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CONJUGATE-CUT LOCI AND INJECTIVITY DOMAINS ON TWO-SPHERES
OF REVOLUTION ∗, ∗∗, ∗∗∗

Bernard Bonnard1,2, Jean-Baptiste Caillau2 and Gabriel Janin2

Abstract. In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri
Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and
cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2

to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate
the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to
determine the convexity properties of the injectivity domains of such metrics. These properties have
applications in optimal control of space and quantum mechanics, and in optimal transport.
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1. Introduction

On a Riemannian manifold, the cut point along a geodesic γ emanating from q0 is the first point where
it ceases to be minimizing, while the first conjugate point is the first point where it ceases to be minimizing
among the geodesics C1-close to γ. Considering all the geodesics starting from q0 they will form respectively
the cut and the conjugate and cut locus. The structure of the conjugate and cut loci on a real analytic surface
homeomorphic to the sphere is known after the works of Poincaré [21] and Myers [20]: the cut locus is a finite
tree and the extremity of each branch is a cusp point of the conjugate locus. But the explicit computation of the
branches is a very complicated problem [3] and it was proved only recently that the cut locus of any point on
an ellipsoid is a segment and the conjugate locus of a non umbilical point has exactly four cusps [17]. In parallel
the conjugate and cut loci were investigated for a metric g = dϕ2 + m(ϕ)dθ2 on a two-sphere of revolution,
when it is reflective symmetric with respect to the equator m(π − ϕ) = m(ϕ). In particular it was shown that
the cut locus is a single branch if the Gaussian curvature is monotone from the north pole to the equator [23],
which generalizes the ellipsoid study and gives an important relation with curvature. Very recently, this result
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was improved relating the simple structure of the cut locus to the period mapping of the ϕ-variable [8], this
extension being motivated by a family of metrics arising in space mechanics and quantum control.

Indeed besides the geometric interest of such studies, the computation of the cut locus is an important task in
optimal control in the goal of computing the synthesis of the problem which relies on determining the switching
and the cut loci [5] and Riemannian or sub-Riemannian metrics arise through averaging procedures. A first
and important example concerns the orbital transfer between two coplanar orbits using low propulsion [7].
Considering the energy minimization problem and averaging the underlying Hamiltonian with respect to the
longitude leads to the 3D-Hamiltonian:

H =
9n1/3

2
p2
n +

1
2n5/3

[
5(1 − e2)

2
p2
e +

(5 − 4e2)
2e2

p2
θ

]

where n is the mean motion, e the eccentricity of the orbit and θ the angle of the pericenter, p = (pn, pe, pθ) being
the adjoint vector. Setting n = (5r/2)6/5 and e = sinϕ, H is the Hamiltonian associated with the Riemannian
metric

ds2 = dr2 +
r2

c2

(
dϕ2 +

sin2 ϕ

1 − (1 − μ2) sin2 ϕ
dθ2
)

with c =
√

2/5 and μ = 1/
√

5. By homogeneity one can restrict to dr = 0 and this leads to the metric:
dϕ2 +m(ϕ)dθ2,

m(ϕ) =
sin2 ϕ

1 − (1 − μ2) sin2 ϕ

describing the evolution of the ϕ-variable. As e belongs to [0, 1], such a metric is defined in the north hemisphere
but can be extended analytically to the whole sphere. It is a deformation of the round sphere through the
homotopy

mλ(ϕ) =
sin2 ϕ

1 − λ sin2 ϕ

and the case λ = 1 defines an almost-Riemannian metric with a polar singularity at the equator. If we suppose
that the thrust is oriented only in the tangential direction, the Hamiltonian becomes

H =
9n1/3

2
p2
n +

1
2n5/3

[
4(1 − e2)3/2

1 +
√

1 − e2
p2
e +

4(1 − e2)
1 +

√
1 − e2

p2
θ

e2

]

and again using n = (5r/2)6/5 but the transformation e = sinϕ
√

1 + cos2 ϕ leads to the metric

ds2 = dr2 +
r2

c2t

[
dϕ2 +

sin2 ϕ(2 − sin2 ϕ)2

4 cos4 ϕ
dθ2
]

where ct = 2/5 < c < 1. As before, restricting to S2 leads to the metric dϕ2 +m(ϕ)dθ2 where

m(ϕ) =
sin2 ϕ(2 − sin2 ϕ)2

4 cos4 ϕ
·

This corresponds in the case λ = 1 to the deformation of the round sphere using the homotopy mλ(ϕ) =
XR(λX), X = sin2 ϕ and

R(X) =
(1 −X/2)2

(1 −X)2
=

1
4

(
1 +

2
1 −X

+
1

(1 −X)2

)
·

In this case the metric is not smooth for λ = 1, since the equator is a pole of order 2. This singularity is not
removable since the Gauss curvature G→ −∞ when e→ 1−.
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A first task in this article is to parameterize the geodesics for a class of deformations of the round sphere, one
consequence being the computation of the period, in order to evaluate the conjugate and cut loci in our case
studies. The complexity of the computations is related to the transcendance of the problem and the category
of functions needed: harmonic, elliptic or higher. Another motivation is to analyze the convexity properties of
the injectivity domain of a point q0 defined by

I(q0) = {tp0, t ∈ [0, tcut(q0, p0)], H(q0, p0) = 1/2}
where tcut is the cut time along the geodesic emanating from q0 with adjoint vector p0. The convexity issue
plays an important role in the regularity theory of optimal transport maps on Riemannian manifolds (see the
monograph [25] for more on optimal transportation) and for surfaces, convexity of all injectivity domains holds
for any small enough C4-perturbation of the round metric on the sphere [15]. This property is analyzed in details
in our cases that are one parameter smooth deformations of the round sphere. In particular our computations
allow to analyze the relations between the Gauss curvature, the convexity of the period mapping and the
convexity of the injectivity domains.

The organization of this article is the following. In Section 2, we introduce in a Hamiltonian setting the
concepts to analyze Riemannian metrics on two-spheres of revolution and we classify the complexity of the
computations. We recall the results from [8] relating the computations of the conjugate and cut loci in the
reflectional symmetric case with the convexity of the period mapping. Section 3 presents the main results of
this article concerning the structure of the conjugate or cut loci, and convexity of the injectivity domains.

2. Almost-Riemannian metrics on two-spheres of revolution

The objective of this section is to introduce the concepts and to recall the properties of the metrics on
two-spheres of revolution. The main references are [6, 8, 22].

2.1. Preliminaries

We shall consider Riemannian metrics on the two-spheres of revolution which can be put in the polar form
g = dϕ2 +m(ϕ)dθ2 which is the standard covering excluding the poles; ϕ ∈ (0, π) is the angle along a meridian,
ϕ = 0 being the north pole and θ is the angle of revolution extended to θ ∈ R. Many of such metrics can be
constructed by restricting the Euclidian metric to a surface of revolution diffeomorphic to S2, an example being
the round sphere where m(ϕ) = sin2 ϕ. In all this article we shall assume that g is reflectionally symmetric with
respect to the equator: m(π − ϕ) = m(ϕ). With applications in mind, our analysis will be devoted to the case
m(ϕ) = XR(X), X = sin2 ϕ and R(0) = 1. It can be interpreted as a deformation of the round sphere using the
homotopy mλ(ϕ) = XR(λX). We shall moreover assume that m′(ϕ) �= 0, ϕ ∈ (0, π/2). The Gauss curvature is
given by

G = − 1√
m

∂2√m
∂ϕ2

and we shall restrict to the case when the Gauss curvature admits an extremum on the equator. In our study
the Riemannian situation will be extended to the almost-Riemannian case where the mapping has a pole at the
equator. It will be called the Grušin case if the pole is of order one and the tangential case if the pole is of order
two (see [1, 11] for the analysis of such metrics).

2.2. Properties of the geodesic and integration

Reference [4] is a general introduction to the metrics on surfaces of revolution. We use below the Hamiltonian
formalism that withstands such generalizations as almost-Riemannian metrics. A remarkable property is the
simplicity of the geodesic flow. Introducing ψ := π/2 − ϕ, the Hamiltonian writes

H =
1
2

(
p2
ψ +

p2
θ

m(π/2 − ψ)

)
·
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Parameterizing by arc length (H = 1/2), this leads to analyze the mechanical system(
dψ
dt

)2

+ V (ψ) = 1, V (ψ) =
p2
θ

m(π/2 − ψ)
(2.1)

where pθ is a constant corresponding to the Clairaut relation and where V (ψ) is a one-parameter family of
potentials. Equation (2.1) is called the characteristic equation. To integrate we proceed as follows. Consider
first the Riemannian case. If pθ = 0, the geodesic curves are meridian circles. If pθ �= 0, a solution can be a
parallel but since m′(ϕ) �= 0 for ϕ ∈ (0, π/2), the only parallel solution is the equator. All the other solutions
are identical: The potential increases from V (0) to +∞ and cutting by H = 1/2 defines a ψ-periodic solution
which is symmetric with respect to the equator and oscillates periodically between −ψ+ < 0 < ψ+; the period
T and the amplitude both depend only upon pθ. In particular, each solution but the equator cuts the equator
and is entirely determined by the branch evaluated on the quarter of period T/4 where ψ(t) ∈ [0, ψ+]. This
branch is solution of the differential equation

dψ
dt

=
√

1 − V (ψ)

and the period is given by the integral
T

4
=
∫ ψ+

0

dψ√
1 − V (ψ)

(2.2)

which depends on pθ ∈ (0,
√
m(π/2)]. The application pθ �→ T (pθ) is the period mapping. The same is true

in the limit case where m has a pole on the equator, m(π/2) = +∞, and every geodesic hits the equator
perpendicularly.

The geodesic flow is Liouville integrable and the transcendance of the problem is characterized by the tran-
scendance of the period. More precisely, introducing X = sin2 ψ where ψ ∈ (0, π/2), one gets:∫

dψ√
1 − V (ψ)

=
∫

dX
2
√
X(1 −X)(1 − V (X))

·

We have the following classification.

(i) Harmonic case. After simplification the above integral reduces to an integral of the form:∫
R(X)dX√
P (X)

(2.3)

where P (X) is a polynomial of degree two, with a trivial real root X = 0 and R(X) is a rational mapping.
(ii) Elliptic case. The previous integral now reduces to the same form (2.3) but P (X) is a polynomial of degree

four, with a trivial real root X = 0 and R(X) is a rational mapping.

A standard process from mechanics consists in parameterizing the solutions with respect to the ψ-variable.
The algorithm is as follows. One can assume ψ(0) = 0 and ψ̇(0) > 0; this leads to start with the ascending
branch ψ(t) ∈ [0, ψ+] where ψ̇(t) =

√
1 − V (ψ). On the interval [ψ+,−ψ+] one uses the descending branch.

Fixing θ(0) = 0 using the symmetry of revolution, the successive intersections of θ(t) with the equator are
denoted Δθ, 2Δθ, and so on. By symmetry one can assume that they are even. Using the relations

dθ
dt

=
∂H

∂pθ
=

pθ
m(ϕ)

=
V (ψ)
pθ

,

dψ
dt

= ±
√

1 − V (ψ), dt = ± dψ√
1 − V (ψ)

,
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one sees that

θ(t) = (2n− 1)Δθ +
∫ ψ(t)

0

V (ψ)
pθ

(
− dψ√

1 − V (ψ)

)

= (2n− 1)Δθ +
∫ 0

ψ(t)

V (ψ)dψ
pθ
√

1 − V (ψ)
,

where n ∈ N counts the number of intersections with the equator. This computation is also valid in the singular
case and this leads to the next definition.

Definition 2.1. The first return mapping to the equator is the smooth mapping Δθ : pθ ∈ (0,
√
m(π/2) ) �→

Δθ(pθ).

2.3. The optimality problem

In the previous sections, we have shown that, under the assumption that m′(ϕ) �= 0 for ϕ ∈ (0, π/2), the
geodesic flow is especially simple since we have roughly one type of trajectories. For the optimality problem,
the situation is more complex since according to Riemannian geometry we have to compute the intersections of
geodesics starting from a given point. This leads to introduce the following subset of the cut locus of a given
point. The separating locus L(q0) of q0 is the set of points where two distinct optimal geodesics emanating from
q0 intersect with same length. To compute this locus, the assumption m(π − ϕ) = m(ϕ) is crucial. Because of
symmetries, the result below is clear.

Proposition 2.2. Given q0 = (θ(0) = 0, ϕ(0)) and pθ �= 0, if ϕ̇(0) = pϕ(0) �= 0, there exist two distinct
geodesics intersecting with equal length on the antipodal parallel ϕ = π−ϕ(0) and they are associated respectively
with (pθ,±ϕ̇(0)). Similarly, given q0 = (θ(0) = 0, ϕ(0)) and pθ �= 0, there exist two distinct geodesics associated
respectively with ±pθ and the same ϕ̇(0) which intersect with equal length on the opposite meridian θ = π.

We recall the results of [8]. In order to compute the cut locus the important point is to control the intersection
of the geodesics in the north hemisphere.

Theorem 2.3. Consider a metric on a two-sphere of revolution dϕ2+m(ϕ)dθ2, with m′(ϕ) nonzero on (0, π/2),
m(π − ϕ) = m(ϕ). If the first return mapping to the equator is monotone non increasing, the cut locus from a
point different from a pole is a subset of the antipodal parallel.

The computation of the conjugate locus of a point different from a pole is a more complicated task. It is
based on the work of [22] which uses the fact that the Jacobi equation is integrable and in particular the Jacobi
fields can be estimated. The following proposition holds.

Proposition 2.4. Assume that the first return mapping to the equator is monotone non increasing, then the
first conjugate time is given by

∂θ

∂pθ
(ϕ, pθ) = 0

where θ is parameterized by ϕ according to

θ(ϕ, pθ) = Δθ(pθ) −
∫ ψ

ψ+

V (ψ)dψ
pθ
√

1 − V (ψ)

(the first conjugate time being between T/2 and T/2 + T/4).

Moreover,
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Theorem 2.5. Assume that the first return mapping is such that Δθ′(pθ) < 0 ≤ Δθ′′(pθ) on (0,m(π/2)) then:
(i) The cut locus of a point not a pole is a segment [π − α, π + α] of the antipodal parallel; (ii) The conjugate
locus of a point not a pole has exactly four cusps.

To conclude, a simple relation links the return mapping to the period mapping [8].

Lemma 2.6.
Δθ′(pθ)

2
=
T ′(pθ)
4pθ

·

A remarkable feature is that most of the analysis in the Riemannian case can be generalized to the almost-
Riemannian one up to a singularity resolution of the problem near the equator. We have the following two
results.

Theorem 2.7 ([6]). Consider a singular metric g = dϕ2 + m(ϕ)dθ2, where m(π − ϕ) = m(ϕ), m′(ϕ) �= 0,
ϕ ∈ (0, π/2), with a pole located at the equator. Assume that the first return to the equator is monotone non
increasing, then the cut loci are antipodal subarcs. The cut locus of a pole is the opposite pole, is equal to the
equator minus the point for an equatorial point and to a proper closed subarc of the antipodal parallel otherwise.

Theorem 2.8 ([6]). Consider a singular metric as above and assume that the first return mapping is such that
Δθ′ < 0 ≤ Δθ′′. Then the conjugate loci are reduced to the opposite pole for poles, a double-heart-shaped set
with four meridional cusps for equatorial points and an astroid-shaped set with two meridional and to equatorial
cusps otherwise.

From our analysis and [2] we deduce the following proposition.

Proposition 2.9. Consider a Riemannian metric g = dϕ2 + m(ϕ)dθ2, m(π − ϕ) = m(ϕ), m′(ϕ) �= 0, ϕ ∈
(0, π/2) and assume that the first return mapping is monotone non increasing. Then for a point not a pole
the distance to the cut locus is the length of the geodesic starting tangentially to the parallel and reaching the
antipodal parallel tangentially. Moreover the distance function to the cut locus is monotone non decreasing from
the conjugate endpoint to the extremity of the antipodal segment where θ = π.

As a subset of the tangent bundle, the injectivity domain is defined as I(q0) = {tv, t ∈ [0, tcut(q0, v)], |v| = 1}
where tcut is the cut time. It can also be computed as a subset of the cotangent bundle: I(q0) = {tp0, t ∈
[0, tcut(q0, p0)], H(q0, p0) = 1/2}. Consider the case of a Riemannian metric g = dϕ2 + m(ϕ)dθ2, symmetric
with respect to the equator, m′(ϕ) �= 0 on (0, π/2). Assume that the first return mapping to the equator is
monotone non increasing, then according to our analysis, the cut time along any geodesic excluding the equator
is given by tcut(q0, p0) = T (pθ)/2 where T is the period mapping. Given ϕ(0), θ(0) can be set to zero due to
the symmetry of revolution, so the level set H = 1/2 is parameterized according to

pθ = cosα
√
m0, pϕ = sinα, α ∈ [0, 2π].

Because of symmetries, convexity has only to be checked on a quarter of the curve α ∈ [0, π/2] and the boundary
of the injectivity domain on the cotangent space is:

α �→ T (pθ)
2

(pθ, pϕ) := (c1(α), c2(α)).

It will form, provided T is smooth (which is a consequence of the smoothness of the solutions of differential
equation with respect to parameters), a smooth closed curve. According to [24] the convexity property of the
injectivity domain is equivalent to a constant sign condition of the curvature given by:

K =
c′1c

′′
2 − c′′1c

′
2

(c′21 + c′22 )3/2
· (2.4)
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Figure 1. Gauss curvature: variation represented for various λ ∈ [0, 1).

In our computation, one shall parameterize the boundary by pθ, restricting pθ to (0,
√
m0); derivatives in (2.4)

will be taken with respect to pθ (or p2
θ). An advantage of this parameterization is to extend the computation to

the singular case, where at the equator m0 = +∞. In this case, one restricts pθ to the convex set (0,+∞) and
the convexity of the injectivity domain will correspond to the convexity with pθ ∈ (0,+∞).

3. Main results

According to the previous section our program is to complete the computations of curvature, period mapping
and geodesic curves to compute the cut and conjugate loci and to discuss the convexity of the injectivity
domains.

3.1. The harmonic case mλ(ϕ) = sin2 ϕ/(1 − λ sin2 ϕ), λ ∈ [0, 1]

As recalled in the introduction, it is associated with coplanar orbit transfers (with two controls) when λ = 4/5
and in the limit case λ = 1 it admits a Grušin type singularity at the equator. Note that it was also independently
studied in [14] as a perturbation of the round spheres where the geodesic curves are given by elementary
functions. The Gauss curvature is (see Fig. 1)

Kλ =
1

(1 − λ sin2 ϕ)2
(
(1 − λ) − 2λ cos2 ϕ

)
,

and is strictly negative in the limit case λ = 1. The derivative is given by:

K ′
λ =

4λ sinϕ cosϕ
(1 − λ sin2 ϕ)3

(
2(1 − λ) − λ cos2 ϕ

)
.

For λ ∈ (0, 1) it vanishes at the north pole and the equator, Kλ is monotone for λ ∈ (0, 2/3) while a local
extremum appears when 2 = 3λ.

We are in the harmonic case and the characteristic equation reads(
dψ
dt

)2

=
cos2 ψ − p2

θ(1 − λ cos2 ψ)
cos2 ψ

·

We denote Z+ and Z− the roots of
1 + p2

θ(λ− 1) = Z2(1 + λp2
θ)
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where Z = sinψ and the period is given by

T

4
=
∫ Z+

0

dZ√
1 + p2

θ(λ− 1) − Z2(1 + λp2
θ)
·

Normalizing the amplitude of the oscillation using Z = Z+Y one has

T

4
=
∫ 1

0

dY
(1 + λp2

θ)1/2
√

1 − Y 2
=

1√
1 + λp2

θ

[asinY ]10.

In particular, one deduces the following [13].

Lemma 3.1. The period is given by

T (pθ) =
2π√

1 + λp2
θ

·

The ψ-variable in the normalized coordinate is given by

asinY (t) = (1 + λp2
θ)

1/2t.

This defines a renormalized time s = (1 + λp2
θ)

1/2t. The θ-variable is integrated thanks to the differential
equation:

dθ
dt

= pθ
1 − λ(1 − sin2 ψ)

1 − sin2 ψ
·

With the original parameterization this leads to

θ(t) =
∫

pθdt
cos2 ψ

− λpθt

and finally to

θ(t) =
pθ√

1 + λp2
θ

√
1 − Z2

+

atan
(√

1 − Z2
+ tan

(
t
√

1 + λp2
θ

))
− λpθt.

From the period computation we deduce the following.

Theorem 3.2. (i) For 0 < λ ≤ 1 the first return mapping satisfies Δθ′ < 0 ≤ Δθ′′. (ii) For 0 ≤ λ ≤ 1, all the
injectivity domains are convex.

Proof. The period is T (pθ) = 2π(1 + λp2
θ)

−1/2 so the first assertion is clear. Let S = (1 + p2
θ)

−1/2. Computing,
one obtains:

S′ = −λpθS3, S′′ = −λS3(1 − 3λS2p2
θ)

−1/2.

To compute the boundary of the injectivity domain one introduces the mapping

pθ �→ (Spθ, Spϕ)

and we compute the curvature

K =
c′1c

′′
2 − c′′1c

′
2

(c′21 + c′22 )3/2
·
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Denoting m0 = m(ϕ(0)), one has

c′1 = S3,

c′′1 = −3λpθS5,

p′ϕ = − pθ
pϕm0

,

p′′ϕ = − 1
p3
ϕm0

,

c′2 = −Spθ
(
λS2pϕ +

1
pϕm0

)
,

c′′2 = S′′pϕ + 2S′p′ϕ + Sp′′ϕ.

From the above computations one deduces

K = −S
(
λS2

pϕ
+

1
m0p3

ϕ

)(
S4 + p2

θ

(
λS2pϕ +

1
pϕm0

)2
)−3/2

and K < 0 for pθ ∈ (0,
√
m0). When pθ = 0, (c′1, c

′
2) = (1, 0) and when pθ → √

m0, (c′1, c
′
2) →

((1 + λm0)−1/2,−∞). This proves the second assertion. �

Proposition 3.3.

(i) In the first quadrant, the boundary of the injectivity domain in polar coordinates r2 = c21 + c22, tan τ = c2/c1
is given by the oval

r2 =
m0

m0 + (1 +m0(λ − 1)) cos2 τ
·

(ii) If q0 is on the equator, the curvature is constant and negative and does not depend on λ (K = −1).
(iii) The limit of the curvature when pθ → 0 and pθ → m

1/2
0 does not depend on λ.

Remark 3.4. In the above computations the crucial point is the relation between the period mapping and its
derivative S′ = −λpθS3. From the experimental point of view, observe the important variation of the Gauss
curvature in Figure 1 (non-monotonicity prevents to apply the results of [23] on the structure of cut and
conjugate loci), but the constancy of the curvature of the injectivity domain when ϕ0 = π/2.

3.2. The elliptic case

The remaining computations will be done in elliptic cases using Jacobi or Weierstraß elliptic functions (see [16,19]
for general references). Useful formulas are recalled in the appendix. The ellipsoid of revolution is generated by
the curve

y = sinϕ, z = ε cosϕ

where 0 < ε < 1 corresponds to the oblate case while ε > 1 is the prolate one. The restriction of the three
dimensional Euclidian metric to the surface is

g = F1(ϕ)dϕ2 + F2(ϕ)dθ2

where F1 = cos2 ϕ+ ε2 sinϕ, F2 = sin2 ϕ, the case ε = 1 being the round sphere. The metric can be written in
the polar form thanks to

dΦ = F
1/2
1 (ϕ)dϕ
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which leads to introduce the elliptic function of the second kind, Φ = E(ϕ, k̃), with modulus k̃2 = 1 − ε2. We
shall compute the period mapping in the (ψ, θ)-coordinates, ψ = π/2 − ϕ. The Hamiltonian is

H =
1
2

(
p2
ϕ

F1(ϕ)
+

p2
θ

F2(ϕ)

)

and on H = 1/2, the characteristic equation is

dψ
dt

=
(cos2 ψ − p2

θ)
1/2

cosψ(sin2 ψ + ε2 cos2 ψ)1/2
·

The roots of V = 1 in (2.1) are given by 1 − p2
θ = sin2 ψ1. Making the usual rescaling Y = sinψ1Z, where

Y = sinψ, the characteristic equation

(Y 2 + ε2(1 − Y 2))1/2dY(
sin2 ψ1

(
1 − Y 2/ sin2 ψ1

))1/2 = dt

becomes
(ε2 + Z2 sin2 ψ2

1(1 − ε2))1/2dZ
(1 − Z2)1/2

= dt.

Hence the formula for the period mapping is

T

4
=
∫ 1

0

(ε2 + Z2 sin2 ψ1(1 − ε2))1/2dZ
(1 − Z2)1/2

·

Introducing

α :=
√
ε2 + sin2 ψ1(1 − ε2), k2 :=

sin2 ψ1(1 − ε2)
α2

, k′2 :=
ε2

α2
,

we get

T = 4
∫ 1

0

α(k′2 + k2Z2)dZ√
(1 − Z2)(k′2 + k2Z2)

,

= 4α

[
k2K(k) + k2

∫ 1

0

Z2dZ√
(1 − Z2)(k′2 + k2Z2)

]
,

= 4αk′2K(k) + 4αk2

∫ K(k)

0

cn 2u du,

with Z = cnu. Using [19],
T = 4α(k′2K(k) + (E(k) − k′2K(k)) = 4αE(k).

Summarizing,

Lemma 3.5. The period maping is T = 4αE(k), α :=
√
ε2 + sin2 ψ1(1 − ε2), sin2 ψ1 = 1−p2

θ and the modulus
is k2 = 1 − ε2/α2.

Theorem 3.6. The injectivity domain on an oblate ellipsoid of revolution is convex for any point if and only
if the ratio ε between the minor and the major axis is greater or equal to 1/

√
3.
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Before giving a detailed proof of this result (announced in [9]), we use the quadrature with Jacobi functions
of Lemma 3.5 to interpretate the 1/

√
3 ratio.

The period mapping is T = 4αE(k) and the derivatives of c1(pθ) = pθT , c2(pθ) = pϕT can be computed
using the first and second order complete first integrals K and E. One has

dα
dpθ

=
pθ(ε2 − 1)

α
,

dk
dpθ

= −ε
2pθ

√
1 − ε2

α3
√

1 − p2
θ

,

from which we deduce:

1
4

dc1
dpθ

= αE + p2
θ

E(ε2 − 1)
α

− ε2p2
θ(E −K)

√
1 − ε2

kα2
√

1 − p2
θ

,

1
4

d2c1
dp2

θ

=
pθ

α(1 − p2
θ)2

(K(3ε2 − p2
θε

2) − E(2ε2p4
θ − 4ε2p2

θ − 2p4
θ + 5p2

θ − 3).

In particular if pθ → 0, then α→ 1, k2 → 1 − ε2 = k2
0 and

1
4

dc1
dpθ

→ E(k0) > 0.

For an equatorial point ϕ(0) = π/2, when pθ → 1, sin2 ψ1 = 1−p2
θ → 0 and the modulus k2 = sin2 ψ1(1−ε2)/α2

tends to zero. From the asymptotics recalled in the appendix, one deduces E → π/2, E −K ∼ −πk2/4. Hence

αE → επ

2
,

p2
θ

E

α
(ε2 − 1) → (ε2 − 1)π

2ε
,

−ε
2p2
θ(E −K)

√
1 − ε2

kα2
√

1 − p2
θ

→ (1 − ε2)π
4ε

,

so
1
4

dc1
dpθ

→ (3ε2 − 1)π
4ε

·

The right-hand side vanishes for ε = 1/
√

3, which is interpretated as follows: for ε smaller and close enough to
1/

√
3, the injectivity domain in the quadrant admits a vertical tangent for ϕ(0) close enough from π/2; since

the boundary is smooth by symmetry, the injectivity domains are not convex. A numerical check suggests that
the curvature of the boundary curve (c1, c2) for ϕ(0) ∈ [0, π/2] and ε < 1/

√
3 is negative (see Figs. 2 and 3).

We now prove Theorem 3.6, completing the proof sketched in [9]. The proof relies on the use of
Weierstraß functions (instead of Jacobi) whose asymptotics provide simple estimates. The curvature condition
(2.4) is expressed as a sign condition on the quantity (with ′ = ∂/∂pθ)

T (T + pθT
′) + (X0 − p2

θ)(2T
′2 − TT ′′) ≥ 0, pθ ∈ [0,

√
X0],

where X = sin2 ϕ (and X0 = sin2 ϕ0). The period T (pθ, λ) of the ϕ coordinate is computed using the quadrature
in the form of the algebraic curve (X = sin2 ϕ)(

Ẋ(λ−X)√
λ

)2

= 4(X − p2
θ)(X − 1)(X − λ).

Setting y = 1 − p2
θ and x = λ− 1, the invariants are

g2(x, y) =
4
3
(x2 + xy + y2), g3(x, y) =

4
27

(2x3 + 3x2y − 3xy2 − 2y3),
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Figure 2. Boundary (on the left) (c1, c2) of the injectivity domain displayed for the set
{c1 ≥ 0, c2 ≥ 0} in the case ε = 0.8 > 1/

√
3 as well as for several values of ϕ0 ∈ [0, π/2] and its

curvature K (on the right), which remains negative, parameterized by pθ.
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Figure 3. Boundary (on the left) (c1, c2) of the injectivity domain displayed for the set {c1 ≥
0, c2 ≥ 0} in the limit case ε = 1/

√
3 as well as for several values of ϕ0 ∈ [0, π/2] and its

curvature K (on the right), which remains negative, parameterized by pθ.

The period is T = 4τ/(3
√
x+ 1) with

τ := (2x+ y)ω + 3η

where ω is the real half-period of the Weierstraß function associated with (g2, g3), and η = ζ(ω). Differentiation
with respect to x is obtained through the following rules (see [16] pp. 307–308 for the derivatives of periods or
quasi-periods with respect to the invariants)

δx
∂ω

∂x
= −Axω −Bxη, δx

∂η

∂x
= Cxω +Axη,

where
δx := 18x(x+ y), Ax := 3(2x+ y), Bx := 9, Cx := x2 + xy + y2.

Symmetrically,

δy
∂ω

∂y
= −Ayω −Byη, δy

∂η

∂y
= Cyω +Ayη,
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where
δy := 18y(x+ y), Ay := 3(x+ 2y), By := −9, Cy := −(x2 + xy + y2).

Proposition 3.7. The first and second order derivatives of τ with respect to (positive) pθ are

τ ′ = −
√

1 − y

y
(−(x− y)ω + 3η) ,

τ ′′ = − (−2x2 + x(x − 2)y + (2x+ 1)y2)ω + 3(2x− (x− 1)y)η
y2(x+ y)

·

Define
α(x, y) :=

1
y2

(
χ(x, y) − x

3
− y

6

)
, χ :=

η

ω
·

So as to estimate the curvature sign, one essentially needs to compute directional limits of α at the two degen-
eracies (x, y) = (0, 0) and (∞, 0).

Lemma 3.8. For positive x and y, α(x, y) > −1/(2y).

Proof. It is geometrically clear that the period T (hence τ) must be strictly decreasing with pθ > 0 on an ellipsoid
of revolution with prescribed oblateness (x is fixed). Then, according to Proposition 3.7, −(x − y) + 3χ > 0,
hence the result on α. �

Remark 3.9. When x → 0 (flat ellipsoid), χ degenerates to the rational value limx=0 3g3/(2g2) = −y/3
(see [16], p. 314) so one gets α(0, y) = −1/(2y) for positive y.

Lemma 3.10. For positive x, α(x, 0) = −1/(16x).

Proof. When y → 0 (equator), χ degenerates to limy=0 3g3/(2g2) = x/3. The differentiation rules imply that

δy
∂χ

∂y
= Cy + 2Ayχ+Byχ

2

so, iterating, one obtains
∂χ

∂y
(x, 0) =

1
6
,

∂2χ

∂y2
(x, 0) = − 1

8x
,

whence the directional limit for α (order two Taylor–Young). �

One can then devise a global coarse estimate of xα, for instance the following.

Corollary 3.11. For positive x and y, xα(x, y) > −1/15.

Remark 3.12. One actually has xα(x, y) > −1/16 for positive x and y.

Lemma 3.13. For positive y, xα(x, y) → −1/16, x→ ∞.

Proof. Set ξ = 1/x. When ξ → 0 (round case3), ξχ degenerates to the limit at ξ = 0 of

ξ
3g3
2g2

(1/ξ, y) =
2 + 3yξ − 3y2ξ2 − 2y3ξ3

6(1 + yξ + y2ξ2)

3The degeneracy x → ∞ towards the round case is interpretated as follows: All geodesics tend to meridians, so the limit has to
be independent of y = 1 − p2

θ, and the computation of α(x, 0) in Lemma 3.10 for the equator already gives the result.
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so (ξχ)(0, y) = 1/3. Computing as in Lemma 3.10, one obtains

∂(ξχ)
∂ξ

(0, y) =
y

6
,

∂2(ξχ)
∂ξ2

(0, y) = −y
2

8
,

whence the directional limit for
α

ξ
=

1
ξ2y2

(
ξχ− 1

3
− y

6
ξ

)
. �

A global coarse estimate of (x+ 1)α is for instance as follows.

Corollary 3.14. For positive x and y, (x+ 1)α(x, y) < −1/17 < 0.

Remark 3.15. One actually has (x + 1)α(x, y) < −1/16 for positive x and y.

Proposition 3.16. When x ∈ (0, 1/2), the curvature for ϕ0 = π/2 changes sign.

Proof. For X0 = sin2 ϕ0 = 1, up to some positive factor the curvature reads

κ = τ(τ + pθτ
′) + y(2τ ′2 − ττ ′′) ≥ 0.

As

τ + pθτ
′ = 3ω

(
(x− 1

2
) + (1 − α)y + 2αy2

)
,

we see using Lemma 3.10 that this term has a negative limit as y → 0 since

lim
y=0

ω = lim
y=0

π

3

√
g2
2g3

=
π

2
√
x
> 0.

Moreover,

τ ′ = −3ω
2

√
1 − y (1 + 2αy)

and
τ ′′ = − 3ω

2(x+ y)
(1 + (1 + 4α)x+ 2α(1 − x)y) ,

are both well defined for y = 0 so κ has the sign of x− 1/2 and is negative. Conversely, when y = 1, τ ′ vanishes
and κ = τ(τ − τ ′′) with

τ − τ ′′|y=1 = ω ((x+ 2) + 6χ) > 3ωx > 0

by virtue of Lemma 3.8. Hence the change of sign. �

Proposition 3.17. When x ≥ 1/2, τ ′′ ≥ 0.

Proof. Write as in the previous proof

τ ′′ = − 3ω
2(x+ y)

(1 + (1 + 4α)x+ 2α(1 − x)y) ,

and notice that, using Corollary 3.11, the term in the brackets is bounded from below according to

(1 + x) + 2αx
(

2 + y(
1
x
− 1)

)
︸ ︷︷ ︸

≥0

> (1 + x) − 2
15

(
2 + y(

1
x
− 1)

)
≥ 11

10

for x ≥ 1/2. �



CONJUGATE-CUT LOCI AND INJECTIVITY DOMAINS ON TWO-SPHERES OF REVOLUTION 547

0 0.5 1 1.5 2 2.5 3
10

5

0

5

10

15

G

Figure 4. Gauss curvature: variation for different values of λ ∈ [0, 1] (compare with Fig. 1).

Proposition 3.18. When x ≥ 1/2, τ + pθτ
′ � 0.

Proof. Write as in the proof of Proposition 3.16

τ + pθτ
′ = 3ω

((
x− 1

2

)
+ (1 − α)y + 2αy2

)
,

and notice that, using successively Lemma 3.8 and Corollary 3.14,

(1 − α) + 2αy ≥ −α > 0. �

Proof of Theorem 3.6. When the ratio is less than 1/
√

3, that is when x < 1/2, Proposition 3.16 shows that
convexity does not hold for ϕ0 = π/2. Conversely, when x ≥ 1/2, as τ ′′ ≤ 0 according to Proposition 3.17,
nonnegativeness of

τ(τ + pθτ
′) + (X0 − p2

θ)(2τ
′2 − ττ ′′)

holds as soon as τ + pθτ
′ ≥ 0, which is Proposition 3.18. �

We consider now the case of the deformation

mλ(ϕ) =
sin2 ϕ

(1 − λ sin2 ϕ)2

which is a simplification of the situation corresponding to the orbital transfer where the thrust is oriented only
in the tangential direction analyzed in the last section. If λ = 1, the equator is a pole of order two, but the
period mapping can be evaluated with an integral of the first kind only.

Lemma 3.19. The Gauss curvature is given by (see Fig. 4)

Kλ =
1 − 6λ cos2 ϕ− λ2 sin2 ϕ(1 + cos2 ϕ)

(1 − λ sin2 ϕ)2
·

One sets again ψ := π/2 − ϕ and we get the characteristic equation(
dψ
dt

)2

= −p
2
θλ

4 cos4 ψ + cos2 ψ(1 + 2λp2
θ) − p2

θ

cos2 ψ
·
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The equation V = 1 has two real roots, X1, X2, whose product is 1/λ2:

X1 := cos2 ψ1 =
(1 + 2λp2

θ) −
√

1 + 4λp2
θ

2p2
θλ

2
,

X2 :=
(1 + 2λp2

θ) +
√

1 + 4λp2
θ

2p2
θλ

2
·

We set Y = sinψ, hence X = 1 − Y 2 and we get the two roots:

sin2 ψ1 =
2p2
θλ

2 − (1 + 2λp2
θ) +

√
1 + 4λp2

θ

2p2
θλ

2
,

sin2 ψ2 =
2p2
θλ

2 − (1 + 2λp2
θ) −

√
1 + 4λp2

θ

2p2
θλ

2
< 0.

Therefore, (
dψ
dt

)2

=
p2
θλ

2((sin2 ψ1 − sin2 ψ)(sin2 ψ − sin2 ψ2))1/2

cos2 ψ
·

We integrate with the ascending branch and making the rescaling Y = sinψ1Z, we have:

dZ

pθλ
√

(1 − Z2)(sin2 ψ1Z2 − sin2 ψ2)
= dt.

The period mapping is given by:

T

4
=
∫ 1

0

dZ
pθλ(sin2 ψ1 − sin2 ψ2)1/2

√
(1 − Z2)(k2Z2 + k′2)

where

k2 :=
2p2
θλ

2 − (1 + 2λp2
θ) +

√
1 + 4λp2

θ

2
√

1 + 4λp2
θ

and k2 + k′2 = 1. We deduce

Proposition 3.20. The period mapping is given by T = 4K(k)/α, where α = (1+4λp2
θ)

1/4 and the modulus is

k2 =
2p2
θλ

2 − (1 + 2λp2
θ) + α2

2α2
·

Remark 3.21. When pθ → 0, then k2 → 0. When λ = 1 and pθ → √
m(π/2) = +∞, k2 → 1/2. This second

estimate is the invariant associated with the pole of order 2 at the equator, computed in the tangential case [11].

The Z-variable is
Z(t) = −cn (K(k) + αt, k)

which leads to the parameterization of ϕ associated with the ascending branch. The θ-variable is found using:

dθ
dt

= λ(λ− 2) − λ2 sin2 ψ1Z
2 +

1
1 − sin2 ψ1Z2

·

Computing using [19] and the elliptic integral of the third kind

Λ(u, a, k) :=
∫ u

0

dv
1 − a2sn 2v

,

one gets the following (see [13] for a more compact form using Weierstraß functions).
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Figure 5. The first and second derivatives of the return mapping with respect to the parameter
pθ are respectively displayed on the left hand side and on the right hand side for different values
of λ, illustrating the fact that Δθ′ < 0 < Δθ′′ (λ = 0.1 solid line, λ = 0.5 dash-dot line, λ = 0.9
dotted line).

Proposition 3.22. For the ascending branch, with ϕ(0) = π/2 and θ(0) = 0, one has:

ϕ(t) =
π

2
− asin (− sinψ1cn (K + αt, k)),

θ(t) = θ1(t) + θ2(t) + θ3(t),

where α := (1 + 4λp2
θ)

1/4 and

θ1(t) := λ(λ − 2)t,

θ2(t) := −λ2 sin2 ψ1

(
−k

′2

k2
t+

1
αk2

(E(K + αt, k) − E)
)
,

θ3(t) :=
1

α cos2 ψ1

[
Λ

(
K + αt, i

sinψ1

cosψ1
, k

)
− Λ

(
K, i

sinψ1

cosψ1
, k

)]
.

Elliptic integrals of the third kind are necessary to compute the θ-variable. Thanks to the property that the
period mapping is a reparameterization of K(k), one gets estimates of the derivatives which are necessary to
conclude about the convexity properties of the first return mapping (see Fig. 5) and the injectivity domains. To
compute injectivity domains, one introduces S := K(k)/α and we denote c1 := Spθ, c2 := Spϕ. The curvature

K =
c′1c

′′
2 − c′′1c

′
2

(c′21 + c′22 )3/2

can be computed using formal computations and the derivative of K and E with respect to the modulus [19].
One has:

c′1c
′′
2 − c′′1c

′
2 =

Φ(λ, pθ,m0,K,E)
2α8p2

θpϕ(−p2
θ +m0)(p2

θ(λ− 1)2 − 1)2
,

where Φ(λ, pθ,m0,K,E) is a polynomial of degree two in K and E, and the numerical experiments show that
we cannot conclude as for the ellipsoid by a simple verticality argument. The numerical simulations about the
curvature lead to the following (see [18] for the details).

Proposition 3.23. There exists 0.7 < λ∗ < 0.8 such that for λ ≤ λ∗ all the injectivity domains are convex but
if λ > λ∗ there exists ϕ(0) such that the injectivity domain is not convex.
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Figure 6. Gauss curvature (again, compare with Fig. 1).

In the single-input tangential case, finally, the deformation is

m(ϕ) =
sin2 ϕ(1 − λ sin2 ϕ/2)2

(1 − λ sin2 ϕ)2

where the period can be computed using general elliptic integrals. We present the algorithms needed in compu-
tations in the case λ = 1 only, where the metric admits a pole of order two at the equator.

Lemma 3.24. The Gauss curvature is given by

G =
(sin2 ϕ− 4)(sin2 ϕ+ 1)
(sin2 ϕ− 1)(sin2 ϕ− 2)

and G < 0 outside the equator (see Fig. 6).

Setting ψ = π/2 − ϕ and X = sin2 ψ, the characteristic equation ψ̇2 = 1 − V (ψ) is associated with the
potential

V (X) =
4p2
θX

2

(1 −X)(1 +X)2
·

The equation 1 − V (X) = 0 is a polynomial of degree three with three real roots X1 > 0 > X3 > −1 > X4. To
integrate, it is sufficient to check that there is no parallel solution ṁ(ϕ) = 0, the equator being excluded since
the metric is singular. Meridian circles excepted, every geodesic is such that ψ is periodic with period T ; T/4
is the time to reach from the equator, X = 0, the root X+ = X1 = sin2 ψ+,

T

4
=
∫ ψ+

0

dψ√
1 − V (ψ)

·

Since X = sin2 ψ,
dt
2

=
(1 +X)dX√

P (X)

where P (X) = X((1 −X)(1 +X)2 − 4p2
θX

2) is a polynomial whose roots are by construction X1 > X2 = 0 >
X3 > X4; so the period is given by

T

2
=
∫ X+

0

(1 +X)dX√
P (X)

·
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Figure 7. The first and second derivatives of the return mapping with respect to the parameter
pθ are respectively displayed on the left hand side and on the right hand side illustrating the
fact that Δθ′ < 0 < Δθ′′.

With the rescaling X = X1Y this gives the formula:

T = 2
∫ 1

0

(1 +X1Y )X1dY√
P (X1Y )

·

The derivatives of T (pθ) can be computed in the same category. In particular:

dT
dpθ

=
∫ 1

0

X1P1(X1, Y ) + P2(X1, Y )
(P (X1Y ))3/2

dY

where

P1(X1, Y ) := 2(1 + 2X1Y )P (X1Y ) −X1Y (1 +X1Y )P ′(X1Y ),
P2(X1, Y ) := 8pθX4

1Y
3(1 +X1Y ).

The explicit expression of X1 is given by Cardano’s formula. Due to the complexity, one checks numerically
that the first return mapping is such that Δθ′ < 0 < Δθ′′ (see Fig. 7). A proof of this is given in [6] using a
different parameterization, allowing to conclude on the structure of the cut and conjugate loci.

Remark 3.25. Monotonicity of the return mapping is a consequence of the Gauss curvature condition G < 0,
since conjugate points cannot occur before crossing the equator and geodesics are not intersecting before crossing
the equator.

To compute explicitly the period, one starts from

2dt =
(1 +X)dX√

P (X)

and makes the reparameterization 2dt = ds(1 +X); then ds = dX/
√
P (X) and the X-variable is computed in

the s-time, while the true time is recovered by quadrature. Having reduced the complexity to evaluate∫
dX√
P (X)

,
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Möbius transformations are used to normalize the roots of the polynomial P . A Möbius transformation is a
transformation of the Riemann sphere: X = f(Z) = (aZ + b)/(cZ + d), ad − bc �= 0. Such a transformation
induces the following on the polynomial: P (X) = Q(Z)/(cZ + d)4 where Q is a polynomial of degree four with
normalized roots −1, 1, −1/k and 1/k. In particular,∫

dX√
P (X)

=
∫

(ad− bc)√
Q(Z)

dZ.

Moreover, the following properties hold. (i) The cross-ratio of four points is invariant:

(X1 −X3)(X2 −X4)
(X2 −X3)(X1 −X4)

=
(Z1 − Z3)(Z2 − Z4)
(Z2 − Z3)(Z1 − Z4)

·

(ii) Given two triplets (Z1, Z2, Z3) and (X1, X2, X3) of different points, there exists only one Möbius application
mapping the two triplets:

F : Z �→ aZ + b

cZ + d
= X

whose coefficients are

a :=

∣∣∣∣∣∣
Z1X1 X1 1
Z2X2 X2 1
Z3X3 X3 1

∣∣∣∣∣∣ , c :=

∣∣∣∣∣∣
Z1 X1 1
Z2 X2 1
Z3 X3 1

∣∣∣∣∣∣ ,
b :=

∣∣∣∣∣∣
Z1X1 Z1 X1

Z2X2 Z2 X2

Z3X3 Z3 X3

∣∣∣∣∣∣ , d :=

∣∣∣∣∣∣
Z1X1 Z1 1
Z2X2 Z2 1
Z3X3 Z3 1

∣∣∣∣∣∣ .
Different Möbius transformations can be constructed depending on the roots ordering; we choose the one
mapping (1,−1,−1/k, 1/k) to (X1, X2, X3, X4) where k ∈ (0, 1) is the modulus. By invariance of the cross-
ratio,

1 <
(X1 −X3)(X2 −X4)
(X2 −X3)(X1 −X4)

=
(
k + 1
k − 1

)2

so k ∈ (0, 1). The coefficients of the Möbius transformation are

a := −X1X3

(
1 +

1
k

)
, b := a,

c := X1

(
1 − 1

k

)
− 2X3, d := −X1

(
1 − 1

k

)
− 2X3

k
·

Since this transformation is used to parameterize the branch joining X2 = 0 to X1, it has to be checked that
the pole of the above Möbius transformation is not in [−1, 1] which is numerically done. To parameterize in this
case the branch, one uses:

sn−1(x, k) =
∫ x

0

du√
(1 − u2)(1 − k2u2)

·

This gives the parameterization of the Z-variable in the s-time, which is a reparameterization of the sn function,
while the X-variable is obtained inverting the Möbius transformation. To compute the θ-variable, we use

dθ
dt

=
4pθX2

(1 −X)(1 +X)2

which can be integrated using elliptic functions. See [6, 18] for the details of the computations.
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4. Conclusion

We mention to conclude two extensions of our computations motivated by applications to geometry and
optimal control.

4.1. Prolate case

For the ellipsoid of revolution the prolate case is different: Cut points are not obtained for T/2 (where T is the
period mapping) but correspond to geodesics intersecting on the opposite meridian (versus the antipodal parallel
in the oblate case). They can be computed solving the equation θ = π. This gives an additional complexity
when computing the injectivity domains.

4.2. Extension to mechanical systems on two-spheres of revolution

They arise for instance in the energy minimization problem for two-level dissipative control systems. This leads
to consider mechanical systems where the potential admits several local extrema. See the discussion in [12] for
the case of extremals in the meridian planes, and [10] for the non meridian case.

Appendix A. Elliptic integrals and functions

A.1. Complete elliptic integrals

The first and second order complete elliptic integrals are respectively defined by

K(k) =
∫ π/2

0

(1 − k2 sin2 θ)−1/2dθ, E(k) =
∫ π/2

0

(1 − k2 sin2 θ)1/2dθ

where 0 < k < 1 is the modulus. One has the following asymptotics when k → 0:

K(k) =
π

2

(
1 +

k2

4
+ o(k3)

)
, E(k) =

π

2

(
1 − k2

4
+ o(k3)

)
.

A.2. Weierstraß elliptic function

Weierstraß elliptic function ℘ verifies

℘′2 = 4℘3 − g2℘− g3, ℘(z) − 1
z2

=
g2
20
z2 + o(z3)

where g2 and g3 are called the invariants. Denote e1, e2, e3 the complex roots of the cubic polynomial 4X3 −
g2X−g3. Their sum is zero and, if they are real and distinct, they are ordered according to e1 > e2 > e3. In this
case, ℘ is a doubly periodic function whose half periods ω, ω′ can be chosen real and imaginary, respectively.
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554 B. BONNARD ET AL.

[9] B. Bonnard, J.-B. Caillau and L. Rifford, Convexity of injectivity domains on the ellipsoid of revolution: the oblate case, C.
R. Acad. Sci. Paris, Sér. I 348 (2010) 1315–1318.

[10] B. Bonnard, J.-B. Caillau and O. Cots, Energy minimization in two-level dissipative quantum control: the integrable case. Proc.
of 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Dresden (2010). Discrete Contin.
Dyn. Syst. suppl. (2011) 229–239.

[11] B. Bonnard, G. Charlot, R. Ghezzi and G. Janin, The sphere and the cut locus at a tangency point in two-dimensional
almost-Riemannian geometry. J. Dyn. Control Syst. 17 (2011) 141–161.

[12] B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum systems. J. Math.
Sci. 147 (2012).

[13] J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems. Recent
Advances in Optimization and its Applications in Engineering. Springer (2010) 205–224. Proc. of the 14th Belgium-Franco-
German conference on Optimization, Leuven (2009).

[14] A. Faridi and E. Schucking, Geodesics and deformed spheres. Proc. Amer. Math. Soc. 100 (1987) 522–525.

[15] A. Figalli, L. Rifford and C. Villani, Nearly round spheres look convex. Amer. J. Math. 134 (2012) 109–139.
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