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ON THE CHARACTERIZATION OF SOME CLASSES
OF PROXIMALLY SMOOTH SETS

Graziano Crasta1 and Ilaria Fragalà2

Abstract. We provide a complete characterization of closed sets with empty interior and positive
reach in R2. As a consequence, we characterize open bounded domains in R2 whose high ridge and cut
locus agree, and hence C1 planar domains whose normal distance to the cut locus is constant along the
boundary. The latter result extends to convex domains in Rn.
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1. Introduction

A nonempty closed subset S of Rn is called proximally smooth, or with positive reach, if for every point x
belonging to an open tubular neighborhood outside S there is a unique minimizer of the distance function from x
to S.

These sets were introduced in 1959 in the seminal paper [30] by Federer, who also proved many of their most
relevant properties, in particular the validity of a tube formula, which expresses the Lebesgue measure of a
sufficiently small r-parallel neighborhood of a set with positive reach in Rn as a polynomial in r of degree n.

The concept of proximal smoothness can in fact be located at the crossroad of different areas, such as
Geometric Measure Theory, Convex Geometry, Nonsmooth Analysis, Differential Geometry. Since Federer, it
has been investigated and developed in various ways. Related research directions include generalized Steiner-
type formulae, tubular neighborhoods, and curvature measures [17, 36, 37, 43, 48]; connections with Lipschitz
functions, semi-concave functions, and lower-C2 functions [16,34]; proximal smoothness in abstract frameworks,
such as Banach spaces or Riemannian manifolds [5,7]; applications to nonlinear control systems and differential
inclusions [10, 18, 20].

More comprehensive accounts of results in this area and related bibliography can be found in the surveys
papers [19, 46].

In this paper we are concerned with the following question:

(*) Which is the geometry of a closed set S ⊂ R2 with positive reach and empty interior?
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As far as we are aware, no previous contributions are available in this respect in the literature. In particular,
it is worth advertising that one cannot apply the several existing results which allow to retrieve regularity
information on a set starting from the regularity of its distance function (possibly squared or signed). Indeed,
some of these results are classical and some others are more recent (see e.g. [4, 6, 29, 35]), but in any case they
rely on some regularity assumption on the distance up to the involved set. In spite, by definition, the distance
function from a set S of positive reach is required to be differentiable just on the set of points where it is
sufficiently small and strictly positive, thus not necessarily on S itself (see Def. 2.1).

Our main results provide a complete answer to question (*): each connected component of S is either a
singleton or a manifold of class C1,1 (see Thm. 2.2); in case the distance from S is at least C2 in an open
neighborhood of S, then such manifolds have no boundary and are of class C2 (see Thm. 2.3); moreover, in case
the distance from S goes beyond the C2 threshold, S gains the same regularity (see Rem. 2.4).

As a by-product, we are able to answer the following related question:

(**) Which is the geometry of a set Ω ⊂ R2 whose high ridge and cut locus agree?
Recall that, given an open bounded domain Ω ⊂ R2, the high ridge is the set of points where the distance

function from ∂Ω attains its maximum over Ω, while the cut locus is the closure in Ω of the so-called skeleton,
namely of the sets of points in Ω which admit multiple closest points on ∂Ω; recall also that the central set is
formed by the centers of the maximal disks contained into Ω. We refer to Section 2 for the precise formulation
of these definitions. All these sets, which have each one its own role in the geometry of the distance function
from the boundary, have been widely investigated in the literature, often with a non-uniform terminology. A
miscellaneous collection of related references, without any attempt of completeness, is [1, 3, 9, 24, 32, 33, 40, 41].
It must be added that recently the singular set of the distance function has raised an increasing interest also in
applied domains, such as computer science and visual reconstruction, and this is especially true for the central
set (often named medial axis in this context), see e.g. [8, 14, 28, 47] and Remark 2.8 below.

To pinpoint the link between questions (*) and (**), one has to observe that, if the cut locus and high ridge of
a domain Ω coincide, they can be identified with a proximally smooth set with empty interior. As a consequence,
the answer to question (**) is: Ω is the outer parallel neighborhood of a C1,1 manifold; in particular, if Ω is
assumed to be of class C2 and simply connected, it must be necessarily a disk (see Thm. 2.6).

We remark that our answer to question (**) solves also the problem of characterizing domains of class C1

whose normal distance to the cut locus is constant along the boundary (see Cor. 2.10). Intuitively, the normal
distance of a point y ∈ ∂Ω measures how far one can enter into Ω starting at y and moving along the direction
of the inner normal before hitting the cut locus; the precise definition is recalled in Section 2. This notion
has been considered from different points of views: in [12, 38, 39] the regularity of the normal distance under
different requirements on the boundary has been investigated, along with some applications to Hamilton−Jacobi
equations and to PDEs related with granular matter theory; in [13,25–27] the normal distance has been exploited
in order to study the minimizing properties of the so-called web functions. Let us also mention that, in a previous
paper, we proved a roundedness criterion based on the constancy along the boundary of a C2 domain of a certain
function, depending on the normal distance and on the principal curvatures (see [21], Thm. 1). If compared
to such result, the roundedness criterion stated in Corollary 2.10 of the present paper has the advantages of
applying to any C1 domain, and of involving uniquely the normal distance; moreover, it is obtained through
completely different techniques, of more geometrical nature.

We conclude by observing that clearly questions (*) and (**) can be raised also in space dimensions higher
than 2 (or even in a Riemannian manifold), but they seem much more difficult to solve. Nonetheless, concerning
question (**), we are able to deal with domains in the n-dimensional Euclidean space, under the severe restriction
that they are convex (see Thm. 2.12). Removing this restriction remains by now an open problem.

We defer to the companion papers [22, 23] some applications of the geometric results contained in this
manuscript to PDEs, specifically to boundary value problems involving the infinity-Laplacian operator.
Here we limit ourselves to mention that the focus of these companion papers is the following overdetermined
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problem ⎧⎪⎪⎨⎪⎪⎩
−Δ∞u = 1 in Ω

u = 0 on ∂Ω

|∇u| = a on ∂Ω,

(1.1)

where the infinity Laplacian is the strongly non-linear and highly degenerated differential operator defined for
smooth functions u by

Δ∞u := ∇2u∇u · ∇u.
The main question is how to characterize domains such that the boundary value problem (1.1) admits a solution.
Starting from the fundamental paper by Serrin [45], overdetermined problems of the type (1.1) have been studied
for many operators (including for instance the p-Laplace operator, see [31] and references therein), and in all the
cases covered by the literature, existence of a solution implies that Ω must be a ball. Quite surprisingly, this is
not the case for the infinity Laplace operator, for which a new phenomenon occurs: domains where (1.1) admits
a solution are precisely those whose cut locus and high ridge agree. We consider this as a meaningful motivation
for the study of the geometric question (**); in this respect, let us also emphasize that the n-dimensional result
stated in Theorem 2.12, in spite of its restrictive convexity assumption, has relevant applications in [22, 23].

The outline of the paper is the following: hereafter we fix some notation; in Section 2 we state the main results;
in Section 3 we provide some background material; Section 4 is devoted to some intermediate key results, which
prepare the proofs given in Section 5.

Notation. The standard scalar product of two vectors x, y ∈ Rn is denoted by 〈x, y〉, and |x| stands for the
Euclidean norm of x ∈ Rn. Given an open bounded domain Ω ⊂ Rn, we denote by |Ω| and |∂Ω| respectively
its n-dimensional Lebesgue measure and the (n − 1)-dimensional Hausdorff measure of its boundary. We set
Ωc := Rn \Ω.

We call Br(p) the open disk of center p and radius r, and Br(p) its closure. We indicate by [p, q] the line
segment with extremes p and q.

As customary, we say that a function is of class Ck,α when all its derivatives up to order k satisfy a Hölder
condition of exponent α, and that it is of class Cω when it is analytic.

By saying that an open set Ω ⊂ Rn (or, equivalently, its closure Ω or its boundary ∂Ω) is of class Ck, k ∈ N,
we mean that, for every point x0 ∈ ∂Ω there exists a neighborhood U of x0 and a bijective map ψ : B1(0) → U
such that ψ ∈ Ck(B1(0)), ψ−1 ∈ Ck(U), ψ(B1(0) ∩ {xn > 0}) = Ω ∩ U , ψ(B1(0) ∩ {xn = 0}) = ∂Ω ∩ U . An
analogous definition holds with Ck,α, C∞, Cω instead of Ck.

Given a closed set S ⊂ Rn, we denote by dS the distance function from S, defined by

dS(x) := min
y∈S

|x− y|, x ∈ Ω,

where | · | is the Euclidean norm in Rn, and by πS the projection map onto S, namely, for every x ∈ Rn, we call
πS(x) the set of points y ∈ S such that

|x− y| = dS(x).

Whenever x has a unique projection onto S, with a minor abuse of notation we shall identify the set πS(x) with
its unique element.

Moreover, for r > 0 we denote by Sr the r-tubular neighborhood of S:

Sr :=
{
x ∈ Rn : dS(x) < r

}
.

2. Main results

Definition 2.1. We say that a set S ⊂ Rn is proximally Ck (of radius rS) if it is nonempty, closed, and there
exists rS > 0 such that the distance function dS is of class Ck in the set {x ∈ Rn : 0 < dS(x) < rS}.
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Notice that proximally C1 sets according to the above definition correspond to sets which in the literature
are usually named proximally smooth, or with positive reach, as discussed in the Introduction.

Our main results are the following characterizations of planar sets S which satisfy one of the following
conditions:

(H1) S ⊂ R2 is connected, with empty interior, proximally C1;

(H2) S ⊂ R2 is connected, with empty interior, proximally C2.

Theorem 2.2. Assume that S ⊂ R2 satisfies (H1).
Then S is either a singleton, or a 1-dimensional manifold of class C1,1.

Theorem 2.3. Assume that S ⊂ R2 satisfies (H2).
Then S is either a singleton, or a 1-dimensional manifold without boundary of class C2.

Remark 2.4.

(i) Clearly, if the assumption S connected is removed from (H1) and (H2), Theorems 2.2 and 2.3 can be applied
to characterize each connected component of S.

(ii) If the assumption S bounded is added to (H2), Theorem 2.3 allows to conclude that S is a regular simple
closed curve of class C2.

(iii) If the regularity requirement in condition (H2) is strengthened by asking that S satisfies Definition 2.1
with C2 replaced either by Ck,α, for some k ≥ 2 and α ∈ [0, 1], or by C∞, or by Cω , then the thesis of
Theorem 2.3 can be strengthened accordingly, namely the manifold S turns out to be respectively of class
Ck,α, C∞, or Cω (cf. Rem. 5.2).

(iv) It is a natural question to ask whether Theorem 2.2 still holds if the condition S proximally C1 is weakened
into an exterior sphere condition. Namely, if S is proximally C1 of radius rS , for every r ∈ (0, rS), every
x ∈ S and every unit vector ζ such that x ∈ πS(x + rζ), the ball of radius r centered at x + rζ does not
intersect S (see e.g. ([16], Thm. 4.1 (d))). At least without any additional assumption on S, the converse
implication is not true: the exterior sphere condition is strictly weaker than proximal smoothness (see [42]),
and it turns out that it is not sufficient to guarantee the validity of Theorem 2.2. Examples of sets which
satisfy an exterior sphere condition but are not a manifold of class C1,1, or not a manifold at all, can be
easily constructed: think for instance to the graph of the function |x|, or to the union of two mutually
tangent circumferences.

We now turn attention to the consequences of Theorems 2.2 and 2.3 on the geometry of planar domains
whose high ridge and cut locus coincide. We are going to see that such domains admit a simple geometrical
characterization, as tubular neighborhoods of a C1,1 manifold; moreover such characterization turns into a
symmetry statement in case the involved domain is C2 and simply connected.

In order to state these results more precisely, and since the terminology adopted in this respect in the literature
is not uniform, let us fix some notation concerning the geometry of the distance function from the boundary.

Definition 2.5. Let Ω ⊂ Rn be an open bounded domain.

– Σ(Ω):= the skeleton of Ω is the singular set of d∂Ω (i.e., the set of points x ∈ Ω such that d∂Ω is not
differentiable at x, or equivalently such that π∂Ω(x) is not a singleton);

– Σ(Ω):= the cut locus of Ω is the closure of Σ(Ω) in Ω;
– C(Ω):= the central set of Ω is the set of the centers of all maximal balls contained into Ω. (We say that an

open ball Br(p) is a maximal ball contained into Ω if Br(p) ⊂ Ω and there does not exist any other open
ball strictly containing Br(p) which is still contained into Ω.)

– M(Ω):= the high ridge of Ω is the set where d∂Ω attains its maximum over Ω .
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Several topological and structure properties of these sets are known; some of them, which will be needed
somewhere in the paper, are recalled in Section 3 (see Prop. 3.2). Here let us just recall that, for a general
domain Ω, there holds

M(Ω) ⊆ Σ(Ω) ⊆ C(Ω) ⊆ Σ(Ω). (2.1)

Indeed, the inclusion M(Ω) ⊆ Σ(Ω) follows immediately from the eikonal equation; for the remaining inclu-
sions see ([32], Thm. 3B).

We point out that these inclusions may be strict. Simple examples are the following: when Ω = R is a
rectangle one has

M(R) � Σ(R) = C(R) � Σ(R),

while Ω = E is an ellipse one has
M(E) � Σ(E) � C(E) = Σ(E).

More pathological examples, where these sets turn out to be “substantially” different, are indicated in Remark 3.3
below.

We now turn our attention to the question stated as (**) in the Introduction: what can be said about planar
domains Ω for which all the inclusions in (2.1) become equalities? The answer is contained in the next statement.

Theorem 2.6. Let Ω ⊂ R2 be a nonempty open bounded connected domain such that

M(Ω) = Σ(Ω) =: S. (2.2)

Then S is either a singleton or a 1-dimensional manifold of class C1,1 and, setting ρΩ := maxΩ d∂Ω, Ω is
the ρΩ-tubular neighborhood

Ω = SρΩ := {x ∈ R2 : dS(x) < ρΩ}.
In particular, if Ω is C2, then S is either a singleton or a 1-dimensional manifold without boundary of

class C2, and Ω = SρΩ .
Finally, if Ω is also simply connected, then S is a singleton, and Ω is the disk with center S and radius ρΩ.

Remark 2.7. By inspection of the proof of Theorem 2.6, it follows that, for every r ∈ (0, ρΩ), the parallel set

Sr :=
{
x ∈ R2 : dS(x) < r

}
is of class C1,1. We point out that this is not necessarily true also for r = ρΩ. In other words, a domain Ω
satisfying the assumptions of Theorem 2.6 does not need to be of class C1,1, nor C1. For instance, let p := (−1, 1),
q := (0, 1), a := (1, 0), b := (1,−1), and define S by

S := [p, q] ∪ {
∂B1(0) ∩ {x1 ≥ 0, x2 ≥ 0}} ∪ [a, b].

Then the 1-tubular neighbourhood of S, namely Ω =
{
x ∈ R2 : dS(x) < 1

}
satisfies the assumptions of

Theorem 2.6, and in particular condition (2.2), but is not of class C1 (see Fig. 1, left).

Remark 2.8. Using the notation of [28], a maximal disk D in Ω is said to be regular if the contact set
∂D∩∂Ω contains exactly two points, and singular if this is not the case. Then, if Ω satisfies the assumptions of
Theorem 2.6, and denoting by S∗ the (possibly empty) boundary of the manifold S, we have that all maximal
disks centered at S \ S∗ are regular, while the (0 or 2) maximal disks centered at S∗ are singular.
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Figure 1. The sets described in Remarks 2.7 and 2.11.

Let us now restrict attention to domains Ω of class C1. For such a domain, let νΩ denote the inner unit
normal to ∂Ω, and let us recall the following definition of normal distance:

Definition 2.9. Let Ω ⊂ Rn be an open bounded domain of class C1. For every y ∈ ∂Ω, its normal distance
to the cut locus is given by

λΩ(y) := sup
{
t ≥ 0 : π∂Ω(y + tνΩ(y)) = {y}},

As a consequence of Theorem 2.6, we are able to characterize planar domains Ω of class C1 with constant
normal distance along the boundary:

Corollary 2.10. Let Ω ⊂ R2 be an open bounded connected domain of class C1 such that, for all y ∈ ∂Ω,

λΩ(y) = const. (2.3)

Then Ω satisfies (2.2) and hence its geometry can be characterized according to Theorem 2.6.

Remark 2.11. We point out that the assumption Ω ∈ C1 in Corollary 2.10 cannot be weakened. To be more
precise notice first that, if Ω is just piecewise C1, Definition 2.9 of the function λΩ can still be given for y
belonging to ∂Ω except a finite number of points (those where νΩ is not defined). Nevertheless, if equality (2.3)
is valid only H1-a.e. on ∂Ω, the geometric condition M(Ω) = Σ(Ω) is not necessarily true. For instance, let
α > 0, let r ∈ (α, 2α), and let Ω := Br(p) ∪Br(q), where p := (−α, 0), and q := (α, 0) (see Fig. 1, right). Then
we have λΩ(y) = r for all y ∈ ∂Ω \ (

∂Br(p) ∩ ∂Br(q)), but {p} ∪ {q} = M(Ω) � Σ(Ω) = [p, q].

Extending the above results to higher dimensions seems to be a delicate task. So far, we have the following
generalization of Theorem 2.6, which settles the case of convex sets in n dimensions:

Theorem 2.12. Let Ω ⊂ Rn be a nonempty open bounded convex set of class C2, satisfying (2.2). Then S is
a singleton and Ω is a ball.

3. Background material

In order to be as possible self-contained, in this section we give a quick overview of some properties of
proximally smooth sets (cf. Prop. 3.1) and of the sets introduced in Definition 2.5 (cf. Prop. 3.2), which will be
needed at some point in the paper.

Proposition 3.1. Let S ⊂ Rn be proximally C1 of radius rS, and let r ∈ (0, rS). Then:

(i) on the set {0 < dS(x) < rS}, the differential of dS is given by

d′S(x) =
x− πS(x)
dS(x)

;
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(ii) on the set {0 < dS(x) < r}, the projection map πS is Lipschitz of constant rS

rS−r ; in particular, the map dS

is of class C1,1
loc on the set {0 < dS(x) < rS};

(iii) the following equalities hold:

d(Sr)c(x) = r − dS(x) on {0 < dS(x) < r}, (3.1)

dSr
(x) = dS(x) − r on {r < dS(x) < rS}, (3.2)

implying in particular that Sr is proximally smooth of radius rS − r;
(iv) the set Sr is of class C1,1;
(v) if in addition S satisfies Definition 2.1 with C1 replaced either by Ck,α (for some k ≥ 2 and α ∈ [0, 1]), or

by C∞, or by Cω, then the set Sr is respectively of class Ck,α, C∞, or Cω.

Proof. We refer to [16]: for (i), see Thm. 3.1; for (ii), see Thm. 4.8; for (3.1), see Thm. 4.1 (c); for (3.2), see
Lemma 3.3; for (iv), see Corollary 4.15 and use also the C1,1

loc regularity of dS stated at item (ii). Finally, (v)
can be easily obtained as follows: if dS is of class Ck,α, C∞, or Cω on the set {0 < dS(x) < rS}, since on the
same set by (i) it holds ‖d′S(x)‖ = 1, by the Implicit Function Theorem Sr inherits the same regularity. �

Proposition 3.2. Let Ω ⊂ Rn be an open bounded domain.

(i) Σ(Ω) is C2-rectifiable, namely it can be covered up to a Hn−1-negligible set by a countable union of embedded
(n− 1)-manifolds of class C2; in particular, Σ(Ω) has null Lebesgue measure.

(ii) M(Ω) has null Lebesgue measure.
(iii) Σ(Ω) has the same homotopy type as Ω.
(iv) If Ω ∈ C2, it holds

C(Ω) = Σ(Ω).

Moreover, in this case Σ(Ω) has null Lebesgue measure, is contained into Ω, and d∂Ω is of class C2 in
Ω \ Σ(Ω).

Proof.

(i) The fact that Σ(Ω) has null Lebesgue measure follows from Rademacher Theorem. Since d∂Ω is locally
semiconcave in Ω, the C2-rectifiability of Σ(Ω) follows from the structure result proved in [2].

(ii) Since M(Ω) ⊆ Σ(Ω), the Lebesgue nullity of M(Ω) follows from (i).
(iii) See ([1], Thm. 6, [40], Thm. 4.19).
(iv) See ([24], Sect. 6). �

Remark 3.3. We remark that the property of Σ(Ω) and M(Ω) of having null Lebesgue measure is not enjoyed
in general by Σ(Ω): in ([41], Sect. 3), there is an example of two-dimensional convex set Ω whose cut locus
has positive Lebesgue measure. We also point out that the central set C(Ω) of a planar domain may fail to
be H1-rectifiable (see the examples in [32], Sect. 4), and it may even happen to have Hausdorff dimension 2
(see [9]).

4. Analysis of the contact set

Throughout this section, we work in two space dimensions. We start by elucidating the geometry of tubular
neighborhoods of a set which satisfies (H1):

Lemma 4.1. Let S ⊂ R2 satisfy (H1), and let r be a fixed radius in (0, rS). Then it holds

S = M(Sr) = Σ(Sr) = C(Sr) = Σ(Sr) (4.1)

λSr (y) = r ∀y ∈ ∂Sr. (4.2)



PROXIMALLY SMOOTH SETS 717

Proof. We observe that
d(Sr)c(x) = r − dS(x) ∀x ∈ Sr. (4.3)

Indeed, for x ∈ Sr \ S, the above equality holds true by (3.1) in Proposition 3.1 (iii). On the other hand,
since by assumption S has empty interior, its complement Sc is dense in R2. Then, given x ∈ S, there exists
a sequence {xh} contained into Sr \ S, with limh xh = x. By applying (3.1) to each xh, and then passing to
the limit as h → +∞, we get d(Sr)c(x) = r, which extends the validity of (3.1) to S and proves (4.3). In view
of (4.3), it is clear that S = M(Sr) = C(Sr); then (4.1) follows recalling (2.1) and the fact that S is closed. After
noticing that λSr is well-defined thanks to Proposition 3.1 (iv), equality (4.2) readily follows from Definition 2.9
and (4.1). �

Definition 4.2. Let S ⊂ R2 satisfy (H1), let p ∈ S, and let r be a fixed radius in (0, rS). We call contact set
of p into Sr the intersection of ∂Sr and the closure of Br(p) (which is a maximal disk contained into Sr):

Cr(p) := ∂Br(p) ∩ ∂Sr =
{
y ∈ ∂Sr : |y − p| = r

}
, p ∈ S.

Remark 4.3. By its definition, Cr(p) is a nonempty closed set, whose connected components are singletons or
closed arcs. Moreover, in view of (4.1), Cr(p) contains at least two points (see [15], Cor. 1, p. 67). Notice also
that, since r < rS , it holds Cr(p) ∩Cr(q) = ∅ if p �= q.

We are now going to carry on a thorough geometric analysis of the contact set Cr(p): our objective is giving a
complete characterization of it, which will be achieved in Proposition 4.6. As intermediate steps, in the following
two lemmas we begin the investigation of the singletons and the arcs which form Cr(p).

Lemma 4.4. Let S ⊂ R2 satisfy (H1) and let r ∈ (0, rS). Let p ∈ S, and let a, b ∈ Cr(p). If a and b are distinct
and not antipodal, then Cr(p) contains the arc of ∂Br(p) of length < rπ joining a and b.

Proof. Consider the cone
Σ+ := p+ {α(a− p) + β(b− p) : α, β ≥ 0}.

We have to prove that
[∂Br(p) ∩Σ+] ⊆ Cr(p).

We claim that there exists δ ∈ (0, r) such that

πS

(
∂Sr ∩Σ+ ∩Bδ(a)

) ⊆ {p}. (4.4)

Since the vectors a− p and b− p are not parallel, we have

ε :=
∣∣∣∣a+ b

2
− p

∣∣∣∣ > 0.

By the definition of ε, we have [(
Bε(p) \ {p}

) ∩Σ+

] ⊂ [
Br(a) ∪Br(b)

]
.

Recalling that by construction Br(a) and Br(b) cannot intersect S, we infer that[
Bε(p) ∩Σ+ ∩ S]

= {p}. (4.5)

Now we recall that the projection map πS is Lipschitz continuous on ∂Sr with constant C := rS/(rS − r)
(cf. Prop. 3.1 (ii)). Therefore, if we choose δ := ε/C we get

πS

(
∂Sr ∩Σ+ ∩Bδ(a)) ⊂ Bε(p). (4.6)

By (4.5) and (4.6) we conclude that (4.4) holds, proving the claim.
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Since ∂Sr is tangent to ∂Br(p) at a, it is not restrictive to assume that the arc-length parameterization
γ : [0, L] → R2 of the connected component of ∂Sr containing a satisfies γ(0) = a and γ(s) ∈ Σ+ for s ≥ 0 small
enough. Let

s̄ := sup {s > 0 : γ([0, s]) ⊂ Σ+} .
Clearly we have 0 < s̄ < L. Let s1 > 0 be such that γ(s) ∈ Bδ(a) ∩ Σ+ for every s ∈ [0, s1]. From (4.4) we
deduce that

πS(γ(s)) = {p} ∀s ∈ [0, s1],

hence the restriction of γ to [0, s1] parametrizes an arc of length r s1 on ∂Br(p) joining a to γ(s1). Thus, if
s1 = s̄, then γ(s1) = b and we are done.

Otherwise, denoting by K the L∞-norm of the curvature of γ (which only depends on r and rS , again thanks
to Proposition 3.1 (ii)), we observe that we can choose

s1 ≥ min
{
δ,

π

K

}
,

as δ is the shortest possible exit-time from Bδ(a) and π
K the shortest possible exit-time from Σ+.

Hence, we can repeat the same argument replacing the point a by a′ = γ(s1), after noticing that∣∣∣∣a′ + b

2
− p

∣∣∣∣ > ε

and so (4.4) holds with a replaced by a′ and the same value of δ.
In a finite number of steps we can construct numbers 0 = s0 < s1 < . . . < sN = s̄ with

sj − sj−1 ≥ min
{
δ,

π

K

}
, ∀j = 1, . . . , N − 1

such that the restriction of γ to [sj−1, sj ] is a parametrization of an arc of length r (sj −sj−1) on ∂Br(p) joining
γ(sj−1) to γ(sj), and γ(sN ) = γ(s̄) = y, completing the proof. �

Lemma 4.5. Let S ⊂ R2 satisfy (H1) and let r ∈ (0, rS). Let p ∈ S, and assume that S �= {p}. If Cr(p)
contains a nontrivial arc, then Cr(p) is a connected arc of length ≤ πr.

Proof. We first prove, arguing by contradiction, that Cr(p) consists of only one connected component. Let Γ
be the connected component of Cr(p) containing the nontrivial arc (so that Γ itself is a nontrivial arc), and let
a ∈ Cr(p) \Γ be a point lying in another connected component of Cr(p). Clearly, there is at least one endpoint
b of Γ such that a and b are not antipodal, so that by Lemma 4.4 we get the contradiction.

It remains to prove that, if S �= {p}, then the length of Γ is ≤ πr. Namely, if this is not the case, by Lemma 4.4
it turns out that Cr(p) contains also ∂Br(p) \ Γ . Thus Cr(p) contains the whole circumference ∂Br(p). Since S
is connected, this means that S = {p}, against the assumption. �

We are now ready to give the complete picture of Cr(p):

Proposition 4.6. Let S ⊂ R2 satisfy (H1) and let r ∈ (0, rS). Let p ∈ S, and assume that S �= {p}. Then
Cr(p) consists either of only two antipodal points, or of a closed semicircumference.

Proof. By Remark 4.3, we know that Cr(p) contains at least two points. Assume that Cr(p) does not contain only
two antipodal points. Then, by Lemma 4.4, Cr(p) contains a nontrivial arc. In turn, by Lemma 4.5, this implies
that Cr(p) is a connected arc of length ≤ πr. We have to show that such arc is precisely a semicircumference.

We argue by contradiction: let a, b be the endpoints of Cr(p) and assume by contradiction that a and b are
not antipodal. Then, there exists θ0 ∈ (0, π/2) so that the angle in (0, π) formed by a− p and b− p is π − 2θ0.
We first prove the following
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Figure 2. Proof of Proposition 4.6.

Claim. There exist two cones Σa and Σb, with vertex in p, axis orthogonal to a − p and b − p respectively,
direction such that Σa ∩ Cr(p) = Σb ∩ Cr(p) = ∅, and half-width ε < min{θ0, π

2 − θ0}, such that both Σa and
Σb contain a nontrivial arc of S passing through p.

To prove the claim, we can assume without loss of generality that

p = (0, 0)

a =
(
r cos

(
θ0 +

π

2

)
, r sin

(
θ0 +

π

2

))
b =

(
r cos

(
θ0 +

π

2

)
,−r sin

(
θ0 +

π

2

))
.

We choose ε < min
{
θ0,

π
2 − θ0

}
, and we define the cones

Σa := {(ρ cos θ, ρ sin θ) : ρ ≥ 0, θ ∈ [θ0 − ε, θ0 + ε]},
Σb := {(ρ cos θ, ρ sin θ) : ρ ≥ 0, θ ∈ [−θ0 − ε,−θ0 + ε]}.

By construction, Σa and Σb have vertex in p, and axis orthogonal to a−p and b−p; moreover, by the choice of the
width ε, Σa and Σb are contained respectively in the first and fourth quadrant, and in particular Σa ∩Σb = {p}
(see Fig. 2, left).

Let us show that Σa contains a nontrivial arc of S passing through p (being the proof exactly the same
for Σb).

Let γ be an arc-length parametrization of the component of ∂Sr containing a, such that γ(0) = a and
γ′(0) = (cos θ0, sin θ0). Since a is an end-point of Cr(p) and γ is continuous, we infer that there exists δ > 0
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such that
γ(s) ∈ (a+Σa) \Br(p) ∀s ∈ (0, δ).

By continuity of the projection map πS , this implies

πS(γ(s)) ∈ Σa \ {p} ∀s ∈ (0, δ).

We conclude that πS(γ(s)), for s ∈ (0, δ), is a nontrivial arc of S passing through p contained into Σa, and
the claim is proved.

The remaining of the proof is devoted to obtain a contradiction. We keep the same coordinates as in the
proof of the claim. Let πS(γ(s)), for s ∈ (0, δ) be a nontrivial arc of S passing through p contained into Σa.
Pick a point in the arc, say

p′ = πS(γ(s′)) = (x′, y′), with s′ ∈ (0, δ).

Choosing s′ sufficiently small, we may assume that ∂Br(p) and ∂Br(p′) have two intersection points, one of
which lying in the half-plane {y < 0}.

Set
p1 := r

(
cos

(
θ0 − ε+

π

2

)
, sin

(
θ0 − ε+

π

2

))
, q := (x′, tan(θ0 − ε)x′) , q1 := q + p1,

so that the straight line through p1 and q1 has slope θ0−ε and is tangent to both ∂Br(p) and ∂Br(q), respectively
at p1 and q1. Denote by R the rectangle with vertices p, p1, q and q1.

Since Br(z) ⊂ Sr for every z ∈ S, and since by construction πS(γ(s)) ⊂ S ∩ Σa for all s ∈ (0, s′), we infer
that the region

T+ := {(x, y) ∈ (Br(p) ∪R ∪Br(p′)) : y ≥ 0} ⊂
⋃

s∈[0,s′]

Br (πS(γ(s)))

is contained into Sr (see Fig. 2, right).
By considering a nontrivial arc of S passing through p contained into Σb and arguing in the same way, we

obtain that also the region
T− :=

{
(x, y) : (x,−y) ∈ T+

}
is contained into Sr. Hence, the same holds true for the region T := T+ ∪ T−.

Notice that, by construction (and in particular by the choice of s′), the only points p̃ ∈ ∂T which realize the
distance of p from ∂T are those of Cr(p), namely it holds

p̃ ∈ ∂T, |p− p̃| = d∂T (p) ⇔ p̃ ∈ Cr(p). (4.7)

We now consider the point pλ := (λ, 0), for λ > 0 small. Clearly, since |pλ − p| = λ, as soon as λ < r it holds

pλ ∈ Sr. (4.8)

On the other hand, by the inclusion T ⊆ Sr, it holds

d∂Sr (pλ) ≥ d∂T (pλ).

Now, for λ > 0 small,
d∂T (pλ) = r + λ sin(θ0 − ε) > r

where the first equality holds in view of (4.7) and the continuity of π∂T , and the second strict inequality
holds recalling that, by the choice of ε, the angle θ0 − ε belongs to (0, π/2).

We thus have
d∂Sr(pλ) > r. (4.9)

Comparing (4.8) and (4.9) we have a contradiction. �
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5. Proofs of the results in section 2

For convenience, let us prepone the following remark, which will be useful in the proofs of Theorems 2.2
and 2.3.

Remark 5.1. Let S ⊂ R2 satisfy (H1), and let r ∈ (0, rS). Let γ : [0, L] → R2 be a local arc-length parametriza-
tion of ∂Sr with γ(0) ∈ Cr(p), and denote by ν the unit normal to γ obtained by a counterclockwise rotation of
π/2 of the unit tangent to γ. By Proposition 3.1 (ii), the function γ is twice differentiable a.e. on [0, L]; moreover,
if we denote by κ(s) the curvature of γ at γ(s) (intended as 〈γ′′, ν〉), the function κ belongs to L∞([0, L]). If we
assume without loss of generality that

γ(0) = 0, γ′(0) = e1 := (1, 0), p = (0, r),

and we set

φ(s) :=
∫ s

0

κ(t) dt, ∀s ∈ [0, L],

we can write γ under the form

γ(s) =
(∫ s

0

cosφ(t) dt,
∫ s

0

sinφ(t) dt
)
, ∀s ∈ [0, L].

Indeed, one checks immediately that

γ′(s) = (cosφ(s), sinφ(s)),
ν(s) = (− sinφ(s), cosφ(s)),
γ′′(s) = φ′(s) (− sinφ(s), cosφ(s)) = κ(s)ν(s).

Accordingly, a local parametrization of S near p is given by

η(s) := γ(s) + rν(s) =
(∫ s

0

cosφ(t) dt − r sinφ(s),
∫ s

0

sinφ(t) dt + r cosφ(s)
)
.

In particular, one has

η′(s) = (1 − r φ′(s)) (cosφ(s), sin φ(s)) = μ(s)γ′(s) for a.e. s ∈ [0, L],

where the function μ is defined by

μ(s) := 1 − r κ(s) for a.e. s ∈ [0, L]. (5.1)

Incidentally, it is worth noticing that the function μ is nonnegative. Indeed, from ([21], Lems. 2 and 3) we have

κ(s)λSr (γ(s)) ≤ 1 for a.e. s ∈ [0, L],

which implies μ(s) ≥ 0 in view of (4.2).

Proof of Theorem 2.2. Assume that S is not a singleton. Fix r ∈ (0, rS), and denote by S∗ the set of points
p ∈ S such that Cr(p) is a semicircumference of radius r. By Proposition 4.6, we know that, for every p ∈ S \S∗,
Cr(p) contains exactly two antipodal points. Moreover, we observe that S∗ cannot have accumulation points.
Indeed, if {pn} ⊂ S∗ is a Cauchy sequence, then, for n and m large enough, Cr(pn) ∩ Br(pm) �= ∅, against
d∂Sr (pm) = r. We divide the remaining part of the proof in two steps.
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Step 1. S is Lipschitz manifold, with the (possibly empty) set S∗ as boundary.

Let p ∈ S. Since S is not a singleton and it is arc-wise connected, there is an arc of S passing through p.
Moreover, since S∗ has no accumulation points, for every p ∈ R2 there exists a ball centered at p which does
not intersect S∗ \ {p}, i.e., there exists δ > 0 such that

S∗ ∩Bδ(p) =

{
{p} if p ∈ S∗

∅ if p ∈ S \ S∗.

Let

γ : I → R2 with I =

{
[0, ε) if p ∈ S∗

(−ε, ε) if p ∈ S \ S∗,

be a local arc-length parametrization of ∂Sr such that πS(γ(0)) = p.
Choosing ε sufficiently small, and setting

η(s) := γ(s) + rν(s), γ̃(s) := γ(s) + 2rν(s),

by continuity of the projection map πS and by the choice of δ, we may assume that

πS(γ(s)) ⊆ Bδ(p) and Cr(η(s)) =
{
γ(s), γ̃(s)

} ∀s ∈ int I.

In particular, S ∩ Bδ(p) is parametrized by the Lipschitz curve η(s), for s ∈ I. In order to prove Step 1, we
have to show that such a Lipschitz curve is actually the graph of a Lipschitz function. To that aim, by possibly
decreasing the size of ε, we can further assume that, setting R := min{r, rS − r}, the curves γ and γ̃ satisfy:

|γ(s) − γ(t)| < R, |γ̃(s) − γ̃(t)| < R, |γ′(s) − γ′(t)| < 1/2, ∀s, t ∈ I. (5.2)

Let us show that, as a consequence of (5.2), if we choose a system of coordinates such that e1 = γ′(0) and
e2 = ν(0), the function η1 is invertible with Lipschitz inverse. In fact, let us show that η′1(s) ≥ 1/4 for a.e. s ∈ I.
Recall from Remark 5.1 that we have

η′(s) = μ(s)γ′(s) ∀ s ∈ I,

with μ defined by (5.1). By the third condition in (5.2) we readily obtain

γ′1(s) ≥ γ′1(0) − 1
2

=
1
2

∀s ∈ I. (5.3)

On the other hand, we claim that

〈γ̃′(s), γ′(s)〉 ≥ 0 ∀s ∈ I : ν is differentiable at s. (5.4)

Assume by a moment that (5.4) holds true. Recalling that γ̃′(s) = (1 − 2rκ(s))γ′(s), we obtain the estimate
1 − 2rκ(s) ≥ 0 and hence

μ(s) ≥ 1
2

for a.e. s ∈ I. (5.5)

By (5.3) and (5.5) we infer that

η′1(s) ≥
1
4

for a.e. s ∈ I.

Therefore, the Lipschitz function η1 is invertible with a Lipschitz inverse η−1
1 . Then the support of η is the

graph of the Lipschitz function g(x) := η2(η−1
1 (x)) (notice that g is defined on a interval of the type [a, b) in

case p ∈ S∗ and on an interval of the type (a, b) in case p ∈ S \ S∗).
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Figure 3. Proof of (5.4).

We conclude that S is a 1-dimensional compact Lipschitz manifold, and that the boundary of such manifold
is given precisely by the (possibly empty) set S∗.

Let us go back to the proof of (5.4), which follows by a simple geometrical argument.
Namely, let s ∈ I be fixed so that ν is differentiable at s, and let t ∈ I denote a generic point, with t > s.

Assume without loss of generality that γ(s) = (0,−r) and γ′(s) = e1, so that ν(s) = e2, η(s) = 0, γ̃(s) = (0, r)
(see Fig. 3, and notice that, to make the remaining of the proof more readable, we are changing system of
coordinates with respect to the one chosen above). Using (5.2) and the assumption that S is proximally smooth
of radius rS (and hence Sr is proximally smooth of radius rS − r), we get

γ(t) ∈ BR(0,−r) \ [
Br(0) ∪BrS−r(0,−rS)

]
=: E,

γ̃(t) ∈ BR(0, r) \ [
Br(0) ∪BrS−r(0, rS)

]
=: Ẽ. (5.6)

Indeed, we have γ(t) ∈ BR(0,−r) by the first condition in (5.2), γ(t) �∈ Br(0) since 0 ∈ S, and finally γ(t) �∈
BrS−r(0,−rS) by Proposition 3.1 (iii) combined with the exterior sphere condition recalled in Remark 2.4 (iv).
When γ(t) is replaced by γ̃(t), one argues exactly in the same way.

Notice that, thanks to the inequality R ≤ r, the regions E and Ẽ are mutually disjoint.
We claim that the segments [γ(s), γ̃(s)] and [γ(t), γ̃(t)] cannot intersect. Namely, assume by contradiction

that
[γ(s), γ̃(s)] ∩ [γ(t), γ̃(t)] = {q}.

The case q = p is easily excluded by the fact that Cr(η(s)) = {γ(s), γ̃(s)}. On the other hand, if p �= q, then
dS(q) = |q − p| ∈ (0, r), so that q must have a unique projection onto S, in contradiction with the fact that, by
construction, both p and η(t) are projections of q onto S.

Hence, in our coordinate system, the point γ̃(t) must lie on the right side of the line through γ(t) and γ̃(s);
hence, in view of (5.6), we infer that γ̃(t) belongs to the set Ẽ ∩ {x1 > 0} (corresponding to the shaded region
in Fig. 3). We conclude that

〈γ̃(t) − γ̃(s), γ′(s)〉 > 0. (5.7)

Differentiating (5.7) from the right at t = s, we obtain (5.4).

Step 2. S is of class C1,1.
By Step 1, we know that near each point p ∈ S, S can be parametrized as the graph of a Lipschitz function g.

Since by assumption S is proximally smooth, both the epigraph and the hypograph of g are proximally smooth
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sets. Then, by ([16], Thm. 5.2) and ([44], Thm. 6), g is both lower-C2 and upper-C2, meaning that g(s) =
infτ∈T G1(τ, s) and g(s) = supτ∈T G2(τ, s), where G1, G2 are continuous in the variable τ (belonging to some
topological space T ) and C2 in the variable s. It follows that g is locally both semi-concave and semi-convex
(see [11], Prop. 3.4.1) and, in turn, that g is of class C1,1 (see [11], Cor. 3.3.8). �

Proof of Theorem 2.3. Assume that S is not a singleton. By Theorem 2.2 we know that S is a 1-dimensional
manifold of class C1,1. We divide the remaining part of the proof in two steps.

Step 1. S is a manifold without boundary.
Namely, assume by contradiction that S is a manifold with boundary. Let p be a point of this boundary,

and let r ∈ (0, rS) be fixed. Without loss of generality we can assume that p = (0, r) and that Cr(p) is the
semicircumference lying in {x ≤ 0} with endpoints a = (0, 0) and b = (0, 2r). Let us consider a parametrization
γ of the connected component of ∂Sr containing Cr(p) as in Remark 5.1. For every s we have that

p(s) := γ(s) + rν(s) ∈ S

is equal to πS(γ(s)). Moreover, there exists s0 > 0 such that

Cr(p(s)) = {γ(s), γ(s) + 2rν(s)}, ∀s ∈ (0, s0).

We remark that, for s ∈ (0, s0), both points in Cr(p(s)) must lie in the half-plane {x > 0}. In particular one has

ξ(s) := γ1(s) + 2rν1(s) =
∫ s

0

cosφ(t) dt − 2r sinφ(s) > 0 ∀s ∈ (0, s0).

Since ξ(0) = 0, this inequality yields
ξ′(0) = 1 − 2rκ(0) ≥ 0,

that is, κ(0) ≤ 1/(2r). On the other hand, since Sr is of class Ck with k ≥ 2 (see Prop. 3.1 (v)), then κ is
continuous so that κ(0) = 1/r, a contradiction.

Step 2. S is of class C2.
Let r ∈ (0, rS) be fixed. Let η(s), for s ∈ (s1, s2) be a local parametrization of S. By Step 1 we know that,

for every s ∈ (s1, s2) the contact set Cr(η(s)) consists exactly of two points, say γ(s) and γ̃(s). We denote by by
Γ and Γ̃ the support of the two curves γ(s) and γ̃(s), for s ∈ (s1, s2); moreover, for i = 1, 2, we set qi := γ(si),
and q̃i := γ̃(si). Let A be the open bounded set delimited by the two curves Γ , Γ̃ , and the two line segments
[q1, q̃1], [q2, q̃2].

Since S is proximally C2 of radius rS , by Proposition 3.1 (v) we have that Γ is of class C2. Moreover, for any
y = γ(s) ∈ Γ , consider the line segment y+tνA(y), for t ∈ [0, 2r]. By construction, the mid-point p := y+rνA(y)
of such segment lies on S, while its extremes y and y + 2rνA(y) coincide precisely with the two elements γ(s)
and γ̃(s) of the contact set Cr(p) = ∂Br(p) ∩ ∂Sr. We infer that every point in A has a unique projection onto
Γ . Then, by using the facts that Γ is of class C2 and that every point in A has a unique projection onto Γ , we
may argue by using the Inverse Function Theorem exactly as done in the proof of ([24], Thm. 6.10) to obtain
that dΓ is of class C2 on A. Since, by construction, S∩A agrees with the level set {dΓ = r}∩A, by the Implicit
Function Theorem we conclude that S is of class C2. �

Remark 5.2. By inspection of Step 2 in the above proof, one can easily check that the statement of Theorem 2.3
can be generalized as indicated in Remark 2.4 (iii). Indeed, if S satisfies Definition 2.1 with C2 replaced by
Ck,α, C∞, or Cω, then Γ turns out to be of the same class Ck,α, C∞, Cω (cf. Prop. 3.1 (v)). Then, by following
the same proof as above (that is, by localizing the argument used in [24], Thm. 6.10) one concludes that S is of
class Ck,α, C∞, Cω , respectively.
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Proof of Theorem 2.6. Clearly, S is a nonempty compact set. Moreover, it is connected (cf. Prop. 3.2(iii)), and
it has empty interior (otherwise it could not be S = M(Ω)). We claim that S is proximally C1. Indeed, by the
equality S = Σ(Ω), for every x ∈ Ω \ S the set π∂Ω(x) is a singleton, so that d∂Ω is differentiable with

d′∂Ω(x) =
x− π∂Ω(x)
d∂Ω(x)

∀x ∈ Ω \ S.

The above equality shows that d∂Ω is actually of class C1 on the set Ω \ S, that is, ∂Ω is proximally C1 of
radius ρΩ. By applying (3.1) in Proposition 3.1 (with ∂Ω in place of S) and letting r tend to ρΩ, we obtain

dS(x) = ρΩ − d∂Ω(x) ∀x ∈ Ω \ S. (5.8)

Hence S is proximally C1, of radius rS ≥ ρΩ . Then S satisfies (H1) and we can apply Theorem 2.2 to deduce
that S is either a singleton or a 1-dimensional manifold of class C1,1. By (2.2), it readily follows that Ω = SρΩ .
In case ∂Ω is C2, the function d∂Ω is C2 on Ω \ S ([24], Thm. 6.10). Then by (5.8) S is proximally C2, and the
last part of the statement follows from Theorem 2.3. �

Proof of Corollary 2.10. Assume by contradiction that M(Ω) �= Σ(Ω). Choose two points x1 and x2, with
x1 ∈ M(Ω) and x2 ∈ Σ(Ω) \ M(Ω), and let y1 ∈ π∂Ω(x1), y2 ∈ π∂Ω(x2). Then

max
Ω

d∂Ω = λΩ(y1) > λΩ(y2),

against the assumption λΩ constant along the boundary. �

Proof of Theorem 2.12. Since Ω is a convex set, the distance function d∂Ω is concave in Ω, hence the set S is
convex. Since S does not contain interior points, the dimension of S (as a convex set) is less than or equal to
n− 1, i.e., there exists an affine subspace V ⊂ Rn of dimension ≤ n− 1 such that S ⊂ V . Let p, q ∈ S be two
points of maximal distance in S, i.e.

|p− q| = diam(S) := max{|z − w|; w, z ∈ S}.

We remark that the hyperplanes through p and q orthogonal to p− q are support planes to S.
Without loss of generality, let us assume that V = span{e1, . . . , ek}, k ≤ n− 1, and that p = α e1, q = −α e1

for some α > 0. So we have diam(S) = 2α, and

S ⊂ {
x = (x1, . . . , xn) : |x1| ≤ α, xj = 0 ∀j = k + 1, . . . , n

}
. (5.9)

Let us set W := span{e1, en}, and let us identify W with R2. By construction, we have

S ∩W = {x = (x1, x2) : x1 ∈ [−α, α], x2 = 0} .

Consider now the convex subset of R2 given by

A := Ω ∩W.

From (5.9), we infer that the set A ∩ {|x1| ≤ α} is given by two line segments parallel to S ∩W , whereas the
set A ∩ {|x1| ≥ α} is given by two semi-circumferences of radius α centered at p and q. Thus A a stadium-like
domain, with Σ(A) = M(A) = S ∩W. On the other hand, by the definition of A and the regularity assumption
made on Ω, A must have a C2 boundary. But the unique stadium-like domain with a C2 boundary is the disk.
So α = 0, which means that S has zero diameter, or equivalently is a singleton. �
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