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LINEARIZED PLASTIC PLATE MODELS AS Γ -LIMITS OF 3D FINITE
ELASTOPLASTICITY

Elisa Davoli1

Abstract. The subject of this paper is the rigorous derivation of reduced models for a thin plate by
means of Γ -convergence, in the framework of finite plasticity. Denoting by ε the thickness of the plate,
we analyse the case where the scaling factor of the elasto-plastic energy per unit volume is of order
ε2α−2, with α ≥ 3. According to the value of α, partially or fully linearized models are deduced, which
correspond, in the absence of plastic deformation, to the Von Kármán plate theory and the linearized
plate theory.
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1. Introduction

The rigorous identification of lower dimensional models for thin structures is a classical question in mechan-
ics. In the early 90’s a rigorous approach to dimension reduction problems has emerged in the framework of
nonlinear elasticity [1,11]. This approach is based on Γ -convergence (see [4] for definition and main properties of
Γ -convergence): a variational convergence which guarantees, roughly speaking, convergence of minimizers of the
three-dimensional energies to minimizers of the reduced models. In the seminal papers [8,9], a hierarchy of limit
models has been identified by Γ -convergence methods for nonlinearly elastic thin plates. Different limit models
have been deduced according to the scaling of the applied body forces in terms of the thickness parameter. In
particular, high scalings of the applied forces lead at the limit to linearized models.

The purpose of this paper is to deduce some linearized reduced models for thin plates in the framework of
finite plasticity. We stress here that a generally accepted model in finite plasticity is still lacking as there is still
a competition between different schools and theories (see e.g. [2] and the overview in [20]). Here we shall adopt
a mathematical model introduced in [3, 17, 18]. We shall consider a small three-dimensional plate of reference
configuration

Ωε := ω ×
(
−ε

2
,
ε

2

)
,

where ω is a domain in R2 and ε > 0 is the thickness parameter. We assume that the plate has a small thickness,
its elastic behaviour is nonlinear and its plastic response is described by finite plasticity with hardening. Along
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the footsteps of [12, 16], we consider deformations ϕ ∈W 1,2(Ωε; R3) that fulfill a multiplicative decomposition

∇ϕ(x) = Fel(x)Fpl(x) for a.e. x ∈ Ωε,

where Fel ∈ L2(Ωε; M3×3) represents the elastic strain, Fpl ∈ L2(Ωε; M3×3) with Fpl(x) ∈ SL(3) for a.e. x ∈ Ω
is the plastic strain and SL(3) := {F ∈ M3×3 : detF = 1}. To guarantee coercivity in the plastic strain
variable, we suppose to be in a hardening regime, where the stored energy associated to a deformation ϕ and
to its elastic and plastic strains is given by

E(ϕ, Fpl) :=
�

Ωε

Wel(∇ϕ(x)F−1
pl (x)) dx +

�
Ωε

Whard(Fpl(x)) dx

=
�

Ωε

Wel(Fel(x)) dx +
�

Ωε

Whard(Fpl(x)) dx. (1.1)

In the previous expression, Wel is a frame-indifferent elastic energy density and Whard, which is finite only on a
compact subset of SL(3) having the identity as an interior point, describes hardening. The plastic dissipation is
expressed by means of a dissipation distance D : M

3×3 × M
3×3 → [0,+∞], which is given via a positively one-

homogeneous potential H , and represents the minimum amount of energy that is dissipated when the system
moves from a plastic configuration to another one (see Sect. 2).

We are interested in studying the asymptotic behaviour of sequences of pairs (ϕε, F ε
pl) whose total energy per

unit thickness satisfies
1
ε

(
E(ϕε, F ε

pl) + εα−1

�
Ωε

D(F ε,0
pl , F

ε
pl) dx

)
≤ Cε2α−2, (1.2)

where α ≥ 3 is a positive parameter and (F ε,0
pl ) ⊂ L2(Ωε;SL(3)) is a given sequence representing preexistent

plastic strains. It was proved in [9] that in the absence of plastic deformation (F ε,0
pl = F ε

pl = Id) these energy
scalings lead to the Von Kármán plate theory for α = 3 and to the linear plate theory for α > 3. The scaling
of the dissipation energy is motivated by its linear growth (see (2.17)). In analogy with the results of [9] in the
framework of nonlinear elasticity, we expect these scalings to correspond to partially or fully linearized plastic
models.

We stress in fact the key role here of the interplay of two simultaneous limit processes: a dimension reduction
(as the thickness ε of the plate tends to zero) and a linearization of the plastic strain by a factor η. In particular,
motivated by the linear growth of the dissipation we focus here on the case where η = εα−1, which is expected to
drive the transition from finite elastoplasticity to classical linearized perfect plasticity. In the case of linearized
perfect plasticity with hardening a careful analysis of the interaction between the dimension reduction process
and the scaling of the dissipation has been performed in [13, 14].

On a portion of the lateral surface

γd ×
(
−ε

2
,
ε

2

)
,

where γd ⊂ ∂ω has positive H1-measure, we prescribe a boundary datum

φε(x) :=
(
x′
x3

)
+
(
εα−1u0(x′)
εα−2v0(x′)

)
− εα−2x3∇v0(x′)

for x = (x′, εx3) ∈ Ωε, where u0 ∈W 1,∞(ω; R2) and v0 ∈W 2,∞(ω). This structure of the boundary conditions is
compatible with that of the minimal energy configurations in the absence of plastic deformations (see Rem. 2.3).

Assuming ε→ 0, we first show that, given any sequence of pairs (ϕε, F ε
pl) satisfying (1.2) and the boundary

conditions
ϕε = φε H2 - a.e. on γd ×

(
−ε

2
,
ε

2

)
, (1.3)
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the deformations ϕε converge to the identity deformation on the mid-section of the plate, and the plastic strains
F ε

pl tend to the identity matrix. More precisely, defining Ω := ω × ( − 1
2 ,

1
2

)
and ψε(x) := (x′, εx3) for every

(x′, x3) ∈ Ω, and assuming
F ε,0

pl ◦ ψε = Id+ εα−1pε,0

with
pε,0 ⇀ p0 weakly in L2(Ω; M3×3), (1.4)

we show that

yε := ϕε ◦ ψε →
(
x′
0

)
strongly in W 1,2(Ω; R3) and

P ε := F ε
pl ◦ ψε → Id

strongly in L2(Ω; M3×3). To express the limit functional, we introduce and study the compactness properties of
some linearized quantities associated with the scaled deformations and plastic strains: the in-plane displacements

uε(x′) :=
1

εα−1

� 1
2

− 1
2

((
yε
1(x)
yε
2(x)

)
− x′

)
dx3

for a.e. x′ ∈ ω, the out-of-plane displacements

vε(x′) :=
1

εα−2

� 1
2

− 1
2

yε
3(x) dx3,

for a.e. x′ ∈ ω, and the linearized plastic strains

pε(x) :=
P ε(x) − Id

εα−1

for a.e. x ∈ Ω. In Theorem 3.4 we show that, under assumptions (1.2), (1.3) and (1.4)

uε ⇀ u weakly in W 1,2(ω; R2),

vε → v strongly in W 1,2(ω),
pε ⇀ p weakly in L2(Ω; M3×3),

for some u ∈ W 1,2(ω; R2), v ∈W 2,2(ω) and p ∈ L2(Ω; M3×3) such that tr p = 0, and

u = u0, v = v0, ∇v = ∇v0 H1-a.e. on γd.

In Theorems 3.4, 4.1 and 5.1 we show that the limit functional is expressed in terms of the quantities u, v and
p, and is given by

Jα(u, v, p) :=
�

Ω

Q2(sym∇′u− x3(∇′)2v − p′) dx+
�

Ω

B(p) dx+
�

Ω

H(p− p0) dx

for α > 3, and

J3(u, v, p) :=
�

Ω

Q2

(
sym∇′u+

1
2
∇′v ⊗∇′v − x3(∇′)2v − p′

)
dx+

�
Ω

B(p) dx

+
�

Ω

H(p− p0) dx
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for α = 3. In the previous formulas, ∇′ denotes the gradient with respect to x′, p′ is the 2 × 2 minor given
by the first two rows and columns of the map p, and Q2 and B are positive definite quadratic forms on M2×2

and M3×3, respectively, for which an explicit characterization is provided (see (2.4), (2.9) and (3.23)–(3.25)). In
the absence of plastic dissipation (p0 = p = 0) the two Γ -limits reduce to the functionals deduced in [9] in the
context of nonlinear elasticity.

We remark, anyway, that in constrast with the problem studied in [9], the limit functionals Jα and J3 cannot
be, in general, expressed in terms of two-dimensional quantities only because the limit plastic strain p depends
nontrivially on the x3 variable (see Sect. 5).

The setting of the problem and some proof arguments are very close to those of [19], where it is shown that
linearized plasticity can be obtained as Γ -limit of finite plasticity.

The proof of the compactness and the liminf inequality rely on the rigidity estimate due to Friesecke, James
and Müller ([8], Thm. 3.1). This theorem can be applied owing to the presence of the hardening term, which
provides one with a uniform bound on the L∞ norm of the scaled plastic strains P ε. The construction of the
recovery sequence is obtained by combining the arguments in [9], Sections 6.1 and 6.2 and [19], Lemma 3.6.
For this construction we need to assume that γd is the finite union of disjoint (nontrivial) closed intervals
(i.e., maximally connected sets) in ∂ω, the convergence in (1.4) is strong in L1(Ω; M3×3) and the maps pε,0 are
uniformly bounded in L∞(Ω; M3×3).

In [19] the authors proved also the convergence of quasistatic evolutions in finite plasticity to a quasistatic
evolution in linearized plasticity. The question whether an analogous convergence result can be established in
the present context for thin plates is adressed in [6], where the stored energy in (1.1) plays the role of the total
elasto-plastic energy per unit thickness for one single time step.

In the last section of the paper we deal with the asymptotic behaviour as ε tends to zero of almost minimizers
of the three-dimensional energies and we prove that they converge to minimizers of the limit functional. We
stress that the existence of exact minimizers of the three-dimensional energies is a quite subtle issue and is
not guaranteed in our framework. This problem infact has only recently been solved in [15] in the framework
of rate-independent systems, by adding a regularizing term which provides integrability of the gradient of the
three-dimensional plastic strains.

The paper is organized as follows: in Section 2 we recall some preliminary results and we discuss the for-
mulation of the problem. Section 3 is devoted to prove some compactness results and liminf inequalities, while
in Section 4 we show that the lower bounds obtained in Section 3 are optimal. Finally, in Section 5 we study
convergence of almost minimizers of the three-dimensional energies and we discuss some examples.

2. Preliminaries and setting of the problem

Let ω ⊂ R2 be a connected, bounded open set with Lipschitz boundary. Let ε > 0. We assume the set
Ωε := ω × (− ε

2 ,
ε
2

)
to be the reference configuration of a finite-strain elastoplastic plate.

We suppose that the boundary ∂ω is partitioned into the union of two disjoint sets γd and γn and their
common boundary, where γd is such that H1(γd) > 0. We denote by Γε the portion of the lateral surface of the
plate given by Γε := γd × (− ε

2 ,
ε
2

)
. On Γε we prescribe a boundary datum of the form

φε(x) :=
(
x′
x3

)
+
(
εα−1u0(x′)
εα−2v0(x′)

)
− εα−2x3∇v0(x′) (2.1)

for x = (x′, εx3) ∈ Ωε, where u0 ∈W 1,∞(ω; R2), v0 ∈ W 2,∞(ω) and α ≥ 3.
We assume that every deformation ϕ ∈ W 1,2(Ωε; R3) fulfills a multiplicative decomposition

∇ϕ(x) = Fel(x)Fpl(x) for a.e. x ∈ Ωε,

where Fel ∈ L2(Ωε; M3×3) represents the elastic strain, Fpl ∈ L2(Ωε; M3×3) with Fpl(x) ∈ SL(3) for a.e. x ∈ Ω
is the plastic strain and SL(3) := {F ∈ M3×3 : detF = 1}. To every deformation ϕ and to its elastic and plastic
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strains we associate a stored energy E(ϕ, Fpl) given by:

E(ϕ, Fpl) :=
�

Ωε

Wel(∇ϕ(x)F−1
pl (x)) dx +

�
Ωε

Whard(Fpl(x)) dx

=
�

Ωε

Wel(Fel(x)) dx +
�

Ωε

Whard(Fpl(x)) dx, (2.2)

where Wel is the elastic energy density and Whard describes hardening.

Properties of the elastic energy

We assume that Wel : M3×3 → [0,+∞] satisfies

(H1) Wel ∈ C1(M3×3
+ ), Wel ≡ +∞ on M

3×3 \ M
3×3
+ ,

(H2) Wel(Id) = 0,
(H3) Wel(RF ) = Wel(F ) for every R ∈ SO(3), F ∈ M

3×3
+ ,

(H4) Wel(F ) ≥ c1dist2(F ;SO(3)) for every F ∈ M
3×3
+ ,

(H5) |DWel(F )FT | ≤ c2(Wel(F ) + 1) for every F ∈ M
3×3
+ .

Here c1, c2 are positive constants, M
3×3
+ := {F ∈ M3×3 : detF > 0} and SO(3) := {F ∈ M

3×3
+ : FTF = Id}.

Remark 2.1. Condition (H5) is a weaker version of the more usual requirement that the Mandel tensor
FTDWel(F ) is controlled by means of the elastic energy (see [5], Prop. 1.5). This controllability assump-
tion plays a crucial role in finite-strain elastoplasticity as in the framework of rate-independent processes it is
essential to guarantee compactness of the elastoplastic stresses (see e.g. [7, 15, 19]).

We also assume that the elastic energy Wel has a quadratic behaviour around the identity, that is

∀δ > 0 ∃cel(δ) > 0 such that ∀F ∈ Bcel(δ)(0) there holds |Wel(Id+ F ) −Q(F )| ≤ δ|F |2. (2.3)

In the previous expression, Q is a quadratic form on M3×3, defined as

Q(F ) :=
1
2

CF : F for every F ∈ M
3×3, (2.4)

where C : M3×3 → M3×3 is a symmetric, positive semi-definite tensor. The quadratic structure of Wel around
the identity yields, by (2.3), that

C = D2Wel(Id), Cijkl =
∂2W

∂Fij∂Fkl
(Id) for every i, j, k, l ∈ {1, 2, 3}.

Moreover, by the frame-indifference condition (H3) the quadratic form Q satisfies

Q(F ) = Q(symF ) for every F ∈ M
3×3. (2.5)

Indeed, as stressed in [19], Section 2, (H3) implies

Cijkl = Cjikl = Cijlk for every i, j, k, l ∈ {1, 2, 3}

and
CF = C (symF ) for every F ∈ M

3×3,

which in turn gives (2.5).
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Moreover, as pointed out in [19], Section 2, by (H4) the quadratic form Q is positive definite on symmetric
matrices. Therefore, there exist two positive constants rC and RC such that

rC|F |2 ≤ Q(F ) ≤ RC|F |2 for every F ∈ M
3×3
sym , (2.6)

and
|CF | ≤ 2RC|F | for every F ∈ M

3×3
sym .

Properties of the hardening functional

We assume that the hardening map Whard : M3×3 → [0,+∞] has the following structure:

Whard(F ) :=

{
W̃hard(F ) for every F ∈ K,

+∞ otherwise.
(2.7)

where K is a compact set in SL(3) that contains the identity as a relative interior point. We also require the
map W̃hard : M3×3 → [0,+∞) to fulfill

W̃hard is locally Lipschitz continuous,
W̃hard(Id+ F ) ≥ c3|F |2 for every F ∈ M

3×3, (2.8)

where c3 is a positive constant. In the same way as for the elastic energy, we assume that Whard has a quadratic
behaviour around the identity, that is there exists a positive semi-definite quadratic form B satisfying

∀δ > 0 ∃ch(δ) > 0 such that ∀F ∈ Bch(δ)(0) there holds |W̃hard(Id+ F ) −B(F )| ≤ δB(F ).
(2.9)

We remark that the assumptions on the set K guarantee the existence of a constant ck such that

|F | + |F−1| ≤ ck for every F ∈ K, (2.10)

|F − Id| ≥ 1
ck

for every F ∈ SL(3) \K. (2.11)

Combining (2.8) and (2.9) we deduce also

c3
2
|F |2 ≤ B(F ) for every F ∈ M

3×3. (2.12)

Dissipation functional

Denote by M
3×3
D the set of trace-free symmetric matrices, namely

M
3×3
D := {F ∈ M

3×3
sym : tr F = 0}.

Let HD : M
3×3
D → [0,+∞) be a convex, positively one-homogeneous function such that

rK |F | ≤ HD(F ) ≤ RK |F | for every F ∈ M
3×3
D , (2.13)

where rK and RK are two positive constants. We define the dissipation potential H : M3×3 → [0,+∞] as

H(F ) :=

{
HD(F ) if F ∈ M

3×3
D ,

+∞ otherwise,
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and we associate to H the map

D(Id, F ) := inf
{� 1

0

H(ċ(t)c−1(t)) dt : c ∈ C1([0, 1]; M3×3
+ ), c(0) = Id, c(1) = F

}
(2.14)

for every F ∈ M3×3. We stress that, as a consequence of the Jacobi’s formula for the derivative of the determinant
of a differentiable matrix-valued map, D(Id, F ) is finite only if F ∈ SL(3).

We define the dissipation distance as the map D : M3×3 × M3×3 → [0,+∞], given by

D(F1, F2) :=

{
D(Id, F2F

−1
1 ) if F1 ∈ M

3×3
+ , F2 ∈ M3×3

+∞ if F1 /∈ M
3×3
+ , F2 ∈ M3×3.

Remark 2.2. We note that the map D satisfies the triangle inequality

D(F1, F2) ≤ D(F1, F3) +D(F3, F2) (2.15)

for every F1, F2, F3 ∈ M3×3, and there exists a positive constant c4 such that

D(F1, F2) ≤ c4 for every F1, F2 ∈ K, (2.16)
D(Id, F ) ≤ c4|F − Id| for every F ∈ K. (2.17)

Indeed, by the compactness of K and the continuity of the map D on SL(3) × SL(3) (see [18]), there exists a
constant c̃4 such that

D(F1, F2) ≤ c̃4 for every F1, F2 ∈ K. (2.18)

Hence, we can reduce the proof of (2.17) to the case where F is in a neighbourhood of the identity. More
precisely, let δ > 0 be such that logF is well defined for F ∈ K and |F − Id| < δ. If F ∈ K is such that
|F − Id| ≥ δ, by (2.18) we obtain the estimate

D(Id, F ) ≤ c̃4
δ
|F − Id|.

If |F − Id| < δ, taking c(t) = exp(t logF ) in (2.14), inequality (2.13) implies that

D(Id, F ) ≤ HD(logF ) ≤ RK | logF | ≤ C|F − Id|
for every F ∈ K. Claims (2.16) and (2.17) follow now by collecting the previous estimates.

Change of variable and formulation of the problem

As usual in dimension reduction problems we perform a change of variable to formulate the problem on a domain
independent of ε. We consider the set Ω := ω × (− 1

2 ,
1
2

)
and the map ψε : Ω → Ωε given by

ψε(x) := (x′, εx3) for every x ∈ Ω.

To every deformation ϕ ∈ W 1,2(Ωε; R3) satisfying

ϕ(x) = φε(x) H2- a.e. on Γε

and to every plastic strain Fpl ∈ L2(Ωε; M3×3) with Fpl(x) ∈ SL(3) for a.e. x ∈ Ω we associate the scaled
deformation y := ϕ ◦ ψε and the scaled plastic strain P := Fpl ◦ ψε. Denoting by Γd the set γd × (− 1

2 ,
1
2

)
, the

scaled deformation satisfies the boundary condition

y(x) = φε(x′, εx3) H2- a.e. on Γd. (2.19)

Applying this change of variable to (2.2), the energy functional is now given by

I(y, P ) :=
1
ε
E(ϕ, Fpl) =

�
Ω

Wel(∇εy(x)P−1(x)) dx +
�

Ω

Whard(P (x)) dx,

where ∇εy(x) :=
(
∂1y(x)

∣∣∂2y(x)
∣∣ 1

ε∂3y(x)
)

for a.e. x ∈ Ω.
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Denote by Aε(φε) the class of pairs (yε, P ε) ∈ W 1,2(Ω; R3) × L2(Ω;SL(3)) such that (2.19) is satisfied. We
associate to each pair (yε, P ε) ∈ Aε(φε) the scaled energy given by

J ε
α(yε, P ε) :=

1
ε2α−2

I(yε, P ε) +
1

εα−1

�
Ω

D(P ε,0, P ε) dx, (2.20)

where α ≥ 3 is the same exponent as in (2.1) and P ε,0 is a map in L2(Ω;SL(3)), which represents a preexistent
plastic strain.

Remark 2.3. We are interested in studying the asymptotic behaviour of sequences of pairs (yε, P ε) ∈ Aε(φε)
such that the scaled total energies J ε

α(yε, P ε) are uniformly bounded. This, in particular, holds for sequences
of (almost) minimizers of

I(y, P ) −
�

Ω

fε · y dx, (2.21)

whenever the applied forces fε are of order εα, with α ≥ 3. In fact by ([9], Thm. 2), in the absence of plastic
deformation (P ε ≡ Id), the elastic energy on (almost) minimizing sequences scales like ε2α−2. In order to have
interaction between the elastic and the plastic energy at the limit we are lead to rescale also the hardening
functional by ε2α−2. Finally, the scaling of the dissipation functional is motivated by its linear growth and by
the estimate (2.17).

Our choice of the boundary datum is again motivated by ([9], Thm. 2). Indeed, as remarked in the intro-
duction, the structure of φε is compatible with the structure of (almost) minimizers of (2.21) in the absence
of plastic deformation, as ε → 0+. By considering the scaled boundary datum φε(x′, εx3) one has infact that
u0 and v0 correspond to the in-plane and out-of-plane displacements of φε(x′, εx3) (see the statement of [9],
Thm. 2). The addition of the affine term with respect to x3 is again motivated by [9], Lemma 1 and Corollary 1:
indeed on the one hand it guarantees that

sym(∇εφ
ε(x′, εx3) − Id) = εα−1

(
sym∇′u0(x′) − x3(∇′)2v0(x′) 0

0 0

)
,

(that is the linearized strain associated to the boundary datum) is of order εα−1, and on the other hand provides
us with the expected structure of the first order moment of φε(x′, εx3) with respect to x3, that is

� 1
2

− 1
2

x3

(
φε(x′, εx3) −

(
x′
εx3

))
dx3 = − 1

12

(∇′v0(x′)
0

)
.

This last property, in particular, will play a crucial role in the compactness results for the scaled deformations
(see the proof of Thm. 3.3).

3. Compactness results and liminf inequality

In this section we study compactness properties of sequences of pairs in Aε(φε) satisfying the uniform energy
estimate

J ε
α(yε, P ε) ≤ C for every ε. (3.1)

To state the compactness results it is useful to introduce the following notation: given ϕ : Ω → R3, we denote
by ϕ′ : Ω → R2 the map

ϕ′ :=
(
ϕ1

ϕ2

)
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and for every η ∈ W 1,2(Ω) we denote by ∇′η the vector
(
∂1η
∂2η

)
. Analogously, given a matrix M ∈ M3×3, we

use the notation M ′ to represent the minor

M ′ :=
(
M11 M12

M21 M22

)
.

Given a sequence of deformations (yε) ⊂ W 1,2(Ω; R3), we consider some associated quantities: the in-plane
displacements

uε(x′) :=
1

εα−1

� 1
2

− 1
2

(
(yε)′(x′, x3) − x′

)
dx3 for a.e. x′ ∈ ω, (3.2)

the out-of-plane displacements

vε(x′) :=
1

εα−2

� 1
2

− 1
2

yε
3(x

′, x3) dx3 for a.e. x′ ∈ ω, (3.3)

and the first order moments

ξε(x′) :=
1

εα−1

� 1
2

− 1
2

x3

(
yε(x′, x3) −

(
x′
εx3

))
dx3 for a.e. x′ ∈ ω. (3.4)

A key tool to establish compactness of in-plane and out-of-plane displacements is the following rigidity
estimate due to Friesecke, James and Müller ([8], Thm. 3.1).

Theorem 3.1. Let U be a bounded Lipschitz domain in Rn, n ≥ 2. Then there exists a constant C(U) with the
following property: for every v ∈ W 1,2(U ; Rn) there is an associated rotation R ∈ SO(n) such that

‖∇v −R‖L2(U) ≤ C(U)‖dist(∇v, SO(n))‖L2(U).

Remark 3.2. The constant C(U) in Theorem 3.1 is invariant by translations and dilations of U and is uniform
for families of sets which are uniform bi-Lipschitz images of a cube.

The rigidity estimate provided in Theorem 3.1 allows us to approximate sequences of deformations whose
distance of the gradient from SO(3) is uniformly bounded, by means of rotations. More precisely, the following
theorem holds true.

Theorem 3.3. Assume that α ≥ 3 and let 0 < ε < 1. Let (yε) be a sequence of deformations in W 1,2(Ω; R3)
satisfying (2.19) and such that

‖dist(∇εy
ε, SO(3))‖L2(Ω;M3×3) ≤ Cεα−1. (3.5)

Then, there exists a sequence (Rε) ⊂W 1,∞(ω; M3×3) such that for every ε > 0

Rε(x′) ∈ SO(3) for every x′ ∈ ω, (3.6)
‖∇εy

ε −Rε‖L2(Ω;M3×3) ≤ Cεα−1, (3.7)

‖∂iR
ε‖L2(ω;M3×3) ≤ Cεα−2, i = 1, 2 (3.8)

‖Rε − Id‖L2(ω;M3×3) ≤ Cεα−2. (3.9)

Proof. Arguing as in ([9], Thm. 6 and Rem. 5) we can construct a sequence of maps Rε ∈ W 1,∞(ω; M3×3)
satisfying (3.6)–(3.8). To complete the proof of the theorem it remains only to prove (3.9).
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To this aim, we preliminarily recall that there exists a neighbourhood U of SO(3) where the projection
Π : U → SO(3) onto SO(3) is well defined. By Poincaré inequality, (3.8) yields∥∥∥Rε −

�
ω

Rε dx′
∥∥∥

L2(ω;M3×3)
≤ Cεα−2. (3.10)

On the other hand, by (3.6) we have

dist2
(�

ω

Rε dx′, SO(3)
)
L2(ω) ≤

∥∥∥Rε −
�

ω

Rε dx′
∥∥∥2

L2(ω;M3×3)
.

Hence, by (3.10) for ε small enough we can define R̂ε := Π(
�

ω
Rε dx′), which fulfills∣∣∣∣R̂ε −

�
ω

Rε dx′
∣∣∣∣ ≤ C

∥∥∥Rε −
�

ω

Rε dx′
∥∥∥

L2(ω;M3×3)
≤ Cεα−2

and
‖R̂ε −Rε‖L2(ω;M3×3) ≤

∥∥∥R̂ε −
�

ω

Rε dx′
∥∥∥

L2(ω;M3×3)
+
∥∥∥�

ω

Rε dx′ −Rε
∥∥∥

L2(ω;M3×3)
≤ Cεα−2.

To prove (3.9) it is now enough to show that

|R̂ε − Id| ≤ Cεα−2. (3.11)

To this purpose, we argue as in ([10], Sect. 4.2, Lem. 13). We consider the sequences

ỹε := (R̂ε)T yε − cε,

ũε(x′) :=
1

εα−1

� 1
2

− 1
2

((ỹε)′(x′, x3) − x′) dx3 for a.e. x′ ∈ ω,

ṽε(x′) :=
1

εα−2

� 1
2

− 1
2

ỹε
3(x

′, x3) dx3 for a.e. x′ ∈ ω,

ξ̃ε(x′) :=
1

εα−1

� 1
2

− 1
2

x3

(
ỹε(x′, x3) −

(
x′
εx3

))
dx3 for a.e. x′ ∈ ω,

where the constants cε are chosen in such a way that�
Ω

(
ỹε(x) − x

)
dx = 0.

By ([9], Lem. 1 and Cor. 1), there exist ũ ∈ W 1,2(ω; R2), ṽ ∈ W 2,2(ω) and ξ̃ ∈ W 1,2(ω; R3) such that, up to
subsequences, there holds

ũε ⇀ ũ weakly in W 1,2(ω; R2), (3.12)
ṽε → ṽ strongly in W 1,2(ω), (3.13)
ξ̃ε ⇀ ξ̃ weakly in W 1,2(ω; R3). (3.14)

We now write uε, vε and ξε in terms of ũε, ṽε and ξ̃ε. We have(
εα−1uε(x′)
εα−2vε(x′)

)
= (R̂ε − Id)

(
x′
0

)
+ R̂ε

(
εα−1ũε(x′)
εα−2ṽε(x′)

)
+ R̂εcε, (3.15)

for a.e. x′ ∈ ω and
ξε(x′) =

1
12εα−2

(R̂ε − Id)e3 + R̂εξ̃ε(x′) for a.e. x′ ∈ ω. (3.16)



LINEARIZED PLASTIC PLATE MODELS AS Γ -LIMITS OF 3D FINITE ELASTOPLASTICITY 735

By (3.14) there exists a constant C such that ‖ξ̃ε‖L2(γd;R3) ≤ C for every ε. Moreover, by (2.1) and (2.19) there
holds

ξε(x′) =
1

εα−1

� 1
2

− 1
2

x3

(
φε(x′, εx3) −

(
x′
εx3

))
dx3 =

(− 1
12∇′v0(x′)

0

)
H1- a.e. on γd,

hence (ξε) is uniformly bounded in L2(γd; R3). Therefore, by (3.16) we deduce

|(R̂ε − Id)e3| ≤ Cεα−2‖ξε − R̂εξ̃ε‖L2(γd;R3) ≤ Cεα−2, (3.17)

for every ε. Since R̂ε ∈ SO(3), (3.17) implies that

|(R̂ε − Id)T e3| ≤ Cεα−2 (3.18)

for every ε and there exists a sequence (Q̂ε) ⊂ SO(2) such that

|(R̂ε)′ − Q̂ε| ≤ Cεα−2. (3.19)

Now, without loss of generality we can assume that
�

γd

x′ dH1(x′) = 0 and
�

γd

|x′|2 dH1(x′) = c > 0. (3.20)

By (3.12) and (3.13) we have ‖ũε‖L2(γd;R2) + ‖ṽε‖L2(γd) ≤ C for every ε. On the other hand (2.1) and (2.19)
imply that

uε(x′) = u0(x′) and vε(x′) = v0(x′) H1- a.e. on γd,

hence both (uε) and (vε) are uniformly bounded in L2(γd; R2) and L2(γd), respectively. Therefore, by (3.15)
and (3.19) we deduce

‖(Q̂ε − Id)x′ + (R̂εcε)′‖L2(γd;R2) ≤ Cεα−2. (3.21)

The two terms in the left hand side of (3.21) are orthogonal in the sense of L2(γd; R2) by (3.20), hence (3.21)
implies that

‖(Q̂ε − Id)x′‖2
L2(γd;R2) ≤ Cε2(α−2).

Since Q̂ε ∈ SO(2), it satisfies

2|(Q̂ε − Id)x′|2 = |Q̂ε − Id|2|x′|2 for every x′ ∈ γd.

Therefore, applying again (3.20) we obtain

c|Q̂ε − Id|2 = 2
�

γd

|Q̂ε − Id|2|x′|2 dH1(x′) ≤ Cε2(α−2). (3.22)

Claim (3.11) follows now by collecting (3.17)–(3.19) and (3.22). �

In the remaining of this section we shall establish some compactness results for the displacements defined
in (3.2) and (3.3), and we shall prove liminf inequalities both for the energy functional and the dissipation
potential. We first introduce the limit functional.

Let A : M
2×2 → M

3×3
sym be the operator given by

A(F ) :=

(
symF λ1(F )

λ2(F )
λ1(F ) λ2(F ) λ3(F )

)
for every F ∈ M

2×2, (3.23)
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where for every F ∈ M2×2 the triple (λ1(F ), λ2(F ), λ3(F )) is the unique solution to the minimum problem

min
λi∈R

Q

(
symF λ1

λ2
λ1 λ2 λ3

)
.

We remark that for every F ∈ M2×2, the triple (λ1(F ), λ2(F ), λ3(F )) is given by the unique solution to the
linear equation

C

(
symF λ1

λ2
λ1 λ2 λ3

)
:

( 0 0 μ1

0 0 μ2

μ1 μ2 μ3

)
= 0 for every μ1, μ2, μ3 ∈ R. (3.24)

This implies, in particular, that A is linear.
We define the quadratic form Q2 : M2×2 → [0,+∞) as

Q2(F ) = Q(A(F )) for every F ∈ M
2×2. (3.25)

By properties of Q, we have that Q2 is positive definite on symmetric matrices. We also define the tensor
C2 : M2×2 → M3×3

sym, given by

C2F := CA(F ) for every F ∈ M
2×2. (3.26)

We remark that by (3.24) there holds

C2F : G = C2F :
( symG 0

0 0

)
for every F ∈ M

2×2, G ∈ M
3×3 (3.27)

and
Q2(F ) =

1
2

C2F :
( symF 0

0 0

)
for every F ∈ M

2×2.

Denoting by A(u0, v0) the set of triples (u, v, p) ∈W 1,2(Ω; R2) ×W 2,2(Ω) × L2(Ω; M3×3
D ) such that

u(x′) = u0(x′), v(x′) = v0(x′), and ∇v(x′) = ∇v0(x′) H1 - a.e. on γd,

we introduce the functionals Jα : A(u0, v0) → [0,+∞), given by

Jα(u, v, p) :=
�

Ω

Q2(sym∇′u− x3(∇′)2v − p′) dx+
�

Ω

B(p) dx+
�

Ω

HD(p− p0) dx (3.28)

for α > 3, and

J3(u, v, p) :=
�

Ω

Q2

(
sym∇′u+ 1

2∇′v ⊗∇′v − x3(∇′)2v − p′
)
dx+

�
Ω

B(p) dx

+
�

Ω

HD(p− p0) dx, (3.29)

for every (u, v, p) ∈ A(u0, v0). In the expressions of the functionals, p0 is a given map in L2(Ω; M3×3
D ) that

represents the history of the plastic deformations.
Finally, for every sequence (yε) in W 1,2(Ω; R3) satisfying both (2.19) and (3.5), we introduce the strains

Gε(x) :=
(Rε(x))T∇εy

ε(x) − Id

εα−1
for a.e. x ∈ Ω, (3.30)

where the maps Rε are the pointwise rotations provided by Theorem 3.3.
We are now in a position to state the main result of this section.
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Theorem 3.4. Assume that α ≥ 3. Let (yε, P ε) be a sequence of pairs in Aε(φε) satisfying

I(yε, P ε) ≤ Cε2α−2 (3.31)

for every ε > 0. Let uε, vε and Gε be defined as in (3.2), (3.3) and (3.30), respectively. Then, there exists
(u, v, p) ∈ A(u0, v0) such that, up to subsequences, there hold

yε →
(
x′
0

)
strongly in W 1,2(Ω; R3), (3.32)

uε ⇀ u weakly in W 1,2(ω; R2), (3.33)
vε → v strongly in W 1,2(ω), (3.34)
∇′yε

3

εα−2
→ ∇′v strongly in L2(Ω; R2), (3.35)

and the following estimate holds true ∥∥∥∥yε
3

ε
− x3 − εα−3vε

∥∥∥∥
L2(Ω)

≤ Cεα−2. (3.36)

Moreover, there exists G ∈ L2(Ω; M3×3) such that

Gε ⇀ G weakly in L2(Ω; M3×3), (3.37)

and the 2 × 2 submatrix G′ satisfies

G′(x′, x3) = G0(x′) − x3(∇′)2v(x′) for a.e. x ∈ Ω, (3.38)

where

symG0 =
(∇′u+ (∇′u)T + ∇′v ⊗∇′v)

2
if α = 3, (3.39)

symG0 = sym∇′u if α > 3. (3.40)

The sequence of plastic strains (P ε) fulfills

P ε(x) ∈ K for a.e. x ∈ Ω, (3.41)

and
‖P ε − Id‖L2(Ω;M3×3) ≤ Cεα−1 (3.42)

for every ε. Moreover, setting

pε :=
P ε − Id

εα−1
, (3.43)

up to subsequences
pε ⇀ p weakly in L2(Ω; M3×3). (3.44)

Finally,
�

Ω

Q2(symG′ − p′) dx+
�

Ω

B(p) dx ≤ lim inf
ε→0

1
ε2α−2

I(yε, P ε). (3.45)

If in addition
1

εα−1

�
Ω

D(P ε,0, P ε) dx ≤ C for every ε > 0 (3.46)
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and there exist a map p0 ∈ L2(Ω; M3×3
D ) and a sequence (pε,0) ⊂ L2(Ω; M3×3) such that P ε,0 = Id+ εα−1pε,0,

with pε,0 ⇀ p0 weakly in L2(Ω; M3×3), then
�

Ω

HD(p− p0) dx ≤ lim inf
ε→0

1
εα−1

�
Ω

D(P ε,0, P ε) dx. (3.47)

Proof. We first remark that by (3.31) there holds
�

Ω

Whard(P ε) dx ≤ Cε2α−2, (3.48)

which, together with (2.7), implies (3.41). On the other hand, combining (2.8) and (3.48) we deduce

c3‖P ε − Id‖2
L2(Ω;M3×3) ≤

�
Ω

W̃hard(P ε) dx ≤ Cε2α−2,

which in turn yields (3.42) and (3.44).
Let R ∈ SO(3). By (2.10), (3.41) and (3.43) there holds

|∇εy
ε −R|2 = |∇εy

ε −RP ε + εα−1Rpε|2 ≤ 2
(|∇εy

ε(P ε)−1 −R|2|P ε|2 + ε2α−2|pε|2)
≤ 2 c2k|∇εy

ε(P ε)−1 −R|2 + 2ε2α−2|pε|2.

Hence, the growth condition (H4) implies

‖dist(∇εy
ε, SO(3))‖2

L2(Ω;M3×3) ≤ C

(�
Ω

Wel(∇εy
ε(P ε)−1) dx+ ε2α−2‖pε‖2

L2(Ω;M3×3)

)
,

which in turn yields
‖dist(∇εy

ε, SO(3))‖2
L2(Ω;M3×3) ≤ Cε2α−2

by (3.31) and (3.44).
Due to (2.19), the deformations (yε) fulfill the hypotheses of Theorem 3.3. Hence, we can construct a sequence

(Rε) inW 1,∞(ω; M3×3) satisfying (3.6)–(3.9). Properties (3.32)–(3.35) and (3.37)–(3.40) follow arguing as in ([9],
Lem. 1, Cor. 1 and Lem. 2). The only difference is due to the fact that compactness is now achieved by using
the boundary condition (2.19), instead of performing a normalization of the deformations yε. Moreover the limit
in-plane and out-of-plane displacements satisfy u = u0, v = v0 and ∇′v = ∇′v0 H1- a.e. on γd.

By Poincaré inequality and (3.3), there holds∥∥∥∥yε
3

ε
− x3 − εα−3vε

∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥∂3y
ε
3

ε
− 1
∥∥∥∥

L2(Ω)

,

hence (3.36) is a consequence of (3.7) and (3.9).
Inequality (3.47) follows by adapting ([19], Lems. 3.4 and 3.5) it is enough to modify the definition of Dε in

the proofs of the two lemmas as

Dε(p1, p2) := 1
εα−1

�
Ω

D(Id+ εα−1p1, Id+ εα−1p2) dx for every p1, p2 ∈ L1(Ω; M3×3)

and to adapt the scaling of the different quantities in the proofs by replacing ε with εα−1.
The proof of (3.45) is based on an adaptation of ([19], Proof of Lem. 3.3): we give a sketch for convenience

of the reader. Fix δ > 0, let Oε be the set

Oε := {x : εα−1|pε(x)| ≤ ch(δ)}
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where ch(δ) is the constant in (2.9), and let χε be its characteristic function. By (3.44) and by Chebyshev’s
inequality there holds

L3(Ω \Oε) ≤ Cε2α−2,

hence by (2.9) and (3.31), we deduce

lim inf
ε→0

1
ε2α−2

�
Ω

Whard(P ε) dx ≥ lim inf
ε→0

(1 − δ)
�

Ω

B(pε)χε dx ≥ (1 − δ)
�

Ω

B(p) dx. (3.49)

To prove the liminf inequality for the elastic energy, we introduce the auxiliary tensors

wε :=
(P ε)−1 − Id+ εα−1pε

εα−1
= εα−1(P ε)−1(pε)2. (3.50)

By (2.10) and (3.41), there exists a constant C such that

εα−1‖pε‖L∞(Ω;M3×3) ≤ C (3.51)

and
εα−1‖wε‖L∞(Ω;M3×3) ≤ C (3.52)

for every ε. Furthermore, by (3.44),

‖wε‖L1(Ω;M3×3) ≤ Cεα−1 for every ε.

By the two previous estimates it follows that (wε) is uniformly bounded in L2(Ω; M3×3) and up to subsequences

wε ⇀ 0 weakly in L2(Ω; M3×3). (3.53)

For every ε we consider the map

F ε :=
1

εα−1

(
(Id+ εα−1Gε)(P ε)−1 − Id

)
,

where Gε is the strain defined in (3.30). By the frame-indifference hypothesis (H3) there holds

Wel(∇εy
ε(P ε)−1) = Wel(Id+ εα−1F ε).

On the other hand,
F ε = Gε + wε − pε + εα−1Gε(wε − pε).

Combining (3.37), (3.44) and (3.51)–(3.53) we deduce

F ε ⇀ G− p weakly in L2(Ω; M3×3).

Therefore, by (2.3) and arguing as in the proof of (3.49) we conclude that

�
Ω

Q2(symG′ − p′) dx ≤
�

Ω

Q(symG− p) dx ≤ lim inf
ε→0

1
ε2α−2

�
Ω

Wel(∇εy
ε(P ε)−1) dx (3.54)

where Q2 is the quadratic form introduced in (3.25). Collecting (3.49) and (3.54), we obtain (3.45). �
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4. Construction of the recovery sequence

In this section, under some additional hypotheses on the sequence (pε,0) and on γd, we prove that the lower
bound obtained in Theorem 3.4 is optimal by exhibiting a recovery sequence.

Theorem 4.1. Assume that α ≥ 3 and γd is a finite union of disjoint (nontrivial) closed intervals (i.e., maxi-
mally connected sets) in ∂ω. Let p0 ∈ L∞(Ω; M3×3

D ) be such that there exists a sequence (pε,0) ⊂ L∞(Ω; M3×3
D )

satisfying

‖pε,0‖L∞(Ω;M3×3
D ) ≤ C for every ε, (4.1)

pε,0 → p0 strongly in L1(Ω; M3×3
D ). (4.2)

Assume also that for every ε the map P ε,0 := Id + εα−1pε,0 satisfies detP ε,0 = 1. Let (u, v, p) ∈ A(u0, v0).
Then, there exists a sequence (yε, P ε) ∈ Aε(φε) such that, defining uε, vε and pε as in (3.2), (3.3) and (3.43),
we have

yε →
(
x′
0

)
strongly in W 1,2(Ω; R3), (4.3)

uε → u strongly in W 1,2(ω; R2), (4.4)
vε → v strongly in W 1,2(ω), (4.5)
pε → p strongly in L2(Ω; M3×3). (4.6)

Moreover,

lim
ε→0

J ε
α(yε, P ε) = Jα(u, v, p), (4.7)

where J ε
α and Jα are the functionals introduced in (2.20), (3.28) and (3.29).

Proof. For the sake of simplicity we divide the proof into two steps.

Step 1. Let (u, v, p) ∈ A(u0, v0). We first remark that by a standard approximation argument we may assume
that p ∈ C∞

c (Ω; M3×3
D ). Moreover, we claim that we can always reduce to the case where u ∈W 1,∞(ω; R2) and

v ∈ W 2,∞(ω). That is, we can approximate the pair (u, v) in the sense of (4.4)–(4.5) by a sequence of pairs
(uλ, vλ) in W 1,∞(ω; R2)×W 2,∞(ω) satisfying the same boundary conditions as (u, v) on γd, and such that, for
α > 3,

lim
λ→+∞

�
Ω

Q2

(
sym∇′uλ − x3(∇′)2vλ − p′

)
dx

=
�

Ω

Q2

(
sym∇′u− x3(∇′)2v − p′

)
dx, (4.8)

whereas for α = 3

lim
λ→+∞

�
Ω

Q2

(
sym∇′uλ +

1
2
∇′vλ ⊗∇′vλ − x3(∇′)2vλ − p′

)
dx

=
�

Ω

Q2

(
sym∇′u+

1
2
∇′v ⊗∇′v − x3(∇′)2v − p′

)
dx. (4.9)

By the hypotheses on γd, we may apply ([8], Prop. A.2), and for every λ > 0 we construct a pair (uλ, vλ) ∈
W 1,∞(ω; R2) ×W 2,∞(ω), such that (uλ, vλ, p) ∈ A(u0, v0),

‖uλ‖W 1,∞(ω;R2) + ‖vλ‖W 2,∞(ω) ≤ Cλ, (4.10)
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and setting
ωλ := {x′ ∈ ω : uλ(x′) �= u(x′) or vλ(x′) �= v(x′)},

there holds
lim

λ→+∞
λ2L2(ωλ) = 0. (4.11)

Now, by (4.10) we obtain

‖uλ − u‖W 1,2(ω;R2) ≤ C
(‖uλ − u‖L2(ωλ;R2) + ‖∇′uλ −∇′u‖L2(ωλ;M2×2)

)
≤ C

(
‖u‖L2(ωλ;R2) + ‖∇′u‖L2(ωλ;M2×2) + λ

(L2(ωλ)
) 1

2
)

and, analogously

‖vλ − v‖W 2,2(ω;R2) ≤ C
(
‖v‖L2(ωλ) + ‖∇′v‖L2(ωλ;R2) + ‖(∇′)2v‖L2(ωλ;M2×2) + λ

(L2(ωλ)
) 1

2
)
.

Hence, by (4.11) we deduce
uλ → u strongly in W 1,2(ω; R2) (4.12)

and
vλ → v strongly in W 2,2(ω), (4.13)

as λ→ +∞. Therefore, in particular

∇′vλ → ∇′v strongly in Lp(ω; R2) for every p ∈ [2,+∞). (4.14)

By (4.12), (4.13) and (4.14) we obtain (4.8) and (4.9).

Step 2. To complete the proof of the theorem we shall prove that for every triple (u, v, p) ∈ A(u0, v0), with
u ∈ W 1,∞(ω; R2), v ∈ W 2,∞(ω) and p ∈ C∞

c (Ω; M3×3
D ) we can construct a sequence (yε, P ε) ∈ A(φε) satisfy-

ing (4.3)–(4.7).
To this purpose, consider the functions

P ε := exp(εα−1p) and pε :=
1

εα−1

(
exp

(
εα−1p

)− Id
)
.

Since p ∈ C∞
c (Ω; M3×3

D ), it is immediate to see that detP ε(x) = 1 for every ε and for all x ∈ Ω. Moreover,
there exists ε0 > 0 such that

P ε(x) ∈ K for every x ∈ Ω and for all 0 ≤ ε < ε0,

and there holds
pε → p uniformly in Ω,

which in turn implies (4.6). Furthermore,

‖P ε − Id‖L∞(Ω;M3×3) ≤ Cεα−1,

and by (2.9), for every δ > 0 there exists εδ such that if 0 ≤ ε < εδ there holds∣∣∣∣ 1
ε2α−2

�
Ω

Whard(P ε) dx−
�

Ω

B(pε) dx
∣∣∣∣ ≤ δ

�
Ω

B(pε) dx.

By (4.6) we deduce that

lim
ε→0

1
ε2α−2

�
Ω

Whard(P ε) dx =
�

Ω

B(p) dx. (4.15)
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To study the dissipation potential, we first remark that by (4.1), for ε small enough, there holds

exp(εα−1pε,0(x))(P ε,0)−1(x) ∈ K for every x ∈ Ω. (4.16)

Hence, by (2.15) and (2.17) the following estimate holds true:

1
εα−1

�
Ω

D
(
P ε,0, P ε

)
dx ≤ 1

εα−1

�
Ω

D
(
P ε,0, exp

(
εα−1pε,0

))
dx

+
1

εα−1

�
Ω

D
(
exp

(
εα−1pε,0

)
, exp

(
εα−1p

))
dx

≤ C

εα−1

�
Ω

| exp
(
εα−1pε,0

) (
P ε,0

)−1 − Id| dx

+
1

εα−1

�
Ω

D
(
Id, exp

(
εα−1

(
p− pε,0

)))
dx.

By the positive homogeneity of HD and taking c(t) = exp(εα−1(p− pε,0)t) in (2.14), we obtain

1
εα−1

�
Ω

D(Id, exp(εα−1(p− pε,0))) dx ≤
�

Ω

HD(p− pε,0) dx.

On the other hand, by (4.1) there holds
�

Ω

| exp(εα−1pε,0)(P ε,0)−1 − Id| dx ≤ ck

�
Ω

| exp(εα−1pε,0) − Id− εα−1pε,0| dx ≤ Cε2α−2.

Collecting the previous estimates we deduce

1
εα−1

�
Ω

D(P ε,0, P ε) dx ≤
�

Ω

HD(p− pε,0) dx+ Cεα−1,

which in turn, by (4.2), yields

lim sup
ε→0

1
εα−1

�
Ω

D(P ε,0, P ε) dx ≤
�

Ω

HD(p− p0) dx. (4.17)

Let d ∈ C∞
c (Ω; R3) and consider the deformations

yε(x) :=
(
x′
εx3

)
+ εα−1

(
u(x′) − x3∇′v(x′)

0

)
+ εα−2

( 0
v(x′)

)
+ εα

� x3

− 1
2

d(x′, s) ds

for every x ∈ Ω. It is immediate to see that the sequence (yε) fulfills both (2.19) and (4.3). We note that

uε(x′) = u(x′) + ε

� 1
2

− 1
2

� x3

− 1
2

d′(x′, s) ds dx3

and

vε(x′) = v(x′) + ε2
� 1

2

− 1
2

� x3

− 1
2

d3(x′, s) ds dx3

for every x′ ∈ ω, hence both (4.4) and (4.5) hold true. To complete the proof of the theorem, it remains to show
that for α > 3

lim
ε→0

1
ε2α−2

�
Ω

Wel(∇εy
ε(P ε)−1) dx =

�
Ω

Q

(
sym

(∇′u− x3(∇′)2v
0

∣∣∣d)− p

)
dx, (4.18)
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and for α = 3,

lim
ε→0

1
ε2α−2

�
Ω

Wel(∇εy
ε(P ε)−1) dx =

�
Ω

Q

(
sym

(∇′u+ 1
2∇′v ⊗∇′v − x3(∇′)2v

0

∣∣∣ d′

d3 + |∇′v|2
2

)
− p

)
dx.

(4.19)
If (4.18) holds, then by a standard approximation argument we may assume that

Q

(
sym

(∇′u− x3(∇′)2v
0

∣∣∣∣ d)− p
)

= Q2

(
sym∇′u− x3(∇′)2v − p′

)
.

Indeed, let η ∈ L2(Ω; R3) be such that

Q

(
sym∇′u− x3(∇′)2v − p′

(η′)T

∣∣∣ η′η3
))

= Q2

(
sym∇′u− x3(∇′)2v − p′

)
.

Then it is enough to consider a sequence (dn) ⊂ C∞
c (Ω; R3) such that

dn
α → 2(ηα + pα3), α = 1, 2, and dn

3 → η3 + p33

strongly in L2(Ω).
Analogously, if (4.19) holds we may assume that

Q

(
sym

(∇′u+ 1
2∇′v ⊗∇′v − x3(∇′)2v

0

∣∣∣ d′

d3 + |∇′v|2
2

)
− p

)
= Q2

(
sym∇′u+

1
2
∇′v ⊗∇′v − x3(∇′)2v − p′

)
.

In both cases by (4.15), (4.17), and Theorem 3.4, we obtain (4.7).
To prove (4.18) and (4.19) we first note that

∇εy
ε = Id+ εα−1

(∇′u− x3(∇′)2v
0

∣∣∣d)+ εα−2

(
0 −∇′v

(∇′v)T 0

)
+ O(εα).

Hence, in particular, det(∇εy
ε) > 0 for ε small enough. On the other hand, by the frame-indifference hypothe-

sis (H3), there holds

Wel(∇εy
ε(P ε)−1) = Wel

(√
(∇εyε)T∇εyε(P ε)−1

)
a.e. in Ω.

A direct computation yields√
(∇εyε)T∇εyε = Id+ εα−1sym

(∇′u− x3(∇′)2v
0

∣∣∣d)+
ε2α−4

2

(∇′v ⊗∇′v 0
0 |∇′v|2

)
+ o(εα−1),

and
Wel

(∇εy
ε(P ε)−1

)
= Wel

(
Id+ εα−1Mα + o(εα−1)

)
a.e. in Ω,

where

Mα :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sym

(
∇′u− x3(∇′)2v

0

∣∣∣d)− p if α > 3,

sym

(
∇′u+ 1

2∇′v ⊗∇′v − x3(∇′)2v
0

∣∣∣ d′

d3 + |∇′v|2
2

)
− p if α = 3.

Fix δ > 0. For every α ≥ 3 we have Mα ∈ L∞(Ω; M3×3), therefore for ε small enough

‖εα−1Mα + o(εα−1)‖L∞(Ω;M3×3) ≤ cel(δ).
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By (2.3), we deduce

lim sup
ε→0

∣∣∣ 1
ε2α−2

�
Ω

Wel(∇εy
ε(P ε)−1) dx−

�
Ω

Q(Mα) dx− o(ε2α−2)
ε2α−2

∣∣∣ ≤ δ

�
Ω

Q(Mα) dx.

Claims (4.18) and (4.19) follow now by letting δ tend to zero. �

5. Convergence of almost minimizers and characterization of the limit
functional

In this section we deduce convergence of almost minimizers of the three-dimensional energies to minimizers of
the limit functional and we show some examples where a characterization of the limit functional can be provided
in terms of two-dimensional quantities.

The compactness and liminf inequalities proved in Theorem 3.4 and the limsup inequality deduced in
Theorem 4.1 allow us to obtain the main result of the paper:

Theorem 5.1. Assume that α ≥ 3 and γd is a finite union of disjoint (nontrivial) closed intervals in the
relative topology of ∂ω. Let p0 ∈ L∞(Ω; M3×3

D ) be such that there exists a sequence (pε,0) ⊂ L∞(Ω; M3×3
D )

satisfying

‖pε,0‖L∞(Ω;M3×3
D ) ≤ C,

pε,0 → p0 strongly in L1(Ω; M3×3
D ).

Assume also that for every ε the map P ε,0 := Id + εα−1pε,0 satisfies detP ε,0 = 1 a.e. in Ω. Let φε be defined
as in (2.1) and let J ε

α and Jα be the functionals given by (2.20), (3.28) and (3.29). For every ε > 0, let
(yε, P ε) ∈ Aε(φε) be such that

J ε
α(yε, P ε) − inf

(y,P )∈Aε(φε)
J ε

α(y, P ) ≤ sε, (5.1)

where sε → 0+ as ε → 0. Finally, let uε, vε and pε be the displacements and scaled plastic strain introduced
in (3.2), (3.3) and (3.43). Then, there exists a triple (u, v, p) ∈ A(u0, v0) such that, up to subsequences, there
holds

uε → u strongly in W 1,2(ω; R2), (5.2)
vε → v strongly in W 1,2(ω), (5.3)
pε → p strongly in L2(Ω; M3×3). (5.4)

Moreover, (u, v, p) is a minimizer of Jα and

lim
ε→0

J ε
α(yε, P ε) = Jα(u, v, p). (5.5)

Proof. By Theorems 3.4 and 4.1 and by standard arguments in Γ -convergence we deduce (5.3), we show that

uε ⇀ u weakly in W 1,2(ω; R2),
pε ⇀ p weakly in L2(Ω; M3×3),

where (u, v, p) ∈ A(u0, v0) is a minimizer of Jα, and we prove (5.5). Strong convergence of uε and pε follows
by (5.5) and by arguing as in the proofs of ([6], Cors. 5.2 and 5.3). �
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We remark that the limit plastic strain p depends nontrivially on the x3 variable. Therefore, the limit
functionals Jα cannot, in general, be expressed in terms of two-dimensional quantities only. A characterization
of the functionals in terms of the zeroth and first order moments of p can be obtained arguing as follows. Denote
by p̄, p̂ ∈ L2(ω; M3×3

D ) and p⊥ ∈ L2(Ω; M3×3
D ) the following components of the plastic strain p:

p̄(x′) :=
� 1

2

− 1
2

p(x′, x3) dx3, p̂(x′) := 12
� 1

2

− 1
2

x3p(x′, x3) dx3 for a.e. x′ ∈ ω,

and
p⊥(x) := p(x) − p̄(x′) − x3p̂(x′) for a.e. x ∈ Ω.

We remark that p̄, x3p̂ and p⊥ are orthogonal in the sense of L2(Ω; M3×3
D ). Then the functionals Jα can be

written in terms of p̄, p̂, p⊥ as

Jα(u, v, p) =
�

ω

Q2(sym∇′u− p̄′) dx′ +
1
12

�
ω

Q2((∇′)2v + p̂′) dx′

+
�

Ω

Q2(p′⊥) dx+
�

ω

B(p̄) dx′ +
1
12

�
ω

B(p̂) dx′

+
�

Ω

B(p⊥) dx+
�

Ω

HD(p− p0) dx,

for α > 3, and

J3(u, v, p) =
�

ω

Q2

(
sym∇′u+ 1

2∇′v ⊗∇′v − p̄′
)
dx′

+
1
12

�
ω

Q2((∇′)2v + p̂′) dx′ +
�

Ω

Q2(p′⊥) dx+
�

ω

B(p̄) dx′

+
1
12

�
ω

B(p̂) dx′ +
�

Ω

B(p⊥) dx+
�

Ω

HD(p− p0) dx,

for every (u, v, p) ∈ A(u0, v0) (see (2.9) and (3.25) for the definitions of B and Q2).
Under additional hypothesis on the boundary data and the preexistent limit plastic strain p0, some two-

dimensional characterizations of the limit model can be deduced in the case α > 3. To this purpose, we
introduce the reduced functionals

J̄α(u, p̄) :=
�

ω

Q2(sym∇′u− p̄′) dx′ +
�

ω

B(p̄) dx′ +
�

ω

HD(p̄− p̄0) dx′ (5.6)

for every (u, p̄) ∈W 1,2(ω; R2) × L2(ω; M3×3
D ) such that u = u0 H1 - a.e. on γd, and

Ĵα(v, p̂) :=
�

ω

Q2((∇′)2v + p̂′) dx′ +
�

ω

B(p̂) dx′ +
�

ω

HD(p̂− p̂0) dx′, (5.7)

for every (v, p̂) ∈ W 2,2(ω) × L2(ω; M3×3
D ) such that v = v0 and ∇′v = ∇′v0 H1 - a.e. on γd.

We first show an example where Jα reduces to J̄α, that is the limit model depends just on the in-plane
displacement and the zeroth moment of the plastic strain.

Theorem 5.2. Under the hypothesis of Theorem 5.1, if α > 3, p0 = p̄0, with p̄0 ∈ L∞(ω; M3×3
D ), and v0 = 0

then, denoting by p̄ the zeroth moment of the limit plastic strain p, the pair (u, p̄) is a minimizer of J̄α and

lim
ε→0

J ε
α(yε, P ε) = J̄α(u, p̄).
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Proof. By Jensen inequality, �
Ω

HD(p− p0) dx ≥
�

ω

HD(p̄− p̄0) dx′,

hence there holds
Jα(u, v, p) ≥ J̄α(u, p̄).

On the other hand, by setting
P̃ ε := exp (εα−1p̄)

and

ỹε :=
(
x′
εx3

)
+ εα−1

(
u
0

)
+ εα

� x3

− 1
2

d(x′, s) ds,

with d ∈ C∞
c (Ω; R3), then (ỹε, P̃ ε) ∈ A(φε) and an adaptation of Theorem 4.1 yields

lim
ε→0

J ε
α(ỹε, P̃ ε) = J̄α(u, p̄).

By combining the previous remarks we have

Jα(u, v, p) ≥ J̄α(u, p̄) = lim
ε→0

J ε
α(ỹε, P̃ ε) ≥ lim

ε→0
J ε

α(yε, P ε).

The conclusion follows now by Theorem 5.1. �

We conclude this section by providing an example where, if HD is homogeneous of degree one, the Γ -limit Jα

reduces to Ĵα, that is the limit model depends just on the out-of-plane displacement and the first order moment
of the plastic strain.

Theorem 5.3. Assume the function HD to be homogeneous of degree one, i.e.,

HD(λξ) = |λ|HD(ξ) for every λ ∈ R, ξ ∈ M
3×3
D . (5.8)

Under the hypothesis of Theorem 5.1, if α > 3, p0 = x3p̂
0, with p̂0 ∈ L∞(ω; M3×3

D ), and u0 = 0 then, denoting
by p̂ the first order moment of the limit plastic strain p, the pair (v, p̂) is a minimizer of Ĵα and

lim
ε→0

J ε
α(yε, P ε) =

1
12

Ĵα(v, p̂).

Proof. By Jensen inequality and (5.8) we deduce,
�

Ω

HD(p− p0) dx ≥
�

Ω

|x3|HD(p− p0) dx =
�

Ω

HD(x3p− x3p
0) dx ≥ 1

12

�
ω

HD(p̂− p̂0) dx′,

which in turn implies

Jα(u, v, p) ≥ 1
12

Ĵα(v, p̂).

On the other hand, by setting
P̃ ε := exp (εα−1x3p̂)

and

ỹε :=
(
x′
εx3

)
− εα−1x3

(∇′v
0

)
+ εα−2

(
v
0

)
+ εα

� x3

− 1
2

d(x′, s) ds,

with d ∈ C∞
c (Ω; R3), an adaptation of Theorem 4.1 yields

lim
ε→0

J ε
α(ỹε, P̃ ε) =

1
12

Ĵα(v, p̂).

The conclusion follows now arguing as in the proof of Theorem 5.2. �
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