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STRONG STABILIZATION OF CONTROLLED VIBRATING SYSTEMS

Jean-François Couchouron1

Abstract. This paper deals with feedback stabilization of second order equations of the form

ytt + A0y + u (t)B0y (t) = 0, t ∈ [0, +∞[ ,

where A0 is a densely defined positive selfadjoint linear operator on a real Hilbert space H, with
compact inverse and B0 is a linear map in diagonal form. It is proved here that the classical sufficient
ad-condition of Jurdjevic-Quinn and Ball-Slemrod with the feedback control u = 〈yt, B0y〉H implies
the strong stabilization. This result is derived from a general compactness theorem for semigroup with
compact resolvent and solves several open problems.
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1. Introduction

This paper is concerned by the question of strong feedback stabilization of the following controlled equations

S
(
A0, B0, y

0, z0
)

=
{

ytt + A0y + u (t)B0y (t) = 0, t ∈ [0, +∞[ ,
y (0) = y0, yt (0) = z0,

(1.1)

where A0 is a densely defined positive selfadjoint linear operator on a real Hilbert space H with inner product
〈, 〉H ; B0 is a bounded linear map from HA0 = D

(
A

1
2
0

)
endowed with the graph norm into H.

The problem of strong stabilization consists in finding a control feedback u = F (y) in (1.1) such that the

state w (t) =
(

y (t)
yt (t)

)
−→

(
0
0

)
strongly in HA0 × H when t −→ +∞.

The aim of this paper is to prove that with diagonal operators B0 and under the following Jurjevic-Quinn
ad-condition

[(∀t ≥ 0) 〈zt (t) , B0 (z (t))〉H = 0] =⇒ [z (0) = zt (0) = 0] ,
where z stands for a solution of ztt + A0z = 0, t ≥ 0, the strong stabilization problem of (1.1) can be solved by
choosing the control feedback as

u (t) = 〈yt (t) , B0y (t)〉H . (1.2)

Keywords and phrases. Precompactness, compact resolvent, almost periodic functions, Fourier series, mild solution, integral
solution, Control Theory, Stabilization.
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The problem was studied in finite dimension by Jurdjevic and Quinn in 1978 (see [11]) and in infinite
dimension by Ball and Slemrod in 1979 (see [1,2]). But Ball and Slemrod obtained only weak stabilization
with moreover some restrictions on B0. Either B0 is sum of a linear compact operator and a symmetric linear
operator with a separation property about the diagonal exponents in the trigonometric Fourier expansion of
〈zt (t) , B0 (z (t))〉H , where z stands for a solution of ztt + A0z = 0, t ≥ 0; or B0 is a linear bounded operator
with a uniform separation property about the previous exponents. These assumptions on the Fourier exponents
imply the Jurdjevic-Queen ad-condition. But even with these constraints the question of strong stabilization
remained an open problem.

In this paper the strong stabilization has been obtained for diagonal operators B0. No compactness condition
on B0 is required. Such a B0 satisfies the uniform separation exponents property of Ball and Slemrod. Conse-
quently, our strong stabilization result applies to examples for which weak stabilization was already known (by
using for instance results of [1,2]).

For the strong stabilization problem the crucial point consists in showing the precompactness of the range

w (R+) , where w =
(

y
yt

)
is the solution of the first order system associated to (1.1) and (1.2) in the state

space. This compactness theorem will be obtained as a consequence of an abstract result proved in [4] which
plays the role of an Ascoli-Arzelà theorem for evolution equations. The lack of dissipation in the first order
system relative to the stabilization problem makes harder the study of precompactness and does not allow
to apply techniques such as multipliers methods or theorems such as Dafermos-Slemrod or Pazy theorems
(see [7,12]). In applications to vibrating problems this lack of dissipation is often provided by lack of damping
(see for instance [3]).

The paper is organized as follows: assumptions and notations are given in Section 1; the main results are
stated in Section 2; the proofs are regrouped in Section 3; different examples are given in Section 4.

2. Assumptions and notations

Let H be an Hilbert space with inner product 〈., .〉H and its associated norm ‖.‖H . If A is an operator, the
notation D (A) stands for the domain of A. We suppose throughout this paper:

(A1) A0 is a densely defined positive selfadjoint linear operator on H ;
(A2) A−1

0 is everywhere defined and compact;
(A3) the eigenvalues μ1, μ2, . . . of A0 are simple;
Thanks to (A2) and classical properties of linear compact operators, we will take an orthonormal basis

(ek)k∈N∗ in H satisfying for all k ∈ N
∗,

ek ∈ D (A0) and A0ek = μkek with μk > 0, μk < μk+1, and μj −→ +∞.

Moreover, HA0 = D
(
A

1
2
0

)
is an Hilbert space with the inner product

〈y, z〉HA0
=

〈
A

1
2
0 y, A

1
2
0 z

〉
H

,

for all y, z ∈ HA0 .
In view of (1.2) equation (1.1) can be removed into a first order system in X = HA0 × H as follows

Q
(
A, g, w0

)
=

⎧⎪⎨⎪⎩
dw

dt
= Aw + g (w) , t ∈ [0, +∞[ ,

w (0) = w0 =
(

y0

z0

)
∈ HA0 × H,

(2.1)
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where we have set

w =
(

y
z

)
∈ HA0 × H, A =

(
0 I
−A0 0

)
, g (w) =

(
0
−〈z, B0y〉H B0y

)
and

D (A) = D (A0) × D
(
A

1
2
0

)
= D (A0) × HA0 .

Let us note that the feedback control u takes the following form

u (t) = 〈z (t) , B0y (t)〉H = 〈w (t) , Bw (t)〉HA0×H ,

with

Bw =
(

0
B0y

)
.

Note also that X = HA0 × H is an Hilbert space with the following inner product〈(
y
z

)
,

(
ỹ
z̃

)〉
HA0×H

= 〈y, ỹ〉HA0
+ 〈z, z̃〉H ,

for all y, ỹ ∈ HA0 and z, z̃ ∈ H.
It follows from our assumptions that A is skew adjoint and generates a C0 group etA of linear isometries on

HA0 × H.
Introduce now the following conditions.
(A4) B0 : HA0 −→ H is linear and bounded and

B0 (ek) = λkek.

for all k ∈ N
∗.

(A5) λk �= 0 for all k ∈ N
∗.

Notations. If ξ ∈ H we will set ξk = 〈ξ, ek〉H for all k ∈ N
∗ and thus ξ =

∑+∞
k=1 ξkek. We will denote in the

sequel ‖w‖ instead of ‖w‖HA0×H and 〈w, w̃〉 instead of 〈w, w̃〉HA0×H (if there is no ambiguity).

Remark 2.1. Let w =
(

y
z

)
∈ HA0 × H and w̃ =

(
ỹ
z̃

)
∈ HA0 × H. It comes

〈w, w̃〉 =
+∞∑
k=1

μkykỹk + zkz̃k., and ‖w‖2 =
+∞∑
k=1

μky2
k + z2

k. (2.2)

Remark 2.2. A simple computation gives an explicit expression of eτA:

eτA

(
y
z

)
=

+∞∑
k=1

⎛⎜⎝
(

zk

sin
(√

μkτ
)

√
μk

+ yk cos
(√

μkτ
))

ek(
zk cos

(√
μkτ

) − yk
√

μk sin
(√

μkτ
))

ek

⎞⎟⎠ (2.3)

for τ ∈ R, y ∈ HA0 , z ∈ H.

Remark 2.3. The resolvent (I − λA)−1 is compact for all λ > 0, since the injection D (A) ↪→ HA0 × H is
compact (D (A) endowed with the graph norm). This compactness property follows from the compactness
assumption (A2).
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Remark 2.4. According to (A4), assumption (A5) is equivalent (see Lem. 4.7) to the following ad-condition

[
(∀t ≥ 0)

〈
etAw0, B

(
etAw0

)〉
HA0×H

= 0
]

=⇒ [
w0 = 0

]
. (2.4)

3. The main results

Theorem 3.1. Suppose [(A1), . . . ,(A5)] holds. Then (2.1) has a unique mild solution w on [0, +∞[ and

w (t) −→
t−→+∞

(
0
0

)
in HA × H. In other words the feedback control given by (1.2) strongly stabilizes (1.1).

Remark 3.1. Assumption (A3) is necessary in Theorem 3.1 because analogously to the proof given in [1] we
can show that if (A3) does not hold equation (1.1) is not weakly stabilizable by the feedback (1.2).

In order to prove Theorem 3.1 the essential part of the work will consist in showing that the orbit w (R+) is
precompact. In this direction we will need a differential topological tool, namely the following theorem.

Theorem 3.2. Let A1 be a m-dissipative operator with compact resolvent on the Banach space X. Suppose G ∈
L

2 ([0, +∞[ , X) and suppose that the mild solution w of
dw

dt
= A1w +G (t) , t ∈ [0, +∞[ , w (0) = w0 ∈ D (A1),

is bounded and uniformly continuous on [0, +∞[ . Then the positive orbit w (R+) is precompact in X.

We refer the reader to [4] for the proof of Theorem 3.2 and for more general statements: really, Theorem 3.2
is a corollary of Corollary 5.2, p. 18, of [4] since the set denoted by Lα (X) (with α > 0) in this Corollary 5.2
contains all L

p ([0, +∞[ , X) for 1 ≤ p < +∞.

Remark 3.2. The precompactness of the orbit w (R+) for the solution of the quasi-autonomous problem
dw

dt
= A1w + G (t) is a classical result (see [7]) when G ∈ L

1 ([0, +∞[ , X) . But here, in our stabilization

problem this situation does not hold. It just happens G ∈ L
2 ([0, +∞[ , X) as we will see later. That explains

why we will use Theorem 3.2 and why we will focus on the uniform continuity.

Some comments about precompactness and uniform continuity

If w is a function defined on [0, +∞[ with values in the Banach space X, the uniform continuity of w implies a
(uniform) equicontinuity of the sequel (wn)n in C ([0, T ] , X) defined for any fixed T > 0 by wn (t) = w (nT + t) ,
for each t ∈ [0, T ] . And this equicontinuity can be viewed as a suitable (uniform in n) continuity property with
respect to translation operators. Moreover, the precompactness of the orbit w (R+) implies the precompactness
of the sections {wn (t) ; n ∈ N} , with t ∈ [0, T ] . In a general way, several precompactness theorems for subsets
of a Banach space of functions v : J → X, where J is an interval of R, connect the two following ingredients:

(1) a precompactness property in the space values X such as, precompactness of the sections or compact
embedding or compact resolvent. . .;

(2) a translation-continuity property such as uniform continuity, equicontinuity. . .
Theorem 3.2 quoted and stated previously provides an example of this kind of results. Let us cite also: the

Ascoli-Arzelà Theorem in Y = C ([0, T ] , X) , or the Riesz-Fréchet-Kolmogorov Theorem in Y = L
p ([0, T ] , R)

(for instance), or extensions due to Simon to Y = L
p ([0, T ] ,B) , where B is a Banach space (see [14]), or

Theorem 4.1 and Lemma 4.3 given by Haraux in [9]. Lemma 4.3 in [9] concerns not only solutions of differential
problems but functions in C ([0, +∞[ , X) . It is a pure topological result. It could be used also like Theorem 3.2
to deduce the precompactness of w (R+) from the uniform continuity of w, where w is the solution of (2.1).
But this application is not direct and ask some constructions and computations (using in particular the explicit
form of the semigroup, the Duhamel’s formula, and the compact embedding D (A0) × HA0 ↪→ HA0 × H).
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4. Proofs

Proof of Theorem 3.1. Let w =
(

y
z

)
and g (w) =

(
0
−〈z, B0y〉H B0y

)
. Since g is Lipschitz on bounded

subsets of X, and A skew adjoint the following equation

Q
(
A, g, w0

)
=

⎧⎪⎨⎪⎩
dw

dt
= Aw + g (w) , t ∈ [0, +∞[ ,

w (0) = w0 =
(

y0

z0

)
∈ HA0 × H,

has a unique local mild solution w.
Set

G (t) = g (w (t)) = −u (t)
(

0
B0 (y (t))

)
= −u (t)Bw (t) .

Recall the following result on the Cauchy problem (which can be deduced from [13], p. 185, or [5] for more
general multivalued versions). In [13], locally Lipschitz means Lipschitz on bounded subsets (as in the present
application). In the theorem below locally Lipschitz has the wider sense that each point has a neighbourhood
where the map is Lipschitz. Set

CP (A1, B1, T ) =

⎧⎨⎩
dw

dt
= A1w + B1w, t ∈ [0, T [

w (0) = w0.

Lemma 4.1. Let A1 be the infinitesimal generator of a strongly continuous semi-group of bounded linear
operators

(
etA1

)
t≥0

in the Banach space E and let B1 be a nonlinear continuous operator on E locally Lipchitz
and bounded on bounded subsets of E. Then the Cauchy problem CP (A1, B1, T ) has a unique mild solution
wT (.) on [0, T ] for T > 0 sufficiently small. If there is an a priori upper bound for local solutions, that is a non
decreasing real valued function M (.) everywhere defined on [0, +∞[ satisfying supt∈[0,T ] ‖wT (t) ‖ ≤ M (T ) the
Cauchy problem CP (A1, B1, T ) has a unique mild solution for every T > 0.

Lemma 4.2. The mild solution w of Q
(
A, g, w0

)
is defined and bounded on the whole interval [0, +∞[ and we

have
‖w (t)‖ ≤ ∥∥w0

∥∥ , u ∈ L
2 ([0, +∞[) ∩ L

∞ ([0, +∞[) (4.1)

and,
G ∈ L

2 ([0, +∞[ , HA0 × H) ∩ L
∞ ([0, +∞[ , HA0 × H) . (4.2)

Proof. Since A is skew-adjoint it follows

1
2
‖w (t)‖2 − 1

2
‖w (s)‖2 = −

∫ t

s

〈z, B0y〉2H (t) dt, 0 ≤ s ≤ t.

From this last relation we deduce w is defined on the whole interval [0, +∞[ , bounded in HA × H and t �−→
‖w (t)‖ is a decreasing function. In particular we deduce ‖w (t)‖ ≤ ∥∥w0

∥∥ . Because B is bounded relations
u (t) = 〈z (t) , B0y (t)〉H = 〈w (t) , Bw (t)〉 , yield (4.1) and (4.2). The proof of Lemma 4.2 is now complete. �

Remark 4.1. With the previous notations for the mild solution w = (y, z)T we have z = yt in H and thus the
control can be written u = 〈yt, B0y〉H .

In view of Theorem 3.2 the precompactness of w ([0, +∞[) will be a consequence of the following proposition.

Proposition 4.1. The solution w is uniformly continuous on [0, +∞[ .
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In order to prove this proposition we have to compute ‖w (t + h) − w (t)‖ for t ≥ 0 and h ≥ 0.

Notation. In the sequel let t ≥ 0, h ≥ 0, h ≤ 1 and t − 2h ≥ 0 and denote by K the norm of the bounded
linear operator B0 : HA −→ H.

Remark 4.2. With the previous notations we have

‖Bw‖ = ‖B0y‖H ≤ K‖y‖HA0
≤ K‖w‖.

Lemma 4.3. We have

‖G (t)‖ ≤ K2
∥∥w0

∥∥3
,

‖G (t)‖ ≤ K
∥∥w0

∥∥ |u (t)| and∥∥w (t + h) − ehAw (t)
∥∥2 ≤ hK2

∥∥w0
∥∥2 ∫ h

0 u2 (t + τ) dτ.

Proof. According to the Duhamel’s formula we have

w (t + h) − ehAw (t) =
∫ h

0

e(h−τ)AG (t + τ) dτ, (4.3)

and thus ∥∥w (t + h) − ehAw (t)
∥∥2 ≤ h

∫ h

0

‖G (t + τ)‖2 dτ, (4.4)

thanks to the Cauchy-Schwarz inequality and the isometric aspect of ehA. Now from Lemma 4.2 and the
definitions of G and K it comes

∥∥w (t + h) − ehAw (t)
∥∥2 ≤ hK2

∥∥w0
∥∥2

∫ h

0

u2 (t + τ) dτ.

That ends the proof of Lemma 4.3. �
Notation. Set in the sequel

w (t) =
+∞∑
k=1

(
yk (t) ek

zk (t) ek

)
, wk (t) =

(
yk (t) ek

zk (t) ek

)
.

Lemma 4.4. We have

∥∥ehAw (t) − w (t)
∥∥2

= 4
+∞∑
k=1

(
μky2

k (t) + z2
k (t)

)
sin2

(√
μk

h

2

)
and ∣∣∣‖w (t + h) − w (t)‖2 − ∥∥ehAw (t) − w (t)

∥∥2
∣∣∣ ≤ 4

√
hK

∥∥w0
∥∥2

√∫ h

0

u2 (t + τ) dτ .

Proof. An immediate computation gives

‖wk (t)‖2 = μky2
k (t) + z2

k (t)

and

ehAwk (t) =

⎛⎜⎝
(

zk (t)
sin

(√
μkh

)
√

μk
+ yk (t) cos

(√
μkh

))
ek(

zk (t) cos
(√

μkh
)− yk (t)

√
μk sin

(√
μkh

))
ek

⎞⎟⎠ .
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So on one hand, from (2.3) it follows∥∥ehAw (t) − w (t)
∥∥2 = 2

(
‖w (t)‖2 − 〈

ehAw (t) , w (t)
〉)

= 4
∑+∞

k=1

(
μky2

k (t) + z2
k (t)

)
sin2

(√
μk

h
2

)
.

And on the other hand, by using Lemma 4.3 and ‖w (τ) − w (σ)‖ ≤ 2
∥∥w0

∥∥ , we obtain∣∣∣‖w (t + h) − w (t)‖2 − ∥∥ehAw (t) − w (t)
∥∥2

∣∣∣
≤ (‖w (t + h) − w (t)‖ +

∥∥ehAw (t) − w (t)
∥∥) | ‖w (t + h) − w (t)‖ − ∥∥ehAw (t) − w (t)

∥∥ |
≤ (‖w (t + h) − w (t)‖ +

∥∥ehAw (t) − w (t)
∥∥) ∥∥w (t + h) − ehAw (t)

∥∥
≤ 4

√
hK

∥∥w0
∥∥2

√∫ h

0 u2 (t + τ) dτ

and the lemma is proved. �
Lemma 4.5. One has∣∣∣u (t + h) + u (t − h) − 2

∑+∞
k=1 λkzk (t) yk (t) cos

(
2
√

μkh
)∣∣∣

≤ 2
√

hK2
∥∥w0

∥∥2
(√∫ h

0
u2 (t + τ) dτ +

√∫ 0

−h
u2 (t + τ) dτ

)
.

Proof. The triangle inequality gives∣∣u (t + h) − 〈
ehAw (t) , B

(
ehAw (t)

)〉∣∣ ≤ ∣∣〈w (t + h) , B (w (t + h))〉 − 〈
ehAw (t) , B

(
ehAw (t)

)〉∣∣
≤ ∣∣〈w (t + h) − ehAw (t) , B (w (t + h))

〉∣∣
+

∣∣〈ehAw (t) , B
(
w (t + h) − ehAw (t)

)〉∣∣ .
Thanks to Lemma 4.3 we conclude

∣∣u (t + h) − 〈
ehAw (t) , B

(
ehAw (t)

)〉∣∣ ≤ 2
√

hK2
∥∥w0

∥∥2

√∫ h

0

u2 (t + τ) dτ . (4.5)

In the same way we obtain

∣∣u (t − h) − 〈
e−hAw (t) , B

(
e−hAw (t)

)〉∣∣ ≤ 2
√

hK2
∥∥w0

∥∥2

√∫ h

0

u2 (t − τ) dτ . (4.6)

According to assumption (A4) on the operator B0, it comes

〈
ehAw (t) , B

(
ehAw (t)

)〉
=

+∞∑
k=1

λk (zk (t) cos (
√

μkh) − yk (t)
√

μk sin (
√

μkh))

×
(

zk (t)
sin

(√
μkh

)
√

μk
+ yk (t) cos (

√
μkh)

)

thus, 〈
ehAw, B

(
ehAw

)〉
=

+∞∑
k=1

λkzkyk cos (2
√

μkh) +
1
2
λk

(
z2

k√
μk

− y2
k

√
μk

)
sin (2

√
μkh) . (4.7)
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Let us write∣∣u (t + h) + u (t − h) − 〈
ehAw (t) , B

(
ehAw (t)

)〉− 〈
e−hAw (t) , B

(
e−hAw (t)

)〉∣∣
≤ ∣∣u (t + h) − 〈

ehAw (t) , B
(
ehAw (t)

)〉∣∣ +
∣∣u (t − h) − 〈

e−hAw (t) , B
(
e−hAw (t)

)〉∣∣ .
Then we end the proof of Lemma 4.5 by applying (4.5), (4.6) and (4.7) in the last inequality. �
Lemma 4.6. Let 0 ≤ 2h ≤ s ≤ t, and

ξ (t, h) =
1
2
‖w (t + h) − w (t)‖2 and

δ (s, t, h) = ξ (t, h) + ξ (t,−h) − ξ (s, h) − ξ (s,−h) .

There is a constant M > 0 satisfying

|δ (s, t, 2h)| ≤ M

∫ t

s

((
u2 (τ) + u2 (τ + h) + u2 (τ − h)

)
+

∫ 2h

−2h

u2 (τ + σ) dσ

)
dτ

+ M

⎛⎝√∫ 2h

−2h

u2 (t + τ) dτ +

√∫ 2h

−2h

u2 (s + τ) dτ

⎞⎠ .

Proof. Define the function ε by

δ (s, t, 2h) =
1
2

∥∥e2hAw (t) − w (t)
∥∥2 − 1

2

∥∥e2hAw (s) − w (s)
∥∥2

+
1
2

∥∥e−2hAw (t) − w (t)
∥∥2 − 1

2

∥∥e−2hAw (s) − w (s)
∥∥2

+ ε (s, t, h) .

Then for σ ≥ 2h, the following inequality√∫ 2h

0

u2 (σ + τ) dτ +

√∫ 0

−2h

u2 (σ + τ) dτ ≤ √
2

√∫ 2h

−2h

u2 (σ + τ) dτ

and Lemma 4.4 yield

|ε (s, t, h)| ≤ 4
√

hK
∥∥w0

∥∥2

⎛⎝√∫ 2h

−2h

u2 (t + τ) dτ +

√∫ 2h

−2h

u2 (s + τ) dτ

⎞⎠ . (4.8)

Now, Lemma 4.4 gives

δ (s, t, 2h) = 4
+∞∑
k=1

(
μky2

k (t) + z2
k (t) − μky2

k (s) − z2
k (s)

)
sin2 (

√
μkh) + ε (s, t, h) . (4.9)

But we have
1
2
(
μky2

k (t) + z2
k (t) − μky2

k (s) − z2
k (s)

)
= −

∫ t

s

λkzk (τ) yk (τ) u (τ) dτ. (4.10)

Indeed wk =
(

ykek

zkek

)
is solution of

d
dt

wk = Awk − λku (t)
(

0
ykek

)



1152 J.-F. COUCHOURON

and therefore the function ‖wk‖ satisfies

1
2

d
dt

‖wk‖2 (t) = −λku (t) zk (t) yk (t) . (4.11)

Consequently, (4.10) and (4.9) and the definition of u imply

+∞∑
k=1

(
μky2

k (t) + z2
k (t) − μky2

k (s) − z2
k (s)

)
sin2 (

√
μkh) = −2

∫ t

s

+∞∑
k=1

λkzk (τ) yk (τ) u (τ) sin2 (
√

μkh) dτ

= −
∫ t

s

+∞∑
k=1

λkzk (τ) yk (τ) u (τ) dτ +
∫ t

s

+∞∑
k=1

λkzk (τ) yk (τ) u (τ) cos (2
√

μkh) dτ

and then

+∞∑
k=1

(
μky2

k (t) + z2
k (t) − μky2

k (s) − z2
k (s)

)
sin2 (

√
μkh)

= −
∫ t

s

u2 (τ) dτ +
∫ t

s

u (τ)
+∞∑
k=1

λkzk (τ) yk (τ) cos (2
√

μkh) dτ.

Set

γ (τ, h) = u (τ + h) + u (τ − h) − 2
+∞∑
k=1

λkzk (τ) yk (τ) cos (2
√

μkh) . (4.12)

By using (4.12), (three times) the inequality |ab| ≤ 1
2
(
a2 + b2

)
and finally Lemma 4.5 combining with (a + b)2 ≤

2
(
a2 + b2

)
, we obtain successively

∣∣∣∣∣2
∫ t

s

u (τ)
+∞∑
k=1

λkzk (τ) yk (τ) cos (2
√

μkh) dτ

∣∣∣∣∣ =
∣∣∣∣∫ t

s

u (τ) (u (τ + h) + u (τ − h) − γ (τ, h)) dτ

∣∣∣∣
≤ 1

2

∫ t

s

(
3u2 (τ) + u2 (τ + h) + u2 (τ − h) + γ2 (τ, h)

)
dτ

≤ 1
2

∫ t

s

(
3u2 (τ) + u2 (τ + h) + u2 (τ − h) + C

∫ h

−h

u2 (τ + σ) dτ

)
dτ, (4.13)

where we have set
C = 2

(
2
√

hK2
∥∥w0

∥∥2
)2

.

Consequently, from (4.8), (4.9), (17), (4.13) we see that there is a constant M > 0 satisfying

|δ (s, t, 2h)| ≤ M

∫ t

s

((
u2 (τ) + u2 (τ + h) + u2 (τ − h)

)
+

∫ h

−h

u2 (τ + σ) dσ

)
dτ

+ M

⎛⎝√∫ 2h

−2h

u2 (t + τ) dτ +

√∫ 2h

−2h

u2 (s + τ) dτ

⎞⎠ .

Lemma 4.6 is now proved. �
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End of proof of Proposition 4.1

The function w is uniformly continuous on [0, +∞[ if and only if

lim sup
h→0,h≥0

(
sup
t≥h

(ξ (t, h) + ξ (t,−h))
)

= 0. (4.14)

Let s > 0. Since w is uniformly continuous on [0, s] it follows

lim sup
h→0,h≥0

(
sup
t≥h

(ξ (t, h) + ξ (t,−h))
)

= lim sup
h→0

0≤h≤s

(
sup
t≥s

δ (s, t, h)
)

. (4.15)

Using then Lemma 4.6 and the continuity of the translation in L
2 ([0, +∞[) , we find

0 ≤ lim sup
h→0,h≥0

(
sup
t≥h

(ξ (t, h) + ξ (t,−h))
)

≤ 3M

∫ +∞

s

u2 (τ) dτ. (4.16)

Now, letting s → +∞ in (4.16), we obtain (4.14) and thus the required uniform continuity. The proof of Proposi-
tion 4.1 is now complete. �

It remains to prove Theorem 3.1.

Proof of Theorem 3.1

Let tn −→ +∞ in R
+. Since the orbit w (R+) is precompact in X = HA0 × H using Proposition 4.1 we can

suppose by taking a cluster point w∞ of (w (tn))n and a suitable subsequence that we have w (tn) −→ w∞. Then
for h ∈ R

+ Lemma 4.3 and the semigroup continuity imply w (tn + h) −→ ehAw∞. Now, from the continuity
of B0 it follows

u (tn + h) −→ 〈
ehAw∞, B

(
ehAw∞

)〉
. (4.17)

Let vn (τ) = u (tn + τ) . Since u ∈ L
2 (R+) , the sequence (vn)n converges to zero in L

1 ([0, T [) for each T > 0.
Consequently, considering again a suitable subsequence we obtain vnq (τ) −→ 0, a.e. τ ∈ [0, T [ . Thanks to (4.17)
we then conclude 〈

ehAw∞, B
(
ehAw∞

)〉
= 0, (4.18)

for all h ∈ R
+, because T > 0 is arbitrary and h �−→ 〈

ehAw∞, B
(
ehAw∞

)〉
is continuous.

Lemma 4.7. Assumptions (A4), (A5) provide the following implication:[
(∀t ≥ 0)

〈
etAw0, B

(
etAw0

)〉
= 0

]
=⇒ [

w0 = 0
]
. (4.19)

Proof of Lemma 4.7. Set w0 =
∑+∞

k=1

(
ykek

zkek

)
and w0

N =
∑N

k=1

(
ykek

zkek

)
for each N ∈ N

∗. Then the function

defined by f (t) =
〈
etAw0, B

(
etAw0

)〉
is almost periodic (see [2,8]) as uniform limit on R of trigonometric

polynomials fN (t) =
〈
etAw0

N , B
(
etAw0

N

)〉
. Indeed, this result can be deduced from the following inequalities

which use the isometric aspect of etA and Remark 4.2:

|f (t) − fN (t) | ≤ | 〈etA
(
w0 − w0

N

)
, B

(
etAw0

)〉 | + | 〈etAw0
N , B

(
etA

(
w0 − w0

N

))〉 |
≤ ‖w0 − w0

N‖K‖w0‖ + ‖w0
N‖K‖w0 − w0

N‖
≤ 2K‖w0‖‖w0 − w0

N‖,
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for all t ≥ 0. Moreover, from (4.7) it follows that the coefficients of the Fourier series
∑+∞

k=1 cke2i
√

μkt+c−ke−2i
√

μkt

associated to f are given by

c−k = ck =
1
2
λk

(
ykzk − i

2

(
z2

k√
μk

− y2
k

√
μk

))
, (4.20)

and thus |ck|2 =
|λ2

k|
16μk

(
z2

k + μky2
k

)2
. Consequently if f is identically zero on R

+, using the Bohr transform we

find

ck = lim
T→+∞

1
T

∫ T

0

e−2i
√

μktf (t) dt = 0, (4.21)

for all k. Finally (A5) gives w0 = 0, and Lemma 4.7 is proved.
Now, (4.18) and Lemma 4.7 imply w∞ = 0. Therefore the unique strong cluster point of the precompact

orbit w (R+) is zero, that is lim∞ w = 0. The proof of Theorem 3.1 is then complete. �

5. Applications

Example 1 (wave equation). Let Ω be a bounded open subset of R
n. Consider the system{

ytt − Δy + u (t) y = 0, x ∈ Ω, t ∈ [0, +∞[ ,
y|∂Ω = 0.

(5.1)

The stabilization problem of the wave equation (5.1) with feedback u (t) = 〈yt (t) , y (t)〉 has the form (1.1)–(1.2)
with,

A0 = −Δ, D (A0) = H2 (Ω) ∩ H1
0 (Ω) , HA0 = H1

0 and H = L
2 (Ω) , B0 = IdHA0

.
The feedback control is given by

u (t) =
∫

Ω

ytydx. (5.2)

Assumptions (A1)- . . . -(A5) hold if and only if the eigenvalues of −Δ with Dirichlet boundary conditions are
simple. For instance, this geometric condition on Ω is fulfilled if n = 1 and Ω is an open interval or n = 2
and Ω is an open rectangle with irrational proportion. See [6] for various examples or counterexamples for
such spectral geometric properties in R

n. So by using Theorem 3.1, whenever the eigenvalues are simple the
previously defined feedback control strongly stabilizes the wave equation for all initial data in X = H1

0 ×L
2 (Ω) .

Let us notice that in this example the operator B is compact since it has its values in D (A) .

Example 2 (vibrating beam with hinged ends). Let Ω be a bounded open subset of R
n. Consider the system{

ytt + Δ2y + u (t)Δy = 0, x ∈ Ω, t ∈ [0, +∞[ ,
y = Δy = 0, x ∈ ∂Ω.

(5.3)

In this example we have H = L
2 (Ω) , and A0 = Δ2, D (A0) =

{
y ∈ H4 (Ω) ; y, Δy ∈ H1

0 (Ω)
}
. The stabilization

problem has the form (1.1)–(1.2) with B0 = Δ, and HA0 = H2 (Ω) ∩ H1
0 (Ω) , the control being defined as,

u (t) = 〈yt (t) , y (t)〉 =
∫

Ω

ytΔydx. (5.4)

If n = 1 and Ω = ]0, 1[ equations is a model for the transverse deflection of a beam with hinged ends and u
denotes the axial load on the beam. As previously, whenever the eigenvalues are simple (this is the case for
instance if n = 1) Theorem 3.1 guarantees that the feedback control u strongly stabilizes the beam equation for
all initial data in X.

Let us notice that in this example the operator B is not compact.
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Remark 5.1. Examples 1 and 2 are given in [1,2]. But in these papers only weak stabilization was proved and
the question of strong stabilization remained an open problem. The previous developments give thus a positive
answer to the strong stabilization problem for these systems.

Remark 5.2. The approach developed in this paper does not run for the following example in [1,2] which
concerns a vibrating beam with clamped ends.{

ytt + yxxxx + u (t) yxx = 0, x ∈ ]0, 1[ , t ∈ [0, +∞[ ,
y = yx = 0, x ∈ {0, 1} .

(5.5)

Indeed in this situation assumption (A4) does not hold.

Example 3 (a rotating body beam and a generalization). In [3] the authors consider a stabilization problem
by a torque control of a rotating body beam without damping. It is about a disk with a beam (an antenna for
instance) attached to its center and perpendicular to the disk’s plane. The beam is confined to another plane
which is perpendicular to the disk and rotates with the disk. The dynamics (after scaling simplifications) of the
motion y is ⎧⎪⎨⎪⎩

ytt + yxxxx − ω2 (t) y = 0, x ∈ ]0, 1[ , t ∈ [0, +∞[ ,
y (0, t) = yx (0, t) = yxx (1, t) = yxxx (1, t) = 0,
d
dt

(ω (t)) = γ (t)
(5.6)

with,

γ (t) =
Γ (t) − 2ω (t)

∫ 1

0
yytdx

Id +
∫ 1

0 y2dx
· (5.7)

The torque control applied to the disk Γ appears throughout γ, and ω = θ̇ is the angular velocity. Coron and
d’Andréa Novel have constructed a feedback torque control law which strongly stabilizes the equilibrium point
(0, ω0) , where ω0 satisfies |ω0| < ωc for a critical angular velocity ωc. The authors propose a control of the form

ω (t) = ω0 + σ

(∫ 1

0

yytdx

)
. (5.8)

With suitable assumptions on σ the following relations hold

ω2 − ω2
0 ∈ L

2 (0, +∞) , v ∈ L
2 (0, +∞) , (5.9)

where v stands for
∫ 1

0 yytdx.
Of course the situation of this example is different from the framework described in this paper, since we have

to stabilize system (5.6) at a prescribed non zero equilibrium point for (y, ω) . But the method developed here
can be adapted to solve one of the difficulties of this problem, namely the precompactness of the orbit in the
state space, in order to obtain strong stabilization. In this goal, let us state the following theorem. Consider
again equation (1.1), but this time with a general feedback control u. Thus we do not assume (1.2). Let

v = 〈z, B0y〉H . (5.10)

Consider again the system Q
(
A, g, w0

)
associated to (1.1). Now, we have

g (w) =
(

0
−uB0y

)
, w =

(
y
z

)
. (5.11)
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Theorem 5.1. Suppose [(A1),...,(A5)] holds. Suppose that Q
(
A, g, w0

)
with g given by (5.11) has a global mild

solution w. Assume in addition that u (.) ∈ L
2 (0, +∞) and v (.) ∈ L

2 ([0, +∞[) as function of t, where v is
defined in (5.10). Then the feedback control u strongly stabilizes (1.1).

Theorem 5.1 applies in the example of the rotating body beam by setting u (t) = ω2 (t) − ω2
0 and removing

A0 into A0 + ω2
0B0. With such modifications the new unbounded operator A governing the system Q

(
A, g, w0

)
is linear skew adjoint with the following inner product in X = HA0 × H defined by〈(

y
z

)
,

(
y̌
ž

)〉
X

= 〈y, y̌〉HA0
− ω2

0

2
(〈z, B0y̌〉H + 〈ž, B0y〉H) + 〈z, ž〉H . (5.12)

Really we obtain a new inner product and an equivalent norm on X if we have

(
μk − λkω2

0

) ↑ +∞ and inf
k

μk − λkω2
0

μk
> 0. (5.13)

Of course due to the definition of ωc the choice of ω0 ∈ ]−ωc, ωc[ and the relations λk = 1, these conditions hold
in the present example.

Sketch of proof of Theorem 5.1

We have just to prove again the uniform continuity of the mild solution w of Q
(
A, g, w0

)
, since the end of

the proof of Theorem 3.1 remains valid in the present case (by changing u (tn + τ) into v (tn + τ) in (4.17)).
Lemmas 4.3 and 4.4 remain true after changing ‖w0‖ into ‖w‖∞, where ‖w‖∞, means supt≥0 ‖w (t) ‖. Lemma 4.5
must be replaced by the following lemma.

Lemma 5.1. One has∣∣∣v (t + h) + v (t − h) − 2
∑+∞

k=1 λkzk (t) yk (t) cos
(
2
√

μkh
)∣∣∣

≤ 2
√

hK2‖w‖2∞

(√∫ h

0 u2 (t + τ) dτ +
√∫ 0

−h u2 (t + τ) dτ

)
.

Consequently the bound for δ in Lemma 4.6 becomes

|δ (s, t, 2h)| ≤ M

∫ t

s

((
u2 (τ) + v2 (τ + h) + v2 (τ − h)

)
+

∫ 2h

−2h

u2 (τ + σ) dσ

)
dτ

+ M

⎛⎝√∫ 2h

−2h

u2 (t + τ) dτ +

√∫ 2h

−2h

u2 (s + τ) dτ

⎞⎠ .

And as we have seen previously, owing to the L
2 assumption upon u and v, such an estimate yields the uniform

continuity of w (see (4.15) and (4.16)). Consequently, Theorem 5.1 is established. �

Remark 5.3. In fact no Ingham gap condition (see [3,10]) is required for these different theorems. So, one of
the interest of Theorem 5.1 is to show that the precompactness property (which constitutes the fundamental
technical task in [3]) can be derived from a general approach and that the gap condition used in this paper can
be dropped.
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