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ASYMPTOTIC BEHAVIOR OF THE APPROXIMATE CONTROLS
FOR PARABOLIC EQUATIONS WITH INTERFACIAL

CONTACT RESISTANCE ∗

Patrizia Donato1 and Editha C. Jose2

Abstract. In this paper, we study the approximate control for a class of parabolic equations with
rapidly oscillating coefficients in an ε-periodic composite with an interfacial contact resistance as well as
its asymptotic behavior, as ε → 0. The condition on the interface depends on a parameter γ ∈ (−1, 1].
The case γ = 1 is the most interesting one, and the more delicate, since the homogenized problem is
given by coupled system of a P.D.E. and an O.D.E., giving rise to a memory effect. The variational
approach to approximate controllability introduced by Lions in [J.-L. Lions. In Proc. of Jornadas
Hispano-Francesas sobre Control de Sistemas Distribuidos, octubre 1990. Grupo de Análisis Matemático
Aplicado de la University of Malaga, Spain (1991) 77–87] lead us to the construction of the control as
the solution of a related transposed problem. The final data of this problem is the unique minimum
point of a suitable functional Jε. The more interesting result of this study proves that the control
and the corresponding solution of the ε-problem converge respectively to a control of the homogenized
problem and to the corresponding solution. The main difficulties here are to find the appropriate limit
functionals for the control of the homogenized system and to identify the limit of the controls.
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1. Introduction

The aim of this study is to answer two questions about the approximate controllability of a linear parabolic
problem with oscillating coefficients on an ε-periodic two-component composite given by Ω = Ω1ε ∪ Ω2ε. The
component Ω1ε is connected while Ω2ε is a disconnected union of ε-periodic translated sets of εY2. On the other
hand, Γε is the interface separating the two components with ∂Ω ∩ Γε = ∅ (see Fig. 1). On the interface, a jump
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Figure 1. The two-component domain.

of the solution is prescribed so that it is proportional to the conormal derivative via a parameter γ ∈ (−1, 1],
meanwhile, a Dirichlet condition is imposed on the exterior boundary ∂Ω.

This problem models the heat diffusion in a two-component composite with an imperfect contact on the
interface (see [5] for a physical justification of the model) and its limit problem (as ε → 0) describing the
effective thermal conductivity of medium, under the influence of the contact barrier.

Let us recall that by definition one has approximate controllability if the set of reachable final states is dense
in L2(Ω). The first question deals with the existence of an approximate control of the ε-problem. If such a
control exists, the second question, which is the more interesting one, is: do the control and the corresponding
solution of the ε-problem converge (as ε→ 0) respectively to a control of the homogenized problem and to the
corresponding solution? In Section 3, we were able to answer both of these questions.

It is already known from previous studies by the authors in [6,10] (see also [8]) that the asymptotic behavior
of the ε-problem differs in terms of the homogenized problems in the two cases −1 < γ < 1 and γ = 1. The
second one being the most complicated and interesting one, since the limit problem is a coupled system of a
P.D.E. and an O.D.E., gives rise to what is called a memory effect. In Section 2 we give the precise setting of
the problem and recall the homogenization and corrector results from [6,10].

Then, in Section 3 we state Theorem 3.2, which provides the approximate controllability of the ε-problem. In
order to seek an answer to the second question, we also show the approximate controllability of the two different
homogenized problems corresponding to the case −1 < γ < 1 (Thm. 3.3) and γ = 1 (Thm. 3.4). This is followed
by the main convergence result of this study (Thm. 3.5), which positively answers the second question.

Following an idea introduced by Lions in [11], the construction of the control relies on the definition of a
suitable functional such that the control can be obtained as the solutions of a related transposed problem having
as final data the (unique) minimum point of the functional. We adapt some ideas used in [7, 9, 13, 14] to our
case of a jump condition on the interface between the two components.

The unique continuation property due to Saut and Scheurer [12] plays an important role to guarantee the
existence of a minimizer of the functionals for the ε-problem as well as for the homogenized problem of the case
−1 < γ < 1. For the homogenized problem when γ = 1, we need a special version of this property, which is a
new result and has been proved by Ammar Kohdja [1]. We added here its proof in the Appendix.

The existence of the controls of the homogenized problems and of the ε-problem is proved in Sections 4 and 5,
respectively. We show first in details the controllability of the homogenized problems which is more delicate,
in particular that corresponding to the case γ = 1. Afterwards, we prove the approximate controllability for
ε-problem detailing only the specific points.

Finally, in Section 6 we prove the main result of this study, which concerns the asymptotic behavior of the
ε-controllability problem. To this end, one of the main difficulties is to identify the limit of the controls. This
is done in Theorem 6.4, which provided a uniform estimate in ε for the unique minimum point of Jε, as well as
some suitable properties of the functionals.
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Let us mention here that one of the main difficulties is to find the appropriate limit functionals, which can
allow to give a positive answer to the second question. Although the ε-functional is defined on functions of
L2(Ω), the limit functionals for the two cases need to be defined on couples of functions of L2(Ω), due to the
structure of the domain. This is a technical point, which is related to the fact that if a sequence converges to
a function in L2(Ω), the limit of the restriction to each component do not converge to θi (the proportion of
material) multiplied by that function.

As usual, in the spirit of Gamma-convergence, one has to prove limit equalities (here given in Props. (6.6)
and (6.7)) and a liminf inequality (proved in Prop. (6.9)). To prove the equalities, one needs to apply to the
auxiliary problem the corrector results given in Section 2, which need some stronger assumptions than the
homogenization results. We also emphasize that the corrector results are needed because we assume that the
initial data may not be zero.

In particular, when proving that the limit of the minimum points of Jε converges to the minimum point of
J0 for the case −1 < γ < 1, with the aid of a (new) compactness result given in Proposition 2.4, we are able to
derive a stronger convergence of the controls. Although this result does not hold for the case γ = 1, we are still
able to describe the behavior of the controls in the latter case, where corrector results are essential even in the
case of zero initial data.

2. Preliminaries

2.1. Position of the problem

In this work, Ω is a connected bounded open set of Rn (n ≥ 2), Y = ]0, �1[× . . .× ]0, �n[ is the reference cell,
and {ε} is a sequence of positive real numbers that converges to zero.

Let Y1 and Y2 be two nonempty open sets such that Y = Y1 ∪ Y2, with Y1 connected and Γ := ∂Y2 Lipschitz
continuous. We define for any k ∈ Zn, the translated sets Y k

i and Γk as follows:

Y k
i := k� + Yi, Γk := k� + Γ where k� = (k1�1, . . . , kn�n) and i = 1, 2

and for any given ε, we set Kε := {k ∈ Zn|εY k
i ∩ Ω �= ∅, i = 1, 2}. We then define the two components of Ω

and the interface respectively by

Ωiε := Ω ∩ {⋃k∈Kε
εY k

i }, i = 1, 2 and Γε := ∂Ω2ε.

We assume that

∂Ω ∩
( ⋃

k∈Zn

(εΓk)

)
= ∅.

By construction, Ω is decomposed into two components, Ω = Ω1ε ∪ Ω2ε, where Ω1ε is connected, Ω2ε is a
disconnected union of ε-periodic translated sets of εY2 and Γε is the interface separating the two components
with ∂Ω ∩ Γε = ∅. Figure 1 shows the two-component domain.
In the following we denote by

− ∼ the zero extension to the whole of Ω of functions defined on Ω1ε or Ω2ε,
− χ

E
the characteristic function of any measurable set E ⊂ Rn.

− mE(v) = 1
|E|

∫
E

v dx the average on E of any function v ∈ L1(E).

Let us recall (see for instance [3]) that as ε→ 0, , for i = 1, 2,

χ
Ωiε

⇀ θi :=
|Yi|
|Y | weakly in L2(Ω), (2.1)

θi being the proportion of the material occupying Ωiε.
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Let now ω be a given open non-empty subset of Ω, and set

ωiε = ω ∩Ωiε, i = 1, 2.

The aim of this paper is to study the approximate controllability and the asymptotic behavior as ε → 0, of
the following problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1ε
′ − div(A(x

ε )∇u1ε) = χω1εϕ1ε in Ω1ε × (0, T ) ,
u2ε

′ − div(A(x
ε )∇u2ε) = χω2εϕ2ε in Ω2ε × (0, T ) ,

A(x
ε )∇u1ε · n1ε = −A(x

ε )∇u2ε · n2ε on Γε × (0, T ) ,
A(x

ε )∇u1ε · n1ε = −εγh(x
ε )(u1ε − u2ε) on Γε × (0, T ) ,

uε = 0 on ∂Ω × (0, T ) ,
u1ε(x, 0) = U0

ε |Ω1ε in Ω1ε,

u2ε(x, 0) = U0
ε |Ω2ε in Ω2ε,

(2.2)

where niε is the unitary outward normal to Ωiε (i = 1, 2), U0
ε is given in L2(Ω), and γ ∈ (−1, 1].

In the sequel, we assume that
ω1ε �= ∅, for any ε, (2.3)

which is not restrictive for our aim, since for a given ω this is always true for ε sufficiently small.

We suppose that A is a Y -periodic symmetric n× n-matrix field in M(α, β,Ω), that is,{
(i) A ∈ (L∞(Y ))n2

and aij = aji, 1 ≤ i, j ≤ n,

(ii) (A(x)λ, λ) ≥ α|λ|2, |A(x)λ| ≤ β|λ|, (2.4)

for every λ ∈ RN and a.e. in Ω where α, β ∈ R with 0 < α < β. Moreover, we suppose that

h ∈ L∞(Γ ), ∃ h0 ∈ R such that 0 < h0 < h(y), y a.e. in Γ, (2.5)

U0
ε ∈ L2(Ω), ϕiε ∈ L2(0, T ; L2(Ω)), (i = 1, 2). (2.6)

In the following, we set

A
(x
ε

)
= Aε(x), h

(x
ε

)
= hε(x). (2.7)

The approximate controllability problem for system (2.2) reads:

Given wε ∈ L2(Ω), δ1 > 0 and δ2 > 0, does a control ϕ̂ε = (ϕ̂1ε, ϕ̂2ε) ∈ L2(Ω1ε) × L2(Ω2ε) exist such that the
solution uε = (u1ε, u2ε) of (2.2) verifies the estimates{

(i) ‖u1ε(T ) − wε‖L2(Ω1ε) ≤ δ1
(ii) ‖u2ε(T ) − wε‖L2(Ω2ε) ≤ δ2?

Another interesting question is:
If there is such a control, do the control and the corresponding solution of (2.2) converge (as ε→ 0) to a control
of the homogenized problem and to the corresponding solution, respectively?

In this paper, we give positive answers to both questions. Concerning the first question we need the additional
assumption that

A ∈ (C1(Ȳ ))n2
, (2.8)



142 P. DONATO AND E.C. JOSE

since, as usually in the literature for this kind of problem, we need to make use some unique-continuation
properties, as that due to Saut and Scheurer [12]. In order to answer the second question, we will make use of
some homogenization and corrector results for system (2.2) which were studied in [6, 10].

Let us mention that pioneer results on approximate controllability can be traced back from the works of
Lions [11]. For the asymptotic behavior of the approximate controllability problem of linear parabolic equations
we refer to [14] (see also [13]) for the case of a fixed domain and to [7] for the case in a perforated domain.

2.2. Recall of the asymptotic behavior of the ε-problem

We introduce first the functional spaces

V ε := {v1 ∈ H1(Ω1ε)|v1 = 0 on ∂Ω} equipped with the norm ‖v1‖V ε := ‖∇v1‖L2(Ω1ε) (2.9)

and

W ε := {v = (v1, v2) ∈ L2(0, T ;V ε) × L2(0, T ; H1(Ω2ε)) | v′ ∈ L2(0, T ; (V ε)′) × L2(0, T ; (H1(Ω2ε))′)},

equipped with the norm

‖v‖W ε = ‖v1‖L2(0,T ;V ε) + ‖v2‖L2(0,T ;H1(Ω2ε)) + ‖v′1‖L2(0,T ;(V ε)′) + ‖v′2‖L2(0,T ;(H1(Ω2ε))′).

It has been shown in [10] that problem (2.2) has a unique solution uε = (u1ε, u2ε) ∈ W ε and its asymptotic
behavior was studied in [6, 10].

Remark 2.1. In this paper, L2(Ω1ε) × L2(Ω2ε) will be equipped with the usual product norm, that is,

∀ (w1, w2) ∈ L2(Ω1ε) × L2(Ω2ε), ‖(w1, w2)‖L2(Ω1ε)×L2(Ω2ε) = (‖w1‖2
L2(Ω1ε) + ‖w2‖2

L2(Ω2ε))
1
2 . (2.10)

Observe that the map Φ : v ∈ L2(Ω) → (v|Ω1ε , v|Ω2ε) ∈ L2(Ω1ε) × L2(Ω2ε) is a bijective isometry since

‖v‖2
L2(Ω) = ‖v‖2

L2(Ω1ε) + ‖v‖2
L2(Ω2ε), for every v ∈ L2(Ω). (2.11)

Notations. In view of Remark 2.1, in the sequel, we identify v ∈ L2(Ω) with (v|Ω1ε , v|Ω2ε) ∈ L2(Ω1ε)×L2(Ω2ε).
When no confusion arises, we will simply write v instead of v|Ωiε , i = 1, 2. Also, we will use the superscript 0
for functions taken as initial or final data in different parabolic problems, as for instance, U0 ∈ L2(Ω) in (3.7).

We will make use of some homogenization and corrector results proved in [6,10] that we recall below, for the
reader’s convenience.

Theorem 2.2 [10]. For −1 < γ ≤ 1, suppose that Aε and hε satisfy (2.4)−(2.7). Let zε = (z1ε, z2ε) be the
solution of the following problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ziε
′ − div(Aε∇ziε) = giε in Ωiε × (0, T ) , i = 1, 2,

Aε∇z1ε · n1ε = −Aε∇z2ε · n2ε on Γε × (0, T ) ,
Aε∇z1ε · n1ε = −εγhε(z1ε − z2ε) on Γε × (0, T ) ,
zε = 0 on ∂Ω × (0, T ) ,
ziε(x, 0) = Z0

ε |Ωiε in Ωiε, i = 1, 2,

(2.12)

where Z0
ε ∈ L2(Ω) and (g1ε, g2ε) ∈ [L2(0, T ; L2(Ω))]2. If⎧⎨⎩(i) (χ

Ω1ε
Z0

ε , χΩ2ε
Z0

ε ) ⇀ (θ1Z0
1 , θ2Z

0
2) weakly in [L2(Ω)]2,

(ii) (χ
Ω1ε

g1ε, χΩ1ε
g2ε) ⇀ (θ1g1, θ2g2) weakly in [L2(0, T ; L2(Ω))]2,

(2.13)
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then there exists a linear continuous extension operator P ε
1 ∈ L(L2(0, T ;V ε); L2(0, T ; H1

0(Ω))) ∩
L(L2(0, T ; L2(Ω1ε)); L2(0, T ; L2(Ω))) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

(i) P ε
1 z1ε ⇀ z1 weakly in L2(0, T ; H1

0(Ω)),
(ii) z̃1ε ⇀ θ1z1 weakly* in L∞(0, T ; L2(Ω)),
(iii) z̃2ε ⇀ z2 weakly* in L∞(0, T ; L2(Ω)),
(iv) ε

γ
2 ‖z1ε − z2ε‖L2(0,T ;L2(Γε)) < c,

(2.14)

where ˜ denotes the zero extension to the whole of Ω. Furthermore,{
(i) Aε∇̃z1ε ⇀ A0∇z1 weakly in L2(0, T ; [L2(Ω)]n)
(ii) Aε∇̃z2ε ⇀ 0 weakly in L2(0, T ; [L2(Ω)]n),

where A0λ := mY (A˜̂wλ), the function ŵλ ∈ H1(Y1) being for any λ ∈ R, the unique solution of the problem⎧⎪⎨⎪⎩
−div (A∇ŵλ) = 0 in Y1,

(A∇ŵλ) · n1 = 0 in Γ,

ŵλ − λ · y Y -periodic and mY1(ŵλ − λ · y) = 0.
(2.15)

The homogenized problems satisfied by the couple (z1, z2) are different for the two cases −1 < γ < 1 and γ = 1.
Case − 1 < γ < 1: The function z2 is given by z2 = θ2z1 and z1 ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; H1

0(Ω)) with
z′1 ∈ L2(0, T ; H−1(Ω)) is the unique solution of the homogenized problem⎧⎪⎨⎪⎩

z′1 − div (A0∇z1) = θ1g1 + θ2g2 in Ω × (0, T ) ,
z1 = 0 on ∂Ω × (0, T ) ,
z1(0) = θ1Z

0
1 + θ2Z

0
2 in Ω.

(2.16)

Case γ = 1: The pair (z1, z2) ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; H1
0(Ω)) × C0([0, T ]; L2(Ω)) with z′1 ∈

L2(0, T ; H−1(Ω)) is the unique solution of the coupled system⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ1z

′
1 − div (A0∇z1) + ch(θ2z1 − z2) = θ1g1 in Ω × (0, T ) ,

z′2 − ch(θ2z1 − z2) = θ2g2 in Ω × (0, T ) ,
z1 = 0 on ∂Ω × (0, T ) ,
z1(0) = Z0

1 , z2(0) = θ2Z
0
2 in Ω,

(2.17)

where ch =
1

|Y2|
∫

Γ

h(y) dσy.

Remark 2.3. The homogenized matrix A0 is that obtained by Cioranescu and Saint Jean Paulin in [4] for the
Laplace problem in a perforated domain with a Neumann condition on the boundary of the holes.

As proved in [10], in the case γ = 1, solving the ODE in (2.17) and replacing z2 in the PDE shows that z1
satisfies an equation of the form

θ1z
′
1 − div (A0

γ∇z1) + chθ2z1 − c2hθ2

∫ t

0

K(t, s)z1(s) ds = F (x, t),

with K an exponential kernel, giving rise to a memory effect.

In this paper, we complete the weak convergences stated in (2.14) by a strong convergence result given in the
proposition below. This allows us to improve some convergences of the approximate controls when −1 < γ < 1.
Let us emphasize that the results below do not hold for γ = 1.
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Proposition 2.4. Let −1 < γ < 1. Under the assumptions of Theorem 2.2, let zε = (z1ε, z2ε) and z1 be the
solutions of (2.12) and (2.16), respectively. Then,

z̃1ε + z̃2ε = zε → z1 in L2(0, T ; L2(Ω)). (2.18)

Proof. When γ < 1 from Proposition 3.7 of [10], one has

||P ε
1 z1ε − z2ε||L2(0,T ;L2(Ω2ε)) → 0. (2.19)

On the other hand, since
P ε

1 z1ε = z̃1ε + z̃2ε + (χ
Ω2ε

P ε
1 z1ε − z̃2ε) (2.20)

we have ∫ T

0

∫
Ω

|zε − z1|2 dx dt ≤ 2
[ ∫ T

0

∫
Ω

|P ε
1 z1ε − z1|2 dx dt+

∫ T

0

∫
Ω2ε

|P ε
1 z1ε − z2ε|2 dx dt

]
.

Hence, due to (2.19), in order to show (2.18) it is enough to prove that P ε
1 z1ε → z1 in L2(0, T ; L2(Ω)) and

to do that, in view of (2.14) and classical compactness results it suffices to prove that (P ε
1 z1ε)′ is bounded in

L2(0, T ; H−1(Ω)). Let us show first that

(χ
Ω2ε

P ε
1 z1ε − z̃2ε)′ ⇀ 0 weakly in L2(0, T ; H−1(Ω)). (2.21)

Indeed, for any ϕ ∈ D((0, T ) ×Ω
)

one has

∣∣ < (χ
Ω2ε

P ε
1 z1ε − z̃2ε)′, ϕ >L2([0,T ];H−1(Ω)),L2([0,T ];H1

0(Ω))

∣∣ =
∣∣ ∫ T

0

∫
Ω2ε

(P ε
1 z1ε − z2ε)ϕ′ dx dt

∣∣.
Since the right-hand side of this equality goes to zero in view of (2.19), this implies (2.21).
Let us recall now that from Theorem 4.7 of [6], the sequence {z̃1ε

′ + z̃2ε
′} is bounded in L2(0, T ; H−1(Ω)).

This together with (2.21) implies the boundedness of (P ε
1 z1ε)′ in L2(0, T ; H−1(Ω)) and concludes the proof,

since from (2.20), (P ε
1 z1ε)′ = z̃1ε

′ + z̃2ε
′ + (χ

Ω2ε
P ε

1 z1ε − z2ε)′. �

Let us recall now the corrector results proved in [6], which are also different for the two cases. These corrector
results were made possible by imposing stronger assumptions on the data.

If (ej)j=1,...,n is the canonical basis of R and ŵj is the solution of (2.15) written for λ = ej, j = 1, . . . , n, the
corrector matrix Cε = (Cε

ij)1≤i,j≤n is defined, for i, j = 1, . . . , n, by

Cij(y) :=
∂ŵj

∂yi
(y), a.e. on Y1, Cε

ij(x) = C̃ij

(x
ε

)
a.e. on Ω. (2.22)

Theorem 2.5 [6]. Under assumptions (2.4)−(2.7), let zε = (z1ε, z2ε) be the solution of (2.12).
Case − 1 < γ < 1: Assume that the data giε ∈ L2(0, T ; L2(Ω)) and Z0

ε ∈ L2(Ω) (i = 1, 2), satisfy{
(i) giε → gi strongly in L2(0, T ; L2(Ω)),
(ii) Z0

ε → Z0 strongly in L2(Ω),
(2.23)

for some Z0 ∈ L2(Ω). Then⎧⎪⎪⎨⎪⎪⎩
(i) z̃1ε + z̃2ε = zε → z1 in C0([0, T ]; L2(Ω)),
(ii) lim

ε→0
‖∇z1ε − Cε∇z1‖L2(0,T ;[L1(Ω1ε)]n) = 0,

(iii) lim
ε→0

‖∇z2ε‖L2(0,T ;[L2(Ω2ε)]n) = 0.
(2.24)



APPROXIMATE CONTROLS FOR PARABOLIC EQUATIONS WITH INTERFACIAL CONTACT RESISTANCE 145

Case γ = 1: Suppose that for Z0
ε ∈ L2(Ω) and giε ∈ L2(0, T ; L2(Ω)), i = 1, 2 one has (2.13)(i) and{

(i) giε → gi strongly in L2(0, T ; L2(Ω)),
(ii) ‖Z0

ε‖2
L2(Ω1ε) + ‖Z0

ε‖2
L2(Ω2ε) → θ1‖Z0

1‖2
L2(Ω) + θ2‖Z0

2‖2
L2(Ω).

(2.25)

Assuming that Γ is of class C2, the following corrector results for the case γ = 1 hold true:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i) lim
ε→0

‖z1ε − z1‖C0(0,T ;L2(Ω1ε)) = 0,

(ii) lim
ε→0

‖z2ε − θ−1
2 z2‖C0(0,T ;L2(Ω2ε)) = 0,

(iii) lim
ε→0

‖∇z1ε − Cε∇z1‖L2(0,T ;[L1(Ω1ε)]n) = 0,

(iv) lim
ε→0

‖∇z2ε‖L2(0,T ;[L2(Ω2ε)]n) = 0.

(2.26)

Remark 2.6. In particular, (2.23)(i) holds if for i = 1, 2, giε = gε|Ωiε and gε → g strongly in L2(0, T ; L2(Ω)).
On the other hand, it was shown in [6] that assumptions (2.13)(i) and (2.25)(ii) hold if for i = 1, 2, one has
χ

Ωiε
Z0

ε = Z0
iε|Ωiε for some Z0

iε ∈ L2(Ω) such that Z0
iε → Z0

i strongly in L2(Ω).

3. Statement of the main results

In this section, we give the main results of this paper. In Section 3.1, we state the existence of an approximate
control for the ε-problem (2.2) as well as for the corresponding homogenized problems for cases −1 < γ < 1
and γ = 1. In Section 3.2, the main convergence result of the paper is given. The statement reveals that the
control of the ε-problem and its corresponding solution converge (as ε → 0) respectively to the control and to
the solution of the homogenized problem.

3.1. Controllability of the ε-problems and the homogenized problems

To prove the existence of a control of the ε-problem, for a given wε ∈ L2(Ω) and for any ϕ0 ∈ L2(Ω), we
define the functional Jε on L2(Ω) by

Jε(ϕ0) =
1
2

(∫ T

0

∫
ω1ε

|ϕ1ε|2 dx dt+
∫ T

0

∫
ω2ε

|ϕ2ε|2 dx dt

)
+ δ1‖ϕ0‖L2(Ω1ε)

+ δ2‖ϕ0‖L2(Ω2ε) −
∫

Ω1ε

(wε − v1ε(T ))ϕ0 dx−
∫

Ω2ε

(wε − v2ε(T ))ϕ0 dx, (3.1)

where ϕε = (ϕ1ε, ϕ2ε) is the solution of the transposed problem of system (2.2) given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ϕiε
′ − div (Aε∇ϕiε) = 0 in Ωiε × (0, T ) , i = 1, 2,

Aε∇ϕ1ε · n1ε = −Aε∇ϕ2ε · n2ε on Γε × (0, T ) ,
Aε∇ϕ1ε · n1ε = −εγhε(ϕ1ε − ϕ2ε) on Γε × (0, T ) ,
ϕε = 0 on ∂Ω × (0, T ) ,
ϕiε(x, T ) = ϕ0|Ωiε in Ωiε, i = 1, 2,

(3.2)

and vε = (v1ε, v2ε) is the solution of the auxiliary problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

viε
′ − div (Aε∇viε) = 0 in Ωiε × (0, T ) , i = 1, 2,

Aε∇v1ε · n1ε = −Aε∇v2ε · n2ε on Γε × (0, T ) ,
Aε∇v1ε · n1ε = −εγhε(v1ε − v2ε) on Γε × (0, T ) ,
vε = 0 on ∂Ω × (0, T ) ,
viε(x, 0) = U0

ε |Ωiε in Ωiε, i = 1, 2,

(3.3)

where niε is the unitary outward normal to Ωiε (i = 1, 2) and U0
ε ∈ L2(Ω).
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Remark 3.1. Since the two components are disjoint, Jε(ϕ0) given by (3.1) can be written as

Jε(ϕ0) =
1
2

∫ T

0

∫
ω

|ϕε|2 dx dt+ δ1‖ϕ0‖L2(Ω1ε) + δ2‖ϕ0‖L2(Ω2ε) −
∫

Ω

(wε − vε(T ))ϕ0 dx. (3.4)

Due to the different homogenization results recalled in Section 2 for the two cases −1 < γ < 1 and γ = 1, in
the sequel we mainly use the expression given by (3.4) for the case −1 < γ < 1 and that from (3.1) for γ = 1.
Indeed, in the last case one needs to handle the integral over each component.

In the following theorem, we show that for a fixed ε, problem (2.2) is approximately controllable in time T .

Theorem 3.2. Let T > 0, δ1 > 0, δ2 > 0 be given real numbers, wε be given in L2(Ω) and U0
ε be in L2(Ω).

Suppose (2.4)−(2.8) hold. Let ϕ̂0
ε be the unique minimum point of the functional Jε. If ϕ̂ε = (ϕ̂1ε, ϕ̂2ε) is the

solution of (3.2) with the corresponding final data ϕ̂0
ε, then the solution uε = (u1ε, u2ε) of the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

uiε
′ − div (Aε∇uiε) = χωiεϕ̂iε in Ωiε × (0, T ) , i = 1, 2,

Aε∇u1ε · n1ε = −Aε∇u2ε · n2ε on Γε × (0, T ) ,
Aε∇u1ε · n1ε = −εγhε(u1ε − u2ε) on Γε × (0, T ) ,
uε = 0 on ∂Ω × (0, T ) ,
uiε(x, 0) = U0

ε |Ωiε in Ωiε, i = 1, 2,

(3.5)

satisfies the following estimate:
‖uiε(T ) − wε‖L2(Ωiε) ≤ δi, i = 1, 2. (3.6)

This theorem will be proved in Section 5. Our aim being to determine whether the approximate control
(found in Thm. 3.2) and the corresponding solution converge (as ε → 0) respectively to the control and to the
solution of the homogenized problem, we will separate the cases −1 < γ < 1 and γ = 1 because of different
homogenized problems (see [6, 10]).

To to that, let us describe first the control of the homogenized problem for the two cases −1 < γ < 1 and
γ = 1. Let us start with the case where −1 < γ < 1, for which we have

Theorem 3.3. Under the notations of Section 2, let T > 0, δ1 > 0, δ2 > 0 be given real numbers, w be given
in L2(Ω) and U0 ∈ L2(Ω). Denote v the solution of the problem⎧⎪⎨⎪⎩

v′ − div(A0∇v) = 0 in Ω × (0, T ) ,
v = 0 on ∂Ω × (0, T ) ,
v(x, 0) = U0 in Ω.

(3.7)

For a given w ∈ L2(Ω), we define the functional J0 on [L2(Ω)]2 by

J0(Φ0, Ψ0) =
1
2

∫ T

0

∫
ω

|ϕ|2 dx dt+δ1
√
θ1‖Φ0‖L2(Ω) +δ2

√
θ2‖Ψ0‖L2(Ω)−

∫
Ω

(w−v(T ))(θ1Φ0 +θ2Ψ0) dx, (3.8)

where ϕ is the solution of the following homogeneous transposed problem:⎧⎪⎨⎪⎩
−ϕ′ − div(A0∇ϕ) = 0 in Ω × (0, T ) ,
ϕ = 0 on ∂Ω × (0, T ) ,
ϕ(x, T ) = θ1Φ

0 + θ2Ψ
0 in Ω.

(3.9)

Let (Φ̂0, Ψ̂0) be the unique minimum point of the functional J0 and ϕ̂ the solution of (3.9) with final data
θ1Φ̂

0 + θ2Ψ̂
0. Then if u1 is the solution of⎧⎪⎨⎪⎩

u1
′ − div(A0∇u1) = χωϕ̂ in Ω × (0, T ) ,

u1 = 0 on ∂Ω × (0, T ) ,
u1(x, 0) = U0 in Ω,

(3.10)
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we have the following approximate controllability:

‖u1(x, T ) − w‖L2(Ω) ≤ δ1
√
θ1 + δ2

√
θ2. (3.11)

This theorem is proved in Section 4. For the case γ = 1, which is more interesting since the limit problem is
a coupled system, we state the following result, also proved in Section 4.

Theorem 3.4. Under the notations of Section 2, let T > 0, δ1 > 0, δ2 > 0 be given real numbers, w be given
in L2(Ω) and U0

1 and U0
2 be in L2(Ω). Let (v1, v2) be a solution of the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ1v1
′ − div(A0∇v1) + ch(θ2v1 − v2) = 0 in Ω × (0, T ) ,

v2
′ − ch(θ2v1 − v2) = 0 in Ω × (0, T ) ,

v1 = 0 on ∂Ω × (0, T ) ,
v1(x, 0) = U0

1 , v2(x, 0) = θ2U
0
2 in Ω.

(3.12)

For a given w ∈ L2(Ω), we define the functional J0 on L2(Ω) by

J0(Φ0, Ψ0) =
1
2
θ1

∫ T

0

∫
ω

|ϕ1|2 dx dt+
1
2
θ−1
2

∫ T

0

∫
ω

|ϕ2|2 dx dt+ δ1
√
θ1‖Φ0‖L2(Ω) + δ2

√
θ2‖Ψ0‖L2(Ω) (3.13)

− θ1

∫
Ω

(w − v1(T ))Φ0 dx− θ2

∫
Ω

(
w − θ−1

2 v2(T )
)
Ψ0 dx,

where (ϕ1, ϕ2) is the solution of the following homogeneous transposed problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−θ1ϕ1

′ − div(A0∇ϕ1) + ch(θ2ϕ1 − ϕ2) = 0 in Ω × (0, T ) ,
−ϕ2

′ − ch(θ2ϕ1 − ϕ2) = 0 in Ω × (0, T ) ,
ϕ1 = 0 on ∂Ω × (0, T ) ,
ϕ1(x, T ) = Φ0, ϕ2(x, T ) = θ2Ψ

0 in Ω.

(3.14)

Let (Φ̂0, Ψ̂0) be the unique minimum point of the functional J0 and (ϕ̂1, ϕ̂2) the solution of (3.14) with final
data (Φ̂0, θ2Ψ̂

0). Then if (u1, u2) is the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ1u1

′ − div(A0∇u1) + ch(θ2u1 − u2) = χωθ1ϕ̂1 in Ω × (0, T ) ,
u2

′ − ch(θ2u1 − u2) = χωϕ̂2 in Ω × (0, T ) ,
u1 = 0 on ∂Ω × (0, T ) ,
u1(x, 0) = U0

1 , u2(x, 0) = θ2U
0
2 in Ω,

(3.15)

we have the following approximate controllability:

‖θ1u1(x, T ) + u2(x, T ) − w‖L2(Ω) ≤ δ1
√
θ1 + δ2

√
θ2. (3.16)

3.2. Limit behavior of the approximate controllability problem

The following theorem gives a positive answer to the second question posed in Section 2. This is the main
result of the study.

Theorem 3.5. Suppose T, δ1, δ2 > 0. Let U0
ε ∈ L2(Ω). Further, assume that (2.4)−(2.8) hold and let uε =

(u1ε, u2ε) the solution of (3.5), ϕ̂ε = (ϕ̂1ε, ϕ̂2ε) being the control given in Theorem 3.2.
Suppose −1 < γ < 1. Let {wε}ε ⊂ L2(Ω) and {U0

ε }ε ⊂ L2(Ω) satisfy the following assumptions:{
(i) U0

ε → U0 strongly in L2(Ω),
(ii) wε → w strongly in L2(Ω),

(3.17)
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for some U0 and w in L2(Ω). Then, as ε→ 0, we have the following convergences:⎧⎨⎩(i) ϕ̂ε → ϕ̂ strongly in L2(0, T ; L2(Ω)),

(ii)
(
χ

Ω1ε
ϕ̂0

ε, χΩ2ε
ϕ̂0

ε

)
⇀

(
θ1Φ̂

0, θ2Ψ̂
0
)

weakly in [L2(Ω)]2,
(3.18)

where ϕ̂ is the solution of (3.9) with final data θ1Φ̂0 + θ2Ψ̂
0 and (Φ̂0, Ψ̂0) is the unique minimum point of the

functional J0 defined by (3.8). Moreover,⎧⎪⎨⎪⎩
(i) P ε

1u1ε ⇀ u1 weakly in L2(0, T ; H1
0(Ω)),

(ii) uε → u1 strongly in C0([0, T ]; L2(Ω)),
(iii) ũ1ε ⇀ θ1u1 weakly* in L∞(0, T ; L2(Ω)),

(3.19)

where u1 is the solution of ⎧⎪⎨⎪⎩
u1

′ − div(A0∇u1) = χωϕ̂ in Ω × (0, T ) ,
u1 = 0 on ∂Ω × (0, T ) ,
u1(x, 0) = U0 in Ω.

(3.20)

The function ϕ̂ is an approximate control for the homogenized problem (3.20) corresponding to w and the
constants δ1 and δ2, that is

‖u1(x, T ) − w‖L2(Ω) ≤ δ1
√
θ1 + δ2

√
θ2. (3.21)

Finally, one has the following convergence:

δ1‖ϕ̂0
ε‖L2(Ω1ε) + δ2‖ϕ̂0

ε‖L2(Ω2ε) → δ1
√
θ1‖Φ̂0‖L2(Ω) + δ2

√
θ2‖Ψ̂0‖L2(Ω), (3.22)

so that in particular, if δ1 = δ2 then

‖ϕ̂0
ε‖L2(Ω) →

√
θ1‖Φ̂0‖L2(Ω) +

√
θ2‖Ψ̂0‖L2(Ω). (3.23)

Now, let γ = 1 and assume that Γ is of class C2. For {wε}ε ⊂ L2(Ω) and {U0
ε }ε ⊂ L2(Ω), we suppose that

for some U0
i , i = 1, 2 and w in L2(Ω), they satisfy the following assumptions:

⎧⎪⎨⎪⎩
(i) χ

Ωiε
U0

ε ⇀ θiU
0
i weakly in L2(Ω),

(ii) ‖U0
ε ‖2

L2(Ω1ε) + ‖U0
ε ‖2

L2(Ω2ε) → θ1‖U0
1 ‖2

L2(Ω) + θ2‖U0
2 ‖2

L2(Ω),

(iii) wε → w strongly in L2(Ω).

(3.24)

Then as ε→ 0, one has

⎧⎪⎪⎨⎪⎪⎩
(i) χω1ε

˜̂ϕ1ε ⇀ χωθ1ϕ̂1 weakly in L2(0, T ; L2(Ω)),
(ii) χω2ε

˜̂ϕ2ε ⇀ χωϕ̂2 weakly in L2(0, T ; L2(Ω)),

(iii)
(
χ

Ω1ε
ϕ̂0

ε, χΩ2ε
ϕ̂0

ε

)
⇀

(
θ1Φ̂

0, θ2Ψ̂
0
)

weakly in [L2(Ω)]2,
(3.25)
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where (ϕ̂1, ϕ̂2) is the solution of (3.14) with final data (Φ̂0, θ2Ψ̂
0) and (Φ̂0, Ψ̂0) is the unique minimum point of

the functional J0 defined by (3.13). Moreover,⎧⎪⎨⎪⎩
(i) P ε

1u1ε ⇀ u1 weakly in L2(0, T ; H1
0(Ω)),

(ii) ũ1ε ⇀ θ1u1 weakly* in L∞(0, T ; L2(Ω)),
(iii) ũ2ε ⇀ u2 weakly* in L∞(0, T ; L2(Ω)),

(3.26)

where the couple (u1, u2) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ1u1

′ − div(A0∇u1) + ch(θ2u1 − u2) = θ1χωϕ̂1 in Ω × (0, T ) ,
u2

′ − ch(θ2u1 − u2) = χωϕ̂2 in Ω × (0, T ) ,
u1 = 0 on ∂Ω × (0, T ) ,
u1(x, 0) = U0

1 , u2(x, 0) = θ2U
0
2 in Ω.

(3.27)

The couple (ϕ̂1, ϕ̂2) is an approximate control for the homogenized problem (3.27) corresponding to w and the
constants δ1 and δ2, that is

‖θ1u1(x, T ) + u2(x, T ) − w‖L2(Ω) ≤ δ1
√
θ1 + δ2

√
θ2. (3.28)

Remark 3.6. For comments about assumption (3.24), we refer to Remark 2.6. Let us also mention the case
of the controllability of the parabolic equations in the perforated domain studied in [7], wherein a factor 1√

θ

appears in the controllability condition for the homogenized problem (3.21).

Theorem 3.5 will be proved by using several results in the asymptotic behavior of the control for the ε-problem.
To do this, we require our data to satisfy (3.17) and (3.24) depending on γ. We give immediate consequences
of these assumptions as follow.

Remark 3.7. Let wε and w be in L2(Ω). If −1 < γ < 1 and Assumption (3.17) holds, using Theorem 2.5
applied to problem (3.3) we deduce that

wε − vε(T ) → w − v(T ) strongly in L2(Ω), (3.29)

where (v1ε, v2ε) and v are the solutions of (3.3) and (3.7), respectively.
Suppose now that γ = 1 and Assumption (3.24) holds. Then, from (3.24)(i) and (ii) and Theorem 2.5 applied

to problem (3.3) we get

‖v1ε(T ) − v1(T )‖L2(Ω1ε) → 0 and ‖v2ε(T ) − θ−1
2 v2(T )‖L2(Ω2ε) → 0, (3.30)

where vε = (v1ε, v2ε) and (v1, v2) are the solutions of (3.3) and (3.12), respectively. This together with (3.24)
(iii), yields

‖(wε − v1ε(T )) − (w − v1(T ))‖L2(Ω1ε) → 0 and ‖(wε − v2ε(T )) − (w − θ−1
2 v2(T ))‖L2(Ω2ε) → 0. (3.31)

4. Proof of the control of the homogenized problems

In this section, we prove the approximate controllability of the homogenized problems stated in Theorems 3.3
and 3.4 for the two cases of the parameter, respectively. To do that, we use the variational approach to derive
the approximate controls of the homogenized problems, which is constructive compared to the Hahn-Banach’s
Theorem. This is also the technique used to study the approximate controllability of semilinear heat equation
in [9], the linear parabolic equations with rapidly oscillating coefficients in a fixed domain in [13] and of the
linear parabolic equations in perforated domains in [7].



150 P. DONATO AND E.C. JOSE

Here, we need to construct two different functionals. The first one is adapted to the case −1 < γ < 1, where
we only have one partial differential equation in the homogenized problem. The second one is related to that
of γ = 1, where in the homogenized problem we have a coupled system of a partial and an ordinary differential
equation, which renders this case more difficult.

Proof of Theorem 3.3. By standard arguments one can prove that the functional J0 given in (3.8) is continuous
and strictly convex. Let us prove, in the spirit of [9,13], that for any sequence {(Φ0

n, Ψ
0
n)} in [L2(Ω)]2 such that

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2 → ∞, one has

lim inf
n→∞

J0(Φ0
n, Ψ

0
n)

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

≥ min{δ1
√
θ1, δ2

√
θ2}. (4.1)

We set

(Φ̄0
n, Ψ̄

0
n) =

(
Φ0

n

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

,
Ψ0

n

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

)
and ϕ̄n =

ϕn

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

,

where ϕn is the solution of the adjoint problem (3.9) with final data θ1Φ0
n + θ2Ψ

0
n.

Then, by the definition of the functional J0 given in (3.8),

J0(Φ0
n, Ψ

0
n)

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

=
1
2
‖(Φ0

n, Ψ
0
n)‖[L2(Ω)]2

∫ T

0

∫
ω

|ϕ̄n|2 dx dt (4.2)

+
δ1
√
θ1‖Φ0

n‖L2(Ω) + δ2
√
θ2‖Ψ0

n‖L2(Ω)

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

−
∫

Ω

(w − v(T ))(θ1Φ̄0
n + θ2Ψ̄

0
n) dx.

Case 1. lim inf
n→∞

∫ T

0

∫
ω

|ϕ̄n|2 dx dt > 0. Since ‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2 → ∞, the first term in the right-hand side of

(4.2) goes to infinity. On the other hand, the second term is smaller than δ1
√
θ1 + δ2

√
θ2. Furthermore, by the

Hölder inequality, triangle inequality is easily seen so that the third one is bounded, which gives (4.1).

Case 2. lim inf
n→∞

∫ T

0

∫
ω

|ϕ̄n|2 dx dt = 0. Since L2(Ω) is reflexive and Φ̄0
n, Ψ̄

0
n are bounded in L2(Ω), we have (up

to a subsequence) that
θ1Φ̄

0
n + θ2Ψ̄

0
n ⇀ σ0 weakly in L2(Ω), (4.3)

for some σ0 in L2(Ω). By linearity, passing to the limit in (3.9) (written with final data θ1Φ̄0
n + θ2Ψ̄

0
n),

ϕ̄n ⇀ ψ weakly in L2(0, T ; H1
0(Ω)) ∩ H1(0, T ; H−1(Ω)),

where ψ is the solution of (3.9) with σ0 as final data. By lower semi-continuity and the assumption done in
this case, ψ = 0 in ω× (0, T ). From the unique-continuation property due to Saut and Scheurer [12], we deduce
that ψ = 0 in Ω × (0, T ). Since ψ is in C0([0, T ]; L2(Ω))) and satisfies (3.9), this implies using (4.3) that
σ0 = ψ(T ) = 0. Consequently, the last term in (4.2) goes to zero as n → ∞. Together with our assumption,
this gives (4.1), since the second term is bigger than min{δ1

√
θ1, δ2

√
θ2}. Hence, J0 admits a unique minimum

point (Φ̂0, Ψ̂0) in [L2(Ω)]2. Let us show that if ϕ̂ is the solution of (3.9) with θ1Φ̂0 + θ2Ψ̂
0 as final data, then for

every τ0 ∈ L2(Ω) we have∣∣∣∣ ∫ T

0

∫
ω

ϕ̂ψ dx dt−
∫

Ω

(w − v(T ))τ0 dx
∣∣∣∣ ≤ (δ1

√
θ1 + δ2

√
θ2)‖τ0‖L2(Ω), (4.4)

where ψ is the solution of (3.9) with τ0 = θ1τ
0 + θ2τ

0 as final data.
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To do that, observe that if J0 attains its minimum at (Φ̂0, Ψ̂0) then for any h ∈ R, we have

0 ≤ J0(Φ̂0 + hτ0, Ψ̂0 + hτ0) − J0(Φ̂0, Ψ̂0)

= h

∫ T

0

∫
ω

ϕ̂ψ dx dt+
h2

2

∫ T

0

∫
ω

|ψ|2 dx dt+ δ1
√
θ1

(
‖Φ̂0 + hτ0‖L2(Ω) − ‖Φ̂0‖L2(Ω)

)
+ δ2

√
θ2

(
‖Ψ̂0 + hτ0‖L2(Ω) − ‖Ψ̂0‖L2(Ω)

)
− h

∫
Ω

(w − v(T ))τ0 dx.

By triangle inequality, it follows that

0 ≤ h2

2

∫ T

0

∫
ω

|ψ|2 dx dt+ δ1
√
θ1|h|‖τ0‖L2(Ω) + δ2

√
θ2|h|‖τ0‖L2(Ω)

+ h

(∫ T

0

∫
ω

ϕ̂ψ dx dt−
∫

Ω

(w − v(T ))τ0 dx

)
.

Dividing by h > 0 and passing to the limit as h→ 0, we get

−(δ1
√
θ1 + δ2

√
θ2)‖τ0‖L2(Ω) ≤

∫ T

0

∫
ω

ϕ̂ψ dx dt−
∫

Ω

(w − v(T ))τ0 dx.

Together with an analogous computation for the case when h < 0, we have (4.4).
Now to conclude the proof let as above ϕ̂ be the solution of (3.9) with θ1Φ̂0 + θ2Ψ̂

0 as final data, τ0 in L2(Ω)
and z be the solution of the following equation:⎧⎪⎨⎪⎩

z′ − div(A0∇z) = χωϕ̂ in Ω × (0, T ) ,
z = 0 on ∂Ω × (0, T ) ,
z(x, 0) = 0 in Ω.

(4.5)

Using as test function in (4.5) the solution ψ of (3.9) with τ0 as final data, we have∫ T

0

∫
Ω

(−ψ′z +A0∇ψ∇z) dx dt+
∫

Ω

z(T )ψ(T ) dx =
∫ T

0

∫
ω

ϕ̂ψ dx dt =
∫

Ω

z(T )τ0 dx.

Then, in view of (4.4),∣∣∣∣ ∫
Ω

z(T )τ0 dx−
∫

Ω

(w − v(T ))τ0 dx
∣∣∣∣ ≤ (δ1

√
θ1 + δ2

√
θ2)‖τ0‖L2(Ω).

This proves (3.11), since from the definition of u1 and v one has by linearity, u1(T ) = z(T ) + v(T ). �

Proof of Theorem 3.4. Let w,Φ0, Ψ0 ∈ L2(Ω) and the functional J0 be defined as in (3.13). The proof is
similar to that of Theorem 3.3 and we only point out the main differences. Again standard arguments show
that the functional J0 given in (3.8) is continuous and strictly convex. As in the previous proof, let us show
inequality (4.1), here for any sequence such that ‖(Φ0

n, Ψ
0
n)‖[L2(Ω)]2 → ∞. We set

(Φ̄0
n, Ψ̄

0
n) =

(
Φ0

n

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

,
Ψ0

n

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

)
(ϕ̄1n, ϕ̄2n) =

(
ϕ1n

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

,
ϕ2n

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

)
,

where (ϕ1n, ϕ2n) is a solution of the adjoint problem (3.14) with final data (Φ0
n, θ2Ψ

0
n). Now by (3.13),

J0(Φ0
n, Ψ

0
n)

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

=
1
2
‖(Φ0

n, Ψ
0
n)‖[L2(Ω)]2

(
θ1

∫ T

0

∫
ω

|ϕ̄1n|2 dx dt+ θ−1
2

∫ T

0

∫
ω

|ϕ̄2n|2 dx dt

)

+
δ1
√
θ1‖Φ0

n‖L2(Ω) + δ2
√
θ2‖Ψ0

n‖L2(Ω)

‖(Φ0
n, Ψ

0
n)‖[L2(Ω)]2

− θ1

∫
Ω

(w − v1(T )) Φ̄0
n dx− θ2

∫
Ω

(
w − θ−1

2 v2(T )
)
Ψ̄0

n dx. (4.6)
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Case 1. At least one of the lim inf
n→∞

∫ T

0

∫
ω

|ϕ̄in|2 dx dt, i = 1, 2 is strictly positive. Then,

1
2
‖(Φ0

n, Ψ
0
n)‖[L2(Ω)]2

(
θ1

∫ T

0

∫
ω

|ϕ̄1n|2 dx dt+ θ−1
2

∫ T

0

∫
ω

|ϕ̄2n|2 dx dt

)
→ ∞.

and we conclude as in the proof of the corresponding case for Theorem 3.3.

Case 2. lim inf
n→∞

∫ T

0

∫
ω

|ϕ̄1n|2 dx dt = lim inf
n→∞

∫ T

0

∫
ω

|ϕ̄2n|2 dx dt = 0.

Since Φ̄0
n, Ψ̄

0
n are bounded in L2(Ω), up to a subsequence, we have for some σ0 and τ0 in L2(Ω){

Φ̄0
n ⇀ σ0 weakly in L2(Ω),

Ψ̄0
n ⇀ τ0 weakly in L2(Ω),

(4.7)

By linearity, passing to the limit in (3.14) (written with final data (Φ̄0
n, θ2Ψ̄

0
n)), one has

ϕ̄in ⇀ ψi weakly in L2(0, T ; H1
0(Ω)), i = 1, 2,

where (ψ1, ψ2) is the solution of (3.14) with (σ0, θ2τ
0) as final data. By lower semi-continuity, and the assumption

for this case, ψ1 and ψ2 are zero in ω × (0, T ) so that from Theorem 7.1 of the Appendix, ψ1, ψ2 are zero in
Ω × (0, T ). Since ψ1, ψ2 ∈ C0([0, T ]; L2(Ω))) and ψ1, ψ2 satisfy (3.14), in view of (4.7) we have{

Φ̄0
n ⇀ σ0 = ψ1(T ) = 0 weakly in L2(Ω),

Ψ̄0
n ⇀ θ2τ

0 = ψ2(T ) = 0 weakly in L2(Ω).

Therefore, the sum of the two last terms in the right-hand side of (4.6) goes to zero. This, together with the
assumption for this case and arguing as in the Proof of Theorem 3.3, concludes the proof of (4.1).

Let us prove now that if (Φ̂0, Ψ̂0) ∈ [L2(Ω)]2 is the minimum point of J0 then, for any τ0 ∈ L2(Ω),∣∣∣∣ ∫ T

0

∫
ω

θ1ϕ̂1ψ1 dx dt+
∫ T

0

∫
ω

θ−1
2 ϕ̂2ψ2 dx dt−

∫
Ω

(w − v1(T )) θ1τ0 dx (4.8)

−
∫

Ω

(
w − θ−1

2 v2(T )
)
θ2τ

0 dx
∣∣∣∣ ≤ (δ1

√
θ1 + δ2

√
θ2)‖τ0‖L2(Ω),

where (ϕ̂1, ϕ̂2) is the solution of (3.14) with (Φ̂0, θ2Ψ̂
0) as final data.

To show (4.8), it must be noted that if J0 attains its minimum at (Φ̂0, Ψ̂0) then we have

J0(Φ̂0, Ψ̂0) ≤ J0(Φ̂0 + hτ0, Ψ̂0 + hτ0),

for any τ0 ∈ L2(Ω) and h ∈ R. Thus, from the definition of J0,

0 ≤ J0(Φ̂0 + hτ0, Ψ̂0 + hτ0) − J0(Φ̂0, Ψ̂0) = θ1h

∫ T

0

∫
ω

ϕ̂1ψ1 dx dt

+
θ1h

2

2

∫ T

0

∫
ω

|ψ1|2 dx dt+ θ−1
2 h

∫ T

0

∫
ω

ϕ̂2ψ2 dx dt+
θ−1
2 h2

2

∫ T

0

∫
ω

|ψ2|2 dx dt

+ δ1
√
θ1

(
‖Φ̂0 + hτ0‖L2(Ω) − ‖Φ̂0‖L2(Ω)

)
+ δ2

√
θ2

(
‖Ψ̂0 + hτ0‖L2(Ω) − ‖Ψ̂0‖L2(Ω)

)
− h

(∫
Ω

(w − v1(T )) θ1τ0 dx−
∫

Ω

(
w − θ−1

2 v2(T )
)
θ2τ

0 dx
)
.

Arguing as in the proof for the case γ < 1, we obtain (4.8).
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To complete the Proof of Theorem 3.4, let (ϕ̂1, ϕ̂2) as above and for any τ0 ∈ L2(Ω), let (ψ1, ψ2) be the
solution of (3.14) with (τ0, θ2τ

0) as final data. Suppose z is the solution of the system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ1z1

′ − div(A0∇z1) + ch(θ2z1 − z2) = χωθ1ϕ̂1 in Ω × (0, T ) ,
z2

′ − ch(θ2z1 − z2) = χωϕ̂2 in Ω × (0, T ) ,
z1 = 0 on ∂Ω × (0, T ) ,
z1(x, 0) = 0, z2(x, 0) = 0 in Ω.

(4.9)

Choosing (ψ1, 0) as test function in (4.9) and integrating by parts, we get

−
∫ T

0

θ1〈z1, ψ′
1〉L2(Ω),L2(Ω) dt+

∫
Ω

θ1z1(T )ψ1(T ) dx+
∫ T

0

∫
Ω

A0∇z1∇ψ1 dx dt

+
∫ T

0

∫
Ω

ch(θ2z1 − z2)ψ1 dx dt =
∫ T

0

∫
ω

θ1ϕ̂1ψ1 dx dt. (4.10)

Now, choosing (z1, 0) as test function in (3.14) (written for ψ),

−
∫ T

0

θ1〈ψ′
1, z1〉L2(Ω),L2(Ω) dt+

∫ T

0

∫
Ω

A0∇ψ1∇z1 dx dt+
∫ T

0

∫
Ω

ch(θ2ψ1 − ψ2)z1 dx dt = 0. (4.11)

Subtracting (4.11) from (4.10), from the symmetry of A0 and the fact that ψ1(T ) = τ0, we have∫
Ω

θ1z1(T )τ0 dx+
∫ T

0

∫
Ω

ch(z1ψ2 − z2ψ1) dx dt =
∫ T

0

∫
ω

θ1ϕ̂1ψ1 dx dt. (4.12)

Let us now take (0, ψ2) as test function in (4.9) and integrate by parts so that

−
∫ T

0

〈z2, ψ′
2〉L2(Ω),L2(Ω) dt+

∫
Ω

z2(T )ψ2(T ) dx−
∫ T

0

∫
Ω

ch(θ2z1 − z2)ψ2 dx dt =
∫ T

0

∫
ω

ϕ̂2ψ2 dx dt. (4.13)

On the other hand, choosing (0, z2) as test function in (3.14) (written for ψ) gives

−
∫ T

0

〈ψ′
2, z2〉L2(Ω),L2(Ω) dt−

∫ T

0

∫
Ω

ch(θ2ψ1 − ψ2)z2 dx dt = 0. (4.14)

Subtracting (4.14) from (4.13) and using the fact that ψ2(T ) = θ2τ
0, we have∫

Ω

z2(T )θ2τ0 dx+
∫ T

0

∫
Ω

ch(θ2ψ1z2 − θ2ψ2z1) dx dt =
∫ T

0

∫
ω

ϕ̂2ψ2 dx dt. (4.15)

It follows that ∫
Ω

z2(T )τ0 dx+
∫ T

0

∫
Ω

ch(ψ1z2 − ψ2z1) dx dt = θ−1
2

∫ T

0

∫
ω

ϕ̂2ψ2 dx dt. (4.16)

Adding (4.12) and (4.16) gives∫
Ω

θ1z1(T )τ0 dx+
∫

Ω

z2(T )τ0 dx = θ1

∫ T

0

∫
ω

ϕ̂1ψ1 dx dt+ θ−1
2

∫ T

0

∫
ω

ϕ̂2ψ2 dx dt, (4.17)

while substituting (4.17) in (4.8) yields∣∣∣∣ ∫
Ω

θ1z1(T )τ0 dx+
∫

Ω

z2(T )τ0 dx−
∫

Ω

(w − v1(T ))θ1τ0 dx−
∫

Ω

(w − θ−1
2 v2(T ))θ2τ0 dx

∣∣∣∣
≤ (δ1

√
θ1 + δ2

√
θ2)‖τ0‖L2(Ω). (4.18)

This proves (3.16), since by the definition of u and v one has ui(T ) = zi(T ) + vi(T ), for i = 1, 2. �
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5. Proof of the control for fixed ε

In this section, we show the approximate controllability of system (2.2) for fixed ε, stated in Theorem 3.2,
using the variational approach, as in the preceding section.

Proposition 5.1. Under assumptions (2.4)−(2.8), (3.17) and (3.24), let Jε be the functional defined by (3.1).
Then, for every fixed ε, we have

lim inf
‖ϕ0

ε‖L2(Ω)→∞
Jε(ϕ0

ε)
‖ϕ0

ε‖L2(Ω)
≥ min{δ1, δ2}. (5.1)

Proof. The proof follows the same outline as that of the proof to show (4.1). The only point to be checked
is the fact that if the solution (ψ1, ψ2) of the adjoint problem (3.2) verifies ψ1 = 0, in ω1 × (0, T ) and ψ2 =
0, in ω2 × (0, T ), then ψi is zero in Ωi × (0, T ), i = 1, 2.

To prove that, we observe that by assumptions (2.3) and (2.8), we can apply the unique-continuation property
of [12] to the problem satisfied by ψ1 in ω1 × (0, T ), which has a unique solution. Then, arguing as in the proof
of Corollary 1.2 of [12] we get ψ1 = 0 in Ω1 × (0, T ). Consequently, we also have ψ2 is zero in Ω2 × (0, T ). �

Remark 5.2. Observe that by standard arguments, Jε is continuous and strictly convex. Together with Propo-
sition 5.1, this implies that Jε has a unique minimum point, ϕ̂0

ε ∈ L2(Ω).

The following result can be deduced by similar arguments as those used to show (4.4) and (4.8).

Proposition 5.3. Let ψ0
ε ∈ L2(Ω) and i = 1, 2 and suppose (2.4)−(2.8). If ϕ̂0

ε is the minimum point of the
functional Jε, then∣∣∣∣∣

2∑
i=1

(∫ T

0

∫
ωi

ϕ̂iεψiε dx dt−
∫

Ωiε

(wε − viε(T ))ψ0
ε dx

) ∣∣∣∣∣ ≤ δ1‖ψ0
ε‖L2(Ω1ε) + δ2‖ψ0

ε‖L2(Ω2ε), (5.2)

where ϕ̂ε = (ϕ̂1ε, ϕ̂2ε) is the solution of (3.2) with the corresponding final data ϕ̂0
ε.

Proof of Theorem 3.2. The proof is analogous to those of Theorems 3.3 and 3.4. In the same way, to prove (3.6),
we decompose the solution uε as uε = zε + vε where vε is defined by (3.3) and zε = (z1ε, z2ε) is the solution of
problem (3.5) corresponding to the initial data U0

ε = 0.
Let ψ0

ε ∈ L2(Ω) and suppose ψε = (ψ1ε, ψ2ε) is the solution of the transposed problem (3.2) with final data
ψ0

ε . We choose ψε as test functions in the problem solved by zε and and zε as test function in (3.2) (written for
ψε). Using similar arguments to show (4.17), since ψε(x, T ) = ψ0

ε and Aε is symmetric, we deduce that∫ T

0

∫
ω1ε

ϕ̂1εψ1ε dx dt+
∫ T

0

∫
ω2ε

ϕ̂2εψ2ε dx dt =
∫

Ω1ε

z1ε(T )ψ0
ε dx+

∫
Ω2ε

z2ε(T )ψ0
ε dx. (5.3)

Together with Proposition 5.3 and using the decomposition uε = zε + vε, we get∣∣∣∣ ∫
Ω1ε

(u1ε(T ) − wε)ψ0
ε dx+

∫
Ω2ε

(u2ε(T ) − wε)ψ0
ε dx

∣∣∣∣ ≤ δ1‖ψ0
ε‖L2(Ω1ε) + δ2‖ψ0

ε‖L2(Ω2ε). (5.4)

Taking ψ0
ε = 0 in Ω2ε gives∣∣∣∣ ∫

Ω1ε

(u1ε(T ) − wε)ψ0
ε dx

∣∣∣∣ ≤ δ1‖ψ0
ε‖L2(Ω1ε), ∀ψ0

ε ∈ L2(Ω1ε)

so that by definition, we obtain (3.6) for i = 1. Similarly, choosing ψ0
ε = 0 in Ω1ε in (5.4), we obtain (3.6) for

i = 2. This completes the result. �



APPROXIMATE CONTROLS FOR PARABOLIC EQUATIONS WITH INTERFACIAL CONTACT RESISTANCE 155

6. Proof of the main convergence result

In order to prove the main convergence result given by Theorem 3.5 we need to prove first the next proposition
which, as in [13] for the case of rapidly oscillating coefficients in a fixed domain and in [7] for perforated domains,
provides a uniform estimate in ε for the unique minimum point ϕ̂0

ε of the functional Jε.

Proposition 6.1. Under the assumptions of Theorem 3.5, the functional Jε defined by (3.1) satisfies,

lim inf
‖ϕ0

ε‖L2(Ω) → ∞
ε → 0

Jε(ϕ0
ε)

‖ϕ0
ε‖L2(Ω)

≥ min{δ1, δ2}. (6.1)

Proof. Let {εj}j∈N be a subsequence of {ε}ε>0 and ϕ0
εj

∈ L2(Ω) a corresponding sequence, denoted for simplicity
ϕ0

ε ∈ L2(Ω) in the sequel, such that ‖ϕ0
ε‖L2(Ω) → ∞ as ε→ 0. Set

ϕ̄0
ε = (ϕ̄0

ε|Ω1ε , ϕ̄
0
ε|Ω2ε) =

ϕ0
ε

‖ϕ0
ε‖L2(Ω)

, ϕ̄ε = (ϕ̄1ε, ϕ̄2ε) =
ϕε

‖ϕ0
ε‖L2(Ω)

, (6.2)

where ϕε = (ϕ1ε, ϕ2ε) is the solution of the adjoint problem (3.2) with final data ϕ0
ε.

Observe that there exists a subsequence (still denoted by ε) and σ0, τ0 ∈ L2(Ω) such that(
χ

Ω1ε
ϕ̄0

ε, χΩ2ε
ϕ̄0

ε

)
⇀

(
θ1σ

0, θ2τ
0
)

weakly in [L2(Ω)]2. (6.3)

Take note also that ϕ̄ε satisfies (3.2) written for the final data ϕ̄0
ε, which applying Theorem 2.2 gives(˜̄ϕ1ε,˜̄ϕ2ε

)
⇀ (θ1ϕ̄1, ϕ̄2) weakly* in L∞(0, T ; L2(Ω)) × L∞(0, T ; L2(Ω)). (6.4)

Case − 1 < γ < 1: The limit ϕ̄2 is given by ϕ̄2 = θ2ϕ̄1, where ϕ̄1 is the solution of⎧⎪⎨⎪⎩
−ϕ̄′

1 − div(A0∇ϕ̄1) = 0 in Ω × (0, T ) ,
ϕ̄1 = 0 on ∂Ω × (0, T ) ,
ϕ̄1(x, T ) = θ1σ

0 + θ2τ
0 in Ω.

(6.5)

Case γ = 1: The limit (ϕ̄1, ϕ̄2) is the solution to the following equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−θ1ϕ̄′

1 − div(A0∇ϕ̄1) + ch(θ2ϕ̄1 − ϕ̄2) = 0 in Ω × (0, T ) ,
−ϕ̄′

2 − ch(θ2ϕ̄1 − ϕ̄2) = 0 in Ω × (0, T ) ,
ϕ̄1 = 0 on ∂Ω × (0, T ) ,
ϕ̄1(x, T ) = σ0, ϕ̄2(x, T ) = θ2τ

0 in Ω.

(6.6)

Now, by the definition of Jε given in (3.1),

Jε(ϕ0
ε)

‖ϕ0
ε‖L2(Ω)

=
1
2
‖ϕ0

ε‖L2(Ω)

(∫ T

0

∫
ω1ε

|ϕ̄1ε|2 dx dt+
∫ T

0

∫
ω2ε

|ϕ̄2ε|2 dx dt

)
+ δ1‖ϕ̄0

ε‖L2(Ω1ε) (6.7)

+ δ2‖ϕ̄0
ε‖L2(Ω2ε) −

∫
Ω1ε

(wε − v1ε(T ))ϕ̄0
ε dx−

∫
Ω2ε

(wε − v2ε(T ))ϕ̄0
ε dx.
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Case 1. At least one of the lim inf
ε→0

∫ T

0

∫
ωiε

|ϕ̄iε|2 dx dt, i = 1, 2 is strictly positive.

Using our assumption that ‖ϕ0
ε‖L2(Ω) → ∞, we have

‖ϕ0
ε‖L2(Ω)

(∫ T

0

∫
ω1ε

|ϕ̄1ε|2 dx dt+
∫ T

0

∫
ω2ε

|ϕ̄2ε|2 dx dt

)
→ ∞.

On the other hand, by (3.29)−(3.31) and (6.2), ‖wε − viε(T )‖L2(Ωiε) < ∞ and ‖ϕ̄0
ε‖L2(Ωiε) < ∞ so that,

by Hölder inequality, the last two terms of (6.7) are bounded. Lastly, since ‖ϕ̄0
ε‖L2(Ωiε) ≤ 1, i = 1, 2, we have

δ1‖ϕ̄0
ε‖L2(Ω1ε) + δ2‖ϕ̄0

ε‖L2(Ω2ε) ≤ δ1 + δ2. Therefore, the limit in (6.1) is equal to +∞, which gives the estimate.

Case 2. lim inf
ε→0

∫ T

0

∫
ω1ε

|ϕ̄1ε|2 dx dt = lim inf
ε→0

∫ T

0

∫
ω2ε

|ϕ̄2ε|2 dx dt = 0. From (6.4) and our assumption,

we deduce that ϕ̄1 = ϕ̄2 = 0 in ω × (0, T ).
If −1 < γ < 1, from (6.5) and the unique-continuation property from [12], we have ϕ̄1 = ϕ̄2 = 0 in Ω×(0, T ).

Since ϕ̄1 ∈ C0([0, T ]; L2(Ω))), it follows that ϕ̄1(T ) = θ1σ
0 +θ2τ0 = 0 in L2(Ω). Hence, from (6.3), the function

ϕ̄0
ε weakly converges to zero in L2(Ω). This, together with (3.29), yields

lim
ε→0

(∫
Ω1ε

(wε − v1ε(T ))ϕ̄0
ε dx+

∫
Ω2ε

(wε − v2ε(T ))ϕ̄0
ε dx

)
= lim

ε→0

∫
Ω

(wε − vε(T ))ϕ̄0
ε dx = 0. (6.8)

Now, let γ = 1. Since the couple (ϕ̄1, ϕ̄2) satisfies (6.6), by Theorem 7.1 of the Appendix we derive that
ϕ̄1 = ϕ̄2 = 0 in Ω × (0, T ). This implies, since ϕ̄1, ϕ̄2 ∈ C0([0, T ]; L2(Ω)),{

ϕ̄1(T ) = σ0 = 0 in L2(Ω)
ϕ̄2(T ) = θ2τ

0 = 0 in L2(Ω).
(6.9)

Thus, for γ = 1, arguing as done above for the previous case, we have(
χ

Ω1ε
ϕ̄0

ε, χΩ2ε
ϕ̄0

ε

)
⇀ (0, 0) weakly in [L2(Ω)]2. (6.10)

Using (3.31), this yields

lim
ε→0

(∫
Ω1ε

(wε − v1ε(T ))ϕ̄0
ε dx+

∫
Ω2ε

(wε − v2ε(T ))ϕ̄0
ε dx

)
= lim

ε→0

(∫
Ω1ε

[(wε − v1ε(T )) − (w − v1(T ))]ϕ̄0
ε dx+

∫
Ω

(w − v1(T ))χ
Ω1ε

ϕ̄0
ε dx

)
+ lim

ε→0

(∫
Ω2ε

[(wε − v2ε(T )) − (w − θ−1
2 v2(T ))]ϕ̄0

ε dx+
∫

Ω

(w − θ−1
2 v2(T ))χ

Ω2ε
ϕ̄0

ε dx
)

= 0. (6.11)

Lastly,

lim
ε→0

(
δ1‖ϕ̄0

ε‖L2(Ω1ε) + δ2‖ϕ̄0
ε‖L2(Ω2ε)

)
= lim

ε→0

δ1‖ϕ0
ε‖L2(Ω1ε) + δ2‖ϕ0

ε‖L2(Ω2ε)

(‖ϕ0
ε‖2

L2(Ω1ε) + ‖ϕ0
ε‖2

L2(Ω2ε))
1
2

≥ min{δ1, δ2}. (6.12)

Using (6.8), (6.11), (6.12) and the assumption done for this case, we have the claimed estimate (6.1). �

Corollary 6.2. Under the assumptions of Theorem 3.5, let ϕ̂0
ε be defined in Theorem 3.2. Then, there exists a

constant C independent of ε such that
‖ϕ̂0

ε‖L2(Ω) ≤ C. (6.13)
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Proof. We prove the result by contradiction. Suppose there exists a subsequence (still denoted ε) such that
‖ϕ̂0

ε‖L2(Ω) → ∞, as ε→ 0. Since ϕ̂0
ε is the minimum point of the functional Jε, one has Jε(ϕ̂0

ε) ≤ Jε(0) = 0, for
any ε. Hence, by Proposition 6.1, we obtain a contradiction, since

0 < min{δ1, δ2} ≤ lim inf
ε→0

Jε(ϕ̂0
ε)

‖ϕ̂0
ε‖L2(Ω)

≤ 0.

�

Remark 6.3. From Corollary 6.2, there exists (ξ0, ν0) ∈ [L2(Ω)]2 such that (up to a subsequence){(
χ

Ω1ε
ϕ̂0

ε, χΩ2ε
ϕ̂0

ε

)}
ε

⇀
(
θ1ξ

0, θ2ν
0
)

weakly in [L2(Ω)]2. (6.14)

The next theorem identifies the weak limit (ξ0, ν0) in (6.14), precise some behavior of the controls and lead
us to the proof of our main result, Theorem 3.5. It is proved at the end of this section after several preliminary
results, by adapting to our case some techniques used by Zuazua [13, 14] and Donato and Nabil [7].

Theorem 6.4. Let U0 and w be given in L2(Ω). Under the assumptions of Theorem 3.5, let ϕ̂0
ε be the minimum

point of Jε, and (Φ̂0, Ψ̂0) the unique minimum point of the functional J0 given by (3.8) and (3.13) according on
γ. Then, as ε→ 0, (

χ
Ω1ε

ϕ̂0
ε, χΩ2ε

ϕ̂0
ε

)
⇀

(
θ1Φ̂

0, θ2Ψ̂
0
)

weakly in [L2(Ω)]2. (6.15)

Corollary 6.5. Under the hypothesis of Theorem 3.5, let ϕ̂ε be the control ϕ̂ε given by Theorem 3.2.

Case − 1 < γ < 1: Let ϕ̂ be the solution of (3.9) with final data θ1Φ̂
0 + θ2Ψ̂

0, where the pair (Φ̂0, Ψ̂0) is the
unique minimum point of the functional J0 defined by (3.8). Then, as ε→ 0,{

(i) ϕ̂ε ⇀ ϕ̂ strongly in L2(0, T ; L2(Ω)),
(ii) P ε

1 ϕ̂1ε ⇀ ϕ̂ weakly in L2(0, T ; H1
0(Ω)),

(6.16)

Case γ = 1: Let (ϕ̂1, ϕ̂2) be the solution of (3.14) with final data (Φ̂0, θ2Ψ̂
0), where (Φ̂0, Ψ̂0) is the unique

minimum point of the functional J0 defined by (3.13). Then, as ε→ 0,⎧⎪⎨⎪⎩
(i) ˜̂ϕ1ε ⇀ θ1ϕ̂1 weakly* in L∞(0, T ; L2(Ω)),
(ii) ˜̂ϕ2ε ⇀ ϕ̂2 weakly* in L∞(0, T ; L2(Ω)),
(iii) P ε

1 ϕ̂1ε ⇀ ϕ̂1 weakly in L2(0, T ; H1
0(Ω)).

(6.17)

Proof. Convergences (6.16) and (6.17) directly follow from (6.15) by applying Theorem 2.2 to the control ϕ̂ε

with the aid of Proposition 2.4 to show (6.16)(i). �

In the two propositions below, we state a convergence result which is an essential tool for proving Theorem 6.4.
Although the results are similar in the two cases, we state them separately, since the proofs are different.

Proposition 6.6. Let −1 < γ < 1. Suppose (2.4)−(2.7) and (3.17) hold. Then the functional Jε defined by (3.1)
satisfies

lim
ε→0

Jε(χΩ1ε
Φ0 + χ

Ω2ε
Ψ0) = J0

(
Φ0, Ψ0

)
, (6.18)

for any Φ0 and Ψ0 in L2(Ω), where J0 is the functional given by (3.8).
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Proof. By definition (see Rem. 3.1),

Jε

(
χ

Ω1ε
Φ0 + χ

Ω2ε
Ψ0

)
=

1
2

∫ T

0

∫
ω

|ψε|2 dx dt+ δ1‖Φ0‖L2(Ω1ε) + δ2‖Ψ0‖L2(Ω2ε) (6.19)

−
∫

Ω1ε

(wε − v1ε(T ))Φ0 dx−
∫

Ω2ε

(wε − v2ε(T ))Ψ0 dx,

for any Φ0 and Ψ0 in L2(Ω), where ψε(x, t) is the solution of problem (3.2) with final data χ
Ω1ε

Φ0 + χ
Ω2ε

Ψ0,

and vε = (v1ε, v2ε) is the solution of the auxiliary problem (3.3).

Since (χ
Ω1ε

Φ0, χ
Ω2ε

Ψ0) ⇀
(
θ1Φ

0, θ2Ψ
0
)

weakly in [L2(Ω)]2, Theorem 2.2 and Proposition 2.4 applied to ψε,

imply that ψε → ψ1 strongly in L2(0, T ; L2(Ω)), where ψ1 is the solution of (3.9). This, together with (2.1)
and (3.29), allows us to pass to the limit in (6.19) to obtain the desired result. �

The next proposition concern the case γ = 1, where the homogenized problem contains a coupled system of
two equations.

Proposition 6.7. Let γ = 1 and assume that Γ is of class C2. For Φ0, Ψ0 ∈ L2(Ω), suppose that (2.4)−(2.7)
and (3.24) hold. Then the functional Jε satisfies

lim
ε→0

Jε

(
χ

Ω1ε
Φ0 + χ

Ω2ε
Ψ0

)
= J0

(
Φ0, Ψ0

)
,

where J0 is the functional given by (3.13).

Proof. Let ψ0
ε = χ

Ω1ε
Φ0 + χ

Ω2ε
Ψ0 and ψε = (ψ1ε, ψ2ε) be the solution of the transposed problem (3.2) with

final data χ
Ω1ε

Φ0 + χ
Ω2ε

Ψ0. Then, as in the proof of Proposition 6.6,

Jε(ψ0
ε) =

1
2

(∫ T

0

∫
ω1ε

|ψ1ε|2 dx dt+
∫ T

0

∫
ω2ε

|ψ2ε|2 dx dt

)
+ δ1‖Φ0‖L2(Ω1ε) (6.20)

+ δ2‖Ψ0‖L2(Ω2ε) −
∫

Ω1ε

(wε − v1ε(T ))Φ0 dx−
∫

Ω2ε

(wε − v2ε(T ))Ψ0 dx,

where vε = (v1ε, v2ε) is the solution of the auxiliary problem (3.3). Now, since

(χ
Ω1ε

Φ0, χ
Ω2ε

Ψ0) ⇀
(
θ1Φ

0, θ2Ψ
0
)

weakly in [L2(Ω)]2,

Theorem 2.2 applied to (ψ1ε, ψ2ε) yields convergences (2.14), written for zε = ψε and (z1, z2) equal to the
solution (ψ1, ψ2) of (3.14). We need to pass to the limit in (6.20). For the first two terms, we write

Iε =
1
2

(∫ T

0

∫
Ω1ε

χω|ψ1ε|2 dx dt+
∫ T

0

∫
Ω2ε

χω|ψ2ε|2 dx dt

)
=

1
2

∫ T

0

∫
Ω1ε

χω(ψ1ε − ψ1)ψ1ε dx dt

+
1
2

∫ T

0

∫
Ω1ε

χωψ1ψ1ε dx dt+
1
2

∫ T

0

∫
Ω2ε

χω(ψ2ε − θ−1
2 ψ2)ψ2ε dx dt+

1
2

∫ T

0

∫
Ω2ε

χωθ
−1
2 ψ2ψ2ε dx dt.
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Observe that we can apply Theorem 2.5 to the problem solved by ψε, since clearly (2.25) holds true. Then,
we can pass to the limit in the first and third terms of Iε using the Hölder’s inequality to obtain

lim
ε→0

(
1
2

∫ T

0

∫
Ω1ε

χω(ψ1ε − ψ1)ψ1ε dx dt+
1
2

∫ T

0

∫
Ω2ε

χω(ψ2ε − θ−1
2 ψ2)ψ2ε dx dt

)

≤ 1
2

lim
ε→0

(‖ψ1ε − ψ1‖C0(0,T ;L2(Ω1ε))‖ψ1ε‖L∞(0,T ;L2(Ω1ε))

)
+

1
2

lim
ε→0

(‖ψ2ε − θ−1
2 ψ2‖C0(0,T ;L2(Ω2ε))‖ψ2ε‖L∞(0,T ;L2(Ω2ε))

)
= 0.

Hence,

lim
ε→0

Iε = lim
ε→0

(
1
2

∫ T

0

∫
ω

ψ1ψ̃1ε dx dt+
1
2

∫ T

0

∫
ω

θ−1
2 ψ2ψ̃2ε dx dt

)
=

1
2

∫ T

0

∫
ω

(
θ1(ψ1)2 + θ−1

2 (ψ2)2
)

dx dt.

On the other hand, using (2.1) one obtains

lim
ε→0

δ1

(∫
Ω

χ
Ω1ε

|Φ0|2 dx
) 1

2

+ lim
ε→0

δ2

(∫
Ω

χ
Ω2ε

|Ψ0|2 dx
) 1

2

= δ1
√
θ1‖Φ0‖L2(Ω) + δ2

√
θ2‖Ψ0‖L2(Ω).

For the last two terms of (6.20), using (3.31) yields

lim
ε→0

( ∫
Ω1ε

(wε − v1ε(T ))Φ0 dx+
∫

Ω2ε

(wε − v2ε(T ))Ψ0 dx
)

= lim
ε→0

(∫
Ω1ε

[(wε − v1ε(T )) − (w − v1(T ))]Φ0 dx+
∫

Ω

(w − v1(T ))χ
Ω1ε

Φ0 dx
)

+lim
ε→0

(∫
Ω2ε

[(wε − v2ε(T )) − (w − θ−1
2 v2(T ))]Ψ0dx+

∫
Ω

(w − θ−1
2 v2(T ))χ

Ω2ε
Ψ0dx

)
=
∫

Ω

(w − v1(T ))θ1Φ0 dx+
∫

Ω

(w − θ−1
2 v2(T ))θ2Ψ0 dx. (6.21)

Therefore, combining the above identities one gets the desired result. �

The next proposition makes use of the following general statement proved in [7].

Lemma 6.8 [7]. Let O be an open set of Rn and {Oε}ε ⊂ O a sequence of open subsets of O. Suppose that
{vε}ε ⊂ Lp(Oε), p > 1, is such that, as ε→ 0,⎧⎨⎩χOε

⇀ χ
0

weakly* in L∞(O),

ṽε ⇀ χ
0
v weakly in Lp(O)

for some v ∈ Lp(O). Then

lim inf
ε→0

∫
Oε

|vε|p dx ≥
∫
O
χ

0
|v|p dx.

Proposition 6.9. Under the assumptions of Propositions 6.6 and 6.7 (for the cases −1 < γ < 1 and γ = 1,
respectively), for any sequence {ψ0

ε}ε ⊂ L2(Ω) such that as ε→ 0,(
χ

Ω1ε
ψ0

ε , χΩ2ε
ψ0

ε

)
⇀ (θ1Φ0, θ2Ψ

0) weakly in [L2(Ω)]2, (6.22)
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for some (Φ0, Ψ0) in [L2(Ω)]2, we have

lim inf
ε→0

Jε(ψ0
ε) ≥ J0(Φ0, Ψ0), (6.23)

where J0 is defined by (3.8) and (3.13) for the cases −1 < γ < 1 and γ = 1, respectively.

Proof. Let ψε be the solution of (3.2) with final data ψ0
ε ∈ L2(Ω).

Case − 1 < γ < 1: Let Jε be given by (3.4). From Theorem 2.2 and Proposition 2.4 applied to ψε we have

1
2

lim
ε→0

∫ T

0

∫
ω

|ψε|2 dx dt =
1
2

∫ T

0

∫
ω

|ψ|2 dx dt, (6.24)

where ψ is the solution of the homogeneous transposed problem (3.9). Now, by (3.29) and (6.22), we get

lim
ε→0

∫
Ω

(
wε − vε(T )

)
ψ0

ε dx =
∫

Ω

(w − v(T ))(θ1Φ0 + θ2Ψ
0) dx. (6.25)

Hence, using (2.1), (6.22), (6.24), (6.25) and Lemma 6.8, we get

lim inf
ε→0

Jε(ψ0
ε) ≥ 1

2

∫ T

0

∫
ω

|ψ|2 dx dt+ δ1
√
θ1‖Φ0‖L2(Ω) + δ2

√
θ2‖Ψ0‖L2(Ω)

−
∫

Ω

(w − v(T ))(θ1Φ0 + θ2Ψ
0) dx = J0(Φ0, Ψ0).

Case γ = 1: By the definition of Jε, we have

Jε(ψ0
ε) =

1
2

(∫ T

0

∫
ω1ε

|ψ1ε|2 dx dt+
∫ T

0

∫
ω2ε

|ψ2ε|2 dx dt

)
+ δ1‖ψ0

ε‖L2(Ω1ε)

+ δ2‖ψ0
ε‖L2(Ω2ε) −

∫
Ω1ε

(wε − v1ε(T ))ψ0
ε dx−

∫
Ω2ε

(wε − v2ε(T ))ψ0
ε dx. (6.26)

For this case, Theorem 2.2 applied to problem of ψε gives{
(i) ψ̃1ε ⇀ θ1ψ1,

(ii) ψ̃2ε ⇀ ψ2,
(6.27)

where (ψ1, ψ2) is the solution of (3.14). Now, from (2.1) and (6.27), applying Lemma 6.8 gives

lim inf
ε→0

∫ T

0

∫
Ω1ε

χω|ψ1ε|2 dx dt = lim inf
ε→0

∫ T

0

∫
Ω1ε

|ψ1εχω|2 dx dt ≥
∫ T

0

∫
ω

θ1|ψ1|2 dx dt (6.28)

and

lim inf
ε→0

∫ T

0

∫
Ω2ε

χω|ψ2ε|2 dx dt ≥
∫ T

0

∫
ω

θ2

∣∣∣∣ψ2

θ2

∣∣∣∣2 dx dt = θ−1
2

∫ T

0

∫
ω

|ψ2|2 dx dt. (6.29)

On the other hand, by same argument used to prove (6.21),

lim
ε→0

(∫
Ω1ε

(wε − v1ε(T ))ψ0
ε dx+

∫
Ω2ε

(wε − v2ε(T ))ψ0
ε dx

)
= lim

ε→0

(∫
Ω1ε

[(wε − v1ε(T )) − (w − v1(T ))]ψ0
ε dx+

∫
Ω

(w − v1(T ))χ
Ω1ε

ψ0
ε dx

)
+ lim

ε→0

(∫
Ω2ε

[(wε − v2ε(T )) − (w − θ−1
2 v2(T ))]ψ0

ε dx+
∫

Ω

(w − θ−1
2 v2(T ))χ

Ω2ε
ψ0

ε dx
)

=
∫

Ω

(w − v1(T ))θ1Φ0 dx+
∫

Ω

(w − θ−1
2 v2(T ))θ2Ψ0 dx. (6.30)
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Using Lemma 6.8 once again, we can pass to the limit for the remaining terms of (6.26). Hence, together
with (6.28)−(6.30), one has the claimed result. �

Thanks to the above propositions, we are now able to prove Theorems 6.4 and 3.5, our main result.
Proof of Theorem 6.4. By Remark 6.3, the sequence {ϕ̂0

ε}ε of the minimum points of Jε, satisfies (up to a
subsequence), convergence (6.14) for some (ξ0, ν0) ∈ [L2(Ω)]2. From Proposition 6.9, we have

J0(ξ0, ν0) ≤ lim inf
ε→0

Jε(ϕ̂0
ε). (6.31)

Let us consider first the case −1 < γ < 1. Since ϕ̂0
ε is the minimum point of the functional Jε, for any

(Φ0, Ψ0) ∈ [L2(Ω)]2, using Proposition 6.6 we have,

lim sup
ε→0

Jε(ϕ̂0
ε) ≤ lim sup Jε

(
χ

Ω1ε
Φ0 + χ

Ω2ε
Ψ0

)
= J0(Φ0, Ψ0). (6.32)

From (6.31), (6.32) and Theorem 3.3, we get (ξ0, ν0) = (Φ̂0, Ψ̂0) where (Φ̂0, Ψ̂0) is the unique minimum point
of the functional J0 given in (3.8) and consequently, the whole sequence in (6.14) converges.

Now, for the case γ = 1, using Proposition 6.7 and the fact that ϕ̂0
ε is the minimum point of Jε, we obtain

again (6.32). This, together with (6.31) and Theorem 3.4, shows that (ξ0, ν0) = (Φ̂0, Ψ̂0), the unique minimum
point of the functional J0 given in (3.13) and again the whole sequence in (6.14) converges. �

Proof of Theorem 3.5. Observe that the convergences in (3.18) and (3.25) are direct consequences of Theorem 6.4
and Corollary 6.5. On the other hand, (3.17)(i) and (3.18)(i) (see also Rem. 2.6) together with the corrector result
given in Theorem 2.5 for the case −1 < γ < 1 imply (3.19)(ii). Also, Theorem 2.2 applies to problem (3.5) which
proves (3.19)(i) and (iii). Meanwhile for the case γ = 1, using assumption (3.24)(i) and convergences (3.25)(i)
and (ii) with Theorem 2.2, we have (3.26). Consequently, the controllability results for the homogenized problems
proved in Theorems 3.3 and 3.4 yield (3.21) and (3.28), respectively.

It remains to prove, for the case −1 < γ < 1, convergences (3.22) and (3.23).
Observe that using (6.31) and (6.32), we deduce that

J0(ξ0, ν0) = J0(Φ̂0, Ψ̂0) ≤ lim inf
ε→0

Jε

(
ϕ̂0

ε

) ≤ lim sup
ε→0

Jε

(
ϕ̂0

ε

) ≤ J0(Φ̂0, Ψ̂0).

This gives

lim
ε→0

Jε

(
ϕ̂0

ε

)
= J0(Φ̂0, Ψ̂0). (6.33)

Now, if ϕ̂ε = (ϕ̂1ε, ϕ̂2ε) is the control given in Theorem 3.2 and ϕ̂ is the solution of (3.9), then writing (6.24)
for ϕ̂ε and using Corollary 6.5 one obtains

lim
ε→0

1
2

(∫ T

0

∫
ω1ε

|ϕ̂1ε|2 dx dt+
∫ T

0

∫
ω1ε

|ϕ̂2ε|2 dx dt

)
=

1
2

lim
ε→0

∫ T

0

∫
ω

|˜̂ϕ1ε+˜̂ϕ2ε|2 dx dt =
1
2

∫ T

0

∫
ω

|ϕ̂|2 dx dt.

Furthermore, using (3.29) and (3.18)(ii), we get

lim
ε→0

(∫
Ω1ε

(wε − v1ε(T ))ϕ̂0
ε dx+

∫
Ω2ε

(wε − v2ε(T ))ϕ̂0
ε dx

)∫
Ω

(w − v(T ))(θ1Φ̂0 + θ2Ψ̂
0) dx.

Taking into account these convergences, we have (3.22). Clearly, if δ1 = δ2, we get (3.23). �
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7. Appendix by Ammar Kohdja

We state here the unique continuation result for the coupled problem (3.14) (for which the results from [12]
do not apply). We employed it in this paper twice, for the case γ = 1. First, we used it in the proof of the
controllability of the homogenized problem (Thm. 3.4) and second, in that of the uniform estimate (6.1).

When inquiring about a possible unique continuation principle for that problem, we addressed the question
to Farid Ammar Kohdja, who has given a positive answer and suggested us the proof below. The authors are
grateful and indebted to him for the proof and for the time he spent in proving the result.

Theorem 7.1 [1]. Under the assumptions of Theorem 3.4, let ϕ = (ϕ1, ϕ2) be the solution of (3.14). If ϕ is
zero in ω × (0, T ) then ϕ is zero in Ω × (0, T ).

Proof. We define the operator L and the adjoint one by

L =
(

1
θ1
Δ− ch

θ2
θ1

ch

θ1

chθ2 −ch

)
, L∗ =

(
1
θ1
Δ− ch

θ2
θ1
chθ2

ch

θ1
−ch

)
, D (L) = D (L∗) =

(
H2 (Ω) ∩H1

0 (Ω)
)× L2 (Ω)

where Δ : L2 (Ω) → L2 (Ω) is the usual unbounded Laplace operator with domain H2 (Ω) ∩ H1
0 (Ω) . For

simplicity, we prove the results for the case A0 = Id and we can use the fact that all the eigenvalues of −Δ are
simple. If not, it is sufficient to work on the eigenspaces, which have all finite dimension.

Let 0 < μ1 < μ2 < · · · < μk ↑ ∞ be the sequence of the eigenvalues of −Δ and (ϕk) the sequence of the
corresponding normalized eigenvectors, which forms an orthonormal basis in L2(Ω).

Then, since θ1, θ2 are positive constants and θ1 + θ2 = 1, the eigenvalues of L verify the following equation:

p (λ) = θ1λ
2 + (μk + ch)λ+ chμk = 0, k ≥ 1. (7.1)

Since (μk + ch)2 − 4θ1chμk > 0 for all k ≥ 1, these eigenvalues are real negative numbers given by

λ±k =
−μk − ch ±

√
(μk + ch)2 − 4θ1chμk

2θ1
.

Moreover: p (−ch) = θ1c
2
h − (μk + ch) ch + chμk = −θ2c2h < 0, so that λ−k < −ch < λ+

k .

It is readily seen that the sequences
(
λ+

k

)
and

(
λ−k

)
are decreasing and as k → ∞:

λ−k ↘ −∞ and λ+
k ∼ −ch μk

(μk + ch)
↘

k→∞
−ch. (7.2)

Then, we can order the eigenvalues as follows:

λ+
1 > λ+

2 > · · · > −ch > λ−1 > λ−2 > · · · > λ−k ↘ −∞.

The associated family of eigenvectors
(
Φ±

k

)
is given by Φ±

k = ρ±k

(
λ±k + ch
chθ2

)
ϕk, k ≥ 1, and if we set

Ψ±
k = ρ±k

(
λ±k + ch
ch
θ1

)
ϕk, with ρ±k a normalizing sequence, then

(
Φ±

k

)
and

(
Ψ±

k

)
form biorthogonal families, i.e.

〈
Φ±

k , Ψ
±
j

〉
L2 = δkj ,

〈
Φ±

k , Ψ
∓
j

〉
L2 = 0, k, j ≥ 1.

To do that we choose
(
ρ±k

)2
= 1

(λ±
k +ch)2

+c2
h

θ2
θ1

.
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Let us now prove that
(
Φ±

k

)
is a Riesz basis. To do that, we have to prove the inequality

μ1

N∑
k=1

((
a+

k

)2
+
(
a−k

)2) ≤
∣∣∣∣∣

N∑
k=1

a±k Φ
±
k

∣∣∣∣∣
2

L2

≤ μ2

N∑
k=1

((
a+

k

)2
+
(
a−k

)2)
,

for any N ≥ 1 and for every sequence (ak), where μi, i = 1, 2 are two strictly positive constants independent of
N and (ak).

Using the fact that the spaces Span
〈
Φ+

k , Φ
−
k

〉
are pairwise orthogonal, it suffices to prove the inequality for∣∣a+

k Φ
+
k + a−k Φ

−
k

∣∣2
L2 , which is given by∣∣a+

k Φ
+
k + a−k Φ

−
k

∣∣2
L2 =

(
a+

k

)2 ∣∣Φ+
k

∣∣2
L2 + 2

〈
Φ+

k , Φ
−
k

〉
L2 a

+
k a

−
k +

∣∣Φ−
k

∣∣2
L2

(
a−k

)2
.

Observe that ∣∣Φ±
k

∣∣2
L2 =

(
ρ±k

)2 ((
λ±k + ch

)2
+ c2hθ

2
2

)
=

(
λ±k + ch

)2
+ c2hθ

2
2(

λ±k + ch
)2

+ c2h
θ2
θ1

.

Using (7.2) this gives
lim

k→∞
∣∣Φ+

k

∣∣2
L2 = θ1θ2, lim

k→∞
∣∣Φ−

k

∣∣2
L2 = 1.

On the other hand,〈
Φ+

k , Φ
−
k

〉
L2 = ρ+

k ρ
−
k

((
λ+

k + ch
) (
λ−k + ch

)
+ c2hθ

2
2

)
= ρ+

k ρ
−
k

(
λ+

k λ
−
k +

(
λ+

k + λ−k
)
ch +

(
1 + θ22

)
c2h
)

= ρ+
k ρ

−
k

(
chμk

θ1
− μk + ch

θ1
ch +

(
1 + θ22

)
c2h

)

=

(
1 + θ22 − 1

θ1

)
c2h√(

λ+
k + ch

)2
+ c2h

θ2
θ1

√(
λ−k + ch

)2
+ c2h

θ2
θ1

∼
(
1 + θ22 − 1

θ1

)
ch√

θ2
θ1

∣∣λ−k ∣∣ ,

where we used again (7.2). Hence, setting τ =

(
1+θ2

2− 1
θ1

)
ch√

θ2
θ1

) we have, asymptotically,

∣∣a+
k Φ

+
k + a−k Φ

−
k

∣∣2
L2 = θ1θ2

(
a+

k

)2 − 2
τ

λ−k
a+

k a
−
k +

(
a−k

)2
.

Since in view of (7.2), one can find a δ > 0 such that, for k large enough,
(
τ

λ−k

)2

− θ1θ2 ≤ −δ < 0 there

exist μ1, μ2 > 0 (independent of k) such that

μ1

((
a+

k

)2
+
(
a−k

)2) ≤ ∣∣a+
k Φ

+
k + a−k Φ

−
k

∣∣2
L2 ≤ μ2

((
a+

k

)2
+
(
a−k

)2)
,

which implies that
{
Φ+

k , Φ
−
k

}
is a Riesz basis. Then, the solution of the adjoint problem is

ϕ =
∑
k≥1

eλ±
k

t
〈
ϕ0, Ψ±

k

〉
Φ±

k =
∑
k≥1

eλ+
k

t
〈
ϕ0, Ψ+

k

〉
Φ+

k +
∑
k≥1

eλ−
k

t
〈
ϕ0, Ψ−

k

〉
Φ−

k

and the condition ϕ = 0 in (0, T )× ω takes the form∑
k≥1

eλ+
k t
〈
ϕ0, Ψ+

k

〉
Φ+

k +
∑
k≥1

eλ−
k t
〈
ϕ0, Ψ−

k

〉
Φ−

k = 0, (0, T ) × ω.
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Extending (by analyticity) in time to (0,∞) , we obtain∑
k≥1

eλ+
k

t
〈
ϕ0, Ψ+

k

〉
Φ+

k +
∑
k≥1

eλ−
k

t
〈
ϕ0, Ψ−

k

〉
Φ−

k = 0, (0,∞) × ω.

Multiplying this identity by e−λ1t and letting t → ∞, we get
〈
ϕ0, Ψ+

1

〉
Φ+

1 = 0, in ω. Hence, by induction,〈
ϕ0, Ψ±

k

〉
Φ±

k = 0, in ω, ∀k ≥ 1. Since the eigenfunctions ϕk are analytic,
〈
ϕ0, Ψ±

k

〉
= 0, ∀k ≥ 1, which implies

ϕ = 0 in (0, T )×Ω and ends the proof. �
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