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ROUGH WALL EFFECT ON MICRO-SWIMMERS ∗
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Abstract. We study the effect of a rough wall on the controllability of micro-swimmers made of
several balls linked by thin jacks: the so-called 3-sphere and 4-sphere swimmers. Our work completes
the previous work [F. Alouges and L. Giraldi, Acta Applicandae Mathematicae 128 (2013) 153–179]
dedicated to the effect of a flat wall. We show that a controllable swimmer (the 4-sphere swimmer) is
not impacted by the roughness. On the contrary, we show that the roughness changes the dynamics of
the 3-sphere swimmer, so that it can reach any direction almost everywhere.
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1. Introduction

Micro-swimming is a subject of growing interest, notably for its biological and medical implications: one can
mention the understanding of reproduction processes, the description of infection mechanisms, or the conception
of micro-propellers for drug delivery in the body. As regards its mathematical modeling and analysis, the studies
by Taylor [28], Lighthill [17] and Purcell [23] have been pioneering contributions to a constantly increasing field:
we refer to the recent work of Powers and Lauga [15] for an extensive bibliography.

Among the many aspects of micro-swimming, the influence of the environment on swimmers dynamics has
been recognized by many biological studies (see for instance [5, 22, 25–27,31, 32]). One important factor in this
dynamics is the presence of confining walls. For example, experiments have shown that some microorganisms,
like E. Coli, are attracted to surfaces.

The focus of this paper is the effect of wall roughness on micro-swimming. Such effect has been already
recognized in the context of microfluidics, in connection with superhydrophobic surfaces [16, 33]. Moreover,
recent studies have highlighted the role of roughness in the dynamics of passive spherical particles in a Stokes
flow: we refer for instance to the study of Rad and Najafi [24] or to the one of Gérard-Varet and Hillairet [10].

We want here to study the impact of a rough wall on the displacement of micro-swimmers, at low
Reynolds number. Our point of view will be theoretical, more precisely based on control theory. Connection
between swimming at low Reynolds number and control theory has been emphasized over the last years
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control theory, asymptotic expansion.
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1 Institut de Mathématiques de Jussieu et Université Paris 7, Bâtiment Sophie Germain, 75205 Paris cedex 13, France.
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(see [3, 7, 11, 18–20]). We shall ponder here on the recent studies [2, 4], dedicated to the controllability anal-
ysis of particular Stokesian robots, in the whole space and in the presence of a plane wall respectively. We shall
here incorporate roughness at the wall, and focus on two classical models of swimmers: the 3-sphere swimmer
(see [1,2,4,12]) and the 4-sphere swimmer (see [2,4]). First, we will show that the controllability of the 4-sphere
swimmer (already true near a flat wall) persists with roughness. Then, we will prove that the rough wall leads the
3-sphere swimmer to reach any space direction. The underlying mechanism is the symmetry-breaking generated
by the roughness.

The paper is divided into three parts. In Section 2, we introduce the mathematical model for the fluid-
swimmer coupling, and we derive from there an ODE for the swimmer dynamics. In Section 3, we show that
the force field in this ODE is analytic with respect to the roughness amplitude and swimmer size and position.
Combining this property with the results of [2] yields the controllability of the 4-sphere swimmer “almost
everywhere” Section 4.1 provides an asymptotic expansion of the Dirichlet-to-Neumann operator, with respect
to the roughness amplitude and swimmer’s size. This operator is naturally involved in the expansion of the
force fields. Eventually, we use this expansion and make it truly explicit in Section 4, in the special case of the
3-sphere swimmer. This allows us to show its controllability.

2. Mathematical setting

In this part, we present our mathematical model for the swimming problem.

2.1. Swimmers

We carry on the study of specific swimmers that were considered in [4] in R3 and in [2] in an half plane.
These swimmers consist of N spheres ∪N

l=1Bl of radii a connected by k thin jacks which are supposed free of
viscous resistance. The position of the swimmer is described by a variable p ∈ R3 × SO(3), which gives both
the coordinates of one point over the swimmer and the swimmer’s orientation. Moreover, the shape variable is
denoted by a k-tuple ξ: its ith component ξi gives the length of ith arm, that can stretch or elongate through
time. Nevertheless, the directions of the arms are only modified by global rotation of the swimmer. We call
the set of the admissible state of swimmer M := {(ξ,p)}. Let us stress that all the variables above depend
implicitly on time, through the transport and deformation of the swimmer.

Many results of our paper apply to the general class of swimmers just described. Nevertheless, we will pay a
special attention to two examples:

• The 4-sphere swimmer. We consider a regular tetrahedron (S1,S2,S3,S4) with center O ∈ R3
+. The 4-sphere

swimmer consists of four balls linked by four arms of fixed directions
−−→
OSi which are able to elongate and

shrink (in a referential associated to the swimmer). The four ball cluster is completely described by the list
of parameters (ξ,p) = (ξ1, . . . , ξ4,xc,R) ∈ (0,∞)4 × R3 × SO(3). Thus, the set of the admissible states of
the swimmer is M = (0,∞)4 × R3 × SO(3). It is known that the 4-sphere swimmer is controllable in R3

and remains controllable in presence of a plane wall (see [2, 4]). This means that it is able to move to any
point and with any orientation under the constraint of being self-propelled, when the surrounding flow is
dominated by viscosity (Stokes flow). This swimmer is depicted in Figure 1.

• The 3-sphere swimmer (see [1, 2, 4] and [21]). It is composed of three aligned spheres, linked by two arms,
see Figure 2. The dynamics of the swimmer is described through the lengths of the two arms ξ1, ξ2, the
coordinates of the center of the middle ball: xc = (xc, yc, zc), and some matrix R ∈ SO(3) describing the
orientation of the swimmer. Thus,

(ξ,p) = (ξ1, ξ2,xc,R) ∈ (0,∞)2 × R
3 × SO(3).

Here, the set of the admissible states for the 3-sphere swimmer is M = (0,∞)2 ×R3×SO(3). As regards the
position and elongation of the swimmer, the angle of the rotation R around the symmetry axis of the 3-sphere
is irrelevant. As a matter of fact, we will not show controllability for this angle: our result, Theorem 2.4, yields
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Figure 1. The four-sphere swimmer.
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Figure 2. Coordinates of the 3-sphere swimmer.

controllability of the swimmer up to rotation around its axis. Still, the associated angular velocity is not zero,
and will appear in the dynamics.

2.2. Fluid flow

We consider a fluid confined by a rough boundary. This boundary is modelled by a surface with equation
z = εh(x, y), for some Lipschitz positive function h. Here, ε > 0 denotes the amplitude of the roughness, that
is ‖h‖∞ = 1. The swimmer evolves in the half-space O = {(x, y, z) ∈ R3 s. t. z > εh(x, y)}. The fluid domain
is then F := O \∪N

l=1Bl, and again it depends implicitly on time. Finally, we assume that the flow is governed
there by the Stokes equation. Thus, the velocity uS and the pressure pS of the fluid satisfy:

−μΔuS + ∇pS = 0, div uS = 0 in F , (2.1)

where μ is the viscosity of the fluid. We complement the Stokes equation (2.1) by standard no-slip boundary
conditions, that read: {

uS = Ω × (x − xc) + v + ud at ∪N
l=1∂Bl,

uS = 0 at ∂O.
(2.2)

In other words, we impose the continuity of the velocity both at the fixed wall and at the boundary of the
moving swimmer. Note that the velocity field of the swimmer is made of two parts:
• one corresponding to an (unknown) rigid movement, with angular velocity Ω and linear velocity v. If xc is

the point over the swimmer encoded in p, the velocity v is its speed. The vector (Ω,v)t can be identified
with ṗ (everything will be made explicit in due course).

• one corresponding to the (known) deformation of the jacks, with associated velocity ud, depending on ξ̇.
Introducing the Hilbert space

V =

{
u ∈ D′(F ,R3) | ∇u ∈ L2(F),

u(r)√
1 + |r|2

∈ L2(F)

}
, (2.3)

we get (for any configuration of the swimmer ∪Bl and velocities (Ω,v,ud)) a unique solution (uS , pS) of (2.1)–
(2.2) in V × L2(F). See Appendix A for more details.
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2.3. Dynamics

Of course, the previous relations describe the equilibrium of the fluid flow at any given instant t. To close
the model (that is the fluid-swimmer coupling), we still need to specify the dynamics of the swimmer, based on
Newton’s laws. The description is by now classical (see for instance [4, 18]), and can be expressed by an affine
control system without drift. Let us recall the principle of derivation. Neglecting inertia, Newton’s laws become⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N∑
l=1

∫
∂Bl

σ(uS , pS) · n ds = 0,

N∑
l=1

∫
∂Bl

σ(uS , pS) · n × (x − xc) ds = 0,

(2.4)

where σ(u, p) = μ(∇u + ∇tu) − pId is the Cauchy tensor.
Moreover, if we introduce an orthonormal basis (e1, e2, e3) and use linearity, uS decomposes into

uS =
3∑

i=1

Ωiui +
6∑

i=4

vi−3ui + ud. (2.5)

Here, the ui’s and ud are solutions of the Stokes equation, with zero Dirichlet condition at the wall, and
inhomogeneous Dirichlet conditions at the ball. The Dirichlet data is ei × (x − xc) for i = 1, 2, 3, ei−3 for
i = 4, 5, 6, ud for ud. Note also that the speed ud can be expressed as a linear combination of (ξ̇i)k

i = 1:

ud =
k∑

i=1

ud
i ξ̇i. (2.6)

Identifying (Ω,v)t with ṗ (everything will be made explicit in due course), the system (2.4) reduces to the
following ODE:

Ma,ε(ξ,p) ṗ + Na,ε(ξ,p) = 0 (2.7)

where the matrix Ma,ε(ξ,p) is defined by,

Ma,ε
i,j (ξ,p) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N∑
l=1

∫
∂Bl

((x − xc) × ei) · σ(uj , pj)n ds (1 ≤ i ≤ 3, 1 ≤ j ≤ 6) ,

N∑
l=1

∫
∂Bl

ei−3 · σ(uj , pj)n ds (4 ≤ i ≤ 6, 1 ≤ j ≤ 6) ,

and Na,ε(ξ,p) is the vector of R
6 whose entries are,

Na,ε
i (ξ,p) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N∑
l=1

∫
∂Bl

((x − xc) × ei) · σ(ud, pd)n ds (1 ≤ i ≤ 3) ,

N∑
l=1

∫
∂Bl

ei−3 · σ(ud, pd)n ds (4 ≤ i ≤ 6) .

Of course, the matrix field Ma,ε and vector field Na,ε depend on a, the radius of the sphere, and ε the
amplitude of the roughness at the wall. The matrix Ma,ε(ξ,p) is checked to be symmetric and negative definite.
By inverting it in (2.7), we end up with the following relation for the swimmer’s dynamics:

ṗ = −(Ma,ε(ξ,p))−1Na,ε(ξ,p). (2.8)
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By using (2.6), we deduce that there is a family vector fields (Fa,ε
i )k

i=1 (each of them is defined on M and
depends on the parameters ε the roughness of the wall and a the radius of the sphere) such that equation (2.8)
reads

ṗ =
k∑

i=1

Fa,ε
i (ξ,p)ξ̇i. (2.9)

We can also write the swimmer’s dynamics (2.9) as:

˙(
ξ
p

)
=

k∑
i=1

Ga,ε
i (ξ,p) ξ̇i (2.10)

where Ga,ε
i :=

(
ei

Fa,ε
i

)
((e1, . . . , ek) is the canonical basis of R

k).

Our goal will be to show local controllability of the ordinary differential system (2.10). We will fix an initial
state of the swimmer, say (ξi,pi), and a final state not too far from the initial one, say (ξf ,pf ). Then, we will
prove the following: for any final time T > 0, there is a deformation function t 	→ ξ(t) for which system (2.10)
has a solution satisfying (ξ,p)(t = 0) = (ξi,pi), (ξ,p)(t = T ) = (ξf ,pf ).

To make it rigorous, there will be two restrictions. First, we shall consider only admissible initial states: the
spheres of the swimmer will neither overlap, nor touch the rough wall. Second, besides this natural assumption,
we will need a more technical one. Namely, we will be able to show local controllability only for almost every
(a, ε, ξi,pi). The expression almost every means here that the property will hold for (a, ε, ξi,pi) outside the set of
zeros of a (non-trivial) analytic function. We refer to Definition 2.2 below for a precise meaning. Zeros of analytic
functions may form complicated sets, but these sets are somehow small. For instance, analytic functions of one
real variable have a countable number of zeroes. Hence, our result can be considered as a generic controllability
result. Detailed statements are presented in the following section.

2.4. Main results

Before turning to our mathematical analysis, we synthetize here our main results.
The controllability properties of the swimmers will follow from a careful study of the properties of the Fa,ε

i ’s
in (2.9). As a first consequence of this study, we will obtain the analyticity of these vector fields with respect to
all parameters: the typical height of the roughness ε, the radius of the balls a, the vector of arms lengths ξ and
the position of the swimmer p. More precisely, defining

A := {(ε, a, ξ,p) ∈ R × R
∗
+ × (R∗

+)k × (R3 × SO(3)) such that
Bi ∩Bj = ∅ ∀i 
= j, andBi ∩ ∂O = ∅ ∀i},

we have the following

Theorem 2.1. For all i = 1 . . . k, the field Fa,ε
i (ξ, p) is an analytic function of (ε, a, ξ,p) over A.

Then, as a consequence of Theorem 2.1, we will prove that the roughness does not change the controllability of
the 4-sphere swimmer. We restrict here to local controllability “almost everywhere”: this terminology refers to
the following

Definition 2.2 (Almost everywhere). We say that a property holds for almost every (ε, a, ξ,p) in A if it holds
for all (ε, a, ξ,p) outside the zero set of a (non-trivial) analytic function over A.



762 D. GÉRARD-VARET AND L. GIRALDI

We have

Theorem 2.3. The 4-sphere swimmer is controllable almost everywhere, in the following sense: for almost
every (ε, a, ξi,pi), one has local controllability from the initial configuration (ξi,pi). This means that for any
final configuration (ξf ,pf ) in a small enough neighborhood of (ξi,pi) and any final time T > 0, there exists
ξ ∈ W1,∞((0, T )) satisfying ξ(0) = ξi and ξ(T ) = ξf and such that if the self-propelled swimmer starts in
position pi with the shape ξi at time t = 0, it ends at position pf and shape ξf at time t = T by changing its
shape along ξ(t).

In the last Section 4, we shall address the controllability of the 3-sphere swimmer. In the case of a flat
boundary, as shown in [2], symmetries constrain the swimmer to move in a plane. Also, it does not rotate
around its own axis. As we will see, the roughness at the wall breaks (in general) such symmetries, allowing
for local controllability almost everywhere. Let us point here a subtlety regarding our controllability result. To
express the dynamics of the swimmer through equation (2.9), we have included in variable p (more precisely
in its SO(3) component) an angle describing rotation of the 3-sphere around its own axis. We are not able to
show controllability for this angle: we only show controllability for the other components of p. Of course, this
is not a problem with regards to the effective movement of the swimmer: this angle is indeed irrelevant with
regards to the swimmer’s orientation and position. The analysis of Section 4 leads to the

Theorem 2.4. There exists a surface h ∈ C∞
c (R2) such that the 3-sphere swimmer is locally controllable almost

everywhere (up to rotation around its axis).

Refined statements will be provided in Section 4. This controllability result requires a careful asymptotic asymp-
totic expansion of the force fields Fa,ε

i . This expansion is related to an expansion of a Dirichlet-to-Neumann
map, performed in Section 4.1. Eventually, the dimension of the Lie algebra generated by the force fields is
computed, and the controllability result follows from application of Chow’s theorem (see Appendix B for more
details on Chow’s theorem).

3. Analyticity of the dynamics

3.1. Regularity

This paragraph is devoted to Theorem 2.1. We shall establish the analyticity of the vector fields Fa,ε
i with

respect to (ε, a, ξ,p) ∈ A. From the expressions (2.8) and (2.9), it comes down to proving the analyticity of the
matrix function M and vector function N with respect to (ε, a, ξ,p) (note that M 	→ M−1 preserves analytic
regularity). Thus, we fix an arbitrary Y = (ε, a, ξ,p) ∈ A and intend to show analyticity for Y = (ε, a, ξ,p)
near Y. The definitions of coefficients Mi,j and Ni are given prior to (2.8) and (2.9).

Let (ul)1�l�N a family of N rigid vector fields, where every field in the family belongs to the “elementary
set” {ei × x, ei, i = 1 . . . 3}. To such an “elementary family” (ul)1�l�N , we associate the solution (u, p) of the
Stokes system in F with Dirichlet conditions:

u = 0 at ∂O, u = ul at ∂Bl, l = 1, . . . , N.

By linearity of the equations and boundary conditions, the Stokes solutions ui (i = 1 . . . 6) and ud introduced
in paragraph 2.3 can be written as linear combinations of such “elementary Stokes solutions”. One can then
use this decomposition in the expressions for coefficients Mij and Ni. From there, to prove analyticity of these
coefficients amounts to proving analyticity (in Y) of the matrix functions

I :=
N∑

l=1

∫
∂Bl

(
1
x

)
⊗ (σ(u, p)n) ds (we recall f ⊗ g = (fkgk′ )) (3.1)

where (u, p) is any arbitrary elementary Stokes solution.
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To simplify a little the expression for I, we first perform a change of variable. We denote by xl, resp. xl the
center of the ball Bl, resp. the center of the ball Bl. We introduce the affine functions

ϕl(x) :=
a

a
(x − xl) + xl, 1 � l � N.

Each ϕl is a diffeomorphim from R
3 to R

3, sending Bl to Bl. This basic change of variable leads to

I l :=
∫

∂Bl

(
1
x

)
⊗ σ(u, p)n ds =

a

a

∫
∂Bl

(
1

ϕl(x)

)
⊗ σ

(a
a
u ◦ ϕl, p ◦ ϕl

)
n ds

(we recall σ(v, q) := ∇v+(∇v)t−qId). The point in this change of variable is that the integral at the right-hand

side is now over the fixed domain ∂Bl. Then, we remark that ( 1
ϕl(x)) is analytic as a function of Y with values

in H1/2(∂Bl). Actually, it is analytic with values in any reasonable space function: indeed, ϕl is simply linear
in (a,xl). Thus, if we prove that σ(a

au ◦ ϕl, p ◦ ϕl)n is analytic as a function of Y with values in H−1/2(∂Bl),
we will be able to conclude. Indeed, each coefficient I l

kk′ of the matrix function I l reads

I l
kk′ = 〈

( 1
ϕl(x)

)
k

(
σ
(a
a
u ◦ ϕl, p ◦ ϕl

)
n
)

k′
〉〈H1/2,H−1/2〉,

and will therefore be analytic in Y.
Last step is to establish analyticity of σ

(
a
au◦ϕl, p◦ϕl

)
n, seen as a function of Y with values in H−1/2(∂Bl).

Here, we recall a classical trace theorem, see ([29], Thm. 1.2) for a smooth open set Ω, and for any divergence-
free field V ∈ L2(Ω), we can define the generalized boundary value of its normal component V ·n ∈ H−1/2(∂Ω).
Moreover, the mapping

L2(Ω) → H−1/2(∂Ω), V 	→ V · n
is continuous. Similar result holds for a divergence-free matrix M instead of V, and Mn instead of V ·n (looking
separately at each line of the matrix). We can apply this last result with Ω := F ∩B(xl, a+ η) (the fluid part
of a neighborhood of Bl), and M := σ(a

au ◦ϕl, p ◦ϕl). Indeed, (u, p) satisfies the homogeneous Stokes equation,
which implies easily that M is divergence-free.

Hence, it is enough to show that for all l = 1 . . .N , for δ, η > 0 small enough:

B(Y, δ) 	→ H1 (F ∩B(xl, a+ η)) × L2 (F ∩B(xl, a+ η)) , Y 	→ (u ◦ ϕl, p ◦ ϕl)

is analytic. We could have replaced B(xl, a+ η) by any neighborhood of ∂Bl.
The problem is that u is defined globally, as the solution of a Stokes system in F . To benefit from this global

information, we shall now construct a diffeomorphism ϕ from R
3 to R

3, such that ϕ = ϕl in a neighborhood
of Bl, for all 1 � l � N . We will then prove analyticity in Y of the global fields (u ◦ ϕ, p ◦ ϕ). More precisely,
we define

ϕ(x) := x +
∑

l

χ(x − xl) (ϕl(x) − x) + (ε− ε)χh(x)(0, 0, h(x1, x2))

with χ, χh ∈ C∞
c (R3), χ = 1 near B(0, a), χh = 1 near x3 = ε h(x1, x2). We take χ and χh with small enough

supports, so that all χ(· − xl), 1 � l � N and χh have disjoint supports. With such choice, one has as expected
ϕ = ϕl near Bl. In particular, ϕ(Bl) = Bl. One has also correspondence of the rough boundaries: ϕ(∂O) = ∂O.
Moreover, for Y ∈ B(Y, δ), δ > 0 chosen small enough, it is easily seen that ϕ can be written in the form

ϕ(x) = x+ ϕ1(x)

where ϕ1 is a C∞ contractive function, say with |∇ϕ1| � 1
2 (the Lipschitz constant goes to zero with δ).

It follows that the differential of ϕ is invertible at every point of R
3, and that ϕ is bijective from R

3 to R
3.
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This last statement is deduced from the following argument: for every fixed y ∈ R
3, the equation ϕ(x) = y can

be written: x = ϕ1,y(x), where ϕ1,y(x) = y − ϕ1(x). But ϕ1,y is contractive, so that by the Banach fixed point
theorem, it has a unique fixed point x. Hence, ϕ is bijective. Finally, the local inversion theorem together with
the bijectivity of ϕ show that ϕ is a smooth diffeomorphism from R

3 to R
3. Taking onto account the image of

the balls and the rough boundary: ϕ(F) = F . Also, it depends analytically on Y. Introducing U := u ◦ ϕ and
P := p ◦ ϕ, it remains to prove the following.

Claim: Y 	→ (U, P ) is analytic from B(Ȳ, δ) to V0 × L2(F), where

V0 :=

{
U ∈ D′(F ,R3) | ∇U ∈ L2(F),

U(r)√
1 + |r|2

∈ L2(F), U|∂Ō = 0

}
.

These spaces are standard ones for solvability of the Stokes equation. Note that fields in V0 belong to H1
loc.

By restriction of U and P to a neighborhood of the balls Bl, we will then obtain the expected analyticity on
(u◦ϕl, p◦ϕl). To prove this claim, we shall use a classical path, namely relying on the implicit function theorem.
Examples of such approach can be found in [13].

One first needs to write the system satisfied by U, P . A simple computation yields⎧⎪⎨
⎪⎩

−div(A∇U) +B∇P = 0 in F ,
div(BtU) = 0 in F ,

U = 0 at ∂O, U = Ul at ∂Bl,

(3.2)

where

A = A(x) := | det∇ϕ(x)|(∇ϕ−1)t(∇ϕ−1)(ϕ(x)),
B = B(x) := | det∇ϕ(x)|(∇ϕ−1)(ϕ(x)), Ul := ul ◦ ϕl.

Note that A,B,Ul depend analytically on the parameter Y. We now introduce

V ′
:= the dual space of

{
U ∈ V0, U|∂Bl

= 0, l = 1 . . .N
}
,

and consider the mapping

L : B(Y, δ) × V0 × L2(F) 	→ V ′ × L2(F) ×
∏

l

H1/2(∂Bl),

(Y,V, Q) 	→
(
−div(A∇V) +B∇Q, div(BtV),

(
V|∂Bl

− Ul

)N

l=1

)
.

L is clearly well-defined, and it is analytic in (Y,V, Q): we refer to [30] for the definition of analytic functions
over Banach spaces. Actually, the dependence of L in (V, Q) is elementary: L is an affine function in (V, Q).
Moreover, U = UY and P = PY satisfy

L(Y,U, P ) = 0

By the analytic version of the implicit function theorem, see again [30], U and P will be analytic in Y near Y
if

∂L
∂(V, Q)

|(Y,U,P ) is an isomorphism from V0 × L2(F) to V ′ × L2(F) ×
∏

l

H1/2(∂Bl).

The computation of this partial differential is direct, taking into account that L is affine in (V, Q). It is invertible
if and only if there is existence and uniqueness in V0 × L2(F) of a solution (V, Q) for the Stokes system

−ΔV + ∇Q = F in F ,
divV = G in F ,

V = Vl at ∂Bl, l = 1 . . .N
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where F ∈ V ′
, G ∈ L2(F) and Vl ∈ H1/2(∂Bl) are prescribed data. Note that the space V0 encodes the

additional boundary condition: V = 0 at ∂O.
The well-posedness of the previous system is established in the appendix. From there, we deduce the analyt-

icity in Y of (U, P ), which ends the proof of Theorem 2.1.

3.2. Application to the 4-sphere swimmer

From the analyticity shown above and the results of [2], we shall deduce Theorem 2.3. First, by replacing k
by 4 in (2.10), we write the equation of motion for the 4-sphere swimmer as

˙(
ξ
p

)
=

4∑
i=1

Ga,ε
i (ξ,p) ξ̇i. (3.3)

For proving the local controllability of the swimmer, we can consider the Lie algebra generated by the family
(Ga,ε

i )4i=1. More precisely, by Chow’s theorem (see Appendix B) one has local controllability at every (ε, a, ξ,p) ∈
A satisfying

Lie(ξ,p)(G
a,ε
1 , . . . ,Ga,ε

4 ) = T(ξ,p)M. (3.4)

The algebra Lie(ξ,p)(G
a,ε
1 , . . . ,Ga,ε

4 ) is said to be fully generated if the condition (3.4) is satisfied. Hence,
Theorem 2.3 follows directly from

Lemma 3.1. For almost (ε, a, ξ,p) ∈ A, the algebra Lie(ξ,p)(G
a,ε
1 , . . . ,Ga,ε

4 ) associated to the 4-sphere-
swimmer (3.3) is equal to the tangent space T(ξ,p)M.

Proof. First, we recall that the Lie algebra Lie(ξ,p)(G
a,ε
1 , . . . ,Ga,ε

4 ) is always included in the tangent space
T(ξ,p)M. In particular, for every (ε, a, ξ,p) ∈ A,

10 = Tp,ξM � dimLie(ξ,p)(G
a,ε
1 , . . . ,Ga,ε

4 ).

It is then enough to prove that for a.e. (ε, a, ξ,p) ∈ A, dimLie(ξ,p)(G
a,ε
1 , . . . ,Ga,ε

4 ) � 10.
From [2], we know that the 4-sphere swimmer is controllable in the flat case ε = 0: for almost every (a, ξ,p)

dimLie(ξ,p)(G
a,0
1 , . . . ,Ga,0

4 ) = 10.

Hence, we can find 10 vector fields Gi = Gi(ε, a, ξ,p) in Lie(ξ,p)(G
a,ε
1 , . . . ,Ga,ε

4 ) such that for almost every
(a, ξ,p)

det((Gi(0, a, ξ,p))10i=1) 
= 0. (3.5)

Moreover, these vector fields, built upon Lie brackets of Ga,ε
1 , . . . ,Ga,ε

4 , can be chosen to be analytic in (ε, a, ξ,p).
It follows that dimLie(ξ,p)(G

a,ε
1 , . . . ,Ga,ε

4 ) � 10 almost everywhere, namely outside the set of zeros of the
analytic function

det((Gi)10i=1) : R × R ×M → R

(ε, a, ξ,p) 	→ det((Gi(ε, a, ξ,p))10i=1)

which is non-trivial by (3.5). �

4. Controllability of the Three-sphere swimmer

The rest of the paper deals with the controllability of the 3-sphere swimmer, namely Theorem 2.4. As for the
4-sphere swimmer, the controllability result will derive from Chow’s theorem, that is from a computation of
the dimension of the Lie algebra of the family of the vector fields Ga,ε

i ’s. The main difference with the case of
the 4-sphere swimmer is that controllability does not hold anymore when ε = 0. Hence, one can not conclude by
invoking a perturbation of the flat case. Also, a big difficulty comes from the fact that the vector fields Ga,ε

i ’s
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are not explicit and so not easily computable. To handle this difficulty, we shall express the vector fields in terms
of the Dirichlet-to-Neumann operator, for which an accurate asymptotics in the regime of small roughness can
be derived.

Let us outline here the steps of the proof of Theorem 2.4. First of all, in Section 4.1, we derive an asymptotic
expansion of the Dirichlet-to-Neumann map of the Stokes problem, for small roughness ε and small radius of the
balls a. In Section 4.3, we deduce from it an asymptotic expansion of the dynamics (again for small roughness ε
and small radius of the balls a). From there, we can show in Section 4.4 that if a certain determinant function,
defined in (4.50), is not trivial, then the Lie algebra of the Ga,ε

i ’s is fully generated almost everywhere. The
proof is completed by Appendix C where we ensure that this determinant function is not trivial (that is non-
everywhere zero) for some roughness profile h.

4.1. Asymptotic expansion of the Dirichlet-to-Neumann

We now turn to the controllability properties of the 3-sphere swimmer. As mentioned before, the keypoint
is to derive an asymptotic expansion of the Dirichlet-to-Neumann map of the Stokes operator, as parameters a
and ε go to zero. Such expansion will be expressed in “the general case” where we consider N balls in a fluid
domain. Of course, in relation to Theorem 2.4, it will be used with N = 3.

The reason for focusing on this map is that it appears in the definition of the fields Fa,ε
i : indeed, the definition

of the coefficients Ma,ε
ij and Na,ε

i involves

DN :
N∏

l=1

H1/2(∂Bl) 	→
N∏

l=1

H−1/2(∂Bl), (ul) 	→ (fl := σ(u, p)n|∂Bl
) ,

where (u, p) is the solution of the Stokes equation

−Δu + ∇p = 0, divu = 0 in F , u|∂O = 0, u|∂Bl
= ul.

More precisely, it involves DN in restriction to N -uplets of rigid vector fields over Bl, l = 1 . . .N . We denote
by R the (finite-dimensional) space of such N -uplets.

Even restricted to R, this operator is not very explicit: to derive directly an expansion in terms of the
parameters of the swimmer and wall is not easy. Hence, we follow the same path as in [2, 4]: we write that for
all (ul)N

l=1 ∈ R,
DN ((ul)) = T−1 ((ul))

where

T :
N∏

l=1

H−1/2(∂Bl) 	→
N∏

l=1

H1/2(∂Bl), (fl) 	→ (ul := u|∂Bl
)

and u is the solution of the following Stokes system in O:

−Δu + ∇p =
N∑

l=1

1∂Bl
fl, divu = 0 in O, u|∂O = 0.

Equivalently, this last system can be written:

−Δu + ∇p = 0, divu = 0 in O \ ∪l∂Bl, [u]|∂Bl
= 0, [σ(u, p)n]|∂Bl

= fl,

where [ ]|∂Bl
denotes the jump across ∂Bl. Let us remind that O = {z > εh(x, y)} is the domain without the

balls. In particular, the operator T (associated to a transmission condition) is not the Neumann-to-Dirichlet
operator. The latter one would correspond to the Stokes problem

−Δu + ∇p = 0, divu = 0 in O \ ∪lBl, σ(u, p)n|∂Bl
= fl,
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associated to a Neumann type condition. However, in restriction to the space R, the operators DN and T−1

coincide, due to the fact that a rigid vector field is a solution of the Stokes equation, with zero pressure and
zero stress tensor.

The advantage of T over the Neumann-to-Dirichlet operator is its more explicit representation. Indeed, one
has for all i = 1 . . .N

T (f)i(x) =
n∑

l=1

∫
∂Bl

Kε(x,y)fl(y)dy, x ∈ ∂Bi,

where the kernel Kε is simply the Green function associated to the Stokes equation in O: in other words, (Kε,qε)
is the solution of the problem:⎧⎪⎨

⎪⎩
−μΔxKε(x,x0) + ∇xqε(x) = δx0(x) I, x in O,

divx Kε(x,x0) = 0, x in O,
Kε(x,x0) = 0 x on ∂O,

(4.1)

where I stands for the identity matrix. This will make easier the derivation of an asymptotic expansion, through
an expansion of T . Still, there is one little technical difficulty: the domain of definition and range of T , that are∏

lH
±1/2(∂Bl) depend on the parameter a (and also on (p, ξ)). Let us denote B := B(0, 1) the unit ball, and

H
±1/2
N :=

(
H±1/2(∂B)

)N
. We introduce

ϕ :
N∏

l=1

H1/2(∂Bl) → H
1/2
N , u = (ul) 	→ U = (Ul : r 	→ ul(xl + ar)),

as well as the adjoint map

ϕ∗ : H−1/2
N →

N∏
l=1

H−1/2(∂Bl), F = (Fl) 	→ f = (fl),

defined through the duality relation: 〈ϕ∗(F),u〉 = 〈F, ϕ(u)〉. Finally, we set T := ϕ ◦ T ◦ ϕ∗ : H−1/2
N 	→ H

1/2
N .

We shall use T rather than T to compute the expansion of the force field in Section 4.3. Note that T depends
implicitly on ε, a and on (p, ξ). In what follows, we will always consider configurations in which the swimmer
stays away from the rough wall:

dist(Bl, ∂O) � δ > 0, ∀l = 1 . . .N, (4.2)

for some given δ.

4.1.1. Expansion for small roughness ε

Under the constraint (4.2), we prove

Proposition 4.1.
T := T 0 + εT 1 + O(ε2) in L(H−1/2

N , H
1/2
N )

where T 0 and T 1 are defined in (4.10) and (4.11)–(4.12) respectively.

Proof. For f = (fl) ∈ H
−1/2
N , we can write

T (f)i(r) =
∑

j

∫
∂B

Kε(xi + ar, xj + as)fj(s)ds

(with a classical and slightly abusive notation: the integral should be understood as a duality bracket). Thus,
the whole point is to expand the kernel Kε defined in (4.1). Of course, the first term should be K0, that is the
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Green function in the flat case. This Green function can be computed in terms of the Stokeslet by the method
of images (see [6]): one has

K0(r, r0) = G(r − r0) + K1(r, r0) + K2(r, r0) + K3(r, r0), (4.3)

the four functions G, K1, K2 and K3 being respectively the Stokeslet

G(r) =
1

8πμ

(
Id
|r| +

r ⊗ r
|r|3

)
(4.4)

and the three “images”

K1(r, r0) = − 1
8πμ

(
Id
|r′| +

r′ ⊗ r′

|r′|3

)
, (4.5)

K2,ij(r, r0) =
1

4πμ
z2
0 (1 − 2δj3)

(
δij
|r′|3 −

3r′ir
′
j

|r′|5

)
, (4.6)

K3,ij(r, r0) = − 1
4πμ

z0 (1 − 2δj3)
(
r′3
|r′|3 δij −

r′j
|r′|3 δi3 +

r′i
|r′|3 δj3 −

3r′ir
′
jr

′
3

|r′|5

)
. (4.7)

Here r0 = (x0, y0, z0) and r′ = r − r̃0, where r̃0 = (x0, y0,−z0) stands for the “image” of r0, that is to say, the
point symmetric to r0 with respect to the flat wall.

We now consider uε(x,x0) = Kε(x,x0)−K0(x,x0), for x0 ∈ ∪lBl. As a function of x, it satisfies the Stokes
equation in O:

−Δuε(·,x0) + ∇p(·,x0) = 0, divuε(·,x0) = 0 in O
with Dirichlet condition

uε(·,x0) = −K0(·,x0), at ∂O.
We can then expand the boundary data: for x = (x, y, εh(x, y)) ∈ O

−K0(x,x0) = −
n∑

k=1

εk h(x, y)k

k!
∂k

z K0(x, y, 0,x0) + O(εn+1).

More precisely, under the constraint (4.2), one has

‖ − K0(·, x0) +
n∑

k=1

εk

(
x 	→ h(x, y)k

k!
∂k

z K0(x, y, 0,x0)
)
‖Hs(∂O) � Cδ,s ε

n+1, ∀ s.

We deduce from this inequality that

‖∇
(
uε(·,x0) −

n∑
k=1

εkuk(·,x0)
)
‖L2(O) � Cεn+1 (4.8)

where uk is the solution of

−Δuk(·,x0) + ∇p(·,x0) = 0, divuk(·,x0) = 0 in O,

uk(x,x0) = −h(x, y)k

k!
∂k

z K0(x, y, 0,x0), x ∈ ∂O.

The existence of the uk’s and the estimate (4.8) are obtained by classical arguments (see the appendix for
the more difficult case of a rough half-space minus the balls). In particular, we have

‖∇
(
uε(·,x0) − εu1(·,x0)

)
‖L2(O) � Cε2. (4.9)
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The last step consists in replacing u1 by the solution K1 of

−ΔK1(·,x0) + ∇p(·,x0) = 0, divK1(·,x0) = 0, z > 0,
K1(x, y, 0,x0) = −h(x, y)∂zK0(x, y, 0,x0), (x, y) ∈ R

2,

that is replacing the rough half-space by the flat half-space. We claim that

||∇(u1(·,x0) − K1(·,x0))‖L2(O∩{z>0}) = O(ε2).

With no loss of generality, we can assume that h > 0 (meaning that the flat wall is below the rough wall).
Otherwise, we can make an intermediate comparison with the solution K̃1 of the same Stokes problem in
{z > −ε(sup |h| + 1)}. Now, an easy but important remark is that

‖K1(·,x0)‖Hs({0<z<Z}) � Cs,Z , ∀s ∈ N, ∀Z > 0.

Hence,
K1(x,x0) = −h(x, y)∂zK0(x, y, 0,x0) + O(ε) in Hs(∂O).

By a simple estimate on u1 − K1, we deduce the claim.
Back to the definition of uε, we obtain thanks to standard elliptic regularity in variable x: for all α ∈ N

3,

|∂α
x

(
Kε(x,x0) − K0(x,x0) − εK1(x,x0)

)
| = O(ε2),

uniformly in x,x0 ∈ ∪lBl. The same reasoning as above can then be applied to the fields uε
β = ∂β

x0
(Kε − K0),

for all β ∈ N
3. Hence,

|∂α
x∂

β
x0

(
Kε(x,x0) − K0(x,x0) − εK1(x,x0)

)
| = O(ε2),

uniformly in x,x0 ∈ ∪lBl. The theorem follows straightforwardly, considering

T 0(f)i(r) :=
∑

j

∫
∂B

K0(xi + ar, xj + as)fj(s)ds (4.10)

and
T 1(f)i(r) :=

∑
j

∫
∂B

K1(xi + ar, xj + as)fj(s)ds. (4.11)

Expressing K1(x,x0) with a Poisson kernel yields

K1(x,x0) := −
∫

∂R
3
+

h(s)
∂

∂z

(
s 	→ K0(s,x)

) ∂

∂z

(
s 	→ K0(s,x0)

)
ds. (4.12)

where for simplicity we write h(s) instead of h(s1, s2), for s = (s1, s2, 0) ∈ ∂R
3
+.

4.1.2. Expansion for small amplitude of spheres a

We go one step further in the asymptotics of T , by considering the regime of small radius a. The expression
of T involves the maps

Ti,j : H−1/2(∂B) → H1/2(∂B)

fj 	→
∫

∂B

K(xi + a·,xj + as) fj(s) ds, (4.13)

with the Green kernel K given by Proposition 4.1:

K(r, r′) := G(r − r′) + K1(r, r′) + K2(r, r′) + K3(r, r′) + K4(r, r′).
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We recall that K1,K2 and K3 are defined in (4.3), whereas K4 is defined by (see (4.12)):

K4(r, r′) := −ε
∫

∂R
3
+

h(s)
∂

∂z

(
s 	→ K0(s, r)

) ∂

∂z

(
s 	→ K0(s, r′)

)
ds.

Eventually, we call T G the Neumann to Dirichlet map associated to G

T G : H−1/2(∂B) → H1/2(∂B)

f 	→
∫

∂B

G(a(· − s)) f(s) ds.

Proposition 4.2. Let (i, j) ∈ {1, · · · , N}2. We have the following expansions, valid for a� 1:

• if i 
= j then
Ti,j = K(xi,xj)〈 ·, Id〉∂B + R1 (4.14)

where ||R1||L(H−1/2,H1/2) = O (a),
• otherwise

Ti,i = T G +
4∑

k=1

Kk(xi,xi)〈 ·, Id〉∂B + R2 (4.15)

where ||R2||L(H−1/2,H1/2) = O (a).

Proof. Let (i, j) ∈ {1, · · · , N}2 be such that i 
= j. For all fj ∈ H−1/2(∂B), we write

(Ti,j − K(xi,xj)〈·, Id〉) (fj)(r) =
∫

∂B

(K(xi + ar,xj + as) − K(xi,xj)) fj(s)ds. (4.16)

The point is that, as i 
= j, the kernel K is smooth in a neighborhood of Bi ×Bj . Hence,

|K(xi + ar,xj + as) − K(xi,xj)| = O (a) , |∇K(xi + ar,xj + as) − K(xi,xj)| = O (a) (4.17)

uniformly for r, s ∈ B. Estimate (4.14) follows straightforwardly.
The proof of (4.15) is similar: we have for all fi ∈ H−1/2(∂B)

(
Ti,i − T G − K(xi,xj)〈·, Id〉

)
(fi)(r) =

∫
∂B

4∑
k=1

(Kk(xi + ar,xi + as) − Kk(xi,xi)) fi(s)ds, (4.18)

where none of the Kk’s is singular near Bi ×Bi. �

As a simple consequence of the previous propositions, we have

Proposition 4.3. For every f ∈ H
−1/2
N , for all (x, ξ),

(T f)i (r) = T Gfi +
4∑

l=1

Kl(xi,xi)〈fi, Id〉∂B +
∑
j �=i

K(xi,xj)〈fj , Id〉∂B + Ri(f), (4.19)

with ‖Ri‖L(H
−1/2
N ,H

1/2
N )

= O
(
a+ ε2

)
, and i = 1 . . .N .

Proof. By Proposition 4.1: for all i = 1 . . .N , and all r ∈ ∂B

(T f)i (r) :=
∫

∂B

K(xi + ar,xi + as) fi(s)ds+
∑
i�=j

∫
∂B

K(xi + ar,xj + as) fj(s)ds + Rε(f)

= Ti,ifi +
∑
j �=i

Ti,jfj + Rε(f), ‖Rε‖L(H
−1/2
N ,H

1/2
N )

= O(ε2)

and the result follows from the application of (4.14) and (4.15) of Proposition 4.2. �
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Proposition 4.4. For every u ∈ H
1/2
N , for all (p, ξ), one has

(
T −1u

)
i
= (T G)−1

(
ui −

4∑
k=1

Kk(xi,xi)〈(T G)−1ui, Id〉∂B

)

− (T G)−1

⎛
⎝∑

j �=i

K(xi,xj)〈(T G)−1uj , Id〉∂B

⎞
⎠ + R̃i(u) (4.20)

with ‖R̃i‖L(H
1/2
N ,H

−1/2
N )

= O
(
a3 + a2ε2

)
, i = 1 . . .N .

Proof. We recall that

T G : H− 1
2 (∂B) → H

1
2 (∂B), f 	→

∫
∂B

G(a(· − s))f(s) ds,

and define for l = 1, . . . , 4 the operators

Sl : H− 1
2 (∂B) → H

1
2 (∂B), f 	→

∫
∂B

Kl(xi,xi)f(s) ds,

and eventually

Si,j : H− 1
2 (∂B) → H

1
2 (∂B), f 	→

∫
∂B

K(xi,xj)f(s) ds.

Notice that for all f ∈ H− 1
2 (∂B), Slf and Si,jf are constant applications.

That these operators are continuous operators fromH− 1
2 (∂B) intoH

1
2 (∂B) is classical. We are only interested

in estimating their norms, and more precisely in the way they depend on a in the limit a→ 0. Notice that since
the kernel G is homogeneous of degree −1, one has

‖T G‖L(H−1/2,H1/2) = O

(
1
a

)
and

∥∥∥(
T G

)−1
∥∥∥
L(H1/2,H−1/2)

= O (a) . (4.21)

As far as Sl is concerned, we get that (since |Kl(xi,xi)| = O (1))

‖Sl‖L(H−1/2,H1/2) = O (1) , (4.22)

and similarly
‖Si,j‖L(H−1/2,H1/2) = O (1) . (4.23)

When a→ 0 this enables us to invert (4.19) leading to (4.20). �

4.2. Remarks on the rotation of the swimmer around its own axis

We must first come back to equations (2.7) and (2.9), in the particular case of the 3-sphere swimmer.

Remember that the writing in this equation was slightly abusive: we had denoted by ṗ the vector
(

Ω
v
)

associated

to the rigid movement of the swimmer, see (2.5). In our case, Ω =

⎛
⎝Ω1

Ω2

Ω3

⎞
⎠ and v = ẋc =

⎛
⎝ v1
v2
v3

⎞
⎠ are respectively

the angular velocity and the linear velocity of the middle sphere, decomposed in an arbitrary orthonormal
basis (ei). Moreover, it is natural to take for e1 the unit vector of the 3-sphere axis. Let θ be the angle between
the swimmer’s axis and ez, while ϕ is the angle between the x-axis and the projection of the swimmer in Oxy

plane (see Fig. 2). Then, the unit vector of the 3-sphere axis reads (in the canonical basis) e1 =

⎛
⎝ cos(ϕ) sin(θ)

sin(ϕ) sin(θ)
cos(θ)

⎞
⎠.
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It is completed into an orthonormal basis by defining

e2 =

⎛
⎝ cos(ϕ) cos(θ)

sin(ϕ) cos(θ)
− sin(θ)

⎞
⎠ , e3 =

⎛
⎝− sin(ϕ)

cos(ϕ)
0

⎞
⎠ .

Hence, a rigorous writing of (2.7) or (2.9) is

Ma,ε

(
Ω
v

)
+ Na,ε = 0, or

(
Ω
v

)
= −(Ma,ε)−1Na,ε. (4.24)

A crucial remark is that Ma,ε and Na,ε do not depend on the whole of p. The angle θ1 of rotation around
the swimmer’s axis is not involved, as it is irrelevant to the swimmer’s position, orientation or elongation. In
particular, keeping only the five bottom lines of the last system, we end up with a closed relation of the type⎛

⎝θ̇2
θ̇3
ẋc

⎞
⎠ =

2∑
i=1

F̃a,ε
i (θ2, θ3,xc) ξ̇i (4.25)

where θ2 and θ3 are the rotation angles around e2 and e3 respectively. Then, by the analyticity of the F̃a,ε
i and

Chow’s theorem, it remains to prove that there exists some (ε, a, θ2, θ3,xc) such that

dimLie(θ2,θ3,xc)

⎛
⎝

⎛
⎝ 1

0
F̃1

⎞
⎠ ,

⎛
⎝ 0

1
F̃2

⎞
⎠

⎞
⎠ = 7.

Actually, we shall not work directly with angles θ2, θ3. We find it more convenient to work with the angles θ, ϕ

introduced above (see Fig. 2). From the relation
d

dt
e1 = Ω × e1, we infer that

Ω2 = − sin θϕ̇, Ω3 = θ̇.

Note that in the special case sin θ = 0, the angle ϕ coincides with the useless angle θ1. Moreover, the mapping
(θ2, θ3) → (θ, ϕ) is not a diffeomorphism in the vicinity of θ ≡ 0[π]. Thus, we shall restrict to orientations of
the swimmer for which

| sin θ| � δ > 0. (4.26)

We shall establish the maximality of the Lie algebra at points satisfying this condition.
Before entering the computation of this Lie algebra, we state a technical lemma, that will somehow allow us

to neglect the rotation around the swimmer’s axis. As mentioned before, we assume inequality (4.26). We have

Lemma 4.5. There exists a constant C which does not depend on a and ε such that

|Ω1| ≤ C
(
|θ̇| + |ϕ̇| + |ẋc| + |ξ̇|

)
.

Proof. We go back to the first identity in (4.24). The first line gives

M1,1Ω1 = −N1 + M1,2 sin(θ)ϕ̇ − M1,3 θ̇ − M1,4 v1 − M1,5 v2 − M1,6 v3. (4.27)

We recall that, in the definitions of M and N, we denoted by ui and ud some solutions of the Stokes equation,
with zero Dirichlet condition at the wall, and inhomogeneous Dirichlet conditions at the ball. The Dirichlet
data is ei × (x − xc) for i = 1, 2, 3, ei−3 for i = 4, 5, 6, and ud for ud. In the case of the 3-sphere swimmer, ud

is −ξ̇1e1 on the sphere ∂B1, 0 on the middle sphere and ξ̇2e1 on the sphere ∂B3.
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Let us first examine

M1,1 =
3∑

l=1

∫
∂B

(xl − xc + ar) × e1 ·
(
T −1(e1 × ar, e1 × ar, e1 × ar)

)
l
dσ

= 3
∫

∂B

ar × e1 ·
(
T −1(e1 × ar, e1 × ar, e1 × ar)

)
l
dσ

(4.28)

using that (xl −xc)×e1 = 0. We then use the expansion (4.20). We recall the well-known fact that the rotation
are eigenfunctions of

(
T G

)−1, with associated eigenvalue 3μa. In particular,

(
T G

)−1
(e1 × ar) = 3μae1 × ar, and 〈

(
T G

)−1
(e1 × ar), Id〉∂B = 0.

We find then easily that M1,1 = −3μa3 + O(a5 + ε2a4).

Then, we examine

N1 =
3∑

l=1

∫
∂B

(xl − xc + ar) × e1 ·
(
T −1(−ξ̇1 e1, 0, ξ̇2 e2)

)
l
dσ.

Again, we can expand T −1 using (4.20). This time, we use that translations are eigenfunctions of
(
T G

)−1 with
associated eigenvalue 3

2μa. Thus, (
T G

)−1
(e1) =

3
2
μa e1.

It follows that the first terms in the expansion vanish, and we find

N1 = O((a4 + a3ε2) |ξ̇|).

The remaining terms M1,j, j = 2, . . . , 4 can be handled with similar arguments. The lemma follows straight-
forwardly. �

4.3. Asymptotics of the 3-sphere dynamics

We shall now provide an accurate description of the 3-sphere dynamics: broadly speaking, the point is to
obtain an explicit expansion of the F̃i’s in (4.25) (with angles θ2, θ3 replaced by θ, ϕ, see remark above). We
remind that the dynamics (that is the 6x6 system in (4.24)) is governed by self-propulsion: it corresponds to

• The sum of the forces on the swimmer being zero.
• The sum of the torques on the swimmer being zero.

Forces. By the definition of the swimmer, each sphere obeys a rigid body motion. More precisely, the velocity
of each point r of the lth sphere expresses as a sum of a translation and a rotation as

uS
l (r) = uTl

+ uRl
(r), (4.29)

where uTl
is constant on ∂B while uRl

(r) = Ω × ar (remember that all quantities are expressed on the unit
sphere ∂B). The vanishing of the total force, due to self-propulsion, reads

∑
l

∫
∂B

fl =
∑

l

∫
∂B

(
T −1

(
uS

1 ,u
S
2 ,u

S
3

))
l
= 0. (4.30)
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Plugging (4.29) in (4.30) and using (4.20) leads to

∑
l

∫
∂B

(T G)−1

(
uT l + uRl −

4∑
k=1

Kk(xl,xl)〈(T G)−1(uT l + uRl), Id〉∂B

)

− (T G)−1

⎛
⎝∑

j �=i

K(xi,xj)〈(T G)−1(uT l + uRl), Id〉∂B

⎞
⎠ =

(
O

(
a3

)
+O

(
a2ε2

))
||u||, (4.31)

where ‖u‖ = ‖(uS
i )‖ is any norm on the n-uplets of rigid vector fields over the ball.

Here,
‖u‖ = O(|θ̇| + |ϕ̇| + |ẋc| + |Ω1|) = O(|θ̇| + |ϕ̇| + |ẋc|) (4.32)

where the last equality comes from Lemma 4.5. As mentioned earlier, it is well known that both translations
and rotations are eigenfunctions of the Dirichlet to Neumann map of the three dimensional Stokes operator
outside a sphere. Namely (

T G
)−1

uT l = λTuT l and
(
T G

)−1
uRl = λRuRl.

It is also well-known that λT = 3μa
2 , λR = 3μa, leading in particular to the celebrated Stokes formula∫

∂B

(
T G

)−1
uTl

ds = 6πμauTl
.

We also remark that due to
∫

∂B
uRl

ds = 0 , we have
∫

∂B

(
T G

)−1
uRl

ds = 0. We therefore obtain

6πμa
∑

l

⎛
⎝uT l − 6πμa

4∑
k=1

Kk(xl,xl)uT l − 6πμa
∑
j �=i

K(xl,xj)uT j

⎞
⎠ =

(
O

(
a3

)
+O

(
a2ε2

))
||u||. (4.33)

Torques. We now compute the torque with respect to the center xc of the middle ball B2. Self-propulsion of the
swimmer implies that this torque vanishes:

0 =
∫

∂B

(x1 − x2 + ar) × f1(r) +
∫

∂B

ar × f2(r) +
∫

∂B

(x3 − x2 + ar) × f3(r) = I1 + I2 + I3, (4.34)

with the quantities I1, I2 and I3 given below.

I1 =
∫

∂B

(x1 − x2 + ar) × f1(r) =
∫

∂B

(−ξ1e1 + ar) ×
(
T −1

(
uS

1 ,u
S
2 ,u

S
3

))
1

=
∫

∂B

(−ξ1e1 + ar) × (T G)−1

(
uT 1 + uR1 − 6πμa

4∑
k=1

Kk(x1,x1)uT 1

−6πμa
∑
j �=1

K(x1,xj)uT j +O
(
a2 + aε2

)
||u||

⎞
⎠

= −6πμaξ1e1 ×

⎛
⎝uT 1 − 6πμa

4∑
k=1

Kk(x1,x1)uT 1 − 6πμa
∑
j �=1

K(x1,xj)uT j

⎞
⎠

+
(
O

(
a3

)
+O

(
a2ε2

))
||u||.
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Similarly, we get,

I2 = a

∫
∂B

r × f2(r) = a

∫
∂B

r ×
(
T −1

(
uS

1 ,u
S
2 ,u

S
3

))
2

= a

∫
∂B

r × (T G)−1

(
uT 2 + uR2 − 6πμa

4∑
k=1

Kk(x2,x2)uT 2

−6πμa
∑
j �=2

K(x2,xj)uT j +O
(
a2 + aε2

)
||u||

⎞
⎠

= O
(
a3 + a3ε2

)
||u||.

Finally,

I3 =
∫

∂B

(x3 − x2 + ar) × f3(r)

= 6πμaξ2e1 ×

⎛
⎝uT 3 − 6πμa

4∑
k=1

Kk(x3,x3)uT 3 − 6πμa
∑
j �=3

K(x3,xj)uT j

⎞
⎠

+
(
O

(
a3

)
+O

(
a2ε2

))
||u||.

Denoting by A the matrix

A =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ (4.35)

where for i = 1, 2, 3

Aii = Id − 6πμa
4∑

l=1

Kl(xi,xi) (4.36)

and for i, j = 1, 2, 3 with i 
= j
Aij = −6πμaK(xi,xj) (4.37)

and S the matrix

S =
(

Id Id Id
−ξ1e1× 0 +ξ2e1×

)
,

we can rewrite the self-propulsion assumption (4.33) and (4.34) as

SA

⎛
⎝uT1

uT2

uT3

⎞
⎠ =

(
O

(
a2

)
+O

(
aε2

))
||u||. (4.38)

Terms involving the uRl
’s are included in the r.h.s.

We now express uT1 , uT2 and uT3 in terms of ẋc, θ̇, ϕ̇ and ξ̇. Since uT2 is the velocity of the center of the
ball B2, one has

uT2 = ẋc =

⎛
⎝ ẋ
ẏ
ż

⎞
⎠ in the canonical basis of R

3.

Then, by using d
dte1 = θ̇ e2 + sin(θ)ϕ̇ e3, we get

uT1 = uT2 − ξ1

(
θ̇e2 + sin(θ)ϕ̇ e3

)
− ξ̇1e1, uT3 = uT2 + ξ2

(
θ̇e2 + sin(θ)ϕ̇ e3

)
+ ξ̇2e1 .



776 D. GÉRARD-VARET AND L. GIRALDI

In matrix form, all this reads Then, the speed uTi (i = 1, 2, 3) is expressed as

⎛
⎝uT1

uT2

uT3

⎞
⎠ = T

⎛
⎜⎜⎜⎜⎜⎝

Ω1

θ̇
ϕ̇
ẋ
ẏ
ż

⎞
⎟⎟⎟⎟⎟⎠ + U ξ̇. (4.39)

with

T =

⎛
⎜⎜⎜⎝

0 −ξ1e2 −ξ1 sin(θ)e3 Id
...

0
0
0

0
0
0

Id

0 +ξ2e2 +ξ2 sin(θ)e3 Id

⎞
⎟⎟⎟⎠ , and U =

⎛
⎜⎜⎜⎜⎝

−e1 0

0
...

... 0
0 e1

⎞
⎟⎟⎟⎟⎠ .

Combining with (4.38), the motion equation (4.24) becomes

(SA + R1)

⎛
⎜⎜⎜⎜⎜⎝T

⎛
⎜⎜⎜⎜⎜⎝

Ω1

θ̇
ϕ̇
ẋ
ẏ
ż

⎞
⎟⎟⎟⎟⎟⎠ + (U + R2) ξ̇

⎞
⎟⎟⎟⎟⎟⎠ = 0 (4.40)

where the residual matrices R1,R2 satisfy

|R1| + |R2| =
(
O

(
a2

)
+O(aε2)

)
using (4.32). Finally, we only keep the five bottom lines of this system. It yields the following 5 × 5 system

(
S̃A + R̃

)
⎛
⎜⎜⎜⎝T̃

⎛
⎜⎜⎜⎝
θ̇
ϕ̇
ẋ
ẏ
ż

⎞
⎟⎟⎟⎠ + U ξ̇

⎞
⎟⎟⎟⎠ = 0, (4.41)

where

S̃ := (Si,j)2�i�6,1�j�9 , T̃ :=

⎛
⎜⎜⎜⎝

−ξ1e2 −ξ1 sin(θ)e3 Id
0
0
0

0
0
0

Id

+ξ2e2 +ξ2 sin(θ)e3 Id

⎞
⎟⎟⎟⎠ ,

and where the residual matrices still satisfy |R̃1| + |R̃2| = O
(
a2

)
+ O(aε2). We leave to the reader to check

that S̃AT̃ = S̃T̃ + O(a) is invertible, with |(S̃AT̃)−1| = O(1) uniformly in a and ε. Then, we can write
system (4.41) as ⎛

⎜⎜⎜⎝
θ̇
ϕ̇
ẋ
ẏ
ż

⎞
⎟⎟⎟⎠ = −(S̃AT̃)−1S̃AUξ̇ + R̃ξ̇ (4.42)

with |R̃| = O(a2 + ε2a).
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4.4. Reachable set

We are now ready to prove Theorem 2.4. In all what follows, in order to lighten the notation, we drop the
tilda, ε and a in the ODE (4.42) and express it as

Ẋ = F1(X)ξ̇1 + F2(X)ξ̇2, X :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ1
ξ2
θ
ϕ
x
y
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (4.43)

To expand the Fi’s, we decompose the matrix A into three matrices: A := Id + A1 + A2 where

A1
ii = −6πμa

3∑
k=1

Kk(xi,xi) ∀ i A1
ij = −6πμa

(
G(xi,xj) +

3∑
k=1

Kk(xi,xj)

)
∀ i 
= j

and where
A2

i,j = −6πμaK4(xi,xj) ∀ i, j.

Thanks to (4.41), we get an expansion of the form Fi := F0
i +F1

i +F2
i +Ri where F0

i , F
1
i and F2

i are respectively
the zero order term, the term of order a and the term of order εa. The remainder is Ri =

(
O

(
a2

)
+O(aε2)

)
.

These vector fields are given by

F0
i =

(
ei

−(ST)−1(SU)ei

)
,

F1
i =

(
0(

(ST)−1SA1T(ST)−1SU − (ST)−1SA1U
)
ei

)
,

F2
i =

(
0(

(ST)−1SA2T(ST)−1SU − (ST)−1SA2U
)
ei

)
. (4.44)

where e1 =
(

1
0

)
and e2 =

(
0
1

)
.

Now, we want to find some (ε, a,X) for which the determinant

det(X) :=
∣∣∣∣F1,F2, [F1,F2], [F1, [F1,F2]], [F2, [F1,F2]], [F1, [F1, [F1,F2]]], [F2, [F2, [F1,F2]]]

∣∣∣∣(X) 
= 0.

(4.45)

As the l.h.s. defines an analytic function of X, it will be non-zero almost everywhere. Thus, the Lie algebra
generated by F1 and F2 will be maximal (of dimension 7) at almost every X, and local controllability will follow
from Chow’s theorem, see [14].

For all G ∈ Lie(F1,F2), let us denote G0, G1 and G2 the zero order term, the term of order a and the term
of order aε in the expansion of the vector field G respectively. Thus,

G = G0 + G1 + G2 +O
(
a2

)
+O(aε2).

For instance the expansion of the first Lie bracket reads

[F1,F2] = [F1,F2]0 + [F1,F2]1 + [F1,F2]2 +O
(
a2

)
+O(aε2),
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with
[F1,F2]0 = [F0

1,F
0
2], [F1,F2]1 = [F1

1,F
0
2] + [F0

1,F
1
2], [F1,F2]2 = [F2

1,F
0
2] + [F0

1,F
2
2].

Note that for all G ∈ Lie(F1,F2), G0 + G1 is a “flat wall” expansion, first order in a. Meanwhile, G2 is the
first term which takes into account the roughness.

Without including this extra term, the three-sphere swimmer would not be controllable (see [2]), meaning
that the determinant would vanish. We have notably

Lemma 4.6. For all G ∈ Lie(F1,F2) \ {F1,F2}, G0 = 0.

Proof. A simple calculation yields

F0
1(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0
1
3 cos(ϕ) sin(θ)
1
3 sin(ϕ) sin(θ)

1
3 cos(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F0

2(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

− 1
3 cos(ϕ) sin(θ)

− 1
3 sin(ϕ) sin(θ)

− 1
3 cos(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It implies that [F0
1,F

0
2] is zero. The lemma is proved. �

As regards the O(a) term, we have

Lemma 4.7. Let Lie(F1,F2)1 :=
{
G0 + G1 s. t.G ∈ Lie(F1,F2)

}
. For all X, the dimension of the subspace

Lie(F1,F2)1(X) is less than 5.

Proof. As said above, for all G ∈ Lie(F1,F2), the sum G0 + G1 is a O(a) expansion of the “flat wall field”,
corresponding to the case h = 0. But in such flat case, symmetries constrain the swimmer within a plane. Thus,
the associated manifold has at most dimension 5 (ξ1, ξ2, two coordinates for the center of the middle ball, one
angle). This implies the result. �

Remark 4.8. Since without roughness the swimmer evolves in a plane, it follows that the angle ϕ cannot
change with time. Consequently, for all F(X) ∈ Lie(F1,F2)1(X) the fourth component of the vector F(X) is
zero.

Remark 4.9. The Lemma 4.7 also applies to the vector fields which do not take into account the roughness
i.e., the ones which appear in the expansion without ε.

From this, we will get that the non-zero leading term in the expansion of det has power a5ε2. Theorem 2.4
follows directly from

Proposition 4.10. In the regime 1 � ε � a, one can find a surface h ∈ C∞
c (R2) and a non-trivial analytic

function Bh defined on M such that for all X

det(X) = a5 ε2 Bh(X) +O(a6ε2 + a5ε3).
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Proof. For all vector G, we denote (G)j
j′ := (Gk)j�k�j′ . Since Fi, i = 1, 2, is of the type

⎛
⎜⎜⎝

ei

∗
...
∗

⎞
⎟⎟⎠, we get easily

that
det(X) = |Z1,Z2,Z3,Z4,Z5|

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z1 := ([F1,F2])37,
Z2 := ([F1, [F1,F2]])37,
Z3 := ([F2, [F1,F2]])37,
Z4 := ([F1, [F1, [F1,F2]]])37,
Z5 := ([F2, [F2, [F1,F2]]])37.

(4.46)

From Lemma 4.6, Z0
i = 0 for all i = 1 . . . 5. Moreover, by Lemma 4.7, any determinant of the type∣∣Z1

k1
,Z1

k2
,Z1

k3
,Z1

k4

∣∣ , ki ∈ {1, . . . , 5} is zero.

Expanding the function det by 5-linearity, we obtain

det(X) = a5 ε2 Bh(X) +O(a6ε2 + a5ε3),

where the function Bh(X) is defined as follows. Let

I :=
{
k ∈ {1, . . . , 5}5 with k1 < k2 and k3 < k4 < k5 distinct of k1 and k2

}
.

We set
Bh(X) :=

∑
k∈I

±
∣∣Z2

k1
, Z2

k2
, Z1

k3
, Z1

k4
, Z1

k5

∣∣ ,
where the ± is the signature of the permutation i→ ki.

It remains to prove that there exists X0 such that B(X0) is non-zero. By calling Kint
4 the function (s, r, r′) 	→

∂
∂z

(
s 	→ K0(s, r)

)
∂
∂z

(
s 	→ K0(s, r′)

)
, we have (see (4.12))

K4(r, r′) = −ε
∫

∂R
3
+

h(s)Kint
4 (s, r, r′) ds.

We then define the 3x3 block matrix A2
int(s) through

(A2
int(s))ij = −6πμaKint

4 (s,xi,xj), i, j = 1 . . . 3.

By using the linearity of the integral, the vector fields F2
i , i = 1, 2 read

F2
i =

(
−ε

∫
∂R

3
+

h(s)
(
F2

i,int(s)
)
ds

)
,

where,
F2

i,int(s) = −
(
−(ST)−1SA2

int(s)T(ST)−1SU + (ST)−1SA2
int(s)U

)
ei. (4.47)

Then, denoting
Z2

1,int(s) := [F2
1,int(s),F

0
2] + [F0

1,F
2
2,int(s)]
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leads to

Z2
1 = −ε

∫
∂R

3
+

h(s)Z2
1,int(s) ds. (4.48)

We can go on with this process and find explicitly functions Z2
i,int(s) for i = 2, . . . , 5 such that

∀i ∈ {2, . . . , 5}, Z2
i = −ε

∫
∂R

3
+

h(s)
(
Z2

i,int(s)
)
ds.

Finally,

Bh(X) = −ε2
∫

∂R
3
+

∫
∂R

3
+

h(s)h(s′)
∑
I

±
∣∣Z2

k1,int(s) Z2
k2,int(s

′) Z1
k3

Z1
k4

Z1
k5

(X)
∣∣ ds ds′. (4.49)

We call detint the function defined by,

detint : (X, s, s′) 	→
∑
I

±
∣∣Z2

k1,int(s) Z2
k2,int(s

′) Z1
k3

Z1
k4

Z1
k5

(X)
∣∣ . (4.50)

Clearly, for Theorem 4.10 to hold, it is enough that there exists X0 and (s, s′) ∈ (∂R
3
+)2 such that

detint(X0, s, s′) is not zero for some (s, s′) ∈ R
4. Indeed, we can then adjust the function h to make the

integral non-zero. The calculation of detint can be carried out using Maple. More precisely, one can derive an
equivalent as z goes to infinity, and check that detint(X0, ·, ·) 
= 0 for X0 =

(
1, 2, π

3 ,
π
3 , 1, 2, z

)
for z large enough

(see appendix for details).
Finally, we define the surface h as a cut off function χX0 ∈ C∞

c (R2) such that χX0 = 1 near (x, y) = (1, 2).
It concludes the proof of Proposition 4.10. �

As a direct consequence of Proposition 4.10 and the analyticity of the function det, for almost every (ε, a,X) ∈
R

2 × M, the Lie algebra of the vector fields F1 and F2 is fully generated. Finally, by using Chow’s theorem
(the theorem is stated in Appendix B), we get Theorem 2.4.

5. Conclusions and perspectives

The aim of this present paper was to examine how the controllability of low Reynolds number artificial
swimmers is affected by the presence of a rough wall on a fluid. This study generalizes the one made by Alouges
and Giraldi in [2] which deals with the effect of a plane wall on the controllability of this particular swimmers.

Firstly, we show Theorem 2.1. It deals with the regularity of the dynamics of the swimmers. Indeed, we prove
that the equation of motion of such particular swimmers are analytic with respect to the parameters defining
the swimmer (radius of the ball, position and length of the arms) and the typical height of roughness of the wall.
Then, we deduce Theorem 2.3 which claims that the 4-sphere swimmer remains controllable with the presence
of roughness. The proof is based on general arguments which could be used for other models of micro-swimmer.

Secondly, Theorem 2.4 examines the controllability of the Three-sphere swimmer in the presence of a rough
wall. More precisely, we show that there exists a roughness such that the swimmer can locally reach any
direction. We recall that the previous studies made on the 3-sphere swimmer allow to show that it can reach
only one direction (see [4]) when it evolves in a whole space and three directions with the presence of a plane
wall (see [2]). In our case, the roughness leads to break the symmetry of the system “fluids-swimmer”. As a
result, it allows the swimmer to reach any direction. The proof is an in-depth study which associates several
tools both in hydrodynamics and control theory. The general “idea” emphasizes here is the fact that in the real
life all the micro-organism, regardless how symmetric it is, can move in any direction.
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The quantitative approach to this question together with the complete understanding in a view of control-
lability of underlying systems is far beyond reach and thus still under progress as in a another direction, the
consideration of an confined environment, e.g. when the fluid is bounded. Future work will also explore which
are the directions easier to reach than the others by varying the rough wall.

Appendix A: well-posedness result for the Stokes system

We show here the well-posedness of the inhomogeneous Stokes system involved in the proof of Theorem 2.1.
We refer to this proof for notations, and shall drop here all bars for brevity. What we want to show is

Theorem A.1. Let (F,G, V1, . . . , VN ) given in V ′×L2(F)×
∏

l

H1/2(Bl). There exists a unique solution (V,Q)

in V0 × L2(F) of

−ΔV + ∇Q = F in F ,
divV = G in F ,

V = Vl at ∂Bl, l = 1 . . .N.

We recall that the space V0 encodes the additional homogeneous Dirichlet condition at ∂O.

Proof of the Theorem. The theorem follows from

Proposition A.2. For all (G, V1, . . . , Vn) given in L2(F)×
∏

l

H1/2(Bl), there exists a field W ∈ V0 satisfying

divW = G in F , W = Vl at ∂Bl, l = 1 . . .N. (A.1)

together with the estimate: ‖∇W‖L2 � C
(
‖G‖L2 +

∑N
l=1 ‖Vl‖H1/2

)
.

This proposition will be proved below. Let us explain how it implies the theorem. First, considering V ′ :=
V −W , and F ′ := F + ΔW one can come down to the homogeneous case G = 0 and Vl = 0 for all l. The
homogeneous case can then be solved by a standard application of Lax–Milgram theorem. More precisely,
defining

Vhom,div := {V ′ ∈ V0, V ′|∂Bl
= 0 ∀l, div V ′ = 0}

one can show easily that there is a unique V ′ ∈ Vhom,div satisfying∫
∇V ′ · ∇ϕ =< F,ϕ >, ∀ϕ ∈ Vhom,div.

We recall that the condition V/(1 + |x|) ∈ L2(F) in the definition of V0 is related to the Hardy inequality.
By standard arguments, one then recovers a pressure field Q ∈ L2

loc(F) so that the Stokes equation −ΔV ′ +
∇Q = F ′ holds. Eventually, to show that we can take Q in L2(F), we invoke ([9], Thm. 3.5.3, p. 217): it is
enough that for all G ∈ L2(F), the problem

div W = G in F , W |∂F = 0

has a solution W ∈ V0 with ‖∇W‖L2 � C‖G‖L2. This is a special case of Proposition A.2. This ends the
proof. �

Proof of the Proposition. Again, we single out the key ingredient in a

Lemma A.3. Given G ∈ L2(O), there exists a field W ∈ V0 such that

divW = G, W |∂O = 0 ‖∇W‖L2 � C ‖G‖L2.
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Note that this lemma is only about the domain O, that is without the balls. Let us postpone its proof, and
show how it implies the existence of a W satisfying (A.1).

• First step: we lift the boundary data Vl. One can find W ∈ H1(F) compactly supported near the balls, such
that W = Vl at ∂Bl. Up to replace W by W −W and G by G− divW , we can assume Vl = 0 for all l.

• Second step (assuming now Vl = 0 for all l): we extend G by 0 in the balls and apply the Lemma: it provides
a W̃ satisfying divW̃ = G, W̃ |∂O = 0. However, the boundary data at the balls is non-zero: W̃ |∂Bl


= 0.
• Third step: we correct this non-zero boundary data. We observe that∫

∂Bl

W̃ · n ds = 0 =
∫

Bl

divW̃ = 0,

as G was extended by zero inside the balls. Thanks to this “compatibility” condition, we can use a standard
result of Bogovskii (see [9], Exercice III.3.5, p. 176): for all l, there exists a field Wl defined over the annulus
{a < |x− xl| < a+ η}, satisfying

div Wl = 0, Wl|∂Bl
= −W̃ |∂Bl

, Wl|{|x−xl|=a+η} = 0.

We take η small enough so that the annuli do not intersect. Then, we extend the Wl’s by 0 outside the annuli
and set W := W̃ +

∑
Wl. This new field W satisfies (A.1), as expected.

�

Proof of the Lemma. In the case where h = cst., that is for a flat half-space, the result is classical (cf. [9],
Cor. 4.3.1, p. 261). In particular, if the support of G is included in {x3 > sup |h|}, the problem is solved: one
can take the solution W of

divW = G for x3 > sup |h|, W |{x3=sup |h|} = 0

and extend it by zero below {x3 = sup |h|}.
For general G, we can decompose G = G 1{x3>sup |h|}+G 1{x3<sup |h|}, and handle the first part as previously.

In other words, it remains to consider the case where G is compactly supported in x3. From there, we proceed
in three steps:

• Step 1. Let R such that G = 0 for x3 � R. We introduce W 1 := ∇ψ 1{x3<R} where ψ satisfies

Δψ = G for εh < x3 < R, ∂nψ|∂O = 0, ψ|x3=R = 0.

This Poisson equation has a unique solution in H2({εh < x3 < R}): note that Poincaré inequality applies
thanks to the Dirichlet condition at x3 = R. Hence, W 1 satisfies divW 1 = G in the strip {εh < x3 < R},
and also trivially in the half-space {x3 > R}. However, two problems remain: the normal component of W 1

jumps at x3 = R, and it has non-zero boundary data at {x3 = εh}.
• Step 2. Correction of the jump at x3 = R. We just introduce the field W 2 := W̃ 1{x3>R}, where W̃ satisfies

divW̃ = 0 for x3 > R, W̃ |{x3=R} = ∇Ψ |x3=R,

‖∇W̃‖L2 � C‖∇ψ‖H1/2({x3=R}) (� C ‖G‖L2).

The existence of such W̃ is classical (see [9], Thm. IV.3.3).

• Step 3. Correction of the boundary data. Thanks to the Neumann condition on ψ, we have W 1 · n|∂O = 0.
We introduce some partition of unity (χk = χk(x1, x2))k∈Z2 associated to a covering of R

2 by rectangles Rk.
More precisely, we assume that the lengths of Rk are uniformly bounded in k, and that the C1 norms
of χk are uniformly bounded in k (we leave the construction of examples to the reader). Thanks to the
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tangency condition on W 1, we can apply the Bogovskii’s result seen above on slices Sk := {(x1, x2) ∈
Rk, εh(x1, x2) < x3 < R}, k ∈ Z2. Hence, there exists some Wk ∈ H1(Sk) such that

divWk = 0 in Sk, Wk = −χkW
1 at ∂Sk ∩ ∂O, Wk = 0 at ∂Sk \ O,

and ‖∇Wk‖L2 � C ‖χkW
1‖H1/2(∂O). Extending all Wk’s by 0 outside Sk, and setting W 3 :=

∑
k∈Z2 Wk,

we find that

div W 3 = 0 in O, W 3|∂O = −W 1|∂O, ||∇W 3‖L2(O) � C‖W 1‖H1/2(∂O) (� C‖W 1‖H1(O)).

Finally, W = W 1 +W 2 +W 3 fulfills all requirements, which concludes the proof of the lemma. �

Appendix B: On Chow’s theorem

Let us recall here some elements to understand Chow’s theorem. More details can be found in the book of
Jurdjevic (see [14]). Let F and G be two vector fields defined on a smooth finite dimensional manifold M. The Lie
bracket of F and G is the vector field defined at any point X ∈ M by [F,G](X) := (F · ∇)G(X)−(G · ∇)F (X).
For a family of vector fields F on M, Lie(F) denotes the Lie algebra generated by F . Namely, this is the
smallest algebra – defined by the Lie bracket operation – which contains F (therefore F ⊂ Lie(F) and for
any two vectorfields F ∈ Lie(F) and G ∈ Lie(F), the Lie bracket [F,G] ∈ Lie(F)). Eventually, for any point
X ∈ M, LieX(F) denotes the set of all tangent vectors V (X) with V in Lie(F). It follows that LieX(F) is a
linear subspace of TXM and is hence finite-dimensional.

Lie brackets and Lie algebras play a prominent role in finite dimensional control theory. An important example
is Chow’s theorem, which gives a small time local controllability result (this theorem is used throughout the
whole paper):

Theorem B.1 ([8], p. 135). Let Ω be an nonempty open subset of Rn, and let F = (Fi)
m
i=1, a family of vector

fields, such that Fi ∈ C∞(Ω,Rn), ∀i ∈ {1, · · · ,m}.
Let Xe such that

LieXe(F) = Rn.

Then, for every ε > 0, there exists a real number η > 0 such that, for every (X0, X1) ∈ {X s. t. ‖X −Xe‖ < η}2,
there exists a bounded measurable function u : [0, ε] → Rn such that the solution of the Cauchy problem⎧⎪⎨

⎪⎩
Ẋ =

m∑
i=1

uiFi(X),

X(0) = X0,

(B.1)

is defined on [0, ε] and satisfies X(ε) = X1.

Appendix C: Formal expressions

We express here the requisite formal expression of the vector fields for the calculus of the detint at the point
X0 =

(
1, 2, π

3 ,
π
3 , 1, 2, z

)
.

First at all, we have used the software MAPLE to symbolically compute The vector fields F1 and F2 by
using the formula (4.44). Then, we deduce the expression of every vector which belongs to the set Fcal :={
Zj

k s.t. k = 1, · · · , 5 j = 1, 2
}

defined in (4.46). In the following, we express the first asymptotic terms
when z goes to infinity of the vector fields which belong to Fcal at X0. The asymptotic expression of the
determinant detint, defined in (4.50), is deduced.
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• The expansion of vector fields Z1
1 and Z2

1 are expressed by,

Z1
1(X0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

21627
57344

√
3

z4 − 237897
802816

√
3

z5 − 56965095
25690112

√
3

z6 − 29418201
25690112

√
3

z7 + 141
25088

√
3

z8

0

41
432

√
3 − 7209

229376

√
(3)

z4 − 923829
3211264

√
(3)

z5 + 45738445
102760448

√
3

z6 − 83758845
102760448

√
(3)

z7 − 47
100352

√
3

z8

41
144 − 21627

229376z4 − 2771487
3211264z5 + 137215335

102760448z6 − 251276535
102760448z7 − 141

100352z8

41
216 + 21627

114688z4 − 927033
1605632z5 − 38588135

51380224z6 + 191091795
51380224z7 − 61

100352z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z2
1(X0, s, s

′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2187
448

( 1
2+ 1

2

√
3)(1− 1

4

√
3)

πz7

− 2187
448

− 1
2

√
(3)+ 1

2
πz7

81
448

(
− 39

32

√
(3)+ 81

32

)√
(3)

πz7

− 243
448

− 9
32

√
3+ 63

32
πz7

729
896

( 1
2+ 1

2

√
3)(1− 1

4

√
3)

√
3

πz7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 27
784

√
3( 19593

64 v+ 6531
64 s− 567

64

√
3s′− 189

64

√
3s− 927

128

√
3− 63609

64 )
πz8

27
784

√
3(− 6531

16 s′+ 7665
16 s− 189

16

√
3s′− 189

16

√
3s− 2997

32

√
3+ 5727

8 )
πz8

− 9
196

8505
1024 s′+ 1587915

1024 s+ 58779
1024

√
3s′− 3087

4 s2+ 230769
1024

√
3s− 406647

1024

√
3− 2126079

2048
πz8

9
196

− 4011777
1024 s′− 72387

1024 s+ 567
1024

√
3s′+ 3087

4 s′2+ 1701
1024

√
(3)s+ 54351

2048

√
3+ 5792805

1024
πz8

− 27
1568

19593
64 s′+ 6531

64 s− 567
64

√
3s′− 189

64

√
3s− 927

128

√
3− 63609

64
πz8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1
z9

)
.

• The expansion of vector fields Z1
2 and Z2

2 are expressed by,

Z1
2(X0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

7209
25088

√
3

z4 − 2097819
11239424

√
3

z5 − 138036945
44957696

√
3

z6 + 166111299
89915392

√
3

z7 + 477316227
359661568

√
3

z8

0

− 13
81

√
(3) − 2403

100352

√
3

z4 − 18025783
44957696

√
3

z5 + 325287505
539492352

√
3

z6 − 852035953
359661568

√
(3)

z7 + 1369121487
1438646272

√
3

z8

− 13
27 − 7209

100352z4 − 54077349
44957696z5 + 325287505

179830784z6 − 2556107859
359661568z7 + 4107364461

1438646272z8

− 26
81 + 7209

50176z4 − 14961691
22478848z5 − 285472115

269746176z6 + 2178996509
179830784z7 − 3139098785

719323136z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z2
2(X0, s, s

′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

729
196

( 1
2 + 1

2

√
3)(1− 1

4

√
3)

πz7

− 729
196

− 1
2

√
3+ 1

2
πz7

9
3136

√
3( 243

2 − 117
2

√
3)

πz7

− 27
3136

− 27
2

√
3+ 189

2
πz7

243
392

( 1
2+ 1

2

√
3)(1− 1

4

√
3)

√
3

πz7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 9
5488

√
3( 11403

8 s′+ 3801
8 s− 567

4

√
3s′− 189

4

√
3s+ 99591

128

√
3+ 26481

64 )
πz8

+ 9
5488

√
3(−4161− 3801

2 s′+ 6069
2 s−189

√
3s′−189

√
3s+ 69765

32

√
3)

πz8

− 3
1372

8505
64 s′+ 698859

64 s+ 34209
128

√
3s′− 21609

4 s2− 307125
128

√
3s+ 2517615

1024

√
3− 23258601

2048
πz8

+ 3
1372

(− 1994643
128 s′− 61425

128 s+ 567
64

√
3s′+ 21609

4 s′2+ 1701
64

√
3s+ 54297

2048

√
3+ 26018883

1024 )
πz8

+ 9
10976

(− 11403
8 s′− 3801

8 s+ 567
4

√
3s′+ 189

4

√
3s− 26481

64 − 99591
128

√
3)

πz8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1
z9

)
.

• The expansion of vector fields Z1
3 and Z2

3 are expressed by,

Z1
3(X0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

36045
802816

√
3

z4 − 1737369
22478848

sqrt3
z5 − 688526655

359661568

√
3

z6 − 1554687891
359661568

√
3

z7 − 473853315
359661568

√
3

z8

0

− 19
1296

√
3 − 12015

3211264

√
3

z4 − 22827197
89915392

√
3

z5 + 1624779455
4315938816

√
3

z6 − 975961023
1438646272

√
(3)

z7 − 1370275791
1438646272

√
3

z8

− 19
432 − 36045

3211264z4 − 68481591
89915392z5 + 1624779455

1438646272z6 − 2927883069
1438646272z7 − 4110827373

1438646272z8

− 19
648 + 36045

1605632z4 − 17817209
44957696z5 − 1422386365

2157969408z6 + 2266030269
719323136z7 + 3127809953

719323136z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z2
3(X0, s, s

′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3645
6272

( 1
2+ 1

2

√
3)(1− 1

4

√
3)

πz7

− 3645
6272

(− 1
2

√
3+ 1

2 )
πz7

9
3136

√
3(− 585

64

√
3+ 1215

64 )
πz7

− 27
3136

( 945
64 − 135

64

√
3)

πz7

1215
12544

( 1
2 + 1

2

√
3)(1− 1

4

√
3)

√
3

πz7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 9
5488

√
3( 320229

128 s′+ 106743
128 s− 2835

128

√
3s′− 945

128

√
3s− 48927

64

√
3− 214935

16 )
πz8

− 9
5488

√
3( 106743

32 s′− 112413
32 s+ 945

32

√
3s′− 213405

16 + 945
32

√
3s+ 53283

16

√
3)

πz8

− 3
1372

( 42525
2048 s′+ 22164471

2048 s+ 960687
2048

√
3s′− 21609

4 s2+ 11452077
2048

√
3s− 2054187

256

√
3− 10591731

1024 )
πz8

− 3
1372

( 80736957
2048 s′+ 1028727

2048 s− 2835
2048

√
3s′− 21609

4 s′2− 8505
2048

√
3s− 19271313

256 − 677835
1024

√
3)

πz8

− 9
10976

( 320229
128 s′+ 106743

128 s− 2835
128

√
3s′− 945

128

√
3s− 48927

64

√
3− 214935

16 )
πz8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+O

(
1
z9

)
.
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• The expansion of vector fields Z1
4 and Z2

4 are expressed by,

Z1
4(X0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 64881
351232

√
3

z4 + 69687
307328

√
3

z5 − 1076724525
629407744

√
3

z6 + 5383125903
629407744

√
3

z7 − 4471078809
2517630976

√
3

z8

0

40
81

√
3 + 21627

1404928

√
3

z4 − 2233885
9834496

√
3

z5 + 2387478445
7552892928

√
3

z6 − 28725839983
7552892928

√
3

z7 + 50480747763
10070523904

√
3

z8

40
27 + 64881

1404928z4 − 6701655
9834496z5 + 2387478445

2517630976z6 − 28725839983
2517630976z7 + 151442243289

10070523904z8

80
81 − 64881

702464z4 − 424745
2458624z5 − 2329702535

3776446464z6 + 71414731349
3776446464z7 − 138596989329

5035261952z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z2
4(X0, s, s

′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 6561
2744

( 1
2+ 1

2

√
3)(1− 1

4

√
3)

πz7

6561
2744

(− 1
2

√
3+ 1

2 )
πz7

6561
2744

(− 1
2

√
3+ 1

2 )
πz7

− 27
21952

( 729
4

√
3− 1053

4 )
πz7

− 27
21952

√
3(− 567

4

√
3+ 243

4 )
πz7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 27
38416

(
1
2 + 1

2

√
3
) (

1 − 1
4

√
3
) (5103s′+1701s+74197/4− 1839

4

√
3)

πz8

+ 27
38416

( 1701
2 s′+ 1701

2 s− 5103
2

√
3s′+ 1701

2

√
3s− 22411

2

√
3+ 53465

4 )
πz8

+ 27
38416

( 1701
2 s′+ 1701

2 s− 5103
2

√
3s′+ 1701

2

√
3s− 22411

2

√
3+ 53465

4 )
πz8

+ 1
19208

√
3(− 413343

64 s′+ 7490259
64 s+ 76545

64

√
3s′+ 66339

64

√
3s+ 7226181

128

√
3− 4527333

32 )
πz8

− 3
19208

(− 7582113
64 s′+ 15309

64 s+/frac510364
√

3s′+ 15309
64

√
3s+ 295803

128

√
3+ 2697651

32 )
πz8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1
z9

)
.

• The expansion of vector fields Z1
5 and Z2

5 are expressed by,

Z1
5(X0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 64881
1404928

√
3

z4 + 5000643
157351936

√
3

z5 − 1007277825
1258815488

√
3

z6 − 7453380147
1258815488

√
3

z7 − 9398907099
1258815488

√
3

z8

0

65
2592

√
3 + 21627

5619712

√
3

z4 − 67204577
629407744

√
3

z5 + 2318031745
15105785856

√
3

z6 − 1808333293
15105785856

√
3

z7 − 31796394461
15105785856

√
3

z8

65
864 + 64881

5619712z4 − 201613731
629407744z5 + 2318031745

5035261952z6 − 1808333293
5035261952z7 − 31796394461

5035261952z8

65
1296 − 64881

2809856z4 − 40022909
314703872z5 − 2121362435

7552892928z6 + 1191556679
7552892928z7 + 62259224983

7552892928z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Z2
5(X0, s, s

′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 6561
10976

( 1
2+ 1

2

√
3)(1− 1

4

√
3)

πz7

6561
10976

(− 1
2

√
3+ 1

2 )
πz7

− 27
21952

( 729
16

√
3− 1053

16 )
πz7

27
21952

√
3( 567

16

√
3− 243

16 )
πz7

− 2187
21952

( 1
2 + 1

2

√
3)(1− 1

4

√
3)

√
3

πz7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ 27
38416

( 1
2+ 1

2

√
3)(1− 1

4

√
3)(− 5103

4 s′− 1701
4 s+ 2463

64

√
3+ 1431799

64 )
πz8

− 27
38416

(− 1701
8 s′− 1701

8 s+ 5103
8

√
3s′− 1701

8

√
3s− 171863

16

√
3+ 657773

64 )
πz8

+ 1
19208

√
3(− 413343

256 s′− 28812861
256 s+ 76545

256

√
3s′+ 66339

256

√
3s+ 102986487

2048

√
3+ 144659439

1024 )
πz8

− 3
19208

( 28721007
256 s′+ 15309

256 s+ 5103
256

√
3s′+ 15309

256

√
3s− 7786791

2048

√
3− 403566543

1024 )
πz8

+ 9
76832

( 1
2 + 1

2

√
3)(1− 1

4

√
3)

√
3(− 5103

4 s′− 1701
4 s+ 2463

64

√
3+ 1431799

64 )
πz8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1
z9

)
.

Then, we express the function detint computed at (X0, s, s
′, t, t′)

det
int

(X0, s, s
′, t, t′) = − 4209544161

5279854836580352
(−623289s′ + 623289t+ 3220141t′

− 3220141s+ 1153029s2 + 384343s′2
√

3

+ 623289
√

3s′ − 384343s2 − 384343
√

3s′2

− 623289
√

3t− 1682769
√

3t′ + 1682769
√

3s

+ 384343t′2
√

3 + 384343
√

3t2 − 1153029t′2 − 384343t2)
1

π2z24

+O

(
1
z25

)
.

This formal expressions lead to conclude the proof of Theorem 2.4.
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