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Abstract. This paper deals with the numerical computation of boundary null controls for the 1D wave
equation with a potential. The goal is to compute approximations of controls that drive the solution
from a prescribed initial state to zero at a large enough controllability time. We do not apply in this
work the usual duality arguments but explore instead a direct approach in the framework of global
Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible
null controls a functional involving weighted integrals of the state and the control. The optimality
conditions show that both the optimal control and the associated state are expressed in terms of a
new variable, the solution of a fourth-order elliptic problem defined in the space-time domain. We
first prove that, for some specific weights determined by the global Carleman inequalities for the wave
equation, this problem is well-posed. Then, in the framework of the finite element method, we introduce
a family of finite-dimensional approximate control problems and we prove a strong convergence result.
Numerical experiments confirm the analysis. We complete our study with several comments.
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1. Introduction. The null controllability problem

We are concerned in this work with the null controllability for the 1D wave equation with a potential. The
state equation is the following:

⎧⎪⎨
⎪⎩
ytt − (a(x)yx)x + b(x, t)y = 0, (x, t) ∈ (0, 1) × (0, T )

y(0, t) = 0, y(1, t) = v(t), t ∈ (0, T )

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1).

(1.1)

Here, T > 0 and we assume that a ∈ C3([0, 1]) with a(x) ≥ a0 > 0 in [0, 1], b ∈ L∞((0, 1)×(0, T )), y0 ∈ L2(0, 1)
and y1 ∈ H−1(0, 1); v = v(t) is the control (a function in L2(0, T )) and y = y(x, t) is the associated state.
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In the sequel, for any τ > 0 we denote by Qτ and Στ the sets (0, 1) × (0, τ) and {0, 1} × (0, τ), respectively.
We will also use the following notation:

Ly := ytt − (a(x)yx)x + b(x, t)y. (1.2)

For any (y0, y1) ∈ Y := L2(0, 1) × H−1(0, 1) and any v ∈ L2(0, T ), it is well known that there exists exactly
one solution y to (1.1), with the following regularity:

y ∈ C0([0, T ];L2(0, 1)) ∩C1([0, T ];H−1(0, 1)) (1.3)

(see for instance [23]).
On the other hand, for any T > 0, the null controllability problem for (1.1) at time T is the following: for

each (y0, y1) ∈ Y , find v ∈ L2(0, T ) such that the corresponding solution to (1.1) satisfies

y(· , T ) = 0, yt(· , T ) = 0 in (0, 1). (1.4)

In view of the linearity and reversibility of the wave equation, (1.1) is null-controllable at T if and only if it
is exactly controllable in Y at time T , i.e. if and only if for any (y0, y1) ∈ Y and any (z0, z1) ∈ Y there exist
controls v ∈ L2(0, T ) such that the associated y satisfies

y(· , T ) = z0, yt(· , T ) = z1 in (0, 1).

It is well known that (1.1) is null-controllable at any large time T > T � for some T � that depends on a (for
instance, see [2,23] for a ≡ 1 and b ≡ 0 leading to T � = 2 and see [32] for a general situation). As a consequence
of the Hilbert Uniqueness Method of Lions [23], it is also known that the null controllability of (1.1) is equivalent
to an observability inequality for the associated adjoint problem.

The goal of this paper is to design and analyze a numerical method allowing to solve the previous null
controllability problem.

So far, the approximation of the minimal L2-norm control – the so-called HUM control – has focused most
of the attention. The earlier contribution is due to Glowinski and Lions in [19] (see also [21] for an update)
and relies on duality arguments. Duality allows to replace the original constrained minimization problem by an
unconstrained and a priori easier minimization (dual) problem. However, as observed in [19] and later in [34],
depending on the approximation method that is used, this approach can lead to some numerical difficulties.

Let us be more precise. It is easily seen that the HUM control is given by v(t) = a(1)φx(1, t), where φ solves
the backwards wave system ⎧⎨

⎩
Lφ = 0 in QT
φ = 0 on ΣT
(φ(· , T ), φt(· , T )) = (φ0, φ1) in (0, 1)

(1.5)

and (φ0, φ1) minimizes the strictly convex and coercive functional

I(φ0, φ1) =
1
2
‖a(1)φx(1, ·)‖2

L2(0,T ) +
∫ 1

0

y0(x)φt(x, 0) dx − 〈y1, φ(· , 0)〉H−1,H1
0

(1.6)

over H = H1
0 (0, 1) × L2(0, 1). Here 〈· , ·〉H−1,H1

0
denotes the duality product for H−1(0, 1) and H1

0 (0, 1).
The coercivity of I over H is a consequence of the observability inequality

‖φ0‖2
H1

0 (0,1) + ‖φ1‖2
L2(0,1) ≤ C‖φx(1, ·)‖2

L2(0,T ) ∀(φ0, φ1) ∈ H, (1.7)

that holds for some constant C = C(T ). This inequality has been derived in [23] using the multipliers method.
At the numerical level, for standard approximation schemes (based on finite difference or finite element

methods), the discrete version of (1.7) may not hold uniformly with respect to the discretization parameter,
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say h. In other words, the constant C = C(h) may blow up as h goes to zero. Consequently, in such cases
the functional Ih (the discrete version of I) fails to be coercive uniformly with respect to h and the sequence
{vh}h>0 may not converge to v as h→ 0, but diverge exponentially. These pathologies, by now well-known and
understood, are due to the spurious discrete high frequencies generated by the finite dimensional approximation;
we refer to [34] for a review on that topic; see [24] for detailed examples of the behavior observed with finite
difference methods.

Several remedies based on more elaborated approximations have been proposed and analyzed in the last
decade. Let us mention the use of mixed finite elements [6], additional viscosity terms which have the effect to
restore the uniform property [1, 24] and also filtering technics [11]. Also, notice that some error estimates have
been obtained recently, see [7, 11].

In this paper, following the recent work [12] devoted to the heat equation, we consider a different approach.
Specifically, we consider the following extremal problem:⎧⎪⎨

⎪⎩
Minimize J(y, v) =

1
2

∫∫
QT

ρ2|y|2 dxdt+
1
2

∫ T

0

ρ2
0|v|2 dt

Subject to (y, v) ∈ C(y0, y1;T )
(1.8)

where C(y0, y1;T ) denotes the linear manifold

C(y0, y1;T ) = { (y, v) : v ∈ L2(0, T ), y solves (1.1) and satisfies (1.4) }.

Here, we assume that the weights ρ and ρ0 are strictly positive, continuous and uniformly bounded from below
by a positive constant in QT and (0, T ), respectively.

As in the previous L2-norm situation (where we simply have ρ ≡ 0 and ρ0 ≡ 1), we can apply duality
arguments in order to find a solution to (1.8), by introducing the unconstrained dual problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Minimize J�(μ, φ0, φ1) =
1
2

∫∫
QT

ρ−2|μ|2 dxdt+
1
2

∫ T

0

ρ−2
0 |a(1)φx(1, t)|2 dt

+
∫ 1

0

y0(x)φt(x, 0) dx− 〈y1, φ(· , 0)〉H−1,H1
0

Subject to (μ, φ0, φ1) ∈ L2(QT ) × H,

(1.9)

where φ solves the nonhomogeneous backwards problem⎧⎨
⎩
Lφ = μ in QT
φ = 0 on ΣT
(φ(· , T ), φt(· , T )) = (φ0, φ1) in (0, 1).

Here, J� is the conjugate function of J in the sense of Fenchel and Rockafellar [10, 28] and, if ρ ∈ L∞(QT )
and ρ0 ∈ L∞(0, T ) (that is, ρ−2 and ρ−2

0 are positively bounded from below), J� is coercive in L2(QT ) × H

thanks to (1.7). Therefore, if (μ̂, φ̂0, φ̂1) denotes the minimizer of J�, the corresponding optimal pair for J is
given by

v = −a(1)ρ−2
0 φx(1, ·) in (0, T ) and y = −ρ−2μ in QT .

At the discrete level, at least for standard approximation schemes, we may suspect that the coercivity of J�

may not hold uniformly with respect to the discretization parameters, leading to the pathologies and the lack
of convergence we have just mentioned.

On the other hand, the fact that the state variable y appears explicitly in the cost J makes it possible to
avoid dual methods. We can use instead suitable primal methods to get an optimal pair (y, v) ∈ C(y0, y1;T ).
The formulation, analysis and practical implementation of these primal methods is the main goal of this paper.
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More precisely, the optimality conditions for the functional J allow to express explicitly the optimal pair
(y, v) in terms of a new variable, the solution of a fourth-order elliptic problem in the space-time domain QT
that is well-posed under some conditions on T , the coefficient a and the weights ρ and ρ0. Sufficient conditions
are deduced from an appropriate global Carleman estimate, an updated version of the inequalities established
in [3]. From a numerical viewpoint, this elliptic formulation is appropriate for a standard finite element analysis.
By introducing adequate finite dimensional spaces, we are thus able to deduce satisfactory convergence results
for the control, something that does not seem easy to get in the framework of a dual approach.

A similar primal approach, based on ideas by Fursikov and Imanuvilov [16], has been used in [12] for the
numerical null controllability of the heat equation.

This paper is organized as follows.
In Section 2, adapting the arguments and results in [12], we show that the solution to (1.8) can be expressed

in terms of the unique solution p to the variational problem (2.14) in the Hilbert space P , defined as the
completion of P0 with respect to the inner product (2.9); see Proposition 2.5. The well-posedness is deduced
from the application of Riesz’s Theorem: a suitable global Carleman inequality ensures the continuity of the
linear form in (2.14) for T large enough when ρ and ρ0 are given by (2.10); see Theorem 2.2.

In Section 3, we analyze the variational problem (2.14) from the viewpoint of the finite element theory. Thus,
we replace P by a conformal finite element space Ph of C1(QT ) functions defined by (3.5) and we show that
the unique solution p̂h ∈ Ph to the finite dimensional problem (3.10) converges (strongly) for the P -norm to p
as h goes to zero.

Section 4 contains some numerical experiments that illustrate and confirm the convergence of the se-
quence {p̂h}.

Finally, we present some additional comments in Section 5 and we provide some details of the proof of
Theorem 2.2 in the Appendix.

2. A variational approach to the null controllability problem

With the notation introduced in Section 1, the following result holds:

Proposition 2.1. Let T > 0 be large enough. Let us assume that ρ and ρ0 are positive and satisfy ρ ∈ C0(QT ),
ρ0 ∈ C0(0, T ) and ρ, ρ0 ≥ ρ > 0. Then, for any (y0, y1) ∈ Y , there exists exactly one solution to the extremal
problem (1.8).

The proof is simple. Indeed, for T ≥ T �, null controllability holds and C(y0, y1;T ) is non-empty. Furthermore,
it is a closed convex set of L2(QT )×L2(0, T ). On the other hand, (y, v) �→ J(y, v) is strictly convex, proper and
lower-semicontinuous in L2(QT ) × L2(0, T ) and

J(y, v) → +∞ as ‖(y, v)‖L2(QT )×L2(ΣT ) → +∞.

Hence, the extremal problem (1.8) certainly possesses a unique solution.
In this paper, it will be convenient to assume that the coefficient a belongs to the family

A(x0, a0) =

{
a ∈ C3([0, 1]) : a(x) ≥ a0>0,

− min
[0,1]

(a(x) + (x− x0)ax(x)) < min
[0,1]

(
a(x) +

1
2
(x− x0)ax(x)

) } (2.1)

where x0 < 0 and a0 is a positive constant.
It is easy to check that the constant function a(x) ≡ a0 belongs to A(x0, a0). Similarly, any non-decreasing

smooth function bounded from below by a0 belongs to A(x0, a0). Roughly speaking, a ∈ A(x0, a0) means that
a is sufficiently smooth, strictly positive and not too decreasing in [0, 1].
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Under the assumption (2.1), there exists “good” weight functions ρ and ρ0 which provide a very suitable
solution to the original null controllability problem. They can be deduced from global Carleman inequalities.

The argument is the following. First, let us introduce a constant β, with

−min
[0,1]

(a(x) + (x − x0)ax(x)) < β < min
[0,1]

(
a(x) +

1
2
(x− x0)ax(x)

)
(2.2)

and let us consider the function
φ(x, t) := |x− x0|2 − βt2 +M0, (2.3)

where M0 is such that
φ(x, t) ≥ 1 ∀(x, t) ∈ (0, 1) × (−T, T ), (2.4)

i.e. M0 ≥ 1 − |x0|2 + βT 2. Then, for any λ > 0 we set

ϕ(x, t) := eλφ(x,t). (2.5)

The Carleman estimates for the wave equation are given in the following result:

Theorem 2.2. Let us assume that x0 < 0, a0 > 0 and a ∈ A(x0, a0). Let β and ϕ be given respectively by (2.2)
and (2.5). Moreover, let us assume that

T >
1
β

max
[0,1]

a(x)1/2(x− x0). (2.6)

Then there exist positive constants s0 and M , only depending on x0, a0, ‖a‖C3([0,1]), ‖b‖L∞(QT ) and T , such
that, for all s > s0, one has

s

∫ T

−T

∫ 1

0

e2sϕ
(|wt|2 + |wx|2

)
dxdt+ s3

∫ T

−T

∫ 1

0

e2sϕ|w|2 dxdt

≤M

∫ T

−T

∫ 1

0

e2sϕ|Lw|2 dxdt+Ms

∫ T

−T
e2sϕ|wx(1, t)|2 dt

(2.7)

for any w ∈ L2(−T, T ;H1
0(0, 1)) satisfying Lw ∈ L2((0, 1) × (−T, T )) and wx(1, ·) ∈ L2(−T, T ).

There exists an important literature related to (global) Carleman estimates for the wave equation. Almost
all references deal with the particular case a ≡ 1; we refer to [3, 4, 18, 31, 33]. The case where a is non-constant
is less studied; we refer to [17].

The proof of Theorem 2.2 follows closely the ideas used in the proofs of Theorems 2.1 and 2.5 in [4] to obtain
a global Carleman estimate for the wave equation when a ≡ 1. The parts of the proof which become different
for non-constant a are detailed in the Appendix of this paper.

In the sequel, it is assumed that x0 < 0 and a0 > 0 are given, a ∈ A(x0, a0) and

T >
2
β

max
[0,1]

a(x)1/2(x− x0), with β satisfying (2.2). (2.8)

Let us consider the linear space

P0 = { q ∈ C∞(QT ) : q = 0 on ΣT }.

The bilinear form

(p, q)P :=
∫∫
QT

ρ−2LpLq dxdt+
∫ T

0

ρ−2
0 a(1)2 px(1, t) qx(1, t) dt (2.9)
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is a scalar product in P0. Indeed, in view of (2.8), the unique continuation property for the wave equation holds.
Accordingly, if q ∈ P0, Lq = 0 in QT and qx = 0 on {1}× (0, T ), then q ≡ 0. This shows that (· , ·)P is certainly
a scalar product in P0.

Let P be the completion of P0 with respect to this scalar product. Then P is a Hilbert space for (· , ·)P and
we can deduce from Theorem 2.2 the following result, that indicates which are the appropriate weights ρ and
ρ0 for our controllability problem:

Lemma 2.3. Let us assume that s > s0, let us set

ρ(x, t) := e−sϕ(x,2t−T ), ρ0(t) := ρ(1, t) (2.10)

and let us consider the corresponding Hilbert space P . Then there exists a constant C0 > 0, only depending
on x0, a0, ‖a‖C3([0,1]), ‖b‖L∞(QT ), λ, s and T , such that

‖p(· , 0)‖2
H1

0(0,1) + ‖pt(· , 0)‖2
L2(0,1) ≤ C0 (p, p)P ∀p ∈ P. (2.11)

Proof. For every p ∈ P , we denote by p ∈ L2((0, 1) × (−T, T )) the function defined by

p(x, t) = p

(
x,
t+ T

2

)
.

It is easy to see that p ∈ L2(−T, T ;H1
0(Ω)), Lp ∈ L2((0, 1)× (−T, T )) and px(1, ·) ∈ L2(−T, T ), so that we can

apply Theorem 2.2 to p. Accordingly, we have

s

∫ T

−T

∫ 1

0

e2sϕ
(|pt|2 + |px|2

)
dxdt+ s3

∫ T

−T

∫ 1

0

e2sϕ|p|2 dxdt

≤ C

∫ T

−T

∫ 1

0

e2sϕ|Lp|2 dxdt+ Cs

∫ T

−T
e2sϕ(1,t)|px(1, t)|2 dt

(2.12)

where C depends on x0, a0, ‖a‖C3([0,1]), ‖b‖L∞(QT ) and T .
Replacing p by its definition in (2.12) and changing the variable t by t′ = 2t− T we obtain the following for

any T satisfying (2.8):

s

∫∫
QT

ρ−2(|pt|2 + |px|2) dxdt + s3
∫∫
QT

ρ−2|p|2 dxdt

≤ C

∫∫
QT

ρ−2|Lp|2 dxdt+ Cs

∫ T

0

ρ−2
0 |px(1, t)|2 dt,

where C is replaced by a slightly different constant. Finally, from Corollary 2.8 in [4], we obtain the esti-
mate (2.11). �

Remark 2.4. The estimate (2.11) must be viewed as an observability inequality. As expected, it holds if and
only if T is large enough. Notice that, when a(x) ≡ 1, the assumption (2.8) reads

T > 2(1 − x0).

This confirms that, in this case, whenever T > 2, (2.11) holds (it suffices to choose x0 appropriately and apply
Lem. 2.3; see [23]). �
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The previous results lead to a very useful characterization of the optimal pair (y, v) for J :

Proposition 2.5. Let us assume that s > s0, let us set ρ and ρ0 as in (2.10) and let us consider the corre-
sponding Hilbert space P . Let (y, v) ∈ C(y0, y1, T ) be the solution to (1.8). Then there exists p ∈ P such that

y = −ρ−2Lp, v = −(a(x)ρ−2
0 px)

∣∣
x=1

. (2.13)

Moreover, p is the unique solution to the following variational equality:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫∫
QT

ρ−2LpLq dxdt+
∫ T

0

ρ−2
0 a2(1)px(1, t) qx(1, t) dt

=
∫ 1

0

y0(x) qt(x, 0) dx− 〈y1, q(·, 0)〉H−1,H1
0

∀q ∈ P ; p ∈ P.

(2.14)

Here and in the sequel, we use the following duality pairing:

〈y1, q(·, 0)〉H−1,H1
0

=
∫ 1

0

∂

∂x
((−Δ)−1y1)(x) qx(x, 0) dx,

where −Δ is the Dirichlet Laplacian in (0, 1).

Proof. From the definition of the scalar product in P , we see that p solves (2.14) if and only if

(p, q)P =
∫ 1

0

y0(x) qt(x, 0) dx− 〈y1, q(·, 0)〉H−1,H1
0

∀q ∈ P ; p ∈ P.

In view of Lemma 2.3 and Riesz’s Representation Theorem, problem (2.14) possesses exactly one solution in P .
Let us now introduce y and v according to (2.13) and let us check that (y, v) solves (1.8). First, notice that

y ∈ L2(QT ) and v ∈ L2(0, T ). Then, by replacing y and v in (2.14), we obtain the following:∫∫
QT

y Lq dxdt+
∫ T

0

a(1)v(t)qx(1, t) dt =
∫ 1

0

y0(x) qt(x, 0) dx − 〈y1, q(·, 0)〉H−1,H1
0

∀q ∈ P. (2.15)

Hence, (y, v) is the solution of the controlled wave system (1.1) in the transposition sense. Since y ∈ L2(QT )
and v ∈ L2(0, T ) the couple (y, v) belongs to C(y0, y1, T ).

It remains to check that (y, v) minimizes the cost function J in (1.8). But this is easy. Indeed, for any
(z, w) ∈ C(y0, y1, T ) such that J(z, w) < +∞, one has:

J(z, w) ≥ J(y, v) +
∫∫

QT

ρ2y (z − y) dxdt+
∫ T

0

ρ2
0v(w − v) dt

= J(y, v) −
∫∫

QT

Lp (z − y) dxdt+
∫ T

0

ρ2
0v(w − v) dt = J(y, v).

The last equality follows from the fact that∫∫
QT

Lp (z − y) dxdt =
∫∫
QT

pL(z − y) dxdt

+
∫ 1

0

[pt (z − y)]T0 dx− [< (z − y)t, p >H−1,H1
0
]T0

−
∫ T

0

[a(x)px (z − y)]10 dt+
∫ T

0

[a(x)p (z − y)x]10 dt,

the boundary condition for p (see Rem. 2.6 below), the fact that both (y, v) and (z, w) belong to C(y0, y1;T )
and (2.13). �
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Remark 2.6. From (2.13) and (2.14), we see that the function p furnished by Proposition 2.5 solves, at least
in the distributional sense, the following differential problem, that is of the fourth-order in time and space:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L(ρ−2Lp) = 0, (x, t) ∈ QT

p(0, t) = 0, (ρ−2Lp)(0, t) = 0, t ∈ (0, T )

p(1, t) = 0, (ρ−2Lp+ aρ−2
0 px)(1, t) = 0, t ∈ (0, T )

(ρ−2Lp)(x, 0) = y0(x), (ρ−2Lp)(x, T ) = 0, x ∈ (0, 1)

(ρ−2Lp)t(x, 0) = y1(x), (ρ−2Lp)t(x, T ) = 0, x ∈ (0, 1).

(2.16)

Notice that the “boundary” conditions at t = 0 and t = T are of the Neumann kind. �

Remark 2.7. The weights ρ−1 and ρ−1
0 behave exponentially with respect to s. For instance, we have

ρ(x, t)−1 = exp
(
s eλ(|x−x0|2−β(2t−T )2+M0)

)
.

For large values of the parameter s (greater than s0 > 0, see the statement of Thm. 2.2), the weights ρ−2 and
ρ−2
0 may lead in practice to numerical overflow. One may overcome this situation by introducing a suitable

change of variable.
More precisely, let us introduce the variable z = ρp and the Hilbert space M = ρP , so that the formula-

tion (2.14) becomes:⎧⎪⎪⎨
⎪⎪⎩

∫∫
QT

ρ−2L(ρz)L(ρz) dxdt+
∫ T

0

ρ−2
0 a2(1)(ρz)x(1, t) (ρz)x(1, t) dt

=
∫ 1

0

y0(x) (ρz)t(x, 0) dx− 〈y1, (ρz)(·, 0)〉H−1,H1
0

∀z ∈M ; z ∈M.

(2.17)

The well-posedness of this formulation is a consequence of the well-posedness of (2.14). Then, after some
computations, the following is found:

ρL(ρ−1z) = ρ−1

(
(ρz)t − (a(ρz)x)x + bρz

)
= (ρ−1ρt)z + zt − ax((ρ−1ρx)z + zx) − a(2ρ−1ρxzx + ρ−1ρxxz + zxx) + b z

with
ρ−1ρx = −sϕx(x, 2t− T ), ρ−1ρt = −2sϕt(x, 2t− T ), ρ−1ρxx = −sϕxx + (sϕx)2.

Similarly,
(ρ−1

0 (ρz)x)(1, t) = zx(1, t).

Consequently, in the bilinear part of (2.17), there is no exponential (but only polynomial) function of s. In the
right hand side (the linear part), the change of variable introduces negative exponentials in s. A similar trick
has been used in [12] in the context of the heat equation, where we find weights that blow up exponentially as
t→ T−. �

Remark 2.8. The exponential form of the weights ρ and ρ0 is purely technical and is related to Carleman
estimates. Actually, since for any s and λ these weights are uniformly bounded and uniformly positive in QT ,
the space P is independent of ρ and ρ0 and one could apply the primal approach to the cost J (defined in (1.8))
for any bounded and positive weights. In particular, one could simply take ρ ≡ 1 and ρ0 ≡ 1; the estimates (2.11)
would then read as follows:

‖p(· , 0)‖2
H1

0(0,1) + ‖pt(· , 0)‖2
L2(0,1) ≤ C0

(
‖Lp‖2

L2(QT ) + ‖a(1) px(1, ·)‖2
L2(0,T )

)
∀p ∈ P (2.18)
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for some constant C0 > 0. This inequality can also be obtained directly by the multipliers method; we refer
to [32] and references therein. �

Remark 2.9. As remarked in [4] (see Rem. 2.7), the estimate (2.11) can be proven for a weight ρ0 which blows
up at t = 0 and t = T . For this purpose, we consider a function θδ ∈ C2([0, T ]) with θδ(0) = θδ(1) = 0 and
θδ(x) = 1 for every x ∈ (δ, T − δ). Then, introducing again p(x, t) := θδ(t)p(x, (t + T )/2), it is not difficult to
see that the proofs of Lemma 2.3 and Theorem 2.2 can be adapted to obtain (2.11) with

ρ(x, t) = e−sϕ(x,2t−T ), ρ0(t) = θδ(t)−1ρ(1, t).

Thanks to the properties of θδ, the control v defined by

v = −θ2δρ−2
0 a(1)px

∣∣
x=1

vanishes at t = 0 and also at t = T , a property which is very natural and useful in the boundary controllability
context. In the sequel, we will use this modified weight ρ0, imposing in addition, for numerical purposes, the
following behavior near t = 0 and t = T :

lim
t→0+

θδ(t)√
t

= O(1), lim
t→T−

θδ(t)√
T − t

= O(1). (2.19)

3. Numerical analysis of the variational approach

We now highlight that the variational formulation (2.14) allows to obtain a sequence of approximations {vh}
that converge strongly towards the null control v furnished by the solution to (1.8).

3.1. A conformal finite dimensional approximation

Let us introduce the bilinear form m(·, ·) over P × P

m(p, q) := (p, q)P =
∫∫

QT

ρ−2LpLq dxdt+
∫ T

0

a(1)2ρ−2
0 px(1, t) qx(1, t) dt

and the linear form �, with

〈�, q〉 :=
∫ 1

0

y0(x) qt(x, 0) dx − 〈y1, q(·, 0)〉H−1,H1
0
.

Then (2.14) reads as follows:
m(p, q) = 〈�, q〉, ∀q ∈ P ; p ∈ P. (3.1)

Let us assume that a finite dimensional space Ph ⊂ P is given for each h ∈ R
2
+. Then we can introduce the

following approximated problems:

m(ph, qh) = 〈�, qh〉, ∀qh ∈ Ph; ph ∈ Ph. (3.2)

Obviously, each (3.2) is well-posed. Furthermore, we have the following classical result:

Lemma 3.1. Let p ∈ P be the unique solution to (3.1) and let ph ∈ Ph be the unique solution to (3.2). Then
we have:

‖p− ph‖P ≤ inf
qh∈Ph

‖p− qh‖P .
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Proof. We write that

‖ph − p‖2
P = m(ph − p, ph − p) = m(ph − p, ph − qh) +m(ph − p, qh − p).

The first term vanishes for all qh ∈ Ph. The second one is bounded by ‖ph − p‖P ‖qh − p‖P . So, we get

‖p− ph‖P ≤ ‖p− qh‖P ∀qh ∈ Ph

and the result follows. �

As usual, this result can be used to prove that ph converges towards p when the spaces Ph are chosen
appropriately. More precisely, let us assume that an interpolation operator Πh : P0 → Ph is given for any
h ∈ R

2
+ and let us suppose that

‖p−Πhp‖P → 0 as h→ (0, 0) ∀p ∈ P0. (3.3)

We then have the following convergence result:

Proposition 3.2. Let p ∈ P be the solution to (3.1) and let ph ∈ Ph be the solution to (3.2) for each h ∈ R
2
+.

Then
‖p− ph‖P → 0 as h→ (0, 0). (3.4)

Proof. Let us choose ε > 0. Since P0 is dense in P , there exists pε ∈ P0 such that ‖p− pε‖P ≤ ε. Therefore, we
find from Lemma 3.1 that

‖p− ph‖P ≤ ‖p−Πhpε‖P
≤ ‖p− pε‖P + ‖pε −Πhpε‖P
≤ ε+ ‖pε −Πhpε‖P .

But we know from (3.3) that ‖pε − Πhpε‖P goes to zero as h ∈ R
2
+, h → (0, 0). Consequently, we also

have (3.4). �

3.2. The finite dimensional spaces Ph

The spaces Ph must be chosen such that ρ−1Lph belongs to L2(QT ) for any ph ∈ Ph. This means that ph
must possess second-order derivatives in L2

loc(QT ). Therefore, a conformal approximation based on a standard
quadrangulation of QT requires spaces of functions continuously differentiable with respect to both variables x
and t.

For large integers Nx and Nt, we set Δx = 1/Nx, Δt = T/Nt and h = (Δx,Δt). We introduce the associated
quadrangulations Qh, with QT =

⋃
K∈Qh

K and we assume that {Qh}h>0 is a regular family. Then, we introduce
the space Ph as follows:

Ph = { zh ∈ C1(QT ) : zh|K ∈ P(K) ∀K ∈ Qh, zh = 0 on ΣT }. (3.5)

Here, P(K) denotes the following space of polynomial functions in x and t:

P(K) = (P3,x ⊗ P3,t)(K) (3.6)

where Pr,ξ is by definition the space of polynomial functions of order r in the variable ξ.
Obviously, Ph is a finite dimensional subspace of P .
Let us introduce the notation

Kkl := [xk, xk+1] × [tl, tl+1],

where
xk := (k − 1)Δx, tl := (l − 1)Δt, for k = 1, . . . , Nx + 1, l = 1, . . . , Nt + 1.
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For any k, we denote by (Lik)0≤i≤3 the Hermite functions associated to [xk, xk+1]. They are given by⎧⎪⎨
⎪⎩
L0k(x) := (1 + 2c)(1 − c)2, L1k(x) := c2(3 − 2c)
L2k(x) := Δxc(1 − c)2, L3k(x) := Δxc2(c− 1)
c := (x− xk)/Δx.

Recall that, for any f ∈ C1([xk, xk+1]), the function

(ΠΔxf)(x) :=
1∑
i=0

Lik(x)f(xi+k) +
1∑
i=0

Li+2,k(x)fx(xi+k)

is the unique element in P3([xk, xk+1]) that satisfies

(ΠΔxf)(xk+i) = f(xk+i), (ΠΔxf)x(xk+i) = (fx)(xk+i), i = 0, 1.

In a similar way, we denote by (Ljl)0≤j≤3 the Hermite functions associated to the time interval [tl, tl+1]. Then,
from the definition of P(Kkl), we can obtain easily for any u ∈ P0 the polynomial function in P(Kkl) uniquely
determined by the values of u, ux, ut and uxt at the vertices of Kkl:

Lemma 3.3. For each u ∈ P0, let us define the function Πhu as follows: for any k and l,

Πhu(x, t) :=
1∑

i,j=0

Lik(x)Ljl(t)u(xi+k, tj+l) +
1∑

i,j=0

Li+2,k(x)Ljl(t)ux(xi+k, tj+l)

+
1∑

i,j=0

Lik(x)Lj+2,l(t)ut(xi+k, tj+l) +
1∑

i,j=0

Li+2,k(x)Lj+2,l(t)uxt(xi+k, tj+l)

in Kkl = [xk, xk +Δx] × [tl, tl +Δt].
Then Πhu is the unique function in Ph that satisfies

Πhu(xk+i, tl+j) = u(xk+i, tl+j), (Πhu(xk+i, tl+j))x = ux(xk+i, tl+j),
(Πhu(xk+i, tl+j))t = ut(xk+i, tl+j), (Πhu(xk+i, tl+j))xt = uxt(xk+i, tl+j)

for all i, j ∈ {0, 1}. The linear mapping Πh : P0 �→ Ph is by definition the interpolation operator associated
to Ph.

This result allows to get an expression of u−Πhu on each element Kkl that will be used in the next section:

Lemma 3.4. For any u ∈ P0, we have

u−Πhu =
1∑

i,j=0

(
mijux(xi+k, tj+l) + nijut(xi+k, tj+l) + pijutx(xi+k, tj+l)

)

+
1∑

i,j=0

LikLjlR[u;xi+k, tj+l]

(3.7)

in Kkl, where the mij , nij and pij are given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mij(x, t) :=
(
Lik(x)(x − xi) − Li+2,k(x)

)
Lj(t)

nij(x, t) := Lik(x)
(
Lj(t)(t − tj) − Lj+2(t)

)
pij(x, t) := Lik(x)Ljl(t)(x − xi)(t− tj) − Li+2(x)Lj+2(t)
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and

R[u;xi+k, tj+l](x, t) :=
∫ t

tj+l

(t− s)utt(xi+k, s) ds

+ (x− xi+k)
∫ t

tj+l

(t− s)uxtt(xi+k , s) ds

+
∫ x

xi+k

(x− s)uxx(s, t) ds.

The proof is very simple. In fact, (3.7) is a consequence of the following Taylor expansion for u with integral
remainder:

u(x, t) =u(xk, tl) + (t− tl)ut(xk, tl) +
∫ t

tl

(t− s)utt(xk, s) ds

+ (x − xk)
(
ux(xk, tl) + (t− tl)uxt(xk, tl) +

∫ t

tl

(t− s)uxtt(xk, s) ds
)

+
∫ x

xk

(x− s)uxx(s, t) ds

and the identity
∑1
i,j=0 Lik(x)Ljl(t) ≡ 1.

3.3. An estimate of ‖p − Πhp‖P and some consequences

Let us now prove that (3.3) holds when the Ph are given by (3.5)–(3.6).
Thus, let us fix p ∈ P0 and let us first check that∫∫

QT

ρ−2|L(p−Πh(p))|2 dxdt → 0 as h = (Δx,Δt) → (0, 0). (3.8)

For each Kkl ∈ Qh (simply denoted by K in the sequel), we write:∫∫
K

ρ−2|L(p−Πhp)|2 dxdt ≤ ‖ρ−2‖L∞(K)

∫∫
K

|L(p−Πhp)|2 dxdt

≤ 3‖ρ−2‖L∞(K)

(∫∫
K

|(p−Πhp)tt|2 dxdt+
∫∫

K

|(a(x)(p−Πhp)x)x|2 dxdt

+ ‖b‖2
L∞(K)

∫∫
K

|p−Πhp|2 dxdt
)
.

(3.9)

Using Lemma 3.4, we have:∫∫
K

|p−Πhp|2 dxdt

=
∫∫

K

∣∣∣∣∑
i,j

(
mijpx(xi, tj) + nijpt(xi, tj) + pijptx(xi, tj) + LiLjR[p;xi, tj ]

)∣∣∣∣
2

dxdt

≤ 16‖px‖2
L∞(K)

∑
i,j

∫∫
K

|mij |2 dxdt+ 16‖pt‖2
L∞(K)

∑
i,j

∫∫
K

|nij |2 dxdt

+ 16‖ptx‖2
L∞(K)

∑
i,j

∫∫
K

|pij |2 dxdt+ 16
∑
i,j

∫∫
K

|LiLjR[p;xi, tj ]|2 dxdt,

where we have omitted the indices k and l.
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Moreover,

|R[p;xi+k, tj+l]|2 ≤ |t− tj |3‖ptt(xi, ·)‖2
L2(tl,tl+1)

+ |x− xi|2|t− tj |3‖pxtt(xi, ·)‖2
L2(tl,tl+1)

+ |x− xi|3‖pxx(· , t)‖2
L2(xk,xk+1)

.

Consequently, we get:

∑
i,j

∫∫
K

|LiLjR[p;xi+k, tj+l]|2 dxdt

≤ sup
x∈(xk,xk+1)

‖ptt(x, ·)‖2
L2(tl,tl+1)

∑
i,j

∫∫
K

|Li(x)Lj(t)|2|t− tj |3 dxdt

+ sup
x∈(xk,xk+1)

‖pxtt(x, ·)‖2
L2(tl,tl+1)

∑
i,j

∫∫
K

|Li(x)Lj(t)|2|t− tj |3|x− xi|2 dxdt

+ sup
t∈(tl,tl+1)

‖pxx(· , t)‖2
L2(xk,xk+1)

∑
i,j

∫∫
K

|Li(x)Lj(t)|2|x− xi|3 dxdt.

After some tedious computations, one finds that

∑
i,j

∫∫
K

|mij |2 dxdt =
104

11 025
(Δx)3Δt,

∑
i,j

∫∫
K

|nij |2 dxdt =
104

11 025
Δx(Δt)3,

∑
i,j

∫∫
K

|pij |2 dxdt =
353

198 450
(Δx)3(Δt)3

and ∑
i,j

∫∫
K

|Li(x)Lj(t)|2|t− tj |3 dxdt =
143
7350

Δx(Δt)4,

∑
i,j

∫∫
K

|Li(x)Lj(t)|2|x− xi|3 dxdt =
143
7350

(Δx)4Δt,

∑
i,j

∫∫
K

|Li(x)Lj(t)|2|x− xi|2|t− tj |3 dxdt =
209

132 300
(Δx)3(Δt)4.

This leads to the following estimate for any K = Kkl ∈ Qh:∫∫
K

|p−Πhp|2 dxdt ≤ 1664
11 025

(Δx)3Δt‖px‖2
L∞(K)

+
1664

11 025
Δx(Δt)3‖pt‖2

L∞(K)

+
2824

99 225
(Δx)3(Δt)3‖ptx‖2

L∞(K)

+
1144
3675

(Δx)4Δt sup
x∈(xk,xk+1)

‖ptt(· , t)‖2
L2(tl,tl+1)

+
1144
3675

Δx(Δt)4 sup
t∈(tl,tl+1)

‖pxx(· , t)‖2
L2(xk,xk+1)

+
836

33 075
(Δx)3(Δt)3 sup

x∈(xk,xk+1)

‖pxtt(· , t)‖2
L2(tl,tl+1)

.
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We deduce that ∫∫
QT

|p−Πhp|2 dxdt ≤ K1T ‖px‖2
L∞(QT ) (Δx)2

+K1T ‖pt‖2
L∞(QT ) (Δt)2

+K2T ‖ptx‖2
L∞(QT ) (Δx)2(Δt)2

+K3‖ptt(· , t)‖2
L2(0,T ;L∞(0,1)) (Δx)3

+K3‖pxx(· , t)‖2
L∞(0,T ;L2(0,1) (Δt)3

+K4‖pxtt(· , t)‖2
L2(0,T ;L∞(0,1)) (Δx)2(Δt)2

for some positive constants Ki. Hence, for any p ∈ P0 one has∫∫
QT

|p−Πh p|2 dxdt → 0 as h→ (0, 0).

Proceeding as above, we show that the other terms in (3.9) also converge to 0. Hence, (3.8) holds.
On the other hand, a similar argument yields∫ T

0

ρ−2
0 a(1)2|(p−Πhp)x|2 dxdt→ 0 as h→ (0, 0)

and, consequently, we find that (3.3) holds.
We can now use Proposition 3.2 and deduce convergence results for the approximate control and state

variables:

Proposition 3.5. Let ph ∈ Ph be the unique solution to (3.2), where Ph is given by (3.5)–(3.6). Let us set

yh := ρ−2Lph, vh := −ρ−2
0 a(x)ph,x

∣∣
x=1

.

Then one has
‖y − yh‖L2(QT ) → 0 and ‖v − vh‖L2(0,T ) → 0,

where (y, v) is the solution to (1.8). �

3.4. A second approximated problem

For simplicity, we will assume in this section that y1 ∈ C0([0, 1]).
In order to take into account the numerical approximation of the weights and the data that we necessarily

have to perform in practice, we will also consider a second approximated problem. It is the following:

mh(p̂h, qh) = 〈�h, qh〉 ∀qh ∈ Ph; p̂h ∈ Ph, (3.10)

where the bilinear form mh(· , ·) is given by

mh(ph, qh) :=
∫∫
QT

πh(ρ−2)Lph Lqh dxdt+
∫ T

0

a(1)2πΔx(ρ−2
0 )ph qh dt

and the linear form �h is given by

〈�h, q〉 :=
∫ 1

0

(πΔxy0)(x) qt(x, 0) dx− 〈πΔxy1, q(·, 0)〉H−1,H1
0
.

Here, for any function f ∈ C0(QT ), πh(f) denotes the piecewise linear function which coincides with f at all
vertices of Qh. Similar (self-explanatory) meanings can be assigned to πΔx(z) and πΔt(w) when z ∈ C0([0, 1])
and w ∈ C0([0, T ]), respectively.
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Since the weight ρ−2 is strictly positive and bounded in QT (actually ρ−2 ≥ 1), we easily see that the ratio
πh(ρ−2)/ρ−2 is bounded uniformly with respect to h (for |h| small enough). The same holds for the vanishing
weight θ2δρ(1, ·)−2 under the assumptions (2.19).

As a consequence, it is not difficult to prove that (3.10) is well-posed. Moreover, we have:

Lemma 3.6. Let ph and p̂h be the solutions to (3.2) and (3.10), respectively. Then,

‖p̂h − ph‖P ≤ max
(∥∥∥∥πh(ρ−2)

ρ−2
− 1

∥∥∥∥
L∞(QT )

,

∥∥∥∥πΔt(ρ−2
0 )

ρ−2
0

− 1
∥∥∥∥
L∞(0,T )

)
‖p̂h‖P

+ C1‖πΔx(y0) − y0‖L2 + C2‖πΔx(y1) − y1‖H−1 ,

(3.11)

where C1 and C2 are positive constants independent of h.

Proof. Since ph and p̂h respectively solve (3.2) and (3.10), one has:

‖p̂h − ph‖2
P = m(p̂h − ph, p̂h − ph)

= m(p̂h, p̂h − ph) −mh(p̂h, p̂h − ph) + 〈lh, p̂h − ph〉 − 〈l, p̂h − ph〉

=
∫∫

QT

(ρ−2−πh(ρ−2))Lp̂h L(p̂h−ph) dxdt+
∫ T

0

(ρ−2
0 −πΔt(ρ−2

0 ))a(1)2p̂x,h(p̂x,h−px,h) dt

+ 〈lh, p̂h − ph〉 − 〈l, p̂h − ph〉

=
∫∫

QT

(
1 − πh(ρ−2)

ρ−2

)
(ρ−1Lp̂h)(ρ−1L(p̂h − ph)) dxdt

+
∫ T

0

(
1 − πΔtρ

−2
0

ρ−2
0

)
a(1)2(ρ−1

0 p̂h)ρ−1
0 (p̂h,x − ph,x) dt

+
∫
Ω

(πΔx(y0) − y0)(x) (p̂t,h − pt,h)(x, 0) dx − 〈πΔx(y1) − y1, (p̂h − ph)(x, 0)〉H−1,H1
0
.

In view of the definitions of the bilinear forms m(· , ·) and mh(· , ·), we easily find (3.11). �

Taking into account that (3.3) holds and

max
(∥∥∥∥πh(ρ−2)

ρ−2
− 1

∥∥∥∥
L∞(QT )

,

∥∥∥∥πΔt(ρ−2
0 )

ρ−2
0

− 1
∥∥∥∥
L∞(0,T )

)
→ 0,

we find that, as h goes to zero, the unique solution to (3.10), converges in P to the unique solution to (3.1):

‖p− p̂h‖P ≤ ‖p− ph‖P + ‖ph − p̂h‖P → 0.

An obvious consequence is the following:

Proposition 3.7. Let p̂h ∈ Ph be the unique solution to (3.10), where Ph is given by (3.5)–(3.6). Let us set

ŷh := πh(ρ−2)Lp̂h, v̂h := −πΔx(ρ−2
0 )a(x)p̂h,x

∣∣
x=1

. (3.12)

Then one has
‖y − ŷh‖L2(QT ) → 0 and ‖v − v̂h‖L2(0,T ) → 0,

where (y, v) is the solution to (1.8). �
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4. Numerical experiments

We now present some numerical experiments concerning the solution of (3.10), which can in fact be viewed
as a linear system involving a banded sparse, definite positive, symmetric matrix of order 4NxNt. We will
denote by Mh this matrix. If {p̂h} stands for the corresponding vector solution of size 4NxNt, we may write
(p̂h, qh)Ph

= (Mh{p̂h}, {qh}) for any qh ∈ Ph.
We will use an exact integration method in order to compute the components of Mh and the (direct) Cholesky

method with reordering to solve the linear system.
After the computation of p̂h, the control v̂h is given by (3.12). Observe that, in view of the definition of the

space Ph, the derivative with respect to x of p̂h is a degree of freedom of {p̂h}; hence, the computation of v̂h
does not require any additional calculus.

The corresponding controlled state ŷh may be obtained by using the pointwise first equality (3.12) or, equiv-
alently, by solving (2.15). However, in order to check the action of the control function v̂h properly, we have
computed ŷh by solving (1.1) with a C1 finite element method in space and a standard centered scheme of
second order in time.

Thus, let us introduce the finite dimensional spaces

Zh = { zh ∈ C1([0, 1]) : zh
∣∣
[xi,xi+Δx]

∈ P3,x ∀i = 1, . . . , Nx }

and Z0h = { zh ∈ Zh : zh(0) = zh(1) = 0 }. Then, a suitable approximation ŷh of the controlled state y is defined
in the following standard way:

• At time t = 0, ŷh is given by yh(·, 0) = PZh
(y0), the projection of y0 on Zh;

• At time t1 = Δt, ŷh(·, t1) ∈ Zh is given by the solution to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
∫ 1

0

(ŷh(x, t1) − ŷh(x, t0) −Δt y1(x))
(Δt)2

φdx

+
∫ 1

0

[a(x)ŷh,x(x, t0)φx + b(x, t0)ŷh(x, t0)φ] dx = 0

∀φ ∈ Zh0; ŷh(0, t1) ∈ Zh, ŷh(0, t1) = 0, ŷh(1, t1) = v̂h(t1).

(4.1)

• At time t = tn = nΔt, n = 2, · · · , Nt, ŷh(·, tn) solves the following linear problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
∫ 1

0

(ŷh(x, tn) − 2ŷh(x, tn−1) + ŷh(·, tn−2)
(Δt)2

φdx

+
∫ 1

0

[a(x)ŷh,x(x, tn−1)φx + b(x, tn)ŷh(x, tn−1)φ] dx = 0

∀φ ∈ Zh0; ŷh(0, tn) ∈ Zh, ŷh(0, tn) = 0, ŷh(1, tn) = v̂h(tn).

(4.2)

This requires a preliminary projection of v̂h on a grid on (0, T ) fine enough in order to fulfill the underlying
CFL condition. To this end, we use the following interpolation formula: for any ph ∈ Ph and any θ ∈ [0, 1], we
have:

ph,x(1, tj + θΔt) = (2θ + 1)(θ − 1)2 ph,x(1, tj) +Δt θ(1 − θ)2 ph,xt(1, tj)
+ θ2(3 − 2θ) ph,x(1, tj+1) +Δt θ2(θ − 1) ph,xt(1, tj+1)

(4.3)

for all t ∈ [tj , tj+1].
We will consider a constant coefficient a(x) ≡ a0 = 1 and a constant potential b(x, t) ≡ 1 in QT . We will take

T = 2.2, x0 = −1/20, β = 0.99 and M0 = 1− x2
0 + βT 2, so that (2.8) holds. Finally, concerning the parameters

λ and s (which appear in (2.12)), we will take λ = 0.1 and s = 1.

Remark 4.1. Let us emphasize that our approach does not require in any way the discretization meshes to be
uniform. �
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Table 1. The constant C0h with respect to h.

Δx, Δt 1/10 1/20 1/40 1/80

T = 2.2 6.60 × 10−2 7.61 × 10−2 8.56 × 10−2 9.05 × 10−2

T = 1.5 0.565 2.672 17.02 96.02

4.1. Estimating the Carleman constant

Before prescribing the initial data, let us check that the finite dimensional analog of the observability constant
C0 in (2.11) is uniformly bounded with respect to h when (2.8) is satisfied. We consider here the case a ≡ 1 and
b ≡ 1.

In the space Ph, the approximate version of (2.11) is

(Ah{ph}, {ph}) ≤ C0h(Mh{ph}, {ph}) ∀{ph} ∈ Ph,

where Ah is the square matrix of order 4NtNx defined by the identities

(Ah{ph}, {qh}) :=
∫ 1

0

(ph,x(x, 0) qh,x(x, 0) + ph,t(x, 0) qh,t(x, 0)) dx.

Therefore, C0h is the solution of a generalized eigenvalue problem:

C0h = max{λ : ∃ph ∈ Ph, ph �= 0, such that Ah{ph} = λMh{ph} }. (4.4)

We can easily solve (4.4) by the power iteration algorithm. Table 1 collects the values of C0h for various
h = (Δx,Δt) for T = 2.2 and T = 1.5, with Δt = Δx. As expected, C0h is bounded in the first case only. The
same results are obtained for Δt �= Δx.

In agreement with Remark 2.8, we obtain the same behavior of the constant with respect to T for any s, in
particular for s = 0 leading to ρ ≡ 1 and ρ0 ≡ 1.

4.2. Smooth initial data and constant speed of propagation

We now solve (2.14) with a ≡ 1 and smooth initial data. For simplicity, we also take a constant potential
b ≡ 1.

For (y0, y1) = (sin(πx), 0), Table 2 collects relevant numerical values with respect to h = (Δx,Δt). We have
taken Δt = Δx for simplicity but, in this finite element framework, any other choice is possible. In particular,
we have reported the condition number κ(Mh) of the matrix Mh, defined by

κ(Mh) = |||Mh|||2 |||M−1
h |||2

(the norm |||Mh|||2 stands for the largest singular value of Mh). We observe that this number behaves polyno-
mially with respect to h.

Table 2 clearly exhibits the convergence of the variables p̂h and v̂h as h goes to zero. Assuming that h =
(1/160, 1/160) provides a reference solution, we have also reported in Table 2 the estimates ‖p − p̂h‖P and
‖v − v̂h‖L2(0,T ). We observe then that

‖p− p̂h‖P = O(h1.91), ‖v − v̂h‖L2(0,T ) = O(h1.56).

The corresponding state ŷh is computed from the main equation (1.1), as explained above, taking Δt = Δx/4.
That is, we use (4.3) with θ = 0, 1/4, 1/2 and 3/4 on each interval [tj , tj+1]. We observe the following behavior
with respect to h:

‖ŷh(·, T )‖L2(0,1) = O(h1.71), ‖ŷt,h(·, T )‖H−1(0,T ) = O(h1.31),
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Table 2. (y0(x), y1(x)) ≡ (sin(πx), 0), a ≡ 1, b ≡ 1 – T = 2.2.

Δx, Δt 1/10 1/20 1/40 1/80

κ(Mh) 3.06 × 108 1.57 × 1010 6.10 × 1011 2.47 × 1013

‖p̂h‖P 1.541 × 10−1 1.548 × 10−1 1.550 × 10−1 1.550 × 10−1

‖p̂h − p‖P 4.46 × 10−2 1.45 × 10−2 4.01 × 10−3 8.38 × 10−4

‖v̂h‖L2(0,T ) 5.421 × 10−1 5.431 × 10−1 5.434 × 10−1 5.434 × 10−3

‖v̂h − v‖L2(0,T ) 2.39 × 10−2 8.12 × 10−3 2.48 × 10−3 9.57 × 10−4

‖ŷh(· , T )‖L2(0,1) 1.80 × 10−2 8.18 × 10−3 1.64 × 10−3 5.85 × 10−4

‖ŷt,h(· , T )‖H−1(0,1) 3.06 × 10−2 8.25 × 10−3 3.59 × 10−3 1.93 × 10−3

Table 3. (y0(x), y1(x)) ≡ (e−500(x−0.2)2 , 0) and a ≡ 1, b ≡ 1 – T = 2.2.

Δx, Δt 1/10 1/20 1/40 1/80 1/160

‖p̂h‖P 4.38 × 10−2 3.95 × 10−2 4.20 × 10−2 4.31 × 10−2 4.33 × 10−2

‖p̂h − p‖P 1.80 × 10−1 6.30 × 10−2 1.66 × 10−2 2.78 × 10−3 –
‖v̂h‖L2(0,T ) 1.48 × 10−1 1.33 × 10−1 1.53 × 10−1 1.64 × 10−1 1.67 × 10−1

‖v̂h − v‖L2(0,T ) 9.81 × 10−2 6.28 × 10−2 3.80 × 10−2 1.11 × 10−2 –
‖ŷh(· , T )‖L2(0,1) 1.09 × 10−1 7.67 × 10−2 3.70 × 10−2 1.11 × 10−2 1.87 × 10−3

‖ŷt,h(· , T )‖H−1(0,1) 1.36 × 10−1 8.82 × 10−2 5.16 × 10−2 1.76 × 10−2 2.82 × 10−3

which shows that the control v̂h given by the second equality in (3.12) is a good approximation of a null control
for (1.1).

Figure 2-Left displays the function p̂h ∈ P (the unique solution to (3.10)) for h = (1/80, 1/80). Figure 2-right
displays the associated control v̂h. As a consequence of the introduction of the function θδ in the weight, we see
that v̂h vanishes at times t = 0 and t = T . Finally, Figure 3 displays the corresponding controlled state ŷh.

Table 3 and Figures 4 and 5 provide the results for y0(x) ≡ e−500(x−0.2)2 and y1(x) ≡ 0. We still observe the
convergence of the variables p̂h, v̂h and ŷh, with a lower rate. This is due in part to the shape of the initial
condition y0. Precisely, we get ‖p − p̂h‖P = O(h1.74), ‖v̂h − v‖L2(0,T ) = O(h0.68), ‖ŷh(·, T )‖L2(0,1) = O(h1.35)
and ‖ŷt,h(·, T )‖H−1(0,T ) = O(h1.11).

4.3. Initial data (y0, y1) ∈ H1(0, 1) × L2(0, 1) and constant speed of propagation

Let us enhance that our approach, in agreement with the theoretical results, also provides convergent results
for irregular initial data. We take a continuous but not differentiable initial state y0 and a piecewise constant
initial speed y1:

y0(x) ≡ x 1[0,1/2](x) + (1 − x) 1]1/2,1](x), y1(x) ≡ 10 × 1[1/5,1/2](x). (4.5)

The other data are unchanged, except b, that is taken equal to zero.
Observe that these functions remain compatible with the C1 finite element used to approximate p, since y0

and y1 only appear in the right hand side of the variational formulation and πΔxy0 and πΔxy1 make sense;
see (3.10). The unique difference is that, once p̂h and v̂h are known, ŷh must be computed from (4.1)–(4.2) using
a C0 (and not C1) spatial finite element method.

Recall however that these initial data typically generate pathological numerical behavior when the usual dual
approach, based on the minimization of (1.6), is used.

Some numerical results are given in Table 4 and Figures 6 and 7. As before, we observe the convergence of the
variable p̂h and therefore v̂h and ŷh as h→ 0. We see that ‖p̂h−p‖P = O(h1.48) and ‖v̂h− v‖L2(0,1) = O(h1.23).
In particular, we do not observe oscillations for the control or the functions p̂h and p̂h,t at the initial time.
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Figure 1. log10 ‖p− p̂h‖P (�) and log10 ‖v − v̂h‖L2(0,T ) (◦) vs. log10(h).

Figure 2. (y0(x), y1(x)) ≡ (sin(πx), 0) and a ≡ 1 – The solution p̂h over QT (Left) and the
corresponding variable v̂h on (0, T ) (Right) – h = (1/80, 1/80).

Table 4. (y0, y1) given by (4.5) and a ≡ 1 – T = 2.2.

Δx, Δt 1/10 1/20 1/40 1/80 1/160

‖p̂h‖P 3.16 × 10−1 2.89 × 10−2 2.73 × 10−2 2.65 × 10−2 2.61 × 10−1

‖p̂h − p‖P 1.12 × 10−1 4.62 × 10−2 1.70 × 10−2 5.12 × 10−3 -
‖v̂h‖L2(0,T ) 1.23 1.11 1.05 1.02 1.004
‖v̂h − v‖L2(0,T ) 2.52 × 10−1 1.25 × 10−1 5.57 × 10−2 1.90 × 10−2 -
‖ŷh(· , T )‖L2(0,1) 1.09 × 10−1 5.40 × 10−2 2.20 × 10−2 1.09 × 10−2 6.20 × 10−3

‖ŷt,h(· , T )‖H−1(0,1) 7.25 × 10−2 4.62 × 10−2 2.85 × 10−2 5.12 × 10−3 6.75 × 10−3
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Figure 3. (y0(x), y1(x)) ≡ (sin(πx), 0) and a ≡ 1 – The solution ŷh over QT – h = (1/80, 1/80).

Figure 4. (y0(x), y1(x)) ≡ (e−500(x−0.2)2 , 0) and a ≡ 1 – The solution p̂h over QT (left) and
the corresponding variable v̂h on (0, T ) (right) – h = (1/80, 1/80).

4.4. Discontinuous initial data y0 and constant speed of propagation

The method also provides convergent results for data y0 only in L2(0, 1). We consider the following initial
condition:

y0(x) ≡ 1[0.5,0.7](x), y1(x) ≡ 0. (4.6)

The other data are unchanged with respect to Section 4.3. This leads to pathological numerical behavior when
other frequently used dual methods are employed (we refer to [24]). Some numerical results are given in Table 5
and Figure 8. Once again, the convergence of the variable p̂h and therefore v̂h and ŷh as h→ 0 is observed.
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Figure 5. (y0(x), y1(x)) ≡ (e−500(x−0.2)2 , 0) and a ≡ 1 – The solution ŷh over QT – h =
(1/80, 1/80).

Figure 6. (y0, y1) given by (4.5) and a ≡ 1 – The solution p̂h over QT (left) and the corre-
sponding variable v̂h on (0, T ) (right) – h = (1/80, 1/80).

Table 5. (y0, y1) given by (4.6) and a ≡ 1 – T = 2.2.

Δx, Δt 1/10 1/20 1/40 1/80 1/160

‖p̂h‖P 1.01 × 10−1 1.00 × 10−1 9.71 × 10−2 9.53 × 10−2 9.47 × 10−2

‖v̂h‖L2(0,T ) 3.42 × 10−1 3.27 × 10−1 3.19 × 10−1 3.14 × 10−1 3.14 × 10−1

‖ŷh(· , T )‖L2(0,1) 1.24 × 10−1 9.27 × 10−2 7.26 × 10−2 5.88 × 10−2 3.12 × 10−2

‖ŷt,h(· , T )‖H−1(0,1) 1.55 × 10−1 1.16 × 10−1 1.06 × 10−1 7.13 × 10−2 6.02 × 10−2
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Figure 7. (y0, y1) given by (4.5) and a ≡ 1 – The solution ŷh over QT – h = (1/80, 1/80).

Figure 8. (y0, y1) given by (4.6) and a ≡ 1 – The solution p̂h over QT (left) and the
corresponding variable v̂h on (0, T ) (right) – h = (1/80, 1/80).

4.5. Non constant smooth speed of propagation

Finally, let us consider a non-constant function a = a(x) (we refer to [20] for the dual approach in this case).
In order to illustrate the robustness of our method, we will take a coefficient a ∈ C1([0, 1]) with

a(x) =

⎧⎪⎨
⎪⎩

1 x ∈ [0, 0.45]
∈ [1., 5.] (a′(x) > 0), x ∈ (0.45, 0.55)
5 x ∈ [0.55, 1]

(4.7)

so that condition (2.8) is equivalent to T > 2(1 + 1/20)
√

5 ≈ 4.69 (taking again x0 = −1/20). In order to
reduce the computational cost, we take as before T = 2.2 and we still observe that the constant C0h in (4.4) is
uniformly bounded.
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Figure 9. (y0(x), y1(x)) ≡ (e−500(x−0.2)2 , 0) and a given by (4.7) – The solution p̂h over QT
(left) and the corresponding variable v̂h on (0, T ) (right) – h = (1/80, 1/80).

Table 6. (y0(x), y1(x)) ≡ (e−500(x−0.2)2,0) and a given by (4.7) – T = 2.2.

Δx, Δt 1/10 1/20 1/40 1/80 1/160

‖p̂h‖Ph 3.87 × 10−2 3.44 × 10−2 3.75 × 10−2 3.85 × 10−2 3.86 × 10−2

‖p̂h − p‖Ph 1.25 × 10−1 5.75 × 10−2 2.64 × 10−2 1.01 × 10−2 –
‖v̂h‖L2(0,T ) 7.74 × 10−2 6.53 × 10−2 9.16 × 10−2 1.01 × 10−1 1.03 × 10−1

‖v̂h − v‖L2(0,T ) 5.07 × 10−1 4.17 × 10−2 2.03 × 10−2 4.86 × 10−3 –
‖ŷh(· , T )‖L2(0,1) 1.09 × 10−1 7.89 × 10−2 1.81 × 10−2 1.16 × 10−2 1.71 × 10−3

‖ŷt,h(· , T )‖H−1(0,1) 1.01 × 10−1 8.39 × 10−2 4.81 × 10−2 7.52 × 10−3 1.55 × 10−3

We take again (y0(x), y1(x)) ≡ (e−500(x−0.2)2 , 0) and b ≡ 0. Table 6 illustrates the convergence of the approxi-
mations with respect to h. Figures 9 and 10 depict for h = (1/80, 1/80) the functions p̂h, v̂h and ŷh. In particular,
in Figure 10, we can observe the diffraction of the wave when crossing the transitional zone (0.45, 0.55).

5. Further comments and concluding remarks

Let us begin this section with some general considerations on the use of Carleman weights that serve to
justify our approach:

(i) The search of a control minimizing J in (1.8), where y is involved, is very appropriate from the numerical
viewpoint. As shown in Section 2, the explicit occurrence of the state variable y leads to an elliptic problem
in QT , that is easy to analyze and solve (at this level, the particular choice of the weight is less impor-
tant). This approach does not require the discretization of the wave operator, as for usual dual approachs;
therefore, it does not generate any spurious oscillations and leads to numerical well-posedness. This is an
important feature of the approach.

(ii) The Carleman weights provide regularity of the solution to (2.14) and therefore allows to derive estimates
of the errors ‖p− ph‖P in term of h = (Δx,Δt). This will be detailed in a forthcoming work.

(iii) The process can be viewed as a first step for the numerical controllability of semi-linear problems: if we just
apply a fixed-point argument, we will find at each iterate a linear equation with non-regular coefficients
depending on x and t for which the present approach is adequate.

(iv) In our numerical experiments we have not found any essential difference for small or large s or λ: this is in
full agreement with Remark 2.8 and Section 4.1.
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Figure 10. y0(x) ≡ e−500(x−0.2)2 and a given by (4.7) – The solution ŷh over QT – h =
(1/80, 1/80).

(v) Furthermore, we mention that the approach has been considered by analogy with the similar analysis in
references [12] to [15], dealing with heat equations.

5.1. Primal versus dual approach (I): analogies

The solution to the variational formulation (2.14) is also the unique minimizer of the functional I, with

I(p) :=
1
2

∫∫
QT

ρ−2|Lp|2 dxdt+
1
2

∫ T

0

ρ−2
0 a(1)2|px(1, ·)|2 dt

−
∫ 1

0

y0(x) pt(x, 0) dx+ 〈y1, p(·, 0)〉H−1,H1
0
.

(5.1)

This is similar to the conjugate functional J� in (1.9). Actually, we notice that J�(μ, φ0, φ1) = I(−φ) for all
(μ, φ0, φ1) ∈ L2(QT ) × H .

Therefore, the extremal problems (1.9) and (5.1) are connected to each other having (1.8) as starting point.
The problem (2.14), deduced from the primal approach belongs to the framework of elliptic variational problems
in two dimensions and is well tailored for a resolution with finite elements. The dual problem (1.9) is of hyperbolic
nature: the time variable is kept explicitly and time integration is required.

Note that we may also derive the optimality conditions for J� (as we did in Sect. 2 for J): this leads, at least
formally, to the problem (2.14).

We also mention [26] where a (different) variational approach is introduced.

5.2. Primal versus dual approaches (II): discrete properties

The variational approach used here leads to satisfactory convergence results, in particular the strong conver-
gence of the approximate controls v̂h towards a null control of the wave equation. This relies in a fundamental
way on the fact that we work in a subspace Ph of P . Indeed, this allows to write directly the Carleman esti-
mate in Ph and get that the function I (given by (5.1)) is uniformly coercive with respect to the discretization
parameter h.

On the other hand, notice that no wave equation has to be solved in order to compute the approximations v̂h.
For each h, once v̂h is known, we must solve the wave equation, in a post-treatment process, to compute the
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corresponding state ŷh (recall that, actually, this may be avoided by using directly the optimality condition
y = −ρ−2Lp).

This is in contrast with the dual approach. Indeed, the minimization of J� by an iterative process requires the
resolution of wave equations, through a decoupled space and time discretization. As recalled in the introduction,
this may lea to numerical pathologies (the occurrence of spurious high frequency solutions) and, therefore, needs
some specific numerical approximations and techniques. We mention the work [5], where the authors prove, in a
close context and within a dual approach, a weaker uniform semi-discrete Carleman estimate with an additional
term in the right hand side, necessary to absorb these possibly spurious high frequencies (see [5], Thm. 2.3).

Notice that the computed v̂h are not a priori null controls for discrete systems (associated to the wave
equation (1.1)), but simply approximations of the control v furnished by the solution to (1.8). If one wants to
go further in the comparison, it can be said that the primal approach aims to first compute the control for (1.1)
and then approximate it, while the dual classical method aims first to discretize (1.1) and then control the
corresponding finite dimensional system.

Let us also observe that the (primal) approach in this paper is relatively easy to implement. In practice, the
resolution is reduced to solve a linear system, with a banded sparse, symmetric and definite positive matrix, for
which efficient direct LU type solvers are known and available. Furthermore, we may want to adapt (and refine
locally) the mesh of QT in order to improve convergence and such adaptation is much simpler than in the dual
approach, where t is ”conserved” as a time variable. For additional considerations, see also [8] and [9].

5.3. Mixed formulation and C0-approximation

The approach can be extended to the higher dimensional case of the wave equation in a bounded set Ω ⊂ R
N ,

with N ≥ 2. However, the use of C1-finite element is a bit more involved. Arguing as in [12], we may avoid this
difficulty by introducing a mixed formulation equivalent to (2.14).

The idea is to keep explicit the variable y in the formulation and to introduce a Lagrange multiplier, associated
to the constraint ρ2y+Lp = 0 (see (2.13)). We obtain the following mixed formulation: find (y, p, λ) ∈ Z×P ×Z
such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
QT

ρ2y y dxdt+
∫ T

0

ρ−2
0 a(1)2px(1, t)px(1, t) dt+

∫∫
QT

λ(ρ2y + Lp) dxdt

=
∫ 1

0

y0(x) pt(x, 0) dx− 〈y1, p(·, 0)〉H−1,H1
0

∀(y, p) ∈ Z × P,∫∫
QT

λ(ρ2y + Lp) dxdt = 0 ∀λ ∈ Z,

(5.2)

where

Z = L2(ρ2;QT ) :=
{
z ∈ L1

loc(QT ) :
∫∫

QT

ρ2|z|2 dxdt < +∞
}
.

Taking advantage of the global estimate (2.7), we may show, through an appropriate inf-sup condition, that (5.2)
is well-posed in Z × P × Z. Moreover, the approximation of this formulation may be addressed using C0-finite
element, which is very convenient. The approximation is non-conformal. More precisely, the variable p is now
sought in a space Rh of C0-functions that is not included in P .

At the discrete level, (5.2) reduces the controllability problem to the inversion of a square, banded and
symmetric matrix. Moreover, as before, no wave equation has to be solved, whence the numerical pathology
described above is not expected. However, since the underlying approximation is not conformal (this is the
price to pay to avoid C1 finite elements), a careful (and a priori not straightforward) choice for Rh has to be
done in order to guarantee a uniform discrete inf-sup condition. The analysis of this point, as well as the use of
stabilized finite elements, will be detailed in a future work.
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5.4. Extensions

The approach presented here can be extended and adapted to other equations and systems. What is needed
is, essentially, an appropriate Carleman estimate.

In particular, we can adapt the previous ideas and results to the inner controllability case, i.e. the null contro-
lability of the wave equation with distributed controls acting on a (small) sub-domain ω of (0, 1). Furthermore,
using finite element tools, we can also get results in the case where the sub-domain ω varies in time, that is
non-cylindrical control domains qT of the form

qT = { (x, t) ∈ QT : g1(t) < x < g2(t), t ∈ (0, T ) },
where g1 and g2 are smooths functions on [0, T ], with 0 ≤ g1 < g2 ≤ 1. This opens the possibility to optimize
numerically the domain qT , as was done in a cylindrical situations in [25] (see also [27]).

Let us finally mention that many non-linear situations can be considered through a suitable linearization and
iterative process. We refer to [14, 15] for some ideas in a similar parabolic situation.

A. Appendix. On the proof of Theorem 2.1

We first prove a global Carleman estimate for functions w satisfying vanishing initial and final conditions. In
what follows, L stands for the operator given in (1.2) with b ≡ 0. It is easy to check that, if the estimate (2.7)
holds in this particular case, then the same estimate holds for any potential b ∈ L∞((0, 1) × (−T, T )).

Theorem A.1. With the notation of Section 2, let x0 < 0 be a fixed point, let φ and ϕ be the weight functions
defined by (2.3)–(2.5) and let a ∈ A(x0, a0) with a0 > 0. Then there exist positive constants s0 and M , only
depending on x0, a0, ‖a‖C3([0,1]) and T such that, for all s > s0, one has:

s

∫ T

−T

∫ 1

0

e2sϕ
(|vt|2 + |vx|2

)
dxdt+ s3

∫ T

−T

∫ 1

0

e2sϕ|v|2 dxdt

≤M

∫ T

−T

∫ 1

0

e2sϕ|Lv|2 dxdt+Ms

∫ T

−T
e2sϕ|vx(1, t)|2 dt

(A.1)

for any v ∈ L2(−T, T ;H1
0(0, 1)) satisfying Lv ∈ L2((0, 1) × (−T, T )), vx(1, ·) ∈ L2(−T, T ) and

v(· ,±T ) = vt(· ,±T ) = 0.

The proof of this result follows step-by-step the proof of Theorem 2.1 in [4]. However, since the argument
provides conditions on the set of admissible a and, to our knowledge, these conditions have not been stated in
this form before, we provide here the detailed proof.

Proof. Let us introduce w = esϕv and let us set

Pw := esϕL(e−sϕw) = esϕ
(
(e−sϕw)tt − (a(e−sϕw)x)x

)
.

After some computations, we find that Pw = P1w + P2w +Rw, with

P1w = wtt − (awx)x + s2λ2ϕ2w
(|ψt|2 − a|ψx|2

)
P2w = (α− 1)sλϕw (ψtt − (aψx)x) − sλ2ϕw

(|ψt|2 − a|ψx|2
) − 2sλϕ (ψtwt − aψxwx)

Rw = −αsλϕw (ψtt − (aψx)x) ,

where the parameter α will be chosen below.
Recall that

ψ(x, t) ≡ |x− x0|2 − βt2 +M0, ϕ(x, t) ≡ eλψ(x,t)
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and

ψ(x, t) ≥ 1 ∀(x, t) ∈ (0, 1) × (−T, T ).

In this proof, we will denote by M a generic positive constant that can depend on x0, a0, ‖a‖C3([0,1]) and T .

As in the constant case a ≡ 1, the first part of the proof is devoted to estimate from below the integral

I =
∫ T

−T

∫
Ω

(P1w) (P2w) dxdt =
3∑

i,j=1

Iij . (A.2)

By integrating by parts in time and/or space, we can compute the integrals Iij in (A.2). We obtain:

I11 = (α− 1)sλ
∫ T

−T

∫ 1

0

wtt ϕw(ψtt − (aψx)x) dxdt

= (1 − α)sλ
∫ T

−T

∫ 1

0

ϕ|wt|2(ψtt − (aψx)x) dxdt

− (1 − α)
2

sλ2

∫ T

−T

∫ 1

0

ϕ|w|2ψtt(ψtt − (aψx)x) dxdt

− (1 − α)
2

sλ3

∫ T

−T

∫ 1

0

ϕ|w|2|ψt|2(ψtt − (aψx)x) dxdt,

I12 = −sλ2

∫ T

−T

∫ 1

0

wtt ϕw(|ψt|2 − a|ψx|2) dxdt

= sλ2

∫ T

−T

∫ 1

0

ϕ|wt|2(|ψt|2 − a|ψx|2) dxdt− sλ2

∫ T

−T

∫ 1

0

ϕ|w|2|ψtt|2 dxdt

−3sλ3

2

∫ T

−T

∫ 1

0

ϕ|w|2|ψt|2ψtt dxdt+
sλ3

2

∫ T

−T

∫ 1

0

ϕ|w|2a|ψx|2ψtt dxdt

−sλ
4

2

∫ T

−T

∫ 1

0

ϕ|w|2|ψt|2(|ψt|2 − a|ψx|2) dxdt

and

I13 = −2sλ
∫ T

−T

∫ 1

0

wtt ϕ(ψtwt − aψxwx)) dxdt

= sλ

∫ T

−T

∫ 1

0

ϕ|wt|2ψtt dxdt+ sλ2

∫ T

−T

∫ 1

0

ϕ|wt|2|ψt|2 dxdt

+sλ
∫ T

−T

∫ 1

0

ϕ|wt|2(aψx)x dxdt+ sλ2

∫ T

−T

∫ 1

0

ϕ|wt|2a|ψx|2 dxdt

−2sλ2

∫ T

−T

∫ 1

0

ϕaψxψt wxwt dxdt.
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Also,

I21 = (1 − α)sλ
∫ T

−T

∫ 1

0

(awx)x ϕw(ψtt − (aψx)x) dxdt

= −(1 − α)sλ
∫ T

−T

∫ 1

0

ϕa|wx|2(ψtt − (aψx)x) dxdt

+
(1 − α)

2
sλ2

∫ T

−T

∫ 1

0

ϕ|w|2(aψx)x(ψtt − (aψx)x) dxdt

+
(1 − α)

2
sλ3

∫ T

−T

∫ 1

0

ϕa|w|2|ψx|2(ψtt − (aψx)x) dxdt

−(1 − α)sλ2

∫ T

−T

∫ 1

0

ϕ|w|2aψx(aψx)xx dxdt

− (1 − α)
2

sλ

∫ T

−T

∫ 1

0

ϕ|w|2 (ax(aψx)xx + a(aψx)xxx) dxdt,

I22 = sλ2

∫ T

−T

∫ 1

0

(awx)x ϕw(|ψt|2 − a|ψx|2)) dxdt

= −sλ2

∫ T

−T

∫ 1

0

ϕa|wx|2(|ψt|2 − a|ψx|2)) dxdt

−sλ
2

2

∫ T

−T

∫ 1

0

ϕ|w|2 (
(|ax|2 + aaxx)|ψx|2 + 4aaxψxψxx + 2a(aψx)xψxx

)
dxdt

+
sλ3

2

∫ T

−T

∫ 1

0

ϕ|w|2(aψx)x(|ψt|2 − a|ψx|2)) dxdt

+
sλ4

2

∫ T

−T

∫ 1

0

ϕ|w|2a|ψx|2(|ψt|2 − a|ψx|2)) dxdt

−sλ3

∫ T

−T

∫
Ω

ϕ|w|2aψx
(
ax|ψx|2 + 2aψxψxx

)
dxdt

and

I23 = 2sλ
∫ T

−T

∫ 1

0

(awx)x ϕ (ψtwt − aψxwx) dxdt

= sλ

∫ T

−T

∫ 1

0

ϕa|wx|2(ψtt + aψxx) dxdt

+sλ2

∫ T

−T

∫ 1

0

ϕa|wx|2
(|ψt|2 + a|ψx|2

)
dxdt− 2sλ2

∫ T

−T

∫ 1

0

ϕaψxψt wxwt dxdt

−sλ
∫ T

−T

[
a(1)2|wx(1, t)|2ϕ(1, t)ψx(1, t) − a(0)2|wx(0, t)|2ϕ(0, t)ψx(0, t)

]
dt.

Finally,

I31 = (α− 1)s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2(|ψt|2 − a|ψx|2)(ψtt − (aψx)x) dxdt,

I32 = −s3λ4

∫ T

−T

∫ 1

0

ϕ3|w|2(|ψt|2 − a|ψx|2)2 dxdt
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and

I33 = −2s3λ3

∫ T

−T

∫ 1

0

ϕ3w(|ψt|2 − a|ψx|2) (ψtwt − aψxwx) dxdt

= s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2(|ψt|2 − a|ψx|2)(ψtt − (aψx)x) dxdt

+2s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2 (|ψt|2ψtt + aaxψx|ψx|2 + a2|ψx|2ψxx
)

dxdt

+3s3λ4

∫ T

−T

∫ 1

0

ϕ3|w|2(|ψt|2 − a|ψx|2)2 dxdt.

Gathering together all terms Iij for i, j ∈ {1, 2, 3}, we obtain

I =
∫ T

−T

∫ 1

0

(P1w) (P2w) dxdt

= sλ

∫ T

−T

∫ 1

0

ϕ|wt|2 (2ψtt − α(ψtt − (aψx)x)) dxdt

+ sλ

∫ T

−T

∫ 1

0

ϕa|wx|2 (α(ψtt − (aψx)x) + 2(aψx)x − axψx) dxdt

+ 2sλ2

∫ T

−T

∫ 1

0

ϕ
(|wt|2|ψt|2 − 2aψxψtwxwt + a2|wx|2|ψx|2

)
dxdt

+ 2s3λ4

∫ T

−T

∫ 1

0

ϕ3|w|2 (|ψt|2 − a|ψx|2
)2

dxdt

+ s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2(|2ψt|2ψtt + aaxψx|ψx|2 + 2a2|ψx|2ψxx) dxdt

+ αs3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2(|ψt|2 − a|ψx|2)(ψtt − (aψx)x) dxdt

− sλ

∫ T

−T

(
a(1)2|wx(1, t)|2ϕ(1, t)ψx(1, t) − a(0)2|wx(0, t)|2ϕ(0, t)ψx(0, t)

)
dxdt

+X0,

where X0 is the sum of all “lower order terms”:

|X0| ≤Msλ4

∫ T

−T

∫ 1

0

ϕ3|w|2 dxdt.

Let us analyze the high order terms arising in the previous expression of I. First, remark that

sλ2

∫ T

−T

∫ 1

0

ϕ
(|wt|2|ψt|2 − 2aψxψtwxwt + a2|wx|2|ψx|2

)
dxdt ≥ 0. (A.3)

Secondly, notice that, under the assumption a ∈ A(x0, a0), if β satisfies (2.2), we can choose α in such a way
that the terms of order sλ are positive. Indeed, we have in this case

−a(x) − (x− x0)ax(x) < β < a(x) +
1
2
(x − x0)ax(x) ∀x ∈ [0, 1],
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whence
2β

β + a(x) + (x− x0)ax(x)
<

2a(x) + (x− x0)ax(x)
β + a(x) + (x− x0)ax(x)

∀x ∈ [0, 1].

Let α satisfy

sup
[0,1]

(
2β

β + a(x) + (x− x0)ax(x)

)
< α < inf

[0,1]

(
2a(x) + (x− x0)ax(x)

β + a(x) + (x− x0)ax(x)

)
.

Then, an explicit computation of the derivatives of ψ shows that

2ψtt − α(ψtt − (aψx)x) > 0 and α(ψtt − (aψx)x) + 2(aψx)x − axψx > 0 in [0, 1] × [−T, T ]

and, consequently,

sλ

∫ T

−T

∫ 1

0

ϕ|wt|2 (2ψtt − α(ψtt − (aψx)x)) dxdt

+ sλ

∫ T

−T

∫ 1

0

ϕa|wx|2 (α(ψtt − (aψx)x) + 2(aψx)x − axψx) dxdt

≥Msλ

∫ T

−T

∫ 1

0

ϕ|wt|2 dxdt+Msλ

∫ T

−T

∫ 1

0

ϕ|wx|2 dxdt.

The remaining terms in I can be written in the form

2s3λ4

∫ T

−T

∫ 1

0

ϕ3|w|2 (|ψt|2 − a|ψx|2
)2

dxdt

+ s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2(2|ψt|2ψtt + aaxψx|ψx|2 + 2a2|ψx|2ψxx) dxdt

+ αs3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2(|ψt|2 − a|ψx|2)(ψtt − (aψx)x) dxdt

= s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2Fλ(x, Y (x, t)) dxdt,

where Y := |ψt|2 − a|ψx|2 and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fλ(x, Y ) := 2λY 2 + (2ψtt + α(ψtt − (a(x)ψx)x))Y

+ a(x)|ψx|2(2ψtt + ax(x)ψx + 2a(x)ψxx)

= 2λY 2 + (4β + α(2β + a(x) + (x − x0)ax(x))) Y

+ 8a(x)(x − x0)2(−2β + 2a(x) + (x− x0)ax(x)).

Since Fλ is polynomial of the second degree in Y , one has

Fλ(x, Y ) ≥ 8a(x)(x − x0)2(−2β + 2a(x) + (x− x0)ax(x))

− 1
8λ

[4β + α(2β + a(x) + (x − x0)ax(x))]2

for all x ∈ [0, 1] and Y ∈ R. Therefore, if β satisfies (2.2), for λ large enough (depending on x0 and ‖a‖C3([0,1])),
we obtain:

s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2Fλ(X) dxdt ≥Ms3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2 dxdt. (A.4)
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Putting together the estimates (A.3)–(A.4), the following is found:

∫ T

−T

∫ 1

0

(P1w) (P2w) dxdt ≥ Msλ

∫ T

−T

∫ 1

0

ϕ
(|wt|2 + |wx|2

)
dxdt

+Ms3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2 dxdt

−Msλ

∫ T

−T
|wx(1, t)|2 dxdt−Msλ4

∫ T

−T

∫ 1

0

ϕ3|w|2 dxdt.

(A.5)

On the other hand, recalling the definition of P, P1, P2 and R, we observe that∫ T

−T

∫ 1

0

(|P1w|2+|P2w|2) dxdt+ 2
∫ T

−T

∫ 1

0

(P1w)(P2w) dxdt =
∫ T

−T

∫ 1

0

|Pw−Rw|2 dxdt

It is not difficult to see that there a exists M such that∫ T

−T

∫ 1

0

|Pw −Rw|2 dxdt ≤M

∫ T

−T

∫ 1

0

|Pw|2 dxdt+Ms2λ2

∫ T

−T

∫ 1

0

ϕ2|w|2 dxdt.

In particular, we have∫ T

−T

∫ 1

0

(P1w)(P2w) dxdt ≤M

∫ T

−T

∫ 1

0

|Pw|2 dxdt+Ms2λ2

∫ T

−T

∫ 1

0

ϕ2|w|2 dxdt (A.6)

and combining (A.5) and (A.5) we obtain:

sλ

∫ T

−T

∫ 1

0

ϕ
(|wt|2 + |wx|2

)
dxdt+ s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2 dxdt

≤M

∫ T

−T

∫ 1

0

|Pw|2 dxdt+Msλ

∫ T

−T
|wx(1, t)|2 dt

+Msλ4

∫ T

−T

∫ 1

0

ϕ3|w|2 dxdt+Ms2λ2

∫ T

−T

∫ 1

0

ϕ2|w|2 dxdt.

Obviously, the last two terms in the right hand side can be absorbed by the second term in the left for s large
enough. Therefore, there exists s0 > 0, only depending on x0, a0, ‖a‖C3([0,1]) and T , such that, for all s > s0,
one has:

sλ

∫ T

−T

∫ 1

0

ϕ
(|wt|2 + |wx|2

)
dxdt+ s3λ3

∫ T

−T

∫ 1

0

ϕ3|w|2 dxdt

≤M

∫ T

−T

∫ 1

0

|Pw|2 dxdt+Msλ

∫ T

−T
|wx(1, t)|2 dt. (A.7)

Since w = vesϕ and Pw = esϕLv, we can easily rewrite (A.7) in the form (A.1).
This ends the proof. �

In the remaining part of the Appendix, we will use the Carleman estimate (A.1) to prove Theorem 2.2.
Thus, let us assume that (2.6) holds, w ∈ L2(−T, T ;H1

0(0, 1)), Lw ∈ L2((0, 1) × (−T, T )) and wx(1, ·) ∈
L2(−T, T ). Thanks to (2.6), there exists η ∈ (0, T ) and ε > 1 such that

(1 − ε)(T − η)β ≥ max
[0,1]

a(x)1/2(x− x0).
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Moreover, simple computations show that, for every t ∈ (−T,−T + η)∪ (T − η, T ), the function ψ(· , t) satisfies:⎧⎪⎨
⎪⎩

(1 − ε)min
[0,1]

|ψt(x, t)| ≥ max
[0,1]

a(x)1/2|ψx(x, t)|

max
[0,1]

ψ(x, t) < min
[0,1]

ψ(x, 0).
(A.8)

Let χ ∈ C∞
c (R) a cut-off function such that 0 ≤ χ ≤ 1 and

χ(t) =

{
1, if |t| ≤ T − η

0, if |t| ≥ T

Then we can apply Theorem A.1 to the function w̃ := χw, whence the following Carleman estimate holds

s

∫ T

−T

∫ 1

0

e2sϕ
(|w̃t|2 + |w̃x|2

)
dxdt+ s3

∫ T

−T

∫ 1

0

e2sϕ|w̃|2 dxdt

≤M

∫ T

−T

∫ 1

0

e2sϕ|Lw̃|2 dxdt+Ms

∫ T

−T
e2sϕ|w̃x(1, t)|2 dt.

Since Lw̃ = χLw + χttw + 2χtwt, we deduce from (A.8) that

s

∫ T−η

−T+η

∫ 1

0

e2sϕ
(|wt|2 + |wx|2

)
dxdt+ s3

∫ T−η

−T+η

∫ 1

0

e2sϕ|w|2 dxdt

≤M

∫ T

−T

∫ 1

0

e2sϕ|Lw|2 dxdt+Ms

∫ T

−T
e2sϕ|wx(1, t)|2 dt

+M
∫ −T+η

−T

∫ 1

0

e2sϕ(|wt|2 + |w|2) dxdt+M

∫ T

T−η

∫ 1

0

e2sϕ(|wt|2 + |w|2) dxdt.

(A.9)

Let us denote by Es = Es(t) the energy associated to the operator L, that is,

Es(t) :=
1
2

∫ 1

0

e2sϕ
(|wt|2 + a|wx|2

)
dx. (A.10)

Then, the argument employed in the proof of Theorem 2.5 in [4] (using the modified energy given by (A.10))
can be used to deduce (2.7) from (A.9).
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