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HOMOGENIZATION AT DIFFERENT LINEAR SCALES, BOUNDED
MARTINGALES AND THE TWO-SCALE SHUFFLE LIMIT

Kévin Santugini
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Abstract. In this paper, we consider two-scale limits obtained with increasing homogenization periods,
each period being an entire multiple of the previous one. We establish that, up to a measure preserving
rearrangement, these two-scale limits form a martingale which is bounded: the rearranged two-scale
limits themselves converge both strongly in L2 and almost everywhere when the period tends to +∞.
This limit, called the Two-Scale Shuffle limit, contains all the information present in all the two-scale
limits in the sequence.
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1. Introduction

Homogenization is used to study the solutions to equations when there are multiple scales of interest, usually
a microscopic one and a macroscopic one. In particular, one may consider the solutions uε to a partial differential
equation with locally ε-periodic coefficients and study their behavior as the small period ε tends to 0. Two-
scale convergence, introduced by Nguetseng [10] and Allaire [1], is suited to study this particular subset of
homogenization problems called periodic homogenization. It was later extended to the case of periodic surfaces
by Neuss Radu [8, 9] and Allaire, Damlamian and Hornung [2]. It can also be used in the presence of periodic
holes in the geometry, see [5, 6] or to homogenize multilayers [12, 13].

Intuitively, two-scale convergence introduces the concept of two-scale limit u0 which is a function of both a
macroscopic variable x – also called slow variable – and a microscopic p-periodic variable y – also called fast
variable – such that, in some “meaning”, x �→ u0(x,x/ε) is a good approximation of uε.

As indicated by its name, two-scale convergence captures the behavior at two scales: the macroscopic one
and the pε-periodic one. However, two-scale convergence does not capture all phenomena that happens at a
scale linear in ε but only those whose length scale is pε/m where m is an integer. The two-scale limit of a
sequence depends not only on the asymptotic scale, but also on the precise value of the chosen period. For
example, any phenomena happening at the length scale of 2ε will not be fully apparent in the two-scale limit
computed with period ε. The two-scale limit computed with period 2ε will contain no less – and might actually
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contain more – information than the two-scale limit computed with period ε. For example, the homogenization
of sin(2πx/ε) + sin(πx/ε) gives a two-scale limit of u0: (x, y) �→ sin(2πy) if computed with the homogenization
period ε, i.e., when p = 1, and u0: (x, y) �→ sin(2πy) + sin(πy) if computed with the homogenization period 2ε,
i.e., when p = 2. Furthermore, if we choose p = 1/2, then the two-scale limit is none other than the null function.
Worse, the scale factor p could be irrational.

The choice of the scale factor p used in the homogenization process is therefore of utmost importance in
two-scale convergence. Using a badly chosen scale factor p may and will often cause a huge loss of information.
At worst, we recover no more information than the one obtained by the standard weak L2 limit: if pε is the
correct choice of homogenization period, the two-scale limit computed with period λpε where λ is an irrational
number should, intuitively, carry no information about what happens at scale pε.

Fortunately, there is usually a natural choice of period: the coefficients of the partial differential equation
are often chosen locally ε-periodic. The most natural choice is to choose p = 1, i.e., to consider the correct
microscopic scale for uε is ε itself. If there are two important periods to consider pε and p′ε, the intuitive
solution is to choose a period that is an entire multiple of both. However, this can only be done if the ratio p/p′

between the two scale factors is a rational number.
When the two-scale limit depends on the fast variable, we may consider an homogenization period of p2ε

instead of p1ε where p2/p1 is a positive integer. The two-scale limit computed with the homogenization period p2ε
contains more information than the two-scale limit computed with the homogenization period p1ε. It is then
natural to study the behavior of the two-scale limit as the scale factor tends to +∞. Allaire and Conca studied
in [3] a similar problem and established, for an elliptic problem, the behavior of the spectra of the equation
satisfied by the two-scale limit as the scale factor p goes to +∞. Ben Arous and Owhadi [4] studied the behavior
of the Brownian motion in a periodic potential using multiscale homogenization when the ratio between two
successive scales is bounded from above and below.

In this paper, we consider various two-scale limits, each computed with a different homogenization period. In
particular, we consider a sequence of periods (pn)n∈N such that for all integers n, pn+1/pn is a positive integer
and we study the two-scale limit of (uε)ε>0 computed with the homogenization period pnε. This two-scale limit,
denoted u0,pn , is pn-periodic in each component of its fast variable. Since pn+1 is always an entire multiple
of pn, one can always recover the two-scale limit u0,pn from the two scale limit u0,pn+1. If pn+1 = mnpn and in
dimension d ≥ 1:

u0,pn(x,y) =
1
md

n

∑
α∈�0,mn−1�d

u0,pn+1(x,y + pnα).

The sequence of two-scale limits (u0,pn)n∈N yields increasing information on the asymptotic behavior of (uε)ε>0.
A natural question is whether the two-scale limits u0,pn themselves converge whenever n tends to +∞. I.e.,
does there exist a function that carry the information of all the pn-two-scale limits? The goal of our paper is
to answer this question. The answer is positive. We show in this paper that the sequence of two-scale limits is,
after a measure preserving rearrangement, a bounded martingale in L2 and therefore converges both strongly
in L2 and almost everywhere to a function we call the Two-Scale Shuffle limit.

In Section 2, we remind the reader of previously known results: two-scale convergence and the convergence
properties of bounded martingales. In Section 3, we show how the different two-scale limits are related to each
other through martingale-like equalities and explain how to transform these two-scale limits to get a genuine
martingale. This leads to our stating of our main theorem: Theorem 3.8 in which we show that in a certain
meaning the two-scale limits themselves converge to the Two-Scale Shuffle limit. In addition, we also state in
Corollary 3.9 that all the information present in all the two-scale limits is contained in the Two-Scale Shuffle
limit. In Section 4, we use this result on the heat equation in multilayers with transmission conditions between
adjacent layers and establish, for this particular example, the equation satisfied by the Two-Scale Shuffle limit
in Theorem 4.1.
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2. Notations, prerequisites and known results

Throughout this paper, if x is in R, we denote by �x� the integer part of x. We also denote by �n1, n2� the
set [n1, n2] ∩ N. To make the present paper as self-contained as possible, we recall in this section known results
on the two main mathematical tools we use to prove our main theorem: two-scale convergence in Section 2.1,
and classical results on the convergence of bounded martingales in Section 2.2.

2.1. The classical notion of two-scale convergence

First, as in [1], we introduce some notations. In this paper, p always refer to a scale factor. It remains constant
while taking the two-scale limit. However, the goal of this paper is to observe the behavior of the two-scale limits
as p tends to +∞.

By Ω, we denote a bounded open domain of R
d where d ≥ 1. By Yp, we denote the cube [0, p]d. By L2

#(Yp),
we denote the space of measurable functions defined over R

d, that are p-periodic in each variable and that
are square integrable over Yp. By C#(Yp), we denote the set of continuous functions defined on R

d that are
p-periodic in each variable.

We reproduce the now classical definition of two-scale convergence found in [1,10]. For convenience, we added
the scale factor p.

Definition 2.1 (two-scale convergence). Let p be a positive real. A sequence (uε)ε>0 belonging to L2(Ω) is said
to p-two-scale converge if there exists u0,p in L2(Ω × Yp) such that:

lim
ε→0

∫
Ω

uε(x)ψ
(
x,

x

ε

)
dx =

1
pd

∫
Ω

∫
Yp

u0,p(x,y)ψ (x,y) dy dx, (2.1)

for all ψ in L2(Ω; C#(Yp)).

It is a common abuse of notation to also designate by u0,p the unique extension of u0,p to Ω × R
d that is

p-periodic in the last d variables.
Allaire, see [1], and Nguetseng, see [10], proved that any sequence of functions bounded in L2 has a subsequence

that two-scale converges. Let’s reproduce this precise compactness result.

Theorem 2.2. Let (uε)ε>0 be a sequence of functions bounded in L2(Ω). Then, there exist u0,p in L2(Ω×]0, p[d)
and a subsequence εk converging to 0 such that

lim
k→∞

∫
Ω

uεk
(x)ψ

(
x,

x

εk

)
dx =

1
pd

∫
Ω

∫
Yp

u0,p(x,y)ψ (x,y) dy dx, (2.2)

for all ψ in L2(Ω; C#(Yp)).

Proof. See Allaire [1], Theorem 1.2 and Nguetseng [10], Theorem 2. The presence of the scale factor p has no
impact on the proof. �

We also have the classical proposition

Proposition 2.3. Let uε p-two-scale converges to u0,p. Then,

1
pd/2

‖u0,p‖L2(Ω×Yp) ≤ lim inf
ε→0

‖uε‖L2(Ω).

Proof. See Allaire [1], Proposition 1.6. The presence of the scale factor p has no impact on the proof. �

The next proposition is easy to derive from Theorem 2.2.
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Proposition 2.4. Let (pn)n∈N be an increasing sequence of positive real numbers. Let (uε)ε>0 be a sequence of
functions bounded in L2(Ω). Then, there exist a subsequence (εk)k∈N converging to 0, and a sequence of functions
u0,pn in L2(Ω×]0, pn[d) such that, for any non-negative integer n, the sequence (uεk

)k∈N pn-two-scale converges
to u0,pn . I.e., such that for all integers n:

lim
k→∞

∫
Ω

uεk
(x)ψ

(
x,

x

εk

)
dx =

1
pd

n

∫
Ω

∫
Ypn

u0,pn(x,y)ψ (x,y) dy dx,

for all ψ in L2(Ω; C#(Ypn)).

Proof. Apply Theorem 2.2 multiple times and proceed via diagonal extraction. �

Our goal in this paper is to study the limit of u0,pn as pn tends to +∞.

2.2. Convergence of bounded martingales

In this section, we recall the notions of probability theory needed to prove our main theorem. In particular,
we are interested in using the convergence properties of bounded martingales. For more details, the reader may
consult [7]. We assume the reader to be familiar with the notions of σ-field and σ-additivity in measure theory.

We use the following common notations:

• If C is a subset of P(X), we denote by σ(C) the smallest σ-field in X that contains C.
• If D is a topological space, we denote by B(D) the set of all Borel sets in D, i.e., the smallest σ-field

containing all the open subsets of D.

Definition 2.5 (measurable space). A pair (X,F) is said to be a measurable space if F is a σ-field in X .

Definition 2.6 (measure space). A triplet (X,F , μ) is said to be a measure space if (X,F) is a measurable
space and if μ is a positive σ-additive measure on (X,F).

A measure space (X,F , μ) is said to be finite if μ(X) < +∞. A measure space (X,F , μ) is said to be σ-finite
if X is the countable union of F -measurable sets of finite measure. A measure space (X,F ,P) is said to be a
probability space if P(X) = 1.

We start by recalling the definition of conditional expectation, see [7] (Chapter 6, Thm. 6.1) for more details.
Usually, the conditional expectation is defined for probability spaces. The definition extends without problem
to finite measure spaces and even, to some extent, to σ-finite measure spaces.

Definition 2.7 (conditional expectation). Let (X,F , μ) be a measure space with μ being positive and
σ-additive. Let G be a σ-field such that G ⊂ F and (X,G, μ) is also σ-finite. Let f : X → R be F -measurable
and in L1

loc(X,μ). The conditional expectation of f with respect to the σ-field G is denoted by E(f |G), and is
defined as the unique, up to a modification on a set of null measure, G-measurable function g such that∫

B

g(ω) dω =
∫

B

f(ω) dω,

for all B in G.

The existence of the conditional expectation is given by Radon–Nikodym theorem. The measure μ need not
be a probability measure. However, to apply Radon-Nykodim theorem, (X,G, μ) needs to be σ-finite, hence
the restriction in the definition. A statement and a proof of the Radon-Nikodym theorem can be found in [11],
Theorem 6.10.

It is not enough that (X,F , μ) be σ-finite in Definition 2.7.

Remark 2.8. When G ⊂ F , it does not follow from (X,F , μ) being σ-finite that (X,G, μ) is also σ-finite. A
counter-example is easily obtained by setting G := {∅, X} whenever μ(X) = +∞.
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In our main theorem, we restrict ourselves to the case of finite measures. However, Remark 2.8 will explain
why the martingale approach doesn’t quite work for the most natural attempt to define a convergence for
two-scale limits, see Section 3.1.

In order to define martingales, we remind the reader of the definition of filtration. We limit ourselves to
filtrations indexed by the set N. See [7], chapter 7, p. 120, for more details.

Definition 2.9 (filtrations). Let (X,F) be a measurable space. A sequence (Fn)n∈N of σ-fields, Fn ⊂ F is a
filtration if, for all non-negative integers n, Fn is a subset of Fn+1.

We now recall the definition of martingales.

Definition 2.10 (martingales). Let (X,F , μ) be a σ-finite measure space. Let (Fn)n∈N be a filtration on
(X,F , μ) such that (X,F0, μ) is σ-finite.

A sequence (fn)n∈N is said to be a (Fn)n∈N-martingale, if for all non-negative integers n and j,

fn = E(fn+j |Fn).

I.e., if fn is Fn-measurable and if for all F in Fn:∫
F

fn(ω) dω =
∫

F

fn+j(ω) dω. (2.3)

We now reproduce the convergence results of bounded martingales:

Theorem 2.11 (convergence of bounded martingales). Let (X,F , μ) be a measure space with finite measure.
Let (Fn)n∈N be a filtration on the measurable space (X,F). Let q be in ]1,+∞[. Let (fn)n∈N be a (Fn)n∈N-
martingale such that the sequence (fn)n∈N is bounded in Lq(X). Then, the sequence (fn)n∈N converges both
almost everywhere and strongly in Lq(X,P).

Proof. See [7], Corollary 7.22 for the strong Lq convergence. The almost everywhere convergence is stated
in [7], Theorem 7.18 and holds even for q = 1. While these two results are stated for probability measures, the
finite measures case is easily deduced from the probability measure case by considering the probability measure
μ(·)/μ(X). �

The above theorem extends, at least partially, to σ-finite measures:

Remark 2.12. In Theorem 2.11, if the probability space (X,F ,P) is replaced with σ-finite measure space
(X,F , μ) such that (X,F0, μ) is also σ-finite, then the bounded martingales converge almost everywhere and at
least in Lq

loc. It is unknown to the author if the strong Lq convergence can be generalized to the σ-finite case.

3. Two-scale limits and bounded martingales

In this section, we always assume both of the following assumptions are satisfied:

Assumption 3.1 (integer scale ratios). We are given a real sequence (pn)n∈N, such that for all n in N, pn > 0
and pn+1 is an entire multiple of pn. Moreover, we set for n ≥ 1, mn := pn/pn−1 ∈ N, and for n ≥ 0,
Mn := pn/p0 ∈ N.

Assumption 3.2. We are given a sequence of functions (uε)ε>0 bounded in L2(Ω) and a decreasing sequence
of positive (εk)k∈N such that the sequence (uεk

)k∈N pn-two-scale converges for all integers n to a function u0,pn

that belongs to L2(Ω×]0, pn[d).

This last assumption is justified by Proposition 2.4.
Our goal is to study the convergence of the two-scale limits u0,pn when n goes to infinity. In this section, we

proceed as follows: we begin by establishing a useful equality that looks like a martingale equality in Section 3.1,
then we propose a rearrangement of the two-scale limits in Section 3.2, and finally propose another rearrangement
of the two-scale limits in Section 3.3, the shuffle, which transform the sequence of two-scale limits into a bounded
martingale.
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3.1. An almost martingale equality

We start with a simple but essential proposition.

Proposition 3.3. Suppose both assumptions 3.1 and 3.2 are satisfied. Then, for all j in N, all n in N, almost
all x in Ω and almost all y in Yp:

u0,pn(x,y) =
(

pn

pn+j

)d ∑
α∈�0,pn+j/pn−1�d

u0,pn+j(x,y + αpn). (3.1)

Proof. Let φ belong to C∞(Ω×R
d) be pn-periodic in the last d variables. Since pn+j/pn is an integer, φ is also

pn+j-periodic in the last d variables. We take the limit of
∫
Ω
uε(x)φ(x,x/ε) dx, as ε tends to 0, in the sense of

two-scale convergence for both scale factors pn+j and pn:

1
pd

n

∫
Ω

∫
Ypn

u0,pn(x,y)φ(x,y) dy dx =
1

pd
n+j

∫
Ω

∫
Ypn+j

u0,pn+j(x,y)φ(x,y) dy dx

=
1

pd
n+j

∫
Ω

∫
Ypn

( ∑
α∈(�0,pn+j/pn−1�d

u0,pn+j(x,y + αp)

)
φ(x,y) dy dx. �

The most natural approach is to consider the u0,pn as functions defined over Ω×R
d and to study their convergence

in some meaning in Ω×R
d. Such a convergence result would be ideal as the intuitive meaning of the limit would

be easy to grasp. Equality (3.1) is similar to the martingale defining equality (2.3). Would it be possible to use
the classical convergence properties of martingales, see Theorem 2.11, to prove the existence of a limit to the
u0,pn? Unfortunately, the martingale approach doesn’t work in this setting but the attempt is, nevertheless,
instructive. First, we try to construct a filtration (Fn)n∈N for the u0,pn . For all positive integer n, the u0,pn

are pn-periodic with respect to the last d variables. Let Fn be the set of all Borel subsets of Ω × R
d that are

invariant by translation of ±pn along any of the last d directions of Ω × R
d. Clearly, u0,pn is Fn-measurable.

However, the measure space (Ω×R
d,Fn, μ) where μ is the Lebesgue measure is not σ-finite: any Fn measurable

subset of Ω × R
d is either of null measure or of infinite measure. Therefore, the concept of (Fn)n∈N-martingale

is ill-defined, see Definition 2.10 and Remark 2.8. Should we attempt to verify whether the martingale defining
equality (2.3) hold, we would get either +∞ or 0 on both sides of the equation.

However, the martingale defining equality (2.3) is satisfied if one replaces the Lebesgue integral of R
d by the

limit of the mean over a ball as its radius tends to +∞. I.e., we have for all F in Fn

lim
R→+∞

1
|B(0, R)|

∫
Ω

∫
B(0,R)

�{(x,y) ∈ F}u0,pn(x,y) dy dx = lim
R→+∞

1
|B(0, R)|

×
∫

Ω

∫
B(0,R)

�{(x,y) ∈ F}u0,pn+j(x,y) dy dx,

where B(0, R) is the open ball of R
d centered on 0 and of radius R and where |A| is the Lebesgue measure of set

A. Unfortunately, we were unable to derive a direct convergence result using this pseudo-martingale equality.
To proceed further, we need to transform the two-scale limits u0,pn in order to get genuine martingales.

3.2. Rearrangement of the two-scale limits with integers

In the previous section, we established a “martingale-like” equality for the two-scale limits u0,pn . To get
genuine martingales in the sense of Definition 2.10, we need to rearrange the u0,pn . While we are unable to
prove a convergence for the rearrangement of the two-scale limits presented in this section, the ideas behind
this rearrangement provide insight on the next section where we introduce another rearrangement and prove its
convergence.
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In this section, we rearrange the u0,pn by introducing a new variable α that belongs to Z
d. The rearrangement,

denoted by vpn , depends on the slow variable x ∈ Ω, on a fast variable y ∈ [0, p0[d, and on the new variable α.
To rearrange the u0,pn into the vpn , we subdivide Ω × [0, pn[d into Md

n = (pn/p0)d sets Ω ×∏d
i=1[αi, αi + p0[.

Each of these sets is the product of Ω with an hypercube indexed by α = (α1, . . . , αd) and we define vpn(·,α, ·)
as taking in Ω × [0, p0[d the same values u0,pn does in Ω ×∏d

i=1[αi, αi + p0[. The variable y represents the
position of the fast variable inside each hypercube. I.e., we set:

vpn : Ω × Z
d × Yp0 → R,

(x,α,y) �→ u0,pn(x,y + p0α).

We have the following proposition

Proposition 3.4. For all n in N, for almost all x in Ω and y in Yp0 , the α-indexed sequence (vpn(x,α,y))α∈Zd

is Mn-periodic in each direction of α. Moreover:

vpn(x,α,y) =
(

Mn

Mn+j

)d ∑
β∈�0,Mn+j/Mn−1�d

vpn+j (x,α +Mnβ,y), (3.2)

for all α in Z
d.

Proof. This is a direct consequence of Proposition 3.3. �

This in turn should encourage us to look at the following problem.

Problem 3.5. Let’s call “imbricated (Mn)n-periodic d-dimensional sequences”, sequences that satisfy the
following properties (tn,α)n∈N,α∈Zd such that

• for all n in N, the α-indexed sequence (tn,α)α∈Zd is Mn-periodic in each direction of α, i.e. such that for all
n in N, for all α in Z

d, and for all β in Z
d:

tn,α = tn,α+Mnβ,

• for all n in N, and for all α in Z
d,

tn,α =
(

Mn

Mn+j

)d ∑
β∈�0,Mn+j/Mn−1�d

tn+j,α+Mnβ.

Study the convergence of (tn,α)n∈N,α∈Zd as n tends to +∞. Under which condition does there exist a sequence
t∞,α such that for all non-negative integers n

tn,α = lim
N→+∞

1
Nd

∑
β∈�0,N−1�d

t∞,α+Mnβ.

or such that

tn,α = lim
N→+∞

1
2dNd

∑
β∈�−N,N−1�d

t∞,α+Mnβ.

or both?
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By Proposition 3.4, for almost all x in Ω and y in Yp0 , the α-indexed sequences (vpn(x,α,y))α∈Zd are
imbricated (Mn)n-periodic d-dimensional sequences. Solving Problem 3.5 would be the first step in having a
very elegant limit to the vpn as a function defined on Ω × Z

d × Yp0 . Unfortunately, we do not have an answer
for Problem 3.5. While this sequence is morally a martingale with respect to the filtration made of the σ-fields
{α+MnZ

d,α ∈ �0,Mn−1�d}, it technically is not: we have the same problem we had in the previous section. To
conclude with bounded martingales on the convergence, we would need a measure μ on Z

d such that μ(Zd) = 1,
invariant by translation and such that μ(mZ

d) = 1/m whenever m is an integer different from 0. Such a measure
cannot be σ-additive. If we remove the σ additivity constraint, then μ exists: just set

μ(A) := lim
N→+∞

#(A ∩ �−N,N�d)
(2N + 1)d

·

It is unknown to the author if bounded martingales converge when they are defined on a non σ-additive measure.
To avoid that problem, we introduce, in the next section, a different less natural rearrangement for the u0,pn ,
the shuffle, for which we finally prove a convergence result.

3.3. Shuffle rearrangement of two-scale limits

In the previous section, we investigated a rearrangement where the set Ω × [0, pn[d was subdivided into Md
n

subsets indexed by α ∈ Z
d. In this section, we finally construct a rearrangement, the shuffle, that results in a

bounded martingale; thus establishing a convergence result for the pn-two-scale limits as n tends to +∞. To do
so, we replace the variable α belonging to Z

d with the variable y′ that belongs to [0, 1[d. Like the variable α of
the previous section, the variable y′ indicates which hypercube of edge length p0 we consider. The variable y
remains unchanged and continue to represent the location inside the hypercube indexed by y′. We set for x
in Ω, y in [0, p0]d and y′ in [0, 1]d,

wn(x,y,y′) := vpn(x,α(y′),y),

where α(y′)i = �Mny′
i� for all integers i in �1, d�. Using Proposition 3.4, we derive that for almost all x in Ω,

y in Yp0 , (j, n) in N
2, and α in �0,Mn − 1�d∫

∏d
i=1[

αi
Mn

,
αi+1
Mn

[

wn(x,y,y′) dy′ =
∑

β∈�0,
Mn+j

Mn
−1�d

∫
∏d

i=1[
Mnβi+αi

Mn+j
,

Mnβi+αi+1
Mn+j

[

wn+j(x,y,y′) dy′. (3.3)

To transform the wn into martingales, we need to shuffle the hypercubes as in Figure 1 where, to simplify the
drawing, homogenization was only performed on the last component of R

d, hence the presence of layers instead
of hypercubes. In that figure, we show one step of the rearrangement. As seen in the drawing, each step of the
rearrangement is measure preserving, therefore the full rearrangement is also measure preserving. We need n−1
such steps to fully rearrange wn.

To define rigorously this rearrangement, we begin by defining the function that maps the rearranged layer
index onto the unrearranged layer index:

RM,m :�0,Mm− 1� → �0,Mm− 1�

i �→M · (i mod m) +
⌊
i

m

⌋
· (3.4a)

The application RM,m maps km+ j to jM + k when k belongs to �0,M − 1� and j belongs to �0,m− 1�. We
also have RM,m ◦Rm,M = Rm,M ◦RM,m = Id.

Then, we set the function that maps the rearranged layer onto the unrearranged one:

h∗M,m : [0, 1[→ [0, 1[,

y′ �→ RM,m(�Mmy′�)
Mm

+
(
y′ − �Mmy′�)

Mm

)
· (3.4b)
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Original w1 w2 after one step
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Figure 1. One step of the measure preserving rearrangement M1 = 2 and M2 = 6.
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Figure 2. Two steps of the measure preserving rearrangement M1 = 2, M2 = 6 and M3 = 12.

This represents only one step of the rearrangement on one component. For hypercubes, the permutation is the
same but is done componentwise: we set

hM,m: ]0, 1[d →]0, 1[d,

(y′1, . . . , y
′
n) �→ (h∗M,m(y′1), . . . , h

∗
M,m(y′n)).

And obtain one step of the rearrangement on all d components. For the complete rearrangement on one com-
ponent, see Figure 2, we set

H∗
n := h∗Mn−1,mn

◦ . . . ◦ h∗M1,m2
◦ h∗M0,m1

. (3.4c)

To get the complete rearrangement on all components we set

Hn: [0, 1[d → [0, 1[d,
(y′1, . . . , y

′
n) �→ (H∗

n(y′1), . . . , H
∗
n(y′n)). (3.4d)
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We also have
Hn = hMn−1,mn ◦ . . . ◦ hM1,m2 ◦ hM0,m1 .

The function Hn shuffles the hypercubes
∏d

i=1[βi/Mn, (βi + 1)/Mn[, hence we call Hn the shuffle function.
Finally, we define

w̃n(x,y,y′) := wn(x,y, Hn(y′)). (3.5)

This measure preserving rearrangement, the shuffle, is purposefully constructed so the w̃n form a martingale
for the following filtration of σ-fields Fn = B(Ω) × B([0, p0]d) × σ

{∏d
i=1

[
βi

Mn
, βi+1

Mn

[
,β ∈ �0,Mn − 1�d

}
.

Remark 3.6. The above rearrangement of hypercubes is similar to the one used for computing in place the
Discrete Fast Fourier Transform: the bit reversal. In the special case where Mn = 2n, the rearrangement simply
exchanges layers i, i.e., [i/2n, (i+1)/2n[, and i′, i.e., [i′/2n, (i′+1)/2n[, when i and i′ are bit reversal permutations
of each other. I.e when i =

∑n−1
j=0 bj2

j and i′ =
∑N−1

j=0 bj2n−1−j.

Remark 3.7. For general Mn, the rearrangement of hypercubes is also a bit reversal but for a mixed basis. If
�Mny

′� =
∑n

j=1 bjMj−1 with bj in �0,mj − 1�, then

H∗
n

⎛⎝ 1
Mn

n∑
j=1

bj
Mn

Mj
+
(
y′ − �Mny

′�
Mn

)⎞⎠ = y′.

We now state our main result as a self contained theorem.

Theorem 3.8 (Two-Scale Shuffle convergence). Let Ω be a bounded open domain of R
d with d ≥ 1. Let (uε)ε>0

be a bounded sequence of functions belonging to L2(Ω). Let (pn)n∈N be an increasing sequence of positive numbers
that satisfy Assumption 3.1. Set for all n ≥ 0 Mn := pn/p0 and for all n ≥ 1 mn := pn/pn−1. Let (εk)k∈N

be a decreasing sequence of positive real numbers converging to 0 such that the sequence (uεk
)k∈N pn-two-scale

converges to u0,pn for all non-negative integer n.
Set

w̃n : Ω × [0, p0]d × [0, 1]d → R

(x,y,y′) �→ u0,pn (x, p0�MnHn(y′)� + y) .

where Hn is defined by equations (3.4).
Then, the sequence w̃n is a bounded martingale in L2(Ω × [0, p0]d × [0, 1]d), in the sense of Definition 2.10,

for the filtration

Fn = B(Ω) × B([0, p0]d) × σ

{
d∏

i=1

[
βi

Mn
,
βi + 1
Mn

[
,β ∈ �0,Mn − 1�d

}
. (3.6)

And, the sequence w̃n converges both strongly in L2(Ω× [0, p0]d × [0, 1]d) and almost everywhere in Ω× [0, p0]d ×
[0, 1]d to w̃∞, which we call the Two-Scale Shuffle limit. Moreover,∫∫∫

A

w̃n(x,y,y′) dy′ dy dx =
∫∫∫

A

w̃∞(x,y,y′) dy′ dy dx,

for all sets A in Fn. I.e., by Definition 2.7, w̃n = E(w̃∞|Fn).

Proof. The w̃n were constructed specifically so as to be a martingale for the filtration (3.6). To prove they are
a martingale for the filtration (Fn)n∈N, we only need to prove that for all non-negative integer n, for almost
all x in Ω, almost all y in [0, p0]d and for all β in �0,Mn − 1�d, we have∫

∏
d
i=1[

βi
Mn

,
βi+1
Mn

[

w̃n+1(x,y,y′) dy′ =
∫
∏

d
i=1[

βi
Mn

,
βi+1
Mn

[

w̃n(x,y,y′) dy′.
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I.e., we need to show that∫
∏d

i=1[
βi

Mn
,

βi+1
Mn

[

wn(x,y, Hn(y′)) dy′ =
∫
∏d

i=1[
βi

Mn
,

βi+1
Mn

[

wn+1(x,y, HMn,mn+1 ◦Hn(y′)) dy′.

But Hn maps any hypercube
∏d

i=1[βi/Mn, (βi+1)/Mn[ to another hypercube
∏d

i=1[β
′
i/Mn, (β′

i+1)/Mn[ and Hn

is measure preserving. Therefore, we only need to prove that for almost all x in Ω, almost all y in [0, p0]d and
for all β in �0,Mn − 1�d

∫
∏

d
i=1[

βi
Mn

,
βi+1
Mn

[

wn(x,y,y′) dy′ =
∫
∏

d
i=1[

βi
Mn

,
βi+1
Mn

[

wn+1(x,y, HMn,mn+1(y
′)) dy′.

is satisfied. But this equality is equivalent to

1
Md

n

vpn(x,β,y) =
1

Md
n+1

∑
β′∈�0,mn+1−1�d

vpn+1(x, RMn,mn+1(mn+1β + β′),y)

=
1

Md
n+1

∑
β′∈�0,mn+1−1�d

vpn+1(x, (β + β′Mn),y),

which is true by Proposition 3.4. Therefore, the sequence w̃n is a martingale for the filtration (Fn)n∈N.
By Proposition 2.3, this martingale is bounded in L2. It converges both strongly in L2(Ω × [0, p0]d × [0, 1]d)

and almost everywhere to a function w̃∞, see [7], Corollary 7.22. �

Corollary 3.9. It is possible to recover u0,pn from the Two-Scale Shuffle limit w̃∞. First, for all β in �0,Mn −
1�d, all y′ in

∏d
i=1[βi/Mn, (βi + 1)/Mn[, and almost all (x,y) in Ω × [0, p0]d, we have

w̃n(x,y,y′) = Md
n

∫
∏

d
i=1[

βi
Mn

,
βi+1
Mn

[

w̃∞(x,y,y′) dy′

because w̃n = E(w̃∞|Fn). Since the shuffle function Hn is one to one from [0, 1[d to [0, 1[d, see Remark 3.7,
we have wn(x,y,y′) = w̃n(x,y, H−1

n (y′)). Finally, u0,pn(x,y) is equal to the constant value taken by y′ �→
wn(x,y − p0�y/p0�,y′) when y′ belongs to the hypercube [�y/p0�/Mn, (�y/p0� + 1)/Mn[.

4. Application: heat equation in multilayers

In this section, we consider the multilayer heat equation with three spatial dimensions which we homogenize
along the vertical space variable, i.e., along the direction perpendicular to the layers.

In [13], the author established the equations satisfied by the two-scale limits of the heat equation in multi-
layers with transmission conditions between adjacent layers. When the magnitude of the interlayer conductivity
between adjacent layers is weak, see [13], Section 6.1, the two-scale limit depends on the number of layers present
in the homogenization period, i.e., on the scale factors pn. For given values of the slow variables (x, t), the two
scale limit is piecewise constant in its scalar fast variable y and takes as many values as there are layers in a
single homogenization cell. Our goal is to establish the equation satisfied by the limit of two-scale limits, i.e.,
the Two-Scale Shuffle limit, as defined in Theorem 3.8.

To do so, we first recall previously known results in Section 4.1, then derive new results using Two-Scale
Shuffle Convergence in Section 4.2.
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5

Γ6,−
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Heat conductive material

Heat isolation

δ

δ

Figure 3. The multilayer geometry, six layers: N = 6.

4.1. The two-scale limit of the multilayer heat equation

We start by recalling some results we obtained in [13]. To avoid unnecessary complications, we consider
here a simpler problem than the one considered in [13], System (4.1). Let Ω be B×]0, 1[ where B is a convex
bounded open subset of R

2 with smooth boundary. Let δ, 0 < δ < 1/2. Let I be the interval ]δ, 1− δ[. For all N ,
let IN be

⋃N−1
j=0 ](j + δ)/N, (j + 1 − δ)/N [. Let ΩN be the domain B × IN . Let ΓN,+

j = B × {(j + δ)/N} and
ΓN,−

j = B×{(j− δ)/N}. Let ΓN,+ =
⋃N−1

j=1 ΓN,+
j and ΓN,− =

⋃N−1
j=1 ΓN,−

j . Let Γe = ∂B×]0, 1[∪ΓN,+
0 ∪ΓN,−

N .
Let γ be the application on ∂ΩN that maps u in H1(ΩN ) to its trace on ∂ΩN . Let γ′ be the trace operator
swapped between ΓN,+

j and ΓN,−
j : i.e., γ′u(x̂, (j±δ)/N) = γu(x̂, (j∓δ)/N) for all x̂ in B and all j in �1, N−1�.

See Figure 3 where we schematized the three dimensional domain ΩN by projecting it onto the two-dimensional
plane.

Let A, K and J be positive reals: A represents the heat conductivity inside ΩN , and J is the magnitude of
the surfacic interlayer conductivity. For all positive integer N , we consider the multilayer heat equation

∂uN

∂t
−A�uN = 0 in ΩN × R

+ (4.1a)

with the boundary conditions

A
∂uN

∂ν
=

{
0 on Γe × R

+

−K
N γuN + J

N (γ′uN − γuN) on (ΓN,+ ∪ ΓN,−) × R
+,

(4.1b)

and the initial condition
uN(·, 0) = u0

N . (4.1c)

We also define the energy

EN (v) =
A

2

∫
ΩN

‖∇v(x)‖2 dx +
K

2N

∫
Γ N,+∪Γ N,−

|γv|2 dσ(x)

+
J

2N

N−1∑
j=1

∫
B

∣∣∣∣v(x̂, j + δ

N
) − v(x̂,

j − δ

N
)
∣∣∣∣2 dx̂,

for all v in H1(ΩN ). We suppose
sup
N
EN (u0

N ) < +∞,
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and denote by u0
0,M the M -two-scale limit of the initial conditions u0

N . We have the energy equality

EN (uN (·, T )) +
∫ T

0

∫
ΩN

∣∣∣∣∂uN

∂t

∣∣∣∣2 dx dt = EN (uN (·, T )),

for all T ≥ 0. Because of the energy bound, for all x in Ω and all j in Z/MZ, the function y �→ u0
0,M (x, y) is

constant in the interval ]j + δ, j + 1 − δ[. Moreover, that function is M -periodic in y. We denote by u0
0,Mn,j(x)

the value taken by the function y �→ u0
0,M (x, y) in the interval ]j + δ, j + 1 − δ[.

Using two-scale convergence [1,10] and its variant on periodic surfaces [2,8,9], the properties of the two-scale
limit of (uN )N∈N, solutions to the multilayer heat system (4.1) with J �= 0, were established in [13], Theorem 6.1.

Let (Mn)n≥0 be a sequence of positive integers such that M0 = 1 and such that Mn+1 is always an entire
multiple of Mn. For all (x, t) in Ω×R

+, the Mn-two-scale limit y �→ u0,Mn(x, t, y) takes Mn values: it is constant
in each interval ]j+ δ, j+1− δ[. For j in Z/MnZ, we note u0,Mn,j(x, t) the value of u0,Mn(x, t, ·) in this interval.
We have u0,Mn,j+Mn(x, t) = u0,Mn,j(x, t). These functions satisfy, for all j in Z/MnZ, the weak formulation of

∂u0,Mn,j

∂t
−A�T u0,Mn,j +

2K
1 − 2δ

u0,Mn,j +
J

1 − 2δ
(2u0,Mn,j − u0,Mn,j+1 − u0,Mn,j−1) = 0, (4.2a)

in Ω × R
+, and where �T = ∂2

∂x2
1

+ ∂2

∂x2
2
, ∇T = [ ∂

∂x1
, ∂

∂x2
]T. And with boundary conditions

∂u0,Mn,j

∂ν
= 0 on (∂B×]0, 1[) × R

+, (4.2b)

and initial condition
u0,Mn,j(·, 0) = u0

0,Mn,j in B×]0, 1[. (4.2c)

We have recalled previously known results on the properties of the two-scale limits of the multilayer heat
equation. In the next section, we establish the properties satisfied by the Two-Scale Shuffle limit of the multilayer
heat equation.

4.2. The Two-Scale Shuffle limit of the multilayer heat equation

We now use Theorem 3.8 to have the two-scale limits themselves converge. We choose Mn = 2n to avoid
complications at first. We establish the following:

Theorem 4.1. Let w̃∞ be the Two-Scale Shuffle limit defined from (u0,2n)n∈N as in Theorem 3.8. For all (x, t)
in Ω × R

+, and y′ in [0, 1]. The function w̃∞(x, t, ·, y′) is constant in the interval ]δ, 1 − δ[. If we denote by
w̃∞(x, t, y′) the value of w̃∞(x, t, ·, y′) inside the interval ]δ, 1 − δ[, the Two-Scale Shuffle limit w̃∞ is a weak
solution to:

∂w̃∞
∂t

(x, t, y′) −A�T w̃∞(x, t, y′) +
2K

1 − 2δ
w̃∞(x, t, y′) +

J

1 − 2δ
× (2w̃∞(x, t, y′) − w̃∞(x, t, τ+(y′)) − w̃∞(x, t, τ−(y′))) = 0, (4.3a)

in Ω × R
+×]0, 1[, and where, for all non-negative integers j:

τ+(y′) = y′ + 3 · 2−(j+1) − 1 when 1 − 2−j ≤ y′ < 1 − 2−(j+1),

τ−(y′) = y′ − 3 · 2−(j+1) + 1 when 2−(j+1) ≤ y′ < 2−j .

with boundary conditions
∂w̃∞
∂ν

= 0 on (∂B×]0, 1[) × R
+×]0, 1[, (4.3b)
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and initial condition

w̃∞(·, 0, ·) = w̃0
∞.

where w̃0
∞ is the Two-Scale Shuffle Limit of the initial conditions and where, as an abuse of notations, we denote

by w̃0
∞(x, t, y′) the constant value taken by y �→ w̃0

∞(x, t, y, y′) in the interval ]δ, 1 − δ[.

Proof. Let n in N and β belongs to �0, 2n − 1�. Let the wn be defined as in Section 3.3, and the w̃n be defined
from the 2n-two scale limits u0,2n as in Theorem 3.8. Both the w̃n and the wn are functions defined over
(B×]0, 1[)×R

+×]0, 1[×]0, 1[. For all (x, t) in (B×]0, 1[)×R
+, and y′ in ]0, 1[, the application y �→ w̃n(x, t, y, y′)

is constant on ]δ, 1 − δ[. As an abuse of notations, let’s also denote by w̃n(x, t, y′) the value of w̃n(x, t, y′, y)
when y belongs to ]δ, 1−δ[. We use the same abuse of notations for the wn. Consider a test function ϕ belonging
to C∞(Ω × R

+). Set ψ(x, t, y) = ϕ(x, t)�{y ∈ [ β
2n ,

β+1
2n [}. Let QT = Ω × R

+. Then, since the u0,2n,j satisfy the
weak formulation of (4.2), we have:

∫∫
QT

∫
[ β
2n , β+1

2n [

∂wn

∂t
(x, t, y′) · ϕ(x, t) dy′ dx dt+A

∫∫
QT

∫
[ β
2n , β+1

2n [

∇Twn(x, t, y′) · ∇Tϕ(x, t) dy′ dx dt

+
2K

1 − 2δ

∫∫
QT

∫
[ β
2n , β+1

2n [

wn(x, t, y′) · ϕ(x, t) dy′ dx dt+
J

1 − 2δ

∫∫
qT

∫
[ β
2n , β+1

2n [

2wn(x, t, y′) · ϕ(x, t) dy′ dx dt

− J

1 − 2δ

∫∫
qT

∫
[ β
2n , β+1

2n [

(wn(x, t, y′ + 2−n) + wn(x, t, y′ − 2−n)) · ϕ(x, t) dy′ dx dt = 0,

where, to simplify notations, we consider the function wn to be 1-periodic in y′. Therefore, for all β in �0, 2n−1�,

∫∫
QT

∫
[ β
2n , β+1

2n [

∂w̃n

∂t
(x, t, y′) · ϕ(x, t) dy′ dx dt+A

∫∫
QT

∫
[ β
2n , β+1

2n [

∇Tw̃n(x, t, y′) · ∇Tϕ(x, t) dy′ dx dt

+
2K

1 − 2δ

∫∫
QT

∫
[ β
2n , β+1

2n [

w̃n(x, t, y′) · ϕ(x, t) dy′ dx dt+
J

1 − 2δ

∫∫
QT

∫
[ β
2n , β+1

2n [

2w̃n(x, t, y′) · ϕ(x, t) dy′ dx dt

− J

1 − 2δ

∫∫
QT

∫
[ β
2n , β+1

2n [

w̃n(x, t,H∗
n
−1(H∗

n(y′) + 2−n)) · ϕ(x, t) dy′ dx dt

− J

1 − 2δ

∫∫
QT

∫
[ β
2n , β+1

2n [

w̃n(x, t,H∗
n
−1(H∗

n(y′) − 2−n)) · ϕ(x, t) dy′ dx dt = 0. (4.4)

Here H∗
n is simply the bit reversal of the first n coefficients in the binary expansion. Thus:

H∗
n
−1(H∗

n(y′ + 2−n)) =

⎧⎪⎨⎪⎩
y′ + 3 · 2−(j+1) − 1 if 1 − 2−j ≤ y′ < 1 − 2−(j+1),

for 0 ≤ j ≤ n− 1,
y′ − 1 + 2−n if 1 − 2−n ≤ y′ < 1.

(4.5)

And

H∗
n
−1(H∗

n(y′) − 2−n) =

⎧⎪⎨⎪⎩
y′ − 3 · 2−(j+1) + 1 if 2−(j+1) ≤ y′ < 2−j ,

for 0 ≤ j ≤ n− 1,
y′ + 1 − 2−n if 0 ≤ y′ < 2−n.

(4.6)
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Since ϕ(x, t)�{y′ ∈ [ β
2n ,

β+1
2n [} is Fn-measurable and w̃n = E(w̃∞|Fn), equality (4.4) remains valid after replacing

w̃n by w̃∞. Therefore,∫∫
QT

∫
[ β
2n , β+1

2n [

∂w̃∞
∂t

(x, t, y′) · ϕ(x, t) dy′ dx dt+A

∫∫
QT

∫
[ β
2n , β+1

2n [

∇Tw̃∞(x, t, y′) · ∇Tϕ(x, t) dy′ dx dt

+
2K

1 − 2δ

∫∫
QT

∫
[ β
2n , β+1

2n [

w̃∞(x, t, y′) · ϕ(x, t) dy′ dx dt+
J

1 − 2δ

∫∫
qT

∫
[ β
2n , β+1

2n [

2w̃∞(x, t, y′) · ϕ(x, t) dy′ dx dt

− J

1 − 2δ

∫∫
qT

∫
[ β
2n , β+1

2n [

(w̃∞(x, t, τ+(y′)) + w̃∞(x, t, τ−(y′))) · ϕ(x, t) dy′ dx dt = 0

for all n in N and β in �1, 2n − 2�. Choose y′ in ]0, 1[, for any positive integer n, set β = �2ny′� and take the
limit in the above equality divided by 2−n as n tends to +∞. �

If instead of setting Mn = 2n, we consider a general sequence (Mn)n∈N, the same reasonning holds. When Mn

is 2n, the shuffling of layers is the bit reversal of the first n coefficients of the binary representation of y, thus
involutive. This is not the case for general Mn and we must use Remark 3.7. Therefore, utmost care must be
taken to compute the analogues of (4.5) and (4.6). We provide the limit in the general case without proof. In
that case, we have

H∗
n
−1(H∗

n(y′) +
1
Mn

) =

⎧⎪⎨⎪⎩
y′ −∑j

l=1
1

Ml
+ 1

Mj+1
if 1 − 1

Mj
≤ y′ < 1 − 1

Mj+1
,

for 0 ≤ j ≤ n− 1,
y′ − 1 + 1

Mn
if 1 − 1

Mn
≤ y′ < 1.

H∗
n
−1(H∗

n(y′) − 1
Mn

) =

⎧⎪⎨⎪⎩
y′ +

∑j
l=1

1
Ml

− 1
Mj+1

if 1
Mj

≤ y′ < 1
Mj+1

,

for 0 ≤ j ≤ n− 1,
y′ + 1 − 1

Mn
if 0 ≤ y′ < 1

Mn
.

and the limit equation (4.3a) remains valid if we set instead

τ+(y′) = y′ −
j∑

l=1

1
Ml

+
1

Mj+1
when 1 − 1

Mj
≤ y′ < 1 − 1

Mj+1
, (4.7a)

τ−(y′) = y′ +
j∑

l=1

1
Ml

− 1
Mj+1

when
1

Mj+1
≤ y′ <

1
Mj

, (4.7b)

for all non-negative integer j.

5. Conclusion

We have proven in this paper, see Theorem 3.8, that the two-scale limits of a given sequence of functions,
computed for periods that are entire multiple of the previous ones, form a bounded martingale and thus converge
both strongly in L2 and almost everywhere. From the limit, called the Two-Scale Shuffle limit, one can recover
any element in the sequence of two-scale limits: this limit contains all the information contained in the whole
sequence of two-scale limits, see Corollary 3.9. For a good choice of increasing periods, this limits captures
everything that happens at any length scale that is an entire multiple of ε.

Unfortunately, this limit does not capture all phenomena with a period linear in ε: it cannot capture phenom-
ena with an irrational scale factor. The construction of the martingale depends on the assumption that pn+1

is always an entire multiple of pn. If there are two interesting scales whose ratio is irrational then no choice of
periodic scale carry the information for both scales.
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We applied the notion of the Two-Scale Shuffle limit to the heat equation on multilayers with transmission
conditions between adjacent layers. We then considered the solutions to these equations and established the
equation satisfied by their Two-Scale Shuffle limit.

To establish the convergence of the two-scale limit, we used the shuffle of hypercubes described in Section 3.3.
Unfortunately, because of this shuffle, it is not easy to reach an intuitive understanding of the Two-Scale Shuffle
limit. Results on the existence of the limit in the setting of Section 3.2 would not have that drawback. Solving
Problem 3.5 would be a first step to obtain a limit in this setting.
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