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DIRICHLET CONTROL OF UNSTEADY NAVIER–STOKES TYPE SYSTEM
RELATED TO SORET CONVECTION BY BOUNDARY PENALTY METHOD

S.S. Ravindran1

Abstract. In this paper, we study the boundary penalty method for optimal control of unsteady
Navier–Stokes type system that has been proposed as an alternative for Dirichlet boundary control.
Existence and uniqueness of solutions are demonstrated and existence of optimal control for a class of
optimal control problems is established. The asymptotic behavior of solution, with respect to the penalty
parameter ε, is studied. In particular, we prove convergence of solutions of penalized control problem to
the corresponding solutions of the Dirichlet control problem, as the penalty parameter goes to zero. We
also derive an optimality system and determine optimal solutions. In order to illustrate the theoretical
results and the practical utility of control, we numerically address the problem of controlling unsteady
convection with Soret effect using a gradient-based method. Numerical results show the effectiveness
of the approach.
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1. Introduction

Control of fluid flows modeled by Navier–Stokes systems has received considerable attention recently due to
its importance in practice and to the theoretical and computational challenges it poses. There is now an extensive
body of literature devoted to this subject, see [10, 13, 30] for surveys in this area. In this paper, we consider
optimal Dirichlet boundary control of unsteady Navier–Stokes type PDEs. Dirichlet boundary control, while
being practical, is considerably more challenging than other controls in every aspect of control development,
from analysis to achieving the control objective. The main difficulty with Dirichlet boundary control is that it is
non-variational and thus it is nontrivial to identify suitable function space framework without using appropriate
boundary lifting. Several approaches have been proposed in the literature to deal with the theoretical and
computational difficulties associated with Dirichlet boundary control, [8,9,14,15,17]. In [14,15] control space is
taken to be H1 (smooth controls) leading to a boundary Laplace equation for the control. In [8], a separation
of variable type Dirichlet control of unsteady Navier–Stokes equation is studied. In [9], Dirichlet control of
unsteady Navier–Stokes equations is studied. The choice of function space considered there however involves
spaces of fractional powers and thus is not convenient computationally. In [17], a boundary penalty approach is
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studied for stationary Navier–Stokes equations. Starting with the work of [17], interest in penalization technique
for treating Dirichlet control has increased. It has since been studied in the context of optimal control with other
governing equations [3, 4, 7].

In this paper, we present a boundary penalty approach to treat the Dirichlet control of unsteady Navier–
Stokes type system modeling doubly diffusive convection with Soret effect. Significant work has been devoted
to studying the stability and physics of doubly diffusive convection with and without Soret effect (thermal
diffusion), see for e.g. [2,5,19,22,26,29]. These studies have reported convective flows lead to undesirable effects
in certain applications. For example, thermosolutal convection is responsible for macrosegragation and can affect
the uniformity and speed of growth rate in crystal growth. It is also responsible for erosion of gradient zone
in solar ponds and roll-over instability (sudden over pressure) in storage and transport of gases. In spite of
this, work concerning control of doubly diffusive flows is quite limited although there exists substantial work
on control of thermal convection in fluid flows [6, 20, 28], for example. In [32], control of temperature in doubly
diffusive flows is studied computationally using boundary heat flux ignoring Soret effect. In this paper, we study
control of convection using boundary velocity in doubly diffusive flows with Soret effect. Boundary penalty
approach studied here allows one to work with L2- control space. Unlike other L2- control space approaches it
does not lead to optimality conditions that involve normal derivative of the adjoint variable on the boundary.

The remainder of the paper is organized as follows. In Section 2, we present some mathematical preliminaries
and study the wellposedness of the governing equations. In Section 3, we formulate the penalized boundary
control problem. The convergence of its solutions to the solutions of the Dirichlet control problem is studied.
In Section 4, we derive the optimality system for the optimal control problem. In Section 5, we present results
from the numerical implementation. Finally, we list some important estimates in Appendix A.

2. Preliminaries

2.1. Notations

In our analysis, we will employ the following notations and function spaces. Let Ω ⊂ R
2 be a bounded domain

with Lipschitzian boundary Γ . For p ≥ 1, let Lp(Ω) denote the linear space of all real Lebesgue measurable
functions φ and bounded in the usual norm denoted by ‖φ‖Lp(Ω). The inner product and norm in L2(Ω) are
denoted by (·, ·) and ‖ · ‖, respectively. Let Hs(Ω) be the usual Hilbertian Sobolev space with s derivatives in
L2(Ω). We denote with ‖ · ‖s the norm in Hs(Ω). The closed subspace of functions in H1(Ω) with zero trace on
Γ will be denoted by H1

0 (Ω). The closed subspace of functions in L2(Ω) with zero mean on Ω will be denoted
by L2

0(Ω). The dual space of H1
0 (Ω) will be denoted by H−1(Ω) and its norm by ‖ · ‖−1. The trace space Hr(Γ )

consists of functions that are the restriction to the boundary of functions in Hr+1/2(Ω), r > 0. We denote the
norm and inner product for functions in Hr(Γ ) by ‖ · ‖r,Γ and (·, ·)r,Γ , respectively. In the sequel, we denote by
boldface letters R

2-valued function spaces such as L2(Ω) := [L2(Ω)]2 and Hm(Ω) := [Hm(Ω)]2. We put

V :=
{
v ∈ H1(Ω) : ∇ · v = 0 in Ω

}
, and H :=

{
v ∈ L2(Ω) : ∇ · v = 0 in Ω

}
and

V :=
{
v ∈ H1

0(Ω) : ∇ · v = 0 in Ω
}
.

We denote the dual of V by V∗. If we identify H with its dual H∗, then we get the following continuous and
dense embedding:

V ⊂ H = H∗ ⊂ V∗.

For a Banach space X , we denote by Lp(0, T ;X) the time-space function space endowed with the norm

‖w‖Lp(0,T ;X) :=
(∫ T

0
‖w‖p

X dt
)1/p

if 1 ≤ p < ∞ and ess supt∈[0,T ] ‖w‖X if p = ∞. We will often use the
abbreviated notation Lp(X) := Lp(0, T ;X) for convenience. We also introduce the space W(0, T ) := W1 ×
W2 ×W2, where

W1 := {u ∈ L2(V) : ut ∈ L2(V∗)} and W2 := {φ ∈ L2(H1
0 (Ω)) : φt ∈ L2(H−1(Ω))}
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endowed with the norms ‖u‖W1 := (‖u‖2
L2(V) + ‖ut‖2

L2(V∗))
1
2 and ‖φ‖W2 := (‖φ‖2

L2(H1
0 )

+ ‖φt‖2
L2(H−1))

1
2 , re-

spectively. Since W1 is continuously embedded in C(0, T ;H), see [9], we have that W (0, T ) is continuously
embedded in C(0, T ;H× (L2(Ω))2). We further define

WΣ
1 := {g|τ(u) = g for u ∈ W1 },

where τ : W1 → L2(0, T ;H
1
2 (Γ )) is the trace operator onto the lateral boundary Σ := Γ × (0, T ) of the

space-time domain Ω × (0, T ) given by τ(u(t)) = u(·, t)|Γ for a.e in [0, T ]. We define the norm on WΣ
1 by

‖g‖W Σ
1

:= inf
u∈W1

τ(u)=g

‖u‖W1 .

For g ∈ WΣ
1 , we define by ug the unique element in W1 that achieves this infimum, see [16].

We end this section by recalling some inequalities that we will use in this paper.
Poincaré−Friedrichs’ inequality: For u ∈ H1(Ω) ,

λ‖u‖2 ≤ ‖∇u‖2 + ‖u‖2
0,Γ ,

where λ > 0 is a constant, see ([23], Thm. 1.9) and ([18], Sect. 5.3).
Gagliardo−Nirenberg inequality: For u ∈ H1(Ω) ∩ Lq(Ω), let 1 ≤ q ≤ r <∞. Then, for s = 1 − (q/r),

‖u‖Lr(Ω) ≤ C‖u‖1−s
Lq(Ω)‖∇u‖s,

see, [11, 24]. Notice that with q = 2 and r = 4, Gagliardo−Nirenberg inequality implies

L2(0, T ;X) ∩ L∞(0, T ;Y ) ⊂ L4(Ω × (0, T )), (2.1)

where X ⊂ H1(Ω) and Y ⊂ L2(Ω).
Young’s inequality: For any a, b ≥ 0 and ε > 0, and q, r > 1

ab ≤ ε

q
aq +

ε−
r
q

r
br, with

1
q

+
1
r

= 1.

2.2. Governing equations and weak formulation

In this section, we present the governing equations and study their well-posedness. The equations for the
doubly diffusive convection with Soret effect in a binary mixture may be written, employing a Boussinesq
approximation in the body force term in the momentum equation, as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu − PrΔu + u · ∇u + ∇p = Pr2Grθ(θ +NrS)i3,

∇ · u = 0,

∂tθ + u · ∇θ −Δθ = f1,

∂tS + u · ∇S − 1
Le
ΔS =

α∗
Le
Δθ + f2.

(2.2)

with the boundary conditions
u |Γ = g, θ |Γ = 0, S |Γ = 0 (2.3)

and initial conditions

u(x, 0) = u0(x), θ(x, 0) = θ0(x), S(x, 0) = S0(x) in Ω, (2.4)
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where u is the velocity, θ the temperature, S the concentration and p the pressure. The non-dimensional
parameters Pr, Le, Grθ and GrS denote the Prandtl number, the Lewis number, the thermal Grashof number
and the species Grashof number, respectively. The ratio of species buoyancy to thermal buoyancy Nr is defined
by Nr = GrS

Grθ
. In (2.2)4 the first term on the right side corresponds to Soret effect. The cases α∗ > 0 and α∗ < 0

corresponds to positive and negative Soret effect, respectively. The Soret effects can have significant implications
on convection in liquid mixtures, for example semi-conductor crystal growth [19]. Therefore the Dufour effect
has been neglected here in comparison to Soret effect as is common for flows in liquid mixture.

Throughout this paper, we make the following assumption about the data and spatial domain.

Assumption (A). We assume throughout that the domain Ω ⊂ R
2 is bounded with Lipschitzian boundary Γ .

Moreover, the data satisfy u0 ∈ H, θ0, S0 ∈ L2(Ω), f1, f2 ∈ L2(0, T ;H−1(Ω)).
We define the weak solutions of the doubly diffusive convection model with Dirichlet boundary conditions as

follows.

Definition 2.1. Given g ∈ WΣ
1 , a triple (u, θ, S) ∈ W(0, T ) is said to be a weak solution of (2.2), (2.3) and

(2.4) if ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂tu,v) + Pr(∇u,∇v) + (u · ∇u,v) = (Pr2Grθ(θ +NrS)i3,v),

(∂tθ, φ) + (∇θ,∇φ) + (u · ∇θ, φ) = (f1, φ),

(∂tS, ψ) +
1
Le

(∇S,∇ψ) + (u · ∇S, ψ) =
α∗
Le

(∇θ,∇ψ) + (f2, ψ),
(2.5)

u |Γ = g, θ |Γ = 0, S |Γ = 0

and

u(x, 0) = u0(x), θ(x, 0) = θ0(x) and S(x, 0) = S0(x),

∀(v, φ, ψ) ∈ V × (H1
0 (Ω))2, for a.e. t ∈ (0, T ].

Before we define the penalized boundary value problem, we observe that by integration by parts and
H1/2(Γ ) ↪→ L3(Γ ) [1], the following identity holds for u,v,w ∈ H1(Ω) with ∇ · u = 0:

((u · ∇)v,w) = −(u · ∇w,v) + (v,w(u · n))Γ .

If we define a tri-linear form c(·, ·, ·) as

c(u,w,v) :=
1
2

[((u · ∇)w,v) − ((u · ∇)v,w)] = (u · ∇w,v) − 1
2
(v,w(u · n))Γ

for all u,v,w ∈ H1(Ω), it is clear that c(u,v,v) = 0. Moreover, for u,v ∈ H1(Ω), w ∈ H1
0(Ω) with ∇ · u = 0,

c(u,v,w) = ((u · ∇)w,v) = −((u · ∇)v,w).

Motivated by the above discussion we define the penalized boundary conditions for the velocity u as

−pn + Pr
∂u
∂n

− 1
2
(u · n)u +

1
ε
u =

1
ε
g on Γ. (2.6)
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We now define the the weak solution to the penalized boundary value problem (2.2), (2.4) and (2.6) as follows:

Definition 2.2. Given g ∈ L2(L2(Γ )), a triple (u, θ, S) ∈ W(0, T ) is said to be a weak solution of (2.2), (2.4)
and (2.6) if ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tu,v) + Pr(∇u,∇v) + c(u,u,v) +
1
ε
(u,v)Γ = (Pr2Grθ(θ +NrS)i3,v)

+
1
ε
(g,v)Γ ,

(∂tθ, φ) + (∇θ,∇φ) + (u · ∇θ, φ) = (f1, φ),

(∂tS, ψ) +
1
Le

(∇S,∇ψ) + (u · ∇S, ψ) =
α∗
Le

(∇θ,∇ψ) + (f2, ψ),

(2.7)

and
u(x, 0) = u0(x), θ(x, 0) = θ0(x) and S(x, 0) = S0(x),

for all (v, φ, ψ) ∈ V × (H1
0 (Ω))2.

Lemma 2.3. Assume ε ∈ (0, 1
Pr ), g ∈ L2(0, T ;L2(Γ )). Then, there exists a unique solution (u, θ, S) ∈ W(0, T )

satisfying (2.7) and

sup
t∈[0,T ]

‖θ‖2 + ‖θ‖2
L2(H1

0 (Ω)) ≤M1, sup
t∈[0,T ]

‖S‖2 +
1
Le

‖S‖2
L2(H1

0 (Ω)) ≤M2,

and
sup

t∈[0,T ]

‖u‖2 + Pr‖∇u‖2
L2(H) +

1
2ε

‖u‖2
L2(L2(Γ )) ≤M3 +

2
ε
‖g‖2

L2(L2(Γ ))

where M1 := ‖θ0‖2+‖f1‖2
L2(H−1(Ω)), M2 := ‖S0‖2+2Le‖f2‖2

L2(H−1)+
2α2

∗
Le M1 and M3 := Pr3Gr2

λ [M1+N2
rM2]+

‖u0‖2.

Proof. We employ standard Galerkin method to prove the existence of solutions. Let {(ek(x), ak(x))}∞k=1 be
an orthogonal basis of V ×H1

0 (Ω) such that {(ek(x), ak(x))}∞k=1 is orthonormal in L2(Ω) × L2(Ω). For each
m = 1, 2, . . ., we set Vm := span{ei}m

i=1 × (span{ai}m
i=1)

2 and let um =
∑m

k=1 c
(m)
k ek, θm =

∑m
k=1 d

(m)
k ak and

Sm =
∑m

k=1 r
(m)
k ak be a solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tum, ek) + Pr(∇um,∇ek) + c(um,um, ek) +
1
ε
(um, ek)Γ

= (Pr2Grθ(θm +NrSm)i3, ek) +
1
ε
(g, ek)Γ ,

(∂tθm, ak) + (∇θm,∇ak) + (um · ∇θm, ak) = (f1, ak),

(∂tSm, ak) +
1
Le

(∇Sm,∇ak) + (um · ∇Sm, ak) = α∗
Le (∇θm,∇ak) + (f2, ak),

(2.8)

um(0) = u0m, θm(0) = θ0m and Sm(0) = S0m, k = 1, . . . ,m,

where (u0m, θ0m, S0m) is the L2 orthogonal projection of (u0, θ0, S0) onto the space Vm. Since (2.8) is an initial
value problem for nonlinear ODEs, existence of unique local solutions in some neighborhood [0, tm), for some
tm > 0, follows by Picard–Lindelöf theorem. The a priori estimates we prove later in L∞(L2(Ω))-norm show
that continuation of solutions beyond tm follows. We will employ energy methods to derive a priori estimates.
We first multiply (2.8)1 by c(m)

k , (2.8)2 by d(m)
k and (2.8)3 by r(m)

k , and add these equations for k = 1, . . . ,m.
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Using the skew-symmetry of the trilinear forms, we get⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

d
dt

‖um‖2 + Pr‖∇um‖2 +
1
ε
‖um‖2

0,Γ = (Pr2Grθ(θm +NrSm)i3,um) +
1
ε
(g,um)Γ ,

1
2

d
dt

‖θm‖2 + ‖∇θm‖2 = (f1, θm),

1
2

d
dt

‖Sm‖2 +
1
Le

‖∇Sm‖2 =
α∗
Le

(∇θm,∇Sm) + (f2, Sm).

(2.9)

From the equation (2.9)2, we readily obtain the a priori estimate

sup
t∈[0,T ]

‖θm(t)‖2 + ‖θm‖2
L2(H1

0 (Ω)) ≤ ‖θ0‖2 + ‖f1‖2
L2(H−1(Ω)) =: M1. (2.10)

From (2.9)3, we obtain
d
dt

‖Sm‖2 +
1
Le

‖∇Sm‖2 ≤ 2α∗
Le

‖∇θm‖2 + 2Le‖f2‖2
−1.

Integrating this with respect time and using the fact that θm remains bounded in a bounded set of
L2(0, T ;H1

0 (Ω)), we obtain

sup
t∈[0,T ]

‖Sm(t)‖2 +
1
Le

‖Sm‖2
L2(H1

0 (Ω)) ≤ ‖S0‖2 + 2Le‖f2‖L2(H−1) +
2α∗
Le

M1 =: M2. (2.11)

Let us now turn to the a priori estimate for um. First we note that the right hand side of (2.9)1 can be majorized
using Young’s inequality as follows

(Pr2Grθ(θm +NrSm)i3,um) +
1
ε
(g,um)Γ ≤ Pr3Gr2

2λ
(‖θm‖2 +N2

r ‖Sm‖2) +
λPr

2
‖um‖2

+
1
ε
‖g‖2

0,Γ +
1
4ε

‖um‖2
0,Γ .

Moreover, by the assumption that ε ∈ (0, 1
Pr ) and Poincaré−Friedrich’s inequality, we have

Pr‖∇um‖2 +
1
ε
‖um‖2

0,Γ ≥ Pr

2
‖∇um‖2 +

1
2ε

‖um‖2
0,Γ +

λPr

2
‖um‖2.

Employing these in (2.9)1 we obtain

1
2

d
dt

‖um‖2 +
Pr

2
‖∇um‖2 +

1
4ε

‖um‖2
0,Γ ≤ Pr3Gr2

2λ
(‖θm‖2 +N2

r ‖Sm‖2) +
1
ε
‖g‖2

0,Γ .

Integrating this with respect to time and using (2.10)–(2.11), we obtain

sup
t∈[0,T ]

‖um‖2 + Pr‖∇um‖2
L2(H) +

1
2ε

‖um‖2
L2(L2(Γ )) ≤M3 +

2
ε
‖g‖2

L2(L2(Γ )). (2.12)

This last a priori bound can be used to obtain bounds for ∂tum. In fact, for v ∈ V, c(um,um,v) = (um ·∇v,um)
and thus by (A.6),

sup
v∈V

|(∂tum,v)|
‖v‖1

≤ Pr‖∇um‖ +
√

2‖um‖‖∇um‖ + Pr2Grθ(‖θm‖ +Nr‖Sm‖).

Therefore ‖∂tum‖L2(V∗) is bounded. Similarly, for v ∈ V, by (A-6),

sup
v∈V

|(∂tum,v)|
‖v‖1

≤ Pr‖∇um‖ + C‖um‖2
1 + Pr2Grθ(‖θm‖ +Nr‖Sm‖) +

1
ε
‖gm‖L2(Γ ) +

1
ε
‖um‖L2(Γ )
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and thus ‖∂tum‖L1(V∗) is bounded due to the bounds in (2.10)−(2.12). Similarly, we can show ‖∂tθm‖L2(H−1(Ω)

and ‖∂tSm‖L2(H−1(Ω) are bounded as well.
The a priori estimates we obtained so far allows us to extract subsequences again denoted by

{(um, θm, Sm)}∞n=1 such that

um → u

⎧⎨
⎩

weakly in L2(0, T ;V)
weak star in L∞(0, T ;H)

strongly in L2(0, T ;H),
and (θm, Sm) → (θ, S)

⎧⎨
⎩

weakly in L2(0, T ;H1
0(Ω))

weak star in L∞(0, T ;L2(Ω))
strongly in L2(0, T ;L2(Ω)).

Here the strong convergence follows by the Aubin–Simon compactness Lemma ([27], Cor. 4, p. 85), as we have
the imbeddings V ↪→↪→ H ↪→ V∗ and H1

0 (Ω) ↪→↪→ L2(Ω) ↪→ H−1(Ω).
Moreover,

∂tum → ∂tu weakly in L2(0, T ; V∗), (∂tθm, ∂tSm) → (∂tθ, ∂tS) weakly in L2(0, T ;H−1(Ω))

and um|Γ → u|Γ weakly in L2(L2(Γ )). When taking limit in (2.8), it is convenient for us to use the trilinear
form c(·, ·, ·) involving boundary term, i.e.,

c(u,u,v) = −(u · ∇v,u) +
1
2
(v,u(u · n))Γ ,

The presence of nonlinear boundary term requires us to also show that um ·n → u ·n in L2(0, T ;L2(Γ )) strongly.
In order to prove such a convergence, we first recall the integration by parts formula ([12], Eq. (I.2.17), p. 28).

〈um · n − u · n,v〉Γ =
∫

Ω

v∇ · (um − u) dΩ +
∫

Ω

(um − u) · ∇v dΩ ∀v ∈ H1(Ω). (2.13)

By solving the variational problem⎧⎪⎨
⎪⎩

(∂tv, φ) + (∇v,∇φ) = 0 ∀φ ∈ H1
0 (Ω)

v|Γ = u · n− um · n
v(x, 0) = 0 in Ω

(2.14)

we obtain a unique solution v ∈ L2(0, T ;H1(Ω)) such that

‖∇v‖L2(L2(Ω)) ≤ C‖u · n− um · n‖W Σ
1
,

see Lemma 3.4. Therefore by taking v in (2.13) to be the unique solution of this variational problem (2.14) and
using the fact that ∇ · um = ∇ · u = 0 yields

‖um · n − u · n‖L2(L2(Γ )) ≤ ‖um − u‖L2(L2(Ω))‖um · n− u · n‖W Σ
1
. (2.15)

The weak convergence um → u in W1 and trace theorem imply that um · n → u · n weakly in WΣ
1 and thus

‖um · n − u · n‖W Σ
1

is bounded. Therefore the required strong convergence follows from (2.15).
Let ψi(t), i = 1, 2, 3, be a continuously differentiable function on [0, T ] with ψi(T ) = 0. We multiply (2.8)i

by ψi, i = 1, 2, 3 and integrate with respect to time. Further, we integrate by parts in the time derivative term
to move the derivative onto ψi. Now we can take limit in (2.8) by using standard techniques and show (u, θ, S)
is indeed a solution of (2.7). The a priori estimates in the lemma follow by taking the limit on the a priori
estimates (2.10)−(2.12) and using the weak lower semi-continuity of the norms.

Before we prove the uniqueness of the solutions, let us introduce the continuous linear forms
B1(u,v), B2(u,v), B(u,v) ∈ V∗ defined by

〈B1(u,v),w〉V∗ ,V = (u · ∇v,w), 〈B2(u,v),w〉V∗,V = (u · ∇w,v)
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and
〈B(u,v),w〉V∗ ,V = c(u,w,v) ∀u,v,w ∈ V.

Notice that by (A-6), B1(u,u) ∈ L4/3(0, T ;L4/3(Ω)) and B2(u,u) ∈ L2(0, T ;V∗) and thus ut ∈
L2(0, T ;V∗) + L4/3(0, T ;L4/3(Ω)). Moreover, by a priori bounds and (2.1), u ∈ L2(0, T ;V) ∩ L4(0, T ;L4(Ω)).
Therefore we have d

dt‖u‖2 = 2(u′(t),u(t)) and similar identity holds for θ and S as well.
Assume (u, θ, S) and (u1, θ1, S1) be two solutions of (2.7) and let (w, θ̂, Ŝ) be the difference between them.

Then the difference satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∂tw,v) + Pr(∇w,∇v) + c(w,u,v) + c(u,w,v) +
1
ε
(w,v)Γ = (Pr2Grθ(θ̂ +NrŜ)i3,v),

(∂tθ̂, φ) + (∇θ̂,∇φ) + (w · ∇θ, φ) + (u · ∇θ̂, φ) = 0,

(∂tŜ, ψ) +
1
Le

(∇Ŝ,∇ψ) + (w · ∇S, ψ) + (u · ∇Ŝ, ψ) =
α∗
Le

(∇θ̂,∇ψ),

(2.16)

and
w(x, 0) = 0, θ̂(x, 0) = 0 and Ŝ(x, 0) = 0,

∀(v, φ, ψ) ∈ V × (H1
0 (Ω))2 , for a.e. t ∈ (0, T ].

Setting φ = θ̂ and ψ = Ŝ in (2.16)2 and (2.16)3, respectively, using the skew-symmetry of the tri-linear forms
and estimating the tri-linear terms (w · ∇θ, θ̂) and (w · ∇S, Ŝ) using (A-1) yields

⎧⎪⎨
⎪⎩

1
2

d
dt

‖θ̂‖2 +
1
2
‖∇θ̂‖2 ≤ Pr

8Λ
‖∇w‖2 + C‖w‖2‖θ‖4

L4(Ω)

1
2

d
dt

‖Ŝ‖2 +
1

2Le
‖∇Ŝ‖2 ≤ Pr

8
‖∇w‖2 + C‖w‖2‖S‖4

L4(Ω) +
α∗
Le

‖∇θ̂‖‖∇Ŝ‖.
(2.17)

Multiplying (2.17)1 by Λ and adding the result to (2.17)2 yields

d
dt

(Λ‖θ̂‖2 + ‖Ŝ‖2) + Λ‖∇θ̂‖2 + ‖∇Ŝ‖2 ≤ Pr

4
‖∇w‖2 + C‖w‖2

(
‖θ‖4

L4(Ω) + ‖S‖4
L4(Ω)

)
+

2α∗
Le

‖∇θ̂‖‖∇Ŝ‖.
(2.18)

Let us assume α∗ > 0 without loss of generality and use Young’s inequality to write

−2α∗
Le

‖∇θ̂‖‖∇Ŝ‖ ≥ − α∗
2εLe

‖∇θ̂‖2 − εα∗
2Le

‖∇Ŝ‖2

for some ε > 0. Therefore

Λ‖∇θ̂‖2 +
1
Le

‖∇Ŝ‖2 − 2α∗
Le

‖∇θ̂‖‖∇Ŝ‖ ≥
(
Λ− α∗

2εLe

)
‖∇θ̂‖2 +

(
1
Le

− α∗ε
2Le

)
‖∇Ŝ‖2.

Now we can choose ε such that

Λ‖∇θ̂‖2 +
1
Le

‖∇Ŝ‖2 − 2α∗
Le

‖∇θ̂‖‖∇Ŝ‖ ≥ λ1‖∇θ̂‖2 + λ2‖∇Ŝ‖2

for some positive numbers λ1 and λ2. Thus from (2.18), we obtain

d
dt

(Λ‖θ̂‖2 + ‖Ŝ‖2) + λ1‖∇θ̂‖2 + λ2‖∇Ŝ‖2 ≤ Pr

4
‖∇w‖2 + C‖w‖2

(
‖θ‖4

L4(Ω) + ‖S‖4
L4(Ω)

)
. (2.19)
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Similarly setting v = w in (2.16)1 and estimating the term c(w,u,w) using (A-2), we obtain

1
2

d
dt

‖w‖2 +
Pr

2
‖∇w‖2 +

1
2ε

‖w‖2
0,Γ ≤ C(‖∇u‖2 + ‖u‖4

L4(Ω))‖w‖2 + C
(
‖θ̂‖2 + ‖Ŝ‖2

)
. (2.20)

Therefore adding (2.19) and (2.20), we have that

d
dt

‖(w, Λθ̂, Ŝ)‖2 +
Pr

2
‖∇w‖2 + λ1‖∇θ̂‖2 + λ2‖∇Ŝ‖2 +

1
ε
‖w‖2

0,Γ ≤ Ĝ(t)‖(w, Λθ̂, Ŝ)‖2 (2.21)

where Ĝ(t) := C[‖θ‖4
L4(Ω)+‖S‖4

L4(Ω)+‖∇u‖2+‖u‖4
L4(Ω)]. Notice that, by the a priori estimates and (2.1), Ĝ(t) ∈

L1(0, T ) and an application of Gronwall’s lemma to (2.21) yields ‖(w, θ̂, Ŝ)‖ = 0. This proves uniqueness. �

3. Penalized boundary control problem

In this section, we formulate the penalized boundary control problem and prove the convergence of its solutions
to the solutions of Dirichlet control problem as the penalty parameter ε goes to zero.

The optimal boundary control problem we will study is the following: find (u, θ, S,g) such that the cost
functional

J (u,g) =
∫ T

0

Θ(u) dt +
γ

2

∫ T

0

∫
Γ

|g|2 dΓ dt (3.1)

is minimized subject to (2.2), where g is the control field and γ is a positive parameter. In this paper, we
assume the function Θ : H1(Ω) → R

+ appearing in the cost functional is assumed to satisfy the following:

Assumption (B).
(i) Θ(u) is convex and lower-semi continuous and
(ii) c1‖∇u‖2 − c2‖u‖2

0,Γ ≤ Θ(u) ≤ ĉ1‖∇u‖2 + ĉ2‖u‖2
0,Γ for some constants ci, ĉi ∈ R

+, i = 1, 2.

The allowed class of functionals of course includes regulation of velocity gradient, i.e., Θ(u) = δ‖∇u‖2. The
other allowed functionals include regulation of kinetic energy in weighted H1- norm, i.e., Θ(u) = δ1

2 ‖∇u‖2 +
δ2
2 ‖u‖2 and regulation of square of the vorticity, i.e., Θ(u) = δ

2‖∇ × u‖2. The former expression for Θ already
satisfies Assumption (B). The later can also be shown to satisfy Assumption (B), see Lemma 3.3 of [17].

Letting Uad := WΣ
1 and Uε

ad := L2(L2(Γ )) be the admissible control sets for the Dirichlet and penalized
control problems, respectively, we formulate the optimal control problems as follows.

Dirichlet boundary control.
(P) find a control g ∈ Uad such that the cost functional (3.1) is minimized subject to (2.5).

Penalized boundary control.
(Pε) For each ε > 0, find a control gε ∈ Uε

ad such that the cost functional (3.1) is minimized subject to (2.7).
Let Aε

ad and Aad be the set of all admissible states and controls for the control problems (P )ε and (P ),
respectively. That is,

Aε
ad := {(u, θ, S,g) ∈ W(0, T ) × Uε

ad |J (u,g) <∞ and (2.7) is satisfied}

and
Aad := {(u, θ, S,g) ∈ W(0, T )× Uad |J (u,g) <∞ and (2.5) is satisfied}.

Theorem 3.1. Assume ε ∈ (0, 1
Pr ). Then there exists an optimal solution (uε, θε, Sε,gε) ∈ Aε

ad that mini-
mizes (3.1) subject to (2.7).
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Proof. Since it follows from Lemma 2.3 that there exists a solution (uε, θε, Sε,gε) ∈ W(0, T ) × L2(0, T ;L2(Γ ))
such that (2.7) holds, Aε

ad is non empty. Let {(un, θn, Sn,gn)} be a minimizing sequence in Aε
ad, i.e.,

lim
n→∞J (un,gn) = inf {J (u,g) : (u, θ, S,g) ∈ Aε

ad} ,

where (un, θn, Sn) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tun,v) + Pr(∇un,∇v) + c(un,un,v) +
1
ε
(un,v)Γ = (Pr2Grθ(θn +NrSn)i3,v)

+
1
ε
(gn,v)Γ , ∀v ∈ V(Ω)

(∂tθn, φ) + (∇θn,∇φ) + (un · ∇θn, φ) = 0, ∀φ ∈ H1
0 (Ω)

(∂tSn, ψ) +
1
Le

(∇Sn,∇ψ) + (un · ∇Sn, ψ) =
α∗

Le
(∇θ,∇ψ), ∀ψ ∈ H1

0 (Ω).

(3.2)

The boundedness of {J (un,gn)} in R
+ implies that ‖gn‖L2(0,T ;L2(Γ )) ≤ Cg for all n. The a priori estimates in

Lemma 2.3 now allows us to extract subsequences still denoted by {(un, θn, Sn,gn)}, such that

{gn,un, θn, Sn, ∂tθn, ∂tSn,un|Γ }⇀ {g∗,u∗, θ∗, S∗, ∂tθ
∗, ∂tS

∗,u∗|Γ }
weakly in L2(L2(Γ )) × L2(V) × (L2(H1

0 (Ω)))2 × (L2(H−1(Ω))2 × L2(L2(Γ )).

Moreover, as (∂tun, ∂tθn, ∂tSn) is bounded in L1(0, T ;V∗) × L2(0, T ;L2(Ω))2, by Aubin–Simon’s compactness
Lemma ([27], Cor. 4, p. 85), we have

(un, θn, Sn) → (u∗, θ∗, S∗) strongly in L2(0, T ;H)× L2(0, T ;L2(Ω))2.

These convergence relations allow us to pass to the limit in (3.2) to show that (u∗, θ∗, S∗,g∗) satisfies (2.7).
Moreover, from the uniqueness of the weak solutions, we conclude that (u∗, θ∗, S∗,g∗) ∈ Aε

ad. Finally, using the
sequential weak lower semi-continuity of the functional J , we have

J (u∗,g∗) ≤ lim infn→∞ J (un,gn)

= inf{J (u,g) : (u, θ, S,g) ∈ Aε
ad}.

This shows (u∗, θ∗, S∗,g∗) is indeed an optimal solution. �

3.1. Convergence of solutions of penalized control problem

In this section, we will study the convergence of solutions (uε, θε, Sε) of penalized optimal control problem
(P )ε as ε→ 0.

Theorem 3.2. For each ε ∈ (0, 1
Pr ), let (uε, θε, Sε,gε) ∈ W (0, T ) × Uε

ad be a solution to optimal penalized
control problem (P )ε. Then there exists a (û, θ̂, Ŝ, ĝ) ∈ Aad and a subsequence {εk}∞k=1 such that as k → ∞,
uεk

⇀ û in L2(V), (θεk
, Sεk

) ⇀ (θ̂, Ŝ) in L2(H1(Ω))2 and gεk
⇀ ĝ in Uε

ad. Moreover, (uεk
, θεk

, Sεk
) → (û, θ̂, Ŝ)

in L2(H) × L2(L2(Ω))2.

Proof. Let us first obtain some bounds for (uε, θε, Sε,gε) independent of ε. Let (ũε, θ̃ε, S̃ε) be the solution of (2.7)
with g = 0. Then it satisfies⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∂tũε,v) + Pr(∇ũε,∇v) + c(ũε, ũε,v) +
1
ε
(ũε,v)Γ = (Pr2Grθ(θ̃ε +NrS̃ε)i3,v),

(∂tθ̃ε, φ) + (∇θ̃ε,∇φ) + (ũε · ∇θ̃ε, φ) = (f1, φ),

(∂tS̃ε, ψ) +
1
Le

(∇S̃ε,∇ψ) + (ũε · ∇S̃ε, ψ) =
α∗
Le

(∇θ̃ε,∇ψ) + (f2, ψ),

(3.3)
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and
ũε(x, 0) = u0(x), θ̃ε(x, 0) = θ0(x) and S̃ε(x, 0) = S0(x),

for all (v, φ, ψ) ∈ V × (H1
0 (Ω))2. By setting v = ũε and arguing as the proof of Lemma 2.3, we obtain

sup
t∈[0,T ]

‖ũε‖2 + Pr‖∇ũε‖2
L2(H) +

1
2ε

‖ũε‖2
L2(L2(Γ )) ≤M3, (3.4)

where M3 is as defined in Lemma 2.3. Since (ũε, θ̃ε, S̃ε,0) ∈ Aε
ad, we have

J (uε,gε) ≤ J (ũε, 0).

Therefore by Assumption (B) and (3.4), we have

∫ T

0

Θ(uε) dt+
γ

2
‖gε‖2

L2(L2(Γ )) ≤ ĉ1‖∇ũε‖2
L2(H) + ĉ2‖ũε‖2

L2(L2(Γ )) =
M3

Pr
(ĉ1 + 2ĉ2)

which yields ∫ T

0

Θ(uε) dt < M4 and ‖gε‖2
L2(L2(Γ )) <

2M4

γ
,

where M4 := M3
Pr (ĉ1 + 2ĉ2). Moreover, by Assumption (B) and a priori estimates in Lemma 2.3 yield

c1‖∇uε‖2
L2(H) ≤M4 + c2‖uε‖2

L2(L2(Γ )) ≤M4 + c2

[
2M3

Pr
+

8M4

γ

]
,

which shows ‖∇uε‖L2(H) is bounded independent of ε. By Poincaré−Friedrichs’ inequality, we also have a
bound on ‖uε‖L2(H) independent of ε. On the other hand by the a priori estimates in Lemma 2.3, we have that
‖θε‖L∞(L2(Ω))∩L2(H1

0 (Ω)) and ‖Sε‖L∞(L2(Ω))∩L2(H1
0 (Ω)) are bounded independent of ε. Now notice that for each

(v, φ, ψ) ∈ V × (H1
0 (Ω))2 equation (2.7) reduces to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂tuε,v) + Pr(∇uε,∇v) + ((uε · ∇)uε,v) = (Pr2Grθ(θε +NrSε)i3,v),

(∂tθε, φ) + (∇θε,∇φ) + ((uε · ∇)θε, φ) = (f1, φ),

(∂tSε, ψ) +
1
Le

(∇Sε,∇ψ) + ((uε · ∇)Sε, ψ) =
α∗
Le

(∇θε,∇ψ) + (f2, ψ),
(3.5)

and
uε(x, 0) = u0(x), θε(x, 0) = θ0(x) and Sε(x, 0) = S0(x).

From (3.5)1, we easily have that

sup
v∈V

|(∂tuε,v)|
‖v‖1

≤ Pr‖∇uε‖ +
√

2‖uε‖‖∇uε‖ + Pr2Grθ(‖θε‖ +Nr‖Sε‖).

Thus
‖∂tuε‖L1(V∗) ≤ C[‖∇uε‖L2(H) + ‖uε‖L2(H) + ‖θε‖L∞(L2(Ω)) + ‖Sε‖L∞(L2(Ω))].

It now follows from the previously obtained bounds (ε independent) that ‖∂tuε‖L1(V∗) is bounded independent
of ε. Similarly, we can show that ‖∂tθε‖L1(H−1) and ‖∂tSε‖L1(H−1) are also bounded independent of ε.

These a priori bounds (ε independent) allow us to extract a subsequence {uεk
, θεk

, Sεk
)} such that as k → ∞,

εk → 0, uεk
⇀ û in L2(V), θεk

⇀ θ̂ in L2(H1(Ω)), Sεk
⇀ Ŝ in L2(H1(Ω)).
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Moreover, by Aubin–Simon compactness Lemma ([27], Cor. 4, p. 85), we have the following strong convergence

uεk
→ û in L2(H), θεk

→ θ̂ in L2(L2(Ω)), Sεk
→ Ŝ in L2(L2(Ω)).

Let ψi(t), i = 1, 2, 3, be a continuously differentiable function on [0, T ] with ψi(T ) = 0. We multiply (3.5)i

by ψi, i = 1, 2, 3, integrate with respect to time and then integrate by parts in the time derivative term to move
the derivative onto ψi. Now setting ε = εk and letting k → ∞ yields⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂tû,v) + Pr(∇û,∇v) + ((û · ∇)û,v) = (Pr2Grθ(θ̂ +NrŜ)i3,v),

(∂tθ̂, φ) + (∇θ̂,∇φ) + ((û · ∇)θ̂, φ) = (f1, φ),

(∂tŜ, ψ) +
1
Le

(∇Ŝ,∇ψ) + ((û · ∇)Ŝ, ψ) =
α∗
Le

(∇θ̂,∇ψ) + (f2, ψ),

(3.6)

and
û(x, 0) = u0(x), θ̂(x, 0) = θ0(x) and Ŝ(x, 0) = S0(x),

Let ψ1(t) be a infinitely continuously differentiable function with compact support in [0, T ]. We multiply (2.7)1
by ψ1 and integrate with respect to time. Further, we integrate by parts in the time derivative term to move
the derivative onto ψ1. Now multiplying the resulting equation with ε = εk by εk and letting k → ∞ yields

∫ T

0

∫
Γ

û · vψ1 ds dt =
∫ T

0

∫
Γ

ĝ · vψ1 ds dt ∀v ∈ H1(Ω)

which implies û|Γ = ĝ. This proves that (û, θ̂, Ŝ, ĝ) ∈ Aad. �

We would like to show that the limit (û, θ̂, Ŝ, ĝ) ∈ Aad obtained in Theorem 3.2 is indeed an optimal solution
to the Dirichlet control problem. That is we would like to show that

J (û, ĝ) ≤ J (ǔ, ǧ) ∀(ǔ, θ̌, Š, ǧ) ∈ Aad. (3.7)

In the Lemma below, we prove the sub-optimality of the limit obtained in Theorem 3.2, in the sense that we
have optimality within the class of functions in Aad that satisfy the additional regularity assumption

−p̌n + Pr
∂ǔ
∂n

− 1
2
(ǔ · n)ǔ ∈ L2(L2(Γ )). (3.8)

Lemma 3.3. Assume (û, θ̂, Ŝ, ĝ) ∈ Aad is the limit defined in Theorem 3.2. Then

J (û, ĝ) ≤ J (ǔ, ǧ) ∀(ǔ, θ̌, Š, ǧ) ∈ Aad

satisfying (3.8).

Proof. As a proof of this theorem can be established using arguments used in the proof of a similar result in [17],
we will only provide a sketch. Let (ǔ, θ̌, Š, ǧ) be an arbitrary element in Aad satisfying (3.8). Defining

ǧε = ǧ + ε

(
−p̌n + Pr

∂ǔ
∂n

)
− ε

2
(ǔ · n) ǔ,

we can show that (ǔ, θ̌, Š, ǧε) ∈ Aε
ad and thus

J (ǔ, ǧε) ≥ J (uε,gε), (3.9)
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where (uε, θε, Sε,gε) is an optimal element of (P )ε. Expanding the left-side of (3.9), we obtain

J (ǔ, ǧ) ≥ J (uε,gε) − ε2γ

2

∫ T

0

∫
Γ

| − p̌n + Pr
∂ǔ
∂n

− 1
2
(ǔ · n)ǔ|2 dΓ dt

− εγ

∫ T

0

∫
Γ

ǧ · (−p̌n + Pr
∂ǔ
∂n

− 1
2
(ǔ · n)ǔ) dΓ dt.

(3.10)

Putting ε = εk in (3.10) and taking k → ∞ yields

J (ǔ, ǧ) ≥ lim inf
k→∞

J (uεk
,gεk

) ≥ J (û, ĝ). �

3.2. Optimality of the limit

In this section, we will show that the limit (û, θ̂, Ŝ) defined in Theorem 3.2 is indeed a solution of the optimal
Dirichlet control problem (P). We begin by deriving some continuous dependence results for the solutions
of (2.5).

Lemma 3.4. Let g ∈ WΣ
1 with ηg(0) ∈ H. Then there exist a unique solution η ∈ W1 to the non-homogeneous

Stokes problem
(ηt,v) + Pr(∇η,∇v) = 0 ∀v ∈ V,

η|Γ = g

η(x, 0) = 0 in Ω.

Moreover, there is a constant C0 depending only on Ω such that

‖η‖L∞(0,T ;H) + ‖η‖W1 ≤ C0‖g‖W Σ
1
, (3.11)

where H is the closure of V in L2-norm and ηg(0) is as defined in Section 2.1.

Proof. See for e.g. [16]. �

Lemma 3.5. Let g ∈ WΣ
1 and u0 ∈ H with u0 − ug(0) ∈ H. Then there exists a unique solution (u, θ, S) ∈

W (0, T ) to the problem in (2.5). Moreover, there is a constant Ĉ0 such that

sup
t∈[0,T ]

‖(u, θ, S)‖2 +
∫ T

0

‖∇(u, θ, S)‖2 dt ≤ Ĉ0

[
‖g‖2

W Σ
1

+ ‖(f1, f2)‖2
L2(H−1(Ω)) + ‖(u0, θ0, S0)‖2

]
.

Proof. The proof is very similar to the one given for Lemma 2.3. Of course, here we have to use Stokes extension
defined in Lemma 3.4 first to reformulate the non-homogeneous problem (2.5) into one with homogeneous
boundary conditions. Such a reformulation can be carried out, for e.g., as illustrated in the proof of the next
lemma. Therefore the proof is omitted. �

Lemma 3.6. Suppose (u1, θ1, S1,g1), (u2, θ2, S2,g2) ∈ W(0, T ) × Uad are solutions of (2.5) with the initial
conditions (u01, θ01, S01) and (u02, θ02, S02), respectively. Let e(t) = (eu(t), eθ(t), eS(t)), where eu := u1 − u2,
eθ := θ1 − θ2 and eS := S1 − S2. Then

sup
t∈[0,T ]

‖e‖2 +
∫ T

0

‖∇e‖2 dt ≤ C ‖e(0)‖2 + ‖g1 − g2‖2
W Σ

1
.
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Proof. Let η be the Stokes extension defined in Lemma 3.4 such that η|Γ = g1 − g2. Defining ζ = u1 −u2 −η,
χ = θ1 − θ2 and ξ = S1 − S2, we see that (ζ, χ, ξ) ∈ L2(0, T ; V)× [L2(0, T ;H−1(Ω))]2 and σ ∈ L2(0, T ;L2

0(Ω))
satisfy ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tζ − PrΔζ + ζ · ∇u1 + u2 · ∇ζ + ∇σ + (η · ∇)u1 + (u2 · ∇)η

= Pr2Grθ(χ+Nrξ)i3 in Ω,

∇ · ζ = 0 in Ω,

∂tχ−Δχ + (u1 · ∇)χ+ (ζ · ∇)θ2 + (η · ∇)θ2 = 0 in Ω,

∂tξ − 1
Le
Δξ + (u1 · ∇)ξ + (ζ · ∇)S2 + (η · ∇)S2 =

α∗
Le
Δχ in Ω,

(3.12)

ζ = χ = ξ = 0 on Γ,

and
ζ(x, 0) = u01 − u02, χ(x, 0) = θ01 − θ02 and ξ(x, 0) = S01 − S02 in Ω.

Taking inner product of (3.12)1, (3.12)2 and (3.12)3 with ζ ∈ V, χ ∈ H1
0 (Ω) and ξ ∈ H1

0 (Ω), respectively,
and using skew-symmetry of the nonlinear terms, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

d
dt

‖ζ‖2 +
5Pr
6

‖∇ζ‖2 ≤ Pr2Grθ
2

[‖χ‖2 +Nr‖ξ‖2] + Pr2Grθ‖ζ‖2

+ C‖ζ‖2(‖∇u1‖2 + ‖u2‖4
L4(Ω)) +

1
2
‖∇η‖2

+ C‖η‖2‖u1‖4
L4(Ω),

1
2

d
dt

‖χ‖2 +
1
2
‖∇χ‖2 ≤ Pr

6Λ
‖∇ζ‖2 +

1
4Λ

‖∇η‖2 + C(‖η‖2 + ‖ζ‖2)‖θ2‖4
L4(Ω),

1
2

d
dt

‖ξ‖2 +
1

2Le
‖∇ξ‖2 ≤ Pr

6
‖∇ζ‖2 +

1
4
‖∇η‖2 + C‖S2‖4

L4(Ω)((‖η‖2 + ‖ζ‖2)

+
α∗
Le

‖∇χ‖‖∇ξ‖.

(3.13)

In deriving (3.13), we estimated the trilinear terms ((η · ∇)u1, ζ), ((ζ · ∇)u1, ζ) and (u2 · ∇η, ζ) using (A-1),
(A-4) and (A-5). Moreover, the terms (ζ · ∇θ2, ξ), (η · ∇θ2, ξ), (ζ · ∇S2, χ) and (η · ∇S2, χ) were estimated
using (A-1).

Multiplying (3.13)2 by Λ and adding it to (3.13)3, and choosing λ1 and λ2 as we did in the proof of Lemma 2.3
yields

1
2

d
dt

(Λ‖χ‖2 + ‖ξ‖2) +
λ1

2
‖∇χ‖2 +

λ2

2
‖∇ξ‖2 ≤ Pr

3
‖∇ζ‖2 +

1
2
‖∇η‖2

+ C(‖η‖2 + ‖ζ‖2)
(
‖θ2‖4

L4(Ω) + ‖S2‖4
L4(Ω)

)
.

(3.14)

Adding (3.14) and (3.13)1, we obtain

d
dt

‖(ζ, Λχ, ξ)‖2 + Pr‖∇ζ‖2 + λ1‖∇χ‖2 + λ2‖∇ξ‖2 ≤ G1(t)‖(ζ, Λχ, ξ)‖2 +G2(t), (3.15)

where
G1(t) := C1

[
1 + ‖∇u1‖2 + ‖(u2, θ2, S2)‖4

L4(Ω) + ‖u1‖4
L4(Ω)

]
G2(t) := C2

[
‖∇η‖2 + ‖η‖2

(
‖u1‖4

L4(Ω) + ‖θ2‖4
L4(Ω) + ‖S2‖4

L4(Ω)

)]
.

Notice that by Lemmas 3.4–3.5 and (2.1), Gi(t) ∈ L1(0, T ), i = 1, 2. Therefore desired estimate now follows by
Gronwall lemma applied to (3.15). �
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Theorem 3.7. Let (û, θ̂, Ŝ) be the limit defined in Theorem 3.2. Then (û, θ̂, Ŝ) is a solution of the optimal
Dirichlet control problem (P ).

Proof. Let (ǔ, θ̌, Š, ǧ) ∈ Aad be an arbitrary element. We would like to show J (ǔ, ǧ) ≥ J (û, ĝ). Using the
denseness of the space C∞((0, T )×Γ )∩WΣ

1 in WΣ
1 , we may choose a sequence {ǧi}∞i=1 ⊂ C∞((0, T )×Γ )∩WΣ

1

such that
‖ǧi − ǧ‖W Σ

1
→ 0 as i→ ∞. (3.16)

Similarly, using the denseness of the space C∞(Ω)∩ [H× (L2(Ω))2] in H× (L2(Ω))2, we may choose a sequence
{(u0i, θ0i, S0i)}∞i=1 ⊂ C∞(Ω) ∩ [H× (L2(Ω))2] such that

‖(u0i, θ0i, S0i) − (u0, θ0, S0)‖ → 0 as i→ ∞. (3.17)

Now let (ǔi, θ̌i, Ši) be the solution to (2.5) with boundary conditions ǔi|Γ = ǧi θ̌i|Γ = 0 and Ši|Γ = 0, and
initial conditions ǔi(x, 0) = u0i, θ̌i(x, 0) = θ0i and Ši(x, 0) = S0i. Using Lemma 3.6, (3.16) and (3.17), we have
that

‖(ǔi, θ̌i, Ši) − (ǔ, θ̌, Š)‖W (0,T ) → 0 as i→ ∞.

The regularity of solutions yields that (ǔi, θ̌i, Ši) ∈ L2(H3/2(Ω)) × (L2(H3/2(Ω)))2 and pressure p̌i ∈
L2(H1/2(Ω) ∩ L2

0(Ω)). Thus

−p̌in + Pr
∂ǔi

∂n
− 1

2
(ǔi · n)ǔi ∈ L2(L2(Γ )).

By Lemma 3.3 we obtain J (ǔi, ǧi) ≥ J (û, ĝ). Taking limit as i→ ∞, we obtain J (ǔ, ǧ) = limi→∞ J (ǔi, ǧi) ≥
J (û, ĝ). �

4. First order necessary conditions of optimality

In this section, we will characterize the optimal controls of (P )ε by giving the necessary conditions of opti-
mality. We begin by verifying the Gâteaux differentiability of the state (u, θ, S) with respect to the control g.
The Gâteaux derivative plays an important role in the characterization of optimality condition and are useful
in determining the sensitivity of the system at a particular point (u, θ, S) in a particular direction h. First we
prove the control-to-state mapping from Uε

ad to W(0, T ) is continuous.

Lemma 4.1. Assume ε ∈ (0, 1
Pr ). The control-to-state mapping from Uε

ad to W(0, T ), defined by g �→
(u(g), θ(g), S(g)), where (u, θ, S) is the solution to (2.7), satisfy

lim
λ→0

‖(u(g + λh), θ(g + λh), S(g + λh)) − (u(g), θ(g), S(g))‖W (0,T ) → 0, (4.1)

where h ∈ Uε
ad is arbitrarily fixed.

Proof. Setting (ũ, θ̃, S̃) := (u(g + λh), θ(g + λh), S(g + λh)) − (u(g), θ(g), S(g)), notice that (ũ, θ̃, S̃) satisfies
the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∂tũ,v) + Pr(∇ũ,∇v) + c(ũ,u,v) + c(u(g + λh), ũ,v) + 1
ε (ũ,v)Γ = (Pr2Grθ(θ̃ +NrS̃)i3,v) + λ

ε (h,v)Γ ,

(∂tθ̃, φ) + (∇θ̃,∇φ) + (ũ · ∇θ, φ) + (u(g + λh) · ∇θ̃, φ) = 0,

(∂tS̃, ψ) +
1
Le

(∇S̃,∇ψ) + (ũ · ∇S, ψ) + (u(g + λh) · ∇S̃, ψ) =
α∗
Le

(∇θ̃,∇ψ),

(4.2)
and

ũ(x, 0) = 0, θ̃(x, 0) = 0 and S̃(x, 0) = 0,
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for all (v, φ, ψ) ∈ V× (H1
0 (Ω))2. Therefore we can use energy arguments as in the uniqueness part of the proof

of Lemma 2.3 and obtain

1
2

d
dt

‖(ũ, Λθ̃, S̃)‖2 +
Pr

4
‖∇ũ‖2 + λ1‖∇θ̃‖2 + λ2‖∇S̃‖2 +

1
2ε

‖ũ‖2
0,Γ

≤ ‖(ũ, Λθ̃, S̃)‖2G3(t) +
λ2

ε
‖h‖2

0,Γ ,

(4.3)

where G3(t) := C[1 + ‖(u, θ, S)‖4
L4(Ω) + ‖∇u‖2] and G3(t) ∈ L1(0, T ), by (2.1) and Lemma 2.3. Thus by

Gronwall’s inequality, we obtain

‖(ũ, Λθ̃, S̃)‖L∞(H×(L2(Ω))2)∩L2(V×(H1
0 (Ω))2) ≤

Cλ√
ε
‖h‖L2(L2(Γ )). (4.4)

Moreover, we can show from (4.2) using the estimates (4.4) and supremum arguments that

‖(∂tũ, ∂tθ̃, ∂tS̃)‖L2(V∗×(H−1(Ω))2) ≤ C
λ√
ε
‖h‖L2(L2(Γ )). �

Lemma 4.2. Assume ε ∈ (0, 1
Pr ). The control-to-state mapping from Uε

ad to W(0, T ), defined by g �→
(u(g), θ(g), S(g)), where (u, θ, S) is the solution to (2.7), has a Gâteaux derivative D(u(g), θ(g), S(g)) · h
in every direction h ∈ Uε

ad. Moreover, (u′, θ′, S′) = D(u(g), θ(g), S(g)) · h is the weak solution of the following
problem.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tu′,v) + Pr(∇u′,∇v) + c(u′,u,v) + c(u,u′,v) +
1
ε
(u′,v)Γ = (Pr2Grθ(θ′ +NrS

′)i3,v)

+
1
ε
(h,v)Γ ,

(∂tθ
′, φ) + (∇θ′,∇φ) + (u′ · ∇θ, φ) + (u · ∇θ′, φ) = 0,

(∂tS
′, ψ) +

1
Le

(∇S′,∇ψ) + (u′ · ∇S, ψ) + (u · ∇S′, ψ) =
α∗
Le

(∇θ′,∇ψ),

(4.5)

and
u′(x, 0) = 0, θ′(x, 0) = 0 and S′(x, 0) = 0,

for all (v, φ, ψ) ∈ V × (H1
0 (Ω))2.

Proof. Let λ ∈ (−1, 1) and λ �= 0. For (ũ, θ̃, S̃) defined as in Lemma 4.1, define (uλ, θλ, Sλ) = (ũ/λ, θ̃/λ, S̃/λ).
Then we have that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tuλ,v) + Pr(∇uλ,∇v) + c(uλ,u,v) + c(u(g + λh),uλ,v) +
1
ε
(uλ,v)Γ

= (Pr2Grθ(θλ +NrSλ)i3,v) +
1
ε
(h,v)Γ ,

(∂tθλ, φ) + (∇θλ,∇φ) + (uλ · ∇θ, φ) + (u(g + λh) · ∇θλ, φ) = 0,

(∂tSλ, ψ) +
1
Le

(∇Sλ,∇ψ) + (uλ · ∇S, ψ) + (u(g + λh) · ∇Sλ, ψ) =
α∗
Le

(∇θλ,∇ψ),

(4.6)

and
uλ(x, 0) = 0, θλ(x, 0) = 0 and Sλ(x, 0) = 0,

for all (v, φ, ψ) ∈ V × (H1
0 (Ω))2. It can now be shown using energy arguments as in the proof of Lemma 4.1

that
‖(uλ, Λθλ, Sλ)‖L∞(H×(L2(Ω))2)∩L2(V×(H1

0 (Ω))2) +
1
ε
‖uλ‖L2(L2(Γ )) ≤ C√

ε
‖h‖L2(L2(Γ )) (4.7)
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and
‖(∂tuλ, ∂tθλ, ∂tSλ)‖L2(V∗×(H−1(Ω))2) ≤ C

1√
ε
‖h‖L2(L2(Γ )).

Therefore we can extract a sequence {(uλk
, θλk

, Sλk
)}∞k=1 and {λk}∞k=1 ⊂ (−1, 1) such that as k → ∞,

λk → 0, uλk
⇀ u′ in L2(V), θλk

⇀ θ′ in L2(H1
0 (Ω)), Sλk

⇀ S′ in L2(H1
0 (Ω))

and un|Γ ⇀ u′|Γ in L2(L2(Γ )). Moreover, by Aubin–Simon compactness Lemma ([27], Cor. 4, p. 85),

uλk
→ u′ in L2(H), θλk

→ θ′ in L2(L2(Ω)), Sλk
→ S′ in L2(L2(Ω)).

Setting λ = λk in (4.6) and letting k → ∞, we can show (u′, θ′, S′) indeed satisfy (4.5) by arguing as in the
proof of Lemma 4.1.

Let us next prove the strong convergence of (uλ, θλ, Sλ) also in the topology of W (0, T ). Subtracting (4.5)
from (4.6) and denoting (uλ, θλ, Sλ) − (u′, θ′, S′) by (ū, θ̄, S̄) satisfy⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂tū,v) + Pr(∇ū,∇v) + c(ū,u,v) + c(u, ū,v) + c(ũ,uλ,v) +
1
ε
(ū,v)Γ = (Pr2Grθ(θ̄ +NrS̄)i3,v),

(∂tθ̄, φ) + (∇θ̄,∇φ) + (ū · ∇θ, φ) + (u · ∇θ̄, φ) + (ũ · ∇θλ, φ) = 0,

(∂tS̄, ψ) + 1
Le(∇S̄,∇ψ) + (ū · ∇S, ψ) + (u · ∇S̄, ψ) + (ũ · ∇Sλ, ψ) =

α∗
Le

(∇θ̄,∇ψ),

(4.8)
and

ū(x, 0) = 0, θ̄(x, 0) = 0 and S̄(x, 0) = 0,

for all (v, φ, ψ) ∈ V× (H1
0 (Ω))2. We will again use energy methods. By setting v = ū in (4.8)1, we can estimate

the trilinear terms c(ū,u, ū) and c(ũ,uλ, ū) using (A-2)−(A-3). Also, setting φ = θ̄ and ψ = S̄ in (4.8)2 and
(4.8)3, respectively, we can estimate the trilinear terms using (A-1). Therefore, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

d
dt

‖ū‖2 +
3Pr
4

‖∇ū‖2 +
1
ε
‖ū‖2

0,Γ ≤ C‖(ū, Λθ̄, S̄)‖2 + C‖ū‖2[‖∇u‖2 + ‖∇uλ‖2 + ‖u‖4
L4(Ω)]

+C‖ũ‖2
L4(Ω)(‖∇uλ‖ + ‖uλ‖2

L4(Ω))

1
2

d
dt

‖θ̄‖2 +
1
2
‖∇θ̄‖2 ≤ Pr

8Λ
‖∇ū‖2 + C[‖ū‖2‖θ‖4

L4(Ω) + ‖ũ‖2‖θλ‖4
L4(Ω)] +

1
2
‖∇ũ‖2

1
2

d
dt

‖S̄‖2 +
1

2Le
‖∇S̄‖2 ≤ Pr

8
‖∇ū‖2 + C[‖ū‖2‖S‖4

L4(Ω) + ‖ũ‖2‖Sλ‖4
L4(Ω)] +

1
2
‖∇ũ‖2

+
α∗
Le

‖∇θ̄‖‖∇S̄‖.

(4.9)

Multiplying (4.9)2 by Λ and adding the results to (4.9)3 yields

1
2

d
dt

(Λ‖θ̄‖2 + ‖S̄‖2) + λ1‖∇θ̄‖2 + λ2‖∇S̄‖2 ≤ Pr

4
‖∇ū‖2 + C(‖ū‖2 + ‖ũ‖2)(‖θ‖4

L4(Ω) + ‖S‖4
L4(Ω))

+C‖∇ũ‖2.

(4.10)

Combining (4.9)1 and (4.10), we obtain

1
2

d
dt

‖(ū, Λθ̄, S̄)‖2 + λ1‖∇θ̄‖2 + λ2‖∇S̄‖2 +
Pr

2
‖∇ū‖2 +

1
ε
‖ū‖2

0,Γ ≤ G4(t)‖(ū, Λθ̄, S̄)‖2 +G5(t),

where
G4(t) := C

[
1 + ‖∇u‖2 + ‖∇uλ‖2 + ‖(u, θ, S)‖4

L4(Ω)

]
G5(t) := C

[
‖∇ũ‖2(1 + ‖uλ‖2) + ‖ũ‖2

(
‖∇uλ‖2 + ‖(θ, S)‖4

L4(Ω)

)]
.
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Since G4(t), G5(t) ∈ L1(0, T ), we can use Gronwall lemma and obtain

‖(ū, Λθ̄, S̄)‖ ≤ C
λ√
ε
‖h‖L2(L2(Γ )). (4.11)

Moreover, we can show from (4.8) using the estimates (4.4), (4.7) and (4.11), and supremum argument that

‖(∂tū, ∂tθ̄, ∂tS̄)‖L2(V∗×(H−1(Ω))2) ≤ C
λ√
ε
‖h‖L2(L2(Γ )).

Therefore the desired strong convergence now follows, i.e.,∥∥∥∥ 1
λ

[(ug+λh, θg+λh, Sg+λh) − (ug, θg, Sg) − λ(u′, θ′, S′)]
∥∥∥∥
W(0,T )

→ 0 as λ→ 0. �

Recall that if
J (u∗(g∗),g∗) = inf

g∈Uε
ad

J (u(g),g)

and the cost function is Gâteaux differentiable, then necessarily

DJ(u∗(g∗),g∗)h = 0 for all h ∈ Uε
ad, (4.12)

where DJ (u∗(g∗),g∗) denotes the Gâteaux derivative of J at g∗ ∈ Uε
ad. From (4.12), we have

∫ T

0

(Θu,u′) dt+ γ

∫ T

0

∫
Γ

gh dΓ dt = 0 ∀h ∈ Uε
ad. (4.13)

In practical computation of optimal control, gradient of the cost functional should be computed without the
need to evaluate the state variables. This can be achieved by employing adjoint variables instead of sensitivities.

Theorem 4.3. Assume ε ∈ (0, 1
Pr ). If (u, θ, S,g) be an optimal solution for (P )ε, then we have

1
ε

∫ T

0

∫
Γ

ŭh dΓ dt+ γ

∫ T

0

∫
Γ

gh dΓ dt = 0 ∀h ∈ Uε
ad, (4.14)

where (ŭ, θ̆, S̆) is the weak solution of the adjoint equations⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−(∂tŭ,v) + Pr(∇ŭ,∇v) + c(u,v, ŭ) + c(v,u, ŭ) +
1
ε
(ŭ,v)Γ

+ (v · ∇S, S̆) + (v · ∇θ, θ̆) = (Θu(u),v)

−(∂tθ̆, φ) + (∇θ̆,∇φ) + (u · ∇φ, θ̆) − Pr2Grθ(ŭ, i3φ) = α∗
Le (∇S̆,∇φ)

−(∂tS̆, ψ) +
1
Le

(∇S̆,∇ψ) + (u · ∇ψ, S̆) − Pr2GrθNr(ŭ, i3ψ) = 0,

(4.15)

for all (v, φ, ψ) ∈ V × (H1
0 (Ω))2, and ŭ(x, T ) = θ̆(x, T ) = S̆(x, T ) = 0.

Proof. Let (u, θ, S,g) be an optimal solution of the control problem (P )ε and let u′ be as defined by (4.5). Then
setting v = u′ in (4.15)1 and using the optimality condition (4.14) yields

0 = γ
∫ T

0

∫
Γ gεh dΓ − (∂tŭ,u′) + Pr(∇ŭ,∇u′) + c(u,u′, ŭ) + c(u′,u, ŭ)

+
1
ε
(ŭ,u′)Γ + (u′ · ∇S, S̆) + (u′ · ∇θ, θ̆) dt.

(4.16)
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Setting φ = θ̆ and ψ = S̆ in (4.5)2 and (4.5)3, respectively, and integrating by parts on the time derivative term
yield ⎧⎪⎨

⎪⎩
∫ T

0
(u′ · ∇θ, θ̆) dt =

∫ T

0
(∂tθ̆, θ

′) − (∇θ′,∇θ̆) − (u · ∇θ′, θ̆) dt

∫ T

0 (u′ · ∇S, S̆) dt =
∫ T

0

(∂tS̆, S
′) − 1

Le
(∇S′,∇S̆) − (u · ∇S′, S̆) +

α∗
Le

(∇θ′,∇S̆) dt.
(4.17)

On the other hand by setting φ = θ′ and ψ = S′ in (4.15)2 and (4.15)3, respectively, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ T

0 (∂tθ̆, θ
′) − (∇θ̆,∇θ′) − (u · ∇θ′, θ̆) dt = −

∫ T

0

Pr2Grθ(ŭ, θ′) − α∗
Le

(∇S̆,∇θ′) dt

∫ T

0

(∂tS̆, S
′) − 1

Le
(∇S̆,∇S′) − (u · S′, S̆) dt = −Pr2GrθNr

∫ T

0
(ŭ, S′) dt.

(4.18)

Employing (4.18) in (4.17), we obtain∫ T

0

(u′ · ∇θ, θ̆) + (u′ · ∇S, S̆) dt = −Pr2Grθ
∫ T

0

(ŭ, θ′ +NrS
′) dt (4.19)

Therefore by employing (4.19) in (4.16) and integrating by parts on the time derivative term, and using (4.5)1,
we obtain the desired result. �

5. Numerical results

In fluids having two constituents with different molecular diffusivities, the phenomenon of doubly diffusive
convection occurs provided the Grashof number is sufficiently large. A prototype model for doubly diffusive con-
vection is a flow in a rectangular enclosure driven by either horizontal or vertical temperature and concentration
gradients. Convection that appears in the form of circulations can have undesirable effects in some systems. For
example during crystal growth, it affects the local growth conditions and transport rate [5]. Recirculating flows
can cause non-uniformities and make reactants from previous cycle to remain in the recirculating region and
become the undesired impurities.

We consider a doubly diffusive flow in a square cavity where horizontal temperature and concentration
gradients contribute to the fluid buoyancy in opposite ways. Initially fluid in the cavity is at rest at uniform
temperature and concentration (θ = S = 0). The no slip boundary condition is assumed on the cavity walls.
Two different thermal and concentration boundary conditions are used at the cavity walls. On the left and right
walls θ = S = 1 and θ = S = 0 are applied, respectively. The top and bottom walls are assumed to be adiabatic
with zero heat and concentration flux. Notice that this configuration corresponds to unstable motion free state
(u = 0 and θ = S = 1 − x) for Grashof number Grθ less than a critical Grashof number Grc

θ.
In this numerical example, we set the Grashof number to Grθ = 104, Prandtl number Pr = 1.0, Lewis

number Le = 2 and buoyancy ratio Nr = −1, which corresponds to supercritical state for which convective
flow will occur in the uncontrolled case, see Figure 1. It shows the uncontrolled velocity, temperature and
concentration at t = 2. In the beginning convective flow develops and after a short transition period reaches a
steady state at about time t = 2. The simulations have been performed by discretizing the governing equations
by mixed Galerkin finite element for spatial discretization on a triangular grid with 1800 elements. The velocity,
temperature and concentration are approximated using piecewise quadratic polynomials while the pressure is
approximated using piecewise linear polynomials. This particular choice of finite element spaces for velocity
and pressure satisfies the discrete inf-sup condition. The time discretization is carried out using a second-order
extrapolated backward difference formula (BDF2) [25].

The goal of the control here is to keep the system at the unstable motion free state for supercritical Grashof
numbers. We formulate this problem as an optimal control problem where the deviation of the state from the no
motion state is minimized in a finite time horizon. The control action g is taken to be the tangential boundary
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Figure 1. Uncontrolled velocity, temperature and concentration at t = 2.
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Figure 2. Controlled velocity, temperature and concentration at t = 2.

velocity on a small slot (one-tenth of the bottom wall length) on the bottom wall of the cavity. The cost function
was defined as in (3.1) with Θ(u) = δ∗

2 ‖∇u‖2 + δ‖u‖2 and g = (g, 0), where δ∗ is taken to be negligibly small
(e.g. 10−5) as our interest here really is to minimize the latter term. In fact, our numerical experiments show
δ∗ can even be taken to be zero for computational purposes. The control that minimizes the cost functional
was found using a variable step gradient algorithm, where gradient of the objective function is obtained by
solving the adjoint equations (4.15). Each iteration of the gradient algorithm requires sequential solution of the
state equation (2.7) and adjoint equation (4.15). Adjoint equations were discretized using the same space-time
discretization scheme as the one used for the state equations. As these two can not be solved simultaneously
in practice, the state equations are solved marching forward in time starting from the initial conditions and
adjoint equations are solved marching backward in time from the final conditions at t = T .

Figure 2 shows the controlled velocity, temperature and concentration when the actuator of width L = 0.1
was placed at x = 0.4 on the bottom boundary. As can be seen in Figure 2 the control does a brings the
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Figure 3. Comparison of controlled u-velocity computed for various penalty parameter ε. Also
shown is the uncontrolled velocity. All the quantities shown are computed at (x, y) = (3/4, 3/4).

convection to motion free state. As expected larger values of δ with fixed γ(= 1) drove the convection motion
close to motion free state faster albeit with large magnitude controls. The results showed that at about T = 2
the controlled system is close to the desired motion free state. In order to numerically verify the convergence
of optimal solutions with respect to ε, optimal solutions were computed for a sequence of ε values by the
optimization algorithm. Figure 3 shows the optimal u-velocity at a point inside the cavity as a function of time
computed with various values of ε. It is clear that convergence is achieved without any oscillations as ε→ 0.

An actuator placement study was performed to find the best place for actuation. An actuator slot of size
L = 0.1 was placed on the bottom wall so that there is ten possible placements. Optimal solutions computed
corresponding to each one of the actuator location all showed complete suppression of convection. They also
showed no clear preference to actuator location although slightly faster reduction in the cost functional by
the optimization algorithm was observed when the actuator was placed in the middle third part of the wall
(1/3 ≤ x ≤ 2/3). In particular, convergence behavior of the gradient algorithm with respect to δ and γ was also
better when the actuation was on this part of the wall.

In addition to optimal placement of actuator, the size of the actuator slot can also be an issue in practi-
cal implementation of controller. We therefore studied the effect of actuator slot width on the performance of
the controller. Actuator width of L = 0.1, 0.05, 0.025, 0.0125, 0.00625 located at x = 0.4 were considered on
the bottom wall. As expected, as the width L decreases, it takes longer to suppress the convection, see Fig-
ure 5. The convergence of the algorithm also sensitive to the values of δ and γ with decrease in the width L.
In particular, control algorithm did not converge for γ = 1 and δ ≤ 10 when L ≤ 0.0125. This is to be
expected since actuators with smaller width would require larger control to be effective in suppressing the
convection.

We also investigated few other suitable choices for the cost functional in our optimal control problem. It
is clear that in order to achieve our objective one can also use Θ3 := δ‖θ − θd‖2, Θ4 := δ‖S − Sd‖2, Θ5 :=
δ‖θ − θd‖2 + δ‖S − Sd‖2 in addition to Θ1 := δ‖u‖2 + δ∗‖∇u‖2 and Θ2 : δ‖∇ × u‖2 in our control problem,
where θd = Sd = 1 − x. However, notice that only Θ1 and Θ2 satisfy Assumption (B), whereas Θ3, Θ4 and Θ5

do not satisfy Assumption (B). Our numerical experiments showed that although all five choices perform well
in suppressing the convection, the best performance were obtained with Θ1 and Θ2, see Figure 4. Moreover,
the convergence behavior of the control algorithm is also better when Θ is chosen to satisfy Assumption (B).
For example, when Θ = Θi, i = 3, 4, 5, convergence of the control algorithm was achieved only with large
values of δ(≥ 100) for fixed γ(= 1) whereas when Θ = Θi, i = 1, 2, convergence did not encounter any such
limitations.
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Figure 4. Comparison of controlled u-velocity computed with various cost functionals. All the
quantities shown are computed at (x, y) = (3/4, 3/4).
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Figure 5. Comparison of controlled u-velocity computed with various actuator widths. All the
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Appendix A

In this section, we list some of the estimates regarding the trilinear forms that appear in the governing
equations and related equations. These results are used in energy arguments throughout the paper.

Lemma A.1.

(i) For any ε1, ε2 > 0 and u ∈ V, φ, ψ ∈ H1(Ω), there exists a positive constant Cε1,ε2 such that

|(u · ∇φ, ψ)| ≤ ε1‖∇ψ‖2 + ε2‖∇u‖2 + Cε1,ε2‖u‖2‖φ‖4
L4(Ω). (A.1)

(ii) For any ε > 0 and u,v ∈ V, there exists a positive constant Cε such that

|c(u,v,u)| ≤ ε‖∇u‖2 + Cε‖u‖2[‖∇v‖2 + ‖v‖4
L4(Ω)]. (A.2)

(iii) For any ε > 0 and u,v,w ∈ V, there exists a positive constant Cε such that

|c(u,v,w)| ≤ ε‖∇w‖2 + Cε[‖u‖2
L4(Ω)(‖∇v‖ + ‖v‖2

L4(Ω)) + ‖w‖2‖∇v‖2]. (A.3)
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(iv) For any ε > 0, u,v ∈ V, there exists a positive constant Cε such that

(u · ∇v,u)| ≤ ε‖∇u‖2 + Cε‖u‖2‖∇v‖2. (A.4)

(v) For any ε1, ε2 > 0 and u,v,w ∈ V, there exists a positive constant Cε1,ε2 such that

|(u · ∇v,w)| ≤ ε1‖∇v‖2 + ε2‖∇w‖2 + Cε1,ε2‖w‖2‖u‖4
L4(Ω). (A.5)

(vi) There exist constants c1, c2 and c3 such that

‖B1(u,u)‖4/3 ≤ ‖u‖ 1
2 ‖∇u‖ 3

2 , ‖B2(u,u)‖V∗ ≤ ‖u‖‖∇u‖, and ‖B(u,u)‖V∗ ≤ ‖u‖2
1, (A.6)

Proof.

(i) First notice by Hölder’s inequality

|(u · ∇φ, ψ)| = |(u · ∇ψ, φ)| ≤ ‖u‖L4(Ω)‖φ‖L4(Ω)‖∇ψ‖.
Now using Gagliardo−Nirenberg inequality with q = 2 and r = 4, we obtain

|(u · ∇φ, ψ) ≤ C‖u‖ 1
2 ‖∇u‖ 1

2 ‖φ‖L4(Ω)‖∇ψ‖.
Applying Young’s inequality twice, we obtain

|(u · ∇φ, ψ)| ≤ ε1‖∇ψ‖2 + Cε1‖u‖2‖∇u‖‖φ‖2
L4(Ω)

≤ ε1‖∇ψ‖2 + ε2‖∇u‖2 + Cε1,ε2‖u‖2‖φ‖4
L4(Ω).

(ii) By definition

c(u,v,u) =
1
2
(u · ∇v,u) − 1

2
(u · ∇u,v).

Therefore by Hölder’s and Gagliardo−Nirenberg’s inequalities, we obtain

|c(u,v,u)| ≤ C‖u‖‖∇u‖‖∇v‖ + ‖u‖ 1
2 ‖∇u‖ 3

2 ‖v‖L4(Ω).

Now the result follows by Young’s inequality.
(iii) First by Hölder’s and Gagliardo−Nirenberg’s inequalities, we obtain

|c(u,v,w)| ≤ C‖u‖L4(Ω)‖∇v‖‖w‖ 1
2 ‖∇w‖ 1

2 +
1
2
‖u‖L4(Ω)‖∇w‖‖v‖L4(Ω).

An application of Young’s inequality yields

|c(u,v,w)| ≤ ε‖∇w‖2 + Cε‖u‖
4
3
L4(Ω)‖∇v‖ 4

3 ‖w‖ 2
3 + Cε‖u‖2

L4(Ω)‖v‖2
L4(Ω)

≤ ε‖∇w‖2 + Cε[‖u‖2
L4(Ω)(‖∇v‖ + ‖v‖2

L4(Ω)) + ‖w‖2‖∇v‖2].

(iv) By Hölder’s and Gagliardo−Nirenberg’s inequality, we obtain

|(u · ∇v,u)| ≤ ‖u‖2
L4(Ω)‖∇v‖ ≤ C‖u‖‖∇u‖‖∇v‖.

Now the result follows by Young’s inequality.
(v) The proof of this result is very similar to (i) and is omitted.
(vi) Notice

|(B1(u,u),v)| = |(u · ∇u,v)| ≤ ‖u‖L4(Ω)‖∇u‖‖v‖L4(Ω).

Therefore by Gagliardo−Nirenberg inequality

|(B(u,u),v)| ≤ ‖u‖ 1
2 ‖∇u‖ 3

2 ‖v‖L4(Ω)

and the result follows from the fact that L
4
3 (Ω) is the dual of L4(Ω). The proof of the other inequalities follows

by similar arguments and Sobolev imbeddings. �
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