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A THEORETICAL AND NUMERICAL DETERMINATION
OF OPTIMAL SHIP FORMS BASED ON MICHELL’S WAVE RESISTANCE

Julien Dambrine1, Morgan Pierre1 and Germain Rousseaux2

Abstract. We determine the parametric hull of a given volume which minimizes the total water
resistance for a given speed of the ship. The total resistance is the sum of Michell’s wave resistance
and of the viscous resistance, approximated by assuming a constant viscous drag coefficient. We prove
that the optimized hull exists, is unique, symmetric, smooth and that it depends continuously on the
speed. Numerical simulations show the efficiency of the approach, and complete the theoretical results.
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1. Introduction

The resistance of water to the motion of a ship is traditionally represented as the sum of two terms, the wave
resistance and the viscous resistance (which corresponds itself to the sum of the frictional and eddy resistance).
Michell’s thin-ship theory [25, 26] provides an explicit formula of the wave resistance for a given speed and for
a hull expressed in parametric form, with parameters in the region of the plane of symmetry. It is therefore a
natural question to search the hull of a given volume which minimizes Michell’s wave resistance for a given speed.
Unfortunately, this problem is known to be ill-posed [20,34]: it is underdetermined, so that additional constraints
should be imposed in order to provide a solution. The latter approach has been successfully performed by several
authors, from a theoretical and computational point of view, starting in the 1930’s with Weinblum (see [37] and
references in [20]), Pavlenko [30], until more recently [8, 10, 12, 14, 15, 23]. For completeness, let us also mention
the well-known Newton problem of finding a body of minimal resistance, which uses a different functional (see [6]
and references therein).

In this paper, instead of using Michell’s formula alone as an optimization criterion, we propose to use the
total resistance, by adding to Michell’s wave resistance a term approximating the viscous resistance; this term
is obtained by assuming a constant viscous drag coefficient in the framework of the thin-ship approximation.
Our approach, which results in quadratic programming, has already been considered from a numerical point of
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view in [21]. From a theoretical point of view, a similar approach has been made in [24], but the additional term
was more complexe to deal with, and the analysis was therefore incomplete.

Here, we prove that minimizing this total resistance for a given speed, among the parametric hulls having a
fixed volume and a fixed domain of parameters, is a well-posed problem. We also prove that the optimized hull
is a smooth and symmetric form, which depends continuously on the speed. Our theoretical results also include
the case where Michell’s wave resistance for an infinite fluid is replaced by Sretensky’s formula in an infinitely
deep and laterally confined fluid [35]. For the numerical simulations, made with the Scilab software3, we use an
efficient piecewise bilinear (Q1) finite element discretization of the problem (use of “tent functions”). We recover
results similar to those in [21]; in particular, for moderate values of the velocity, we obtain the famous bulbous
bow which reduces the wave resistance [16, 20]. In addition, we give numerical evidence that using Michell’s
wave resistance as an optimization criterion results in an ill-posed problem, and we obtain a theoretical lower
bound on the degrees of freedom that should be used in order to minimize efficiently the wave resistance.

Of course, nowadays, computational fluid dynamics (CFD) provide more precise tools for ship hull optimiza-
tion (see, for instance, [13,27,29,31,33,38]). However, in spite of its well-known limitations (see [8] for a review
of these limitations), Michell’s formula for the wave resistance remains a powerful tool for theoretical and com-
putational purposes. The simplicity of our formulation allows us to obtain theoretical results which are at the
present moment out of reach when considering the full 3-dimensional incompressible Navier−Stokes’s equations
with free surface. Moreover, our numerical approach is much faster than standard CFD computations.

The optimization problem is formulated in Section 2. Well-posedness and related theoretical results are proved
in Section 3. Numerical methods are explained in Section 4, and the numerical results are given and commented
in Section 5.

2. Formulation of the optimization problem

Consider a ship moving with constant velocity on the surface of an unbounded fluid. A coordinated system
fixed with respect to the ship is introduced. The origin is located at midship in the center line plane, the xy-plane
is the undisturbed water surface, the positive x-axis is in the direction of motion and the z-axis is vertically
downward.

The hull is assumed to be symmetric with respect to the vertical xz-plane, with length L and draft T . The
immerged hull surface is represented by a continuous nonnegative function

y = f(x, z) ≥ 0, x ∈ [−L/2, L/2], z ∈ [0, T ],

with f(±L/2, z) = 0 (for all z) and f(x, T ) = 0 (for all x).
It is assumed that the fluid is incompressible, inviscid and that the flow is irrotational. The effects of surface

tension are neglected. The motion has persisted long enough so that a steady state has been reached. Michell’s
theory [25] shows that the wave resistance can be computed by

RMichell =
4ρg2

πU2

∫ ∞

1

(I(λ)2 + J(λ)2)
λ2

√
λ2 − 1

dλ, (2.1)

with

I(λ) =
∫ L/2

−L/2

∫ T

0

∂f(x, z)
∂x

exp
(
−λ2gz

U2

)
cos
(

λgx

U2

)
dxdz, (2.2)

J(λ) =
∫ L/2

−L/2

∫ T

0

∂f(x, z)
∂x

exp
(
−λ2gz

U2

)
sin
(

λgx

U2

)
dxdz. (2.3)

Here, U (in m · s−1) is the speed of the ship, ρ (in kg · m−3) is the (constant) density of the fluid, and g (in
m · s−2) is the standard gravity. The double integrals I(λ) and J(λ) are in m2, and RMichell (in Newton) has

3Scilab is freely available at http://www.scilab.org/

http://www.scilab.org/
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the dimension of a force. The integration parameter λ has no dimension: it can be interpreted as λ = 1/ cos θ,
where θ is the angle at which the wave is propagating [11].

In order to derive formula (2.1), Michell used a linear theory and made additional assumptions known as the
“thin ship theory” (see [26] for details). In particular, it is assumed that the angles made by the hull surface
with the longitudinal plane of symmetry are small, i.e.

|∂xf | � 1 and |∂zf | � 1 in [−L/2, L/2]× [0, T ]. (2.4)

For simplicity, we define
v = g/U2 > 0 and Tf(v, λ) = I(λ) − iJ(λ),

where I and J are given by (2.2) and (2.3). Then

Tf(v, λ) =
∫ L/2

−L/2

∫ T

0

∂xf(x, z)e−λ2vze−iλvxdxdz, (2.5)

and RMichell can be written

R(v, f) =
4ρgv

π

∫ ∞

1

|Tf(v, λ)|2 λ2

√
λ2 − 1

dλ. (2.6)

The number v (in m−1) is known as the Kelvin wave number for the transverse waves in deep water [17]. Notice
that ρ and g are fixed, so R depends only on v, i.e. the speed U , and on f , i.e. the form of the hull.

In view of numerical computations, we let Λ � 1 denote a real number and we replace R(v, f) by the
functional

(v, f) �→ 4ρgv

π

∫ Λ

1

|Tf (v, λ)|2 λ2

√
λ2 − 1

dλ. (2.7)

For the numerical computation, we actually use a numerical integration formula of the form

4ρgv

π

∫ Λ

1

|Tf(v, λ)|2 λ2

√
λ2 − 1

dλ ≈ 4ρgv

π

J�∑
j=1

ωj |Tf(v, λj)|2 , (2.8)

with positive weights ωj > 0, and with nodes λj ∈ [1, Λ], j = 1, 2, . . . , J�, where J� is a well-chosen positive
integer (see (4.35)).

In order to take into account the two formulations (2.7) and (2.8) in our analysis, we consider more generally
a wave resistance of the form

RΛ(v, f) =
4ρgv

π

∫ Λ

1

|Tf(v, λ)|2 dμ(λ), (2.9)

where μ is a nonnegative and finite borelian measure on [1, Λ]. Such a formulation also includes (a truncation
of) Sretensky’s summation formula for the wave resistance of a thin ship in a laterally confined and infinitely
deep fluid [35].

We point out that our well-posedness result holds also for the functional R(v, f) defined by (2.6) or for
Sretensky’s formula [35] (see Rem. 3.2), but otherwise, setting Λ < ∞ simplifies the analysis, because the
integral

∫∞
1

λ2(λ2 − 1)−1/2dλ diverges at ∞.
Let us turn now to the term representing the viscous resistance, or viscous drag [28]. It reads

Rdrag =
1
2

ρU2 Cd A,

where Cd is the viscous drag coefficient (which at some extent can be considered constant within the family of
slender bodies), and A is the surface area of the ship’s wetted hull. When the graph of f represents the ship’s
hull, A is given by:

A = 2
∫

Ω

√
1 + |∇f(x, z)|2 dxdz, (2.10)
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where here and below, Ω = (−L/2, L/2)× (0, T ). When the ship is slender (i.e. |∇f | uniformly small, see (2.4)),
one can give a good approximation of the above integral by performing a Taylor’s expansion of

√
1 + |∇f |2 at

first order, for small values of |∇f |2:

A/2 = 1 +
1
2

∫
Ω

|∇f(x, z)|2 dxdz + o(||∇f ||2∞). (2.11)

The approximation of the viscous drag for small ∇f then reads:

Rdrag = ρU2 Cd

(
1 +

1
2

∫
Ω

|∇f(x, z)|2 dxdz

)
.

Minimizing Rdrag is the same as minimizing the following quantity:

R∗
drag =

1
2

ρU2 Cd

∫
Ω

|∇f(x, z)|2 dxdz.

By setting

ε =
1
2

ρU2 Cd, (2.12)

we obtain
R∗

drag = ε

∫
Ω

|∇f(x, z)|2 dxdz.

The parameter ε (in Pa) is positive; it can be interpreted as a dynamical pressure, as in Bernoulli’s law.
The total water resistance functional NΛ,ε(v, ·) is the sum of the wave resistance and of the viscous drag R�

drag:

NΛ,ε(v, f) := RΛ(v, f) + ε

∫
Ω

|∇f(x, z)|2dxdz,

where RΛ is defined by (2.9). We will minimize NΛ,ε(v, ·), among admissible functions. Notice that the additional
term

∫
Ω |∇f(x, z)|2dxdz is isotropic, i.e. that no direction is privileged in the (x, z) plane. This term guarantees

that the derivatives of a minimizer f are defined in the space L2(Ω) of square integrable function. Since we seek
a minimizer, the additional term is small, thus fulfilling the thin ship assumptions (2.4) in an integral sense
(rather than pointwise).

The function space is now clear from the additional term, and we therefore introduce the space

H =
{
f ∈ H1(Ω) f(±L/2, ·) = 0 and f(·, T ) = 0 in the sense of traces

}
,

where H1(Ω) denotes the standard L2-Sobolev space (see, for instance, [5]). H is a closed subspace of H1(Ω),
so it is a Hilbert space for the standard H1(Ω)-norm. We recall that

f �→
∫

Ω

|∇f(x, z)|2dxdz

is a norm on H , which is equivalent to the standard H1(Ω)-norm [5]. This is due to the boundary values imposed
in the definition of H .

Let V > 0 be the (half-)volume of an immerged hull. The set of admissible functions is the closed convex
subset of H defined by

CV =
{

f ∈ H

∫
Ω

f(x, z)dxdz = V and f ≥ 0 a.e. in Ω

}
.

Our optimization problem PΛ,ε reads: for a given Kelvin wave number v and for a given volume V > 0, find
the function f� which minimizes NΛ,ε(v, f) among functions f ∈ CV .
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3. Resolution of the optimization problem

3.1. Well-posedness of the problem

Unless otherwise stated, the parameters ρ > 0, g > 0, V > 0, Λ > 0, v > 0 and ε > 0 are fixed. We have:

Theorem 3.1. Problem PΛ,ε has a unique solution fε,v ∈ CV . Moreover, fε,v is even with respect to x.

Proof. The Hilbertian norm f �→ NΛ,ε(v, f) is strictly convex on H , because f �→ RΛ(v, f) is convex and
f �→ ∫

Ω |∇f(x, z)|2dxdz is strictly convex. Since the set CV is convex, any minimizer is unique.
Let now (fn) be a minimizing sequence in CV . Then (fn) is bounded in H , and we can extract a subsequence,

still denoted (fn), such that fn converges weakly in H to some f . Since CV is a convex set which is closed for the
strong topology, CV is also closed for the weak topology (see, e.g., [5]), so f belongs to CV . Since ∂xfn → ∂xf
weakly in L2(Ω), Tfn(v, λ) → Tf (v, λ) for every λ > 0. Thus, by Fatou’s lemma,

RΛ(v, f) ≤ lim inf
n

RΛ(v, fn).

Moreover, the norm
∫

Ω
|∇ · | is lower semi-continuous for the weak H1-topology. This implies that

NΛ,ε(v, f) ≤ lim inf
n

NΛ,ε(v, fn),

and this shows the minimality of f .
Next, we prove that the minimizer f is even with respect to x. For a function h ∈ H , let ȟ be the function

in H defined by ȟ(x, z) = h(−x, z) a.e. We notice that if h ∈ CV , then ȟ ∈ CV . It is also easily seen that
RΛ(v, ȟ) = RΛ(v, h) for all h ∈ H (use definitions (2.2) and (2.3) and a change of variable x → −x). Thus f̌ is
a function in CV such that NΛ,ε(v, f̌) = NΛ,ε(v, f). By uniqueness of the minimizer, f̌ = f . �

Remark 3.2. This well-posedness result and its proof are also valid if one uses Michell’s wave resistance
R(v, f) instead of RΛ(v, f) in the definition of the function NΛ,ε. A similar statement holds for Sretensky’s
wave resistance [35] in a laterally confined and infinitely deep fluid.

The following assertion shows that when ε is small, our optimal solution is an approximate solution to the
non-regularized optimization problem, i.e. the problem of finding a ship with minimal wave resistance (see also)

Proposition 3.3. The minimum value NΛ,ε(v, fε,v) tends to

mΛ,v := inf
f∈CV

RΛ(v, f)

as ε tends to 0.

Proof. Let β > 0. By definition of the infimum, there exists f ∈ CV such that mΛ,v ≤ RΛ(v, f) < mΛ,v +β. We
choose ε0 > 0 small enough so that

ε0

∫
Ω

|∇f |2 < β.

We have
NΛ,ε0(v, fε0,v) ≤ NΛ,ε0(v, f) ≤ RΛ(v, f) + β.

Thus, for all ε ∈ (0, ε0), we have

mΛ,v < NΛ,ε(v, fε,v) ≤ NΛ,ε(v, fε0,v) ≤ NΛ,ε0(v, fε0,v) ≤ mΛ,v + 2β.

Since β > 0 is arbitrary, the proof is complete. �
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3.2. Continuity of the optimum with respect to v

In this section, we prove that fε,v changes continuously as the parameter v changes. We first notice:

Proposition 3.4. The linear operator f �→ (λ �→ Tf (v, λ)) is bounded from H into L2([1, Λ], μ).

Proof. By the Cauchy−Schwarz’s inequality,

|Tf (v, λ)|2 ≤ ‖∂xf‖2
L2(Ω)

∫
Ω

e−2λ2vzdxdz

≤ ‖∂xf‖2
L2(Ω)

L

2λ2v
. (3.1)

Thus,

‖Tf (v, λ)‖L2([1,Λ],μ) ≤ ‖∂xf‖L2(Ω)

(
L

2v

)1/2

μ([1, Λ])1/2,

and this proves the claim, since μ([1, Λ]) < ∞ by assumption (cf. (2.9)). �

In particular, by definition (2.9),

RΛ(v, f) =
4ρgv

π
‖Tf (v, λ)‖2

L2([1,Λ],μ) (3.2)

is well defined for all f ∈ H , and f �→ RΛ(v, f) is a continuous nonnegative quadratic form on H .
The following result will prove useful:

Lemma 3.5. Let (vn) be a sequence of positive real numbers such that vn → v̄ > 0, and let (hn) be a sequence
in H such that hn → h weakly in H. Then RΛ(vn, hn) → RΛ(v̄, h).

Proof. let k(v, λ, x, z) = e−λ2vze−iλvx denote the kernel of Tf . By the mean value inequality, for all λ ∈ [1, Λ],
for all x ∈ [−L/2, L/2] and for all z ∈ [0, T ], we have

|k(vn, λ, x, z) − k(v, λ, x, z)| ≤ (Λ2T + ΛL/2)|vn − v|.

Thus,

|Thn(vn, λ) − Thn(v̄, λ)| ≤ (Λ2T + ΛL/2)
∫

Ω

|∂xhn(x, z)|dxdz|vn − v|

≤ (Λ2T + ΛL/2) ‖∂xhn‖L2(Ω) (LT )1/2|vn − v|,

and so Thn(vn, λ) − Thn(v̄, λ) → 0 (in R) as n → ∞. Moreover, for all λ ∈ [1, Λ],

Thn(v̄, λ) − Th(v̄, λ) → 0

since ∂xhn converges to ∂xh weakly in L2(Ω). We deduce from the triangle inequality that for all λ ∈ [1, Λ],

Thn(vn, λ) → Th(v̄, λ).

Estimate (3.1) in the proof of Proposition 3.4 shows that |Thn(vn, λ)| is bounded by a constant independent
of n and λ ∈ [1, Λ]. Since the total measure μ is finite on [1, Λ], we can apply Lebesgue’s dominated convergence
theorem, which yields

‖Thn(vn, λ)‖L2([1,Λ],μ) → ‖Th(v̄, λ)‖L2([1,Λ]),μ) .

The claim follows from (3.2). �
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We can now state:

Theorem 3.6. Let v̄ > 0. Then fε,v converges strongly in H to fε,v̄ as v → v̄.

Proof. Let (vn) be a sequence of positive real numbers such that vn → v̄. Our goal is to show that fε,vn tends
to fε,v̄ strongly in H .

First, we claim that the sequence of functionals (NΛ,ε(vn, ·))n Γ -converges to NΛ,ε(v̄, ·) for the weak topology
in H (see, e.g. [4]). Indeed, let (hn) be a sequence in H such that hn → h weakly in H . Lemma 3.5 shows that
RΛ(vn, hn) → RΛ(v̄, h). Using the lower semicontinuity of the norm in H , we deduce that

NΛ,ε(v̄, h) ≤ lim inf
n

NΛ,ε(vn, hn). (3.3)

Moreover, for any h ∈ H , using Lemma 3.5 again, we obtain

NΛ,ε(v̄, h) = lim
n→+∞NΛ,ε(vn, h). (3.4)

This proves the claim.
Next, we notice that the sequence fε,vn is bounded in H , since for any choice of h ∈ CV , we have

ε
ρg

2vn

∫
Ω

|∇fε,vn |2 ≤ NΛ,ε(vn, fε,vn) ≤ NΛ,ε(vn, h),

and the sequence NΛ,ε(vn, h) is bounded by (3.4). Thus, the sequence fε,vn has an accumulation point (in CV )
for the weak topology in H ; the Γ -convergence result (which is also valid in CV ) implies that any accumulation
point is a minimizer of NΛ,ε(v̄, ·), i.e. fε,v̄. Uniqueness of the minimizer implies that the whole sequence converges
weakly in H to fε,v̄.

Finally, we notice that
NΛ,ε(vn, fε,vn) ≤ NΛ,ε(vn, fε,v̄),

and this, together with (3.3) and (3.4), implies that

lim
n→+∞NΛ,ε(vn, fε,vn) = NΛ,ε(v̄, fε,v̄).

As a consequence, by Lemma 3.5, limn→+∞
∫

Ω
|∇fε,vn |2 =

∫
Ω
|∇fε,v̄|2, so fε,vn converges strongly in H to fε,v̄.

This concludes the proof. �

Remark 3.7. If ε is a (strictly) positive and continuous function of v, then a simple adaptation of the proof
above shows that Theorem 3.6 is still valid. This is the case if ε = Cdρg/(2v) with Cd constant, as in (2.12).

3.3. Regularity of the solution

In this section, we prove the W 2,p regularity of the solution for all p < ∞, by using the regularity of the
non-constrained optimization problem.

As a shortcut, we define

a(u, w) = ε

∫
Ω

∇u · ∇w dxdz (u, w) ∈ H × H,

so that a is a continuous bilinear form on H ; a is also coercive, i.e.

a(u, u) > 0 ∀u ∈ H \ {0},
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and the Hilbertian norm a �→ a(u, u)1/2 is equivalent to the H1-norm on H . Since the domain Ω is a rectangle,
the space H is dense in L2(Ω), and we have the continuous injections H ↪→ L2(Ω) ↪→ H ′. We can define A the
operator from H into H ′ such that

a(u, w) = 〈Au, w〉 ∀u, w ∈ H, (3.5)

where 〈·, ·〉 denotes the duality product H ′ × H .
Let finally H+ = {f ∈ H f ≥ 0 a.e. in Ω} and

k(x, z, x′, z′) =
4ρgv3

π

∫ Λ

1

λ2 cos(λv(x − x′))e−λ2v(z+z′)dμ(λ).

Regularity of a minimizer is a consequence of the Euler−Lagrange’s equation, which reads:

Proposition 3.8. The solution f ≡ fε,v of problem PΛ,ε satisfies the variational inequality

a(f, h − f) +
∫

Ω

(∫
Ω

k(x, z, x′, z′)f(x′, z′)dx′dz′
)

(h − f)dxdz

≥ C

∫
Ω

(h − f)dxdz ∀h ∈ H+,

for some constant C ∈ R.

Proof. Using the bilinear form a, and performing an integration by parts with respect to x in formulas (2.2)
and (2.3), for h ∈ H , we have

NΛ,ε(h) = a(h, h) +
4ρgv

π

∫ Λ

1

Ih(λ, v)2 + Jh(λ, v)2dμ(λ),

where
Ih(λ, v) = λv

∫
Ω

h(x, z)e−λ2vz sin(λvx)dxdz,

Jh(λ, v) = −λv

∫
Ω

h(x, z)e−λ2vz cos(λvx)dxdz.

Let now h ∈ H+ and set

ϕ(t) = V (f + t(h − f))/(
∫

Ω

f + t(h − f)) t ≥ 0,

so that ϕ(t) ∈ CV for all t ≥ 0 and ϕ(0) = f . Then NΛ,ε(ϕ(t)) ≥ NΛ,ε(f), so

d
dt

NΛ,ε(ϕ(t))|t=0 ≥ 0.

Computing, we have ϕ′(0) = (h − f) − f
∫

Ω
(h − f)/V and

d
dt

NΛ,ε(ϕ(t))|t=0 = 2a(f, ϕ′(0))

+
8ρgv

π

∫ Λ

1

If (λ, v)Iϕ′(0)(λ, v) + Jf (λ, v)Jϕ′(0)(λ, v)dμ(λ).

The expected variational inequality is obtained with the constant

C = a(f, f)/V +
4ρgv

πV

∫ Λ

1

If (λ, v)2 + Jf (λ, v)2dμ(λ),

by an application of Fubini’s theorem. �
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For sake of completeness, we recall the following classical result which relates the regularity of the constrained
problem to the regularity of the unconstrained problem. Let C∞

c (Ω) denote the space of smooth functions with
compact support in Ω, and let

C∞
c (Ω)+ = {ϕ ∈ C∞

c (Ω) ϕ ≥ 0 in Ω}.
We say that two elements w, z ∈ H ′ satisfy w ≥ z if 〈w, ϕ〉 ≥ 〈z, ϕ〉 for all ϕ ∈ C∞

c (Ω)+.

Theorem 3.9. Let w ∈ L2(Ω). The solution f ∈ H+ of the variational problem

a(f, h − f) ≥ 〈w, h − f〉 ∀h ∈ H+ (3.6)

satisfies Af ≥ w and w+ ≥ Af , where A is defined by (3.5).

Proof. The first inequality is obtained by choosing h = f + ϕ with ϕ arbitrary in C∞
c (Ω)+. For the second

inequality, we consider the solution σ of the following variational problem:{
σ ∈ H, σ ≤ f

a(σ, h − σ) ≥ 〈w+, h − σ〉 ∀h ∈ H such that h ≤ f.
(3.7)

The existence of σ is standard (see, for instance, [18]). We will prove that

σ = f. (3.8)

Then, choosing h = f − ϕ in (3.7), with ϕ arbitrary in C∞
c (Ω)+, we find

a(f,−ϕ) ≥ 〈w+,−ϕ〉,

which is the second expected inequality.
In order to prove (3.8), we first show that σ ≥ 0 a.e. in Ω. Since f ≥ 0 and σ ≤ f , we have σ+ ≤ f . We can

therefore choose h = σ+ in (3.7), and we obtain

a(σ, σ−) ≥ 〈w+, σ−〉.

Since a(σ+, σ−) = 0, this implies
−a(σ−, σ−) ≥ 〈w+, σ−〉 ≥ 0,

and so σ− = 0 by coercivity of a.
Thus, σ ≥ 0 a.e. in Ω, and we can choose h = σ in (3.6). This yields

a(f, σ − f) ≥ 〈w, σ − f〉,

and so
a(f − σ, σ − f) ≥ 〈w, σ − f〉 + a(σ, f − σ) ≥ 〈w−, f − σ〉 ≥ 0,

where we used (3.7) with h = f . By coercivity of a again, we obtain (3.8). �

We can now state our regularity result. The space W 2,p(Ω) is the Lp(Ω)-Sobolev space [5], and C1(Ω) denote
the space of functions f which are continuously differentiable in Ω and such that f and ∇f are uniformly
continuous in Ω.

Theorem 3.10. The solution fε,v of problem PΛ,ε belongs to W 2,p(Ω) for all 1 ≤ p < ∞. In particular,
fε,v ∈ C1(Ω).
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Proof. By Proposition 3.8, the solution f ≡ fε,v satisfies (3.6) with w defined by

w(x, z) = C −
∫

Ω

k(x, z, x′, z′)f(x′, z′)dx′dz′.

In particular, w belongs to L∞(Ω) with

‖w‖L∞(Ω) ≤ |C| + ‖k‖L∞(Ω×Ω)|Ω|1/2‖f‖L2(Ω) < +∞,

since

‖k‖L∞(Ω×Ω) ≤ 4ρgv3

π

∫ Λ

1

λ2dμ(λ) < +∞.

Thus, by Theorem 3.9, Af = w̃ with w ≤ w̃ ≤ w+, so w̃ ∈ L∞(Ω). We can use the regularity of the Laplacian
on a rectangle with Dirichlet boundary condition on three sides and Neumann boundary condition on one side
(Lem. 4.4.3.1 and Thm. 4.4.3.7 in [9]): we conclude that the solution f ∈ H of Af = w̃ belongs to W 2,p(Ω) for
all 1 ≤ p < ∞. For p large enough, we have the Sobolev injection W 2,p(Ω) ⊂ C1(Ω) [1], and this concludes the
proof. �

Remark 3.11. The global regularity result obtained in Theorem 3.10 is optimal because the domain Ω is a
rectangle, so that even for the unconstrained problem, we do not expect a better global regularity in general [9].
However, in the open set {fε,v > 0}, the function fε,v is obviously C∞, by a classical bootstrap argument [5];
otherwise, fε,v has the C1,1

loc (Ω) regularity which is optimal for obstacle-type problems [32].

3.4. Three remarks on the limit case ε = 0

In this section, for the reader’s convenience, we recall three results from ([20], Chap. 6), which are related to
our minimization problem in the limiting case ε = 0. The first two results are due to Krein.

We first have:

Proposition 3.12. If the wave resistance RΛ is computed by the integral (2.7), then for all v > 0 and for all
f ∈ CV , RΛ(v, f) > 0.

Proof. Let v > 0, f ∈ CV and assume by contradiction that RΛ(v, f) = 0. Then by (2.7), Tf(v, λ) = 0 for
every λ ∈ [1, Λ], and by analycity, Tf (v, λ) = 0 for all λ ∈ R. Integrating by parts with respect to x and using
f(−L/2, z) = f(L/2, z) = 0, we obtain:

0 = Tf (v, λ) = iλv

∫ L/2

−L/2

∫ T

0

f(x, z)e−λ2vze−iλvxdxdz (λ ∈ R).

Next, we use that the Fourier transform of a Gaussian density is known:∫
R

e−λ2vz′
e−iλvx =

√
π

vz′
e−vx2/(4z′) (z′ > 0).

We multiply Tf (v, λ) by e−λ2a with a > 0 and we integrate on R. By changing the order of integration (which
is possible thanks to the new term), we find:

0 =
∫ L/2

−L/2

∫ T

0

f(x, z)
(∫

R

e−λ2v(z+a)e−iλvxdλ

)
dxdz

=
∫ L/2

−L/2

∫ T

0

f(x, z)
√

π

v(a + z)
e−vx2/(4(a+z)dxdz.

This is possible only if f changes sign, hence a contradiction. The result is proved. �
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As pointed out by Krein, in Proposition 3.12, it is essential to assume that the ship has a finite length. Indeed,
there exists a ship of infinite length which has a zero wave resistance. More precisely, let f(x, z) = g(x)h(z)
with

g(x) =
2
π

sin2(ax/2)
ax2

for some a > 0 and where h(z) is arbitrary. Then we have

∫
R

g(x)e−iλvxdx =

{
(1 − |λ|v/a) if |λ| < a/v,

0 if |λ| ≥ a/v.

On the other hand, integrating by parts with respect to x in the definition of Tf yields

Tf (v, λ) = iλv

(∫
R

g(x)e−iλvxdx

)(∫
R+

h(z)e−λ2vzdz

)
.

Thus, choosing a < v yields RΛ(v, f) = 0 when RΛ is defined by (2.9). Such a choice of g can be thought of as
an endless caravan of ships.

Proposition 3.12 requires that f ≥ 0 on Ω. If we relax this assumption, for every v > 0, it is possible [20] to
find f ∈ C∞

c (Ω) such that Tf (v, λ) = 0 for all λ. Indeed, let h ∈ C∞
c (Ω) and set f = ∂2

xh + v∂zh. Using several
integration by parts and the identity

(∂2
x − v∂z)

(
e−λ2vze−iλvx

)
= 0,

we obtain

Tf(v, λ) = iλv

∫ L/2

−L/2

∫ T

0

f(x, z)e−λ2vze−iλvxdxdz = 0. (3.9)

This shows that the operator f �→ Tf(v, ·) is far from being one-to-one, as confirmed by the numerical simulations
(see Sect. 5.1.2).

4. Numerical methods

In this section, we focus on the discretization of the minimization problem. Recall that the regularized
criterion reads

NΛ,ε(v, f) = RΛ(v, f) + ε

∫
Ω

|∇f(x, z)|2dxdz,

where Λ is taken large enough. The set of constraints will insure the fact that:

• the volume of the (immerged) hull is given:∫
R2

f(x, z)dxdz = V ;

• the hull does not cross the center plane: f(x, z) ≥ 0;
• the hull is contained in a finite domain given by a box Ω = [−L/2, L/2] × [0, T ], where: f(−L/2, ·) =

f(L/2, ·) = f(·, T ) = 0.

The first constraint is an important one, since if no volume was imposed for the hull, the optimal solution to
our problem would be f = 0, for all target velocities v.
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4.1. A Q1 finite element discretization

We adopt here a finite element approach in the sense that the optimal shape f will be sought in a finite
dimensional subspace

V h ⊂ H ⊂ H1(Ω).

We use a cartesian grid which divides the domain Ω = (−L/2, L/2) × (0, T ) into Nx × Nz small rectangles
of size δx × δz, where δx = L/Nx and δz = T/Nz. We choose to represent the surface with the help of Q1

finite-element functions: for every node (xi, zi) of the grid, we define the “hat-function”

ei(x, z) =
(x − (xi − δx))(z − (zi − δz))

δxδz
, for (x, z) ∈ [xi − δx, xi] × [zi − δz, zi],

ei(x, z) =
((xi + δx) − x)((zi + δz) − z)

δxδz
, for (x, z) ∈ [xi, xi + δx] × [zi, zi + δz],

ei(x, z) =
(x − (xi − δx))((zi + δz) − z)

δxδz
, for (x, z) ∈ [xi − δx, xi] × [zi, zi + δz],

ei(x, z) =
((xi + δx) − x)(z − (zi − δz))

δxδz
, for (x, z) ∈ [xi, xi + δx] × [zi − δz, zi],

ei(x, z) = 0, otherwise. (4.1)

Let us denote:

X+
i = [xi, xi + δx], (4.2)

X−
i = [xi − δz, xi], (4.3)

Z+
i = [zi, zi + δz], (4.4)

Z−
i = [zi − δz, zi]. (4.5)

We can recast ei in the following manner, which is useful for further calculations:

ei(x, z) =
1

δx δz
ai(x) bi(z), (4.6)

where:

ai(x) = ((xi + δx) − x)�X+
i

(x) + (x − (xi − δx))�X−
i

(x), (4.7)

bi(z) = ((zi + δz) − z)�Z+
i
(z) + (z − (zi − δz))�Z−

i
(z), (4.8)

where �A is the indicator function of the set A (which is one in A and zero outside of A).
In order to set f(−L/2, ·) = f(L/2, ·) = f(·, T ) = 0 once and for all, we only keep the hat-functions which

correspond to interior nodes or to nodes (xi, zi) such that zi = 0, xi ∈ (−L/2, L/2) (i.e. nodes on the upper
side of Ω). These hat-functions are indexed from 1 to Nint (with Nint = (Nx −1)(Nz −1)) for the interior nodes
and from Nint + 1 to N = Nint + Nx − 1 for the Nx − 1 nodes of the upper side.

The functions {ei(x, z)}i=1...N are a basis of V h, so that the hull surface is represented by:

f(x, z) =
N∑

i=1

fiei(x, z), (4.9)

This identifies the space V h to R
N , and in all the following we will denote F = (fi)i=1,...,N the (column) vector

in RN corresponding to f(x, z).
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The other two constraints described earlier read:

• the volume of the hull is given:
Nint∑
i=1

fi +
1
2

N∑
i=Nint+1

fi = Ṽ ,

where Ṽ = V/(δxδz);
• the hull does not cross the center plane: fi ≥ 0 for i = 1 . . .N .

Remark that, from a geometrical point of view, this set of constraints can be seen as a (N − 1)-dimensional
simplex.

4.2. Approximation of the wave resistance

First, let us recall the expression of Michell’s wave resistance as a function of the hull shape. Since the optimal
ship has to be symmetric with respect to x (see Thm. 3.1), we drop the antisymmetric contribution I of the
hull on the wave resistance:

RMichell =
4ρg2

πU2

∫ Λ

1

J(λ)2
λ2

√
λ2 − 1

dλ,

with

J(λ) =
∫ L/2

−L/2

∫ T

0

∂f(x, z)
∂x

exp
(
−λ2gz

U2

)
sin
(

λgx

U2

)
dxdz. (4.10)

Integrating by parts in (4.10), and denoting v = g/U2, we obtain the simpler expression

RMichell =
4ρgv3

π

∫ Λ

1

J̃2(λ)
λ4

√
λ2 − 1

dλ,

with
J̃(λ) =

∫
R×R+

f(x, z) e−λ2vz cos(λvx) dxdz, (4.11)

Since RMichell is a quadratic form with respect to f , when f is given as (4.9), the expression of the wave
resistance reads

RMichell =
4ρgv3

π
F t Mw F, (4.12)

where F t denotes the transpose of the vector F . Simple calculations give us the N × N matrix Mw:

Mw =
∫ Λ

1

J (λ)J (λ)t λ4

√
λ2 − 1

dλ, (4.13)

where J (λ) is the (column) vector of R
N given by

(J (λ))i =
∫

R×R+
e−λ2vz cos(λvx) ei(x, z) dxdz, (4.14)

for i = 1 . . .N . Every basis function ei is the product of a polynomial in x by a polynomial in z on every one
of the cells (see (4.1)), so one can compute exactly the values of J (λ). Injecting (4.6) into (4.14), we obtain:

(J (λ))i =
∫

R×R+
e−λ2vz cos(λvx) ai(x) bi(z) dxdz. (4.15)

Hence our integral can be written as a product of two independent integrals:

(J (λ))i =
∫

R

cos(λvx) ai(x) dx

∫
R+

e−λ2vz bi(z) dz. (4.16)
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From (4.7) and (4.8), we remark that each integral is the sum of two terms:∫
R

cos(λvx) ai(x) dx = a+
i + a−

i , (4.17)∫
R+

e−λ2vz bi(z) dz = b+
i + b−i , (4.18)

where:

a+
i =

∫ xi+δx

xi

cos(λvx) ((xi + δx) − x) dx, (4.19)

b+
i =

∫ zi+δz

zi

e−λ2vz ((zi + δz) − z) dz, (4.20)

a−
i =

∫ xi

xi−δx

cos(λvx) (x − (xi − δx)) dx, (4.21)

b−i =
∫ zi

zi−δz

e−λ2vz (z − (zi − δz)) dz. (4.22)

Hence our vector J (λ) writes:

(J (λ))i =
1

δx δz
(a+

i + a−
i )(b+

i + b−i ). (4.23)

Elementary yet tedious calculations give us the values for the integrals a+
i , b+

i , a−
i and b−i :

a+
i =

1
v2λ3

{
−δx sin(λvxi) +

1
λv

(cos(λvxi) − cos(λv(xi + δx)))
}

, (4.24)

b+
i =

1
v2λ3

{
δz e−λ2vzi − 1

λ2v

(
e−λ2vzi − e−λ2v(zi+δz)

)}
, (4.25)

a−
i =

1
v2λ3

{
δx sin(λvxi) +

1
λv

(cos(λvxi) − cos(λv(xi − δx)))
}

, (4.26)

b−i =
1

v2λ3

{
−δz e−λ2vzi − 1

λ2v

(
e−λ2vzi − e−λ2v(zi−δz)

)}
. (4.27)

Moreover, b−i = 0 if zi = 0.
Let us now describe the method employed to approximate the integral with respect to λ which appears

in (4.13). In [36], Tarafder et al. described an efficient method in order to compute this integral. In order to get
rid of the singular term for λ = 1, the integral is transformed in the following manner:

Mw =
∫ Λ

1

J (λ)J (λ)t λ4

√
λ2 − 1

dλ (4.28)

=
∫ 2

1

J (λ)J (λ)t λ4

√
λ2 − 1

dλ +
∫ Λ

2

J (λ)J (λ)t λ4

√
λ2 − 1

dλ (4.29)

=J (1)J (1)t

∫ 2

1

1√
λ2 − 1

dλ +
∫ 2

1

λ4 J (λ)J (λ)t − J (1)J (1)t

√
λ2 − 1

dλ

+
∫ Λ

2

J (λ)J (λ)t λ4

√
λ2 − 1

dλ (4.30)

The first integral can be computed explicitly:

J (1)J (1)t

∫ 2

1

1√
λ2 − 1

dλ = ln(2 +
√

3)J (1)J (1)t. (4.31)
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The second integral, which is not singular anymore, is computed with a second order midpoint approximation
formula: ∫ 2

1

λ4 J (λ)J (λ)t − J (1)J (1)t

√
λ2 − 1

dλ ≈
N0∑
i=1

λ4
i,0 J (λi,0)J (λi,0)t − J (1)J (1)t√

λ2
i,0 − 1

δλ0, (4.32)

where δλ0 = 1/N0 and λi,0 = 1+
(
i + 1

2

)
δλ0 (for i = 1,. . . ,N1). Thanks to the exponential decay of J (λ) when

zi > 0 and zi − δz > 0 (see (4.24) − (4.27)), the function under the third integral has an exponential decay
for most values of z. Therefore, the third integral is cut in intervals of exponentially growing lengths (we set
Λ = 2KΛ): ∫ Λ

2

J (λ)J (λ)t λ4

√
λ2 − 1

dλ =
KΛ−1∑
k=1

∫ 2k+1

2k

J (λ)J (λ)t λ4

√
λ2 − 1

dλ (4.33)

On each interval, the integral is computed with a second order midpoint approximation formula:∫ 2k+1

2k

J (λ)J (λ)t λ4

√
λ2 − 1

dλ ≈
Nk∑
i=1

J (λi,k)J (λi,k)t
λ4

i,k√
λ2

i,k − 1
δλk, (4.34)

where: δλk =
2k

Nk
, and λi,k = 2k + (i + 1

2 )δλk for i = 1, . . . , Nk.

Remark 4.1. The integration method with respect to λ described above preserves the positivity of the operator
Mw. From (4.31), (4.32) and (4.34), the approximation of Mw can be written as:

Mw = ω0J (1)J (1)t +
J�∑
j=1

ωjJ (λj)J (λj)t (4.35)

where the sequence (λj) contains all the midpoints λi,k described above. It is clear by construction that ωj > 0
for j ≥ 1. For ω0, the matter is less obvious, and the positivity is a consequence of the choice we made for the
numerical method of integration. The coefficient ω0 reads

ω0 = ln(2 +
√

3) −
N0∑
i=1

δλ0√
λ2

i,0 − 1
(4.36)

The first term of this difference is the exact integral, and the second term is the approximate integral. When we
deal with the integral of convex functions, the approximate integral computed with the midpoint approximation

is always lower than the exact integral. Since λ → 1√
λ2 − 1

is convex for λ > 1, we have ω0 > 0. Hence, Mw is

positive (semi-definite, see Fig. 3).

4.3. Approximation of the viscous resistance

Let us give the expression of the additional “viscous drag” term when f is given by (4.9):∫
Ω

|∇f |2 = (∇f, ∇f)L2 (4.37)

=

(
N∑

i=1

fi∇ei,
N∑

i=1

fi∇ei

)
L2

(4.38)

=
N∑

i,j=1

fi fj (∇ei,∇ej)L2 (4.39)

The computation of the matrix Md = (∇ei,∇ej)L2 is standard [22]. This matrix is nondiagonal, symmetric
positive definite.
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4.4. Method of optimization

From (4.12) and (4.39), we can recast the optimization problem as finding F ∗ which solves

F ∗ = argmin
F∈KṼ

{
F t (

4ρgv3

π
Mw + εMd)F

}
, (4.40)

where

KṼ =

{
F = (fi)1≤i≤N ∈ R

N : F ≥ 0 and
Nint∑
i=1

fi +
1
2

N∑
i=Nint+1

fi = Ṽ

}
. (4.41)

This problem can be reformulated as finding the saddle point (F ∗, λ∗
1, λ

∗
2) ∈ RN × (R−)N × R for the following

Lagrangian:

L (F, λ1, λ2) = F t

(
4ρgv3

π
Mw + εMd

)
F + λt

1F +

(
N∑

i=1

αifi − Ṽ

)
λ2, (4.42)

where αi = 1 for i ∈ {1, . . . , Nint} and αi = 1/2 otherwise.
The method we used in order to find this saddle point is the Uzawa’s algorithm [7]. Given (Fn, λn

1 , λn
2 ), we

find (Fn+1, λn+1
1 , λn+1

2 ) in the following manner:

• First, we obtain Fn+1 by minimizing L(F, λn
1 , λn

2 ) with respect to F in RN , which is equivalent to:

Fn+1 = ((
4ρgv3

π
Mw + εMd)−1(λ1 + λ2), (4.43)

• then we iterate on the Lagrange multipliers with:

λn+1
1 = P(R−)N (λn

1 + δr1 F ) , (4.44)

λn+1
2 = λn

2 + δr2

(
N∑

i=1

αifi − Ṽ

)
, (4.45)

where P(R−)N denotes the projection on (R−)N , δr1 and δr2 are steps that have to be taken small enough
in order to insure convergence, and large enough in order to insure fast convergence.

When this algorithm has converged (i.e. (Fn+1 − Fn, λn+1
1 − λn

1 , λn+1
2 − λn

2 ) small enough for some norm), the
saddle point is reached.

5. Numerical results and their interpretation

In this section, we perform hull optimization with the method described above. We first describe the necessity
of adding a coercive term in our optimization criterion, and then we give some optimized hulls obtained for
moderate Froude numbers.

We used the following set of parameters, which could correspond to an experiment in a towing basin: ρ =
1000 kg · m−3, g = 9.81 m · s−2, L = 2 m, T = 20 cm, V = 0.03 m3.

The space discretization parameters are Nx = 100 and Nz = 20 (except in Fig. 3 where Nx = 100 and
Nz = 30). These values are taken as a compromise between the computational cost and the accuracy we seek.
We remark that since Mw is obtained as the product of two vectors with Nx × Nz entries, this matrix is a
full matrix with (Nx × Nz)2 non-zero entries. this means that the memory cost is O((Nx × Nz)2) (instead of
O(Nx × Nz) for a sparse problem).

We remind that Ṽ = V/(δxδz) with δx = L/Nx and δz = T/Nz. The parameters N0, . . . , NKΛ used in the
numerical integration (see (4.32) − (4.34)) are all equal to 80. The integer KΛ is determined by a stopping
criterion (KΛ is generally around 10).
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Figure 1. Color maps of the optimized hull function f(x, z) for smaller and smaller values of ε.

The velocity is given by the length Froude’s number:

Fr =
U√
gL

, (5.1)

and we remind that in our notations, v = g/U2. Our Q1 discretized wave resistance formula (4.12) has been vali-
dated by comparison to some tabulated results obtained by Kirsch [19] for a hull of longitudinal parabolic shape
with a rectangular cross-section (rectangular Wigley’s hull). We used the Scilab software for the computations
and the Matlab4 software for the figures.

5.1. Degenerate nature of the wave resistance criterion for optimization

5.1.1. Letting ε tend to 0

Let us examine the numerical results of the optimization problem:

F ∗ = argmin
F∈KṼ

{
F t

(
4ρgv3

π
Mw + εMd

)
F

}
, (5.2)

for smaller and smaller values of ε, with Fr = 1. In Figure 1 we notice that, as ε gets small (ε is expressed in
Pa), the optimized hull does not seem to converge towards a limit. In fact most of the hull’s volume tends to
accumulate on the edges of the domain boundaries, where f = 0 is imposed.

Note that this phenomenon is very similar to a boundary layer phenomenon. Let us take the characteristic
width of the boundary layer as the distance between the left border of the domain and the center of mass (x̄, ȳ)
of the half hull.

The characteristic width of the boundary layer (see Fig. 2) seems to fit a law of the type

Lcarac(ε) ∼ ε0.15. (5.3)

This phenomenon suggests that the optimization problem PΛ,ε is ill-posed when ε = 0.

4http://www.mathworks.fr/

http://www.mathworks.fr/
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Figure 2. Characteristic width of the boundary layer as a function of ε.

Remark 5.1. In finite dimension, the problem

F � ∈ argminF∈KṼ
F t Mw F

has at least one solution, because KṼ , being a simplex, is a compact subset of RN . The existence of such a
solution is due to the discretization; this is a well-known situation in shape optimization (see, for instance, [2]).

5.1.2. About the eigenvalues of Mw (numerics)

Let us consider once again (for a fixed v > 0) the operator f �→ Tf (v, ·) (see (2.5)) which appears in the
definition of RΛ(v, f) (2.9). We have seen that Tf is not invertible (cf. (3.9)). This (linear) operator transforms a
function of two variables, f(x, z), into a function of one variable, λ. Roughly speaking, we “loose” one dimension
in the process, and this is the reason why the wave resistance RΛ alone is not suited for minimization.

This is confirmed by numerical computation of the eigenvalues of the matrix Mw (see Fig. 3, where the
Froude’s number is equal to 1). Since Mw is symmetric, up to a change of orthonormal basis, Mw is equal to
a diagonal matrix formed with its eigenvalues. Recall now that Mw represents (up to a constant factor) the
restriction of RΛ to the space V h (we omit here the fact that Mw contains only the cosin term). In Figure 3,
Nx = 100 and Nz = 30, so there are N ≈ 3000 degrees of freedom, but there are less than 200 positive eigenvalues
(for an index i ≥ 200, the eigenvalue satisfies |λi| < 10−15, which is the double precision accuracy; for i ≥ 1600,
we have λi = 0 up to computer accuracy, so that λi is not represented in the logarithmic scale). Corollary 5.3
below provides a theoretical lower bound (Nx − 1 = 99) concerning the number of positive eigenvalues.

In other words, Figure 3 shows that only a few degrees of freedom are necessary in order to minimize
efficiently the wave resistance. In such a case, existence of a solution to the minimum wave resistance problem is
a consequence of the discretization (see Rem. 5.1). This is an approach that has been used by many authors [8,
10, 12, 14, 15, 20, 24, 30, 37]. In contrast, with our approach, we do not need to impose “a priori ” the set of
parameters: the interesting degrees of freedom are selected when minimizing the total resistance.

5.1.3. About the eigenvalues of Mw (analysis)

Here, we provide a theoretical lower bound for the number of positive eigenvalues. First, we notice that the
operator Tf can be seen as the composition of a Fourier transform in x by a modified Laplace transform in z.
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Figure 3. Eigenvalues of Mw.

More precisely, for ϕ ∈ L1(R), let

Fx(ϕ)(ξ) :=
∫

R

e−iξxϕ(x)dx (ξ ∈ R)

be the Fourier transform of ϕ, and for χ ∈ L1(R+), let

Lz(χ)(s) :=
∫

R+

e−szχ(z)

be the Laplace transform of χ, which is defined for all s ∈ C such that �(s) ≥ 0. If f(x, z) = ϕ(x)χ(z) with
ϕ ∈ L1(R) and χ ∈ L1(R+), then for all v > 0,

Tf(v, λ) = Fx(ϕ′)(λv)Lz(χ)(λ2v) ∀λ ∈ R. (5.4)

As a consequence, we have:

Proposition 5.2. Assume that f ∈ H can be written f(x, z) = ϕ(x)χ(z) with ϕ ∈ H1
0 (−L/2, L/2) and χ ∈

H1(0, T ). If f �= 0, then for all v > 0, the function λ → Tf(v, λ) is real analytic on R and not identically zero.

Proof. Since ϕ′ ∈ L1(−L/2, L/2), and since the kernel (x, ξ) �→ e−iξx is holomorphic with respect to ξ ∈ R

and uniformly bounded for ξ in a compact subset of C and x ∈ [−L/2, L/2], by standard results, the Fourier
transform ξ �→ Fx(ϕ′)(ξ) is holomorphic on C (where ϕ′ is extended by 0 on R). The assumptions on f and ϕ
imply that ϕ′ �= 0; by injectivity of the Fourier transform on L1(R), we have Fx(ϕ′) �= 0. Similarly, the Laplace
transform s �→ Lz(χ)(s) is holomorphic on C. If χ ∈ H1(0, T ), then χ is absolutely continuous on [0, T ], and an
inversion formula holds [3]. Thus, since χ �= 0 (by assumption), we have Lz(χ) �= 0. By analycity, Fx(ϕ′) and
Lz(χ) have isolated roots. The conclusion follows from (5.4). �

When RΛ is defined by a numerical integration of the form (2.8), with nodes 1 ≤ λ1 < · · · < λK� ≤ Λ, the
maximum stepsize of the subdivision (λk) is defined by

δλmax = max
0≤k≤K�

(λk+1 − λk),



A DETERMINATION OF OPTIMAL SHIP FORMS 107

where we have set λ0 = 1 and λK�+1 = Λ. Recall that V h, introduced in Section 4.1, is the finite dimensional
subspace of H obtained by the conforming Q1 discretization. Let v > 0 be fixed. We can state:

Corollary 5.3. If RΛ is defined by the integral formula (2.7), or by a numerical integration (2.8) where the
maximum stepsize is taken sufficiently small, there exists a subspace Wh ⊂ V h which has a dimension greater
than or equal to max{Nx, Nz} − 1 and such that RΛ(v, f) > 0 for all f ∈ Wh \ {0}.
Proof. We assume that Nx ≥ Nz (otherwise we exchange the roles of x and z). We also assume (by changing the
indexing if needed) that the hat-functions e1, . . . , eNx−1 are associated to the first line of interior nodes (xi, z1)
with xi = −L/2 + iδx (i = 1, . . . , Nx − 1), z1 = T − δz. Every ei can be written

ei(x, z) = ϕi(x)χ1(z) (5.5)

where

ϕi(x) = ϕ̂

(
x − xi

δx

)
, χ1(z) = ϕ̂

(
z − z1

δz

)
, ϕ̂(s) =

⎧⎪⎨
⎪⎩

1 + s if s ∈ [−1, 0],
1 − s if s ∈ [0, 1],
0 otherwise.

Let Wh be the subspace of V h generated by {e1, . . . , eNx−1}, and let f ∈ Wh\{0}, i.e. f(x, z) =
∑Nx−1

i=1 αiei(x, z)
with (α1, . . . , αNx−1) �= (0, . . . , 0). By (5.5),

f(x, z) =

(
Nx−1∑
i=1

αiϕi(x)

)
χ1(z) = ϕ(x)χ1(z), (5.6)

where ϕ ∈ H1
0 (−L/2, L/2), χ1 ∈ H1(0, T ). Using Proposition 5.2, we see that λ �→ Tf(v, λ) is real analytic on

R and not identically zero. Thus, if RΛ is defined by the integral formula (2.7), RΛ(v, f) > 0.
Next, assume that RΛ is defined by an numerical integration such as (2.8). We claim that if the maximum

stepsize is sufficiently small, then RΛ(v, f) > 0 for all f ∈ Wh \ {0}. Otherwise, there exist a sequence of
subdivisions 1 ≤ λn

1 < · · · < λn
Kn ≤ Λ with maximum stepsize δλn

max → 0 and fn =
∑Nx−1

i=1 αn
i ei ∈ Wh \ {0}

such that
RΛ(v, fn) = 0 ⇐⇒ Tfn(v, λn

k ) = 0 ∀k ∈ {1, . . . , Kn}. (5.7)

Denote αn = (αn
1 , . . . , αn

Nx−1), and
‖αn‖∞ = max

1≤i≤Nx−1
|αn

i |.

Replacing αn by αn/‖αn‖∞ if necessary, we may assume that ‖αn‖∞ = 1. Thus, up to a subsequence, αn → α

in RNx−1, with ‖α‖∞ = 1. The sequence of functions fn tends in Wh to a function f =
∑Nx−1

i=1 αiei �= 0,
which can be represented as in (5.6). Using Proposition 5.2 again, we obtain that λ �→ Tf(v, λ) is an analytic
function with isolated zeros in [1, Λ]. On the other hand, passing to the limit in (5.7) shows that λ �→ Tf(v, λ)
is identically equal to 0 on [1, Λ], yielding a contradiction. The claim is proved. �

5.2. Optimization with respect to the wave and viscous drag resistance

In this section we examine the influence of the velocity on the optimization problem (5.2) for:

ε =
1
2
ρCwU2, (5.8)

with a fixed value for the effective viscous drag coefficient: Cw = 10−2, which is a rather realistic value when
considering a streamlined body. Note that all the results described below depend on the choice Cw, and the
bounds of the different regimes described with respect to the Froude’s number may be affected if Cw is changed.
When the Froude’s number (see (5.1)) is large, or when the Froude’s number is low (in our case Fr ≤ 0.1 or
Fr ≥ 2) we observe that the optimized shapes we obtain are very similar, and seem to essentially minimize the
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Figure 4. Top row: ship hull optimization for high and low Froude’s numbers. Bottom figure:
ship hull optimization without wave resistance (optimization of the viscous drag).

surface area of the hull (see Fig. 4). For large Froude’s numbers, the reason is that the wave resistance (which
goes to 0 as Fr goes to infinity) is significantly smaller than the viscous resistance, and hence the optimal
hull is close to the optimal hull for the viscous drag resistance, which depends mainly on the surface area
and Fr2. For low Froude’s numbers, the reason is not so clear, but in this case, our theoretical resistance is not
a good approximation of the real resistance, due to the limitations of Michell’s wave resistance at low Froude’s
numbers [8]).

In the intermediate regimes (here Fr ∈ [0.1, 1]) in which the wave resistance is non-negligible, we observe
various hull shapes depending on the length Froude’s number (see Fig. 5). Here, for Fr close to 0.6 we observe
that the optimal hull features a bulbous bow, very similar to the ones that are usually designed for large sea
ships [16]. For Fr ∈ [1, 2] the optimized hull varies continuously from a form presenting a small bulbous bow to
a shape where the wave resistance is negligible.

Note that this bulbous bow appears for Froude’s numbers values that usually produce the largest wave
resistance for a standard hull such as the Wigley’s hull (see Fig. 7, plain line). In Figures 6 and 7, we observe
that the optimized hull for a given velocity is not optimal for every velocities. A Wigley’s hull can be a better
solution for some values of Fr. For the comparison, we have used here a Wigley’s hull with a parabolic cross
section, i.e.

f(x, z) =
B

2

(
1 − 4x2

L2

)(
1 − z2

T 2

)
,

where B is such that

V =
∫ L/2

−L/2

∫ T

0

f(x, z)dxdz =
2
9
BLT = 0.03 m3.



A DETERMINATION OF OPTIMAL SHIP FORMS 109

Figure 5. Ship hull optimization for moderate Froude’s numbers.

6. Conclusion and perspectives

In this paper we presented both a theoretical and numerical framework for the optimization of ship hulls in
the case of unrestricted water, in which the Michell’s integral is valid for the prediction of the wave resistance.
We have shown the well-posedness of the problem when adding a regularising term that can be interpreted
physically as a model of viscous resistance. Some numerical calculations have shown some features predicted in
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Figure 6. Comparison with a Wigley’s hull.
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Figure 7. Comparison with a Wigley’s hull.

the theoretical work such as the most-likely ill-posedness of the optimization problem when considering only the
wave resistance as our objective function and the fact that one could reduce the number of degrees of freedom
in our problem by working on the (smaller) space of hulls that produce a non-zero wave resistance (although
an expression of a basis of this space seems a non-trivial). Further numerical calculations have shown some
common features of ship design such as the use of a bulbous bow to reduce the wave resistance.
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