ; ∂E) if ξ /∈ E,
− dist (ξ; ∂E) if ξ ∈ E. (64)

Lemma 4.1. Let E ⊂ Rn be a closed convex set. If ξ ∈ Rn is such that

ξ ∈ Iδ (E) , dist (ξ; ∂Iδ (E)) > δ,

for some δ > 0, then ξ ∈ E (more precisely ξ ∈ intE).

Proof. If ξ /∈ E then we consider the projection ξ0 of ξ on E and a supporting hyperplane H to E through ξ0.
This hyperplane H separates ξ from E. Let us denote by η the point

η := ξ + δ
ξ − ξ0
|ξ − ξ0|

;

clearly |η − ξ| = δ. Since by the assumptions Bδ(ξ) ⊂ Iδ (E), in particular η ∈ Iδ (E). On the other hand,
dist (η;E) ≥ dist (η;H) = |ξ − ξ0|+ δ > δ, which gives a contradiction.

Lemma 4.2. Let Eh and E be convex, compact sets of Rn, such that Eh → E in the sense of Kuratowski.
Then

d(ξ) = lim
h→+∞

dh(ξ), ∀ ξ ∈ Rn,

where dh and d are, respectively, the signed distance functions to Eh and E.
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Proof. Note that we use the assumption of convexity of the sets Eh, E only in Steps 2 and 3 below.
Step 1: Let us consider the case where ξ /∈ E. Then there exists ε > 0 such that dist (ξ; ∂E) > ε and, for
large h ∈ N, ξ /∈ Eh. Let ξ0 ∈ E be a point such that d(ξ) = |ξ − ξ0|, and let ξh be a sequence of points in Eh
converging to ξ0. Then

d(ξ) = lim
h→+∞

|ξ − ξh| ≥ lim sup
h→+∞

dh(ξ).

Conversely, let ξhk ∈ Ehk be such that

lim inf
h→+∞

dh(ξ) = lim
k→+∞

|ξ − ξhk | .

By extracting, if necessary, a further subsequence, we may assume that ξhk → ξ0, for some ξ0 ∈ E. Thus

lim inf
h→+∞

dh(ξ) = lim
k→+∞

|ξ − ξhk | = |ξ − ξ0| ≥ d(ξ).

Step 2: Let ξ ∈ ∂E. There exists a sequence hk such that

lim sup
h→+∞

dh(ξ) = lim
k→+∞

dhk(ξ).

Let ξhk ∈ Ehk be such that ξhk → ξ. Since |ξ − ξhk | ≥ dhk(ξ), we obtain

lim sup
h→+∞

dh(ξ) ≤ 0 = d(ξ).

Suppose now that lim infh→+∞ dh(ξ) < 0. As before, there exists a sequence hk such that lim infh→+∞ dh(ξ) =
limk→+∞ dhk(ξ). Fix ε > 0. For k large enough dhk(ξ) < 0 and ξ ∈ Ehk ⊂ Iε (E). Let us denote by ν
a unit vector in Rn, orthogonal to a supporting hyperplane to E at ξ, pointing to the exterior of E. By
the convexity of E, the vector ξ + 2εν /∈ Iε (E), and so ξ + 2εν /∈ Ehk for large k. Therefore, for such k,
dist (ξ; ∂Ehk) = |dhk(ξ)| < 2ε. This implies that lim infh→+∞ dh(ξ) ≥ 0.

Step 3: Let ξ ∈ intE and fix δ ∈ (0,dist (ξ; ∂E)) such that Bδ(ξ) ⊂ E. For every ε < δ there exists hε such that
E ⊂ Iε (Eh) for h > hε. If η ∈ Bδ−ε(ξ) ⊂ E ⊂ Iε (Eh), then dist (η; ∂Iε (Eh)) > ε; therefore, by Lemma 4.1,
we have that Bδ−ε(ξ) ⊂ Eh for h > hε (in particular ξ ∈ intEh) and dist (ξ; ∂Eh) ≥ δ − ε. From this it follows
that lim infh→+∞ dist (ξ; ∂Eh) = lim infh→+∞ [−dh(ξ)] ≥ δ. Letting δ → dist (ξ; ∂E), we get

d(ξ) ≥ lim sup
h→+∞

dh(ξ).

Conversely, let ξ0 ∈ ∂E be such that |ξ − ξ0| = dist (ξ; ∂E). From Step 2 it follows that there exists ξh ∈ ∂Eh
such that |ξh − ξ0| → 0. We also have

dist (ξ; ∂Eh) ≤ |ξh − ξ| ≤ |ξh − ξ0|+ dist (ξ; ∂E) .

Since ξ ∈ Eh,

lim inf
h→+∞

dh(ξ) = lim inf
h→+∞

[− dist (ξ; ∂Eh)] ≥ − dist (ξ; ∂E) = d(ξ)

and the proof is complete.
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In the next lemma we prove the convexity of the signed distance function to a convex set.

Lemma 4.3. If E is a compact, convex subset of Rn then the signed distance dE , defined in (64), is a convex
function.

Proof. The signed distance from an half space is an affine function. Therefore the signed distance dE is convex,
since it is the supremum of the family of signed distance functions from all the half spaces containing E.
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