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WELL-POSEDNESS OF A CLASS OF NON-HOMOGENEOUS BOUNDARY
VALUE PROBLEMS OF THE KORTEWEG-DE VRIES EQUATION
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Abstract. In this paper, we study a class of Initial-Boundary Value Problems proposed by Colin and
Ghidaglia for the Korteweg-de Vries equation posed on a bounded domain (0, L). We show that this
class of Initial-Boundary Value Problems is locally well-posed in the classical Sobolev space Hs(0, L)
for s > − 3

4
, which provides a positive answer to one of the open questions of Colin and Ghidaglia [Adv.
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1. Introduction

In this paper we study a class of Initial-Boundary Value Problems (IBVP) for the Korteweg-de Vries (KdV)
equation posed on a finite domain with nonhomogeneous boundary conditions:{

ut + ux + uxxx + uux = 0, u(x, 0) = φ(x), x ∈ (0, L), t ∈ R
+,

u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t).
(1.1)

This IBVP can be considered as a model for propagation of surface water waves in the situation where a wave-
maker is putting energy in a finite-length channel from the left (x = 0) while the right end (x = L) of the
channel is free (corresponding the case of h2 = h3 = 0) (see [16]). The problem was first proposed and studied
by Colin and Ghidaglia in the late 1990’s [16–18] (cf. also [1–4,8,19,24,25] for other studies of boundary value
problems of the KdV equation). In particular, they investigated the well-posedness of the IBVP in the classical
Sobolev space Hs(0, L) and obtained the following results.
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Theorem 1.1 ([18]).

(i) Given hj ∈ C1([0,∞)), j = 1, 2, 3 and φ ∈ H1(0, L) satisfying h1(0) = φ(0), there exists a T > 0 such that
the IBVP (1.1) admits a solution (in the sense of distribution)

u ∈ L∞(0, T ;H1(0, L)) ∩ C([0, T ];L2(0, L)).

(ii) The solution u of the IBVP [(ii)] (1.1) exists globally in H1(0, L) if the size of its initial value φ ∈ H1(0, L)
and its boundary values hj ∈ C1([0,∞)), j = 1, 2, 3 are all small.

In addition, they showed that the associate linear IBVP{
ut + ux + uxxx = 0, u(x, 0) = φ(x), x ∈ (0, L), t ∈ R

+,

u(0, t) = 0, ux(L, t) = 0, uxx(L, t) = 0
(1.2)

possesses the Kato smoothing property: for any φ ∈ L2(0, L), the linear IBVP (1.2) admits a unique solution

u ∈ C(R+;L2(0, L)) ∩ L2
loc(R

+;H1(0, L)).

Aided by this smoothing property Colin and Ghidaglia also showed that the homogeneous IBVP (1.1) is locally
well-posed in the space L2(0, L).

Theorem 1.2 ([18]). Suppose h1 = h2 = h3 ≡ 0, then for any φ ∈ L2(0, L), there exists a T > 0 such that the
IBVP (1.1) admits a unique weak solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)).

In order to encourage further investigation, a series of open problems were proposed by Colin and
Ghidaglia [18]. Included in the proposed problems are the following:

Problems:

(1) Is it possible to prove global existence of solutions of (1.1) for e.g. smooth solutions (as it is the case of the
equation posed on a quarter plane or the whole line)?
It is remarked by Colin and Ghidaglia in [18]: “for these problems, uniqueness rely on a priori estimate in
H2 that we are not able to extend here and therefore establish the existence of more regular solutions”.

(2) Is it possible to establish the existence of solutions of (1.1) with their initial value in the space Hs(0, L) for
some s < 0 as in the case of the whole line?

Colin and Ghidaglia expected the answer to be positive because of the Kato smoothing property of the associated
linear IBVP (1.2).

In this paper, we will continue the work of Colin and Ghidaglia [16–18] by establishing the well-posedness
of the IBVP (1.1) in the full strength of Hadamard including existence, uniqueness and continuous dependence
and show that the IBVP (1.1) is (locally) well-posed in the space Hs(0, L) when s ≥ 0 and − 3

4 < s < 0. In
order to describe our results more precisely, let us first introduce some notations.

For given T > 0 and s ∈ R, let

H
s(0, T ) := H

s+1
3 (0, T )×H

s
3 (0, T )×H

s−1
3 (0, T ), Ds,T := Hs(0, L) × H

s(0, T )

and
Zs,T = C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L)).

For the well-posedness of the IBVP (1.1) that we intend to establish in this paper, some compatibility condi-
tions relating the initial datum φ(x) and the boundary data hj(t), j = 1, 2, 3 are needed. A simple computation
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shows if u is a C∞-smooth solution of the IBVP (1.1), then its initial data u(x, 0) = φ(x) and its boundary
values hj(t), j = 1, 2, 3 must satisfy the following compatibility conditions:

φk(0) = h
(k)
1 (0), φ′k(L) = h

(k)
2 (0), φ′′k(L) = h

(k)
3 (0) (1.3)

for k = 0 , 1, . . . , where h(k)
j (t) is the k-th order derivative of hj and{

φ0(x) = φ(x)
φk(x) = −

(
φ

′′′
k−1(x) + φ

′
k−1(x) + 1

2

∑k−1
j=0

(k−1)!
j!(k−1−j)! (φj(x)φk−j−1(x))

′) (1.4)

for k = 1, 2, . . . When the well-posedness of (1.1) is considered in the space Hs(0, L) for s ≥ 0, the following
s-compatibility conditions arise naturally.

Definition 1.3 (s-compatibility). Let T > 0 and s ≥ 0 be given. A four-tuple

(φ,h) = (φ, h1, h2, h3) ∈ Ds,T

is said to be s-compatible with respect to the IBVP (1.1) if

φk(0) = h
(k)
1 (0) (1.5)

when k = 0, 1, . . . [s/3] and 1
2 < s− 3[s/3] ≤ 3/2,

φk(0) = h
(k)
1 (0), φ′k(L) = h

(k)
2 (0) (1.6)

when k = 0, 1, . . . [s/3] and 3
2 < s− 3[s/3] ≤ 5/2 and

φk(0) = h
(k)
1 (0), φ′k(L) = h

(k)
2 (0) φ′′k(L) = h

(k)
3 (0) (1.7)

when k = 0, 1, . . . [s/3] and
5/2 < s− 3[s/3] ≤ 3,

or when k = 0, 1, . . . [s/3]− 1 and

0 ≤ s− 3[s/3] ≤ 1
2
·

The following theorem regarding the local well-posedness of the IBVP (1.1) in the space Hs(0, L) for any
s ≥ 0, is one of the main results of this paper.

Theorem 1.4. Let s ≥ 0, T > 0 and r > 0 be given with

s �= 2j − 1
2

, j = 1, 2, . . .

There exists a T ∗ ∈ (0, T ] such that for any s-compatible

(φ,h) ∈ Ds,T

with 4

‖(φ,h)‖D0,T ≤ r, (1.8)

the IBVP (1.1) admits a unique solution

u ∈ C([0, T ∗];Hs(0, L)) ∩ L2(0, T ∗;Hs+1(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous 5.

4It is worth to point out here that it is not required that ‖(φ, h)‖Ds,T
≤ r when s > 0.

5The solution map, is in fact, real analytic (cf. [49–51]).
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To consider the well-posedness of the IBVP (1.1) in the space Hs(0, L) with s < 0, the following Bourgain-type
spaces will be used (cf. [7, 11, 20, 26–30,32]).

For any given s ∈ R, 0 ≤ b ≤ 1, 0 ≤ α ≤ 1 and function w ≡ w(x, t) : R
2 → R, define

Λs,b(w) =
(∫ ∞

−∞

∫ ∞

−∞
〈τ − (ξ3 − ξ)〉2b〈ξ〉2s |ŵ(ξ, τ)|2 dξdτ

) 1
2

,

λα(w) =

(∫ ∞

−∞

∫
|ξ|≤1

〈τ〉2α |ŵ(ξ, τ)|2 dξdτ

) 1
2

(1.9)

and

Gs(w) =

(∫ ∞

−∞
〈ξ〉2s

(∫ ∞

−∞

|ŵ(ξ, τ)|
1 + |τ − (ξ3 − ξ)|dτ

)2

dξ

)1/2

where 〈·〉 := (1 + | · |2) 1
2 . Let Xs,b be the space of all functions w satisfying

‖w‖Xs,b
:= Λs,b(w) <∞

while Ys,b be the space of all functions w satisfying

‖w‖Ys,b
:=
(G2

s (w) + Λ2
s,−b(w)

)1/2
<∞.

In addition, let Xα
s,b be the space of all functions w satisfying

‖w‖Xα
s,b

:=
(
Λ2

s,b(w) + λ2
α(w)

)1/2
<∞

and let Y α
s,b be the space of all w satisfying

‖w‖Y α
s,b

:=
(
λ2

α−1(w) + G2
s (w) + Λ2

s,−b(w)
)1/2

<∞.

The spaces Xs,b, Ys,b, Xα
s,b and Y α

s,b are all Banach spaces. Xs,b and Xα
s,b are equivalent when b ≥ α. The spaces

Ys,b and Xs,−b are also equivalent when b < 1
2 . Furthermore, let

Xα
s,b ≡ Cb(R;Hs(R)) ∩Xα

s,b

with the norm

‖w‖Xα
s,b

=
(

sup
t∈R

‖w(·, t)‖2
Hs(R) + ‖w‖2

Xα
s,b

)1/2

.

The Bourgain-type spaces given above are defined for functions posed on the whole plane R × R. However
the IBVP (1.1) is posed on the finite domain (0, L)× (0, T ). It is thus natural to introduce a restricted version
of the Bourgain space Xs,b to the domain (0, L) × (0, T ) as follows:

XT
s,b = Xs,b

∣∣∣
(0,L)×(0,T )

with the quotient norm

‖u‖XT
s,b

≡ inf
w∈Xs,b

{‖w‖Xs,b
: w(x, t) = u(x, t) on (0, L) × (0, T )}

for any u(x, t) defined on (0, L) × (0, T ). The spaces Y T
s,b, X

α,T
s,b , Y α,T

s,b and Xα,T
s,b are defined similarly.

Another main result of this paper addresses the second problem listed previously from Colin and
Ghidaglia [18]. The research presented establishes the local well-posedness of the IBVP (1.1) in the space
Hs(0, L) for some s < 0.
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Theorem 1.5. Let s ∈ (− 3
4 , 0), T > 0 and r > 0 be given. There exist T ∗ ∈ (0, T ] and α > 1

2 such that for any

(φ,h) ∈ Ds,T

satisfying
‖(φ,h)‖Ds,T ≤ r,

the IBVP (1.1) admits a unique solution u ∈ C([0, T ∗];Hs(0, L)) with

‖u‖Xα,T∗
s,12

< +∞.

Moreover, the corresponding solution map is Lipschitz continuous.

The following remarks are in order.

(i) Theorem 1.4 states that the IBVP (1.1) is well-posed in the space Hs(0, L) for any s ≥ 0, not just for s = 0
or s = 1. In particular, it demonstrates the existence of classical solutions and shows that the smoother
the initial value and boundary data, the smoother the corresponding solution.

(ii) To have solution u in the space C([0, T ];Hs(0, L)), Theorem 1.4 only requires that the initial value φ ∈
Hs(0, L) and the boundary data be

h1 ∈ H
s+1
3 (0, T ), h2 ∈ H

s
3 (0, T ), h3 ∈ H

s−1
3 (0, T ). (1.10)

In particular, if s = 1, it is sufficient to require that

h1 ∈ H
2
3 (0, T ), h2 ∈ H

1
3 (0, T ), h3 ∈ L2(0, T ),

rather than hj ∈ C1(0, T ), j = 1, 2, 3 as in Theorem 1.1. Moreover, condition (1.10) is optimal in order to
have the corresponding solution u ∈ C([0, T ];Hs(0, L)).

(iii) In Theorem 1.4, the life span (0, T ∗) of the solutions depends only ‖(φ,h)‖D0,T , not on ‖(φ,h)‖Ds,T when
s > 0, in particular. Thus a solution u blows up in the space Hs(0, L) for any s > 0 if and only if it blows
up in the space L2(0, L).

(iv) Taking lead from the recent works of Bona et al. [9], Molinet [35], and Molinet and Vento [37], we conjecture
that the IBVP (1.1) is locally well-posed in the space Hs(0, L) for −1 < s ≤ − 3

4 , but is ill-posed in the
space Hs(0, L) for any s < −1.

It is also interesting and constructive to compare the study of the IBVP (1.1) with another class of IBVP of
the KdV equation posed on the finite domain (0, L). The following problem has been well studied over the past
few years [5, 9, 26, 48]. ⎧⎪⎨⎪⎩

ut + ux + uxxx + uux = 0, x ∈ (0, L), t ∈ R
+,

u(x, 0) = φ(x),
u(0, t) = h1(t), u(L, x) = h2(t), ux(L, t) = h3(t).

(1.11)

While the study of the IBVP (1.11) goes back as early as late 1970s [12,13], the nonhomogeneous IBVP (1.11)
was first shown by Bona et al. [5] to be locally well-posed in the space Hs(0, L) for any s ≥ 0:

Let s ≥ 0 , r > 0 and T > 0 be given. There exists T ∗ ∈ (0, T ] such that for
any s-compatible6

φ ∈ Hs(0, L), h = (h1, h2, h3) ∈ H
s+1
3 (0, T )×H

s+1
3 (0, T )×H

s
3 (0, T )

6See [5] for the exact definition of s-compatibility for the IBVP (1.11).
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satisfying7

‖φ‖Hs(0,L) + ‖h‖
H

s+1
3 (0,T )×H

s+1
3 (0,T )×H

s
3 (0,T )

≤ r,

the IBVP (1.11) admits a unique solution

u ∈ C([0, T ∗];Hs(0, L)) ∩ L2(0, T ∗;Hs+1(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous in the corresponding spaces.
Later Holmer [26] showed that the IBVP (1.11) is locally well-posed in the spaceHs(0, L) for any − 3

4 < s < 1
2 :

Let s ∈ (− 3
4 ,

1
2 ), r > 0 and T > 0 be given. There exists a T ∗ ∈ (0, T ] such that for any

φ ∈ Hs(0, L), h = (h1, h2, h3) ∈ H
s+1
3 (0, T )×H

s+1
3 (0, T )×H

s
3 (0, T )

satisfying

‖φ‖Hs(0,L) + ‖h‖
H

s+1
3 (0,T )×H

s+1
3 (0,T )×H

s
3 (0,T )

≤ r,

the IBVP (1.11) admits a unique mild solution8

u ∈ C([0, T ∗];Hs(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous in the corresponding spaces.

7This condition can be weakened as

‖φ‖L2(0,L) + ‖h‖
H

1
3 (0,T )×H

1
3 (0,T )×L2(0,T )

≤ r.

8A function u ∈ C([0, T ∗]; Hs(0, L)) is said to be a mild solution of the IBVP (1.11) if there exist a sequence

un ∈ C1([0, T ∗]; L2(0, L)) ∩ C[(0, T ∗]; H3(0, L)), n = 1, 2, . . .

solving the equation in (1.11) and as n → ∞,

un → u in C([0, T ∗]; Hs(0, L)),

h1,n := un(0, ·) → h1, h2,n := u(L, ·) → h2 in H
s+1
3 (0, T ∗)

and

h3,n := ∂xun(L, ·) → h3 in H
s
3 (0, T ∗).
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More recently, Bona et al. [9] showed that the IBVP (1.11) is locally well-posed Hs(0, L) for any −1 < s ≤ 0.

Let r > 0, −1 < s ≤ 0 and T > 0 be given. There exists a T ∗ ∈ (0, T ] such that for any

φ ∈ Hs(0, L), h = (h1, h2, h3) ∈ H
s+1
3 (0, T )×H

s+1
3 (0, T )×H

s
3 (0, T )

satisfying
‖φ‖Hs(0,L) + ‖h‖

H
s+1
3 (0,T )×H

s+1
3 (0,T )×H

s
3 (0,T )

≤ r,

the IBVP (1.11) admits a unique mild solution

u ∈ C([0, T ∗];Hs(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous in the corresponding spaces.

Although there is only a slight difference between the boundary conditions of IBVP (1.1) and the IBVP
(1.11), there is a big gap between their well-posedness results. For the IBVP (1.1), the well-posedness results
presented in Theorems 1.4 and 1.5 are local in the sense that the time interval (0, T ∗) in which the solution
exists depends on r and, in general, the larger the r, the smaller the T ∗. By contrast, the IBVP (1.11) is known
to be globally well-posed in the space Hs(0, L) for any s ≥ 0 in the sense that one always has (0, T ∗) = (0, T )
no matter how large the value of r is (cf. [5, 23]). This difference stems from the fact that the L2-energy of the
solution of the homogeneous IBVP (1.11) (h = 0) is decreasing since

d
dt

∫ L

0

u2(x, t)dx = −u2
x(0, t) for t ≥ 0,

while for the homogeneous IBVP (1.1) it is not clear, in general, whether the L2-energy of its solution is
increasing or decreasing since

d
dt

∫ L

0

u2(x, t) = −u2(L, t) − 2
3
u3(L, t) − u2

x(0, t) for t ≥ 0.

The approach used in the proofs of their results in [5,22,26] is very much different from what used in the proof
of Theorem 1.1, but more or less along the line used in the proof of Theorem 1.2, in which the Kato smoothing
property of the associated linear system plays an important role. In this paper, we will use a similar approach
as that developed in [5, 7] but with some modifications to prove Theorems 1.4 and 1.5. The key ingredients of
the approach are listed below.

(1) An explicit solution formula will be derived for the following nonhomogeneous boundary value problem of
the linear equation, ⎧⎪⎨⎪⎩

vt + vx + vxxx = 0, x ∈ (0, L), t ≥ 0,
v(x, 0) = 0,
v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t),

(1.12)

which not only enables us to establish the well-posedness of the IBVP (1.1) with the optimal regularity
conditions imposed on the boundary data, but also plays an important role in obtaining the well-posedness
of the IBVP (1.1) in the space Hs(0, L) with − 3

4 < s < 0.
(2) The Kato smoothing property of the associated linear problem⎧⎪⎨⎪⎩

vt + vx + vxxx = f, x ∈ (0, L), t ≥ 0,
v(x, 0) = φ(x),
v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t).

(1.13)
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For given T > 0, there exists a constant C > 0 such that the solution v of (1.13) satisfies

‖v‖Z0,T ≤ C
(‖(φ,h)‖D0,T + ‖f‖L1(0,T ;L2(0,L))

)
for any (φ,h) ∈ D0,T and f ∈ L1(0, T ;L2(0, L)). This property is an extension of the Kato smoothing
property obtained by Colin and Ghidaglia [18] for the nonhomogeneous problem.

(3) Tartar’s nonlinear interpolation theorem [47].

Let B0 and B1 be two Banach spaces such that B1 ⊂ B0 with continuous inclusion map. Let f ∈ B0 and,
for t ≥ 0, define

K(f, t) = inf
g∈B1

{‖f − g‖B0 + t‖g‖B1}.

For 0 ≤ θ ≤ 1, the (real) interpolation of B0 and B1 is defined by

[B0, B1]θ =

{
f ∈ B0 : ‖f‖Bθ

:=
(∫ ∞

0

K2(f, t)t−2θ−1dt
) 1

2

< +∞
}
.

Then Bθ is a Banach space with norm ‖ · ‖Bθ
.

Theorem 1.6 (Tartar [47]). For j = 1, 2, let Bj
0 and Bj

1 be Banach spaces such that Bj
1 ⊂ Bj

0 with contin-
uous inclusion mappings. Suppose A is a mapping such that
(i) A : B1

0 → B2
0 and for f, g ∈ B1

0 ,

‖Af −Ag‖B2
0
≤ C0(‖f‖B1

0
+ ‖g‖B1

0
)‖f − g‖B1

0

and
(ii) A : B1

1 → B2
1 and for h ∈ B1

1

‖Ah‖B2
1
≤ C1(‖h‖B1

0
)‖h‖B1

1
,

where Cj : R
+ → R

+ are continuous non-decreasing functions, j = 0, 1.
Then if 0 ≤ θ ≤ 1, A maps B1

θ into B2
θ and for f ∈ B1

θ ,

‖Af‖B2
θ
≤ C(‖f‖B1

0
)‖f‖B1

θ

where for r > 0, C(r) = 4C0(4r)1−θC1(3r)θ .

Note that if B1
0 = D0,T , B1

1 = D3,T , B1
1 = Z0,T and B2

1 = Z3,T . Then

Ds,T = [B1
0 , B

1
1 ]θ, Zs,T = [B2

0 , B
2
1 ]θ

with θ = s
3 , 0 ≤ s ≤ 3. With the help of this theorem, we will only need to consider the case of s = 3k, k =

0, 1, 2, . . . when proving Theorem 1.4.
(4) Following Bona et al. [7], the IBVP (1.1) will be converted to an integral equation posed on the whole line

R which makes it possible to conduct Bourgain spaces analysis to obtain the well-posedness of the IBVP
(1.1) in Hs(0, L) for − 3

4 < s < 0.

This paper is organized as follows. In Section 2, the various linear problems associated to the IBVP (1.1) are
studied. Section 3 is devoted to the well-posedness of the nonlinear IBVP (1.1). Concluding remarks and open
questions for further investigations are presented in Section 4.
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2. Linear problems

2.1. The boundary integral operators

Consider the nonhomogeneous boundary-value problem{
vt + vx + vxxx = 0, v(x, 0) = 0, x ∈ (0, L), t ≥ 0,
v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t).

(2.1)

We look for an explicit solution formula for the IBVP (2.1). Without loss of generality, we assume that L = 1
in this subsection. Applying the Laplace transform yo both sides of the equation in (2.1) with respect to t, the
IBVP (2.1) is converted to {

sv̂ + v̂x + v̂xxx = 0,
v̂(0, s) = ĥ1(s), v̂x(1, s) = ĥ2(s), v̂xx(1, s) = ĥ3(s),

(2.2)

where

v̂(x, s) =
∫ +∞

0

e−stv(x, t)dt

and
ĥj(s) =

∫ ∞

0

e−sthj(t)dt, j = 1, 2, 3.

The solution of (2.2) can be written in the form

v̂(x, s) =
3∑

j=1

cj(s)eλj(s)x

where λj(s), j = 1, 2, 3 are solutions of the characteristic equation

s+ λ+ λ3 = 0

and cj(s), j = 1, 2, 3, solve the linear system⎛⎝ 1 1 1
λ1eλ1 λ2eλ2 λ3eλ3

λ2
1e

λ1 λ2
2e

λ2 λ2
3e

λ3

⎞⎠
︸ ︷︷ ︸

A

⎛⎝c1c2
c3

⎞⎠ =

⎛⎝ĥ1

ĥ2

ĥ3

⎞⎠
︸ ︷︷ ︸

ĥ

. (2.3)

By Cramer’s rule,

cj =
Δj(s)
Δ(s)

, j = 1, 2, 3,

where Δ is the determinant of A and Δj is the determinant of the matrix A with the column j replaced by ĥ.
Taking the inverse Laplace transform of v̂ and following similar arguments as those in [5] yield the representation

v(x, t) =
3∑

m=1

vm(x, t)

with

vm(x, t) =
3∑

j=1

vj,m(x, t)



NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS OF THE KDV EQUATION 367

and
vj,m(x, t) = v+

j,m(x, t) + v−j,m(x, t),

where

v+
j,m(x, t) =

1
2πi

∫ +i∞

0

estΔj,m(s)
Δ(s)

ĥm(s)eλj(s)xds

and

v−j,m(x, t) =
1

2πi

∫ 0

−i∞
estΔj,m(s)

Δ(s)
ĥm(s)eλj(s)xds

for j,m = 1, 2, 3. Here Δj,m(s) is obtained from Δj(s) by letting ĥm(s) = 1 and ĥk(s) = 0 for k �= m,
k,m = 1, 2, 3. Making the substitution s = i(ρ3 − ρ) with 1 < ρ <∞ in the characteristic equation

s+ λ+ λ3 = 0

gives the following roots in terms of ρ

λ+
1 (ρ) = iρ, λ+

2 (ρ) =

√
3ρ2 − 4 − iρ

2
λ+

3 (ρ) =
−
√

3ρ2 − 4 − iρ

2
· (2.4)

Thus v+
j,m(x, t) has the form

v+
j,m(x, t) =

1
2π

∫ ∞

1

ei(ρ3−ρ)t
Δ+

j,m(ρ)
Δ+(ρ)

ĥ+
m(ρ)eλ+

j (ρ)x(3ρ2 − 1)dρ

and
v−j,m(x, t) = v+

j,m(x, t)

where ĥ+
m(ρ) = ĥm(i(ρ3 − ρ)), Δ+(ρ) and Δ+

j,m(ρ) are obtained from Δ(s) and Δj,m(s) by replacing s with
i(ρ3 − ρ) and λj(s) by λ+

j (ρ) = λj(i(ρ3 − ρ)).
For given m, j = 1, 2, 3, let Wj,m be an operator on Hs

0(R+) defined as follows:

[Wj,mh](x, t) ≡ [Uj,mh](x, t) + [Uj,mh](x, t) (2.5)

for any h ∈ Hs
0(R+) with

[Uj,mh](x, t) ≡ 1
2π

∫ +∞

1

ei(ρ3−ρ)te−λ+
j (ρ)(1−x)(3ρ2 − 1)[Q+

j,mh](ρ)dρ

=
1
2π

∫ +∞

1

ei(ρ3−ρ)te−λ+
j (ρ)x′

(3ρ2 − 1)[Q+
j,mh](ρ)dρ, (x′ = 1 − x), (2.6)

for j = 1, 2, m = 1, 2, 3 and

[U3,mh](x, t) ≡ 1
2π

∫ +∞

1

ei(ρ3−ρ)teλ+
3 (ρ)x(3ρ2 − 1)[Q+

3,mh](ρ)dρ (2.7)

for m = 1, 2, 3, where

[Q+
3,mh](ρ) :=

Δ+
3,m(ρ)
Δ+(ρ)

ĥ+(ρ), [Q+
j,mh](ρ) =

Δ+
j,m(ρ)
Δ+(ρ)

eλ+
j (ρ)ĥ+(ρ)

for j = 1, 2 and m = 1, 2, 3, ĥ+(ρ) = ĥ(i(ρ3 − ρ)). The solution of the IBVP (2.1) then has the following
representation.
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Lemma 2.1. Given h1, h2 and h3, defining h = (h1, h2, h3). The solution v of the IBVP (2.1) can be written
in the form

v(x, t) = [Wbdrh](x, t) :=
3∑

j,m=1

[Wj,mhm](x, t). (2.8)

2.2. Linear estimates

Consider the IBVP of the linear equation:⎧⎪⎨⎪⎩
vt + vx + vxxx = f, x ∈ (0, L), t ≥ 0,
v(x, 0) = φ(x),
v(0, t) = 0, vx(L, t) = 0, vxx(L, t) = 0.

(2.9)

By standard semigroup theory [39], for any φ ∈ L2(0, L) and f ∈ L1(0, T ;L2(0, L)), (2.9) admits a unique
solution v ∈ C([0, T ];L2(0, L)), which can be written in the form

v(t) = W0(t)φ +
∫ t

0

W0(t− τ)f(τ)dτ

where W0 is the C0-semigroup in the space L2(0, L) generated by the linear operator

Aψ = −ψ′′′ − ψ′

with the domain
D(A) = {ψ ∈ H3(0, L) : ψ(0) = ψ′(L) = ψ′′(L) = 0}.

Proposition 2.2. Let T > 0 be given. There exists a constant C such that for any φ ∈ L2(0, L) and f ∈
L1(0, T ;L2(0, L)), the corresponding solution v of the IBVP (2.9) belongs to the space Z0,T and

‖v‖Z0,T ≤ C
(‖φ‖ + ‖f‖L1(0,T ;L2(0,L))

)
. (2.10)

Proof. First multiplying the both sides of the equation in (2.9) by 2v and integrating over (0, L) with respect
to x gives

d
dt

∫ L

0

v2(x, t)dx + v2(L, t) + v2
x(0, t) = 2

∫ L

0

xf(x, t)v(x, t)dx.

Thus
sup

0<t<T
‖v(·, t)‖L2(0,L) ≤ ‖φ‖L2(0,L) + C‖f‖L1(0,T ;L2(0,L)).

Then multiplying the both sides of the equation in (2.9) by 2xv and integrating over (0, L) with respect to x
yields

d
dt

∫ L

0

xv2(x, t)dx + Lv2(L, t) + 3
∫ L

0

v2
xdx =

∫ L

0

v2dx+ 2
∫ L

0

f(x, t)v(x, t)dx.

Estimate (2.10) then follows easily. �

Next we consider the nonhomogeneous boundary-value problem⎧⎪⎨⎪⎩
vt + vx + vxxx = 0, x ∈ (0, L), t ≥ 0,
v(x, 0) = 0,
v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t).

(2.11)

We have the following estimate for its solutions.
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Proposition 2.3. For given T > 0, there exists a constant C such that for any h ∈ H
0(0, T ), the corresponding

solution v of the system (2.11) belongs to the space Z0,T and

‖v‖Z0,T ≤ C‖h‖H0(0,T ).

Proof. From Section 2.1 we have

λ+
1 (ρ) = iρ, λ+

2 (ρ) =

√
3ρ2 − 4 − iρ

2
λ+

3 (ρ) =
−
√

3ρ2 − 4 − iρ

2
·

The asymptotic behaviors of the ratios
Δ+

j,m(ρ)

Δ+(ρ) for ρ→ +∞ are listed below.

Δ+
1,1(ρ)

Δ+(ρ) ∼ e−
√

3
2 ρ Δ+

2,1(ρ)

Δ+(ρ) ∼ e−
√

3ρ Δ+
3,1(ρ)

Δ+(ρ) ∼ 1

Δ+
1,2(ρ)

Δ+(ρ) ∼ ρ−1 Δ+
2,2(ρ)

Δ+(ρ) ∼ ρ−1e−
√

3
2 ρ Δ+

3,2(ρ)

Δ+(ρ) ∼ ρ−1

Δ+
1,3(ρ)

Δ+(ρ) ∼ ρ−2 Δ+
2,3(ρ)

Δ+(ρ) ∼ ρ−2e−
√

3
2 ρ Δ+

3,3(ρ)

Δ+(ρ) ∼ ρ−2

For m = 1, 2, 3 and j = 1, 2, set

ĥ∗
+

3,m(ρ) := [Q+
3,mhm](ρ) =

Δ+
3,m(ρ)
Δ+(ρ)

ĥ+
m(ρ)

and

ĥ∗
+

j,m(ρ) := [Q+
j,mhm](ρ) =

Δ+
j,m(ρ)
Δ+(ρ)

eλ+
j (ρ)ĥ+

m(ρ).

Viewing h∗j,m as the inverse Fourier transform of ĥ∗
+

j,m, it is straightforward to see that for any s ∈ R,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h1 ∈ H
(s+1)/3
0 (R+) ⇒ h∗j,1 ∈ H

s+1
3 (R), j = 1, 2, 3,

h2 ∈ H
s/3
0 (R+) ⇒ h∗j,2 ∈ H

s+1
3 (R), j = 1, 2, 3,

h3 ∈ H
(s−1)/3
0 (R+) ⇒ h∗j,3 ∈ H

s+1
3 (R), j = 1, 2, 3.

(2.12)

The proof is completed by the same arguments presented in [5] for their proofs of Propositions 2.7–2.9. �

Now we consider the following IBVP of the linear KdV equation with variable coefficients.⎧⎪⎨⎪⎩
vt + vx + vxxx + (av)x = f, x ∈ (0, L), t > 0,
v(x, 0) = φ(x),
v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t), t ≥ 0

(2.13)

were a = a(x, t) is a given function.

Proposition 2.4. Let T > 0 be given and assume that a ∈ Z0,T . Then for any (φ,h) ∈ D0,T and f ∈
L1(0, T ;L2(0, L)), the IBVP (2.13) admits a unique solution v ∈ Z0,T . Moreover, there exists a constant C > 0
depending only on T and ‖a‖Z0,T such that

‖v‖Z0,T ≤ C
(‖(φ,h)‖D0,T + ‖f‖L1(0,T ;L2(0,L))

)
.
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Proof. Let η > 0 and 0 < θ ≤ max{1, T } be constants to be determined. Set

Sθ,η = {w ∈ Z0,θ, ‖w‖Z0,θ
≤ η}.

For given (φ,h) ∈ D0,T define a map on Sθ,η by

v = Γ (w)

with v being the unique solution of the IBVP⎧⎪⎨⎪⎩
vt + vx + vxxx = −(aw)x + f, x ∈ (0, L), t ∈ (0, T ),
v(x, 0) = φ(x),
v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t)

for w ∈ Sθ,η. Using Propositions 2.2 and 2.3, we have

‖Γ (w)‖Z0,θ
≤ c1‖(φ,h)‖D0,T + c1‖f‖L1(0,T ;L2(0,L)) + c1‖(aw)x‖L1(0,θ;L2(0,L))

≤ c1‖(φ,h)‖D0,T + c1‖f‖L1(0,T ;L2(0,L)) + c1(θ
1
3 + θ

1
2 )‖a‖Z0,T ‖w‖Z0,θ

.

Here we have used the bilinear estimate (cf. [5, 34])∫ T

0

‖(qp)x‖L2(0,L)dt ≤ C(T
1
2 + T

1
3 )‖q‖Z0,T ‖q‖Z0,T

for any p, q ∈ Z0,T .
If we choose η and θ such that

η = 2c1(‖(φ,h)‖D0,T + ‖f‖L1(0,T ;L2(0,L)))

and
c1(θ

1
3 + θ

1
2 )‖a‖Z0,T ≤ 1

2
·

Then we have
‖Γ (w)‖Z0,θ

≤ η

for any w ∈ Sθ,η. Moreover, for any w1, w2 ∈ Sθ,η, one has

‖Γ (w1) − Γ (w2)‖Z0,θ
≤ 1

2
‖w1 − w2‖Z0,θ

.

Thus, Γ is a contraction on Sθ,η whose fixed point u ∈ Z0,θ is the desired solution of the IBVP (2.13) which
exists in the time interval (0, θ). As θ only depends on ‖a‖Z0,T , by a standard argument the time interval (0, θ)
in which the solution exists can be extended to (0, T ) so that u ∈ Z0,T . �

Proposition 2.4 will be sufficient for us to obtain the local well-posedness of the IBVP (1.1) in the space
Hs(0, L) for s ≥ 0. However, in order to use Bourgain space analysis to obtain well-posedness in the space
Hs(0, L) with s < 0, we need to extend the problem posed on the finite domain (0, L)× (0, T ) to an equivalent
problem posed on the whole plane R × R.

Recall the solution of the following linear KdV equation,{
vt + vx + vxxx = 0, x ∈ R, t ∈ R

+,

v(x, 0) = ψ(x)
(2.14)
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has the explicit form

v(x, t) = [WR(t)]ψ(x) = c

∫
R

ei(ξ3−ξ)teixξψ̂(ξ)dξ (2.15)

where ψ̂ denotes the Fourier transform of ψ. Taking advantage of this simplicity as it is done in [5], rewrite
W0(t) in terms of WR(t) and Wbdr(t). For any φ ∈ Hs(0, L), let φ∗ ∈ Hs(R) be its standard extension from
(0, L) to R. Let v = v(x, t) be the solution of{

vt + vx + vxxx = 0, x ∈ R, t ≥ 0
v(x, 0) = φ∗,

and set g1(t) = v(0, t), g2(t) = vx(L, t) and g3(t) = vxx(L, t), g = (g1, g2, g3) and

vg = vg(x, t) = [Wbdr(t)g](x),

which is the corresponding solution of the nonhomogeneous boundary-value problem (2.11) with boundary
data hj(t) = gj(t) for j = 1, 2, 3 and t ≥ 0. Then v(x, t)− vg solves the IBVP (2.9) with f ≡ 0. This then leads
us to a particular representation of W0(t) in terms of Wbdr(t) and WR(t).

Let E : Hs(0, L) → Hs(R) be a standard extension operator from Hs(0, L) to Hs(R).

Lemma 2.5. Given s ∈ R and φ ∈ Hs(0, L), let φ∗ = Eφ. Then

W0(t)φ = WR(t)φ∗ −Wbdr(t)g (2.16)

for any t > 0 and x ∈ (0, L), where g = (g1, g2, g3) is obtained from the traces of

p(x, t) = WR(t)φ∗

at x = 0, L, i.e.,
p(0, t) = g1(t), px(L, t) = g2(t), pxx(L, t) = g3(t).

The solution of the non-homogeneous initial boundary-value problem⎧⎪⎨⎪⎩
vt + vx + vxxx = f, x ∈ (0, L), t ≥ 0,
v(x, 0) = 0,
v(0, t) = 0, vx(L, t) = 0, vxx(L, t) = 0

(2.17)

can also be expressed in terms of WR(t) and Wbdr(t).

Lemma 2.6. If f∗(., t) = Ef(., t), with E as was defined before the extension of f from [0, L]×R
+ → R×R

+,
then the solution u of the extended problem (2.17) is

v(x, t) =
∫ t

0

W0(t− τ)f(·, τ)dτ =
∫ t

0

WR(t− τ)f∗(., τ)dτ − [Wbdr(t)v](x)

for any x ∈ (0, L) and t ≥ 0 where v ≡ v(t) = (v1(t), v2(t), v3(t)) is the appropriate boundary traces of

q(x, t) =
∫ t

0

WR(t− τ)f∗(·, τ)dτ

at x = 0, L, i.e.
v1(t) = q(0, t), v2(t) = qx(L, t), v3(t) = qxx(L, t).
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Lemmas 2.5 and 2.6 are validated when x ∈ (0, L) and t ≥ 0 since some of the operators that we have
constructed are defined only in this interval. The only operator that is defined in the whole line is WR(t) for
any values of x and t. Also it should be noted that for equation (2.16) the first term on the right-hand side is
defined for all x ∈ R but the second term on the right-hand side is defined just on (0, L). In order to employ
the use of Bourgain spaces, we need to extend the second operator of the right hand side.

Recall that

Wbdr(t)h =
3∑

j,m=1

Wj,mhj

and each Wj,mhj is either of the form.

[U1
bdr(t)]h(x) =

1
2π

Re

∫ ∞

1

eit(μ3−μ)e
−
√

3μ2−4−iμ
2 x(3μ2 − 1)ĥ(μ)dμ (2.18)

or of the form

[U2
bdr(t)]h(x) =

1
2π

Re

∫ ∞

1

eit(μ3−μ)eiμx(3μ2 − 1)ĥ(μ)dμ (2.19)

where ĥ(μ) = h(i(μ3 − μ)) (from Lem. 2.1). Therefore by the extension method introduced in [7], the operator
Wbdr(t) can be extended as Wbdr(t) with

[Wbdr(t)h](x, t)

defined for any t, x ∈ R and

[Wbdr(t)h](x, t) = [Wbdrh](x, t) for any (x, t) ∈ (0, L) × (0, T ).

Moreover, the following estimates hold.

Proposition 2.7. For given α > 1
2 and (b, s) such that s ≤ 0 and b < 1/2 satisfying

0 ≤ b < 1/2 − s/3,

there exists a constant C such that for any T > 0 and any h ∈ H
s(0, T ),

Wbdrh ∈ Xα,T
s,b

and
‖Wbdrh‖Xα,T

s,b
≤ C‖h‖Hs(0,T ).

Several key lemmas for this research from the literature regarding varying estimates will now be presented.
The first lemma gives the Bourgain estimates of the operator WR(t) established in [7, 20, 26, 31].

Lemma 2.8. Let −∞ < s < ∞, 0 < b ≤ 1, 1
2 < α ≤ 1, and ψ ∈ C∞

0 (R) be given. There exists a constant C
depending only on s, α, b and ψ such that

‖ψ(t)WR(t)φ‖Xα
s,b

≤ C‖φ‖Hs(R) (2.20)

and ∥∥∥∥ψ(t)
∫ t

0

WR(t− t′)f(t′)dt′
∥∥∥∥
Xα

s,b

≤ Cδ‖f‖Y 1−α
s,1−b

. (2.21)

The next two lemmas present the spatial trace estimates for WR(t)φ and
∫ t

0 WR(t− t′)f(·, t′)dt′ are presented.
Their proofs can be found in [20, 26].
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Lemma 2.9. Let s ∈ [−1, 2] be given. There exists a constant C depending only on s such that

sup
x∈R

‖WR(t)φ‖
H

s+1
3

t (R)
≤ C‖φ‖Hs(R), (2.22)

sup
x∈R

‖∂xWR(t)φ‖
H

s
3

t (R)
≤ C‖φ‖Hs(R) (2.23)

and
sup
x∈R

‖∂xxWR(t)φ‖
H

s−1
3

t (R)
≤ C‖φ‖Hs(R). (2.24)

Lemma 2.10. Let 0 ≤ b < 1/2, −1 ≤ s ≤ 2, f ∈ Ys,b and

w(x, t) =
∫ t

0

WR(t− t′)f(·, t′)dt′.

There exists a constant C depending only on b, s and ψ such that

sup
x∈R

‖ψ(·)w(x, ·)‖
H

s+1
3

t (R)
≤ C‖f‖Ys,b

,

sup
x∈R

‖ψ(·)wx(x, ·)‖
H

s
3

t (R)
≤ C‖f‖Ys,b

and
sup
x∈R

‖ψ(·)wxx(x, ·)‖
H

s−1
3

t (R)
≤ C‖f‖Ys,b

.

The last lemma gives the crucial bilinear estimate established in [20, 26, 31].

Lemma 2.11. Given s > − 3
4 , there exist b = b(s) < 1

2 , α = α(s) > 1
2 and C, μ > 0 such that

‖∂x(uv)‖Y α
s,b

≤ CT μ‖u‖Xα
s,b
‖v‖Xα

s,b
(2.25)

for any u, v ∈ Xα
s,b with compact support in [−T, T ].

3. Nonlinear problem

In this section, we consider the well-posedness of the following nonlinear problem in the space Hs(0, L).⎧⎪⎨⎪⎩
vt + vx + vvx + vxxx = 0, x ∈ (0, L), t ≥ 0
v(x, 0) = φ(x),
v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t).

(3.1)

First we consider its well-posedness in the space Hs(0, L) for s ≥ 0. Recall that for given s ≥ 0 and T > 0,

Ds,T := Hs(0, L) ×H
s+1
3 (0, T ) ×H

s
3 (0, T )×H

s−1
3 (0, T )

and
Zs,T := C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L)).

In addition, let
Zs,T := Zs,T ∩H s

3 (0, T ;H1(0, L)).

Note that
Z0,T = Z0,T .

The following theorems will now be proven.
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Theorem 3.1. Let T > 0, r > 0 and 0 ≤ s ≤ 3 be given with s �= 2j+1
2 for j = 0, 1, 2. There exists a T ∗ ∈ (0, T ]

depending only on r and T such that for any s-compatible (φ,h) ∈ Ds,T satisfying

‖(φ,h)‖D0,T ≤ r,

the IBVP (3.1) admits a unique solution
v ∈ Zs,T∗ .

Moreover, the corresponding solution map is Lipschitz continuous.

Proof. The proof is divided into three steps.

Step 1. Consider the case of s = 0.

Let η > 0 and 0 < T ∗ ≤ min{1, T } be constants to be determined. Set

ST∗,η = {w ∈ Z0,T∗ , ‖w‖Z0,T∗ ≤ η}.

For given (φ,h) ∈ D0,T with
‖(φ,h)‖D0,T ≤ r,

define a nonlinear map on ST∗,η by
v = Γ (w)

with v being the unique solution of the IBVP⎧⎪⎨⎪⎩
vt + vx + vxxx = −wwx, x ∈ (0, L), t > 0,
v(x, 0) = φ(x),
v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t), t ≥ 0

for w ∈ ST∗,η. As in the proof of Proposition 2.4, using Propositions 2.2 and 2.3 yields that

‖Γ (w)‖Z0,T∗ ≤ c1‖(φ,h)‖D0,T + c1‖wwx‖L1(0,T∗;L2(0,L))

≤ c1‖(φ,h)‖D0,T + c1c2(T ∗)
1
3 ‖w‖2

Z0,T∗ .

where cj, j = 1, 2 are constants independent of w and (φ,h). If we choose η and T ∗ such that

η = 2c1‖(φ,h)‖D0,T ≤ 2c1r

and

4c2c21(T
∗)

1
3 r ≤ 1

2
·

Then, for any w ∈ ST∗,η, we have

‖Γ (w)‖Z0,T∗ ≤ 1
2
η + c2c1(T ∗)

1
3 η2

≤ 1
2
η + 2c2c21(T

∗)
1
3 rη

≤ 1
2
η +

1
2
η = η.
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Moreover, for any w1, w2 ∈ ST∗,η, one has

‖Γ (w1) − Γ (w2)‖Z0,T∗ ≤ 1
2
c1‖((w1 + w2)(w1 − w2))x‖L1(0,T∗;L2(0,L))

≤ c2c1‖w1 + w2‖Z0,T∗‖w1 − w2‖Z0,T∗

≤ 4c2c21(T
∗)

1
3 r‖w1 − w2‖Z0,T∗

≤ 1
2
‖w1 − w2‖Z0,T∗ .

Thus, Γ is a contraction on ST∗,η whose fixed point u ∈ Z0,T∗ solves the IBVP (3.1) which satisfies

‖u‖Z0,T∗ ≤ 2c1‖(φ,h)‖D0,T . (3.2)

Moreover, for (φ,h), (ψ, g) ∈ D0,T with

‖(φ,h)‖D0,T ≤ r, ‖(ψ, g)‖D0,T ≤ r,

let u1 and u2 be the corresponding solutions of the IBVP (3.1). Then w = u1 − u2 solves the following linear
system ⎧⎪⎨⎪⎩

wt + wx + (aw)x + wxxx = 0, x ∈ (0, L), t ∈ (0, T ∗),
w(x, 0) = φ(x) − ψ(x), x ∈ (0, L),
w(0, t) = h1(t) − g1(t). wx(L, t) = h2(t) − g2(t), wxx(L, t) = h3(t) − g3(t)

where a = 1
2 (u1 + u2). Applying Proposition 2.4 yields that

‖u1 − u2‖Z0,T∗ ≤ C‖(φ,h) − (ψ, g)‖D0,T (3.3)

where the constant C depends only on ‖u1+u2‖Z0,T∗ and therefore only depends on ‖(φ,h)‖D0,T +‖(ψ, g)‖D0,T .

Step 2. Consider the case of s = 3.
For given 3-compatible (φ,h) ∈ D3,T , let u ∈ Z0,T∗ be the corresponding solution given in Step 1. Set v = ut.

Then v solves the following IBVP of the linear KdV equation with variable coefficient a(x, t) = u(x, t).⎧⎪⎨⎪⎩
vt + vx + vxxx + (av)x = 0, x ∈ (0, L), t > 0,
v(x, 0) = φ∗(x),
v(0, t) = h′1(t), vx(L, t) = h′2(t), vxx(L, t) = h′3(t), t ≥ 0

(3.4)

where
φ∗(x) = −φ′(x) − φ(x)φ′(x) − φ′′′(x).

Applying Proposition 2.4 yields that v belongs to the space Z0,T∗ and satisfies

‖v‖Z0,T∗ ≤ C‖(φ∗,h′)‖D0,T

where the constant C depends only on ‖a‖Z0,T∗ and is therefore only depends on ‖(φ,h)‖D0,T . It then follows
from the relation

uxxx = −ut − uux − ux

that u ∈ Z3,T∗ and
‖u‖Z3,T∗ ≤ C‖(φ,h)‖D3,T (3.5)

where C is a constant depending only on ‖(φ,h)‖D0,T .
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Step 3. Consider the case of 0 < s < 3.
For given r > 0, we define operator Ir : D0,T → D0,T by

Ir(φ,h) =

{
(φ,h) if ‖(φ,h)‖D0,T < r,

r(φ,h)/‖(φ,h)‖D0,T if ‖(φ,h)‖D0,T ≥ r

for any (φ,h) ∈ D0,T . Then for any (φ,h) ∈ D0,T ,

‖Ir(φ,h)‖D0,T ≤ r

and for any (φ,h) ∈ D3,T ,
‖Ir(φ,h)‖D3,T ≤ ‖(φ,h)‖D3,T .

Furthermore, for any (φ,h), (ψ, g) ∈ D0,T ,

‖Ir(φ,h) − Ir(ψ, g)‖D0,T ≤ C‖(φ,h) − (ψ, g)‖D0,T (3.6)

where C is a constant depending only on ‖(φ,h)‖D0,T and ‖(ψ, g)‖D0,T .
For given r > 0 and T > 0 let T ∗ be as given in Step 1. Set

B1
0 = D0,T , B1

1 = Z0,T∗ ,

B2
0 = {(φ,h) ∈ D3,T ; (φ,h) is 3-compatible}

and B2
1 = Z3,T∗. Note that

B2
0 ⊂ B1

0

and B2
0 is a closed subspace of D3,T and is therefore a Banach space.

Define the operator Kr : Bj
0 → Bj

1, j = 1, 2 by

Kr(φ,h) := u

for any (φ,h) ∈ Bj
0, where u ∈ Bj

1 is the solution of the IBVP (3.1) with initial-boundary datum Ir(φ,h).
From Step 1, for any (φ1,h1), (φ2,h2) ∈ B1

0 ,

‖Kr(φ1,h1) −Kr(φ2,h2)‖B1
1
≤ C1‖Ir(φ1,h1) − Ir(φ2,h2)‖B1

0
≤ C2‖(φ1,h1) − (φ2,h2)‖B1

0

where C2 depends only on ‖(φ1,h1)‖B1
0

+ ‖(φ2,h2)‖B1
0
.

From Step 2, we see that for any (φ,h) ∈ B2
0 ,

‖Kr(φ,h)‖B2
1
≤ C3‖Ir(φ,h)‖B2

0
≤ C4‖(φ,h)‖B2

0

where C4 depends only on ‖(φ,h)‖B1
0
. Thus, invoking Tartar’s nonlinear interpolation theory yields that for

0 < s < 3 with s �= 2j+1
2 , j = 0, 1, 2, and s-compatible (φ,h) ∈ Ds,T , Kr(φ,h) ∈ Zs,T∗ and

‖Kr(φ,h)‖Zs,T∗ ≤ C‖(φ,h)‖Ds,T

where C only depends on ‖(φ,h)‖D0,T . Note that Ir(φ,h) = (φ,h) when

‖(φ,h)‖D0,T ≤ r.

Therefore u = Kr(φ,h) ∈ Zs,T∗ solves the IBVP (3.1) when s-compatible (φ,h) ∈ Ds,T satisfying
‖(φ,h)‖D0,T ≤ r. �
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To prove the well-posed of the IBVP (3.1) in the space Hs(0, L) for s > 3, we first reconsider the well-
posedness of the IBVP of the linear KdV equation with variable coefficients a = a(x, t):⎧⎪⎨⎪⎩

ut + ux + (au)x + uxxx = f, x ∈ (0, L), t ∈ (0, T ),
u(x, 0) = φ(x), x ∈ (0, L),
u(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t).

(3.7)

Proposition 3.2. Let s ∈ [0, 3] and T > 0 be given. Assume that a ∈ Z3,T . Then for any s-compatible9(φ,h) ∈
Ds,T and f ∈ W 1,1(0, T ;L2(0, L)) ∩ L2(0, T ;H

s
3 (0, L)), the IBVP (3.7) admits a unique solution u ∈ Z3,T .

Moreover, there exists a constant C > 0 depending only on T and ‖a‖Z3,T such that

‖u‖Zs,T ≤ C
(
‖(φ,h)‖Ds,T + ‖f‖

W
s
3 (0,T ;L2(0,L))

+ ‖f‖
L2(0,T ;H

s
3 (0,L))

)
.

Proof. When s = 0, it follows from Proposition 2.4 that for any (φ,h) ∈ D0,T , the IBVP (3.7) admits a unique
solution u ∈ Z0,T satisfying

‖u‖Z0,T ≤ C‖(φ,h)‖D0,T .

When s = 3, let v = ut. Then v solves⎧⎪⎨⎪⎩
vt + vx + (av)x + vxxx = −(atu)x + ft, x ∈ (0, L), t ∈ (0, T ),
u(x, 0) = f(x, 0) − φ′′′(x) − φ′(x) − (a(x, 0)φ(x))′, x ∈ (0, L),
v(0, t) = h′1(t), vx(L, t) = h′2(t), vxx(L, t) = h′3(t).

Note that both ft and (atu)x belong to the space L1(0, T ;L2(0, L)). Applying Proposition 2.4 again yields that
ut = v ∈ Z0,T . Because of

uxxx = ut − ux − (au)x + f

and f ∈ L2(0, H1(0, L)), we arrive at u ∈ Z3,T and

‖u‖Z3,T ≤ C
(‖(φ,h)‖D3,T + ‖f‖W 1,1(0,T ;L2(0,L)) + ‖f‖L2(0,T ;H1(0,L))

)
where C depends only on ‖a‖Z3,T . The proof is then completed by invoking standard linear interpolation
theory. �

We now show that the IBVP (3.1) is well-posed in the space Hs(0, L) for s ≥ 3.

Theorem 3.3. Let T > 0, r > 0 and s ≥ 3 be given with s �= 2j+1
2 for j = 3, 4, . . . There exists a T ∗ ∈ (0, T ]

depending only on r and T such that for any s-compatible (φ,h) ∈ Ds,T with

‖(φ,h)‖D0,T ≤ r,

the IBVP (3.1) admits a unique solution u ∈ Zs,T∗ with

∂j
tu ∈ Zs−3j,T∗

for j = 1, 2, · · · , [ s
3 ]. Moreover, the corresponding solution map is Lipschitz continuous.

9 When 0 ≤ s ≤ 3, (φ, h) is s-compatible with respect to the IBVP (3.7) if and only if (φ, h) is s-compatible with respect to the
IBVP (3.1).
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Proof. For s ≥ 3 and s-compatible (φ,h) with

‖(φ,h)‖D0,T ≤ r,

by Theorem 3.1, there exists a unique solution u ∈ Z3,T∗ for some T ∗ > 0 depending only on T and r. Set

u(k) = ∂k
t u

for k = 1, 2, · · · [ s
3 ]. Then u(1) solves⎧⎪⎨⎪⎩

u
(1)
t + u

(1)
x + (au(1))x + u

(1)
xxx = 0, x ∈ (0, L),

u(1)(x, 0) = φ1(x), x ∈ (0, L),
u(1)(0, t) = h

(1)
1 , u

(1)
x (L, 0) = h

(1)
2 (t), u

(1)
xx (L, t) = h

(1)
3 (t)

(3.8)

and u(k) solves ⎧⎪⎨⎪⎩
u

(k)
t + u

(k)
x + (au(k))x + u

(k)
xxx = − 1

2

∑k−1
j=1

k!
j!(k−j)! (u

(j)u(k−j)x, x ∈ (0, L),
u(k)(x, 0) = φk(x), x ∈ (0, L),
u(k)(0, t) = h

(k)
1 , u

(k)
x (L, 0) = h

(k)
1 (t), u

(k)
xx (L, t) = h(k)(t)

(3.9)

for k = 2, · · · , [ s
3 ], where a(x, t) = u(x, t) and φk and h(k) is as defined in (1.5) and (1.4).

As u ∈ Z3,T∗ , uux ∈ L2(0, T ∗;H1(0, L)). Applying Proposition 3.2 to (3.8) yields that

u(1) = ut ∈ Z3,T∗

which imply further that
u ∈ Z6,T∗ .

Assume it holds for k = N that
u ∈ Z3N,T∗ , u(N) ∈ Z3,T∗ .

Then

−1
2

N∑
j=1

(N + 1)!
j!(N + 1 − j)!

(u(j)u(N+1−j)x

belongs to the space L2(0, T ∗;H1(0, L)). Thus applying Proposition 3.2 yields that

u(N+1) ∈ Z3,T∗

which implies further that
u ∈ Z3(N+1),T∗ .

The proof is then completed by induction. �

Next we consider the well-posedness of the IVP (3.1) in the space Hs(0, L) with s < 0. We first rewrite the
IBVP (3.1) in its integral form;

v(t) = W0(t)φ+Wbdr(t)h −
∫ t

0

W0(t− τ)(vvx)(τ)dτ. (3.10)
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Theorem 3.4. Let T > 0, r > 0 and − 3
4 < s < 0 be given. There exists a T ∗ ∈ (0, T ] and 1

2 < α ≤ 1 such that
for any (φ,h) ∈ Ds,T with

‖(φ,h)‖Ds,T ≤ r,

(3.10) admits a unique solution
v ∈ Xα,T∗

s, 1
2
.

Moreover, the corresponding solution map is Lipschitz continuous.

The following lemmas are needed to prove Theorem 3.4.

Lemma 3.5. Let T > 0, s < 0, 1
2 < α ≤ 1 and b ∈ (0, 1) be given satisfying

0 < b <
1
2
− s

3
·

For any φ ∈ Hs(0, L), W0(t)φ ∈ Xα,T
s,b and

‖W0(t)φ‖Xα,T
s,b

≤ C‖φ‖Hs(0,L)

where C > 0 is independent of φ.

Proof. It follows from Lemmas 2.5, and 2.8, 2.9, and Proposition 2.7. �

Lemma 3.6. Assume that −1 ≤ s < 1, 1
2 < α ≤ 1 and 0 < b < 1

2 . For any T > 0, there is a constant C such
that for any f ∈ Y 1−α,T

s,b ,

u =
∫ t

0

W0(t− τ)f(τ)dτ ∈ Xα,T
s,b

and satisfies the inequality
‖u‖Xα,T

s,b
≤ C‖f‖Y 1−α,T

s,b
. (3.11)

In addition, there exists a b∗ ∈ (0, 1
2 ) such that if f ∈ Y 1−α,T

s,b∗ , then u belongs to the space Xα,T

s, 1
2

and satisfies
the bound

‖u‖Xα,T

s,12

≤ C‖f‖Y 1−α,T
s,b∗

. (3.12)

Proof. It follows from Lemmas 2.6, and 2.8, 2.10, and Proposition 2.7. �

Lemma 3.7. Given T > 0, s > − 3
4 , there exist b = b(s) < 1

2 , α = α(s) > 1
2 and C, μ > 0 such that

‖∂x(uv)‖Y α,T
s,b

≤ CT μ‖u‖Xα,T
s,b

‖v‖Xα,T
s,b

(3.13)

for any u, v ∈ Xα,T
s,b .

Proof. It follows from Lemma 2.11 directly. �

Now we are at the position to present of the Proof of Theorem 3.4.

Proof of Theorem 3.4. For given (φ,h) ∈ Ds,T and s ∈ (− 3
4 , 0), let θ ∈ (0, 1] to be determined. Let 1

2 < α ≤ 1
and 0 < b < 1

2 be as chosen according to Lemma 3.7. Define Γ : Xα,θ

s, 1
2
→ Xα,θ

s, 1
2

by

Γ (ω) := W0(t)φ+Wbdr(t)h −
∫ t

0

W0(t− τ)
(
ωωx)(τ)dτ.
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By Lemmas 3.5–3.7, we have

‖Γ (ω)‖Xα,θ

s,12

≤ ‖W0(t)φ‖Xα,θ

s, 1
2

+ ‖Wbdr(t)h‖Xα,θ

s, 1
2

+ ‖
∫ t

0

W0(t− τ)
(
ωωx)(τ)‖Xα,θ

s, 1
2

≤ C‖(φ,h)‖Ds,T + Cθμ‖ω‖2
Xα,θ

s,12

.

Let η = 2C‖(φ,h)‖Ds,T ≤ 2Cr and introduce the ball

Bη := {ω ∈ Xα,θ
s,b : ‖w‖Xα,θ

s, 1
2

≤ η}.

Then for ω ∈ Bη,

‖Γ (ω)‖Xα,θ

s,12

≤ η/2 + Cθμη2

≤ η/2 + η/2 = η

when we select T ∗ = θ > 0 and 2C(T ∗)μη < 1. Therefore,

Γ (Bη) ⊂ Bη.

Similarly, taking v, ω ∈ XT∗
s, 1

2
,

‖Γ (v) − Γ (ω)‖Xα,T∗
s, 1

2

≤ Cθμ‖v − ω‖Xα,T∗
s, 1

2

‖v + ω‖Xα,T∗
s, 1

2

≤ Cθμ‖v − ω‖Xα,T∗
s, 1

2

(
‖v‖Xα,T∗

s, 1
2

+ ‖ω‖Xα,T∗
s,12

)
≤ 2ηCθμ‖v − ω‖XT∗

s,12

≤ β‖v − ω‖Xα,T∗
s, 1

2

with β = 2C(T ∗)μη < 1 as we have defined before. Then, by the contraction mapping principle, the fixed point
u is the unique desired solution of (3.10). The proof is complete. �

4. Concluding remarks

The focus of our discussion has been the well-posedness of the Initial-Boundary Value Problem of the KdV
equation posed on the finite interval (0, L):⎧⎪⎨⎪⎩

ut + ux + uxxx + uux = 0, x ∈ (0, L), t > 0,
u(x, 0) = φ(x),
u(0, t) = h1(t), ux(L, x) = h2(t), uxx(L, t) = h3(t).

(4.1)

It is considered with the initial data φ ∈ Hs(0, L) and the boundary data h = (h1, h2, h3) in the space
Ds,T := H

s+1
3 (0, T ) ×H

s
3 (0, T ) ×H

s−1
3 (0, T ) for s > − 3

4 . Using the approaches developed in [5, 7] with some
modifications we have succeeded in showing that the IBVP (4.1) is locally well-posed in the space Hs(0, L)
for any s > − 3

4 with s �= 2j+1
2 , j = 0, 1, 2, . . ., which extends and improves the earlier works of Colin and

Ghidaglia [16–18].
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However, the well-posedness results presented in Theorems 1.4 and 1.5 are conditional in the sense that
the uniqueness holds in a Banach space stronger than C([0, T ];Hs(0, L)). In particular, in the case of s ≥ 0,
according to Theorem 1.4, the uniqueness holds in the space

C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L))

rather than in the space C([0, T ];Hs(0, L)). Also when − 3
4 < s < 0, Theorem 1.5 states that the uniqueness

holds in the space
C([0, T ];Hs(0, L)) ∩Xα,T

s, 1
2

which is a stronger subspace of C([0, T ];Hs(0, L)). A question arises naturally:

Does the uniqueness hold in the space C([0, T ];Hs(0, L))?

If the uniqueness does hold in the space C([0, T ];Hs(0, L)), then the corresponding well-posedness is called
unconditional well-posedness. (The interested readers are referred to Bona et al. [6] for conditional and uncon-
ditional well-posedness of evolution equations.)

By using the usual energy estimate method, one can show that the uniqueness does hold for the IBVP (4.1)
in the space C([0, T ];Hs(0, L)) when s > 3

2 . Thus the IBVP (4.1) is unconditionally (locally) well-posed in the
space Hs(0, L) for any s > 3

2 with

s �= 2j + 1
2

, j = 1, 2, . . .

The following question remains open.

Question 4.1. Is the IBVP (4.1) unconditionally well-posed in the space Hs(0, L) for some s < 3
2?

By contrast, the IBVP ⎧⎪⎨⎪⎩
ut + ux + uxxx + uux = 0, x ∈ (0, L), t > 0,
u(x, 0) = φ(x),
u(0, t) = h1(t), u(L, x) = h2(t), ux(L, t) = h3(t),

(4.2)

is known to be unconditionally well-posed in the space Hs(0, L) for any s > −1. This is due to the fact that the
IBVP (4.2) is known to be globally well-posed in the space Hs(0, L) for any s ≥ 0. In particular, its classical
solutions exist globally. However, the IBVP (4.1) is only known to be locally well-posed. Whether it is globally
well-posed is still an open question.

Question 4.2. Is the IBVP (4.1) globally well-posed in the space Hs(0, L) for some s ≥ 0?

This is the same question asked earlier by Colin and Ghidaglia [18]. They showed that that if φ ∈ H1(0, L)
and hj ∈ C1(R+), j = 1, 2, 3 are small enough, then the corresponding solution u of (4.1) exists globally:

u ∈ L∞(R+;H1(0, L)).

Recently, Rivas et al. [41] showed that the solutions of the IBVP (4.1) exist globally (in time) in the space
Hs(0, L) for any s ≥ 0 as long as its auxiliary data (φ,h) is small in the space Ds

T . In addition, they have shown
that those small amplitude solutions decay exponentially if their boundary value h(t) decays exponentially. In
particular, those solutions satisfying homogenous boundary conditions decay exponentially in the spaceHs(0, L)
if their initial values are small in Hs(0, L).

Note that a positive answer to Question 4.2 leads to a positive answer to Question 4.1 using the general
approach developed by Bona et al. [6] for establishing unconditional well-posedness of nonlinear evolution
equations.
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Recently, Bona et al. [9] showed that the IBVP (4.2) is locally (unconditionally) well-posed in the space
Hs(0, L) for any s > −1. One of the key steps in their approach is to transfer the IBVP (4.2) of the KdV
equation to an equivalent IBVP of the KdV-Burgers equation. Precisely, let

u(x, t) = e2t−xv(x, t).

Then u is a solution of the IBVP (4.2) if and only if v is a solution of the following IBVP of the KdV-Burgers
equation posed on the finite interval (0, L):⎧⎪⎨⎪⎩

vt + 4vx − 3vxx + vxxx + e2t−x(vvx − v2) = 0, x ∈ (0, L), t ≥ 0,
v(x, 0) = φ(x)ex,

v(0, t) = e−2th1(t), v(L, t) = e−2t+Lh2(t), vx(L, t) = e−2t+Lh3(t) + h1(t)e−2t+L.

(4.3)

Consequently, one can adapt the approach of Molinet [36] in dealing with the pure initial value problems of the
KdV-Burgers equation posed either on the whole line R or on a periodic domain T to show that the IBVP (4.3)
is locally well-posed in the space Hs(0, L) for any s > −1. However, the same transformation converts the
IBVP¡¡(4.1) to the following IBVP of the KdV-Burgers equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

vt + 4vx − 3vxx + vxxx + e2t−x(vvx − v2) = 0, x ∈ (0, L), t ≥ 0,
v(x, 0) = φ(x)ex,

v(0, t) = e−2th1(t), vx(L, t) − v(L, t) = e−2t+Lh2(t),
vxx(L, t) − v(L, t) = e−2t+L(2h2(t) + h3(t)).

(4.4)

Note that the boundary conditions of (4.4) are different from those of (4.3). That brings a challenge to show
that the IBVP (4.4) to be locally well-posed in Hs(0, L) for s > −1. The following question thus remains open.

Question 4.3. Is the IBVP well-posed in the space Hs(0, L) for −1 < s ≤ − 3
4?

Finally we would like to point out that the KdV equation including, in particular, the IBVP (4.2) has been
extensively studied in the past twenty years from control point of view (cf. [14,15,21,33,38,40,42,43,45,46,48,52]
and the reference therein). The interested readers are specially referred to Rosier and Zhang [44] for a recent
survey on this subject. By contrast, the study of the IBVP (4.1) is still widely open. It will be very interesting
to see if there are any differences between the IBVP (4.1) and the IBVP (4.2) from control point view.
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