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CONTROL OF UNDERWATER VEHICLES IN INVISCID FLUIDS

I. IRROTATIONAL FLOWS

Rodrigo Lecaros1,2 and Lionel Rosier3

Abstract. In this paper, we investigate the controllability of an underwater vehicle immersed in an
infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as control input
the flow of the fluid through a part of the boundary of the rigid body, we obtain a finite-dimensional
system similar to Kirchhoff laws in which the control input appears through both linear terms (with time
derivative) and bilinear terms. Applying Coron’s return method, we establish some local controllability
results for the position and velocities of the underwater vehicle. Examples with six, four, or only three
controls inputs are given for a vehicle with an ellipsoidal shape.
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1. Introduction

The control of boats or submarines has been investigated for a long time (see e.g. [2–4, 9, 10, 18–21]). To
derive simple models, it is often assumed that the fluid is inviscid, incompressible and irrotational, and that
the rigid body (the vehicle) has an elliptic shape. On the other hand, the control is assumed to appear linearly
in the model. This yields a finite-dimensional system describing the dynamics of the rigid body, the so-called
Kirchhoff laws.

Some accurate model of a boat without rudder controlled by two propellers, the one displayed in a transversal
bowthruster at the bow of the ship, the other one placed at the stern of the boat, was derived and investigated
in [12]. This kind of model makes sense, as a large vessel (e.g. a cargo ship) often presents a tunnel thruster
built into the bow to make docking easier. This model can also be used to describe the motion in the horizontal
plane of a submarine without rudder. A local controllability result for the position and velocity (six coordinates)
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of the vehicle surrounded by an inviscid (not necessarily irrotational) fluid was derived in [12] with only two
controls inputs.

The aim of this paper is to go one step further by providing an accurate model of a neutrally buoyant
underwater vehicle immersed in an infinite volume of ideal fluid, without rudder, and actuated by a few number
of propellers located into some tunnels inside the rigid body, and to give a rigorous analysis of the control
properties of such a system. An underwater vehicle (without rudder) equipped with one propeller at the rear
end and several (lateral) bioinspired vortex ring thrusters was built and described in [17, 28].

We aim to control both the position, the attitude, and the (linear and angular) velocities (hence twelve
coordinates) of the vehicle by taking as control input the flow of the fluid through a part of the boundary of
the rigid body. The inviscid incompressible fluid is assumed here to have an irrotational (hence potential) flow,
for the sake of simplicity. The case of a fluid with vorticity will be considered elsewhere.

We follow in this paper the same approach as in [12], but we have to face some new difficulties:

(i) first, the fluid is three-dimensional, and in the potential case the finite-dimensional system to control lives
in R12, not in R6;

(ii) more controls are required (roughly, m = 6, if we want the linearized system at the origin to be controllable,
and solely m = 4 or m = 3 in some good cases);

(iii) the geometry of the supports of the controls is much more complicated than in 2D (several figures are
provided to show how controls are applied on the vehicle);

(iv) quarternions need to be introduced to represent the attitude of the object;
(v) the application of Coron’s return method requires to compute derivatives of order seven of matrices in

R12×m (the results in [12] required to compute only three derivatives of some matrices in R6×m). As a
consequence, some additional results were needed to make the computation of the successive derivatives of
the matrices involved in Silverman−Meadows test easier.

Our fluid-structure interaction problem can be described as follow. The underwater vehicle, represented by a
rigid body occupying a connected compact set S(t) ⊂ R3, is surrounded by an homogeneous incompressible
perfect fluid filling the open set Ω(t) := R3 \ S(t) (as e.g. for a submarine immersed in an ocean). We assume
that Ω(t) is C∞ smooth and connected. Let S = S(0) and

Ω = Ω(0) = R
3 \ S(0)

denote the initial configuration (t = 0). Then, the dynamics of the fluid-structure system are governed by the
following system of PDE’s

∂u

∂t
+ (u · ∇)u+ ∇p = 0, t ∈ (0, T ), x ∈ Ω(t), (1.1)

div u = 0, t ∈ (0, T ), x ∈ Ω(t), (1.2)
u · ν = (h′ + ω × (x − h)) · ν + wf (t, x), t ∈ (0, T ), x ∈ ∂Ω(t), (1.3)

lim
|x|→+∞

u(t, x) = 0, t ∈ (0, T ), (1.4)

m0h
′′ =

∫
∂Ω(t)

pν dσ, t ∈ (0, T ), (1.5)

d
dt

(QJ0Q
∗ω) =

∫
∂Ω(t)

(x− h) × pν dσ, t ∈ (0, T ), (1.6)

Q′ = S(ω)Q, t ∈ (0, T ), (1.7)
u(0, x) = u0(x), x ∈ Ω, (1.8)

(h(0), Q(0), h′(0), ω(0)) = (h0, Q0, h1, ω0) ∈ R
3 × SO(3) × R

3 × R
3. (1.9)
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In the above equations, u (resp. p) is the velocity field (resp. the pressure) of the fluid, h denotes the position of
the center of mass of the solid, ω denotes the angular velocity and Q the 3 dimensional rotation matrix giving
the orientation of the solid. The positive constant m0 and the matrix J0, which denote respectively the mass
and the inertia matrix of the rigid body, are defined as

m0 =
∫
S
ρ(x)dx, J0 =

∫
S
ρ(x)(|x|2Id− xx∗)dx,

where ρ(·) represents the density of the rigid body. Finally, ν is the outward unit vector to ∂Ω(t), x× y is the
cross product between the vectors x and y, and S(y) is the skew-adjoint matrix such that S(y)x = y × x, i.e.

S(y) =

⎛⎝ 0 −y3 y2
y3 0 −y1
−y2 y1 0

⎞⎠.
The neutral buoyancy condition reads ∫

S
ρ(x)dx =

∫
S

1dx. (1.10)

f ′ (or ḟ) stands for the derivative of f respect to t, A∗ means the transpose of the matrix A, and Id denotes
the identity matrix. Finally, the term wf (t, x), which stands for the flow through the boundary of the rigid body,
is taken as control input. Its support will be strictly included in ∂Ω(t), and actually only a finite dimensional
control input will be considered here (see below (1.17) for the precise form of the control term wf (t, x)).

When no control is applied (i.e. wf (t, x) = 0), then the existence and uniqueness of strong solutions
to (1.1)−(1.9) was obtained first in [22] for a ball embedded in R2, and next in [23] for a rigid body S of
arbitrary form (still in R2). The case of a ball in R3 was investigated in [24], and the case of a rigid body of
arbitrary form in R3 was studied in [27]. The detection of the rigid body S(t) from partial measurements of the
fluid velocity has been tackled in [5] when Ω(t) = Ω0 \ S(t) (Ω0 ⊂ R2 being a bounded cavity) and in [6] when
Ω(t) = R2 \ S(t).

Here, we are interested in the control properties of (1.1)−(1.9). The controllability of Euler equations has
been established in 2D (resp. in 3D) in [7] (resp. in [11]). Note, however, that there is no hope here to control the
motion of both the fluid and the rigid body. Indeed, Ω(t) is an exterior domain, and the vorticity is transported
by the flow with a finite speed propagation, so that it is not affected (at any given time) far from the rigid body.
Therefore, we will deal with the control of the motion of the rigid body only. As the state of the rigid body is
described by a vector in R12, it is natural to consider a finite-dimensional control input.

Note also that since the fluid is flowing through a part of the boundary of the rigid body, additional boundary
conditions are needed to ensure the uniqueness of the solution of (1.1)−(1.9) (see [14, 15]). In dimension three,
one can specify the tangent components of the vorticity ζ(t, x) := curl v(t, x) on the inflow section; that is, one
can set

ζ(t, x) · τi = ζ0(t, x) · τi for w(t, x) < 0, i = 1, 2, (1.11)

where ζ0(t, x) is a given function and τi, i = 1, 2, are linearly independent vectors tangent to ∂Ω(t). As we are
concerned here with irrotational flows, we choose ζ0 ≡ 0.

In order to write the equations of the fluid in a fixed frame, we perform a change of coordinates. We set

x = Q(t)y + h(t), (1.12)
v(t, y) = Q∗(t)u(t, Q(t)y + h(t)), (1.13)

κ(t, y) = p(t, Q(t)y + h(t)), (1.14)
l(t) = Q∗(t)h′(t), (1.15)
r(t) = Q∗(t)ω(t). (1.16)



CONTROL OF UNDERWATER VEHICLES IN INVISCID FLUIDS. I. 665

Then x (resp. y) represents the vector of coordinates of a point in a fixed frame (respectively in a frame linked
to the rigid body). We may without loss of generality assume that

h(0) = 0, Q(0) = Id.

Note that, at any given time t, y ranges over the fixed domain Ω when x ranges over Ω(t). Finally, we assume
that the control takes the form

wf (t, x) = wf (t, Q(t)y + h(t)) =
m∑

j=1

wj(t)χj(y), (1.17)

where m ∈ N∗ stands for the number of independent inputs, and wj(t) ∈ R is the control input associated with
the function χj ∈ C∞(∂Ω). To ensure the conservation of the mass of the fluid, we impose the relation∫

∂Ω

χj(y)dσ = 0 for 1 ≤ j ≤ m. (1.18)

Then the functions (v, κ, l, r) satisfy the following system

∂v

∂t
+ ((v − l − r × y) · ∇)v + r × v + ∇κ = 0, t ∈ (0, T ), y ∈ Ω, (1.19)

div v = 0, t ∈ (0, T ), y ∈ Ω, (1.20)

v · ν = (l + r × y) · ν +
∑

1≤j≤m

wj(t)χj(y), t ∈ (0, T ), y ∈ ∂Ω, (1.21)

lim
|y|→+∞

v(t, y) = 0, t ∈ (0, T ), (1.22)

m0 l̇ =
∫

∂Ω

κν dσ −m0r × l, t ∈ (0, T ), (1.23)

J0ṙ =
∫

∂Ω

κ(y × ν) dσ − r × J0r, t ∈ (0, T ), (1.24)

(l(0), r(0)) = (h1, ω0), v(0, y) = u0(y). (1.25)

The main result of the paper, which is based upon Coron’s return method, is Theorem 3.10. It is used
thereafter to obtain for an ellipsoidal vehicle controllability results with six, four or merely three controls. Before
deriving Theorem 3.10, we do the (standing) assumption that the set S and the control χ1 are symmetric with
respect to the two planes {y2 = 0} and {y3 = 0}, and that

∫
∂Ω

y1χ1 �= 0 (still for an ellipsoidal vehicle).
The paper is organized as follows. In Section 2, we simplify system (1.1)−(1.9) by assuming that the fluid is

potential. We obtain a finite dimensional system (namely (2.65)) similar to Kirchhoff laws, in which the control
input w appears through both linear terms (with time derivative) and bilinear terms. The investigation of the
control properties of (2.65) is performed in Section 3. After noticing that the controllability of the linearized
system at the origin requires six control inputs, we apply the return method due to Jean-Michel Coron to take
advantage of the nonlinear terms in (2.65). (We refer the reader to [8] for an exposition of that method for
finite-dimensional systems and for PDE’s). We consider the linearization along a certain closed-loop trajectory
and obtain a local controllability result (Thm. 3.10) assuming that two rank conditions are fulfilled, by using a
variant of Silverman−Meadows test for the controllability of a time-varying linear system. Some examples using
symmetry properties of the rigid body are given in Section 4.
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2. Equations of the motion in the potential case

In this Section we derive the equations describing the motion of the rigid body subject to flow boundary
control when the fluid is potential.

2.1. Null vorticity

Let us denote by
ζ(t, y) = curl v(t, y) := (∇× v)(t, y)

the vorticity of the fluid. Here, we assume that

ζ0 = curl v0 = 0 in Ω (2.1)

and that the three components of ζ are null at the inflow part of ∂Ω, namely

ζ(t, y) = 0, if y ∈ ∪1≤j≤m Supp χj and
m∑

j=1

wj(t)χj(y) ≤ 0. (2.2)

Proposition 2.1. Under the assumptions (2.1) and (2.2), one has

ζ = curl v ≡ 0 in [0, T ]×Ω, (2.3)

Proof. Let us introduce ṽ := v − l − r × y. Then it follows from (1.20) that

div(ṽ) = 0, (2.4)

and
curl(ṽ) = ζ − 2r. (2.5)

Applying the operator curl in (1.19) results in

∂ζ

∂t
+ curl((ṽ · ∇)ṽ) + curl((ṽ · ∇)(l + r × y)) + curl(r × v) = 0. (2.6)

We note that the following identities hold:

curl((v · ∇)v) = (v · ∇)curl(v) − (curl(v) · ∇)v + div(v)curl(v) (2.7)

and
(v · ∇)(r × y) = r × v, curl(r × v) = div(v)r − (r · ∇)v. (2.8)

Using (2.4)−(2.8), we see that ζ satisfies

∂ζ

∂t
+ (ṽ · ∇)ζ − (ζ · ∇)ṽ = 0. (2.9)

Let ϕ = ϕ(t, s, y) denote the flow associated with ṽ, i.e.

∂ϕ

∂t
= ṽ(t, ϕ), with ϕ|t=s = y. (2.10)

We denote by G(t, s, y) = ∂ϕ
∂y (t, s, y) the Jacobi matrix of ϕ. Differentiating in (2.10) with respect to yj (j =

1, 2, 3), we see that G(t, s, y) satisfies the following equation:

∂G

∂t
=
∂ṽ

∂y
(t, ϕ(t, s, y)) ·G(t, s, y), where G(s, s, y) = Id (identity matrix). (2.11)
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We infer from (2.4) and (2.11) that
det G(t, s, y) = 1. (2.12)

Following Yudovich [14], for any (t, y) ∈ [0, T ] × Ω we introduce the time t∗(t, y) ∈ [0, t] at which the
fluid element first appears in Ω; that is, t∗ the infimum of the τ ∈ [0, t] such that the flow ϕ(·, t, y) is well
defined on [τ, t] (and Ω−valued). We set y∗(t, y) = ϕ(t∗(t, y), t, y) ∈ Ω. Then either t∗ = 0, or t∗ > 0
and y∗ ∈ ∪1≤j≤m supp χj ⊂ ∂Ω with

∑m
j=1 wj(t∗)χj(y∗) ≤ 0. Set f(s, t, y) = G−1(s, t, y)ζ(s, ϕ(s, t, y)).

From (2.9)−(2.12), we obtain that
∂f

∂s
(s, t, y) = 0. (2.13)

Finally, integrating with respect to s in (2.13) yields

ζ(t, y) = G−1(t∗, t, y)ζ(t∗, y∗), (2.14)

which, combined to (2.1) and (2.2), gives (2.3). The proof of Proposition 2.1 is complete. �

Remark 2.2. The issue whether the result in Proposition 2.1 still holds with (2.2) replaced by

ζ(t, y) · τi = 0, i = 1, 2, if y ∈ ∪1≤j≤m Supp χj and
m∑

j=1

wj(t)χj(y) ≤ 0,

seems challenging. We notice that the result in [15] was proved solely when Ω was a cylinder.

2.2. Decomposition of the fluid velocity

It follows from (1.20), (1.22) and (2.3) that the flow is potential; that is,

v = ∇Φ, (2.15)

where Φ = Φ(t, y) solves
ΔΦ = 0, in (0, T ) ×Ω, (2.16)

∂Φ

∂ν
= (l + r × y) · ν +

∑
1≤j≤m

wj(t)χj(y) on (0, T ) × ∂Ω, (2.17)

lim
|y|→+∞

∇Φ(t, y) = 0, on (0, T ). (2.18)

Actually, Φ may be decomposed as

Φ(t, y) =
∑

1≤i≤3

{
liφi + riϕi

}
+

∑
1≤j≤m

wjψj (2.19)

where, for i = 1, 2, 3 and j = 1, . . . ,m,

Δφi = Δϕi = Δψj = 0 in Ω, (2.20)

∂φi

∂ν
= νi,

∂ϕi

∂ν
= (y × ν)i,

∂ψj

∂ν
= χj on ∂Ω, (2.21)

lim
|y|→+∞

∇φi(y) = 0, lim
|y|→+∞

∇ϕi(y) = 0, lim
|y|→+∞

∇ψj(y) = 0. (2.22)

As the open set Ω and the functions χj , 1 ≤ j ≤ m, supporting the control are assumed to be smooth, we
infer that the functions ∇φi (i = 1, 2, 3), the functions ∇ϕi (i = 1, 2, 3) and the functions ∇ψj (1 ≤ j ≤ m)
belong to H∞(Ω).
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2.3. Equations for the linear and angular velocities

For notational convenience, in what follows
∫

Ω f (resp.
∫

∂Ω f) stands for
∫

Ω f(y)dy (resp.
∫

∂Ω f(y)dσ(y)).
Let us introduce the matrices M,J,N ∈ R3×3, CM , CJ ∈ R3×m, LM

p , LJ
p , R

M
p , RJ

p ∈ R3×3, and the matrices
WM

p ,W J
p ∈ R3×m for p ∈ {1, . . . ,m} defined by

Mi,j =
∫
Ω

∇φi · ∇φj =
∫

∂Ω

νiφj =
∫

∂Ω

∂φi

∂ν
φj , (2.23)

Ji,j =
∫
Ω

∇ϕi · ∇ϕj =
∫

∂Ω

(y × ν)iϕj =
∫

∂Ω

∂ϕi

∂ν
ϕj , (2.24)

Ni,j =
∫
Ω

∇φi · ∇ϕj =
∫

∂Ω

νiϕj =
∫

∂Ω

φi(y × ν)j , (2.25)

(CM )i,j =
∫
Ω

∇φi · ∇ψj =
∫

∂Ω

νiψj =
∫

∂Ω

φiχj , (2.26)

(CJ )i,j =
∫
Ω

∇ϕi · ∇ψj =
∫

∂Ω

(y × ν)iψj =
∫

∂Ω

ϕiχj , (2.27)

(LM
p )i,j =

∫
∂Ω

(∇φj)iχp, (LJ
p )i,j =

∫
∂Ω

(y ×∇φj)iχp, (2.28)

(RM
p )i,j =

∫
∂Ω

(∇ϕj)iχp, (RJ
p )i,j =

∫
∂Ω

(y ×∇ϕj)iχp, (2.29)

(WM
p )i,j =

∫
∂Ω

(∇ψj)iχp, (W J
p )i,j =

∫
∂Ω

(y ×∇ψj)iχp. (2.30)

Note that M∗ = M and J∗ = J.
Let us now reformulate the equations for the motion of the rigid body. We define the matrix J ∈ R6×6 by

J =
(
m0 Id 0

0 J0

)
+

(
M N
N∗ J

)
. (2.31)

It is easy to see that J is a (symmetric) positive definite matrix. We associate to the (linear and angular)
velocity (l, r) ∈ R3 × R3 of the rigid body a momentum-like quantity, the so-called impulse (P,Π) ∈ R3 × R3,
defined by

J
(
l
r

)
=

(
P
Π

)
. (2.32)

We are now in a position to give the equations governing the dynamics of the impulse.

Proposition 2.3. The dynamics of the system are governed by the following Kirchhoff equations

dP
dt

+ CM ẇ = (P + CMw) × r −
∑

1≤p≤m

wp

{
LM

p l +RM
p r +WM

p w
}
,

dΠ
dt

+ CJ ẇ = (Π + CJw) × r + (P + CMw) × l −
∑

1≤p≤m

wp

{
LJ

p l+RJ
p r +W J

p w
}
,

(2.33)

where w(t) := (w1(t), . . . , wm(t)) ∈ Rm denotes the control input.
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Proof. We first express the pressure κ in terms of l, r, v and their derivatives. Using (2.3), we easily obtain

v · ∇v = ∇|v|2
2

and (r × y) · ∇v − r × v = ∇((r × y) · v). (2.34)

Thus (1.19) gives

−∇κ =
∂v

∂t
+ ∇

( |v|2
2

− l · v − (r × y) · v
)

= ∇
⎛⎝ ∑

1≤i≤3

{
l̇iφi + ṙiϕi

}
+

∑
1≤j≤m

ẇjψj +
|v|2
2

− l · v − (r × y) · v
⎞⎠,

hence we can take

κ = −
⎧⎨⎩ ∑

1≤i≤3

{
l̇iφi + ṙiϕi

}
+

∑
1≤j≤m

ẇjψj +
|v|2
2

− (l+ (r × y)) · v
⎫⎬⎭ . (2.35)

Replacing κ by its value in (1.23) yields

m0 l̇ = −m0r × l −
⎧⎨⎩ ∑

1≤i≤3

⎛⎝l̇i ∫
∂Ω

φiν + ṙi

∫
∂Ω

ϕiν

⎞⎠ +
∑

1≤j≤m

ẇj

∫
∂Ω

ψjν +
∫

∂Ω

( |v|2
2

− (l + (r × y)) · v
)
ν

⎫⎬⎭ .

(2.36)
Using (2.34) and (1.20)−(1.21), we obtain∫

∂Ω

|v|2
2
ν =

∫
Ω

∇|v|2
2

=
∫
Ω

v · ∇v

= −
∫
Ω

(div v)v +
∫

∂Ω

(v · ν)v

=
∫

∂Ω

((l + r × y) · ν) v +
∑

1≤j≤m

wj(t)
∫

∂Ω

χj(y)v. (2.37)

Using Lagrange’s formula:
a× (b× c) = (a · c)b− (a · b)c, ∀a, b, c ∈ R

3, (2.38)

we obtain that ∫
∂Ω

((l + r × y) · ν) v − ((l + r × y) · v) ν =
∫

∂Ω

(l + r × y) × (v × ν). (2.39)

Now we claim that ∫
∂Ω

ν ×∇f = 0, ∀f ∈ C2(Ω). (2.40)

To prove the claim, we introduce a smooth cutoff function ρa such that

ρa(y) =
{

1 if |y| < a,
0 if |y| > 2a.
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Pick a radius a > 0 such that S ⊂ B(0, a), and set

f̃(y) = f(y)ρa(y). (2.41)

Then
∇f̃(y) = ∇f(y), ∀y ∈ ∂Ω,

and using the divergence theorem, we obtain∫
∂Ω

ν ×∇f =
∫

∂Ω

ν ×∇f̃ =
∫
Ω

curl(∇f̃) = 0.

Therefore, using (2.40) with f = Φ where ∇Φ = v, we obtain∫
∂Ω

l × (v × ν) = 0. (2.42)

Another application of (2.40) with f = yiΦ yields∫
∂Ω

yiv × ν =
∫

∂Ω

ν × eiΦ, (2.43)

where {e1, e2, e3} denotes the canonical basis in R3. It follows from (2.42), (2.43), and (2.38) that∫
∂Ω

(l + r × y) × (v × ν) = r ×
∫

∂Ω

Φν

= r(t) ×
⎛⎝ 3∑

i=1

{
li(t)

∫
∂Ω

φi(y)ν(y) + ri(t)
∫

∂Ω

ϕi(y)ν(y)
}

+
m∑

j=1

wj(t)
∫

∂Ω

ψj(y)ν(y)

⎞⎠ . (2.44)

Combining (2.36) with (2.37), (2.39), and (2.44) yields

m0 l̇ = −
⎧⎨⎩

3∑
i=1

l̇i

∫
∂Ω

φiν + ṙi

∫
∂Ω

ϕiν +
m∑

j=1

ẇj

∫
∂Ω

ψjν

⎫⎬⎭
−

m∑
j=1

wj

⎧⎨⎩
3∑

i=1

li

∫
∂Ω

χj∇φi + ri

∫
∂Ω

χj∇ϕi +
m∑

p=1

wp

∫
∂Ω

χj∇ψp

⎫⎬⎭
−r ×

⎧⎨⎩
3∑

i=1

li

∫
∂Ω

φiν + ri

∫
∂Ω

ϕiν +
m∑

j=1

wj

∫
∂Ω

ψjν

⎫⎬⎭
−m0r × l. (2.45)

Let us turn our attention to the dynamics of r. Substituting the expression of κ given in (2.35) in (1.24)
yields

J0ṙ = −r × J0r −
∑

1≤i≤3

⎧⎨⎩l̇i
∫

∂Ω

φi(y × ν) + ṙi

∫
∂Ω

ϕi(y × ν)

⎫⎬⎭ −
∑

1≤j≤m

ẇj

∫
∂Ω

ψj(y × ν)

−
∫

∂Ω

( |v|2
2

− (l + (r × y)) · v
)

(y × ν). (2.46)



CONTROL OF UNDERWATER VEHICLES IN INVISCID FLUIDS. I. 671

From [16], Proof of Lemma 2.7, we know that

|v(y)| = |∇Φ(y)| = O(|y|−2), |∇v(y)| = O(|y|−3) as |y| → ∞,

so that

v ∈ L2(Ω), |y| · |v| · |∇v| ∈ L1(Ω). (2.47)

Note that, by (2.34) and (1.20),

div
( |v|2

2
(êi × y)

)
= ∇

( |v|2
2

)
· (ei × y) +

|v|2
2

div(ei × y)

= (v · ∇v) · (ei × y)
= v · ∇(y × v)i

= div
(
(y × v)iv

)
,

and hence, using (2.47) and the divergence theorem,

∫
∂Ω

|v|2
2

(y × ν)i =
∫

∂Ω

|v|2
2

(ei × y) · ν

=
∫
Ω

div
( |v|2

2
(ei × y)

)

=
∫

Ω

div
(
(y × v)iv

)
=

∫
∂Ω

(v · ν)(y × v)i

=
∫

∂Ω

(l + r × y) · ν(y × v)i +
∑

1≤j≤m

wj(t)
∫

∂Ω

χj(y × v)i. (2.48)

Furthermore, using (2.38) we have that∫
∂Ω

(l + r × y) · ν(y × v)i − (l + (r × y)) · v(y × ν)i

=
∫

∂Ω

(l + r × y) ·
((

(ei × y) · v)ν − (
(ei × y) · ν)v)

=
∫

∂Ω

(l + r × y) · ((ei × y) × (ν × v)) . (2.49)

Combining the following identity

3∑
j=1

(a× ej) × (ej × b) = −(a× b), ∀a, b ∈ R
3 (2.50)
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with (2.43), we obtain ∫
∂Ω

l · ((ei × y) × (ν × v)) =
3∑

j=1

∫
∂Ω

l · ((ei × ej) × (ν × yjv))

=
3∑

j=1

l ·
⎛⎝(ei × ej) ×

∫
∂Ω

(ν × yjv)

⎞⎠
=

3∑
j=1

l ·
⎛⎝(ei × ej) ×

∫
∂Ω

(ej × ν)Φ

⎞⎠
= −l ·

∫
∂Ω

(ei × ν)Φ =
∫

∂Ω

(l × ν)i Φ. (2.51)

For any given f ∈ C2(Ω), let

I :=
∫

∂Ω

(r × y) · ((ei × y) × (ν ×∇f)) .

f̃ still denoting the function defined in (2.41), we have that

I =
3∑

j=1

∫
∂Ω

(r × y) ·
(
(ei × y) × (ej ×∇f̃)

)
νj

=
3∑

j=1

⎧⎨⎩
∫
Ω

(r × ej) ·
(
(ei × y) × (ej ×∇f̃)

)⎫⎬⎭ +
3∑

j=1

⎧⎨⎩
∫
Ω

(r × y) ·
(
(ei × ej) × (ej ×∇f̃)

)⎫⎬⎭
+

3∑
j=1

⎧⎨⎩
∫
Ω

(r × y) ·
(
(ei × y) × (ej × ∂j∇f̃)

)⎫⎬⎭ .

Using again (2.50), we obtain

I = −
3∑

j=1

⎧⎨⎩
∫
Ω

(ei × y) ·
(
(r × ej) × (ej ×∇f̃)

)⎫⎬⎭ −
∫
Ω

(r × y) · (ei ×∇f̃)

+
∫
Ω

(r × y) ·
(
(ei × y) × rot(∇f̃)

)
=

∫
Ω

(ei × y) · (r ×∇f̃) −
∫
Ω

(r × y) · (ei ×∇f̃)

= −
∫
Ω

r · ((ei × y) ×∇f̃) − ∫
Ω

r · (y × (ei ×∇f̃)
)

= −
∫
Ω

r ·
{

(ei × y) ×∇f̃ + y × (ei ×∇f̃)
}

= −
∫
Ω

r ·
{
ei × (y ×∇f̃)

}
=

∫
Ω

(
r × (y ×∇f̃)

)
i
=

∫
∂Ω

(r × (y × ν)f)i ,
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where we used Jacobi identity

a× (b× c) + b× (c× a) + c× (a× b) = 0 ∀a, b, c ∈ R
3.

Letting f = Φ in the above expression yields∫
∂Ω

(r × y) · ((ei × y) × (ν × v)) =
∫

∂Ω

(r × (y × ν)Φ)i . (2.52)

Gathering together (2.46), (2.48), (2.49), (2.51)), and (2.52) yields

J0ṙ =
3∑

i=1

⎛⎝l̇i ∫
∂Ω

(ν × y)φi + ṙi

∫
∂Ω

(ν × y)ϕi

⎞⎠ +
m∑

j=1

ẇj

∫
∂Ω

(ν × y)ψj

+
m∑

j=1

wj

⎧⎨⎩
3∑

i=1

(
li

∫
∂Ω

(∇φi × y)χj + ri

∫
∂Ω

(∇ϕi × y)χj

)
+

m∑
p=1

wp

∫
∂Ω

(∇ψp × y)χj

⎫⎬⎭
− l ×

⎧⎨⎩
3∑

i=1

(
li

∫
∂Ω

φiν + ri

∫
∂Ω

ϕiν
)

+
m∑

p=1

wp

∫
∂Ω

ψpν

⎫⎬⎭
− r ×

⎧⎨⎩
3∑

i=1

(
li

∫
∂Ω

(y × ν)φi + ri

∫
∂Ω

(y × ν)ϕi

)
+

m∑
p=1

wp

∫
∂Ω

(y × ν)ψp

⎫⎬⎭
− r × J0r. (2.53)

Combining (2.45) and (2.53) with the definitions of the matrices in (2.23)−(2.30), we obtain

m0 l̇ = −Ml̇−Nṙ − CM ẇ −
∑

1≤p≤m

wp

{
LM

p l +RM
p r +WM

p w
}

−r × (Ml +Nr + CMw) −m0r × l, (2.54)

J0ṙ = −N∗ l̇− Jṙ − CJ ẇ −
∑

1≤p≤m

wp

{
LJ

p l +RJ
p r +W J

p w
}

−l × (Ml+Nr + CMw)
−r × (N∗l + Jr + CJw) − r × J0r. (2.55)

This completes the proof of Proposition 2.3. �

2.4. Equations for the position and attitude

Now, we look at the dynamics of the position and attitude of the rigid body. We shall use unit quaternions.
(We refer the reader to the Appendix for the notations and definitions used in what follows). From (1.7)
and (1.16), we obtain

Q′ = S(Qr)Q = QS(r), (2.56)

with Q(0) = Id.
Assuming that Q(t) is associated with a unit quaternion q(t), i.e. Q(t) = R(q(t)), then the dynamics of q are

given by

q̇ =
1
2
q ∗ r (2.57)
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(see e.g. [26]). Expanding q as q = q0 + �q = q0 + q1i+ q2j + q3k, this yields

q̇0 + �̇q =
1
2
(−�q · r + q0r + �q × r) (2.58)

and ⎛⎜⎝ q̇0
q̇1
q̇2
q̇3

⎞⎟⎠ =
1
2

⎛⎜⎝ q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎞⎟⎠
⎛⎜⎝ 0
r1
r2
r3

⎞⎟⎠· (2.59)

From (1.15), we see that the dynamics of h are given by

ḣ(t) = Q(t) l(t). (2.60)

Again, if Q(t) = R(q(t)), then (2.60) may be written as

ḣ = q ∗ l ∗ q∗. (2.61)

Expanding q as q = q0 + �q = q0 + q1i+ q2j + q3k, we obtain

ḣ = (q0 + �q) ∗ l ∗ (q0 − �q) = q20 l+ 2q0�q × l + (l · �q )�q − �q × l× �q.

and ⎛⎝ ḣ1

ḣ2

ḣ3

⎞⎠ =

⎛⎝ q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q2q1 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q3q1 − q0q2) 2(q3q2 + q0q1) q20 − q21 − q22 + q23

⎞⎠ ⎛⎝ l1
l2
l3

⎞⎠· (2.62)

For q ∈ S3
+, q may be parameterized by �q, and it is thus sufficient to consider the dynamics of �q which read

�̇q =
1
2
(
√

1 − ||�q ||2 r + �q × r). (2.63)

The dynamics of h are then given by

ḣ = (1 − ||�q ||2)l + 2
√

1 − ||�q ||2 �q × l + (l · �q)�q − �q × l× �q. (2.64)

(Alternatively, one can substitute
√

1 − (q21 + q22 + q23) to q0 in both (2.59) and (2.62)).

2.5. Control system for the underwater vehicle

Using (2.57), (2.61), and Proposition 2.3, we arrive to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h′ = q ∗ l ∗ q∗,

q′ =
1
2
q ∗ r,(

l
r

)′
= J −1(Cw′ + F (l, r, w)),

(2.65)

where (h, q, l, r, w) ∈ R3 × S3 × R3 × R3 × Rm,

F (l, r, w) = −
⎛⎝S(r) 0

S(l) S(r)

⎞⎠ (
J

(
l
r

)
− Cw

)
−

m∑
p=1

wp

⎛⎝LM
p l +RM

p r +WM
p w

LJ
p l +RJ

p r +W J
p w

⎞⎠ , (2.66)
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and

C = −
(
CM

CJ

)
. (2.67)

For q ∈ S3
+ (i.e. Q ∈ O), one can replace the two first equations in (2.65) by (2.64) and (2.63), respectively.

This results in the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h′ = (1 − ||�q ||2)l + 2
√

1 − ||�q ||2 �q × l + (l · �q )�q − �q × l × �q,

�q ′ = 1
2 (

√
1 − ||�q ||2 r + �q × r),(

l
r

)′
= J−1(Cw′ + F (l, r, w)).

(2.68)

3. Control properties of the underwater vehicle

3.1. Linearization at the equilibrium

When investigating the local controllability of a nonlinear system around an equilibrium point, it is natural
to look first at its linearization at the equilibrium point.

To linearize the system (2.65) at the equilibrium point (h, q, l, r, w) = (0, 1, 0, 0, 0), we use the parameterization
of S3

+ by �q, and consider instead the system (2.68).
The linearization of (2.68) around (h, �q, l, r, w) = (0, 0, 0, 0, 0) reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h′ = l,

2�q ′ = r,(
l
r

)′
= J −1Cw′.

(3.1)

Proposition 3.1. The linearized system (3.1) with control w′ ∈ R
m is controllable if, and only if, rank(C) = 6.

Proof. The proof follows at once from Kalman rank condition, since (h, 2�q, l, r) ∈ R12 and

rank
( (

0
J −1C

)
,

(
0 Id
0 0

) (
0

J−1C

) )
= 2 rank(C). �

Remark 3.2. It is easy to see that the controllability of the linearized system (3.1) implies the (local) con-
trollability of the full system (2.68). The main drawback of Proposition 3.1 is that the controllability of the
linearized system (3.1) requires at least 6 control inputs (m ≥ 6).

3.2. Simplifications of the model resulting from symmetries

Now we are concerned with the local controllability of (2.68) with less than 6 controls inputs. To derive
tractable geometric conditions, we consider rigid bodies with symmetries. Let us introduce the operators Si(y) =
y − 2yiei for i = 1, 2, 3, i.e.

S1(y) = (−y1, y2, y3),
S2(y) = (y1,−y2, y3),
S3(y) = (y1, y2,−y3).

(3.2)

Definition 3.3. Let i ∈ {1, 2, 3}. We say that Ω is symmetric with respect to the plane {yi = 0} if Si(Ω) = Ω.
Let f : Ω ⊂ R3 → R. If f(Si(y)) = εi

ff(y) for any y ∈ Ω and some number εi
f ∈ {−1, 1}, then f is said to be

even (resp. odd) with respect to Si if εi
f = 1 (resp. εi

f = −1).
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The following proposition gathers together several useful properties of the symmetries Si, whose proofs are
left to the reader. δip denotes the Kronecker symbol, i.e. δip = 1 if i = p, δip = 0 otherwise.

Proposition 3.4. Let i ∈ {1, 2, 3}. Then

1. SiSi(a) = a, ∀a ∈ R
3.

2. Si(a) · Si(b) = a · b, ∀a, b ∈ R3.
3. Si(a) × Si(b) = −Si(a× b), ∀a, b ∈ R3.
4. If Si(Ω) = Ω, then ν(Si(y)) = Si(ν(y)), ∀y ∈ ∂Ω.
5. If f(Si(y)) = εf(y) with ε ∈ {±1}, then f(Si(y))ν(Si(y)) = εSi(f(y)ν(y)), ∀y ∈ ∂Ω.
6. If Si(Ω) = Ω, then Si(y) × ν(Si(y)) = −Si(y × ν(y)), ∀y ∈ ∂Ω.
7. Assume that Si(Ω) = Ω, and assume given a function g : ∂Ω → R with g(Si(y)) = εg(y) for all y ∈ ∂Ω,

where ε ∈ {±1}. Then the solution f to the system⎧⎪⎪⎨⎪⎪⎩
Δf = 0, in Ω,

∂f

∂ν
= g, on ∂Ω,

∇f(y) → 0, as |y| → ∞,

which is defined up to an additive constant C, fulfills for a convenient choice of C

f(Si(y)) = εf(y), ∀y ∈ Ω,

∇f(Si(y)) = εSi(∇f(y)), ∀y ∈ Ω.

8. Let f and g be any functions that are even or odd with respect to Sp for some p ∈ {1, 2, 3}, and let h(y) =
f(y)∂νg(y). Then

h(Sp(y)) = εp
fε

p
gh(y), (3.3)

i.e. εp
f∂νg = εp

fε
p
g.

9. Let f and g be as in (8), and let hi(y) = ∂if(y)∂νg(y), where i ∈ {1, 2, 3}. Then

hi(Sp(y)) = (−1)δipεp
fε

p
ghi(y), (3.4)

i.e. εp
∂if∂νg = (−1)δipεp

fε
p
g.

10. Let f and g be as in (8), and let hi(y) = (y ×∇f(y))i∂νg(y), where i ∈ {1, 2, 3}. Then

hi(Sp(y)) = −(−1)δipεp
fε

p
ghi(y), (3.5)

i.e. εp
(y×∇f)i∂νg = −(−1)δipεp

fε
p
g.

Applying Proposition 3.4 to the solutions φi, ϕi, i = 1, 2, 3, of (2.20)−(2.22), we obtain at once the following
result.

Corollary 3.5. Assume that Ω is symmetric with respect to the plane {yp = 0} (i.e. Sp(Ω) = Ω) for some
p ∈ {1, 2, 3}. Then for any j ∈ {1, 2, 3}

φj(Sp(y)) =
{
φj(y) if j �= p,
−φj(y) if j = p,

(3.6)

= (−1)δpjφj(y), (3.7)
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i.e. εp
φj

= (−1)δpj , and

ϕj(Sp(y)) =
{−ϕj(y) if j �= p,
ϕj(y) if j = p,

(3.8)

= −(−1)δpjϕj(y), (3.9)

i.e. εp
ϕj

= −(−1)δpj .

The following result shows how to exploit the symmetries of the rigid body and of the control inputs to
simplify the matrices in (2.23)−(2.30)

Proposition 3.6. Assume that Ω is symmetric with respect to the plane {yp = 0} for some p ∈ {1, 2, 3}. Then

1. Mij = 0 if εp
φi
εp

φj
= −1, i.e.

δip + δjp ≡ 1 (mod 2) ; (3.10)

2. Jij = 0 if εp
ϕi
εp

ϕj
= −1, i.e.

δip + δjp ≡ 1 (mod 2); (3.11)

3. Nij = 0 if εp
φi
εp

ϕj
= −1, i.e.

δip + δjp ≡ 0 (mod 2); (3.12)

4. (CM )ij = 0 if εp
φi
εp

χj
= −1, i.e.

(−1)δip = −εp
χj

; (3.13)

5. (CJ )ij = 0 if εp
ϕi
εp

χj
= −1, i.e.

(−1)δip = εp
χj

; (3.14)

6. (LM
q )ij = 0 if (−1)δipεp

φj
εp

χq
= −1, i.e.

(−1)δip+δjp = −εp
χq

; (3.15)

7. (RM
q )ij = 0 if (−1)δipεp

ϕj
εp

χq
= −1, i.e.

(−1)δip+δjp = εp
χq

; (3.16)

8. (WM
q )ij = 0 if (−1)δipεp

ϕj
εp

χq
= −1, i.e.

(−1)δip = −εp
χj
εp

χq
; (3.17)

9. (LJ
q )ij = 0 if −(−1)δipεp

φj
εp

χq
= −1, i.e.

(−1)δip+δjp = εp
χq

; (3.18)

10. (RJ
q )ij = 0 if −(−1)δipεp

ϕj
εp

χq
= −1, i.e.

(−1)δip+δjp = −εp
χq

; (3.19)

11. (W J
q )ij = 0 if

(−1)δip = εp
χj
εp

χq
, (3.20)

where the matrices M,J,N,CM , CJ , LM
q , RM

q ,WM
q , LJ

q , R
J
q and W J

q are defined in (2.23)−(2.30).
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From now on, we assume that Ω is invariant under the operators S2 and S3, i.e.

Sp(Ω) = Ω, ∀p ∈ {2, 3}, (3.21)

and that εp
χ1

= 1, i.e.
χ1(Sp(y)) = χ1(y) ∀y ∈ ∂Ω, ∀p ∈ {2, 3}. (3.22)

In other words, the set S and the control χ1 are symmetric with respect to the two planes {y2 = 0} and {y3 = 0}.
As a consequence, several coefficients in the matrices in (2.23)−(2.30) vanish.

More precisely, using (3.21)−(3.22) and Proposition 3.6, we see immediately that the matrices in (2.33) can
be written

M =

⎛⎝M11 0 0
0 M22 0
0 0 M33

⎞⎠, J =

⎛⎝J11 0 0
0 J22 0
0 0 J33

⎞⎠, (3.23)

N =

⎛⎝0 0 0
0 0 N23

0 N32 0

⎞⎠, (3.24)

CMe1 =

⎛⎝ (CM )11
0
0

⎞⎠, CJe1 =

⎛⎝0
0
0

⎞⎠, (3.25)

LM
1 =

⎛⎝ (LM
1 )11 0 0
0 (LM

1 )22 0
0 0 (LM

1 )33

⎞⎠, RM
1 =

⎛⎝ 0 0 0
0 0 (RM

1 )23
0 (RM

1 )32 0

⎞⎠ (3.26)

(WM
1 )e1 =

⎛⎝ (WM
1 )11
0
0

⎞⎠, LJ
1 =

⎛⎝0 0 0
0 0 (LJ

1 )23
0 (LJ

1 )32 0

⎞⎠, (3.27)

and

RJ
1 =

⎛⎝ (RJ
1 )11 0 0
0 (RJ

1 )22 0
0 0 (RJ

1 )33

⎞⎠, (W J
1 )e1 =

⎛⎝0
0
0

⎞⎠ . (3.28)

3.3. Toy problem

Before investigating the full system (2.68), it is important to look at the simplest situation for which hi = li =
0 for i = 2, 3, �q = 0, r = 0, and wj = 0 for j = 2, . . . ,m. Indeed, since the control appears in (2.68) together with
its time derivative and through bilinear terms, the investigation of the controllability of (2.68) is challenging.
The same issue is however well understood for the “toy problem” above (see [12]), which is important in its own
right for two reasons: (i) it corresponds to a straight motion along the main axis of the vehicle (surge); (ii) it is
used to generate the trajectory along which the system will be linearized when applying Coron’s return method
to prove the controllability of system (2.68).

Lemma 3.1. Assume that (3.21)−(3.22) hold, and assume given some functions h1, l1, w1 ∈ C1([0, T ]) satis-
fying ⎧⎨⎩h′1 = l1

l′1 = αw′
1 + βl1w1 + γ(w1)2,

(3.29)

where

α :=
−(CM )11
m0 +M11

, β :=
−(LM

1 )11
m0 +M11

, and γ :=
−(WM

1 )11
m0 +M11

·
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Let h := (h1, 0, 0), �q := (0, 0, 0), l := (l1, 0, 0), r := (0, 0, 0), and w := (w1, 0, . . . , 0). Then (h, �q, l, r, w)
solves (2.68).

Proof. Let us set h = h1e1, �q = 0, l = l1e1, r = 0 and w = (w1, 0, . . . , 0), where (h1, l1, w1) fulfills (3.29).
From (3.23)−(3.25), we have that

J
(
l
r

)
= l1J e1 = l1

⎛⎜⎜⎜⎜⎜⎝
m0 +M11

0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ , (3.30)

and

Cw = w1Ce1 = −w1

⎛⎜⎜⎜⎜⎜⎝
(CM )11

0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ . (3.31)

This yields ⎛⎝S(r) 0

S(l) S(r)

⎞⎠ (
J ( l

r

) − Cw

)
= 0. (3.32)

Replacing in (2.66), we obtain

F (l, r, w) = −
m∑

p=1
wp

⎛⎝LM
p l +RM

p r +WM
p w

LJ
p l +RJ

p r +W J
p w

⎞⎠

= −w1

⎛⎝LM
1 l+WM

1 w

LJ
1 l+W J

1 w

⎞⎠

= −w1

⎛⎜⎜⎜⎜⎜⎝l1
⎛⎜⎜⎜⎜⎜⎝

(LM
1 )11
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ + w1

⎛⎜⎜⎜⎜⎜⎝
(WM

1 )11
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ .

(3.33)

We conclude that (h, �q, l, r, w) is a solution of (2.68). �

Remark 3.7. If γ + αβ = 0, then it follows from [12], Lemma 2.3 that for any T > 0 we may associate with
any pair (h0

1, h
T
1 ) in R2 a control input w1 ∈ C∞

0 (0, T ) such that the solution (h1(t), l1(t)) of (3.29) emanating
from (h0

1, 0) at t = 0 reaches (hT
1 , 0) at t = T .

3.4. Return method

The main result in this section (see below Thm. 3.10) is derived in following a strategy developed in [12] and
inspired in part from Coron’s return method. We first construct a (non trivial) loop-shaped trajectory of the
control system (2.68), which is based on the computations performed in Lemma 3.1. (For this simple control
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system, we can require that w1(0) = 0, but we cannot in general require that w1(T ) = 0). Next, we compute
the linearized system along the above reference trajectory. We use a controllability test from [12] to investigate
the controllability of the linearized system, in which the control appears with its time derivative. Finally, we
derive the (local) controllability of the nonlinear system by a standard linearization argument.

From now on, we suppose in addition to (3.21)−(3.22) that

α �= 0. (3.34)

This is equivalent to saying that χ1 satisfies ∫
∂Ω

φ1χ1 �= 0. (3.35)

Note that for an ellipsoidal vehicle, (3.35) reduces to
∫

∂Ω
y1χ1 �= 0 by (4.9) (see below).

3.4.1. Construction of a loop-shaped trajectory

The construction differs slightly from those in [12]: indeed, to simplify the computations, for the function l1
(defined in (3.36), see below), we impose here that all the derivatives of order larger than two vanish at t = T .
For given T > 0, let ξ ∈ C∞(R; [0, 1]) be a function such that

ξ(t) =

⎧⎪⎨⎪⎩
0 if t <

T

3
,

1 if t >
2T
3
·

Pick any λ0 > 0 and let λ ∈ [−λ0, λ0] with λ �= 0. Set

h1(t) = λξ(t)(t − T )2, l1(t) = h
′
1(t), t ∈ R. (3.36)

Note that

h1(0) = h1(T ) = l1(0) = l1(T ) = 0, (3.37)

l
′
1(T ) = 2λ �= 0, l

(k)

1 (T ) = 0 for k ≥ 2. (3.38)

Next, define w1 as the solution to the Cauchy problem

ẇ1 = α−1(l̇1 − βl1w1 − γw2
1), (3.39)

w1(0) = 0. (3.40)

Noticing that for λ = 0 we have w1 ≡ 0 on R+, we infer from a classical result on the continuous dependence of
solutions of ODE’s with respect to a parameter (see e.g. [13]) that the solution w1 of (3.39)−(3.40) is defined
on [0, T ] provided that λ0 is small enough. Set h = (h1, 0, 0), �q = (0, 0, 0), w = (w1, 0, . . . , 0), l = (l1, 0, 0) and
r = (0, 0, 0). According to Lemma 3.1, (h, �q, l, r, w) is a solution of (2.68), which satisfies

(h, �q, l, r)(0) = 0 = (h, �q, l, r)(T ).

3.4.2. Linearization along the reference trajectory

Writing
h = h+ ĥ,

�q = �q + �̂q,

l = l + l̂,
r = r + r̂,

(3.41)
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expanding in (2.68) in keeping only the first order terms in ĥ, �̂q, l̂ and r̂, we obtain the following linear system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ĥ′ = l̂+ 2�̂q × l,

�̂q
′

= 1
2 r̂,(

l̂
r̂

)′
= J−1

(
A(t)

(
l̂
r̂

)
+B(t)ŵ + Cŵ′

)
,

(3.42)

where the matrices A(t) ∈ R6×6 and B(t) ∈ R6×m are defined as

A(t) =
(
∂F

∂l
(l(t), r(t), w(t))

∣∣ ∂F
∂r

(l(t), r(t), w(t))
)
, (3.43)

B(t) =
∂F

∂w
(l(t), r(t), w(t)). (3.44)

Setting
p̂ = 2�̂q, (3.45)

we can rewrite (3.42) as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ĥ′ = l̂− l × p̂,

p̂′ = r̂,(
l̂
r̂

)′
= J−1

(
A(t)

(
l̂
r̂

)
+B(t)ŵ + Cŵ′

)
.

(3.46)

Obviously, (3.42) is controllable on [0, T ] if, and only if, (3.46) is. Letting

z =
(
ĥ
p̂

)
, k =

(
l̂
r̂

)
, f = ŵ,

we obtain the following control system(
ż

k̇

)
=

(
D(t) Id

0 J −1A(t)

) (
z
k

)
+

(
0

J −1B(t)

)
f +

(
0

J−1C

)
ḟ

=: A(t)
(
z
k

)
+ B(t)f + Cḟ . (3.47)

We find that

D =
(

0 −S(l)
0 0

)
, with S(l) =

⎛⎝0 0 0
0 0 −l1
0 l1 0

⎞⎠,
B =

(
0 0

S(l) 0

)
C − w1

(
WM

1 W J
1

) − l1

(
LM

1 e1 L
M
2 e1 · · · LM

m e1

LJ
1 e1 LJ

2 e1 · · · LJ
me1

)
− w1

(
WM

1 e1 W
M
2 e1 · · · WM

m e1

W J
1 e1 W J

2 e1 · · · W J
me1

)
,

and that

A =

⎛⎜⎜⎜⎜⎜⎜⎝
−(LM

1 )11w1 0 0 0 0 0
0 −(LM

1 )22w1 0 0 0 A26

0 0 −(LM
1 )33w1 0 A35 0

0 0 0 −(RJ
1 )11w1 0 0

0 0 A53 0 N32l1 − (RJ
1 )22w1 0

0 A62 0 0 0 −N23l1 − (RJ
1 )33w1

⎞⎟⎟⎟⎟⎟⎟⎠
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with

A26 = −(m0 +M11)l1 −
(
(CM )11 + (RM

1 )23
)
w1,

A35 = (m0 +M11)l1 +
(
(CM )11 − (RM

1 )32
)
w1,

A53 = (M33 −M11)l1 −
(
(CM )11 + (LJ

1 )23
)
w1,

A62 = (M11 −M22)l1 +
(
(CM )11 − (LJ

1 )32
)
w1.

3.4.3. Linear control systems with one derivative in the control

Let us consider any linear control system of the form

ẋ = A(t)x + B(t)u+ Cu̇ (3.48)

where x ∈ Rn is the state (n ≥ 1), u ∈ Rm is the control input (m ≥ 1)4, A ∈ C∞([0, T ]; Rn×n), B ∈
C∞([0, T ]; Rn×m), and C ∈ Rn×m. Define a sequence of matrices Mi(t) ∈ Rn×m by

M0(t) = B(t) + A(t)C, and Mi(t) = Ṁi−1(t) −A(t)Mi−1(t), ∀i ≥ 1, ∀t ∈ [0, T ]. (3.49)

Introduce the reachable set

Ru(0)=0 = {xT ∈ R
n; ∃u ∈ H1(0, T ; Rm) with u(0) = 0 such that

xT = x(T ), where x(·) solves (3.48) and x(0) = 0}.
Then the following result holds.

Proposition 3.8. [12] (Prop. 2.4 and 2.5). Let ε > 0, A ∈ Cω((−ε, T + ε); Rn×n) and B ∈ Cω((−ε, T +
ε); Rn×m), and let (Mi)i≥0 be the sequence defined in (3.49). Then for all t0 ∈ [0, T ], we have that

Ru(0)=0 = CR
m + Span{φ(T, t0)Mi(t0)u; u ∈ R

m, i ≥ 0}, (3.50)

where φ denotes the fundamental solution associated with the system ẋ = A(t)x.

Recall that the fundamental solution associated with ẋ = A(t)x is defined as the solution to

∂φ

∂t
= A(t)φ(t, s),

φ(s, s) = Id.

For notational convenience, we introduce the matrices

Â(t) = J −1A(t), B̂(t) = J −1B(t), Ĉ = J−1C, Mi(t) =
(
Ui(t)
Vi(t)

)
, (3.51)

where Â(t) ∈ R6×6, B̂(t), Ĉ, Ui(t), Vi(t) ∈ R6×m. Then(
U0(t)
V0(t)

)
=

(
Ĉ

B̂(t) + Â(t)Ĉ

)
, (3.52)

while (
Ui(t)
Vi(t)

)
=

(
U ′

i−1(t) −D(t)Ui−1(t) − Vi−1(t)
V ′

i−1(t) − Â(t)Vi−1(t)

)
. (3.53)

In certain situations, half of the terms Ui(t) and Vi(t) vanish at t = T . The following result, whose proof is
given in Appendix, will be used thereafter.

4x and u should not be confused with the space variable and the fluid velocity in (1.1)−(1.9).
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Proposition 3.9. If Ĉ ∈ R6×m is given and Â,D (resp. B̂) denote some functions in C∞([0, T ]; R6×6) (resp.
in C∞([0, T ]; R6×m) fulfilling

Â(2l)(T ) = D(2l)(T ) = 0 and B̂(2l)(T ) = 0 ∀l ∈ N, (3.54)

then the sequences (Ui)i≥0 and (Vi)i≥0 defined in (3.52)−(3.53) satisfy

V
(2l)
2k (T ) = V

(2l+1)
2k+1 (T ) = 0, ∀k, l ∈ N, (3.55)

U
(2l)
2k+1(T ) = U

(2l+1)
2k (T ) = 0, ∀k, l ∈ N. (3.56)

The following result, which is one of the main results in this paper, shows that under suitable assumptions
the local controllability of (2.68) holds with less than six control inputs.

Theorem 3.10. Assume that (3.21), (3.22) and (3.34) hold. Pick any T > 0. If the rank condition

rank(C,M0(T ),M1(T ),M2(T ), . . .) = 12 (3.57)

holds, then the system (2.68) with state (h, �q, l, r) ∈ R12 and control w ∈ Rm is locally controllable around the
origin in time T . We can also impose that the control input w ∈ H2(0, T ; Rm) satisfies w(0) = 0. Moreover, for
some η > 0, there is a C1 map from BR24(0, η) to H2(0, T ; Rm), which associates with (h0, �q0, l0, r0, hT , �qT , lT , rT )
a control satisfying w(0) = 0 and steering the state of the system from (h0, �q0, l0, r0) at t = 0 to (hT , �qT , lT , rT )
at t = T .

Proof.

Step 1. Controllability of the linearized system.
Letting t0 = T in Proposition 3.8 yields

Rf(0)=0 = CR
m +

∑
i≥0

Mi(T )Rm.

Thus, if the condition (3.57) is fulfilled, we infer that Rf(0)=0 = R
12, i.e. the system (3.46) is controllable. The

same is true for (3.42).

Step 2. Local controllability of the nonlinear system.
Let us introduce the Hilbert space

H := R
12 × {f ∈ H2(0, T ; Rm); f(0) = 0}

endowed with its natural Hilbertian norm

‖(x, f)‖2
H = ||x||2

R12 + ‖f‖2
H2(0,T ) .

We denote by BH(0, δ) the open ball in H with center 0 and radius δ, i.e.

BH(0, δ) = {(x, f) ∈ H; ‖(x, f)‖H < δ}.

Let us introduce the map

Γ : BH(0, δ) → R24

((h0, �q0, l0, r0), f) �→ (h0, �q0, l0, r0, h(T ), �q(T ), l(T ), r(T )),
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where (h(t), �q (t), l(t), r(t)) denotes the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h′ = (1 − ||�q ||2)l + 2
√

1 − ||�q ||2 �q × l + (l · �q )�q − �q × l × �q,

�q ′ = 1
2 (

√
1 − ||�q ||2 r + �q × r),(

l
r

)′
= J −1(C(w′ + f ′) + F (l, r, w + f)),

(h(0), �q(0), l(0), r(0)) = (h0, �q0, l0, r0).

(3.58)

Note that Γ is well defined for δ > 0 small enough (provided that λ0 has been taken sufficiently small). Using
the Sobolev embedding H2(0, T ; Rm) ⊂ C1([0, T ]; Rm), we can prove as in ([25], Thm. 1) that Γ is of class C1

on BH(0, δ) and that its tangent linear map at the origin is given by

dΓ (0)((ĥ0, �̂q0, l̂0, r̂0), f) = (ĥ0, �̂q0, l̂0, r̂0, ĥ(T ), �̂q (T ), l̂(T ), r̂(T )),

where (ĥ(t), �̂q (t), l̂(t), r̂(t)) solves the system (3.42) with the initial conditions

(ĥ(0), �̂q(0), l̂(0), r̂(0)) = (ĥ0, �̂q0, l̂0, r̂0).

We know from Step 2 that (3.42) is controllable, so that dΓ (0) is onto. Let V := (ker dΓ (0))⊥ denote the
orthogonal complement of kerdΓ (0) in H. Then dΓ (0)|V is invertible, and therefore it follows from the inverse
function theorem that the map Γ |V : V → R24 is locally invertible at the origin. More precisely, there exists a
number δ > 0 and an open set ω ⊂ R24 containing 0, such that the map Γ : BH(0, δ) ∩ V → ω is well-defined,
of class C1, invertible, and with an inverse map of class C1. Let us denote this inverse map by Γ−1, and let us
write Γ−1(x0, xT ) = (x0, f(x0, xT )). Finally, let us set w = w+ f . Then, for η > 0 small enough, we have that

w ∈ C1(BR24(0, η), H2(0, T ; Rm)), (3.59)

and that for ||(h0, �q0, l0, r0, hT , �qT , lT , rT )||R24 < η, the solution (h(t), �q(t), l(t), r(t)) of system (2.68), with the
initial conditions

(h(0), �q(0), l(0), r(0)) = (h0, �q0, l0, r0),

satisfies
(h(T ), �q(T ), l(T ), r(T )) = (hT , �qT , lT , rT ).

The proof of Theorem 3.10 is complete. �

We now derive two corollaries of Theorem 3.10, that will be used in the next section. We introduce the matrices

A =
(
AL

∣∣∣AR

)
, (3.60)

where

AL =

⎛⎜⎜⎜⎜⎜⎝
−(LM

1 )11 0 0
0 −(LM

1 )22 0
0 0 −(LM

1 )33
0 0 0
0 0 α(M33 −M11) − ((LJ

1 )23 + (CM )11)
0 α(M11 −M22) − ((LJ

1 )32 − (CM )11) 0

⎞⎟⎟⎟⎟⎟⎠, (3.61)

AR =

⎛⎜⎜⎜⎜⎜⎝
0 0 0
0 0 −(RM

1 )23
0 −(RM

1 )32 0
−(RJ

1 )11 0 0
0 αN32 − (RJ

1 )22 0
0 0 −αN23 − (RJ

1 )33

⎞⎟⎟⎟⎟⎟⎠, (3.62)
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B =

⎛⎝ 0

−αS(e1)CM

⎞⎠ − α

⎛⎝LM
1 e1 L

M
2 e1 · · · LM

m e1

LJ
1 e1 LJ

2 e1 · · · LJ
me1

⎞⎠ −
⎛⎝WM

1

W J
1

⎞⎠

−
⎛⎝WM

1 e1 W
M
2 e1 · · · WM

m e1

W J
1 e1 W J

2 e1 · · · W J
me1

⎞⎠,
(3.63)

and

D =
(

0 −αS(e1)
0 0

)
. (3.64)

The first corollary will be used later to derive a controllability result with only four control inputs.

Corollary 3.11. If both rank conditions

rank(C,B + AJ−1C) = 6 (3.65)

and

rank
(
C,

1
2
JDJ −1C + B + AJ −1C

)
= 6 (3.66)

are fulfilled, then the condition (3.57) is satisfied for any T > 0, so that the conclusion of Theorem 3.10 is valid
for any T > 0.

Proof. We distinguish two cases.

Case 1. γ + αβ = 0.
We begin with the “simplest” case when γ + αβ = 0. Pick any T > 0 and let l1, w1 be as in (3.36)

and (3.39)−(3.40). Let g1 := l1 − αw1. It is clear that ġ1 = βw1g1, hence g1 ≡ 0. We infer that

w
(k)
1 (T ) = α−1l

(k)

1 (T ) = 0 for k ∈ N \ {1},
w′

1(T ) = α−1l
′
1(T ) = 2λ/α �= 0.

It follows that

A(k)(T ) = 0, B(k)(T ) = 0, D(k)(T ) = 0 for k ∈ N \ {1}, (3.67)
A′(T ) = w′

1(T )A, B′(T ) = w′
1(T )B, D′(T ) = w′

1(T )D. (3.68)

Applying Proposition 3.9, we infer that

rank (C,M0(T ),M1(T ),M2(T )) = rank
((

0
Ĉ

)
,

(
Ĉ

B̂(T ) + Â(T )Ĉ

)
,

(
0

V1(T )

)
,

(
U2(T )

0

))
.

On the other hand, it is easily seen that

V1(T ) = V ′
0(T ) = J −1B′(T ) + J−1A′(T )J−1C = w′

1(T )
(J−1B + J−1AJ −1C

)
,

U2(T ) = −D′(T )U0(T ) − 2V ′
0(T ) = −w′

1(T )[DJ −1C + 2J −1(B + AJ −1C)].

It follows that

rank(Ĉ, V1(T )) = rank(C,B + AJ −1C) = 6,

rank(Ĉ, U2(T )) = rank(C,
1
2
JDJ −1C + B + AJ −1C) = 6,
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and
rank

(C,M0(T ),M1(T ),M2(T )
)

= 12.

Thus (3.57) is satisfied, as desired.

Case 2. γ + αβ �= 0. We claim that for T > 0 arbitrary chosen and λ0 small enough, we have for 0 < λ < λ0,

rank(C,M0(T ),M1(T ),M2(T )) = 12.

First, ‖l1‖W 2,∞(0,T ) = O(λ) still with l1(T ) = l̈1(T ) = 0. From (3.39)−(3.40), we infer with Gronwall lemma (for
λ0 small enough) that w1 is well defined on [0, T ] and that ‖w1‖L∞(0,T ) = O(λ). This also yields (with (3.39))
||w1||W 2,∞(0,T ) = O(λ). Next, integrating in (3.39) over (0, T ) yields w1(T ) = O(λ2). Finally, derivating in (3.39)
gives ẅ1(T ) = O(λ2). We conclude that

(A(T ), B(T ), Ä(T ), B̈(T )) = O(λ2), D(T ) = 0,

while
(Ȧ(T ), Ḃ(T ), Ḋ(T )) = (2λ/α)(A,B,D) +O(λ4),

for l̇1(T ) = αẇ1(T ) +O(λ4). It follows that

rank (C,M0(T ),M1(T ),M2(T ))

= rank

[(
0

J −1C

)
,

(J −1C
0

)
,

(
0

J−1(B + AJ −1C)

)
,

(J −1[JDJ −1C + 2(B + AJ −1C)]
0

) ]
= 12,

for 0 < λ < λ0 with λ0 small enough, as desired. �

The second one is based on the explicit computations of Mi(T ) for i ≤ 8. It will be used later to derive a
controllability result with only three controls inputs.

Corollary 3.12. Let E := B + AJ −1C. If the conditions

rank(C,E,AJ −1E, (AJ −1)2E, (AJ −1)3E) = 6, (3.69)

and

rank
(
C,

1
2
JDJ −1C + E, (JDJ −1 + 2AJ−1

)
E,

(8JDJ −1 + 11AJ−1)AJ −1E, (17JDJ −1 + 64AJ−1)(AJ −1)2E) = 6, (3.70)

are fulfilled, then the condition (3.57) is satisfied, so that the conclusion of Theorem 3.10 is valid.

Proof. The proof is almost the same as those of Corollary 3.11, the only difference being that we need now to
compute Mi(T ) for i ≤ 8. In view of Proposition 3.9, it is sufficient in Case 1 (γ + αβ = 0) to compute Vi(T )
for i ∈ {1, 3, 5, 7} and Ui(T ) for i ∈ {2, 4, 6, 8}. The results are displayed in two propositions, whose proofs are
given in Appendix.

Proposition 3.13. Assume that the pair (h1, l1) is as in (3.36), that w1 is as in (3.39)−(3.40), and that
γ + αβ = 0. Then we have

V1(T ) = V ′
0 (T ), (3.71)

V3(T ) = −3Â′(T )V ′
0(T ), (3.72)

V5(T ) = 15Â′(T )2V ′
0(T ), (3.73)

V7(T ) = −105Â′(T )3V ′
0(T ). (3.74)
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Proposition 3.14. Assume that the pair (h1, l1) is as in (3.36), that w1 is as in (3.39)−(3.40), and that
γ + αβ = 0. Then we have

U2(T ) = −D′(T )U0(T ) − 2V ′
0(T ), (3.75)

U4(T ) = 4
(
D′(T ) + 2Â′(T )

)
V ′

0(T ), (3.76)

U6(T ) = −3(8D′(T ) + 11Â′(T ))Â′(T )V ′
0(T ), (3.77)

U8(T ) = 6
(
17D′(T ) + 64Â′(T )

)
Â′(T )2V ′

0(T ). (3.78)

�

4. Examples

This section is devoted to examples of vehicles with “quite simple” shapes, for which the coefficients in the
matrices in (2.23)−(2.30) can be computed explicitly. We begin with the case of a vehicle with one axis of
revolution, for which the controllability fails for any choice of the flow controls.

4.1. Solid of revolution

Let f ∈ C1([a, b]; R) be a nonnegative function such that f(a) = f(b) = 0, and let

S =
{(
y1, sf(y1) cos θ, sf(y1) sin θ

)
; y1 ∈ [a, b], s ∈ [0, 1], θ ∈ [0, 2π]

}
.

In other words, S is a solid of revolution (see Fig. 1).
Assume that the density ρ depends on y1 only, i.e. ρ = ρ(y1). Clearly J0 = diag(J1, J2, J2). On the other

hand,

∂Ω =
{(
y1, f(y1) cos θ, f(y1) sin θ

)
; y1 ∈ [a, b], θ ∈ [0, 2π]

}
,

and the normal vector ν to ∂Ω is given by

ν(y1, θ) =
1√

1 + (f ′(y1))2

(
f ′(y1),− cos θ,− sin θ

)∗
,

so that

(y × ν)(y1, θ) =
(y1 + f(y1)f ′(y1))√

1 + (f ′(y1))2

(
0, sin θ,− cos θ

)∗
.

It follows that
(y × ν) · e1 = 0. (4.1)

Replacing in (1.24), we obtain

J1ṙ1 = (J0ṙ) · e1 = −(r × J0r) · e1 = J2r2r3 − J2r2r3 = 0,

which indicates that the angular velocity r1 is not controllable for the nonlinear system (2.33), for any m ≥ 1
and any choice of both the χj ’s and the wj ’s for 1 ≤ j ≤ m. Note also that the linearized system (3.1) fails to
be controllable, according to Proposition 3.1. Indeed, we infer from (4.1) that ϕ1 ≡ 0, and hence

(CJ )1,j =
∫

∂Ω

ϕ1χj = 0, 1 ≤ j ≤ m,

and rank(C) ≤ 5.
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Figure 1. A solid of revolution.

4.2. Ellipsoidal vehicle

We assume here that the vehicle fills the ellipsoid

S =
{
y ∈ R

3; (y1/c1)2 + (y2/c2)2 + (y3/c3)2 ≤ 1
}

(4.2)

where c1 > c2 > c3 > 0 denote some numbers. Our first aim is to compute explicitly the functions φi and ϕi

for i = 1, 2, 3, which solve (2.20)−(2.22) for

Ω =
{
y ∈ R

3; (y1/c1)2 + (y2/c2)2 + (y3/c3)2 > 1
}
.

4.2.1. Computations of the functions φi and ϕi

We follow closely [18], page 148–155. We introduce a special system of orthogonal curvilinear coordinates,
denoted by (λ, μ, ν), which are defined as the roots of the equation

y2
1

c21 + θ
+

y2
2

c22 + θ
+

y2
3

c23 + θ
− 1 = 0 (4.3)

viewed as a cubic in θ. It is clear that (4.3) has three real roots: λ ∈ (−c23,+∞), μ ∈ (−c22,−c23), and ν ∈
(−c21,−c22).

It follows immediately from the above definition of λ, μ, ν, that

y2
1

c21 + θ
+

y2
2

c22 + θ
+

y2
3

c23 + θ
− 1 =

(λ− θ)(μ− θ)(ν − θ)
(c21 + θ)(c22 + θ)(c23 + θ)

·

This yields

y2
1 =

(c21 + λ)(c21 + μ)(c21 + ν)
(c22 − c21)(c

2
3 − c21)

, ∂λy1 =
1
2

y1
(c21 + λ)

,

y2
2 =

(c22 + λ)(c22 + μ)(c22 + ν)
(c21 − c22)(c

2
3 − c22)

, ∂λy2 =
1
2

y2
(c22 + λ)

,

y2
3 =

(c23 + λ)(c23 + μ)(c23 + ν)
(c21 − c23)(c22 − c23)

, ∂λy3 =
1
2

y3
(c23 + λ)

·

(4.4)
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We introduce the scale factors

hλ =
1
2

√
(λ− μ)(λ− ν)

(λ+ c21)(λ + c22)(λ+ c23)
,

hμ =
1
2

√
(μ− ν)(μ− λ)

(μ+ c21)(μ + c22)(μ+ c23)
,

hν =
1
2

√
(ν − λ)(ν − μ)

(ν + c21)(ν + c22)(ν + c23)
,

(4.5)

and the function
f(λ) =

√
(λ + c21)(λ+ c22)(λ + c23).

If ξ is any smooth function of λ, then its Laplacian is given by

Δξ =
4

(λ− μ)(λ− ν)
f(λ)∂λ(f(λ)∂λξ). (4.6)

according to [18], (7) page 150. We search φi in the form φi(y1, y2, y3) = yiξi(y1, y2, y3). Then

0 = Δφi = yiΔξi + 2∂iξi. (4.7)

Assuming furthermore that ξi depends only on λ, we obtain that

2∂iξi
yi

=
2∂λyi

yi

∂λξi
h2

λ

=
1

c2i + λ

∂λξi
h2

λ

=
4f2(λ)
c2i + λ

∂λξi
(λ− μ)(λ − ν)

· (4.8)

Combining (4.7) with (4.6) and (4.8), we arrive to

0 = ∂λ(f(λ)∂λξi) +
1

c2i + λ
f(λ)∂λξi,

which is readily integrated as

ξi = −Ĉi

+∞∫
λ

ds
(c2i + s)f(s)

+ Ĉ.

We choose the constant Ĉ = 0 for (2.22) to be fulfilled. As ∂Ω is represented by the equation λ = 0,
then (2.21) reads

∂νφi = νi ⇔ ξi
∂λyi

yi
+ ∂λξi =

∂λyi

yi
·

We infer that Ĉi = c1c2c3/(2 − αi), where

αi = c1c2c3

+∞∫
0

ds
(c2i + s)f(s)

·

It is easy seen that
2c2c3
3c21

≤ αi ≤ 2c1c2
3c23

·
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It follows that if c1, c2, c3 are sufficiently close, then αi is different from 2, so that Ĉi is well defined. We conclude
that

φi(y) = − αi

2 − αi
yi, ∀y ∈ ∂Ω. (4.9)

Let us now proceed to the computation of ϕi. We search ϕi in the form ϕi(y) = y1y2y3
yi

ξi(y), where ξi depends
only on λ. We obtain

Δξi + 2
3∑

j=1,j 
=i

∂yjξi

yj
= 0 ⇔ ∂λ(f(λ)∂λξi) +

⎛⎝ 3∑
j=1,j 
=i

1
(c2j + λ)

⎞⎠ f(λ)∂λξi = 0,

and hence

ξi = −C̃i

+∞∫
λ

c2i + s

f3(s)
ds·

From (2.21)−(2.22), we infer that

C̃1 =
c1c2c3(c22 − c23)

2 − β1
, β1 = c1c2c3(c22 + c23)

+∞∫
0

ds
(c22 + s)(c23 + s)f(s)

,

C̃2 =
c1c2c3(c23 − c21)

2 − β2
, β2 = c1c2c3(c23 + c21)

+∞∫
0

ds
(c23 + s)(c21 + s)f(s)

,

C̃3 =
c1c2c3(c21 − c22)

2 − β3
, β3 = c1c2c3(c21 + c22)

+∞∫
0

ds
(c21 + s)(c22 + s)f(s)

·

Note that at the limit case c1 = c2 = c3, we obtain β1 = β2 = β3 = 4/5. Therefore, if c1, c2 and c3 are near but
different, then βi is different from 2, and therefore C̃i is well defined. We conclude that

ϕi = −
⎛⎝C̃i

+∞∫
0

c2i + s

f3(s)
ds

⎞⎠ y1y2y3
yi

, ∀y ∈ ∂Ω. (4.10)

4.2.2. Controllability of the ellipsoid with six controls

Assume still that S is given by (4.2). Note that S is symmetric with respect to the plane {yp = 0} for
p = 1, 2, 3. Assume given six functions χj , j = 1, . . . , 6, each being symmetric with respect to the plane {yp = 0}
for p = 1, 2, 3, with

εp
χ1

=

⎧⎨⎩−1 p = 1
1 p = 2
1 p = 3

, εp
χ2

=

⎧⎨⎩ 1 p = 1
−1 p = 2
1 p = 3

, εp
χ3

=

⎧⎨⎩ 1 p = 1
1 p = 2
−1 p = 3

,

εp
χ4

=

⎧⎨⎩ 1 p = 1
−1 p = 2
−1 p = 3

, εp
χ5

=

⎧⎨⎩−1 p = 1
1 p = 2
−1 p = 3

, εp
χ6

=

⎧⎨⎩−1 p = 1
−1 p = 2
1 p = 3

. (4.11)

To obtain this kind of controls in practice, we can proceed as follows:

• We build six tunnels in the rigid body, as drawn in Figure 2.
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y1

y2

y3

Figure 2. Ellipsoid with six controls.

• We divide the six tunnels in three groups of two parallel tunnels; that is, we put together the tunnels located
in the same plane (see Fig. 3).

• Let w̃1 and w̃2 denote the effective flow controls in the two tunnels located in the plane {y3 = 0}. They may
appear together in (1.21) as w̃1χ(y1, y2, y3) + w̃2χ(y1,−y2, y3), where χ ∈ C∞(∂Ω) is some function with

Supp χ ⊂ {y2 > 0}, ε1χ = −1, and ε3χ = 1.

We introduce the (new) support functions

χ1(y1, y2, y3) = χ(y1, y2, y3) + χ(y1,−y2, y3),

χ6(y1, y2, y3) = χ(y1, y2, y3) − χ(y1,−y2, y3)
and the (new) control inputs

w1 =
w̃1 + w̃2

2
,

w6 =
w̃1 − w̃2

2
·

(see Fig. 4). Then (4.11) is satisfied for χ1 and χ6, and

w̃1χ(y1, y2, y3) + w̃2χ(y1,−y2, y3) = w1χ1(y1, y2, y3) + w6χ6(y1, y2, y3).

The same can be done in the other planes {y1 = 0} and {y2 = 0}.
We notice that C is a diagonal matrix:

C = −diag(C1, C2, C3, C4, C5, C6),

with
Ci =

∫
∂Ω

φiχi, i = 1, 2, 3, and Ci+3 =
∫

∂Ω

ϕiχi+3, i = 1, 2, 3.

From (4.9)−(4.10), there are some constants C̄i �= 0, i = 1, . . . , 6, which depend only on c1, c2 and c3, such that

Ci = C̄i

∫
∂Ω∩(0,+∞)3

yiχi(y), Ci+3 = C̄i+3

∫
∂Ω∩(0,+∞)3

(
y1y2y3
yi

)
χi+3(y), i = 1, 2, 3. (4.12)
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y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

Figure 3. Independent controls in each plane.

w̃1

w̃2

w1 =
w̃1 + w̃2

2

w6 =
w̃1 − w̃2

2

Figure 4. Definition of the new controls in the plane {y3 = 0}.

By (4.12), we have that Ci �= 0 for i = 1, . . . , 6, and hence rank(C) = 6 if, in addition to (4.11), it holds

χi �≡ 0, i = 1, . . . , 6, (4.13)
χi ≥ 0 on ∂Ω ∩ (0,+∞)3, i = 1, . . . , 6. (4.14)

By Proposition 3.1 and Theorem 3.10, it follows that both the linearized system (3.1) and the nonlinear sys-
tem (2.68) are (locally) controllable.

Remark 4.1. Since ε1χ1
= (−1)δ11 = −1, we have that (LM

1 )11 = (WM
1 )11 = 0, and hence β = γ = 0. Thus

γ+αβ = 0. Proceeding as in [12], Theorem 2.2, one can prove that, under certain rank conditions, two arbitrary
states of the form (h, �q, 0, 0) can be connected by trajectories of the ellipsoid in (sufficiently) large time.
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Figure 5. Two ways to generate χ6.

In the following sections, we shall be concerned with the controllability of the ellipsoid with less controls
(namely, 4 controls and 3 controls). If, in the pair (χ1, χ6), only χ6 is available, then χ6 can be generated
as above by two propellers controlled in the same way (Fig. 5 left), or by only one propeller by choosing an
appropriate scheme for the tunnels (Fig. 5 middle). In what follows, to indicate that the flows in the two tunnels
are linked, we draw a transversal line in bold between the two tunnels (Fig. 5 right).

4.2.3. Controllability of the ellipsoid with four controls

We consider the same controllers χ1, χ4, χ5 and χ6 as above, still satisfying (4.11), (4.13), (4.14). (see Fig. 6).
If the density ρ is scaled by a factor λ, i.e. ρ(x) is replaced by ρλ(x) = λρ(x) where λ > 0, then the mass and
the inertia matrix are scaled in the same way; that is, m0 and J0 are replaced by

mλ
0 = λm0, Jλ

0 = λJ0.

Thus, if λ → ∞, then mλ
0 → ∞, [Jλ

0 ]−1 → 0, and [J λ]−1 → 0. (Note that large values of λ are not com-
patible with the neutral buoyancy, but they prove to be useful to identify geometric configurations leading to
controllability results with less than six control inputs).

Note that the matrices M,J,N,CM , CJ , LM
p , RM

p ,WM
p , LJ

p , R
J
p ,W

J
p keep constant when λ → ∞. In

particular,

lim
λ→∞

AJ−1C = 0, lim
1
2
JDJ −1C = 0.

Let B∞ = lim
λ→∞

B. Then B∞ and C are given by

B∞ = −

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 B6

0 0 B5 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , C = −

⎛⎜⎜⎜⎜⎜⎝
C1 0 0 0
0 0 0 0
0 0 0 0
0 C4 0 0
0 0 C5 0
0 0 0 C6

⎞⎟⎟⎟⎟⎟⎠ ,

with
B5 =

∫
∂Ω

(∇ψ1 · ∇ψ5) ν3, B6 =
∫

∂Ω

(∇ψ1 · ∇ψ6) ν2.

Thus, if B5 �= 0 and B6 �= 0, we see that (3.65) and (3.66) are fulfilled, so that the local controllability
of (2.68) is ensured by Corollary 3.11 for λ large enough. We note then that the matrix in R6×6 obtained by
gathering together the four columns of C and the last two columns of B∞ is invertible. Let R1(λ) ∈ R6×6

(resp. R2(λ) ∈ R
6×6) denote the matrix obtained by gathering together the four columns of C with the last two

columns of B + AJ −1C (resp. with the last two columns of 1
2JDJ −1C + B + AJ −1C). Then for λ � 1, we

have
det R1(λ) �= 0 and det R2(λ) �= 0.

Since the coefficients of R1(λ), R2(λ) are rational functions of λ, we infer that the equation

det R1(λ) · det R2(λ) = 0
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Control χ1
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y2

y3

Control χ4

y1

y2

y3

Control χ5
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y2

y3

Control χ6

y1

y2

y3

Figure 6. Ellipsoid with four controls.

is an algebraic equation in λ. Therefore, it has at most a finite set of roots in (0,+∞), that we denote by Λcritical.
We conclude that for any λ ∈ (0,+∞) \ Λcritical, the local controllability of (2.68) still holds. In particular, we
can consider values of λ arbitrary close to the value λ = 1 imposed by (1.10). The issue whether 1 ∈ Λcritical

seems hard to address without computing numerically all the coefficients in our system.

4.2.4. Controllability of the ellipsoid with three controls

Assume that χ1, χ4, χ5 and χ6 are as above (satisfying (4.11), (4.13), (4.14)), and consider now the controls
supported by χ1, χ4 and χ̃5 = χ5 + χ6 (see Fig. 7).

Doing the same scaling for the density, and letting λ→ ∞, we see that the matrices B∞ and C read

B∞ = −

⎛⎜⎜⎜⎜⎜⎝
0 0 0
0 0 B6

0 0 B5

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎠ , C = −

⎛⎜⎜⎜⎜⎜⎝
C1 0 0
0 0 0
0 0 0
0 C4 0
0 0 C5

0 0 C6

⎞⎟⎟⎟⎟⎟⎠ ,

where the coefficients B5, B6, C1, C4, C5, C6 are as above. For simplicity, we assume that the principal axes of
inertia of the vehicle coincide with the axes of the ellipsoid. Then the matrix J0 is diagonal (see [4]) with entries
J1, J2, J3. Notice that the first and fourth coordinates are well controlled (using χ1 and χ4), and that the other
coordinates are decoupled from them, at least asymptotically (i.e. when λ → ∞). Let A∞ = limλ→∞ A (i.e.
A∞ is obtained by letting α = 0 in A). Let K ∈ R

4×4 denote the matrix obtained from A∞ by removing the
first and fourth lines (resp. columns), and let b ∈ R4 (resp. c ∈ R4) denote the vector obtained from the last
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Control χ1
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y2

y3

Control χ4

y1

y2

y3

Control χ̃5

y1

y2

y3

Figure 7. Ellipsoid with three controls.

column of B∞ (resp. C) by removing the first and fourth coordinates, namely

K =

⎛⎜⎜⎝
−(LM

1 )22 0 0 −(RM
1 )23

0 −(LM
1 )33 −(RM

1 )32 0
0 −((LJ

1 )23 + (CM )11) −(RJ
1 )22 0

−((LJ
1 )32 − (CM )11) 0 0 −(RJ

1 )33

⎞⎟⎟⎠,

b =

⎛⎜⎝B6

B5

0
0

⎞⎟⎠, c =

⎛⎜⎝ 0
0
C5

C6

⎞⎟⎠ .

Let finally

F =

⎛⎜⎝0 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0

⎞⎟⎠ and G =

⎛⎜⎜⎝
m−1

0 0 0 0
0 m−1

0 0 0
0 0 J−1

2 0
0 0 0 J−1

3

⎞⎟⎟⎠ .

Then, keeping only the leading terms as λ→ ∞, we see that (3.69) holds if

rank(c, b,KGb, (KG)2b, (KG)3b) = 4 (4.15)

while (3.70) holds if

rank
(
c, b, [(CM )11F + 2K]Gb, [8(CM )11F + 11K]GKGb, [17(CM)11F + 64K]G(KG)2b

)
= 4. (4.16)

Note that (4.15) is satisfied whenever

rank(b,KGb, (KG)2b, (KG)3b) = 4, (4.17)
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which is nothing but the Kalman rank condition for the system ẋ = KGx + bu. However, it is clear that we
should take advantage of the presence c in (4.15). As previously, this gives a controllability result for λ� 1, but
such a result is also valid for all the positive λ’s except those in a finite set defined by an algebraic equation.

Appendix A

A.1. Quaternions and rotations

Quaternions are a convenient tool for representing rotations of objects in three dimensions. For that reason,
they are widely used in robotic, navigation, flight dynamics, etc. (see e.g. [1, 26]). We limit ourselves to intro-
ducing the few definitions and properties needed to deal with the dynamics of h and Q. (We refer the reader
to [1] for more details).

The set of quaternions, denoted by H, is a noncommutative field containing C and which is a R-algebra of
dimension 4. Any quaternion q ∈ H may be written as:

q = q0 + q1i+ q2j + q3k,

where (q0, q1, q2, q3) ∈ R4 and i, j, k ∈ H are some quaternions whose products will be given later. We say
that q0 (resp. q1i + q2j + q3k) is the real part (resp. the imaginary part) of q. Identifying the imaginary part
q1i + q2j + q3k with the vector �q = (q1, q2, q3) ∈ R3, we can represent the quaternion q as q = [q0, �q ], where
q0 ∈ R (resp. �q ∈ R3) is the scalar part (resp. the vector part) of q. The addition, scalar multiplication and
quaternion multiplication are defined respectively by

[p0, �p ] + [q0, �q ] = [p0 + q0, �p+ �q ],
t[q0, �q ] = [tq0, t�q ],

[p0, �p ] ∗ [q0, �q ] = [p0q0 − �p · �q, p0�q + q0�p+ �p× �q ],

where “·” is the dot product and “×” is the cross product. We stress that the quaternion multiplication ∗ is
not commutative. Actually, we have that

i ∗ j = k, j ∗ i = −k,
j ∗ k = i, k ∗ j = −i,
k ∗ i = j, i ∗ k = −j,
i2 = j2 = k2 = −1.

Any pure scalar q0 and any pure vector �q may be viewed as quaternions

q0 = [q0,�0 ], �q = [0, �q ],

and hence any quaternion q = [q0, �q ] can be written as the sum of a scalar and a vector, namely

q = q0 + �q.

The cross product of vectors extends to quaternions by setting

p× q =
1
2
(p ∗ q − q ∗ p) = [0, �p× �q ].

The conjugate of a quaternion q = [q0, �q ] is q∗ = [q0,−�q ]. The norm of q is

||q|| = (|q0|2 + ||�q ||2) 1
2 .
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From
q ∗ q∗ = q∗ ∗ q = ||q||2,

we infer that
q−1 =

q∗

||q||2 ·

A unit quaternion is a quaternion of norm 1. The set of unit quaternions may be identified with S3. It is a group
for ∗.

Any unit quaternion q = [q0, �q ] can be written in the form

q = cos
α

2
+ sin

α

2
�u, (A.1)

where α ∈ R and �u ∈ R3 with ||�u|| = 1. Note that the writing is not unique: if the pair (α, �u ) is convenient, the
same is true for the pairs (−α,−�u ) and (α + 4kπ, �u ) (k ∈ Z), as well. However, if we impose that α ∈ [0, 2π],
then α is unique, and �u is unique for |q0| < 1. (However, any �u ∈ S3 is convenient for |q0| = 1).

For any unit quaternion q, let the matrix R(q) ∈ R3×3 be defined by

R(q)�v = q ∗ �v ∗ q∗ ∀�v ∈ R
3. (A.2)

Then R(q) is found to be

R(q) =

⎛⎝ q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q2q1 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q3q1 − q0q2) 2(q3q2 + q0q1) q20 − q21 − q22 + q23

⎞⎠ .

For q given by (A.1), then R(q) is the rotation around the axis R�u of angle α.
Note that R(q1 ∗ q2) = R(q1)R(q2) (i.e. R is a group homomorphism), hence

R(1) = Id, R(q∗) = R(q)−1.

We notice that the map q → R(q) from the unit quaternions set S3 to SO(3) is onto, but not one-to-one, for
R(−q) = R(q). It becomes one-to-one when restricted to the open set

S3
+ := {q = [q0, �q ] ∈ H; ||q|| = 1 and q0 > 0}.

Furthermore, the map R is a smooth invertible map from S3
+ onto an open neighborhood O of Id in SO(3). On

the other hand, the map
�q → q = [q0, �q ] = [

√
1 − ||�q ||2, �q ]

is a smooth invertible map from the unit ball B1(0) = {�q ∈ R3; ||�q || < 1} onto S3
+. Thus the rotations in O

can be parameterized by �q ∈ B1(0).

A.2. Proof of Proposition 3.9

Let us prove by induction on k ∈ N that

V
(2l)
2k (T ) = 0 ∀l ∈ N. (A.3)

The property is clearly true for k = 0, since

V
(2l)
0 (T ) = B̂(2l)(T ) + Â(2l)(T )Ĉ = 0,

by (3.54). Assume that (A.3) is established for some k ∈ N. Then by (3.53) applied twice, we have

V2k+2 = V ′′
2k − 2ÂV ′

2k − Â′V2k + Â2V2k,



698 R. LECAROS AND L. ROSIER

hence
V

(2l)
2k+2(T ) = V

(2l+2)
2k − 2(ÂV ′

2k)(2l)(T ) − (Â′V2k)(2l)(T ) + (Â2V2k)(2l)(T ). (A.4)

The first term in the r.h.s. of (A.4) is null by (A.3). The second one is also null, for by Leibniz’ rule

(ÂV ′
2k)(2l)(T ) =

2l∑
p=0

Cp
2lÂ

(p)(T )V (2l−p+1)
2k (T )

and Â(p)(T ) = 0 if p is even, while V (2l−p+1)
2k (T ) = 0 if p is odd. One proves in a similar way that the third and

fourth terms in the r.h.s. of (A.4) are null, noticing that for p odd we have

(Â2)(p)(T ) = 2(ÂÂ′)(p−1)(T ) = 0. (A.5)

From (A.3), we infer that
V

(2l+1)
2k+1 (T ) = V

(2l+2)
2k (T ) − (ÂV2k)(2l+1)(T ) = 0.

Let us proceed to the proof of (3.56). Again, we first prove by induction on k ∈ N that

U
(2l)
2k+1(T ) = 0 ∀l ∈ N. (A.6)

It follows from (3.52), (3.53) and (3.55) that

U
(2l)
1 (T ) = U

(2l+1)
0 (T ) − (DU0)(2l)(T ) − V

(2l)
0 (T ) = 0 ∀k ∈ N.

Assume that (A.6) is true for some k ∈ N. Then, by (3.53) applied twice,

U
(2l)
2k+3(T ) = U

(2l+2)
2k+1 (T ) − (DU2k+1)(2l+1)(T ) − V

(2l+1)
2k+1 (T ) − (DU2k+2)(2l)(T ) − V

(2l)
2k+2(T ). (A.7)

Using (3.54), (3.55) and (A.6), we see that all the terms in the r.h.s. of (A.7), except possibly (DU2k+2)(2l)(T ),
are null. Finally,

(DU2k+2)(2l)(T ) = (DU ′
2k+1)

(2l)(T ) − (D2U2k+1)(2l)(T ) − (DV2k+1)(2l)(T ).

Using Leibniz’ rule for each term, noticing that in each pair (p, q) with p+q = 2l, p and q are simultaneously even
or odd, and using (3.54), (3.55), (A.5) (with Â replaced by D), and (A.6), we conclude that (DU2k+2)(2l)(T ) = 0,
so that U (2l)

2k+3(T ) = 0.

Finally, U (2l+1)
2k (T ) = 0 is obvious for k = 0, while for k ≥ 1

U
(2l+1)
2k (T ) = U

(2l+2)
2k−1 (T ) − (DU2k−1)(2l+1)(T ) − V

(2l+1)
2k−1 (T ) = 0

by (3.54), (3.55) and (A.6) (with 2k + 1 replaced by 2k − 1). The Proof of Proposition 3.9 is complete.

A.3. Proof of Proposition 3.13

From (3.51), (3.52) and (3.67), we obtain successively

V1(T ) = V ′
0(T ) = B̂′(T ) + Â′(T )Ĉ = w1

′(T )
(J −1B + J−1AJ −1C

)
V3(T ) = V ′

2(T )
= (V ′

1 − ÂV1)′(T )

= (V ′
0 − ÂV0)′′(T ) − (ÂV1)′(T )

= V ′′′
0 (T ) − 2Â′(T )V ′

0(T ) − Â′(T )V1(T )
= −3Â′(T )V ′

0(T ).
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Successive applications of (3.52) yield

V5(T ) = V
(5)
0 (T ) −

3∑
i=0

(ÂVi)(4−i)(T ), (A.8)

V7(T ) = V
(7)
0 (T ) −

5∑
i=0

(ÂVi)(6−i)(T ). (A.9)

Since V (k)
0 (T ) = 0 for k ≥ 2, it remains to estimate the terms (ÂVi)(4−i)(T ) and (ÂVi)(6−i)(T ). Notice first that

by (3.67) and Leibniz’ rule
(ÂVi)(k)(T ) = kÂ′(T )V (k−1)

i (T ).

Thus, from (3.67) and (3.72), we have that

(ÂV0)(4)(T ) = 0, (A.10)

(ÂV1)(3)(T ) = 3Â′(T )V ′′
1 (T ) = 3Â′(T )

(
V

(3)
0 (T ) − (ÂV0)′′(T )

)
= −6Â′(T )2V ′

0(T ), (A.11)

(ÂV2)′′(T ) = 2Â′(T )V ′
2(T ) = 2Â′(T )V3(T ) = −6Â′(T )2V ′

0(T ), (A.12)
(ÂV3)′(T ) = Â′(T )V3(T ) = −3Â′(T )2V ′

0(T ). (A.13)

This yields (3.73). On the other hand,

(ÂV0)(6)(T ) = 0, (A.14)

(ÂV1)(5)(T ) = 5Â′(T )V (4)
1 (T ) = 5Â′(T )

(
V

(5)
0 − (ÂV0)(4)

)
(T ) = 0, (A.15)

(ÂV2)(4)(T ) = 4Â′(T )V (3)
2 (T ). (A.16)

Since
V2 = V ′

1 − ÂV1 = V ′′
0 − (ÂV0)′ − ÂV1,

we obtain with (3.67) and (A.11) that

V
(3)
2 (T ) = V

(5)
0 (T ) − (ÂV0)(4)(T ) − (ÂV1)(3)(T ) = 6Â′(T )2V ′

0(T ),

hence
(ÂV2)(4)(T ) = 24Â′(T )3V ′

0(T ). (A.17)

On the other hand,

(ÂV3)(3)(T ) = 3Â′(T )V ′′
3 (T )

= 3Â′(T )
(
V ′

4 (T ) + (ÂV3)′(T )
)

= 3Â′(T )
(
V5(T ) + Â′(T )V3(T )

)
= 36Â′(T )3V ′

0(T ) (A.18)

where we used (3.52) and (3.72)−(3.73). Finally,

(ÂV4)′′(T ) = 2Â′(T )V ′
4(T ) = 2Â′(T )V5(T ) = 30Â′(T )3V ′

0(T ) (A.19)

and
(ÂV5)′(T ) = Â′(T )V5(T ) = 15Â′(T )V ′

0(T ). (A.20)

Gathering together (A.9) and (A.14)−(A.20), we obtain (3.74). The Proof of Proposition 3.13 is complete.
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A.4. Proof of Proposition 3.14

From (3.52)−(3.53), we have that

U0 ≡ Ĉ, Ui = U ′
i−1 −DUi−1 − Vi−1, ∀i ≥ 1. (A.21)

Thus

U2(T ) = (U ′
1 −DU1 − V1)(T )

= (0 − (DU0)′ − V ′
0)(T ) − V1(T )

= −D′(T )U0 − 2V ′
0(T )

where we used successively (A.21), (3.56) and (3.71).
Successive applications of (A.21) yield

U4(T ) = −
3∑

i=0

[
(DUi)(3−i) + V

(3−i)
i

]
(T ). (A.22)

Using (3.67), we obtain that

3∑
i=0

(DUi)(3−i)(T ) =
2∑

i=0

(3 − i)D′(T )U (2−i)
i (T )

= 2D′(T )
(
U2(T ) + V1(T )

)
+D′(T )V ′

0(T )
= −3D′(T )

(
D′(T )U0 + 2V ′

0(T )
)

+ 2D′(T )V ′
0(T )

= −4D′(T )V ′
0(T ) (A.23)

where we used (3.71), (3.75) and the fact that D′(T )2 = 0.
On the other hand,

3∑
i=0

V
(3−i)
i (T ) = (V ′

0 − ÂV0)′′(T ) + V ′
2 (T ) + V3(T )

= −2Â′(T )V ′
0(T ) + 2V3(T )

= −8Â′(T )V ′
0(T ) (A.24)

by (3.72). Combining (A.22)−(A.24), we obtain (3.76).
Let us now compute U6(T ). Successive applications of (A.21) yield

U6(T ) = −
5∑

i=0

[
(DUi)(5−i) + V

(5−i)
i

]
(T ). (A.25)

We have that
5∑

i=0

(DUi)(5−i)(T ) =
4∑

i=0

(5 − i)D′(T )U (4−i)
i (T ).

Let us estimate the terms U (4−i)
i (T ) for i = 0, . . . , 4. Obviously, U (4)

0 (T ) = 0 by (A.21), while by (3.67)

U
(3)
1 (T ) = −(DU0)(3)(T ) − V

(3)
0 (T ) = 0. (A.26)
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Next we use (A.21) to obtain successively

U ′
3(T ) = U4(T ) + V3(T ), (A.27)

U ′′
2 (T ) = U ′

3(T ) + (DU2)′(T ) + V ′
2(T )

= U4(T ) + V3(T ) +D′(T )U2(T ) + V3(T ).

It follows that

4∑
i=0

(DUi)(5−i)(T ) = 3D′(T )
(
U4(T ) + 2V3(T ) +D′(T )U2(T )

)
+ 2D′(T )

(
U4(T ) + V3(T )

)
+D′(T )U4(T )

= D′(T )
(
6U4(T ) + 8V3(T )

)
= 24D′(T )(D′(T ) + 2Â′(T ))V ′

0(T ) − 24D′(T )Â′(T )V ′
0(T )

= 24D′(T )Â′(T )V ′
0(T ). (A.28)

On the other hand, using (A.15)−(A.18) and (3.72)−(3.73), we have that

4∑
i=0

V
(5−i)
i (T ) = V

(4)
1 (T ) + V

(3)
2 (T ) + V

(2)
3 (T ) + V ′

4(T )

= 6Â′(T )2V ′
0(T ) + 2V5(T ) + Â′(T )V3(T )

= 33Â′(T )2V ′
0(T ). (A.29)

(3.77) follows from (A.25)−(A.29).
Finally, we compute U8(T ). We see that

U8(T ) = −
7∑

i=0

[
(DUi)(7−i) + V

(7−i)
i

]
(T ). (A.30)

Then

7∑
i=0

(DUi)(7−i)(T ) =
6∑

i=0

(7 − i)D′(T )U (6−i)
i (T )

= 6D′(T )U (5)
1 (T ) + 5D′(T )U (4)

2 (T ) + 4D′(T )U (3)
3 (T )

+ 3D′(T )U ′′
4 (T ) + 2D′(T )U ′

5(T ) +D′(T )U6(T ).

Using (3.67), (A.21) and (A.26), we readily see that

U
(5)
1 (T ) = U

(4)
2 (T ) = 0.

Next, successive applications of (A.21) give

U ′
5(T ) = U6(T ) + V5(T ),

U ′′
4 (T ) = U ′

5(T ) + (DU4)′(T ) + V ′
4(T )

= U6(T ) +D′(T )U4(T ) + 2V5(T ).

U
(3)
3 (T ) = U ′′

4 (T ) + (DU3)′′(T ) + V ′′
3 (T )

=
(
U6(T ) +D′(T )U4(T ) + 2V5(T )

)
+ 2D′(T )

(
U4(T ) + V3(T )

)
+V5(T ) + Â′(T )V3(T ).
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Thus

7∑
i=0

(DUi)(7−i)(T ) = 4D′(T )
(
U6(T ) + 3D′(T )U4(T ) + 2V5(T ) + 2D′(T )V3(T ) + Â′(T )V3(T )

)
+ 3D′(T )

(
U6(T ) +D′(T )U4(T ) + 2V5(T )

)
+2D′(T )

(
U6(T ) + V5(T )

)
+D′(T )U6(T )

= D′(T )[10U6(T ) + 16V5(T ) + 4Â′(T )V3(T )]

= D′(T )[−240D′(T )Â′(T )V ′
0(T ) − 330 Â′(T )V ′

0(T )
+ 240 Â′(T )2V ′

0 (T ) − 12Â′(T )2V ′
0(T )]

= − 102D′(T )Â′(T )2V ′
0(T ). (A.31)

It remains to compute
∑7

i=0 V
(7−i)
i (T ). It is easy to see that

V
(7)
0 (T ) = V

(6)
1 (T ) = V

(5)
2 (T ) = 0.

Successive applications of (3.52) give

V ′
6 (T ) = V7(T ),

V ′′
5 (T ) = V ′

6(T ) + (ÂV5)′(T ) = V7(T ) + Â′(T )V5(T ),

V
(3)
4 (T ) = V ′′

5 (T ) + (ÂV4)′′(T )
= V7(T ) + 3Â′(T )V5(T ),

V
(4)
3 (T ) = V

(3)
4 (T ) + (ÂV3)(3)(T )

= V7(T ) + 3Â′(T )V5(T ) + 3Â′(T )V ′′
3 (T )

= V7(T ) + 6Â′(T )V5(T ) + 3Â′(T )2V3(T ),

where we used (A.18). Thus

7∑
i=0

V
(7−i)
i (T ) = 5V7(T ) + 10Â′(T )V5(T ) + 3Â′(T )2V3(T )

= −384 Â′(T )3V ′
0(T ). (A.32)

Then (3.78) follows from (A.30)−(A.32). The Proof of Proposition 3.14 is achieved.
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