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APPROXIMATE MAXIMUM PRINCIPLE FOR DISCRETE APPROXIMATIONS
OF OPTIMAL CONTROL SYSTEMS WITH NONSMOOTH OBJECTIVES AND
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Abstract. The paper studies discrete/finite-difference approximations of optimal control problems
governed by continuous-time dynamical systems with endpoint constraints. Finite-difference systems,
considered as parametric control problems with the decreasing step of discretization, occupy an inter-
mediate position between continuous-time and discrete-time (with fixed steps) control processes and
play a significant role in both qualitative and numerical aspects of optimal control. In this paper we
derive an enhanced version of the Approximate Maximum Principle for finite-difference control systems,
which is new even for problems with smooth endpoint constraints on trajectories and occurs to be the
first result in the literature that holds for nonsmooth objectives and endpoint constraints. The results
obtained establish necessary optimality conditions for constrained nonconvex finite-difference control
systems and justify stability of the Pontryagin Maximum Principle for continuous-time systems under
discrete approximations.
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1. Introduction

The classical result of optimal control theory is the Pontryagin Maximum Principle (PMP), which provides
necessary optimality conditions for control systems governed by differential equations under various constraints;
see the seminal book [8] and also, e.g., [4, 11] with the references therein for more recent developments and
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applications. For the basic optimal control problem written as

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ0(x(t1))
subject to
ẋ(t) = f(x(t), u(t), t) a.e. t ∈ T := [t0, t1],
x(t0) = x0 ∈ IRn,

u(t) ∈ U(t) a.e. t ∈ [t0, t1],
ϕi(x(t1)) ≤ 0, i = 1, . . . , l,
ϕi(x(t1)) = 0, i = l + 1, . . . , l + q,

the PMP asserts that every optimal control ū(t) satisfies the maximum condition

H(x̄(t), p(t), ū(t), t) = max
u∈U(t)

H(x̄(t), p(t), u, t) a.e. t ∈ T, (1.1)

along the corresponding trajectory x̄(t) of the primal system in (P ) and the solution p(t) of the adjoint system

ṗ(t) = −∇xH(x̄(t), p(t), ū(t), t) a.e. t ∈ T, (1.2)

when f is smooth in x, with an appropriate transversality condition on p(t1) via gradients or subgradi-
ents of smooth or nonsmooth functions ϕi at x̄(t1). The Hamilton–Pontryagin function, or the unmaximized
Hamiltonian, in (1.1) and (1.2) is given by

H(x, p, u, t) := 〈p, f(x, u, t)〉, p ∈ IRn. (1.3)

This paper is devoted to the study of discrete approximations of the continuous-time control problem (P )
that are formalized as follows:

(PN )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ0(xN (t1))
subject to
xN (t+ hN) = xN (t) + hNf(xN (t), uN (t), t),
xN (t0) = x0 ∈ IRn,

uN(t) ∈ U(t), t ∈ TN :=
{
t0, t0 + hN , . . . , t1 − hN

}
,

ϕi(xN (t1)) ≤ 0, i = 1, . . . , l,
|ϕi(xN (t1))| ≤ δ > 0, i = l+ 1, . . . , l+ q,

hN :=
t1 − t0
N

, N ∈ IN :=
{
1, 2, . . .

}
.

We treat (PN ) as a sequence of discrete-time optimal control problems depending on the natural parameter
N = 1, 2, . . . This sequence clearly arises from the Euler finite-difference replacement of the derivative in the
differential equation of (P ):

ẋ(t) ≈ x(t+ h) − x(t)
h

as h→ 0. (1.4)

It is worth noting that we use here the uniform Euler scheme (1.4) just for simplicity; the approach and results
obtained below can be carried over to other (including higher-order) approximation schemes.

Apart from the inevitable usage of discrete approximations in computer simulations and calculations of
control systems with continuous time, there are deep interrelations between qualitative aspects of optimal control
for continuous-time systems and their finite-difference approximations. On one hand, the method of discrete
approximations has been very instrumental in deriving new necessary optimality conditions for various kinds
of continuous-time control systems governed by differential equations and inclusions; see, e.g., [3, 4, 10] and the
references therein. On the other hand, it has been well recognized that the Discrete Maximum Principle (DMP),
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as an analog of the PMP with the exact maximum condition (1.1), does not generally hold for the discrete-
time problems (PN ) with fixed steps hN if the admissible velocity sets f(x, U(t), t) are not convex; see [4],
Sections 6.4.1 and 6.5.23 for more details, examples, and historical background. This convexity assumption is
rather restrictive, while the possibility to avoid it for continuous-time systems is due to a certain property of
“hidden convexity” that is inherent in such systems and plays a crucial role (in one way or another) in any
known proof of the PMP.

The failure of the DMP may create a potential instability of the PMP in modeling and numerical calcula-
tions of nonconvex continuous-time systems when using discrete approximations. Observe, however, that such
stability would be justified by showing that merely an approximate counterpart of the PMP holds, with a cer-
tain perturbation of the maximum condition (1.1) diminishing together with the discretization step hN ↓ 0 as
N → ∞.

For smooth optimal control problems with no endpoint constraints, the first result of this type was obtained by
Gabasov and Kirillova [1] under the name of “quasi-maximum principle” by using an analytic device exploiting
the smooth and unconstrained nature of the family of parametric discrete problems considered therein.

Considering constrained control problems of type (PN ) with smooth data required a completely different
approach invoking the geometry of endpoint constraints under multineedle variations of optimal controls. It
has been initiated by Mordukhovich [2], where a certain finite-difference counterpart of the hidden convexity
property for sequences of constrained discrete-time systems was revealed and the first version of the Approximate
Maximum Principle (AMP) for smooth control problems (PN ) was established; the reader can find all the details
and discussions in [4], Section 6.4 and commentaries therein.

The version of the AMP given in [2,4] for smooth constrained problems (PN ) can be formulated as follows. Let
the pair (ūN , x̄N ) be optimal to (PN ) for each N ∈ IN such that the control sequence {ūN} is proper (see [2,4]
and Section 3 below for the exact definition and discussions). Then for any ε > 0 there exist multipliers λiN as
i = 0, . . . , l + q normalized to

λ2
0N + . . .+ λ2

l+qN = 1 (1.5)

satisfying the sign and perturbed complementary slackness conditions

λiN ≥ 0 for i = 0, . . . , l and |λiNϕi(x̄N (t1))| < ε for i = 1, . . . , l, (1.6)

and such that the approximate maximum condition

H(x̄N (t), pN (t+ hN ), ūN (t), t) ≥ max
u∈U(t)

H(x̄N (t), pN (t+ hN ), u, t) − ε, t ∈ TN , (1.7)

holds for all N sufficiently large along the corresponding trajectory of the adjoint system

pN (t) = pN (t+ hN) + hN
∂H

∂x

(
x̄N (t), pN (t+ hN), ūN (t), t

)
, t ∈ TN , (1.8)

with the endpoint/transversality condition

− pN(t1) =
l+q∑
i=0

λiN∇ϕi(x̄N (t1)). (1.9)

The presented version of the AMP from [2, 4] plays actually the same role as the DMP for studying and
solving discrete-time smooth optimal control problems with sufficiently small stepsizes without imposing the
restrictive convexity assumption on the sets f(x̄N (t), U(t), t), t ∈ TN . We refer the reader to, e.g., [4, 7] and
the bibliographies therein for more discussions and applications of the AMP to chemical engineering, periodic
control, biotechnological and ecological processes, etc.

By analogy with the continuous-time problem (P ), it would be natural to expect that an extension of the
AMP in form (1.5)–(1.9) could be obtained for problems (PN ) with nonsmooth cost and constraint functions ϕi
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via well-recognized subdifferentials of convex and nonsmooth analysis. But it has been surprisingly shown in [5]
that this is not true even in the case of the simplest convex nondifferentiable cost function ϕ0(x) = |x − r| in
the absence of any endpoint constraints on trajectories of linear one-dimensional control systems in (PN ). This
reveals a potential instability of the PMP under discrete approximations of problem (P ) with such a simple and
standard type of nonsmoothness when the AMP in form (1.5)–(1.9) is applied. Note that nonsmooth control
problems are not only highly challenging theoretically, but are important for various practical applications to
engineering design, finance, environmental science, economics, etc.; see, e.g., [4,10,11] and the references therein.

The main goal of this paper is to develop a new version of the AMP that holds for problems (PN ) with
nonsmooth objectives and endpoint inequality constraints represented as sums of convex and smooth (in fact,
strictly differentiable) functions, while equality constraint functions remain smooth. In this version of the AMP,
which is new even for problems (PN ) with all functions ϕi being smooth, we keep the approximate maximum
condition (1.7) together with the adjoint system (1.8) as well as the nontriviality and sign conditions on λiN

in (1.5) and (1.6), respectively. What is modified is that we replace the perturbed complementarity slackness
condition in (1.6) by its exact counterpart

λiNϕi(x̄) = 0 for all i = 1, . . . , l

and replace the transversality condition (1.9) by its subdifferential analog

−pN (t1) ∈
l∑

i=0

λiN∂ϕi(x̄) +
l+q∑

i=l+1

λiN∇ϕi(x̄), (1.10)

where x̄ in is a limiting point of the sequence {x̄N (t1)}, and where ∂ϕi(x̄) in (1.10) stands for the sum of the
subdifferential of convex analysis and the classical gradient at x̄ of the corresponding terms in the aforementioned
representations of ϕi as i = 0, . . . , l.

The rest of the paper is organized as follows. In Section 2 we recall some definitions and preliminaries needed
for formulations and proofs of the main results. Section 3 contains the exact formulations and discussions of
the assumptions and the statement of the new version of the AMP developed in the paper for the sequence
of problems (PN ). We also discuss the corresponding results for discrete approximation problems of type (PN )
with relaxations of endpoint constraints. Section 4 presents the proof of the main theorem split into several
lemmas, which are of their own interest. In the concluding Section 5 we discuss endpoint constraints of the
equality type and give an example showing that the new version of the AMP does not hold for such problems
without equality constraint relaxations.

Throughout the paper we use the standard notation from variational analysis, optimization, and optimal
control; see, e.g., the books [4, 11].

2. Preliminaries

For the reader’s convenience, in this section we present several definitions and well-known facts widely used
in what follows.

Recall that ϕ : IRn → IR is strictly differentiable at x̄ if there is a vector ∇ϕ(x̄) such that

lim
x1,x2→x̄

ϕ(x1) − ϕ(x2) − 〈∇ϕ(x̄), x1 − x2〉
‖x1 − x2‖ = 0.

Strict differentiability at a point is a stronger property that just (Fréchet) differentiability, but weaker than
continuous differentiability (i.e., C1) around x̄. A classical example of a function that is differentiable while not
strictly differentiable at x̄ = 0 is

ϕ(x) :=

{
x2 sin 1

x , x 
= 0,
0, x = 0.
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Note that just differentiability of the cost and constraint functions is needed for the PMP to hold in the
continuous-time problem (P ) (see [4], Th. 6.37) in contrast to the corresponding strict differentiability assump-
tions required for the validity of the AMP in the previous and new forms; cf. Theorem 6.59 and Example 6.55
in [4] (the latter is taken from [5], Ex. 2.3) and Section 3 below.

If ϕ : IRn → IR := IR ∪ {∞} is a convex function finite at x̄, its subdifferential at this point in the sense of
convex analysis is defined by

∂ϕ(x̄) :=
{
v ∈ IRn

∣∣ 〈v, x− x̄〉 ≤ ϕ(x) − ϕ(x̄) for all x ∈ IRn
}
. (2.1)

It is well known (see, e.g., [9]) that ∂ϕ(x̄) 
= ∅ for any x̄ ∈ domϕ := {x ∈ IRn| ϕ(x) < ∞}, that ϕ is locally
Lipschitz continuous on the interior of domϕ and that

‖v‖ ≤ � for all v ∈ ∂ϕ(x̄),

where � > 0 is the local Lipschitz constant of ϕ at x̄. Note also that the subdifferential ∂ϕ(x̄) can be equivalently
represented as

∂ϕ(x̄) =
{
v ∈ IRn

∣∣ 〈v, z〉 ≤ ϕ′(x̄, z) for all z ∈ IRn
}

via the directional derivative ϕ′(x̄; z) of ϕ at x̄ in the direction z defined by

ϕ′(x̄; z) := lim
α↓0, w→z

ϕ(x̄ + αw) − ϕ(x̄)
α

, (2.2)

which, for Lipschitz functions, is equivalent to

ϕ′(x̄; z) := lim
α↓0

ϕ(x̄ + αz) − ϕ(x̄)
α

.

This implies, in turn, the directional derivative representation

ϕ′(x̄; z) = sup
v∈∂ϕ(x̄)

〈v, z〉. (2.3)

Given a convex set Ω ⊂ IRn and a point x̄ ∈ Ω, the normal cone to Ω at x̄ is defined by

N (x̄;Ω) :=
{
v ∈ IRn

∣∣ 〈v, x − x̄〉 ≤ 0 for all x ∈ Ω}. (2.4)

The following results of convex analysis are widely used in the paper; see [9] for more details.

Subdifferential sum rule. Let ϕ, ψ be convex functions on IRn such that ψ is differentiable at x̄ ∈ domϕ.
Then we have

∂(ψ + ϕ)(x̄) = ∇ψ(x̄) + ∂ϕ(x̄).

Note that this sum rule is a simple particular case of the Moreau–Rockafellar Theorem, which is a fundamental
result of convex analysis.

Carathéodory theorem. If a point x ∈ IRn lies in the convex hull of a set P , there is a subset P̃ ⊂ P
consisting of at most n+ 1 points such that x belongs to the convex hull of P̃ .

Separation theorem. Let C,D ⊂ IRn be convex sets such that intC 
= ∅ and intC ∩D = ∅. Then there exists
a nonzero vector v ∈ IRn such that

〈v, x1〉 ≤ 〈v, x2〉 for all x1 ∈ C, x2 ∈ D.



816 B.S. MORDUKHOVICH AND I. SHVARTSMAN

3. The main result and discussions

Throughout the paper we assume that the control sets U(t) in (PN ) are compact subsets of a metric space
(U , d) and that the set-valued mapping U : [t0, t1] →→ U is continuous with respect to the Hausdorff distance.
Recall [2,4] that a sequence of discrete-time control {un} in (PN ) is proper if for every sequence of mesh points

τθ(N) := t0 + θ(N)hN ∈ TN with θ(N) = 0, . . . , N − 1 and τθ(N) → t ∈ [t0, t1] as N → ∞

we have the following relationships:

either d
(
uN (τθ(N)), uN(τθ(N)+s)

)→ 0, or d
(
uN (τθ(N)), uN(τθ(N)−s

)→ 0,

or both hold as N → ∞ with any natural constant s.
Note that this property postulates at least one-sided continuity in the limiting sense of the control sequence

in (PN ) at every point and is a discrete-time analog of Lebesgue points in continuous time, which comprise a
set of full measure. Thus is not required for continuous-time control systems; see [4] for more details. However,
this property occurs to be essential for the validity of the AMP even for one-dimensional linear systems with
linear cost and constraint functions; see [5], Example 2.1 and [4], Theorem 6.60.

Theorem 3.1 (Approximate maximum principle for nonsmooth control problems). Let the pair (ūN , x̄N ) be
optimal to problems (PN ) as N ∈ IN, the sequence {x̄N (t1)} is uniformly bounded, and let x̄ be a limiting point
of this sequence. Assume that:

(a) The function f is continuous with respect to its variables and continuously differentiable with respect to x in
a tube containing the optimal trajectories x̄N (t) for all large N .

(b) The cost function ϕ0 and the inequality constraint functions ϕi admit the representations

ϕi(x) = ψi(x) + ϑi(x) for i = 0, . . . , l,

where each ψi is strictly differentiable at x̄, and where each ϑi is convex.
(c) The equality constraint functions ϕi as i = l + 1, . . . , l + q are strictly differentiable at x̄.
(d) The sequence of optimal controls {ūN} is proper.

Then for any ε > 0 there exist a natural number Nε and multipliers λiN ∈ IR as i = 0, . . . , l + q such that for
all N ≥ Nε the following hold:

• The sign and nontriviality conditions

λiN ≥ 0 as i = 0, . . . , l and
l∑

i=0

λ2
iN = 1; (3.1)

• The complementary slackness conditions

λiNϕi(x̄) = 0 as i = 1, . . . , l; (3.2)

• The approximate maximum condition (1.7), where pN (t) as t ∈ TN ∪ {t1} is the solution of the adjoint
system (1.8) satisfying

• The endpoint/transversality condition

−pN(t1) ∈
l∑

i=0

λiN

(∇ψi(x̄) + ∂ϑi(x̄)
)

+
l+q∑

i=l+1

λiN∇ϕi(x̄). (3.3)
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Note that the new AMP of Theorem 3.1 is an appropriate finite-difference counterpart of the corresponding
nonsmooth PMP for continuous-time system (P ); see [4, 11]. Also, we would like to emphasize that the new
result differs from the previous version of the AMP for smooth problems (PN ) discussed in Section 1 in the
following two major aspects:

(i) In contrast to (1.6), the complementary slackness conditions (3.2) are exact and are evaluated at the limiting
point x̄ rather than at x̄N (t1).

(ii) In contrast to (1.9), the right-hand side of the transversality condition (3.3) is evaluated at the limiting
point x̄ rather than at x̄N (t1).

Note that the result of Theorem 3.1 was announced in [6] for the case of convex cost and endpoint constraint
functions ϕi, i = 0, . . . , l.

Remark 3.2 (AMP under constraint perturbations). It follows from the proof of Theorem 3.1 given in the
next section that it is possible to derive the AMP in the new form of this theorem under arbitrary perturbations
of the inequality constraints in (PN ):

ϕi(xN (t1)) ≤ γiN with γiN → 0 as N → ∞, i = 1, . . . , l,

keeping all other assumptions in place. Perturbations of this type were considered in [2,4], where the AMP was
derived in form (1.5)–(1.9) in the case of smooth cost and constraint functions. Note that the previous form of
the AMP was also obtained in [2,4] for perturbations of the equality constraints

|ϕiN (xN (t1))| ≤ δiN with lim sup
N→∞

hN

δiN
= 0 for all i = l + 1, . . . , l+ q. (3.4)

The question about the validity of the AMP in the new form of Theorem 3.1 under the general consistent equality
constraint perturbations as in (3.4) remains open. On the other hand, in Section 5 we present a counterexample
to this statement for δiN ≡ 0 as well as for the case of too quickly vanishing (inconsistent) perturbations δiN
in (3.4).

4. Proof of the theorem

Suppose first that Theorem 3.1 is valid in the case q = 0, that is, in the absence of the relaxed equality
constraints |ϕi(xN (t1))| ≤ δ, i = l+ 1, . . . , l+ q. Let us show that Theorem 3.1 is then valid when q > 0.

Indeed, each of these constraints can be written as the two inequalities:

ϕi(xN (t1)) ≤ δ and − ϕi(xN (t1)) ≤ δ for i = l + 1, . . . , l + q. (4.1)

Fix an index i ∈ {l+ 1, . . . , l+ q} in (4.1). Due to our assumption on validity of Theorem 3.1 in the absence of
relaxed equality constraints and applying (3.2), we can find λ+

iN ≥ 0 and λ−iN ≥ 0 such that

λ+
iNϕi(x̄) = λ+

iN δ and − λ−iNϕi(x̄) = λ−iN δ. (4.2)

Assuming for definiteness that λ+
iN 
= 0, we get from the first equality in (4.2) that ϕi(x̄) = δ and thus

−2δλ−iN = 0 from the second one. Since δ 
= 0, it gives that λ−iN = 0. Denoting finally λiN := λ+
iN − λ−iN for the

chosen index i ∈ {l+ 1, . . . , l + q} in the last term on (3.3), we arrive at all the conclusions of Theorem 3.1, as
formulated.

Therefore, in what follows we prove Theorem 3.1 in the case q = 0 breaking down the proof into a series of
lemmas.

The first lemma presents a simple subdifferential property of convex continuous functions needed in what
follows.
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Lemma 4.1 (subdifferential property of convex functions). Let ϕ : IRn → IR be a convex continuous function,
and let yk → 0 as k → ∞ for some sequence {yk} ⊂ IRn. Then given x̄ ∈ IRn, there exists a subgradient
v ∈ ∂ϕ(x̄) such that

ϕ(x̄+ yk) − ϕ(x̄) = 〈v, yk〉 + o(‖yk‖) as k → ∞
along a subsequence of {yk}, without relabeling.

Proof. Since the assertion of the lemma is obvious when yk ≡ 0, we suppose without loss of generality that {yk}
contains a nonzero subsequence. Let yk/‖yk‖ → z along such a subsequence. Due to (2.2) we have the repre-
sentation

ϕ(x̄ + yk) − ϕ(x̄) = ϕ(x̄ +
yk

‖yk‖‖yk‖) − ϕ(x̄) = ϕ(x̄+ (z + wk)‖yk‖) − ϕ(x̄) = ϕ′(x̄; z)‖yk‖ + o(‖yk‖),

where wk → 0 as k → ∞. Taking into account the directional derivative representation (2.3) as well as the
nonemptiness and compactness of the subdifferential of convex and continuous (hence Lipschitz continuous)
functions, we find a subgradient v ∈ ∂ϕ(x̄) such that

ϕ′(x̄; z) = 〈v, z〉.
This implies, therefore, the relationships

ϕ(x̄+ yk) − ϕ(x̄) = 〈v, z〉‖yk‖ + o(‖yk‖) =
〈
v,

yk

‖yk‖
〉
‖yk‖ + o(‖yk‖) = 〈v, yk〉 + o(‖yk‖),

which completes the proof of the lemma. �

Next we prove a technical lemma, which plays a significant role in the proof of the main result.

Lemma 4.2 (limiting property of convex functions). Let ϕ : IRn → IR be a convex continuous function,
{xk}, {yk} ⊂ IRn and {c̃k} ⊂ IR be such sequences that xk → x̄, yk → 0, and c̃k = o(‖yk‖) as k → ∞,
and let

ϕ(xk + yk) ≥ ϕ(xk) + c̃k for all k ∈ IN. (4.3)

Then there exists a sequence {ck} ⊂ IR such that ck = o(‖yk‖) as k → ∞ and

ϕ(x̄+ yk) ≥ ϕ(x̄) + ck for all k ∈ IN. (4.4)

Proof. Observe first that by modifying the sequence {c̃k} if necessary, we can reduce (4.3) to the strict inequality

ϕ(xk + yk) > ϕ(xk) + c̃k for all k ∈ IN,

which can be restated in the equivalent form (xk, ϕ(xk)) + (yk, c̃k) /∈ epiϕ. Denote

αk := max
{
α ≥ 0

∣∣ (xk, ϕ(xk)) + α(yk, c̃k) ∈ epiϕ
}

(4.5)

observing that the maximum is reached in (4.5) for some αk ∈ [0, 1) due to closedness and convexity of the
epigraph epiϕ of ϕ.

Suppose without loss of generality that {yk} contains a nonzero subsequence, and let A be the set of the
limiting points of {yk/‖yk‖}, i.e.,

A :=
{
z ∈ IRn

∣∣∣ z = lim
k→∞

yk

‖yk‖ along a subsequence of k ∈ IN
}
.

Considering further the union set
B :=

⋃
β>0

(x̄ + βA),
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we claim the relationship
(B, f(x̄)) ∩ int (epi f) = ∅. (4.6)

Indeed, assume otherwise that there exist β̃ > 0 and z ∈ A such that

(x̄+ β̃z, ϕ(x̄)) ∈ int (epiϕ).

This implies that for any sequence converging to (x̄+ β̃z, ϕ(x̄)) all its terms belong to the epigraph of ϕ starting
with a certain number. In particular, there exists a subsequence of yk (without relabeling) such that(

xk + αkyk + β̃
yk

‖yk‖ , ϕ(xk) + αkc̃k + β̃
c̃k

‖yk‖
)

∈ epiϕ

for sufficiently large k ∈ IN ; this can be written as(
xk +

(
αk +

β̃

‖yk‖
)
yk, ϕ(xk) +

(
αk +

β̃

‖yk‖
)
c̃k

)
∈ epiϕ.

It contradicts the definition of αk in (4.5) and thus justifies the empty intersection in (4.6).
Furthermore, we have from the construction of the set A that

x̄+ yk = x̄+ ‖yk‖
(

yk

‖yk‖
)

∈ x̄+ ‖yk‖A+ zk

with some sequence {zk} ⊂ IRn of order o(‖yk‖). This implies that

(x̄+ yk − zk, ϕ(x̄)) ∈ (x̄ + ‖yk‖A,ϕ(x̄)) ⊂ (B, f(x̄))

and hence (x̄ + yk − zk, ϕ(x̄)) /∈ int (epiϕ) due to (4.6), which means that

ϕ(x̄ + yk − zk) ≥ ϕ(x̄). (4.7)

Due to Lipschitz continuity of ϕ around x̄ with some constant � we get

ϕ(x̄ + yk − zk) ≤ ϕ(x̄ + yk) + �‖zk‖. (4.8)

Setting finally ck := −�‖zk‖ and combining (4.7) with (4.8) ensures the validity of (4.4) and thus completes the
proof of the lemma. �

Note that the assertion of Lemma 4.2 does not generally hold for nonconvex nonsmooth functions. A simple
example is provided by ϕ(x) = −|x| with the sequences xk = −1/k, yk = 1/k, and c̃k = 0. Then we have (4.3)
along these sequences while (4.4) reduces to −1/k ≥ 0 + ck, which does not hold whenever ck = o(1/k) as
k → ∞.

Having in hand the technical lemmas established above, we are now ready to proceed with the proof of the
AMP in Theorem 3.1. First we recall a significant property of finite-difference control systems related to needle
variations of optimal controls.

Let (x̄N , ūN) be optimal process to problems (PN ) for N ∈ IN . Fix a natural number r ∈ {1, . . . , N − 1},
mesh points τj(N) ∈ TN , and control impulses vj(N) ∈ U(τj(N)) and then define an r-needle variation of the
optimal control ūN by

ur
N (t) :=

{
vj(N), t = τj(N),
ūN(t), t ∈ TN , t 
= τj(N), j = 1, . . . , r.

(4.9)
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The case of r = 1 in (4.9) defines a single needle variation of ū, and we omit the index r = 1 in this case. The
corresponding trajectory increments are denoted by ΔrxN (t) := xr

N (t) − x̄N (t) and ΔxN (t) := xN (t) − x̄N (t)
when r = 1. Next we pick natural numbers p and mj as j = 1, . . . , p independent of N and consider the integer
combination

ΔN (p,mj) :=
p∑

j=1

mjΔjxN (t1) (4.10)

of the endpoint trajectory increments ΔjxN (t1) generated by p single needle control variations uNj(t). The
following lemma taken from [4], Lemma 6.62 shows that any single needle integer combination of type (4.10)
can be approximated up to a small quantity of order o(hN ) by an endpoint trajectory increment generated by
a multineedle control variation.

Lemma 4.3 (needle variations). Let the reference sequence of optimal controls {ūN} to (PN ) be proper, and let
ΔN (p,mj) be the integer combination (4.10) generated by single needle control variations uNj(t), j = 1, . . . , p.
Then there exists an r-needle control variation ur

N(t) of type (4.9) with r :=
∑p

j=1mj and a vector quantity of
order o(hN ) such that

ΔN (p,mj) = ΔrxN (t1) + o(hN ) as N → ∞
for the corresponding endpoint trajectory increments.

To proceed further, we recall the forms of the cost and inequality constraint functions given in assumption
in (b) of Theorem 3.1 and on this basis introduce the following vector mappings from IRn to Rl+1 defined by

Φ(x) := (ϕ0(x), . . . , ϕl(x)), Ψ(x) := (ψ0(x), . . . , ψl(x)), Υ (x) := (ϑ0(x), . . . , ϑl(x)),

L(x) := Ψ(x̄) + Ψ ′(x̄)(x− x̄) + Υ (x). (4.11)

It is obvious that all the components Li of the mapping L from (4.11) are convex and represented as sums of
convex and linear functions. Thus

Li(x̄) = ϕi(x̄) and ∂Li(x) = ∇ψi(x̄) + ∂ϑi(x̄) for all i = 0, . . . , l

by the subdifferential sum rule mentioned in Section 2.
The next lemma presents an asymptotic consequence of optimality in (PN ) by using multineedle variations

of optimal controls.

Lemma 4.4 (asymptotic consequence of optimality). Fix a natural number r independent of N and consider
a sequence {ΔrxN (t1)}, N ∈ IN , of endpoint trajectory increments generated by r-needle variations of optimal
controls. Then there exists an index i0 ∈ {0, . . . , l} independent of N such that

lim inf
hN→0

Li0(x̄+ΔrxN (t1)) − Li0(x̄)
hN

≥ 0 (4.12)

for the corresponding component of the mapping L defined in (4.11).

Proof. It follows from the optimality of the sequence {x̄N} that there is an index i0 = i0(N) ∈ {0, . . . , l} such
that

ϕi0 (x̄N (t1) +ΔrxN (t1)) ≥ ϕi0(x̄N (t1)). (4.13)

Indeed, the inequalities ϕi(x̄N (t1)+ΔrxN (t1)) < ϕi(x̄N (t1), for all i = 0, . . . , l contradict optimality of x̄N .) By
selecting a subsequence of {N} if necessary, we can assume that i0 does not depend on N and that x̄N (t1) → x̄.
Further, it follows from (4.13) by the strict differentiability of ψ at x̄ that

ϑi0 (x̄N (t1) +ΔrxN (t1)) − ϑi0 (x̄N (t1)) ≥ −(ψi0(x̄N (t1) +ΔrxN (t1)) − ψi0(x̄N (t1)))
= −〈∇ψi0(x̄), ΔrxN (t1)〉 + c̃N ,
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where c̃N = o(‖ΔrxN (t1)‖) = o(hN ) due to ‖ΔrxN (t1)‖ = O(hN ) as shown in the proof of [4], Lemma 6.62.
We conclude from the relationships above that

ϑi0(x̄N (t1) +ΔrxN (t1)) + ψi0(x̄) + 〈∇ψi0(x̄), x̄N (t1) +ΔrxN (t1) − x̄〉
≥ ϑi0(x̄N (t1)) + ψi0(x̄) + 〈∇ψi0(x̄), x̄N (t1) − x̄〉 + c̃N

which can be written, in the notation of (4.11), as

Li0(x̄N (t1) +ΔrxN (t1)) ≥ Li0(x̄N (t1)) + c̃N . (4.14)

Applying now Lemma 4.2, we conclude that there exists a sequence {cN} ⊂ IR of order cN = o(hN ) as N → ∞
such that

Li0(x̄ +ΔrxN (t1)) − Li0(x̄) ≥ cN ,

which implies in turn that
lim inf
hN→0

h−1
N

(
Li0(x̄+ΔrxN (t1)) − Li0(x̄)

)
≥ 0

and thus completes the proof of this lemma. �

Next we form the set E by

E :=
{
(x, ν0, . . . , νl) ∈ IRn+l+1

∣∣ ψi(x̄) + 〈∇ψi(x̄), x− x̄〉 + ϑi(x) ≤ νi, i = 0, . . . , l
}
, (4.15)

which is a combination of the epigraphs of the components of the mapping L in (4.11). Observe that the set E
is convex due to the convexity of the functions ϑi as i = 0, . . . , l and also that intE 
= ∅. Define further the
convex hull

ΩN := co
{
ΔxN (t1)

}
(4.16)

of the endpoint increments of the optimal trajectory x̄N to (PN ) generated by all single needle variations (4.9)
with r = 1 of the optimal control ūN for each N ∈ IN . The following crucial lemma asserts that the convex set
(x̄ + ΩN , L(x̄)) can be shifted by a vector cN of order o(hN ) so that it does not intersect with the interior of
the set E. We can treat this result as a sequence of primal optimality conditions for (PN ) as N → ∞.

Lemma 4.5 (primal optimality conditions for discrete approximations). There exists a sequence {cN} ⊂ IRl+1

of order o(hN ) as N → ∞ such that

(x̄+ΩN , L(x̄) + cN ) ∩ intE = ∅, N ∈ IN. (4.17)

Proof. Consider the sequence of real numbers

σN := min
y

max
i∈{0,...,l}

(Li(x̄+ y) − Li(x̄)), (4.18)

where the minimum is taken over the set of y ∈ ΩN with (x̄+y, L(x̄)) ∈ E; observe that the minimum is reached
since this set is compact and nonempty containing y = 0. From the construction of σN in (4.18) it follows that
for any yN ∈ ΩN with (x̄ + yN , L(x̄)) ∈ E there exists an index i1 = i1(N) ∈ {0, . . . , l} such that

σN ≤ Li1(x̄+ yN ) − Li1(x̄). (4.19)

Define cN := (σN , . . . , σN ) ∈ IRl+1 and observe that

(x̄+ yN , L(x̄) + cN ) /∈ intE, (4.20)

since the contrary would mean that Li(x̄ + yN) < Li(x̄) + σN for all i and thus contradict (4.19). It follows
from (4.18) with y = 0 that σN ≤ 0. The assertion of the lemma will now follow from (4.20) if we show that
σN = o(hN ) as N → ∞.
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Assume to the contrary that σN 
= o(hN ) and find a sequence of yN ∈ ΩN and negative constants βi as
i = 0, . . . , l such that

lim inf
hN→0

h−1
N

(
Li(x̄+ yN ) − Li(x̄)

)
≤ βi < 0.

Recalling the definition (4.16) of the set ΩN and invoking the Carathéodory Theorem, we represent any element
yN ∈ ΩN by

yN =
p∑

j=1

αj(N)ΔjxN (t1) with p = n+ 1,

where ΔjxN (t1) are optimal trajectory increments generated by single needle variations of the optimal control
ūN with the needle variation parameters (τj(N), vj(N)) for each j = 1, . . . , p and N ∈ IN , and where αj(N) ≥ 0
with

∑p
j=1 αj(N) = 1. Therefore

lim inf
hN→0

h−1
N

(
Li(x̄+

p∑
j=1

αj(N)ΔjxN ) − Li(x̄)
)
≤ βi < 0, i = 0, . . . , l. (4.21)

For a given number η > 0 to be specified later, define the quantities

γj(N) := [αj(N)/η], j = 1, . . . , p,

where [a] stands as usual for the integer part of the positive number a. Along a subsequence (without relabeling)
we have γj(N) → γ0

j as N → ∞ for j = 1, . . . , p. Due to Lemma 4.1, there exist subgradients ξi ∈ ∂Li(x̄) as
i = 0, . . . , l such that

Li(x̄+
p∑

j=1

γ0
jΔjxN (t1)) − Li(x̄) =

〈
ξi,

p∑
j=1

γj(N)ΔjxN (t1)
〉

+ o(hN )

=
1
η

〈
ξi,

p∑
j=1

αj(N)ΔjxN (t1)
〉

+
〈
ξi,

p∑
j=1

(γj − αj(N)
η

)ΔjxN (t1)
〉

+ o(hN )

(4.22)

along a subsequence of N → ∞. Let M and M1 be positive constants such that that ‖ΔjxN (t1)‖ ≤ MhN and
‖ξi‖ ≤M1 for all i and j. Since 〈ξi, y〉 ≤ Li(x̄+ y) − Li(x̄) for all y, we get from (4.22) that

Li(x̄ +
∑p

j=1 γ
0
jΔjxN (t1)) − Li(x̄) ≤ 1

η

(
Li

(
x̄+

p∑
j=1

αj(N)ΔjxN (t1)
)− Li(x̄)

)
+pMM1hN + o(hN ).

(4.23)

Now select an index i2 ∈ {0, . . . , l} so that |βi2 | = max
{|βi|

∣∣ 0 ≤ i ≤ l
}

and set η above as

η =
βi2

βi2 − pMM1
∈ (0, 1).

Then it follows from (4.23) and (4.21) that

lim inf
hN→0

h−1
N

(
Li(x̄+

p∑
j=1

γ0
jΔjxN ) − Li(x̄)

)
≤ βi

η
+ pMM1

=
βi(βi2 − pMM1)

βi2

+ pMM1 =
pMM1(−βi + βi2) + βiβi2

βi2

≤ βi < 0

(4.24)
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for all i = 1, . . . , l. Thus inequality (4.21) for convex combinations of ΔjxN as j = 1, . . . , p implies the same
type of inequality (4.24) for their integer combinations. Due to Lemma 4.3 there exists an r-needle variation of
the optimal control ūN with r =

∑p
j=1 γ

0
j such that

p∑
j=1

γ0
jΔjxN (t1) = ΔrxN (t1) + o(hN ),

which ensures by (4.24) the inequalities

lim inf
hN→0

h−1
N

(
Li(x̄+ΔrxN (t1)) − Li(x̄)

)
≤ βi < 0 for all i = 0, . . . , l.

The latter inequalities contradict (4.12) and thus complete the proof of the lemma. �

The next lemma based on convex separation transforms the primal optimality conditions (4.17) of Lemma 4.5
into dual conditions via appropriate Lagrange multipliers.

Lemma 4.6 (Lagrange multipliers for discrete approximation problems). Given a limiting point x̄ for the
endpoint sequence {x̄N (t1)} of optimal trajectories to (PN ), there exist sequences of Lagrange multipliers λN =
(λ0N , . . . , λlN ) ∈ IRl+1 and dual vectors ξN ∈ IRn satisfying the conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λiN ≥ 0 for i = 0, . . . , l,
l∑

i=0

λ2
iN = 1,

λiNϕi(x̄) = 0 for i = 1, . . . , l, and

ξN ∈
l∑

i=0

λiN∂Li(x̄) =
l∑

i=0

λiN

(∇ψi(x̄) + ∂ϑi(x̄)
)
.

(4.25)

Furthermore, for an arbitrary sequence of endpoint increments ΔxN (t1) generated by single needle variations of
optimal controls we have

〈ξN , ΔxN (t1)〉 ≤ o(hN ) as N → ∞. (4.26)

Proof. Applying the classical Separation Theorem to the convex sets (x̄ + ΩN , L(x̄) + cN ) and E with empty
intersection (4.17), we find dual elements λ̃N = (λ̃0N , . . . , λ̃lN ) ∈ IRl+1 and ξ̃N ∈ IRn such that

‖ξ̃N‖2 +
l∑

i=0

λ̃2
iN = 1

and that for any ΔxN (t1) ∈ ΩN and (x, y) ∈ E the inequality

〈ξ̃N , x̄+ΔxN (t1)〉 + 〈λ̃N , L(x̄) + cN 〉 ≤ 〈ξ̃N , x〉 + 〈λ̃N , y〉,
holds, which can be equivalently written as

〈ξ̃N , ΔxN (t1)〉 + 〈λ̃N , cN 〉 ≤ 〈ξ̃N , x− x̄〉 + 〈λ̃N , y − L(x̄)〉. (4.27)

Setting ΔxN (t1) = 0 in (4.27) gives us

〈ξ̃N , x− x̄〉 + 〈λ̃N , y − L(x̄)〉 ≥ 〈λ̃N , cN〉, (4.28)

while by setting x = x̄ and y = L(x̄) in (4.27) we obtain

〈ξ̃N , ΔxN (t1)〉 ≤ −〈λ̃N , cN 〉 = o(hN ) for any ΔxN (t1) ∈ ΩN . (4.29)
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Further, fix N ∈ IN and denote by (ξN , λN ) = (ξN , λ0N , . . . , λlN ) ∈ N ((x̄, L(x̄));E) the (unique) element of
the normal cone (2.4) to the convex set (4.15) at the (x̄, L(x̄)) that is nearest point to (ξ̃N , λ̃N ). We conclude
from (2.4) and (4.28) that

‖(ξN , λN ) − (ξ̃N , λ̃N )‖ → 0 as N → ∞, (4.30)

which ensures therefore that

‖ξN‖2 +
l∑

i=0

λ2
iN → 1 as N → ∞. (4.31)

It easily follows from the structure of the set E in (4.15) and of the normal cone to it at the limiting point
(x̄, L(x̄)) that

λiN ≥ 0 for i = 0, . . . , l, λiNLi(x̄) = λiNϕi(x̄) = 0 for i = 1, . . . , l, and

ξN ∈
l∑

i=0

λiN∂Li(x̄) =
l∑

i=0

λiN

(∇ψi(x̄) + ∂ϑi(x̄)
)
.

Taking the last inclusion into account and using (4.31), we renormalize the multipliers λiN , i = 0, . . . , l, to
satisfy

∑l
i=0 λ

2
iN = 1, and thus arrive at all the conditions in (4.25). Finally, it follows from (4.29) and (4.30)

that the limiting relationship (4.26) also holds, which thus concludes the proof of the lemma. �

To complete the proof of Theorem 3.1, it remains to show that the obtained estimate (4.26) implies the
approximate maximum condition (1.7), along the adjoint trajectory pN (t) of system (1.8) satisfying the end-
point/transversality condition

−pN (t1) ∈
l∑

i=0

λiN

(∇ψi(x̄) + ∂ϑi(x̄)
)
. (4.32)

Completing the proof of Theorem 3.1. Employing Lemma 4.6, we find vectors ξN ∈ IRn and λN =
(λ0N , . . . , λlN ) ∈ IRl+1 that satisfy all the relationships in (4.25) and (4.26) for every N ∈ IN . Define now
pN (t1) := −ξN and observe that conditions (4.25) reduce to those in (3.1)–(3.3) of Theorem 3.1 for problems
(PN ) with q = 0, while condition (4.26) can be rewritten in the form

〈pN (t1), ΔxN (t1)〉 ≥ o(hN ). (4.33)

Recall that ΔxN (t) are optimal trajectory increments generated by the following single needle variations of
optimal control ūN (t):

uN (t) =

{
v(N), t = τ(N),
ūN(t), t ∈ TN , t 
= τ(N).

For any function pN (t), t ∈ TN ∪ {t1}, we have the identity

〈pN (t1), ΔxN (t1)〉 =
t1−hN∑
t=t0

〈pN (t+ hN ) − pN (t), ΔxN (t)〉

+
t1−hN∑
t=t0

〈pN (t+ hN ), ΔxN (t+ hN ) −ΔxN (t)〉. (4.34)

Using further the notation

Δf(t) := f(xN (t), uN (t), t) − f(x̄N (t), ūN (t), t),
Δuf(t) := f(x̄N (t), uN(t), t) − f(x̄N (t), ūN (t), t),
ΔuH(t) := 〈pN (t+ hN ), Δuf(t)〉
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we obtain the representation

ΔxN (t+ hN ) −ΔxN (t) = hNΔf(t) = hN

[
Δuf(t) +

∂f

∂x
(x̄N (t), ūN(t), t)ΔxN (t) + ηN (t)

]
,

where the remainder ηN (t) is defined by

ηN (t) :=
(
∂f

∂x
(x̄N (t), uN (t), t) − ∂f

∂x
(x̄N (t), ūN (t), t)

)
ΔxN (t) + o(‖ΔxN (t)‖).

Since ΔxN (t) = 0 for t ≤ τ = τ(N) and (∂f
∂x (x̄N (t), uN (t), t) − ∂f

∂x (x̄N (t), ūN (t), t)) = 0 for all t ∈ TN except
t = τ , the first term in the formula for ηN (t) vanishes, and therefore we arrive at the relationships ηN (t) =
o(‖ΔxN (t)‖) = o(hN ).

This allows us to represent the second sum on the right-hand side of (4.34) as

t1−hN∑
t=t0

〈pN (t+ hN), ΔxN (t+ hN ) −ΔxN (t)〉 = hN

t1−hN∑
t=t0

ΔuH(t)

+ hN

t1−hN∑
t=t0

〈
pN (t+ hN ),

∂f

∂x
(x̄N (t), ūN (t), t)ΔxN (t) + ηN (t)

〉

= hNΔuH(τ) + hN

t1−hN∑
t=t0

〈
pN (t+ hN ),

∂f

∂x
(x̄N (t), ūN (t), t)ΔxN (t)

〉
+ o(hN ). (4.35)

Taking into account that pN(t) satisfies the adjoint system (1.8), we rewrite the first sum on the right-hand side
of (4.34) as

t1−hN∑
t=t0

〈pN (t+ hN ) − pN (t), ΔxN (t)〉 = −hN

t1−hN∑
t=t0

〈∂H
∂x

(pN (t+ hN )x̄N (t), ūN (t), t), ΔxN (t)
〉

= −hN

t1−hN∑
t=t0

〈
pN (t+ hN),

∂f

∂x
(x̄N (t), ūN (t), t)ΔxN (t)

〉
.

It follows from (4.33)–(4.35) that

o(hN ) ≤ 〈pN (t1), ΔxN (t1)〉 = −hNΔuH(τ) + o(hN ),

which can be written in the form
hNΔuH(τ) ≤ o(hN ).

This clearly implies the approximate maximum condition (1.7) at the point t = τ(N). Since τ(N) was chosen
arbitrarily, we justify the approximate maximum condition for all t ∈ TN and thus complete the proof of the
theorem. �

5. Problems with equality constraints

In the concluding section of the paper we show that the Approximate Maximum Principle of Theorem 3.1
does not hold if δ = 0 in problems (PN ), i.e., in the case of unrelaxed equality constraints. The following simple
example illustrates this phenomenon.
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Example 5.1 (violation of the AMP in discrete approximation problems with unrelaxed equality constraints).
Consider a two-dimensional continuous-time problem

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

minimize x(1) subject to
ẋ = u a.e. t ∈ T := [0, 1],
ẏ = v a.e. t ∈ T,

x(0) = y(0) = 0,
(u(t), v(t)) ∈ U :=

{
(0, 0), (−1,

√
2), (−1,−1)

}
a.e. t ∈ T,

y(1) = 0.

The corresponding discrete approximation problems (PN ) defined in Section 1 with δ = 0 are given by

(PN )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize xN (1) subject to
xN (t+ hN ) = xN (t) + hNuN(t), t ∈ TN := {0, hN , . . . , 1 − hN},
yN(t+ hN ) = yN (t) + hNvN (t), t ∈ TN ,

xN (0) = yN (0) = 0,
(uN (t), vN (t)) ∈ U, t ∈ TN ,

yN(1) = 0,

hN =
1
N
, N = 1, 2, . . .

It is easy to see that an optimal control to problem (P ) is

(ū(t), v̄(t)) =

{
(−1,

√
2) for 0 ≤ t ≤ 1/(1 +

√
2),

(−1,−1) for 1/(1 +
√

2) < t ≤ 1.

We can also observe that, due to the incommensurability of the radical
√

2 and the discretization step hN = 1/N ,
the only feasible control for each discrete approximation problem (PN ) satisfying the constraint yN(1) = 0 is
(uN (t), vN (t)) ≡ (0, 0). It remains to show that this control does not satisfy the necessary optimality conditions
of Theorem 3.1.

To proceed, note that the Hamilton–Pontryagin function (1.3) reduces in the this case to

H(p1N , p2N , uN , vN ) = p1NuN + p2NvN for all t ∈ TN , (5.1)

where both p1N and p2N are constants due to the adjoint system (1.6). The endpoint condition (3.3) is written
now as

(p1N (1), p2N (1)) = −∇(x,y)(λ0Nx+ λ1Ny)|(x,y)=(xN(1),yN (1)) = (−λ0N ,−λ1N )

with (λ0,N , λ1N ) satisfying the sign and nontriviality conditions

λ0N ≥ 0 and λ2
0N + λ2

1N = 1 (5.2)

by (3.1). This allows us to rewrite function (5.1) in the form

H(λ0N , λ1N , uN , vN ) = −λ0NuN − λ1NvN .

A simple analysis shows that for any λ0N and λ1N satisfying (5.2) there exists a constant α > 0 such that,
depending on the sign of λ1N , we have{

either H(λ0N , λ1N ,−1,
√

2) > H(λ0N , λ1N , 0, 0) + α
or H(λ0N , λ1N ,−1,−1) > H(λ0N , λ1N , 0, 0) + α,

which contradicts the approximate maximum condition (1.7).

Note finally that this example can be slightly modified to illustrate the failure of the AMP if the equality
constraint yN (1) = 0 in problems (PN ) of Example 5.1 is relaxed to |yN (1)| ≤ δN , where δN ↓ 0 too fast as
N → ∞; cf. the discussions in Remark 3.2.
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