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DYNAMIC BOUNDARY CONTROL GAMES WITH NETWORKS OF

STRINGS

Martin Gugat1,* and Sonja Steffensen2

Abstract. Consider a star-shaped network of strings. Each string is governed by the wave equation.
At each boundary node of the network there is a player that performs Dirichlet boundary control action
and in this way influences the system state. At the central node, the states are coupled by algebraic
conditions in such a way that the energy is conserved. We consider the corresponding antagonistic
game where each player minimizes a certain quadratic objective function that is given by the sum of a
control cost and a tracking term for the final state. We prove that under suitable assumptions a unique
Nash equilibrium exists and give an explicit representation of the equilibrium strategies.
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1. Introduction

Since 1950, when J. Nash introduced the Nash equilibrium for finite-dimensional, noncooperative games [21],
game theoretic models have been used to mathematically describe and analyse the strategic behaviour of a
(finite) number of decision makers in various fields of applications such as economics, management, political
sciences, engineering sciences, sociology and others (see e.g. [5, 8, 16, 17, 22, 23]). The standard Nash game
models the following situation: assume that there exists a finite number N ∈ N of decision makers, so-called
players, each of which possesses a set of strategies ui and aims to minimize his/her own cost function Ji.
In the standard setting, the players’ sets of strategies are independent, whereas the cost functions in general
depend on all players’ strategies. Furthermore, each player i observes the strategies of the other players and
chooses his/her optimal strategy under the assumption that the others will not change their chosen strategy.
In the noncooperative Nash game it is assumed that the players do not cooperate with each other, i.e. make
agreements about the choice of their strategies.

A multistrategy vector u = (u1, . . . , uN ) is then called a Nash equilibrium if there exists no incentive for any
player to change his/her strategy unilaterally, i.e. a Nash equilibrium is given by a vector u∗ = (u∗1, . . . , u

∗
N )

where each u∗i solves the minimization problem

min
ui∈Ui

Ji(ui, u
∗
−i)
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where u−i denotes the multistrategy vector of the rival players of player i.
In contrast to their static counterparts, dynamic (or differential) games are time-dependent games in the

sense that the chosen strategies may vary at any instant of time, i.e. the sets of strategies are subsets of suitably
chosen function spaces and the cost functions are given by a cost functionals that are often given by integrals.

While Nash equilibria for Nash games governed by ordinary differential equations have already been studied
thoroughly, see for example [2] and the references therein, only recently Nash equilibria for networked hyperbolic
systems of partial differential equations have been considered. For traffic flow modelled by scalar conservation
laws, the existence of Nash equilibria has been studied in [3]. In this paper we study Nash equilibria for a
star–shaped network of strings with N rays and N players, where each player influences the system state in the
network through a Dirichlet control at one end of one of the rays.

We study a pure-strategy Nash equilibrium, where for given strategies of the other players, each player cannot
improve the value of her/his objective function. The objective functions are given by sums of squared L2-norms
with a term for the control cost and terms of tracking-type. We show that for the corresponding game a unique
Nash equilibrium exists. We determine an explicit representation of the equilibrium strategies. Our objective
function is an integral where the integrand is a quadratic function. General quadratic games with ordinary
differential equations have been considered in [9], where also the definition of a Nash equilibrium is provided.
Optimal boundary control problems with the wave equation for one player only and objective functions of the
same type have already been considered, see for example [6, 10, 11, 18].

Fluid networks appear in many engineering applications (see [24]) such as gas pipelines. A simple linear
model for the dynamics in a network of horizontal pipelines without friction for the ith pipe i ∈ {1, . . . , N} is
given by {

ρ
(i)
t + q

(i)
x = 0

q
(i)
t + a2 ρ

(i)
x = 0

(1.1)

(see [1]). Here ρ(i) denotes the gas density, q(i) the flow rate of the gas and a > 0 is the sound speed. This
system implies that ρ(i) satisfies the wave equation

ρ
(i)
tt = a2 ρ(i)xx

along the pipe. The following coupling conditions are used to model the flow through a junction of N pipes
where for all adjacent pipes x = 0 is the end of the junction (see [24]): Continuity of the density, that is

ρ(i)(t, 0) = ρ(j)(t, 0)

for all i, j ∈ {1, . . . , N} and all t in the time interval [0, T ] and conservation of mass, which leads similar to

Kirchhoff’s law to the equation
∑N
k=1 q

(k)(t, 0) = 0. In terms of the densities, this yields the node conditions

ρ(i)(t, 0) = ρ(j)(t, 0), for all i, j ∈ {1, . . . , N};
N∑
k=1

ρ(k)x (t, 0) = 0.

With the system dynamics for the densities defined by the wave equation and these node conditions, we consider
a game with a star-shaped graph where each player is located at a boundary node. The application that we
have in mind is a gas pipeline network where the players represent the gas market participants, i.e. producers
or consumers.

In Nash games the preference of each player is modeled by her/his objective functional. Moreover, each
player aims to minimize her/his own object functional only. Similarly to the objective functional for an optimal
Dirichlet boundary control problem (for a single player) used in [19] we consider for each player i the objective
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functional

Ji(u) =
γi
2

∫ T

0

ui(τ)2 dτ +
1

2

N∑
j=1

[ ∫ 1

0

(
ρ(j)(T, x)− ρ(j)D,i(x)

)2
+
(
q(j)(T, x)− q(j)D,i(x)

)2
dx

]
, (1.2)

that consists of a quadratic costs for the ith player’s control ui and a tracking type term. In this term we assume

the lengths of the pipelines to be normalized to one. Furthermore, ρ
(j)
D, i(x) denotes the density profile that is

desired by player i in pipe j at the terminal time T . Moreover, q
(j)
D,i(x) denotes the profile of the flow rate in

pipe j that is desired by player i at terminal time T . Here q(T, ·) is determined by (1.1) and in such a way that

Ji(u) is minimized. In the application ρ
(j)
D, i(x) and q

(j)
D, i(x) might be the desired initial states for the next time

period. Next, we give a detailed formal definition of the considered system. Instead of ρ in the sequel we will
use the notation w for the system state.

2. Definitions and notation

Let a time T ≥ 4 be given. Let N ≥ 3 be a natural number and consider N strings of length 1. We use the
notation D′((0, 1)) for the distributions on the interval (0, 1) (see [26]) and

H−1(0, 1) = {Y ∈ D′((0, 1)) : there is f ∈ L2(0, 1) such that f ′ = Y }.

Define the set Ω = (0, T )× (0, 1). Define the set of initial states

B =
{

(y
(i)
0 , y

(i)
1 )Ni=1 : y

(i)
0 ∈ L2(0, 1), y

(i)
1 ∈ H−1(0, 1), i ∈ {1, . . . , N}

}
.

For
(
y
(i)
0 , y

(i)
1

)N
i=1
∈ B and ui ∈ L2(0, T ) for i ∈ {1, . . . , N} we consider the system (S) that is defined by the

equations (2.1)–(2.6) below:

w(i)(0, x) = y
(i)
0 (x), x ∈ (0, 1), i ∈ {1, . . . , N}, (2.1)

w
(i)
t (0, x) = y

(i)
1 (x), x ∈ (0, 1), i ∈ {1, . . . , N}, (2.2)

w
(i)
tt (t, x) = w(i)

xx(t, x), (t, x) ∈ Ω, i ∈ {1, . . . , N}, (2.3)

w(i)(t, 0) = w(j)(t, 0), t ∈ (0, T ), i, j ∈ {1, . . . , N}, (2.4)

0 = w(1)
x (t, 0) + w(2)

x (t, 0) + · · ·+ w(N)
x (t, 0), t ∈ (0, T ), (2.5)

w(i)(t, 1) = ui(t), t ∈ (0, T ), i ∈ {1, . . . , N}. (2.6)

System (S) is a star-shaped network of vibrating strings with Dirichlet boundary control action at the boundary
nodes. The exact controllability of networks of vibrating strings is studied in [25]. An overview on the control
of networks of vibrating strings can be found in [4]. The observation and control of vibrations in tree-shaped
networks of strings is studied in [7].

We consider dynamic games with N players that control the system by their strategies ui, i ∈ {1, . . . , N}.
For i ∈ {1, . . . , N} we assume that the strategy of the player i is given by a control function ui ∈ L2(0, T ).
Each player has the goal to minimize his/her own cost functional that is denoted by Ji. In order to define these
objective functionals Ji, let numbers γi > 0 be given that serve as the weighting factors of the control costs in
Ji. For i and j ∈ {1, . . . , N} let states that are desired by player i for the terminal time T for the jth string be

given by the desired position g
(j)
D,i(·) ∈ L2(0, 1) and the antiderivatives of the desired velocity h

(j)
D,i(·) ∈ L2(0, 1).
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We consider the objective functionals

Ji(u) =
γi
2

∫ T

0

ui(τ)2 dτ +
1

2

N∑
j=1

[ ∫ 1

0

(
w(j)(T, x)− g(j)D,i(x)

)2
+
(
V

(j)
i (x)− h(j)D,i(x)

)2
dx

]
(2.7)

where for i ∈ {1, . . . , N} the V
(j)
i (x) ∈ L2(0, 1) are antiderivatives of w

(j)
t (T, x) in the sense that(

V
(j)
i

)
x

(x) = w
(j)
t (T, x) (2.8)

and such that the equation ∫ 1

0

V
(j)
i (x) dx =

∫ 1

0

h
(j)
D,i(x) dx (2.9)

holds (see [11]). By (2.8) and (2.9), the V
(j)
i are uniquely determined. The value of the objective function Ji

depends on the system state on all N strings that is determined by all the controls u = (u1, . . . , uN ) although
player i decides only on the choice of ui.

This paper has the following structure. In Section 3 we present our main result in Theorem 3.1. In Section 4
we study the well-posedness of System (S) that is defined by (2.1)–(2.6). An explicit representation of the
equilibrium strategies is given in at the end of Section 7 in Theorem 7.3. In the representation, we need some
matrices that are discussed at the beginning of the section. For the proof of the main result, a transformation of
the objective function is essential that is given in Section 5. In Section 6 the system that consists of each player’s
necessary optimality conditions is stated. It allows to derive an explicit representation of the Nash equilibrium
using two intermediate Lemmas. This yields the proof of Theorem 7.3. Then Theorem 7.3 implies Theorem 3.1.

3. Main result: the unique Nash equilibrium

In this section we present our main result about the game with N players and system (2.1)–(2.6) where the
aim of each player i ∈ {1, . . . , N} is to minimize the objective function Ji as defined in (2.7). The boundary
control game with the wave equation has a unique Nash-equilibrium. In fact we can determine the optimal
strategies explicitly. This is stated in Theorem 3.1.

Theorem 3.1. Assume that γi = γj for all i, j ∈ {1, . . . , N}. Then there exists a unique Nash equilibrium for
system (S) that is defined by (2.1)–(2.6) with the objective functions Ji given in (2.7). The optimal strategies
are 4-periodic. An explicit representation of the optimal strategies is given in Theorem 7.3.

Remark 3.2. In Theorem 3.1, we have assumed that the weights γi are all equal. Hence there exists a number
γ > 0 such that γi = γ for all i ∈ {1, . . . , N}. In this paper, we focus on this special case since in this case
the analysis is more explicit and less technical than in the general case where the weights are allowed to differ.
However, in the future we want to extend the analysis to this general case. We expect that in the general case it
is sufficient to assume that the γi are sufficiently large or that for all i, j ∈ {1, 2, . . . , N}, the distance |γi − γj |
is sufficiently small.

Assume that

T = 4K +∆

with K ∈ {1, 2, 3, . . .} and ∆ ∈ [0, 4). Let i ∈ {1, . . . , N}, be given. Since the optimal strategies are 4–periodic,
it is sufficient to have explicit representations for the restrictions ui|(0, 4) to determine the optimal strategies.
In fact, in Theorem 7.3 such an explicit representation is given.



DYNAMIC BOUNDARY CONTROL GAMES WITH NETWORKS OF STRINGS 1793

4. Well-posedness

In this section we study the well-posedness of the system (2.1)–(2.6). As in [12], define the orthogonal
symmetric N ×N reverberation matrix

A =
N − 2

N


1 2

2−N
2

2−N · · · 2
2−N

2
2−N 1 2

2−N · · · 2
2−N

...
. . .

...
2

2−N · · · 2
2−N 1 2

2−N
2

2−N
2

2−N · · · 2
2−N 1

. (4.1)

In this section we define the d’Alembert solution in the sense of characteristics for system (S) analogously to
Theorem 1 in [13].

Theorem 4.1 (Well-posedness of (S)). Let the initial state
(
y
(i)
0 , y

(i)
1

)N
i=1
∈ B be given. For x ∈ (0, 1) and

i ∈ {1, . . . , N} define the functions αi, βi by

αi(x) =
1

2
y
(i)
0 (x) +

1

2

∫ x

0

y
(i)
1 (s) ds, x ∈ (0, 1), (4.2)

βi(x) =
1

2
y
(i)
0 (x)− 1

2

∫ x

0

y
(i)
1 (s) ds, x ∈ (0, 1). (4.3)

For t ∈ (1, 2) let

αi(t) = ui(t− 1)− βi (2− t). (4.4)

Together with (4.2) this yields the values of αi(t) for t ∈ (0, 2).
For t ∈ (0, 2) let the equation


β1(−t)
β2(−t)

...
βN (−t)

 = −A


α1(t)
α2(t)

...
αN (t)

 (4.5)

define the values of βi(t) for t ∈ (−2, 0). For t ∈ (2, 4) equation (4.4) yields the values of αi(t). Hence for
t ∈ (0, 4) the values of αi(t) are well-defined. Now (4.5) defines the values of βi(t) for t ∈ (−4, 0).

By repeating the process we define the functions αi(t), βi(t) inductively and obtain functions αi ∈ L2(0, T +1)
and βi ∈ L2(−T, 1). Then (w(i))Ni=1 given by

w(i)(t, x) = αi(x+ t) + βi(x− t) (4.6)

is the unique solution of (S) in the sense described below.
The functions w(i) are in L2(Ω). Given the family of test functions

T = {ϕ ∈ C2(R2) : There exists a set Q = [t1, t2]× [x1, x2] ⊂ Ω
such that the support of ϕ is contained in the interior of Q},
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the function w(i) satisfies the wave equation (2.3) in the following weak sense:

∫
Ω

w(i)(t, x)ϕtt(t, x) d(t, x) =

∫
Ωi

w(i)(t, x)ϕxx(t, x) d(t, x) for all ϕ ∈ T .

The functions w(i) satisfy (2.1) for almost every x ∈ (0, 1), (2.4) and (2.6) for almost every t ∈ [0, T ] and (2.2)
and (2.5) in the sense of distributions.

Proof. Due to (4.2) and (4.3), it is easy to check that (w(i))Ni=1 satisfies the initial conditions (2.1) and (2.2).
Similar as in the proof of Theorem 1 in [13], integration by parts shows that v(i) satisfies the wave equation in
the weak sense given in Theorem 4.1. To be precise, for all ϕ ∈ T and i ∈ {1, . . . , N} we have

∫
Ω

ϕxx(t, x)α(x+ t) d(t, x) =

∫
Ω

ϕtt(t, x)α(x+ t) d(t, x).

The corresponding equation with β(x− t) follows analogously.
Writing the boundary conditions (2.6) in terms of αi and βi yields equation (4.4). By definition of βi(·), for

almost every t > 0 we have (4.5). Hence we have


w(1)(t, 0)
w(2)(t, 0)

...
w(N)(t, 0)

 =


α1(t) + β1(−t)
α2(t) + β2(−t)

...
αN (t) + βN (−t)

 = (I −A)


α1(t)
α2(t)

...
αN (t)



=


2
N

2
N . . . 2

N
...

...
...

2
N

2
N . . . 2

N



α1(t)
α2(t)

...
αN (t)

,

which implies the equation w(i)(t, 0) = w(j)(t, 0) for t ∈ (0, T ) almost everywhere and i, j ∈ {1, . . . , N}. Hence
(2.4) holds. Moreover, we have


w

(1)
x (t, 0)

w
(2)
x (t, 0)

...

w
(N)
x (t, 0)

 =


α′1(t) + β′1(−t)
α′2(t) + β′2(−t)

...
α′N (t) + β′N (−t)

 = (I +A)


α′1(t)
α′2(t)

...
α′N (t)



=
N − 2

N


2N−2
N−2

2
2−N . . . 2

2−N
2

2−N
. . .

...
...

. . . 2
2−N

2
2−N . . . 2

2−N
2N−2
N−2



α′1(t)
α′2(t)

...
α′N (t)

.
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This implies the equation w
(1)
x (t, 0) + w

(2)
x (t, 0) + · · · + w

(N)
x (t, 0) = 0 in the sense of distributions on (0, T ),

hence (2.5) holds. The uniqueness of the solution follows from the conservation of the energy

E(t) =
1

2

N∑
j=1

∫ 1

0

(
w

(j)
t (t, x)

)2
+
(
w(j)
x (t, x)

)2
dx.

Thus we have proved Theorem 4.1.

In Lemma 4.4, we present a recursion for the αi that is independent of the βi. In order to write the
representation in a compact form, we introduce some auxiliary functions in the next lemma.

Lemma 4.2. Recall that T = 4K +∆ with K ∈ {1, 2, 3, 4, . . .} and ∆ ∈ [0, 4). For x ∈ (0, 1) such that ∆+ x 6∈
N, there exist unique numbers κ+(x) ∈ {K, K + 1}, m+(x) ∈ {0, 1}, σ+(x) ∈ {−1, 1} and z+(x) ∈ (0, 1) such
that

4K +∆+ x = 4κ+(x) + 2m+(x) + σ+(x) z+(x). (4.7)

Moreover, for all x ∈ (0, 1), such that ∆ − x 6∈ Z, there exist unique numbers κ−(x) ∈ {K, K + 1}, m−(x) ∈
{0, 1}, σ−(x) ∈ {−1, 1} and z−(x) ∈ (0, 1) such that

4K +∆− x = 4κ−(x) + 2m−(x) + σ−(x) z−(x). (4.8)

For x ∈ (0, 1) such that ∆+ x 6∈ N (∆− x 6∈ Z respectively) we define the auxiliary functions

C+(x) = 1 + σ+(x) z+(x), C−(x) = 1 + σ−(x) z−(x).

Then for these x ∈ (0, 1) there is a unique j ∈ {0, 1, 2} such that

C+(x) = 1 +∆+ x− 2 j ∈ [0, 2)

and there is a unique k ∈ {0, 1, 2} such that

C−(x) = 1 +∆− x− 2 k ∈ [0, 2).

We have ⋃
x∈(0, 1):∆+x6∈N

C+(x) ∪
⋃

x∈(0, 1):∆−x 6∈Z

C−(x) = (0, 1) ∪ (1, 2). (4.9)

Hence for all u ∈ L2(0, T ) that we extend by the definition u(t) = 0 for t > T we have

∫ T

0

u2(s) ds =

∞∑
j=0

∫ 1

0

u(C+(x) + 4j)2 + u(C+(x) + 4j + 2)2 + u(C−(x) + 4j)2 + u(C−(x) + 4j + 2)2 dx. (4.10)

If C+(x) + 4κ+(x) ≤ T , we have m+(x) = 1. If x ∈ [0, 1) and C−(x) + 4κ−(x) ≤ T , we have m−(x) = 1.

Proof. Consider (4.7). There are five cases:

1. ∆+ x ∈ (0, 1). Then we have κ+(x) = K, m+(x) = 0, σ+(x) = 1, z+(x) = ∆+ x, C+(x) = 1 +∆+ x.
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2. ∆+ x ∈ (1, 2). Then we have κ+(x) = K, m+(x) = 1, σ+(x) = −1, z+(x) = 2−∆− x, C+(x) = 1 +∆+
x− 2.

3. ∆+x ∈ (2, 3). Then we have κ+(x) = K,m+(x) = 1, σ+(x) = 1, z+(x) = ∆+x−2, C+(x) = 1+∆+x−2.
4. ∆ + x ∈ (3, 4). Then we have κ+(x) = K + 1, m+(x) = 0, σ+(x) = −1, z+(x) = 4 − ∆ − x, C+(x) =

1 +∆+ x− 4.
5. ∆ + x ∈ (4, 5). Then we have κ+(x) = K + 1, m+(x) = 0, σ+(x) = 1, z+(x) = ∆ + x − 4, C+(x) =

1 +∆+ x− 4.

Consider (4.8). There are five cases:

1. ∆− x ∈ (−1, 0). Then we have κ−(x) = K, m−(x) = 0, σ−(x) = −1, z−(x) = x−∆, C−(x) = 1 +∆− x.
2. ∆− x ∈ (0, 1). Then we have κ−(x) = K, m−(x) = 0, σ−(x) = 1, z−(x) = ∆− x, C−(x) = 1 +∆− x.
3. ∆− x ∈ (1, 2). Then we have κ+(x) = K, m−(x) = 1, σ−(x) = −1, z−(x) = 2−∆+ x, C−(x) = 1 +∆−
x− 2.

4. ∆− x ∈ (2, 3). Then we have κ−(x) = K, m−(x) = 1, σ−(x) = 1, z−(x) = ∆− x− 2, C−(x) = 1 +∆−
x− 2.

5. ∆ − x ∈ (3, 4). Then we have κ−(x) = K + 1, m−(x) = 0, σ−(x) = −1, z−(x) = 4 − ∆ + x, C−(x) =
1 +∆− x− 4.

Let z ∈ (0, 1) ∪ (1, 2) be given. Then there exists j ∈ {1, 2, 3} such that z −∆− 1 + 2 j ∈ (−1, 0) ∪ (0, 1).
Then there exists a point x ∈ (0, 1) such that z = 1 +∆− 2 j ± x, and (4.9) follows.

If C+(x) + 4κ+(x) ≤ T , the definition of C+(x) implies T ≥ 4κ+(x) + σ+(x) z+(x) + 2m+(x) + 1− 2m+(x).
By (4.7), this implies 4K +∆+ x+ 1− 2m+(x) ≤ T = 4K +∆. Thus we have 2m+(x) ≥ x+ 1 which implies
m+(x) = 1.

If C−(x) + 4κ−(x) ≤ T , the definition of C−(x) implies T ≥ 4κ−(x) + σ−(x) z−(x) + 2m−(x) + 1− 2m−(x).
By (4.8), this implies 4K +∆− x+ 1− 2m−(x) ≤ T = 4K +∆. Thus we have 2m+(x) ≥ 1− x which implies
m−(x) = 1.

Remark 4.3. If ∆ = 0, we have C±(x) = 1± x, κ±(x) = K and m±(x) = 0.
Now we consider the case∆ ∈ (0, 1): Then for x ∈ (0, 1−∆), we have C+(x) = 1+x+∆ and for x ∈ (1−∆, 1)

we have C+(x) = x+∆− 1. In both cases, we have κ+(x) = K.
If ∆ = 1, we have C+(x) = x and C−(x) = 2− x.
Now we consider the case ∆ ∈ (1, 2): Then for all x ∈ (0, 1), we have C+(x) = x+∆− 1 and κ+(x) = K.
If ∆ = 2, we have C±(x) = 1± x.

Lemma 4.4. For t > T , let u(t) = 0. For t ∈ (0, 1), define α(−t) = −Aβ(t) with β as defined in (4.3). Due
to (4.4) and (4.5) we have for t ∈ (0, T )

α(t+ 1) = u(t)− β(1− t) = u(t) +Aα(t− 1) and α(t+ 2) = u(t+ 1) +Aα(t). (4.11)

This implies that for x ∈ (0, 1) almost everywhere and m ∈ {0, 1} we have

α(4K + 2m± x) = Amα(±x) +mu(4K + 1± x) +

K−1∑
j=0

A1−m u(1± x+ 4 j) +Amu(1± x+ 4 j + 2) (4.12)

which in turn implies

Aα(4K − x) = −β(x) +

K−1∑
j=0

u(1− x+ 4 j) +Au(1− x+ 4 j + 2). (4.13)
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Define B±(x) = C±(x)− 1. Then we have the equation α(T ± x)

= Am±(x)α(B±(x)) +m±(x)u(C±(x) + 4κ±(x)) +

κ±(x)−1∑
j=0

A1−m±(x) u(C±(x) + 4 j) +Am±(x)u(C±(x) + 4 j+ 2).

(4.14)
Hence Am±(x) α(T ± x)

= α(B±(x)) +m±(x)Am±(x) u(C±(x) + 4κ±(x)) +

κ±(x)−1∑
j=0

Au(C±(x) + 4 j) + u(C±(x) + 4 j + 2). (4.15)

Proof. Equation (4.11) implies

α(t+ 3) = u(t+ 2) +Aα(t+ 1) = u(t+ 2) +Au(t) + α(t− 1).

By induction for k ∈ {1, 2, 3, . . .} this yields

α(t+ 4k − 1) = α(t− 1) +

k−1∑
j=0

Au(t+ 4 j) + u(t+ 4 j + 2). (4.16)

For t = 1 + x this yields

α(x+ 4 k) = α(x) +

k−1∑
j=0

Au(1 + x+ 4 j) + u(1 + x+ 4 j + 2)

and for t = 1− x we obtain from (4.16)

α(−x+ 4 k) = α(−x) +

k−1∑
j=0

Au(1− x+ 4 j) + u(1− x+ 4 j + 2).

For k = K this yields (4.12) for m = 0. The case m = 1 follows with (4.11). Lemma 4.2 and (4.12) imply
(4.14).

The proof of the main result is based upon the transformation of the objective functions Ji that is presented
in the next section. The fact that the objective function is quadratic allows us to give an explicit expansion

around the equilibrium strategies v
±, (j),∗
i (x).

5. Transformation of the objective functions

In this section we express the objective functionals Ji (for i ∈ {1, 2, . . . , N}) of the players that have been
defined in (2.7) in terms of the traveling waves. For the transformation we will need the following definitions.

For x ∈ (0, 1) almost everywhere, define the functions

b
(j)
+, i(x) = − g

(j)
D,i(x)− h(j)D,i(x), (5.1)

b
(j)
−, i(x) = g

(j)
D,i(x)− h(j)D,i(x) (5.2)
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and let

b+, i(x) =
(
b
(j)
+, i(x)

)N
j=1

, b−, i(x) =
(
b
(j)
−, i(x)

)N
j=1

. (5.3)

Let Ai denote the ith column of the matrix A = (aij)
N
i,j=1 defined in (4.1) and ei denote the ith column of the

identity matrix I. For i ∈ {1, . . . , N} define the numbers

Ii =

N∑
j=1

∫ 1

0

h
(j)
D,i(x) − h(j)D,j(x) dx aij . (5.4)

Let i ∈ {1, . . . , N}, k ∈ {0, . . . , 2K} and x ∈ (0, 1) be given.
If C+(x) + 2k ∈ (0, T ), (C−(x) + 2k ∈ (0, T ) respectively) define

v
+,(k)
i (x) = ui(C+(x) + 2k), v

−,(k)
i (x) = ui(C−(x) + 2k). (5.5)

Since the optimal strategies are 4–periodic, it is sufficient to have explicit representations for

v
+,(0)
i (x) = ui(C+(x)), v

−,(0)
i (x) = ui(C−(x)), (5.6)

v
+,(1)
i (x) = ui(C+(x) + 2), v

−,(1)
i (x) = ui(C−(x) + 2) (5.7)

for x ∈ (0, 1) almost everywhere and i ∈ {1, . . . , N} to determine the optimal strategies.
Now, we express the tracking type parts of the objective functional in terms of the travelling waves. Due to

(2.8) and (4.6) we have for j ∈ {1, 2, . . . , N}

V
(j)
i (x) = αj(x+ T )− βj(x− T ) + r

(j)
i (5.8)

where the real constant r
(j)
i is chosen such that (2.9) holds, that is

r
(j)
i =

∫ 1

0

h
(j)
D,i(x) − αj(x+ T ) + βj(x− T ) dx. (5.9)

The choice from (5.9) gives the minimal value of Ji with respect to the constants r
(j)
i for j ∈ {1, . . . , N}. Due

to (5.9), for all j ∈ {1, . . . , N} we have

r
(j)
j =

∫ 1

0

h
(j)
D,j(x) − αj(x+ T ) + βj(x− T ) dx. (5.10)

The difference of (5.9) and (5.10) yields

r
(j)
i − r

(j)
j =

∫ 1

0

h
(j)
D,i(x) − h(j)D,j(x) dx.

Hence the values of r
(j)
i for j 6= i are given in terms of the r

(j)
j by r

(j)
i = r

(j)
j +

∫ 1

0
h
(j)
D,i(x) − h(j)D,j(x) dx.
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Due to the definition (2.7) of Ji, the traveling waves representation (4.6) of the state and (5.8) for i ∈
{1, 2, . . . , N} we have

Ji(u) =
γi
2

∫ T

0

ui(τ)2 dτ +
1

2

N∑
j=1

∫ 1

0

(
αj(x+ T ) + βj(x− T )− g(j)D,i(x)

)2
dx

+
1

2

N∑
j=1

∫ 1

0

(
αj(x+ T )− βj(x− T ) + r

(j)
i − h

(j)
D,i(x)

)2
dx. (5.11)

This yields the equation

Ji(u) =
γi
2

T∫
0

ui(τ)2 dτ +

N∑
j=1

1∫
0

αj(x+ T )2 + βj(x− T )2 +
1

2

(
r
(j)
i

)2
− αj(x+ T )

(
g
(j)
D,i(x) + h

(j)
D,i(x)− r(j)i

)
−βj(x− T )

(
g
(j)
D,i(x)− h(j)D,i(x) + r

(j)
i

)
− r(j)i h

(j)
D,i(x) +

1

2
g
(j)
D,i(x)2 +

1

2
h
(j)
D,i(x)2 dx.

In order to write Ji in a more compact form, for x ∈ (0, 1) almost everywhere we define

di(x) =
1

2

N∑
j=1

(
g
(j)
D,i(x)

)2
+
(
h
(j)
D,i(x)

)2
(5.12)

and the vectors

ri =
(
r
(j)
i

)N
j=1

, hi(x) =
(
h
(j)
D,i(x)

)N
j=1

.

With the notation b±, i(x) defined in (5.3) and ‖(z1, . . . , zN )‖2 =
√∑N

j=1(zj)2, due to (5.1) and (5.2) we have

Ji(u) =
γi
2
‖ui‖2L2(0,T ) +

1

2
‖ri‖22 +

∫ 1

0

‖α(x+ T )‖22 + ‖β(x− T )‖22 dx

+

∫ 1

0

(b+,i(x) + ri)
T α(x+ T )− (b−,i(x) + ri)

T β(x− T )− rTi hi(x) + di(x) dx.

Due to (4.5), this yields

Ji(u) =
γi
2
‖ui‖2L2(0,T ) +

1

2
‖ri‖22 +

∫ 1

0

‖α(x+ T )‖22 + ‖Aα(T − x)‖22 dx

+

∫ 1

0

(b+,i(x) + ri)
T α(x+ T ) + (b−,i(x) + ri)

T Aα(T − x)− rTi hi(x) + di(x) dx. (5.13)

In order to simplify the transformation of the objective function, we extend the functions ui ∈ L2(0, T ) by

zero for t > T , that is we define ui(t) = 0 for t > T . This allows us to extend the definition (5.5) of the v
±,(k)
i (x)

to all k ∈ {0, 1, 2, 3, . . .}. Note that still only a finite number of v
±,(k)
i (x) are not zero. Since the sum over j is
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finite, equation (4.10) yields

‖ui‖2L2(0,T ) =

∫ 1

0

∞∑
j=0

1∑
m=0

ui(C+(x) + 4 j + 2m)2 + ui(C−(x) + 4 j + 2m)2 dx. (5.14)

We introduce the linear operator

L± u(x) = m±(x)Am±(x) u(C±(x) + 4κ±(x)) +

κ±(x)−1∑
j=0

Au(C±(x) + 4 j) + u(C±(x) + 4 j + 2).

Due to (4.15), we have Am±(x) α(T ± x) = α(B±(x)) + L± u(x). For x ∈ (0, 1) almost everywhere, define the
integrand

Gi(x, u) =
γi
2

 ∞∑
j=0

1∑
m=0

[
ui(C+(x) + 4 j + 2m)2 + ui(C−(x) + 4 j + 2m)2

]+
1

2
‖ri‖22 − rTi hi(x) + di(x)

+ ‖α(B+(x)) + L+ u(x)‖22 + ‖α(B−(x)) + L− u(x)‖22 + (b+,i(x) + ri)
T Am+(x) (α(B+(x)) + L+ u(x))

+(b−,i(x) + ri)
T A1+m−(x) (α(B−(x)) + L−(x)). (5.15)

Due to the representation (5.13) of the objective function Ji and the representation (5.14) of ‖ui‖2L2(0,T ) we
have

Ji(u) =

∫ 1

0

Gi(x, u) dx. (5.16)

The next step in our analysis is to express the Ji in terms of the controls v
±,(k)
j (x) defined in (5.5). With a

slight abuse of notation, we write Ji(v
±) for the corresponding transformed objective function. For x ∈ (0, 1)

almost everywhere, the corresponding integrand is a quadratic function of the vectors v
(j)
+ (x) =

(
v
+,(j)
k (x)

)N
k=1

and v
(j)
− (x) =

(
v
−,(j)
k (x)

)N
k=1

, namely

Hi(x, v±(x)) =
γi
2

∞∑
j=0

[(
v
+,(2j)
i (x)

)2
+
(
v
+,(2j+1)
i (x)

)2
+
(
v
−,(2j)
i (x)

)2
+
(
v
−,(2j+1)
i (x)

)2]
+

1

2
‖ri‖22 − rTi hi(x) + di(x)

+
∥∥∥α(B+(x)) +m+(x)Am+(x) v

(2κ+(x))
+ (x) + sum

κ+(x)−1

j=0 Av
(2j)
+ (x) + v

(2j+1)
+ (x)

∥∥∥2
2

+

∥∥∥∥∥∥α(B−(x)) +m−(x)Am−(x) v
(2κ−(x))
− (x) +

κ−(x)−1∑
j=0

Av
(2j)
− (x) + v

(2j+1)
− (x)

∥∥∥∥∥∥
2

2

+(b+,i(x) + ri)
T Am+(x)

α(B+(x)) +m+(x)Am+(x) v
(2κ+(x))
+ (x) +

κ+(x)−1∑
j=0

Av
(2j)
+ (x) + v

(2j+1)
+ (x)


+(b−,i(x) + ri)

T A1+m−(x)

α(B−(x)) +m−(x)Am−(x) v
(2κ−(x))
− (x) +

κ−(x)−1∑
j=0

Av
(2j)
− (x) + v

(2j+1)
− (x)

.
(5.17)
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Then for the objective function Ji as a function of the controls v
±,(j)
k (x) we have Ji(v

±) =
1∫
0

Hi(x, v±(x)) dx.

6. Minimization of the objective functions

For all i ∈ {1, . . . , N}, in the integrands Hi(x, v±(x)) of Ji(v
±) as given in (5.17), the vectors v

(j)
+ (x) and

v
(j)
− (x) for different values of x ∈ (0, 1) are not coupled. For x ∈ (0, 1) almost everywhere the quadratic function
Hi(x, ·) is bounded below by zero. This can be seen from (5.14) and (5.11). Thus for x ∈ (0, 1) pointwise almost
everywhere, the matrices in the corresponding quadratic forms are positive semi-definite. Due to the first part
of Hi(x, v±(x)) where γi appears as a factor, the quadratic forms are positive definite. Hence we can determine

the choices of the v
±,(j)
i (x) for which Hi(x, v±(x)) is minimal. In this way we obtain unique optimal controls

v
+,(j)
i (x), v

−,(j)
i (x) as a function of a given vector ri ∈ RN for x ∈ (0, 1) almost everywhere. Then we determine

the corresponding choice of the ri for which the integral objective function Ji is minimal which is equivalent
to the system of linear equations (5.9). For a Nash equilibrium, this linear equation must be satisfied for all
i ∈ {1, . . . , n} simultaneously. If the γi are sufficiently large or all equal, the corresponding matrix is regular.
Thus we obtain the equilibrium strategies, where for i ∈ {1, . . . , N} player i solves the optimal control problem

min(
v
±,(j)
i (x)

)2K−1

j=0

min
ri∈RN

∫ 1

0

Hi(x, v±(x)) dx = min
ri∈RN

min(
v
±,(j)
i (x)

)2K−1

j=0

∫ 1

0

Hi(x, v±(x)) dx.

We start by considering the inner level problem

min(
v
±,(j)
i (x)

)2K−1

j=0

∫ 1

0

Hi(x, v±(x)) dx

for fixed vectors rj , j ∈ {1, . . . , N}. The approach to this problem is the pointwise minimization of the integrand
for x ∈ (0, 1) almost everywhere that is summarized in the following lemma. For further details on necessary
(and sufficient) conditions in the context of optimal control see e.g. the monographs [15, 20, 27].

Lemma 6.1. Let natural numbers i ∈ {1, . . . , N} and N1 be given. For x ∈ (0, 1) almost everywhere and z ∈ RN1

let a quadratic functional

Hi(x, z) = zTMi(x) z +mi(x)T z + si(x)

be given where the N1×N1 matrices Mi(x) are symmetric and positive definite and mi(x) ∈ RN1 . For x ∈ (0, 1)
almost everywhere, define

z∗i (x) = arg minHi(x, ·).

If Hi(·, z∗(·)) ∈ L1(0, 1)), we have

min
z(x)∈(L2(0,1))N1

∫ 1

0

Hi(x, z(x)) dx =

∫ 1

0

Hi(x, z∗i (x)) dx.

Since the integrand of Ji is quadratic and strictly convex, the necessary and sufficient optimality conditions

for the minimization of Hi(x, v±(x)) with respect to v
+,(j)
i (x) and v

−,(j)
i (x) are given by the system of linear
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equations

∂

∂v
+,(m)
i (x)

Hi(x, v±(x)) = 0,
∂

∂v
−,(m)
i (x)

Hi(x, v±(x)) = 0, m ∈ {0, . . . , 2K − 1}. (6.1)

In the sequel we use the notation

∂
v
±,(m)
i

Hi(x, v±(x)) =
∂

∂v
±,(m)
i (x)

Hi(x, v±(x)).

To continue our analysis, we study the structure of the equilibrium strategies. It turns out that the equilibrium
strategies are periodic with period 4 on the time interval (0, T ).

Lemma 6.2. Let i ∈ {1, . . . , N} be given. Every strategy ui of player i that satisfy the optimality system (6.1)
for given strategies uj (j 6= i) is 4–periodic on the time interval (0, T ). Let Ai denote the ith column of the
matrix A defined in (4.1).

If for all i ∈ {1, . . . , N} the strategies ui satisfy the optimality system (6.1) simultaneously, then for x ∈ (0, 1)
almost everywhere and l ∈ {0, 1, . . . , κ+(x)− 1} such that C+(x) + 4 l+ 2 ∈ (0, T ) for every solution of (6.1) we

have with D = diag (γi)
N
i=1,

v
(2l+1)
+ (x) = −D−1

(
(b+,i(x) + ri)

T
Am+(x)ei

)N
i=1
− 2D−1 α(B+(x))

−2κ+(x)D−1 v
(1)
+ (x)− 2 (κ+(x) +m+(x))D−1Av

(0)
+ (x) (6.2)

and for x ∈ (0, 1) almost everywhere and l ∈ {0, 1, . . . , κ+(x)} such that C+(x) + 4 l ∈ (0, T )

v
(2l)
+ (x) = −D−1

(
(b+,i(x) + ri)

T
Am+(x)Ai

)N
i=1
− 2D−1Aα(B+(x))

−2 (κ+(x) +m+(x))D−1 v
(0)
+ (x)− 2κ+(x)D−1Av

(1)
+ (x). (6.3)

For x ∈ (0, 1) almost everywhere and l ∈ {0, 1, . . . , κ−(x)} such that C−(x) + 4 l ∈ (0, T ) we have

= −D−1
(

(b−,i(x) + ri)
T A

m−(x)
i

)N
i=1
− 2D−1 α(B−(x))

−2 (κ−(x) +m−(x))D−1 v
(0)
− (x)− 2κ−(x)D−1Av

(1)
− (x), (6.4)

and for x ∈ (0, 1) almost everywhere and l ∈ {0, 1, . . . , κ−(x)− 1} such that C−(x) + 4 l + 2 ∈ (0, T ) we have

v
(2l+1)
− (x) = −D−1

(
(b−,i(x) + ri)

T
Am−(x)Ai

)N
i=1
− 2D−1 α(B−(x))

−2κ−(x)D−1 v
(1)
− (x)− 2 (κ−(x) +m−(x))D−1Av

(0)
− (x). (6.5)

Proof. Let A
m+(x)
i denote the ith column of Am±(x). We use the Kronnecker notation δkl =

{
1 if l = k,
0 if l 6= k.

First we consider the case that m = 2 l is even. Then for x ∈ (0, 1) almost everywhere and

v
+,(m)
i (x) = ui(C+(x) + 2m) = ui(C+(x) + 4 l),
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equation (5.17) for Hi(x, v±(x)) implies that for the corresponding partial derivative with respect to v
+, (2l)
i we

obtain the affine linear map

∂
v
+, (2l)
i

Hi(x, v±(x)) = γi v
+,(2l)
i (x) + (b+,i(x) + ri)

TAm+(x)
(
δ
κ+(x)
l m+(x)A

m+(x)
i + (1− δκ+(x)

l )Ai

)
+2

α(B+(x)) +m+(x)Am+(x) v
(2κ+(x))
+ (x) +

κ+(x)−1∑
j=0

Av
(2j)
+ (x) + v

(2j+1)
+ (x)

T

×
(
δ
κ+(x)
l m+(x)A

m+(x)
i + (1− δκ+(x)

l )Ai

)
.

As before, let ei denote the ith column of the identity matrix I. If if m = 2 l + 1 is odd, for

v
+,(m)
i (x) = ui(C+(x) + 2m) = ui(C+(x) + 4 l + 2)

the corresponding partial derivative of Hi(x, v±(x)) is given by the affine linear map

∂
v
+, (2l+1)
i

Hi(x, v±(x)) = γi v
+,(2l+1)
i (x) + (b+,i(x) + ri)

T Am+(x) ei

+2

α(B+(x)) +m+(x)Am+(x) v
(2κ+(x))
+ (x) +

κ+(x)−1∑
j=0

Av
(2j)
+ (x) + v

(2j+1)
+ (x)

T

ei.

Thus the optimality conditions (6.1) imply that for all l ∈ {0, . . . , κ+(x)} we have

v
+,(2l)
i (x) = − 1

γi
(b+,i(x) + ri)

T
Am+(x)

(
δ
κ+(x)
l m+(x)A

m+(x)
i + (1− δκ+(x)

l )Ai

)

− 2

γi

α(B+(x)) +m+(x)Am+(x) v
(2κ+(x))
+ (x) +

κ+(x)−1∑
j=0

Av
(2j)
+ (x) + v

(2j+1)
+ (x)

T

×
(
δ
κ+(x)
l m+(x)A

m+(x)
i + (1− δκ+(x)

l )Ai

)
. (6.6)

For l ∈ {0, . . . , κ+(x)−1}, we observe that the right-hand side in (6.6) does not depend on l. Note that Lemma

4.2 states that if C+(x) + 4κ+(x) ≤ T , we have m+(x) = 1. In this case , we also have v
+,(2κ+(x))
i (x) = v

+,(0)
i (x).

If m+(x) = 0, we have v
+,(2κ+(x))
i (x) = 0. Thus we can write for all l ∈ {0, . . . , κ+(x)},

v
+,(2 l)
i (x) =

[
(1− δκ+(x)

l ) + δ
κ+(x)
l m+(x)

]
v
+,(0)
i (x).

Thus for all x ∈ (0, 1) such that C+(x) + 4 l ∈ (0, T ), the value of u(C+(x) + 4 l) does not depend on l. Similarly,
we obtain

v
+,(2l+1)
i (x) = − 1

γi
(b+,i(x) + ri)

T
Am+(x) ei

− 2

γi

α(B+(x)) +m+(x)Am+(x) v
(2κ+(x))
+ (x) +

κ+(x)−1∑
j=0

Av
(2j)
+ (x) + v

(2j+1)
+ (x)

T

ei. (6.7)
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Again, we observe that the value of v
+,(2l+1)
i (x) is the same for all l ∈ {0, . . . , κ+(x)−1}. Thus ui(C+(x)+4 l+2)

does not depend on l. Since v
+,(2l)
i (x) = v

+,(0)
i (x) and v

+,(2l+1)
i (x) = v

+,(1)
i (x), (6.7) implies

v
(2l+1)
+ (x) =

(
− 1

γi
(b+,i(x) + ri)

T
Am+(x) ei

)N
i=1

−
(

2

γi

(
m+(x)Am+(x) v

(2κ+(x))
+ (x)

)T
ei

)N
i=1

−

 2

γi

αi(B+(x)) +

κ+(x)−1∑
j=0

v
+,(2j+1)
i (x)

N

i=1

−

 2

γi

κ+(x)−1∑
j=0

(
A
(
v
+,(2j)
i (x)

)N
i=1

)T
ei

N

i=1

=

(
− 1

γi
(b+,i(x) + ri)

T
Am+(x) ei

)N
i=1

−
(

2

γi

(
m+(x)Am+(x) v

(2κ+(x))
+ (x)

)T
ei

)N
i=1

−
(

2

γi

(
αi(B+(x)) + κ+(x) v

+,(1)
i (x)

))N
i=1

−

(
2

γi
κ+(x)

(
A
(
v
+,(0)
i (x)

)N
i=1

)T
ei

)N
i=1

.

Now the definition of D implies (6.2). Moreover, (6.6) yields (6.3). Equations (6.4) and (6.5) follow
analogously.

Lemma 6.2 states that the optimal strategies are 4-periodic. Due to this important observation, it suffices to
find the optimal control functions on the time-interval (0, 4). In the proof of Lemma 6.2 we have shown that
for all i ∈ {1, . . . , N}, l ∈ {0, . . . , κ±(x)} and x ∈ (0, 1) such that C±(x) + 4l ∈ (0, T ) almost everywhere we

have v
±,(2l)
i (x) = v

±,(0)
i (x). Moreover, for all i ∈ {1, . . . , N}, l ∈ {0, . . . , κ±(x) − 1} and x ∈ (0, 1) such that

C±(x) + 4l + 2 ∈ (0, T ) almost everywhere we have v
±,(2l+1)
i (x) = v

±,(1)
i (x) .

For the 4–periodic controls, we can express the objective functions Ji as functions of v
±,(0)
i (x) and v

±,(1)
i (x).

Hence for all i ∈ {1, . . . , N}, for equilibrium strategies v± that satisfy (6.1), we can restate Hi from (5.17) as
the quadratic function

Hi(x, v±) =
γi
2

(
(κ+(x) +m+(x))

(
v
+,(0)
i (x)

)2
+ κ+(x)

(
v
+,(1)
i (x)

)2)
+
γi
2

(
(κ−(x) +m−(x))

(
v
−,(0)
i (x)

)2
+ κ−(x)

(
v
−,(1)
i (x)

)2)
+

1

2
‖ri‖22 − rTi hi(x) + di(x)

+
∥∥∥α(B+(x)) + (κ+(x) +m+(x))Av

(0)
+ (x) + κ+(x) v

(1)
+ (x)

∥∥∥2
2

+
∥∥∥α(B−(x)) + (κ−(x) +m−(x))Av

(0)
− (x) + κ−(x) v

(1)
− (x)

∥∥∥2
2

+(b+,i(x) + ri)
T Am+(x)

(
α(B+(x)) + (κ+(x) +m+(x))Av

(0)
+ (x) + κ+(x) v

(1)
+ (x)

)
+(b−,i(x) + ri)

T A1+m−(x)
(
α(B−(x) + (κ−(x) +m−(x))Av

(0)
− (x) + κ−(x) v

(1)
− (x)

)
.

For all i ∈ {1, . . . , N}, (6.3) implies

Dv
(0)
+ (x) +

(
(b+,i(x) + ri)

T Am+(x)Ai

)N
i=1

= −2
(
Aα(B+(x)) + (κ+(x) +m+(x)) v

(0)
+ (x) + κ+(x)Av

(1)
+ (x)

)
.

(6.8)
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This yields

(D + 2(κ+(x) +m+(x))) v
(0)
+ (x) +

(
(b+,i(x) + ri)

T Am+(x)Ai

)N
i=1

= −2Aα(B+(x))− 2κ+(x)Av
(1)
+ (x). (6.9)

Moreover, (6.2) implies

(D + 2κ+(x)) v
(1)
+ (x) +

(
(b+,i(x) + ri)

T Am+(x) ei

)N
i=1

= −2α(B+(x))− 2 (κ+(x) +m+(x))Av
(0)
+ (x). (6.10)

Analogously we compute the optimal strategy vectors v
(0)
− (x) and v

(1)
− (x). Equation (6.4) implies

(D + 2(κ−(x) +m−(x))) v
(0)
− (x) +

(
(b−,i(x) + ri)

T Am−(x)ei

)N
i=1

= −2α(B−(x))− 2κ−(x)Av
(1)
− (x). (6.11)

Moreover, from (6.5) we obtain

(D + 2κ−(x)) v
(1)
− (x) +

(
(b−,i(x) + ri)

T Am−(x)Ai

)N
i=1

= −2α(B−(x))− 2 (κ−(x) +m−(x))Av
(0)
− (x). (6.12)

Now we show how we can determine the equilibrium strategies explicitly.

7. An explicit representation of the equilibrium strategies

In Section 4 we have represented the state in terms of traveling waves. The representation of the state from
Theorem 4.1 allows us to determine the Nash equilibrium. Before we proceed, let us consider the following
lemma where the inverse of a certain matrix is studied. As before assume that T = 4K + ∆ where K is a
natural number.
Lemma 7.1. Define the matrix

M±(x) =

(
D + 2(κ±(x) +m±(x)) I 2κ±(x)A

2 (κ±(x) +m±(x))A D + 2κ±(x) I

)
(7.1)

and the diagonal N ×N -matrix

D = diag (γi)
N
i=1. (7.2)

If D = γ I or γi is sufficiently large for all i ∈ {1, . . . , N}, the matrix M±(x) is regular. In the case D = γI the
inverse is given by

M±(x)−1 =

(
θ±(x) I η±(x)A
ξ±(x)A ν±(x) I

)
(7.3)

where

θ±(x) =
γ + 2κ±(x)

γ (γ + 4κ±(x) + 2m±(x))
(7.4)

η±(x) = − 2κ±(x)

γ (γ + 4κ±(x) + 2m±(x))
(7.5)
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ξ±(x) = − 2κ±(x) + 2m±(x)

γ (γ + 4κ±(x) + 2m±(x))
(7.6)

ν±(x) =
γ + 2κ±(x) + 2m±(x)

γ (γ + 4κ±(x) + 2m±(x))
. (7.7)

Proof. To simplify the notation let us drop the dependence on x and the index ±. Next, define the number

z = (γ + 2κ)(γ + 2(κ+m))− 4κ(κ+m) = γ(γ + 4κ+ 2m).

The statement of Lemma 7.1 can be checked by computing the matrix productM±(x)M±(x)−1 withM±(x)−1

from (7.3) which yields the identity matrix I. In fact, we have

zMM−1 =

(
(γ + 2(κ+m)) I 2κA

2 (κ+m)A (γ + 2κ) I

)(
(γ + 2κ) I −2κA
−2(κ+m)A (γ + 2(κ+m)) I

)
=

(
γ(γ + 4κ+ 2m) I 0

0 γ(γ + 4κ+ 2m) I

)
= z I.

Now we define another matrix that we need for the explicit representation of the equilibrium states.

Lemma 7.2. Let

Υ±(x) =
1

γ + 4κ±(x) + 2m±(x)

and

ϑ =

∫ 1

0

1− (m+(x) + 2κ+(x))Υ+(x)− (m−(x) + 2κ−(x))Υ−(x) dx (7.8)

and define the N ×N matrix

M0 = ϑ I (7.9)

Then the matrix M0 is regular.

Proof. For all x ∈ (0, 1), we have

1− (m+(x) + 2κ+(x))Υ+(x)− (m−(x) + 2κ−(x))Υ−(x)

=

(
1

2Υ+(x)
−m+(x)− 2κ+(x)

)
Υ+(x) +

(
1

2Υ−(x)
−m−(x)− 2κ−(x)

)
Υ−(x)

=
γ

2
(Υ+(x) + Υ−(x)) ∈ (0, 1).

The integration on (0, 1) then yields ϑ ∈ (0, 1). Hence M0 is regular.

For the representation of the equilibrium strategies, we need the vector Ξ ∈ RN as defined in (7.21). Using
Ξ, an explicit representation of the equilibrium strategies is given in the next theorem.
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Theorem 7.3. Let T = 4K +∆ for K ∈ {1, 2, 3, . . .} and ∆ ∈ [0, 4). Assume that there exists a real number

γ > 0 such that γi = γ for all i ∈ {1, . . . , N}. For r
(j)
i as in (5.9), define the vector

R =
(
r
(i)
i

)N
i=1

.

Then system (2.1)–(2.6) with the objective functions (2.7) has a unique Nash equilibrium that we denote by the
superscript ∗ where

R∗ =
(
r
(i),∗
i

)N
i=1

=
1

ϑ
Ξ (7.10)

with ϑ as defined in (7.8) and Ξ as defined in (7.21). The values of r
(j),∗
i for j 6= i are given by

r
(j),∗
i = r

(j),∗
j +

∫ 1

0

h
(j)
D, i(x) − h(j)D,j(x) dx. (7.11)

The optimal strategies are 4-periodic and given by(
v
(0)
+ (x)

v
(1)
+ (x)

)
=M+(x)−1

(
−2α(B+(x))−

(
(b+,i(x) + ri)

T Am+(x)Ai
)N
i=1

−2α(B+(x))−
(
(b+,i(x) + ri)

T Am+(x) ei
)N
i=1

)
, (7.12)

(
v
(0)
− (x)

v
(1)
− (x)

)
=M−(x)−1

(
−2α(B−(x))−

(
(b−,i(x) + ri)

T Am−(x) ei
)N
i=1

−2α(B−(x))−
(
(b−,i(x) + ri)

T Am−(x)Ai
)N
i=1

)
. (7.13)

Proof. Lemma 6.2 states that the optimal strategies are 4-periodic. Using this fact, we have constructed controls
such that for all i ∈ {i, . . . , N}, the optimality conditions (6.1) hold. In the statement of Theorem 7.3, we assume
that the assumptions of Lemma 7.2 hold.

With the matrix M+(x) as defined in (7.1) we can summarize (6.9) and (6.10) in the form

M+(x)

(
v
(0)
+ (x)

v
(1)
+ (x)

)
=

(
−2α(B+(x))−

(
(b+,i(x) + ri)

T Am+(x)Ai
)N
i=1

−2α(B+(x))−
(
(b+,i(x) + ri)

T Am+(x) ei
)N
i=1

)

The matrix M+(x) is regular, since D = γI. Hence, we obtain (7.12).
With the matrix M−(x) as defined in (7.1) we can summarize (6.11) and (6.12) in the form

M−(x)

(
v
(0)
− (x)

v
(1)
− (x)

)
=

(
−2α(B−(x))−

(
(b−,i(x) + ri)

T Am−(x) ei
)N
i=1

−2α(B−(x))−
(
(b−,i(x) + ri)

T Am−(x)Ai
)N
i=1

)
.

Since M−(x) is regular, this yields (7.13).

Thus, we have also obtained the optimal strategy vectors v
(0)
+ (x), v

(1)
+ (x), v

(0)
− (x) and v

(1)
− (x) as affine linear

functions of the ri. So due to (7.11) (that also holds without the exponent ∗) the optimal strategies can be

expressed as an affine linear function of the vector (r
(i)
i )Ni=1. It remains to determine the numbers r

(i)
i in such a

way that the values of the objective functions Ji that we obtain for the strategy vectors v+(x) and v−(x) that
we have determined above are minimal. This is the case if (5.10) holds.
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In order to use these relations to derive a linear equation (equation (7.18)) in terms of
(
r
(i)
i

)N
i=1

, we make

the following observations.

For i ∈ {1, . . . , N} we have rTi ei = r
(i)
i = (IR)i and due to (7.11)

rTi Ai =

N∑
j=1

r
(j)
i aij

=

N∑
j=1

[
r
(j)
j aij +

∫ 1

0

h
(j)
D,i(x) − h(j)D,j(x) dx aij

]

=

 N∑
j=1

r
(j)
j aij

+

 N∑
j=1

∫ 1

0

h
(j)
D,i(x) − h(j)D,j(x) dx aij


= (AR)i +

 N∑
j=1

∫ 1

0

h
(j)
D,i(x) − h(j)D,j(x) dx aij

.
Hence

rTi A
m±(x)Ai =

(
A(1−m±(x))R

)
i
+ (1−m±(x))

 N∑
j=1

∫ 1

0

h
(j)
D,i(x) − h(j)D,j(x) dx aij

.
Moreover, we have

rTi A
m±(x)ei =

(
Am±(x)R

)
i
+m±(x)

 N∑
j=1

∫ 1

0

h
(j)
D,i(x) − h(j)D,j(x) dx aij

.
With the notation Ii from (5.4) we have for m ∈ {0, 1}

rTi A
mAi =

(
A(1−m)R

)
i
+ (1−m)Ii, rTi A

mei = (AmR)i +mIi. (7.14)

For D = γI, with Υ±(x) = θ±(x) + η±(x) = ξ±(x) + ν±(x) as in Lemma 7.2, (7.12) and (7.13) yield
furthermore(

v
(0)
+ (x)

v
(1)
+ (x)

)
= −2

(
θ+(x) I + η+(x)A
ξ+(x)A+ ν+(x)I

)
α(B+(x))−M+(x)−1

((
(b+,i(x))T Am+(x)Ai

)N
i=1(

(b+,i(x))T Am+(x) ei
)N
i=1

)

−
(
Υ+(x)A1+m+(x)

Υ+(x)Am+(x)

)
R−

(
θ+(x) (1−m+(x)) I + η+(x)m+(x)A)
ξ+(x) (1−m+(x))A+ ν+(x)m+(x) I)

) (
Ii
)N
i=1

, (7.15)

(
v
(0)
− (x)

v
(1)
− (x)

)
= −2

(
θ−(x) I + η−(x)A
ξ−(x)A+ ν−(x)I

)
α(B−(x))−M−(x)−1

((
(b−,i(x))T Am−(x) ei

)N
i=1(

(b−,i(x))T Am−(x)Ai
)N
i=1

)

−
(
Υ−(x)Am−(x)

Υ−(x)A1+m−(x)

)
R−

(
θ−(x)m−(x) I + η−(x) (1−m−(x))A)
ξ−(x)m−(x)A+ ν−(x) (1−m−(x)) I)

) (
Ii
)N
i=1

. (7.16)
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Now, for j = i ∈ {1, . . . , N}, (5.10) yields a linear equation for the numbers r
(i)
i , that we use to obtain a

system of linear equations for the numbers r
(i)
i . From (4.14) we get

α(T + x) = Am+(x)α(B+(x)) +m+(x)u(C+(x) + 4κ+(x))

+

κ+(x)−1∑
j=0

A1−m+(x) u(C+(x) + 4 j) +Am+(x)u(C+(x) + 4 j + 2)

= Am+(x)α(B+(x)) +m+(x)u(C+(x))

+κ+(x)A1−m+(x) u(C+(x)) + κ+(x)Am+(x)u(C+(x) + 2)

= Am+(x)α(B+(x)) +m+(x) v
(0)
+ (x)

+κ+(x)A1−m+(x) v
(0)
+ (x) + κ+(x)Am+(x)v

(1)
+ (x).

Similarly, from (4.15) we get

α(T − x) = Am−(x)α(B−(x)) +m−(x) v
(0)
− (x)

+κ−(x)A1−m−(x) v
(0)
− (x) + κ−(x)Am−(x)v

(1)
− (x).

and thus we get

βi(x− T ) = −ATi α(T − x)

= −ATi Am−(x)α(B−(x))−m−(x)ATi v
(0)
− (x)

−κ−(x)eTi A
m−(x) v

(0)
− (x)− κ−(x)ATi A

m−(x)v
(1)
− (x).

Hence (5.10) for j = i yields

r
(i)
i =

∫ 1

0

h
(i)
D,i(x) − eTi Am+(x)α(B+(x))−ATi Am−(x)α(B−(x)) dx

−
∫ 1

0

m+(x)eTi v
(0)
+ (x) +m−(x)ATi v

(0)
− dx

−
∫ 1

0

κ+(x)eTi A
1−m+(x) v

(0)
+ (x) + κ+(x)eTi A

m+(x)v
(1)
+ (x) dx

−
∫ 1

0

κ−(x)eTi A
m−(x) v

(0)
− (x) + κ−(x)ATi A

m−(x)v
(1)
− (x) dx. (7.17)

Now we insert the expressions for (v
+,(0)
i (x))Ni=1, (v

+,(1)
i (x))Ni=1, (v

−,(0)
i (x))Ni=1 and (v

−,(1)
i (x))Ni=1 from (7.15)

and (7.16) to obtain a linear system for R.

R =

(∫ 1

0

m+(x)Υ+(x)A(1−m+(x)) +m−(x)Υ−(x)A(1−m−(x)) dx

+

∫ 1

0

2κ+(x)Υ+(x)I + 2κ−(x)Υ−(x)I dx

)
R+Ξ, (7.18)
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where the vector Ξ contains the remaining terms that do not depend on R. In order to obtain the explicit
representation of Ξ we introduce the auxiliary vectors

(
ṽ
(0)
+ (x)

ṽ
(1)
+ (x)

)
=M+(x)−1

(
−2α(B+(x))−

(
b+,i(x)T Am+(x)Ai + (1−m+(x)) Ii

)N
i=1

−2α(B+(x))−
(
b+,i(x)T Am+(x) ei +m+(x) Ii

)N
i=1

)
, (7.19)

(
ṽ
(0)
− (x)

ṽ
(1)
− (x)

)
=M−(x)−1

(
−2α(B−(x))−

(
b−,i(x)T Am−(x) ei +m−(x) Ii

)N
i=1

−2α(B−(x))−
(
b−,i(x)T Am−(x)Ai + (1−m−(x)) Ii

)N
i=1

)
. (7.20)

These vectors are derived using equations (7.12), (7.13) and (7.14) by setting R = 0. Inserting (7.19) and (7.20)
in (7.17) yields the following equations for the N components of Ξ:

Ξ =

∫ 1

0

(
h
(i)
D,i(x)

)N
i=1
−
(
Am+(x)α(B+(x)) + A1−m−(x)α(B−(x))

)
dx

−
∫ 1

0

(
m+(x) ṽ

(0)
+ (x) +m−(x)A ṽ

(0)
− (x)

)
dx

−
∫ 1

0

κ+(x)
(
A1−m+(x) ṽ

(0)
+ (x) +Am+(x) ṽ

(1)
+ (x)

)
dx

−
∫ 1

0

κ−(x)
(
Am−(x) ṽ

(0)
− (x) + A1−m−(x) ṽ

(1)
− (x)

)
dx. (7.21)

We then have

M0R = Ξ (7.22)

with the matrix M0 defined in (7.9). By Lemma 7.2 the matrix M0 is regular, i.e. the system of linear equations
(7.22) has a unique solution. In fact the solution is given by R = ϑ−1Ξ. This implies that the boundary control
game with the wave equation has a unique Nash-equilibrium, that consists of 4-periodic strategies.

Hence R as defined in (7.10) is the unique solution of equation (7.22). This implies that for the corresponding

weights r
(j)
i , that equation (5.9) holds. Thus we have constructed a unique Nash equilibrium.

Now Theorem 7.3 implies Theorem 3.1.

Remark 7.4. In Theorem 7.3 we have given an explicit representation of the linear operator that maps the
initial state and the desired states to the corresponding Nash equilibrium. The representation implies that
boundedness of this operator as a map from the corresponding function spaces to the control space (L2(0, T ))N

and thus the stability of the Nash equilibria with respect to perturbations of the initial and the desired states.

Now, in order to illustrate our outcomings, we briefly discuss two small examples.

Example 7.5. If all the desired velocities are zero, that is h
(j)
D,i = 0, (5.1) and (5.2) imply that we have

b
(j)
+,i(x) = −g(j)D,i, b

(j)
−,i(x) = g

(j)
D,i.



DYNAMIC BOUNDARY CONTROL GAMES WITH NETWORKS OF STRINGS 1811

Thus b
(j)
+,i(x) + b

(j)
−,i(x) = 0. Moreover, (5.4) implies Ii = 0. If we start at the zero position (that is y

(i)
0 = 0) with

zero velocity, that is with the initial velocities y
(i)
1 = 0, (4.2) implies αi(x) = 0. Note that for D = γ I we have(

A 0
0 A

)
M±(x) =M±(x)

(
A 0
0 A

)
.

Assume that κ+(x) = κ−(x) and m+(x) = m−(x). (This is the case if ∆ = 0. Then κ+(x) = κ−(x) = K and
m+(x) = m−(x) = 0.) Then we have M+(x) =M−(x). This implies

(
ṽ
(0)
+ (x) +A ṽ

(0)
− (x)

ṽ
(1)
+ (x) +A ṽ

(1)
− (x)

)
= M+(x)−1


(
−b+,i(x)T Am+(x)Ai

)N
i=1

−
(
b+,i(x)T Am+(x) ei

)N
i=1

+

(
A 0
0 A

)
M−(x)−1

−
(
b−,i(x)T Am−(x) ei

)N
i=1

−
(
b−,i(x)T Am−(x)Ai

)N
i=1


= M+(x)−1



(
−b+,i(x)T Am+(x)Ai

)N
i=1

−
(
b+,i(x)T Am+(x) ei

)N
i=1

+

(
A 0
0 A

)−
(
b−,i(x)T Am−(x) ei

)N
i=1

−
(
b−,i(x)T Am−(x)Ai

)N
i=1




= −M+(x)−1


(
b+,i(x)T Am+(x)Ai

)N
i=1

+
(
b−,i(x)T Am−(x)Ai

)N
i=1(

b+,i(x)T Am+(x) ei
)N
i=1

+
(
b−,i(x)T Am−(x) ei

)N
i=1


=

(
0
0

)
.

Now equation (7.21) implies that we have Ξ = 0 and (7.10) yields R = 0. Thus by (7.11) it follows that r
(j)
i = 0

for all i, j = 1, . . . , N .
Assume that ∆ = 0. Then we have B±(x) = ±x. Hence if we start with zero velocity, that is with the

initial velocities y
(i)
1 = 0, also for nonzero initial positions y

(i)
0 , we have α(B−(x)) = α(−x) = −Aβ(x) =

−Aα(x) = −Aα(B+(x)). Hence in this case we have α(B+(x)) + Aα(B−(x)) = 0. Similar as above, this yields(
ṽ
(0)
+ (x) +A ṽ

(0)
− (x)

ṽ
(1)
+ (x) +A ṽ

(1)
− (x)

)
= 0 and thus Ξ = 0 also holds if y

(i)
0 6= 0.

Example 7.6. Assume that T = 4K (K ∈ {1, 2, 3, . . . , }) and D = γ I for some real number γ > 0. Moreover,

assume y
(j)
0 (x) = 0, y

(j)
1 (x) = 0, h

(j)
D,i(x) = 0 and N = 3. Then using the notation δdet = γ(γ + 4K) we have

A =
1

3

 1 −2 −2
−2 1 −2
−2 −2 1

, M± =

(
(γ + 2K)I 2KA

2KA (γ + 2K)I

)
, M±−1 =

1

δdet

(
(γ + 2K)I −2KA
−2KA (γ + 2K)I

)
.

Let g
(j)
D,1(x) = g

(j)
D,2(x) = 0 and g

(j)
D,3(x) = 1. Then Example 7.5 implies that in this case r

(j)
i = 0 for all i, j =

1, . . . , 3. We have α(x) = β(x) = 0. For each player the equilibrium strategy attains at most four values and is
constant on intervals of the length 1. Applying equation (7.12) we obtain

(
v
+, (0),∗
i (x)

)3
i=1

=
1

3 δdet

 4K
4K

−3γ − 8K

. (7.23)

Moreover, comparing the associated equations for v+, (1),∗(x), and (7.13) for v−, (0),∗(x) and v−, (1),∗(x) with the
one for v+, (0),∗(x) we directly get

v+, (1),∗(x) = −v+, (0),∗(x), v−, (0),∗(x) = v+, (0),∗(x) and v−, (1),∗(x) = −v+, (0),∗(x). (7.24)
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Next, using the transformed objective given in (5.17) and assuming the opponents optimal strategies are given,

we obtain the following stationarity system for vi = (v
+, (0)
i , v

+, (1)
i , v

−, (0)
i , v

−, (1)
i ))


γ + 2K 2KAii 0 0

2KAii γ + 2K 0 0

0 0 γ + 2K 2KAii

0 0 2KAii γ + 2K

 vi =


4K
3

∑
j 6=i v

+, (1)
j +ATi gi

4K
3

∑
j 6=i v

+, (0)
j + eTi gi

4K
3

∑
j 6=i v

−, (1)
j − eTi gi

4K
3

∑
j 6=i v

−, (0)
j −ATi gi


whose solutions are exactly those ones given by (7.23) and (7.24), which (by the convexity properties of the
objective function) proves that these represent in fact a Nash-equilibrium.

8. Conclusion

We have constructed a Nash equilibrium for a Dirichlet boundary control game with N players that act on
the boundary nodes of a star of N vibrating strings. Each player has an objective function that is the sum of a
quadratic control cost term and a quadratic tracking term for the final state at the time T . We have shown that
if all players have the same control cost weight a unique Nash equilibrium exists. The equilibrium controls are
4-periodic. The result that the equilibrium controls are 4-periodic, also applies for the more general case where
the weights γi are allowed to differ, provided that a Nash equilibrium exists. In fact this follows directly from
the proof of Lemma 6.2. In the analysis for the general case the matricesM± from Lemma 7.1 appear. For the
proof of the existence of a Nash equilibrium it is necessary that these matrices are regular. Then similarly as in
the proof that we have presented in this paper, a linear system M0R = Ξ can be derived, but the corresponding
matrix M0 has a more complicated structure. If M0 is regular, a unique Nash equlibrium exists.

Our results provide a basis for more involved future studies where in a multi-stage process a transportation
system operator fixes prices and trades feasible intervals with the customers. In the applications of gas networks
these would be fixed in contracts about the nominated gas consumption/delivery of the customers. These
contracts have to be made in such a way that the operator can guarantee that the obligations can be satisfied
within the technical operation range that is usually defined by box constraints for the admissible states. In
the applications, additional challenges are caused by the complicated network graphs and the fact that the gas
pressure also has to be increased at points in the network by compressors to drive the gas flow, see [14].
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