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ASYMPTOTIC BEHAVIOR OF THE APPROXIMATE CONTROLS
FOR PARABOLIC EQUATIONS WITH INTERFACIAL
CONTACT RESISTANCE *

PAaTRIZIA DONATO! AND EDITHA C. JOSE?

Abstract. In this paper, we study the approximate control for a class of parabolic equations with
rapidly oscillating coefficients in an e-periodic composite with an interfacial contact resistance as well as
its asymptotic behavior, as € — 0. The condition on the interface depends on a parameter v € (-1, 1].
The case v = 1 is the most interesting one, and the more delicate, since the homogenized problem is
given by coupled system of a P.D.E. and an O.D.E., giving rise to a memory effect. The variational
approach to approximate controllability introduced by Lions in [J.-L. Lions. In Proc. of Jornadas
Hispano-Francesas sobre Control de Sistemas Distribuidos, octubre 1990. Grupo de Andlisis Matemético
Aplicado de la University of Malaga, Spain (1991) 77-87] lead us to the construction of the control as
the solution of a related transposed problem. The final data of this problem is the unique minimum
point of a suitable functional J.. The more interesting result of this study proves that the control
and the corresponding solution of the e-problem converge respectively to a control of the homogenized
problem and to the corresponding solution. The main difficulties here are to find the appropriate limit
functionals for the control of the homogenized system and to identify the limit of the controls.
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1. INTRODUCTION

The aim of this study is to answer two questions about the approximate controllability of a linear parabolic
problem with oscillating coefficients on an e-periodic two-component composite given by 2 = 1. U {25.. The
component {21, is connected while {25, is a disconnected union of e-periodic translated sets of €Y. On the other
hand, I is the interface separating the two components with 92 N I'. = () (see Fig. 1). On the interface, a jump
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FIGURE 1. The two-component domain.

of the solution is prescribed so that it is proportional to the conormal derivative via a parameter v € (—1, 1],
meanwhile, a Dirichlet condition is imposed on the exterior boundary 9f2.

This problem models the heat diffusion in a two-component composite with an imperfect contact on the
interface (see [5] for a physical justification of the model) and its limit problem (as ¢ — 0) describing the
effective thermal conductivity of medium, under the influence of the contact barrier.

Let us recall that by definition one has approximate controllability if the set of reachable final states is dense
in L2(£2). The first question deals with the existence of an approximate control of the e-problem. If such a
control exists, the second question, which is the more interesting one, is: do the control and the corresponding
solution of the e-problem converge (as e — 0) respectively to a control of the homogenized problem and to the
corresponding solution? In Section 3, we were able to answer both of these questions.

It is already known from previous studies by the authors in [6,10] (see also [8]) that the asymptotic behavior
of the e-problem differs in terms of the homogenized problems in the two cases —1 < v < 1 and v = 1. The
second one being the most complicated and interesting one, since the limit problem is a coupled system of a
P.D.E. and an O.D.E., gives rise to what is called a memory effect. In Section 2 we give the precise setting of
the problem and recall the homogenization and corrector results from [6,10].

Then, in Section 3 we state Theorem 3.2, which provides the approximate controllability of the e-problem. In
order to seek an answer to the second question, we also show the approximate controllability of the two different
homogenized problems corresponding to the case —1 < v < 1 (Thm. 3.3) and v = 1 (Thm. 3.4). This is followed
by the main convergence result of this study (Thm. 3.5), which positively answers the second question.

Following an idea introduced by Lions in [11], the construction of the control relies on the definition of a
suitable functional such that the control can be obtained as the solutions of a related transposed problem having
as final data the (unique) minimum point of the functional. We adapt some ideas used in [7,9,13,14] to our
case of a jump condition on the interface between the two components.

The unique continuation property due to Saut and Scheurer [12] plays an important role to guarantee the
existence of a minimizer of the functionals for the e-problem as well as for the homogenized problem of the case
—1 < v < 1. For the homogenized problem when v = 1, we need a special version of this property, which is a
new result and has been proved by Ammar Kohdja [1]. We added here its proof in the Appendix.

The existence of the controls of the homogenized problems and of the e-problem is proved in Sections 4 and 5,
respectively. We show first in details the controllability of the homogenized problems which is more delicate,
in particular that corresponding to the case v = 1. Afterwards, we prove the approximate controllability for
e-problem detailing only the specific points.

Finally, in Section 6 we prove the main result of this study, which concerns the asymptotic behavior of the
e-controllability problem. To this end, one of the main difficulties is to identify the limit of the controls. This
is done in Theorem 6.4, which provided a uniform estimate in ¢ for the unique minimum point of J., as well as
some suitable properties of the functionals.
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Let us mention here that one of the main difficulties is to find the appropriate limit functionals, which can
allow to give a positive answer to the second question. Although the e-functional is defined on functions of
L2(£2), the limit functionals for the two cases need to be defined on couples of functions of L2(£2), due to the
structure of the domain. This is a technical point, which is related to the fact that if a sequence converges to
a function in L2(£2), the limit of the restriction to each component do not converge to 6; (the proportion of
material) multiplied by that function.

As usual, in the spirit of Gamma-convergence, one has to prove limit equalities (here given in Props. (6.6)
and (6.7)) and a liminf inequality (proved in Prop. (6.9)). To prove the equalities, one needs to apply to the
auxiliary problem the corrector results given in Section 2, which need some stronger assumptions than the
homogenization results. We also emphasize that the corrector results are needed because we assume that the
initial data may not be zero.

In particular, when proving that the limit of the minimum points of J. converges to the minimum point of
Jo for the case —1 < v < 1, with the aid of a (new) compactness result given in Proposition 2.4, we are able to
derive a stronger convergence of the controls. Although this result does not hold for the case v = 1, we are still
able to describe the behavior of the controls in the latter case, where corrector results are essential even in the
case of zero initial data.

2. PRELIMINARIES

2.1. Position of the problem

In this work, £2 is a connected bounded open set of R” (n > 2), Y =]0,¢1[ % ...x]0,£,[ is the reference cell,
and {e} is a sequence of positive real numbers that converges to Z€ro.
Let Y7 and Y5 be two nonempty open sets such that Y = Y; UY5, with Y] connected and I" := 0Y5 Lipschitz

continuous. We define for any k € Z", the translated sets Y;¥ and I as follows:

Y=k +Y;, Ip:=ki+IT where kj=(kily,... knty,) and i=1,2

and for any given €, we set K. := {k € Z"|eY} N §2 # 0, i = 1,2}. We then define the two components of {2
and the interface respectively by

;e := 02N {UkeKE eYF}l, i=1,2 and [I.:=0%..

We assume that

o8N ( LJ (6[%)) = 0.

kezn

By construction, {2 is decomposed into two components, 2 = 21, U 2., where 2. is connected, 25, is a
disconnected union of e-periodic translated sets of Y5 and [ is the interface separating the two components
with 02 N I, = (. Figure 1 shows the two-component domain.

In the following we denote by

— ~ the zero extension to the whole of {2 of functions defined on {21, or (2.,

— Xg the characteristic function of any measurable set £ C R"™.

—mpgv) = ﬁ /Ev dx the average on E of any function v € L1(E).

Let us recall (see for instance [3]) that as ¢ — 0, , for i = 1,2,

g . Yl 12
X, 0; = v weakly in L=(42), (2.1)

0; being the proportion of the material occupying 2;..
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Let now w be a given open non-empty subset of {2, and set
Wie = W N e, 1 =1,2.

The aim of this paper is to study the approximate controllability and the asymptotic behavior as € — 0, of
the following problem:

ur" — div(A(2)Vuie) = Xwi P1e in 2 x(0,7),

uze" — div(A(Z)Vuge) = Xws. P2e in 2. x (0,7,

A(%)Vulg cN1e = —A(%)VUQE s Noe on Fg X (0, T) s

A(£)Vuie -nie = —e"h(Z)(u1e —u2:) onl. x (0,T), (2.2)
ue =0 on 92 x (0,T),

u1e(z,0) = U2 n,. in 21,

uze(,0) = U2 ,. in 2,

where n;e is the unitary outward normal to 2;. (i = 1,2), U? is given in L2(£2), and v € (—1,1].
In the sequel, we assume that
wie # 0, for any €, (2.3)
which is not restrictive for our aim, since for a given w this is always true for e sufficiently small.

We suppose that A is a Y-periodic symmetric n x n-matrix field in M(a, G, £2), that is,

(i) Ae (LC’O(Y))”2 and  a;; =aj,1 <4,j <n, (2.4)
(i) (A 2) > A, A@)A <A, '
for every A € RY and a.e. in 2 where o, 5 € R with 0 < o < 3. Moreover, we suppose that
hel>®(I"), 3 hoeR suchthat 0<ho<h(y), yae inl, (2.5)
U2 €eL?(2), i € L2(0,T;L2(82)), (i =1,2). (2.6)

In the following, we set

A (f) = A%(z), h (f) = he(z). (2.7)

3 3

The approximate controllability problem for system (2.2) reads:

Given w. € L%(£2), §; > 0 and 3 > 0, does a control . = (P1e, Pac) € L2(£21.) x L2(£25.) exist such that the
solution us = (u1e,uz:) of (2.2) verifies the estimates

(i) [ure(T) = wellLz(e,.) < 6
(i) [lu2e(T) — welLz(q,.) < 027

Another interesting question is:
If there is such a control, do the control and the corresponding solution of (2.2) converge (as e — 0) to a control
of the homogenized problem and to the corresponding solution, respectively?

In this paper, we give positive answers to both questions. Concerning the first question we need the additional

assumption that
2

Ae(CclY)", (2.8)
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since, as usually in the literature for this kind of problem, we need to make use some unique-continuation
properties, as that due to Saut and Scheurer [12]. In order to answer the second question, we will make use of
some homogenization and corrector results for system (2.2) which were studied in [6,10].

Let us mention that pioneer results on approximate controllability can be traced back from the works of
Lions [11]. For the asymptotic behavior of the approximate controllability problem of linear parabolic equations
we refer to [14] (see also [13]) for the case of a fixed domain and to [7] for the case in a perforated domain.

2.2. Recall of the asymptotic behavior of the e-problem

We introduce first the functional spaces
Ve = {v; € H'(212)]v1 = 0 on 902} equipped with the norm vy |y := IVuiliz(o,.) (2.9)
and
We = {v=(v,v2) € L*(0,T; V) x L*(0, T; H (£22.)) | v" € L2(0, T; (V*)") x L2(0, T; (H*(252)))},
equipped with the norm
lvllwe = [lvillL2o,3ve) + llvallrzo,msm (200)) + ||U1HL2(0 Ty(ve)) T+ ||U2HL2(0 T (H! (222)))-

It has been shown in [10] that problem (2.2) has a unique solution u® = (ujc, us.) € W€ and its asymptotic
behavior was studied in [6, 10].

Remark 2.1. In this paper, L?(§21.) x L?(§25.) will be equipped with the usual product norm, that is,
¥ (w1, wa) € L2(212) x L2(220),  [[(wr,w2)l|La(e,yxr2(2a0) = (lwr o) + lw2lFa(g,.) 2 (2.10)
Observe that the map @ : v € L2(2) — (v|@,.,v|0,.) € L?(£21c) x L?(§25.) is a bijective isometry since
H”Hiz(n) = H””iz(nlg) + ||U\|i2(925), for every v € L2(9)~ (2.11)
Notations. In view of Remark 2.1, in the sequel, we identify v € L2(£2) with (v|g,.,v|q,.) € L2(£1) x L2(£22¢).

When no confusion arises, we will simply write v instead of v|p,., ¢ = 1,2. Also, we will use the superscript 0
for functions taken as initial or final data in different parabolic problems, as for instance, U? € L?(£2) in (3.7).

We will make use of some homogenization and corrector results proved in [6,10] that we recall below, for the
reader’s convenience.

Theorem 2.2 [10]. For —1 < v < 1, suppose that A® and h® satisfy (2.4)—(2.7). Let ze = (21¢, 22:) be the
solution of the following problem:

2’ — diV(AEVZiE) = Gie in (2 X ( )7 i=1,2,

AV z1e - n1e = —A°Vzo, - 1o on F x (0,7),

AV z1e - n1e = —€7h%(21. — 222)  on x (0,7, (2.12)
ze =0 on 8() x (0,7,

2ie(2,0) = Z0| .. m (2, 1=1,2,

where Z0 € L2(2) and (g1, g2c) € [L?(0, T; L2(£2))]2. If

(1) (Xﬂl ZE,XQ 0y = (6129,0529)  weakly in [L2(2)]?,

. . 2.13
() (X g1erXg 02) = (B11,002) weakly in [L2(0, T L), (213)
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then there exists a linear continuous extension operator Pf € L(L2(0,T;V¢);L2(0,T;H(£2))) N
L(L2(0,T;L2($212)); L2(0,T;L2(02))) such that

(i) Pfzie = 21 weakly in L2(0,T; HY(12)),

(il) 21 — 0121 weakly* in L°°(0,T;1L2(£2)), (2.14)
(ili) 2o — 2o weakly* in L°°(0,T;1L2(£2)), '
(iv) e?||z1e — 22c|lL2(0,m12(r)) < €

where ~  denotes the zero extension to the whole of 2. Furthermore,

(i) AVz. — Az weakly in L2(0,T;[L2(02)]")
(1i) AVzee =0 weakly in L2(0, T; [L2(2)]"),

where A\ := my(Aa)\j\), the function wy € H*(Y1) being for any X € R, the unique solution of the problem

—div (AVwy) =0 in Y,
(AV@y) -ny =0 m I (2.15)
Wx — A -y Y-periodic and my, (wx — A -y) = 0.

The homogenized problems satisfied by the couple (z1,z2) are different for the two cases —1 <~y <1 and vy = 1.

Case — 1 < < 1: The function 2 is given by zo = 0221 and z; € C°([0,T); L2(£2)) N L2(0, T; H{(£2)) with
21 € L2(0, T; H Y(R2)) is the unique solution of the homogenized problem

21 — div (A°Vz1) = 0191 + 0290 in 2 x(0,T),
21 =0 on 082 x (0,T), (2.16)
2’1(0) = 91Z? + 92220 m 2.

Case v = 1: The pair (z1,22) € CO[0,7);L%(£2)) N L2(0,T;HY(2)) x CO[0,T);L3(2)) with 2, €
L2(0, T;H () is the unique solution of the coupled system

012] — div (A°Vz1) + cp(faz1 — 22) = 611 in 2% (0,T),

zy — cp(f2z1 — 22) = bago in 2> (0,T), (2.17)
21 =0 on 082 x (0,T), '
21(0) = 27, 2(0) = 6229 n £,

1
where ¢, = i / h(y) doy.
2l Jr

Remark 2.3. The homogenized matrix A° is that obtained by Cioranescu and Saint Jean Paulin in [4] for the
Laplace problem in a perforated domain with a Neumann condition on the boundary of the holes.

As proved in [10], in the case 7 = 1, solving the ODE in (2.17) and replacing z2 in the PDE shows that z;
satisfies an equation of the form

t
0127 — div (A3V21) + cpbaz1 — C%ﬂg/ K(t,s)z1(s) ds = F(x,t),
0
with K an exponential kernel, giving rise to a memory effect.

In this paper, we complete the weak convergences stated in (2.14) by a strong convergence result given in the
proposition below. This allows us to improve some convergences of the approximate controls when —1 < v < 1.
Let us emphasize that the results below do not hold for v = 1.
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Proposition 2.4. Let —1 < v < 1. Under the assumptions of Theorem 2.2, let z. = (z1¢,22:) and z1 be the
solutions of (2.12) and (2.16), respectively. Then,

Zle + 22: = 2: — 21 in L2(0,T;L3(£2)). (2.18)
Proof. When v < 1 from Proposition 3.7 of [10], one has
|| P 216 — 22¢||L2(0,751.2(0250)) — O (2.19)

On the other hand, since

Pfz1e = Fie + 22 + (x,, Pio1e — 522) (2.20)

0

T T T
/ / \zg—zl\z dz dtSQ{/ / |sz15—z1|2 dz dt+/ / |Pf215—z25\2 dz dt]
0 N 0 (9] 0 ¢

Hence, due to (2.19), in order to show (2.18) it is enough to prove that P{zi. — 21 in L2(0,T;L2(£2)) and
to do that, in view of (2.14) and classical compactness results it suffices to prove that (Pfz1.)" is bounded in
L2(0,T;H *(£2)). Let us show first that

we have

(X, Przie —22:)' =0 weakly in L*(0, T H™' (£2)). (2.21)

Indeed, for any ¢ € D((O,T) X (Z) one has

T
| < (g, Piate = 22)'s ¢ >raomim— @2 omimg(e) | = !/O /Q (Pfz1e — 220)¢ da di].
2e

Since the right-hand side of this equality goes to zero in view of (2.19), this implies (2.21).

Let us recall now that from Theorem 4.7 of [6], the sequence {z1.’ + z5.'} is bounded in L2(0,T; H™'(£2)).
This together with (2.21) implies the boundedness of (P{z1.)" in L?(0,7;H*(£2)) and concludes the proof,
since from (2.20), (Pfz1.)" = 212 + 222 + (XQ%szlE — z2:). 0

Let us recall now the corrector results proved in [6], which are also different for the two cases. These corrector
results were made possible by imposing stronger assumptions on the data.

If (e;)j=1,....n is the canonical basis of R and w; is the solution of (2.15) written for A =e;, j =1,...,n, the
corrector matrix C° = (CF;)1<i,j<n is defined, for 4,5 =1,...,n, by
8’&)\]‘ e —— [T
Cij(y) == 3 (y), a.e.onYy, Cii(z) = Cyy (—) a.e. on {2. (2.22)
Yi £

Theorem 2.5 [6]. Under assumptions (2.4)—(2.7), let z. = (21, 22¢) be the solution of (2.12).
Case — 1 <~ < 1: Assume that the data g;c € L?(0,T;L(2)) and Z° € L2(2) (i = 1,2), satisfy

(i) gie —gi  strongly in L?(0,T;L3(£2)), (2.23)
(i) 22— Z° strongly in 12(02), '
for some Z° € L2(£2). Then
() Zietze=z—a  in C(0,T];L(%2)),
(i) lim [[Vzie = CVzillez om0 =0, (2.24)

(111) ;1_1)1’6 ||vz25||L2(0’T;[L2(QQE)]’IL) = 0.
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Case v = 1: Suppose that for Z2 € L2(2) and g;e € L2(0,T;L%(2)), i = 1,2 one has (2.13)(i) and

(i) gie = gi strongly in L*(0, T;L2(12)),
. 0|2 0|2 012 012 (2.25)
(ii) HZEHL?(QIE) + 1122 ||L2(QQE) — 601]| 23 HL2(Q) + 92||Z2HL2(Q)'
Assuming that I' is of class C2, the following corrector results for the case v =1 hold true:
(i) limflz1e = z1flooo,ri2( 1)) = 0,
ii) lim HZQE — 0_122Hco 0,T;L2(2s.)) = 0,

(
(lii) gl_r% ||Vz1€ - CEVzl HLQ(O,T;[Ll(le)]n) = 0,
(v) L [|V2oe 20,7412 (220 ))) = 0

Remark 2.6. In particular, (2.23)(i) holds if for i = 1,2, g;c = ge|n,. and g- — g strongly in L2(0, T; L2(£2)).

On the other hand, it was shown in [6] that assumptions (2.13)(i) and (2.25)(ii) hold if for ¢ = 1,2, one has
X, 22 = Z}|0, for some Z). € L*({2) such that Zj, — Z} strongly in L*(£2).

3. STATEMENT OF THE MAIN RESULTS

In this section, we give the main results of this paper. In Section 3.1, we state the existence of an approximate
control for the e-problem (2.2) as well as for the corresponding homogenized problems for cases —1 < v < 1
and v = 1. In Section 3.2, the main convergence result of the paper is given. The statement reveals that the
control of the e-problem and its corresponding solution converge (as € — 0) respectively to the control and to
the solution of the homogenized problem.

3.1. Controllability of the e-problems and the homogenized problems

To prove the existence of a control of the e-problem, for a given w. € L2(£2) and for any ¢° € L2(§2), we
define the functional J. on L?(£2) by

1 T T
Je(w°)=§</0 [ et azars [ onp dxdt>+61||@°|mk>
Wie Wa2e

+ 02ll¢° L2 (2,0 —/ (we — v1(T))¢" dﬂf—/ (we — v2:(T))¢" du, (3.1)
21 22

where ¢. = (p1c, pae) is the solution of the transposed problem of system (2.2) given by

—ie’ —div (A*V ;) =0 in 2;c x(0,7),i=1,2,

AV 1e - n1e = —AVpae - Noc on I.x(0,T),

AV @1 N1 = —7h%(p1e — @2-) on I: x (0,7, (3.2)
e =0 on 92 x(0,T),

ic(,T) = ¢ q,. in 2.,1=1,2,

and v. = (v1e,v2:) is the solution of the auxiliary problem

vie' — div (A°Vu) = 0 in Qi % (0,T), i=1,2,

AV 01 - nie = —AVg,e - Noe on I.x(0,T),

AVv1e - npe = —e7h®(v1e —v2e) on I x (0,7, (3.3)
ve =0 on 02 x (0,7),

Vie(r,0) = U2

Qi in Qisv 1=1,2,

where n;e is the unitary outward normal to 2;c (i = 1,2) and U? € L2(£2).
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Remark 3.1. Since the two components are disjoint, J.(¢") given by (3.1) can be written as

1 T
L) =5 [ [ Il de at 8l + 5l e — [ @0 @) e @4

Due to the different homogenization results recalled in Section 2 for the two cases —1 <y < 1 and v =1, in
the sequel we mainly use the expression given by (3.4) for the case —1 < v < 1 and that from (3.1) for v = 1.
Indeed, in the last case one needs to handle the integral over each component.

In the following theorem, we show that for a fixed e, problem (2.2) is approximately controllable in time T'.

Theorem 3.2. Let T > 0, §; > 0, 52 > 0 be given real numbers, w. be given in L2(£2) and UL be in L2(12).
Suppose (2.4)—(2.8) hold. Let @° be the unique minimum point of the functional J.. If P = (P1c, Pac) is the
solution of (3.2) with the corresponding final data @°, then the solution u. = (uie,ua:) of the following system:

wie' — div (A*Vuie) = Xw,. Pic in $2;c x(0,T),1=1,2,

AV U1 - nie = —A*Vuge - noe on I x(0,T),
A*Vuqe - nie = —e7h®(uge —u2e) on I x (0,T), (3.5)
ue =0 on 082 x (0,T),
wic(z,0) = U2 0,. n 2, 1=1,2,
satisfies the following estimate:
lwie(T) — we |20, < 04y 0= 1,2. (3.6)

This theorem will be proved in Section 5. Our aim being to determine whether the approximate control
(found in Thm. 3.2) and the corresponding solution converge (as € — 0) respectively to the control and to the
solution of the homogenized problem, we will separate the cases —1 < v < 1 and 7 = 1 because of different
homogenized problems (see [6,10]).

To to that, let us describe first the control of the homogenized problem for the two cases —1 < v < 1 and
~v = 1. Let us start with the case where —1 < v < 1, for which we have

Theorem 3.3. Under the notations of Section 2, let T > 0, §1 > 0, 62 > 0 be given real numbers, w be given
in L2(02) and UY € L2(£2). Denote v the solution of the problem
v —div(A°Vv) =0 in 2 x (0,T),
v=20 on 0 x (0,T), (3.7)
v(z,0) = U° in .

For a given w € L?(£2), we define the functional Jo on [L?(£2)]* by

1 T
Jo(@°, W) = 5/ /W dz dt+51\/9—1||¢°||L2(m+52\/@||w0||m(m—/(w—v(T))(aldsOJresz) dz, (3.8)
0 w 2
where @ is the solution of the following homogeneous transposed problem:
—¢' —div(A°Vp) =0 in 2 x(0,T),

p=0 on 002 x (0,T), (3.9)
o(@,T) = 0,9 + 6.9° in (2.

Let (50,@0) be the unique minimum point of the functional Jy and @ the solution of (3.9) with final data
019° + 0,°. Then if uy is the solution of

uy’ — div(A°Vu) = xu@ in 2 x (0,T),
up =0 on 92 x (0,T), (3.10)
uy(2,0) = U° in 12,
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we have the following approximate controllability:

ui(z,T) — w|L2(0) < 511/01 + 821/05. (3.11)

This theorem is proved in Section 4. For the case v = 1, which is more interesting since the limit problem is
a coupled system, we state the following result, also proved in Section 4.

Theorem 3.4. Under the notations of Section 2, let T > 0, §; > 0, 62 > 0 be given real numbers, w be given
in L2(2) and UY and UY be in L2(02). Let (v1,v2) be a solution of the problem

Orv1" — div(A'Vv1) + cp(f2v1 —v2) =0 in 2 x (0,T),

vo' — cp(fav1 —v2) =0 in 2x(0,T), (3.12)
v =0 on 92 x (0,T), '
v1(2,0) = U,  w2(z,0) = 6U3 in £2.

For a given w € L2(£2), we define the functional Jo on L%(£2) by

1 [T 1 r
JO(QPO,!PO) :591/ / |g01|2 dz dt—|- 592_1/ / ‘(pg‘z dx dt+51\/ 91”@OHL2(Q) +62V92HWOHL2(Q) (313)
0 w 0 w

-6, / (w — vy (T))P° dz — 92/ (w— QEIUQ(T)) 0 da,
0 0
where (p1,p2) is the solution of the following homogeneous transposed problem:

—0101" — div(A°V1) + en(Bapr — p2) =0 in 2 x (0,T),
—@o’ — cp(fapr — @2) =0 in £2 x (0,T),
p1 =0 on 02 x (0,T),
o1(2,T) =%,  @o(x,T) = OW° in £2.

(3.14)

Let (50, @0) be the unique minimum point of the functional Jy and (P1,P2) the solution of (3.14) with final
data (P°,0,W°). Then if (uy,uz) is the solution of

9111,1/ — diV(AOV’LL1) + ch(02u1 — UQ) = Xw91g/51 in (2 x (O,T) s

us' — cp(faur — uz) = 0w P2 in 2x(0,7), (3.15)
u; =0 on 902 x (0,T), '
ur(2,0) = UL,  wua(x,0) = U7 in 2,

we have the following approximate controllability:
H01u1($, T) + Ug(x, T) — ’w”Lz(Q) S 51\/9—1 + (52\/9—2 (316)

3.2. Limit behavior of the approximate controllability problem

The following theorem gives a positive answer to the second question posed in Section 2. This is the main
result of the study.

Theorem 3.5. Suppose T,01,62 > 0. Let U? € L2(£2). Further, assume that (2.4)—(2.8) hold and let u. =
(u1e, uge) the solution of (3.5), P = (P1e, P2c) being the control given in Theorem 3.2.

Suppose —1 < v < 1. Let {w.}. C L?(£2) and {U2}. C L2(£2) satisfy the following assumptions:

(3.17)

(i) U9 —U° strongly in L2(£2),
(i) w. —w strongly in L2(02),
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for some U® and w in L?(§2). Then, as € — 0, we have the following convergences:

i) ¢c— ¢ strongly in L2(0,T;L2(£2)),

(11) (XglsagvXQ%@g) — (91@0’92@0) weakly in [L2(Q)}2’ (318)

where @ is the solution of (3.9) with final data 6,8° + 6,0° and (8°, W) is the unique minimum point of the
functional Jy defined by (3.8). Moreover,

(i) Pfuie —u1 weakly in L2(0,T;H(2)),
(i) we — uq strongly in C°([0, T); L2(2)), (3.19)
(iii) w1 — Ghuy  weakly* in L>°(0,T;L%(02)),
where uy is the solution of
w’ — div(A°Vu) = xu@ in 2x (0,T),
up =0 on 92 x (0,7T), (3.20)

uy(2,0) = U° in 0.

The function @ is an approximate control for the homogenized problem (3.20) corresponding to w and the
constants 61 and 62, that is

lui(z, T) — wl|L2(0) < 611/ 01 + d21/Os. (3.21)
Finally, one has the following convergence:
0111821 + 0201 @2 ey — 51O L2 () + 282l (3.22)

so that in particular, if 61 = do then

12201L2(02) = V011D lL2 () + VO2 P02 () (3.23)

Now, let v =1 and assume that I" is of class C*. For {w.}, C L?(£2) and {UP}. C L?(£2), we suppose that
for some UP,i = 1,2 and w in L*(82), they satisfy the following assumptions:
1) x, UY — 0,U?  weakly in L2(£2),

(i) NU2IE 0, + 102 1E2 0,y = OLIUT IRz () + 020102 1E2 ) (3.24)
(ili) we —w strongly in L2(£2).

Then as € — 0, one has

(i) les@zvé Xwb1§1 weakly in L2(0, T; L?(12)),
(i) Xws. P26 — XwPo2 weakly in L2(0,T;L2(02)), (3.25)
(iii) (XQIE@)’XQQE@)) ~ (6:8°,6,8°)  weakly in [L2(2)]2,
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where (1, P2) s the solution of (3.14) with final data (50,92@0) and (50,@0) is the unique minimum point of
the functional Jo defined by (3.13). Moreover,

(i) Pfuie — w1 weakly in L2(0,T;H(£2))

(i) wie — Orur  weakly* in L>=(0,T;L%(£2)), (3.26)
(iii) wze — ug  weakly* in L>=(0,T;L%(£2)),
where the couple (u1,us) satisfies
R div(AOVul) + ch(92u1 — UQ) = 91Xw$1 n 2 % (O,T) s
ug' — Ch(92u1 - uz) = XwP2 i 2 x (O,T)’ (3 27)
up =0 on 92 x (0,T), ’
ur(x,0) = UYL,  wug(x,0) = 6U7 in £2.

The couple (p1,p2) is an approximate control for the homogenized problem (3.27) corresponding to w and the
constants 01 and d2, that is

H01u1(x,T) + UQ(.T,T) — ’U}”L'z(Q) S 51\/@4- (52\/@ (328)

Remark 3.6. For comments about assumption (3.24), we refer to Remark 2.6. Let us also mention the case
of the controllability of the parabolic equations in the perforated domain studied in [7], wherein a factor \/ig

appears in the controllability condition for the homogenized problem (3.21).

Theorem 3.5 will be proved by using several results in the asymptotic behavior of the control for the e-problem.
To do this, we require our data to satisfy (3.17) and (3.24) depending on . We give immediate consequences
of these assumptions as follow.

Remark 3.7. Let w. and w be in L2(£2). If =1 < v < 1 and Assumption (3.17) holds, using Theorem 2.5
applied to problem (3.3) we deduce that

we — v (T) — w—v(T) strongly in L?(£2), (3.29)

where (vie, v2:) and v are the solutions of (3.3) and (3.7), respectively.
Suppose now that v = 1 and Assumption (3.24) holds. Then, from (3.24)(i) and (ii) and Theorem 2.5 applied
to problem (3.3) we get

[01(T) = v1 (D)2 — 0 and  [lva=(T) — 63 v2(T) l12(02,.) — 0, (3.30)

where v = (v1e,v2:) and (v, v2) are the solutions of (3.3) and (3.12), respectively. This together with (3.24)
(iii), yields

(e = 01:(T)) — (w = o1 (T)llezon) — 0 and |[(w. — vee(T)) — (w — b3 0a(T)) 200y — 0. (3:31)

4. PROOF OF THE CONTROL OF THE HOMOGENIZED PROBLEMS

In this section, we prove the approximate controllability of the homogenized problems stated in Theorems 3.3
and 3.4 for the two cases of the parameter, respectively. To do that, we use the variational approach to derive
the approximate controls of the homogenized problems, which is constructive compared to the Hahn-Banach’s
Theorem. This is also the technique used to study the approximate controllability of semilinear heat equation
in [9], the linear parabolic equations with rapidly oscillating coefficients in a fixed domain in [13] and of the
linear parabolic equations in perforated domains in [7].
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Here, we need to construct two different functionals. The first one is adapted to the case —1 < v < 1, where
we only have one partial differential equation in the homogenized problem. The second one is related to that
of v =1, where in the homogenized problem we have a coupled system of a partial and an ordinary differential
equation, which renders this case more difficult.

Proof of Theorem 3.3. By standard arguments one can prove that the functional Jy given in (3.8) is continuous
and strictly convex. Let us prove, in the spirit of [9,13], that for any sequence {(®%,%2)} in [L?(£2)]? such that
H(@?L, Wg)H[Ip(Q)]z — 00, one has

n @ ll' — bl V 62 . 41
H( n? 7’1,)H[L2(12)]

We set

@) ( ) w0 ) . @n
) = ) a1 ()0 = )
o @5, )22z (@5, ) L2 () t IS )l

where ¢, is the solution of the adjoint problem (3.9) with final data 6,82 + 6,02.
Then, by the definition of the functional Jy given in (3.8),
JO ((Pgw Wg)
(@0, ¥l e )

N 51V D2 () + 02v/ 02| |12 () _/(w_
(D5, T2)l[L2(2)2 0

1 T
= 5”(@%,&’72)”@2(9)]2/0 /\wnl2 dz dt (4.2)
w

o(T)) (.82 + 025°) da

T
Case 1. lim inf/ / |¢n|? dz dt > 0. Since [|(Y, 0)||[12(02)2 — oo, the first term in the right-hand side of
0 w

n—oo
(4.2) goes to infinity. On the other hand, the second term is smaller than &§;1/01 + d21/0>. Furthermore, by the
Holder inequality, triangle inequality is easily seen so that the third one is bounded, which gives (4.1).
Case 2. lim inf/ / |@n|? do dt = 0. Since L2(2) is reflexive and @2, ¥? are bounded in L?(£2), we have (up

n—oo
to a subsequence) that
010° + 0,02 — ¢°  weakly in L*(£2), (4.3)

for some ¢ in L2({2). By linearity, passing to the limit in (3.9) (written with final data ;@9 + 6,%0),
P — weakly in L2(0, T; H}(2)) nHY(0, T; H 1 (2)),

where v is the solution of (3.9) with o° as final data. By lower semi-continuity and the assumption done in
this case, ¥ = 0 in w x (0, 7). From the unique-continuation property due to Saut and Scheurer [12], we deduce
that ¢ = 0 in 2 x (0,7). Since v is in C°([0,7];L?(£2))) and satisfies (3.9), this implies using (4.3) that
0¥ = ¢(T) = 0. Consequently, the last term in (4.2) goes to zero as n — oco. Together with our assumption,
this gives (4.1), since the second term is bigger than min{d;1/81,d21/f2}. Hence, Jy admits a unique minimum
point (€0, ¥0) in [L2(£2)]2. Let us show that if @ is the solution of (3.9) with 6;®° 4 6, as final data, then for
every 70 € L2(§2) we have

T
‘/O /@/} dx dt—/ﬂ(w—v(T) 0 dz| < (01701 + 82/02) |70 12(02), (4.4)

where 1 is the solution of (3.9) with 70 = 0;7° + 0570 as final data.
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To do that, observe that if .Jy attains its minimum at (50, @0) then for any h € R, we have
0 < Jo(@° + hr°, W0 + hr0) — Jo(2°, ¥°)
T h2 T —~ ~,
[ [ev s B [P o e s (1804 hr0luei — 1800

0 w 0 w

+ 021/02 (||@0 + hTOHLQ(Q) — H(p\0||L2(Q)> — h/ (w —v(T))7° da.

0

By triangle inequality, it follows that

h2 T
B 7/ / o da dt -+ 3uV/Bi ATz (@) + 02v/Bal bl |7l
0 w

+h</OT/w¢¢ dz dt—/ﬂ(w—v(T))TO dx).

Dividing by h > 0 and passing to the limit as h — 0, we get

(6181 + 62/ B) |70 L) < / /pr dz dt—/( — (T da

Together with an analogous computation for the case when h < 0, we have (4.4).
Now to conclude the proof let as above @ be the solution of (3.9) with 6;@° + 6,0 as final data, 70 in L%(£2)
and z be the solution of the following equation:

2 —div(A°Vz2) = x,@ in 2x (0,7),
z=0 on 92 x (0,T), (4.5)
2(x,0) =0 in £2.

Using as test function in (4.5) the solution ¢ of (3.9) with 70 as final data, we have

/T/ (=)' z + A°VyVz) dx dt+/nz(T)z/)(T) dx:/OT/w@/} " dtZ/QZ(T)TO de.

Then, in view of (
‘/ ) dx_/(w—v(T)T da| < (01V/01 +62/02) 7|2
I}

This proves (3.11), since from the definition of u; and v one has by linearity, u, (T) = 2(T) + v(T). O

Proof of Theorem 8.4. Let w,®°, W% € L2(2) and the functional Jy be defined as in (3.13). The proof is
similar to that of Theorem 3.3 and we only point out the main differences. Again standard arguments show
that the functional Jp given in (3.8) is continuous and strictly convex. As in the previous proof, let us show
inequality (4.1), here for any sequence such that [|(@), %)) ||j2(2)2 — oo. We set

(80, 70) = ( 0 v ) (Grms Ban) = ( Pin P2n )
e (D%, 2oz " (P, )l (o) m (@2, )2z (PR, Y lliL2coyz )
where (p1,, P2,) is a solution of the adjoint problem (3.14) with final data (®9,6,%2). Now by (3.13),

Jo(P7, 7))

nytn 2 2 9/ / ol dx dt+9 / / nl? da dt
@0 00 2oy ||< 7o)l ) (1 |B1al? |on|?

. 51V ||DO |12 (02 + 02/ B[P 1.2(02)
(@0, ¥l L2 (a2

-0 /Q (w—v1(T)) P, dz — 65 /rz (w— 05 0o (T)) ¥ dz.  (4.6)
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T
Case 1. At least one of the lim inf/ / |@in|? da dt, i = 1,2 is strictly positive. Then,
0 w

n—o0

1 T B T
5”(@2,@2)”@2(9)]2 (91/ / ‘@1’“‘2 dx dt—|—02 1/ / ‘an‘Q dx dt) — 00.
0 w 0 w

and we conclude as in the proof of the corresponding case for Theorem 3.3.

Case 2. IL@EfAT/ |P1n|? da dt = linrriioréf/oT/ |@an|? dz dt = 0.
Since @Y, W0 are bounded in L?(£2), up to a subsequence, we have for some ¢° and 7% in L?(£2)
{@% — o0 weakly in L2(£2),
w0 — 0 weakly in L2($2),
By linearity, passing to the limit in (3.14) (written with final data (#2,6,%2)), one has
Gin — ;i weakly in L2(0, T; H(2)), i=1,2,

where (11, )2) is the solution of (3.14) with (¢, §27°) as final data. By lower semi-continuity, and the assumption
for this case, 11 and 19 are zero in w x (0,T) so that from Theorem 7.1 of the Appendix, 11,19 are zero in
2 % (0,T). Since 11,12 € CO([0,T]; L2(£2))) and 1, 1), satisfy (3.14), in view of (4.7) we have

PV =% =9 (T) =0  weakly in L2($2),
U0 — 0,70 = 4ho(T) =0 weakly in L2(2).

Therefore, the sum of the two last terms in the right-hand side of (4.6) goes to zero. This, together with the
assumption for this case and arguing as in the Proof of Theorem 3.3, concludes the proof of (4.1).
Let us prove now that if (#°,¥°) € [L?(£2)]? is the minimum point of Jy then, for any 70 € L2(£2),

T T
‘/ /01@1’1/11 dx dt-l-/ /92_1@2¢2 dx dt—/ (’LU—Ul(T))91’TO dx (48)
0 w 0 w 2
—/ (w05 0a(T)) 027" da| < (51v/01 + 023/0) 7l
9]

where (@1, @2) is the solution of (3.14) with (50,92@0) as final data.
To show (4.8), it must be noted that if Jy attains its minimum at (#9, ¥9) then we have

Jo(@°,8°) < Jo(2° + hr°, w° + hr°),
for any 70 € L2(£2) and h € R. Thus, from the definition of Jy,

T
0 < Jo(@° + hr, 0¥ + hr0) — Jo(2°,¥°) = 91h/ / P11y da dt
0 w

01h2 T ) o T N 951h2 T )
+— [¢1]° dz dt + 65" h Patpy dx dt + 3 [o]” da dt
0 w 0 w 0 w

+61V/0r (180 + b0y — 8122 ) + 82382 (190 + hrlliaco) — 180 2e )

—h </Q (w — vy (T)) ;7% dx — /Q (w — 05 va(T)) Oo7° d:r) .

Arguing as in the proof for the case v < 1, we obtain (4.8).
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To complete the Proof of Theorem 3.4, let ($1,P2) as above and for any 70 € L2(£2), let (¢1,%2) be the
solution of (3.14) with (7°,6,7°) as final data. Suppose z is the solution of the system:

9121/ — diV(AOVZj) + Ch(9221 — 2’2) = xw91$1 in 2 x (O,T) R
Zzl — Ch(9221 — Z2) = Xw(ﬁz in 2 x (O,T) s
z1=0 on 982 x (0,T),
z1(2,0) =0, 22(x,0)=0 in 0.

(4.9)

Choosing (1, 0) as test function in (4.9) and integrating by parts, we get

T T
—/ 91<Z1,¢;>L2(Q),L2(Q) dt+/ 91Z1(T)¢1(T) dl‘—l—/ / AOVZ1V’(/J1 dx dt
0 2 0 2

T T
+/ / Ch(9221 —22)1/11 dz dt :/ /91{51¢1 dzx dt. (410)
0 2 0 w
Now, choosing (z1,0) as test function in (3.14) (written for ¢),
T T T
—/ 91<’(/J/1, Z1>L2(Q),L2(Q) dt +/ / AOV¢1V21 dz dt —|—/ / ch(92¢1 — wg)zl dx dt = 0. (4.11)
0 0o Jo 0o Jo

Subtracting (4.11) from (4.10), from the symmetry of A® and the fact that ¢ (T) = 79, we have

T T
/ 01z1(T)TO dx+/ / Ch(zl’l/JQ —22’1/11) dz dt :/ /91@1¢1 dzx dt. (412)
2 0 2 0 w

Let us now take (0,12) as test function in (4.9) and integrate by parts so that

T T T
—/0 <Z2,T/)é>L2(Q),L2(Q) dt—l—/QZQ(T)wQ(T) dl‘—/o /Qch(922’1—22)¢2 dx dt:/o /w@z’(/JQ dx dt. (413)

On the other hand, choosing (0, 22) as test function in (3.14) (written for ¢) gives

T T
—/ <wl2az2>L2(Q),L2(Q) dt —/ / Ch(egwl - ’(/JQ)ZQ dz dt = 0. (414)
0 0 02
Subtracting (4.14) from (4.13) and using the fact that 19(T) = 027°, we have
T T
/ ZQ(T)QQTO d.%‘+/ / ch(92w1zz —92’(/J221) dx dt :/ /(70\2’(/@ dx dt. (415)
2 0 2 0 w
It follows that
T T
/ ZQ(T)TO dx+/ / Ch(Q/)lzg —’1/1221) dz dt = 0;1/ /g/ﬁgwg dzx dt. (416)
02 0 2 0 w

Adding (4.12) and (4.16) gives
T T
/ 01z1(T)TO dx+/ ZQ(T)’TO dz = 01/ /{51’1/11 dx dt‘l-e;l/ /@2’1/12 dx dt, (417)
0] 0] 0 w 0 w
while substituting (4.17) in (4.8) yields

’/ﬂ@lzl(T)To dw—i—/QZQ(T)TO dx—/ﬂ(w — v (T))0,7° dw—/ﬂ(w—@{lvg(T))GgTo dx

< ((51\/91+52\/92)HTOHL2(Q). (4.18)
This proves (3.16), since by the definition of u and v one has u;(T) = z;(T) + v;(T), for i = 1, 2. O
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5. PROOF OF THE CONTROL FOR FIXED ¢

In this section, we show the approximate controllability of system (2.2) for fixed e, stated in Theorem 3.2,
using the variational approach, as in the preceding section.

Proposition 5.1. Under assumptions (2.4)—(2.8), (3.17) and (3.24), let J. be the functional defined by (3.1).
Then, for every fized €, we have

0
lim inf M > min{dy, d2}. (5.1)
le2liez (o) —oo 1¥2]IL2(2)

Proof. The proof follows the same outline as that of the proof to show (4.1). The only point to be checked
is the fact that if the solution (41,12) of the adjoint problem (3.2) verifies ¢; = 0, in wy x (0,7) and 1y =

0, in wy x (0,7T), then 1, is zero in 2; x (0,7), i =1, 2.
To prove that, we observe that by assumptions (2.3) and (2.8), we can apply the unique-continuation property
of [12] to the problem satisfied by 11 in wy x (0,7T), which has a unique solution. Then, arguing as in the proof
of Corollary 1.2 of [12] we get ¢1 = 0 in 27 x (0,T"). Consequently, we also have 15 is zero in 25 x (0,7). O

Remark 5.2. Observe that by standard arguments, J. is continuous and strictly convex. Together with Propo-
sition 5.1, this implies that J. has a unique minimum point, 3¢ € L2({2).

The following result can be deduced by similar arguments as those used to show (4.4) and (4.8).

Proposition 5.3. Let ¢? € L2(2) and i = 1,2 and suppose (2.4)—(2.8). If @V is the minimum point of the
functional Jg, then

2

Z(/OT/M@H/%E dz dt—/Q

i=1

< a1l[92lLe(an) + Sllvlllia(ea,  (52)

i€

(we — Uis(T))¢g dgﬁ)

where p. = (P1e, Pac) is the solution of (3.2) with the corresponding final data @Y.

Proof of Theorem 3.2. The proof is analogous to those of Theorems 3.3 and 3.4. In the same way, to prove (3.6),
we decompose the solution u. as u. = z. + v, where v is defined by (3.3) and z. = (21, 22.) is the solution of
problem (3.5) corresponding to the initial data U2 = 0.

Let 40 € L2(£2) and suppose . = (¢1c,12¢) is the solution of the transposed problem (3.2) with final data
0. We choose 1. as test functions in the problem solved by z. and and 2. as test function in (3.2) (written for
1¢). Using similar arguments to show (4.17), since ¢ (x,T) = 9 and A% is symmetric, we deduce that

T T
/ / P1eth1e dx dt+/ / Pocthye da dt :/ zls(T)wg d:r—i—/ ZQS(T)wg dz. (5.3)
0 Wie 0 W2e Qla Q?E

Together with Proposition 5.3 and using the decomposition u. = z. + v., we get

< 01l (ny + 2llY? L2 (0, ) (5.4)

’ /n (w(T) = w2 dot [ (uae(T) — w2 do

025

Taking 10 = 0 in {25. gives

\ [ ) = wepp? el < 81002y, W2 €12(000)
Qla

so that by definition, we obtain (3.6) for i = 1. Similarly, choosing ¥? = 0 in 21, in (5.4), we obtain (3.6) for
1 = 2. This completes the result. O
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6. PROOF OF THE MAIN CONVERGENCE RESULT

In order to prove the main convergence result given by Theorem 3.5 we need to prove first the next proposition
which, as in [13] for the case of rapidly oscillating coefficients in a fixed domain and in [7] for perforated domains,
provides a uniform estimate in ¢ for the unique minimum point @° of the functional J..

Proposition 6.1. Under the assumptions of Theorem 3.5, the functional J. defined by (3.1) satisfies,

0
lim inf Jelpe) > min{dy, da}. (6.1)
19202 (e — oo ¥2IL2(02)
e—0

Proof. Let {€;};en be a subsequence of {¢}.~¢ and @27 € L2(2) a corresponding sequence, denoted for simplicity
¢ € L2(£2) in the sequel, such that [|¢2[|r2(0) — 00 ase — 0. Set

905
12lr2 ()’

Pe
||<P5HL2(Q

0

Yo = (@E‘le?@€|92a) (62)

@E - (@167 @26)

where . = (¢1c, pac) is the solution of the adjoint problem (3.2) with final data ¢C.
Observe that there exists a subsequence (still denoted by ¢) and o, 7% € L2(£2) such that

(xm;pg, xmswg) — (610°,0,7°)  weakly in [L?(£2)]°. (6.3)

Take note also that @. satisfies (3.2) written for the final data @Y, which applying Theorem 2.2 gives

(Pre, Pac) = (011, @2)  weakly* in L™(0, T L7(£2)) x L>(0,T; L*(£2)). (6.4)
Case — 1 <~ < 1: The limit @, is given by @2 = 021, where @7 is the solution of
—div(A°V@1) =0 in2x (0,7),
P21 =0 on 982 x (0,T), (6.5)
@1(.T,T) :910'0+927'0 in £2.

Case v = 1: The limit (@1, @2) is the solution to the following equation:

—01¢) — div(A°V @) + cn(Bapr — @2) =0 in 2 x (0,T),

—@5 — cn(02p1 — P2) =0 in 2% (0,7), (6.6)
o1 =0 on 92 x (0,T), '
@1(1’,T):00, @2($,T):92’TO in 2.

Now, by the definition of J. given in (3.1),

_Jelel) ) H%HL?Q) // |p1c|? dx dt+//
g or. s

+ 62122 |2 (25 —/ (we — v1(T))@? da —/ (we — v2e(T))p? da.

915 925

|@2:]* da dt) +81[1 @22 (e (6.7)

€
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T
Case 1. At least one of the lim iélf/ / |@ic|? da dt,i = 1,2 is strictly positive.
E—> 0 Wie

Using our assumption that ||¢2\|L2(Q) — 00, we have

T T
||QOSHL2(Q) (A / |('51€|2 dx dt+A / ‘@25‘2 dx dt) — OQ.
Wie wW2e

On the other hand, by (3.29)—(3.31) and (6.2), |w: — vie(T)|L2(02,.) < o0 and [|@2]|12(0,.) < o so that,
by Holder inequality, the last two terms of (6.7) are bounded. Lastly, since ||@2[|12(0,.) < 1,i = 1,2, we have
61||@2HL2(915) + 52”@2HL2(925) < 61 + O2. Therefore, the limit in (6.1) is equal to +oo, which gives the estimate.

T T
Case 2. lim inf/ / |g1c|* dz dt = lim inf/ / |@ac|? da dt = 0. From (6.4) and our assumption,
e—0 0 Wie e—0 0 Woe

we deduce that @1 = @2 =0 inw x (0,T).

If -1 < v < 1, from (6.5) and the unique-continuation property from [12], we have ¢1 = @2 =0 in 2x(0,7).
Since @1 € CO([0, T]; L?(£2))), it follows that @¢1(T) = 6106° + 027 = 0 in L?(£2). Hence, from (6.3), the function
@Y weakly converges to zero in L2(£2). This, together with (3.29), yields

e—0

i (e [ (e () ac) =ty [ (0 oT) ar =0 (68)

Now, let v = 1. Since the couple (@1, p2) satisfies (6.6), by Theorem 7.1 of the Appendix we derive that
@1 = @2 = 0in 2 x (0,7T). This implies, since 1, P2 € C([0, T]; L3(£2)),

{%(T) —¢'=0 inL2(R) (6.9)

Thus, for v = 1, arguing as done above for the previous case, we have
(X 3% x npo) — (0,0) weakly in [L2(£2)])? (6.10)
21T M2 TE ’ ’ ’

Using (3.31), this yields
i (o= oo do [ (e = ()0 )
e—0 -le 025

-0
lim (0= )y, 7 o)

~im (/. (e = 1) 0 = ()2 e+ [

+ lim ( / R R R RS [ w8 ), o dw) —0. (611)

e—0 0
Lastly,

S llp2llz(2..) + S2ll@2llLz (..

1
=0 (H‘Pg”%}((glg) + ”%02”52(925))2

lim (31182 [L2(er.) + 020182 L2(2nn)) = > min{dy, da}. (6.12)

Using (6.8), (6.11), (6.12) and the assumption done for this case, we have the claimed estimate (6.1). O

Corollary 6.2. Under the assumptions of Theorem 3.5, let @0 be defined in Theorem 3.2. Then, there exists a
constant C' independent of € such that
1822 (0) < C. (6.13)
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Proof. We prove the result by contradiction. Suppose there exists a subsequence (still denoted ) such that
182 |L2(2) — 00, as e — 0. Since @Y is the minimum point of the functional J., one has J.($2) < J.(0) = 0, for
any €. Hence, by Proposition 6.1, we obtain a contradiction, since

=0
0 < min{dy, 6} < liminf % <0.
e=0 [|22|L2(e)
O
Remark 6.3. From Corollary 6.2, there exists (£9,2°) € [L2(£2)]? such that (up to a subsequence)
{ <X915@7X925¢2) } - (9150,921/0) weakly in [L2(£2)]2. (6.14)

The next theorem identifies the weak limit (£Y,2°) in (6.14), precise some behavior of the controls and lead
us to the proof of our main result, Theorem 3.5. It is proved at the end of this section after several preliminary
results, by adapting to our case some techniques used by Zuazua [13,14] and Donato and Nabil [7].

Theorem 6.4. Let U and w be given in L2(§2). Under the assumptions of Theorem 3.5, let @2 be the minimum
point of J., and (®°,¥°) the unique minimum point of the functional Jo given by (3.8) and (3.13) according on
~v. Then, as € — 0,

(xmﬁ,x%ﬁ;> - (9150,92@0) weakly in [L2(£2))2. (6.15)

Corollary 6.5. Under the hypothesis of Theorem 8.5, let @ be the control p. given by Theorem 3.2.

Case — 1 <~y < 1: Let ¢ be the solution of (3.9) with final data 0,9° + 02&7\0, where the pair (50,@0) is the
unique minimum point of the functional Jy defined by (3.8). Then, as e — 0,

D) 5.0 in 12(0,T;1.2(2
{(1) Pe =0 strongly in L*(0, T; L*(2)), (6.16)

(i) Pipr—@ weakly in L2(0, T HA(42)),

Case v = 1: Let (p1,92) be the solution of (3.14) with final data (90, 0,0°), where (50,![70) is the unique
minimum point of the functional Jy defined by (3.13). Then, as e — 0,

() Pre =651 weakly* in L=(0,T;12(12)),
(ii)  @oe — @2 weakly* in L°(0, T; L2(£2)), (6.17)
(iii) Pf@re — @1 weakly in L2(0,T; H{(£2)).

Proof. Convergences (6.16) and (6.17) directly follow from (6.15) by applying Theorem 2.2 to the control @,
with the aid of Proposition 2.4 to show (6.16)(i). O

In the two propositions below, we state a convergence result which is an essential tool for proving Theorem 6.4.
Although the results are similar in the two cases, we state them separately, since the proofs are different.

Proposition 6.6. Let —1 < v < 1. Suppose (2.4)—(2.7) and (3.17) hold. Then the functional J. defined by (3.1)
satisfies
shjf(l) JE(X.le@O - XQ%WO) =Jo (QO’ y'/o) ’ (618)

for any &y and ¥° in L2(82), where Jy is the functional given by (3.8).
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Proof. By definition (see Rem. 3.1),

1 T
Je (XQIE@’%—XQ%WO) :5/0 /w|¢5\2 dz dt + 61(|2°||r2(0,.) + 02[1¥°l12(0s.) (6.19)

— /Qla(wE —1)16(T))d50 dx—/ (we —vgg(T))&T/O dzx,

925

for any @ and ¥ in L2(£2), where 1) (x,t) is the solution of problem (3.2) with final data Xg, P + Xg, o
and v. = (v1e,v2:) is the solution of the auxiliary problem (3.3).
Since (XQ1 0, Xg, wY) — (91¢0, 92y70) weakly in [L2(£2)]?, Theorem 2.2 and Proposition 2.4 applied to v,

imply that 1. — 4 strongly in L2(0,T;L?(£2)), where 1, is the solution of (3.9). This, together with (2.1)
and (3.29), allows us to pass to the limit in (6.19) to obtain the desired result. O

The next proposition concern the case v = 1, where the homogenized problem contains a coupled system of
two equations.

Proposition 6.7. Let v = 1 and assume that I" is of class C?. For @°,w° € L2(£2), suppose that (2.4)—(2.7)
and (3.24) hold. Then the functional J. satisfies

. 0 0) _ 0 g0
6113(1)@ (XQIEQ +X925W>—J0(45,EP),
where Jy is the functional given by (3.13).

Proof. Let y! = Xg, 0 + Xg, U9 and 1p. = (Y1c,102.) be the solution of the transposed problem (3.2) with
final data x, 0 4 Xo, Y. Then, as in the proof of Proposition 6.6,

1 T T
T =5 ( ] ek asaes [ ] el as dt) TN (6.20)
0 Jwie 0 Jwae
+ 521|122, —/ (we — v1:(T))9° da —/ (we — voe (T))W° da,
1e £22¢

where ve = (v1e, v2c) is the solution of the auxiliary problem (3.3). Now, since

(XQIEQO, XQQE!PO) — (6,9°,6,9°)  weakly in [L*(£2)]?,

Theorem 2.2 applied to (¢, 12:) yields convergences (2.14), written for z. = . and (z1,22) equal to the
solution (t1,12) of (3.14). We need to pass to the limit in (6.20). For the first two terms, we write

1 T ) T ) 1 T
I. == Xw"l/}le‘ dr dt + Xw"l/}25| de dt | = = Xw(wls - 1/11)1/115 dr dt
2 \Jo Ja.. 0 Ja. 2Jo Jau.

1 [T 1 /7 1 /7
41 / / ot da dt + & / / oo (Whae — 03 o )pne dar i + - / / by “atha. da dt.
2 0 915 2 0 QQE 2 0 925
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Observe that we can apply Theorem 2.5 to the problem solved by v, since clearly (2.25) holds true. Then,
we can pass to the limit in the first and third terms of I, using the Holder’s inequality to obtain

(1T 1 (T .
gg% <§A _/_QIE Xw(wls —1/11)1/116 dx dt+ EA /_(')25 Xw(wQS _02 1/)2)1/)26 dx dt)

1
<3l lim ([[1e = ¥1llcoo,riLz(p1¥1ellLee 0,7:12 (210 )) )
+

1
5 lim (||¢2s — 05 " ol co g0, 7512 (250 1 ¥2e Lo (0,7,12(2.))) = O

Hence,

T T L T
lim I, = lim l/ / wl’(/Jlg dx dt + l/ / 951w2¢25 de dt | = l/ / (91(w1)2 + 951(¢2)2) dx dt.
e—0 e—=0 \ 2 0 w 2 0 w 2 0 w

On the other hand, using (2.1) one obtains

1

2
11H(1)51 (/ XQ1 ‘@0‘2 dl‘) + 11H(1)62 (/ XQ |W0 dl‘) =910 H@OHLQ(Q + 021/ 6 ngOHL'z
E— Q = E—

For the last two terms of (6.20), using (3.31) yields

lim ( /Q (w2 — v1(T))#° dz + /Q (we — vac(T)) PO dar)
— lim (/Q (w2 — v1e(T)) — (w — vy (T))]@° dz +/

e—0

(w — Ul(T))XmE@O dx)

Q
+lim </ [(we —v2:(T)) — (w — 02_11)2(T))]&170d$+/ (w — 05 v (T))x Wodx>
e—0 20 0 £22¢
:/ (w —v1(T))0,9° dz —|—/ (w — 05 0o (T))0o0° da. (6.21)
Q [0
Therefore, combining the above identities one gets the desired result. O

The next proposition makes use of the following general statement proved in [7].

Lemma 6.8 [7]. Let O be an open set of R™ and {O:}. C O a sequence of open subsets of O. Suppose that
{ve}e C LP(O:),p > 1, is such that, as € — 0,
Xp. =X, weakly* inL>(0),
Us = X, v weakly in LP(O)
for some v € LP(O). Then
lim inf |ve|P dxz/ X |v|P da.
e—0 o o 0

€

Proposition 6.9. Under the assumptions of Propositions 6.6 and 6.7 (for the cases —1 < v < 1 and v = 1,
respectively), for any sequence {1°}. C L2(£2) such that as ¢ — 0,

<X91€ S’XQQE@)) — (619°,0,0°)  weakly in [L*(2)]?, (6.22)
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for some (°,W°) in [L2(£2)]?, we have
lim inf J-(42) > Jo(2°,9Y), (6.23)

where Jo is defined by (3.8) and (3.13) for the cases —1 < v <1 and v = 1, respectively.

Proof. Let 1. be the solution of (3.2) with final data ¢? € L?(£2).
Case — 1 <~ < 1: Let J. be given by (3.4). From Theorem 2.2 and Proposition 2.4 applied to 1. we have

535%/ [ 1ol s at = / [ 1o da ar. (6.24)

where 1 is the solution of the homogeneous transposed problem (3.9). Now, by (3.29) and (6.22), we get

lim [ (we —ve(T))? do = / (w —v(T))(6,9° + 629°) da. (6.25)

e—0 /o 0
Hence, using (2.1), (6.22), (6.24), (6.25) and Lemma 6.8, we get

liminf J. (1)) > / /W dz dt +611/01[|9° L2 () + 02/ 0290|1202
- / (w —v(T))(618° + 6.0°) dx = Jo(2°,¥0).
02

Case v = 1: By the definition of J., we have

1 T T
- ( [ ] ek azaes [ ]l as dt) + 811620z o
0 Wie 0 wW2e

4 8all92 ey — / (we — 01 (T))$2 dz — / (we — 0 (T dz. (626

.ng 025

For this case, Theorem 2.2 applied to problem of 1. gives

(i) P1e — 0191,
{(z‘z’) e = ¥, (620

where (11, 12) is the solution of (3.14). Now, from (2.1) and (6.27), applying Lemma 6.8 gives

hmlnf/ / Xol|th1e]? dz dt—hmlnf/ / [inexw|? do dt >/ /91\w1 dr dt (6.28)
-le

hmlnf/ / Xw|1/125\ dz dt>/ /92 ¢2
925

On the other hand, by same argument used to prove (6.21),

tin ([ = e o [ (=102 )
—im ([ [ =10 = 0 = i (@D ot [ = (D), 00 i)

e—0 0

and

de dt = 65 / /W@P dz dt. (6.29)

i (e = ) = =05 D)8 o+ [ w05 (T, 02 )

e—0

- / (w — 01 (T))0, 8 da + / (w — 05 10 (T))057° da. (6.30)
(9] 2
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Using Lemma 6.8 once again, we can pass to the limit for the remaining terms of (6.26). Hence, together
with (6.28)—(6.30), one has the claimed result. O

Thanks to the above propositions, we are now able to prove Theorems 6.4 and 3.5, our main result.

Proof of Theorem 6.4. By Remark 6.3, the sequence {@%}. of the minimum points of J., satisfies (up to a
subsequence), convergence (6.14) for some (£°,19) € [L2(£2)]2. From Proposition 6.9, we have

Jo(€%,0°) < lim inf J(32). (6.31)

Let us consider first the case —1 < v < 1. Since @? is the minimum point of the functional J., for any
(@Y, ¥ € [L2(£2)])?, using Proposition 6.6 we have,

limsup J.(¢2) < limsup J (y

e—0 ledso + begwo) = JO(@O’ &DO) (632)

From (6.31), (6.32) and Theorem 3.3, we get (£9,20) = (Q?O, @O) where (Q?O, @O) is the unique minimum point
of the functional Jy given in (3.8) and consequently, the whole sequence in (6.14) converges.

Now, for the case v = 1, using Proposition 6.7 and the fact that @° is the minimum point of .J., we obtain
again (6.32). This, together with (6.31) and Theorem 3.4, shows that (£0,10) = (<1A50,@O)7 the unique minimum
point of the functional Jy given in (3.13) and again the whole sequence in (6.14) converges. O

Proof of Theorem 3.5. Observe that the convergences in (3.18) and (3.25) are direct consequences of Theorem 6.4
and Corollary 6.5. On the other hand, (3.17)(i) and (3.18)(i) (see also Rem. 2.6) together with the corrector result
given in Theorem 2.5 for the case —1 < v < 1 imply (3.19)(ii). Also, Theorem 2.2 applies to problem (3.5) which
proves (3.19)(i) and (iii). Meanwhile for the case v = 1, using assumption (3.24)(i) and convergences (3.25)(i)
and (ii) with Theorem 2.2, we have (3.26). Consequently, the controllability results for the homogenized problems
proved in Theorems 3.3 and 3.4 yield (3.21) and (3.28), respectively.

It remains to prove, for the case —1 < vy < 1, convergences (3.22) and (3.23).

Observe that using (6.31) and (6.32), we deduce that

Jo(€2,1°) = Jo(9°,¥°) < lim iglf J- (22) < limsup J. (2) < Jo(2°,0°).

e—0

This gives
lim J. (22) = Jo(2°,0°). (6.33)

Now, if g = (P1e, P2e) is the control given in Theorem 3.2 and @ is the solution of (3.9), then writing (6.24)
for ». and using Corollary 6.5 one obtains

1 T T 1 T . 1 /T
lim / / Gre]? dz dt+/ / 1Go? da dt | = 2 lim/ /|@15+@25\2 dz di = —/ /W dz dt.
£—0 2 0 Wie 0 Wie 2e-0 0 w 2 0 w

Furthermore, using (3.29) and (3.18)(ii), we get
lim (/ (we —v1(T))§? dz +/ (we — v2e (1))@ dx) / (w —v(T))(6:18° + 0,9°) da.
e -le 025 9]

Taking into account these convergences, we have (3.22). Clearly, if 61 = d2, we get (3.23). O
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7. APPENDIX BY AMMAR KOHDJA

We state here the unique continuation result for the coupled problem (3.14) (for which the results from [12]
do not apply). We employed it in this paper twice, for the case v = 1. First, we used it in the proof of the
controllability of the homogenized problem (Thm. 3.4) and second, in that of the uniform estimate (6.1).

When inquiring about a possible unique continuation principle for that problem, we addressed the question
to Farid Ammar Kohdja, who has given a positive answer and suggested us the proof below. The authors are
grateful and indebted to him for the proof and for the time he spent in proving the result.

Theorem 7.1 [1]. Under the assumptions of Theorem 3.4, let ¢ = (¢1,p2) be the solution of (3.14). If ¢ is
zero in w x (0,T) then ¢ is zero in 2 x (0,T).

Proof. We define the operator L and the adjoint one by

Ch —
chba  —cp o Ch

L= (WA B (WAL ) D)= D) = (2 (@) (@) < 1 (9)
where A : L%(2) — L?(£2) is the usual unbounded Laplace operator with domain H? (£2) N H{ (§2). For
simplicity, we prove the results for the case A = I'd and we can use the fact that all the eigenvalues of —A are
simple. If not, it is sufficient to work on the eigenspaces, which have all finite dimension.

Let 0 < pg < pig < -+ < px T oo be the sequence of the eigenvalues of —A and (p) the sequence of the
corresponding normalized eigenvectors, which forms an orthonormal basis in L%(£2).

Then, since 61, 05 are positive constants and 67 + 3 = 1, the eigenvalues of L verify the following equation:

p(A) = 0N+ (g +cpn) N+ cppr =0, k> 1. (7.1)

Since (ug + ch)2 — 401cpp > 0 for all k£ > 1, these eigenvalues are real negative numbers given by

—[k — Ch \/(,uk +cn)® — 401 e

A =
k 201

Moreover: p (—cp) = 61¢7 — (i + ¢n) cn + cnppp = —b2c; < 0, so that A, < —cn < )\;.

It is readily seen that the sequences (/\ﬁ) and ()\,;) are decreasing and as k — oo:

193

NeNmooand AT~ e Rl N

—Ch. (7.2)
Then, we can order the eigenvalues as follows:
AT > AT > o> = > AT > Ay > > AL\, —o0.

/\%—I-Ch

The associated family of eigenvectors (@,f) is given by @f = pf ( "
n02

> vk, k> 1, and if we set
== N e ith pi izi + + : e
v =y Ch ¥k, With p;- a normalizing sequence, then (@k) and (!Pk ) form biorthogonal families, i.e.
61

(BEWF) = 00y, (D5, 0F) , =0, k,j>1.

2
To do that hoose (pf)” = ———.
o do that we choose (pk) CEren )il
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Let us now prove that (@,f) is a Riesz basis. To do that, we have to prove the inequality

mi((aﬁ)z (ar,) ) <M2§:((GZ)2+(%)2)»

for any N > 1 and for every sequence (ay), where ;, i = 1,2 are two strictly positive constants independent of
N and (ag).
Using the fact that the spaces Span(@}i, @;) are pairwise orthogonal, it suffices to prove the inequality for

:I:@:I:

L2

|ak Q5+ +a, D, |L2, which is given by

2 2 _ _ 2 \2
|af F + ay D) |L2 = (a)" |Df [ +2(PF, By ) 2 aif oy + [P | o (ar)
Observe that )
(Af +cn)” + 103
()\ch: —I—ch)2 —I—ciZ—i

852 = (o) (O +en)” +38) =
Using (7.2) this gives
hm |Q5+’L2 = 0109, hm ’45 |L2 =
On the other hand,
(85070 = o0 (O + cn) O +cn) + G88) = o (VAT + (N + A7) an -+ (1+88) )

— (Chpk Pk T Ch
= P} Pr < — ch+(1+9§) c%)

01 01
(1+63-4)¢ (1+6— %)
Vi +ea) +a2 O +a)+al 2N
(+92 %)Ch

where we used again (7.2). Hence, setting 7 = ) we have, asymptotically,

2
o1

|af &) +a; @ ’iz = 0.0, (GZ)2 - )\f aﬁak + (a2)2~

2
Since in view of (7.2), one can find a 6 > 0 such that, for k large enough, (%) — 0105 < —6 < 0 there
k

exist 1, g2 > 0 (independent of k) such that
2 N2 2 2 N2
i (@) + (@)7) < laf o +ag il < o ()" + (ap)7).
which implies that {@2‘, 45,;} is a Riesz basis. Then, the solution of the adjoint problem is

= MO E) B =3 N (L ) e+ (O, ) B
E>1 E>1 E>1

and the condition ¢ =0 in (0,7") X w takes the form

Zektt () &f + Zew (0 YD, =0, (0,T) xw
k>1 E>1
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Extending (by analyticity) in time to (0, 00), we obtain

Zewt (PO o) o + Z et (%0, )&, =0, (0,00) X w.
E>1 E>1

Multiplying this identity by e~** and letting ¢t — oo, we get <<p0,%+> @T = 0,in w. Hence, by induction,
<<p0, &17,;&> @,f = 0,in w, Yk > 1. Since the eigenfunctions ¢ are analytic, <<p0,%;t> =0, Vk > 1, which implies
©=01in (0,7) x 2 and ends the proof. O
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