
ESAIM: COCV 17 (2011) 722–748 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv/2010020 www.esaim-cocv.org

ANALYSIS OF A TIME OPTIMAL CONTROL PROBLEM RELATED
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Abstract. We consider a time optimal control problem arisen from the optimal management of a
bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a
state-control constrained time optimal control problem. After analyzing the state system (a complex
system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-
reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the
existence of, at least, an optimal solution. Then we present a detailed derivation of a first order opti-
mality condition (involving the corresponding adjoint systems) characterizing these optimal solutions.
Finally, a numerical example is shown.
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1. Introduction: Environment and mathematics

An excessive concentration of nutrients (usually nitrogen or phosphorus) in large bodies of water (as lakes,
estuaries, rivers and so on) encourages the growth of aquatic organisms, causing its aging by an abnormal
biological enrichment of the water. For instance, in young lakes water is clear and cold, supporting a reduced
quantity of life. However, urban sewage and agricultural/industrial wastes derived from human activities can
introduce into the aquatic media a large amount of nutrients which promotes an increasing of the lake’s fertility
and accelerates the aging process: plant/animal life explodes, and organic detritus begin to be deposited on
the bottom, giving raise to the eutrophication processes. The main pollutants (nitrates and phosphates) from
drained wastewater act as plant nutrients, stimulating the algal blooms and, consequently, robbing the water
of dissolved oxygen vital to other aquatic life species, and warming the water. These facts usually poison whole
populations of fish, whose organic remains further exhaust the dissolved oxygen from water, leading the lake to
ecological death.
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Eutrophication of aquatic media has been considered one of the major threats to the health of ecosystems
since the last decades. Eutrophication processes have been the subject of a wide range of biological/engineering
researches but, from a purely mathematical viewpoint, related mathematical models have been much less an-
alyzed. There exist several interesting papers studying the problem from a simplified ordinary differential
equations viewpoint, but within the framework of partial differential equations, only a few models have been
proposed: a 1D spatial model for oxygen dynamics was initially given by Lunardini and Di Cola [13]. More
complex 2D depth-averaged models for nutrient-phytoplankton in shallow water have been given, for instance,
by Arino et al. [5] or Cioffi and Gallerano [9]. For the full 3D case, several numerical models have been proposed,
among others, by Drago et al. [10], Yamashiki et al. [20] or Park et al. [14], but only introducing numerical
simulations for particular zones, without presenting theoretical results about existence or uniqueness of solution.
The most remarkable results of existence of solution for a complete nutrient-phytoplankton-zooplankton-oxygen
model can be found in the paper of Allegretto et al. [1] (for a particular periodic case) or in the recent work
of the authors [3] (presenting also uniqueness and regularity results for a realistic situation with non-smooth
water velocity).

In order to reduce this harmful concentration of nutrients in water, one of the most useful techniques is
related to the use of bioreactors. The operation of this type of bioreactors consists of holding up eutrophicated
water (rich, for instance, in nitrogen) in a small number of large tanks where we add a certain (small) quantity
of phytoplankton, that we let grow in order to absorb nitrogen from water. In the particular problem analyzed
in this work we consider only two large shallow tanks with the same capacities (but possibly with different
geometries). Water rich in nitrogen will fill the first tank Ω1, where we will add a quantity ρ1 of phytoplankton –
which we will let freely grow for a permanence time T 1 – to drop nitrogen level down to a desired threshold.
Inside this first tank we are also interested in obtaining – with economical purposes – a certain quantity of
organic detritus, since they are very estimated as agricultural fertilizers. Once reached the desired levels of
nitrogen and organic detritus (settled in the bottom of the tank, then reclaimed for agricultural use), we will
drain this first tank and pass water to the second tank Ω2, where the same operation is repeated, by adding
a new amount ρ2 of phytoplankton. Water leaving this second fermentation tank after a permanence time T 2

(thus, the total time for the whole process is T 1 + T 2) will be usually poor in nitrogen, but rich in detritus
(again settled in the bottom) and phytoplankton (recovered from a final filtering). At this point, we are also
interested – for economical and ecological reasons – in minimizing this final quantity of phytoplankton. Thus,
the time optimal control problem will consist of finding the quantities (ρ1, ρ2) of phytoplankton that we must
add to each one of both tanks along the time, and the minimal permanence times (T 1, T 2), so that the nitrogen
levels be lower that maximum thresholds and detritus levels be higher that minimum thresholds, and in such a
way that the final phytoplankton concentration be as reduced as possible.

From a mathematical point of view, this problem can be formulated as a time optimal control problem with
state and control constraints, where the control variable (T 1, T 2, ρ1, ρ2) is the vector of permanence times and
phytoplankton quantities added in each tank, the state variables are the concentrations of nutrient, phytoplank-
ton, zooplankton and organic detritus, the cost function to be minimized is a combination of the permanence
times and the phytoplankton concentration of water leaving the second tank, the state constraints stand for the
thresholds required for the final nitrogen and detritus concentrations in each one of the tanks, and the control
constraints are related to technological bounds.

The mathematical literature related to the analysis of time optimal control problems is not large. However,
the number of references devoted to time optimal control of partial differential equations is more reduced.
Among the most recent contributions on the topic we must mention those of Cannarsa and Frankowska [7]
and Gugat and Leugering [11], where a semigroup theory approach is used, or those of Raymond [4,15,16] and
Wang [12,18,19], dealing with academical related problems with the time as a control variable. In these papers
very interesting results on the existence of solutions and optimality conditions are obtained. Unfortunately,
none of them can be applied to our particular problem due to the lack of smoothness in the coefficients, and to
their dependence on time. So, we will need to develop a complete analysis of the time optimal control problem
specifically adapted to our non-smooth assumptions.
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A detailed mathematical formulation of the time optimal control problem is presented in Section 2. The
next section is devoted to the analysis of the state system, and to the demonstration of the existence of a
(non necessarily unique) optimal solution. Finally, these optimal solutions will be characterized by a first order
optimality condition (involving a suitable adjoint system to be adequately defined) presented in Section 4. We
will also introduce an alternative formulation of the optimality conditions for the qualified case.

2. Formulation of the time optimal control problem

Most realistic mathematical models governing eutrophication are recently formulated as systems of partial
differential equations (as opposite to classical systems of ordinary differential equations) with a high complexity
due to the great variety of internal phenomena appearing on them. In this work we have considered a complete
model, where the four biological variables involved in our problem appear (the formulation of the biochemical
interaction terms and their meaning can be found, for instance, in Canale [6]). Thus, we consider the state
variable u = (u1, u2, u3, u4), where u1 denotes a generic nutrient concentration, for instance, nitrogen (as will be
considered in our case) or phosphorus, u2 denotes the phytoplankton concentration, u3 denotes the zooplankton
concentration, and u4 denotes the organic detritus concentration.

The interaction of these four biological species into a given water domain Ω ⊂ R
3 (with a smooth enough

boundary ∂Ω) and along a time interval I = (0, T ) can be described by the following system of coupled partial
differential equations for convection-diffusion-reaction with standard Michaelis-Menten kinetics:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u1

∂t + w · ∇u1 −∇ · (μ1∇u1) + CncL
u1

KN+u1 u2 − CncKru
2 − CncKrdΘθ−20u4 = g1 in Q,

∂u2

∂t + w · ∇u2 −∇ · (μ2∇u2) − L u1

KN +u1 u2 + Kru
2 + Kmfu2 + Kz

u2

KF +u2 u3 = g2 in Q,

∂u3

∂t + w · ∇u3 −∇ · (μ3∇u3) − CfzKz
u2

KF +u2 u3 + Kmzu
3 = g3 in Q,

∂u4

∂t + w · ∇u4 −∇ · (μ4∇u4) − Kmfu2 − Kmzu
3 + KrdΘθ−20u4 + Wfd

∂u4

∂x3
= g4 in Q,

(2.1)

with corresponding boundary conditions on Σ and initial conditions in Ω, and where we have considered:
• Q = I × Ω, Σ = I × ∂Ω;
• w(t, x): the water velocity;
• μi, i = 1, . . . , 4: the diffusion coefficients of each species, which are positive constants;
• Cnc: the nitrogen-carbon stoichiometric relation;
• L(t, x): the luminosity function, given by expression

L(t, x) = νC
θ(t,x)−20
t

I0

Is
e−φ x3 ,

with ν the maximum phytoplankton growth rate, Ct the phytoplankton growth thermic constant, θ(t, x)
the water temperature (in Celsius), I0 the incident light intensity, Is the light saturation, and φ the
light absorption by water;

• KN : the nitrogen half-saturation constant;
• Krd: the detritus regeneration rate;
• Θ: the detritus regeneration thermic constant, which is positive;
• Kr: the phytoplankton endogenous respiration rate;
• Kmf : the phytoplankton death rate;
• Kz: the zooplankton predation (grazing);
• KF : the phytoplankton half-saturation constant;
• Cfz: the grazing efficiency factor;
• Kmz: the zooplankton death rate (including predation);
• Wfd: the falling velocity of organic detritus (settling).
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In order to present in a simple way the system of equations (2.1) we will consider, for R
+ = [0,∞), the

mapping A = (A1, A2, A3, A4) : R
+ × Ω × [R+]4 −→ R

4, given by:

A(t, x,u) =

⎡⎢⎢⎢⎢⎢⎢⎣
−Cnc

[
L(t, x) u1

KN+u1 u2 − Kru
2
]

+ CncKrdΘθ(t,x)−20u4[
L(t, x) u1

KN+u1 u2 − Kru
2
]
− Kmfu2 − Kz

u2

KF +u2 u3

CfzKz
u2

KF +u2 u3 − Kmzu
3

Kmfu2 + Kmzu
3 − KrdΘθ(t,x)−20u4

⎤⎥⎥⎥⎥⎥⎥⎦. (2.2)

Moreover, the sedimentation term Wfd
∂u4

∂x3
in the fourth equation of (2.1) will be incorporated into the

convective term w ·∇u4, by redefining a new artificial velocity w+(0, 0, Wfd) for the organic detritus equation.
Thus, taking into account above considerations, the system (2.1) can be written in the following equivalent way:

∂ui

∂t
+ wi · ∇ui −∇ · (μi∇ui) = Ai(t, x,u) + gi in Q, for i = 1, . . . , 4, (2.3)

where wi = w for i = 1, 2, 3, and w4 = w + (0, 0, Wfd).
With these notations we can mathematically formulate the time optimal control problem with the following

elements:
• Controls: As we have remarked in the Introduction, we will control the system by means of four

design variables: the permanence time T 1 of water inside the first tank Ω1, the permanence time T 2

inside the second tank Ω2, the quantity ρ1(t, x) of phytoplankton added in the first tank along the time
interval I1 = (0, T 1), and the quantity ρ2(t, x) of phytoplankton added in the second tank along the
corresponding time interval I2 = (0, T 2).

It is worthwhile remarking here that, although the time-space variables are different for each tank
((t1, x1) ∈ I1 ×Ω1 for the first tank, (t2, x2) ∈ I2 ×Ω2 for the second one), for the sake of simplicity, we
will use the same variables (t, x) for both cases, since no confusion is possible.

• State systems: We consider two state systems giving the concentrations of nitrogen, phytoplankton,
zooplankton, and organic detritus in each one of the tanks. Since both tanks are isolated, no transference
for any of the four species is considered across their boundaries, that is, Neumann boundary conditions
are assumed to be null for all concentrations in both tanks. In addition, both systems are coupled by
means of the initial-final conditions: when water passes from the first tank to the second one, it is
natural to assume that water is mixed up, and this is the reason of considering the initial conditions for
the concentrations inside the second tank as given by the corresponding averaged final concentrations
in the first tank. So, the two coupled state systems are given by:

– Tank Ω1: The state variables for the first tank will be denoted u1 = (u1,1, u2,1, u3,1, u4,1) with u1,1

(nitrogen), u2,1 (phytoplankton), u3,1 (zooplankton), and u4,1 (organic detritus). The permanence
time of water inside this first tank will be T 1, the fluid velocity in the tank will be w1(t, x), and
the initial concentrations will be given by u1

0 = (u1,1
0 , u2,1

0 , u3,1
0 , u4,1

0 ). Thus, for Q1 = I1 × Ω1 and
Σ1 = I1 × ∂Ω1, we have the system, for i = 1, . . . , 4:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ui,1

∂t + w1
i · ∇ui,1 −∇ · (μi∇ui,1) = Ai(t, x,u1) +

{
ρ1, if i = 2
0, if i �= 2 in Q1,

∂ui,1

∂n = 0 on Σ1,

ui,1(0) = ui,1
0 in Ω1.

(2.4)

– Tank Ω2: The state variables for the second tank will be denoted u2 = (u1,2, u2,2, u3,2, u4,2) with
u1,2 (nitrogen), u2,2 (phytoplankton), u3,2 (zooplankton), and u4,2 (organic detritus). The perma-
nence time of water inside this second tank will be T 2, and the fluid velocity in the tank will be
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w2(t, x). Thus, for Q2 = I2×Ω2 and Σ2 = I2×∂Ω2, we have the analogous system, for i = 1, . . . , 4:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ui,2

∂t + w2
i · ∇ui,2 −∇ · (μi∇ui,2) = Ai(t, x,u2) +

{
ρ2, if i = 2
0, if i �= 2 in Q2,

∂ui,2

∂n = 0 on Σ2,

ui,2(0) = 1
meas(Ω1)M

i
1(u

1(T 1)) in Ω2,

(2.5)

where Mj = (M1
j , M2

j , M3
j , M4

j ), for j = 1, 2, are the functionals, defined from [L1(Ωj)]4 to R
4,

given by:

Mj(vj) =

⎡⎢⎢⎢⎢⎢⎣

∫
Ωj

v1,jdx∫
Ωj

v2,jdx∫
Ωj

v3,jdx

0

⎤⎥⎥⎥⎥⎥⎦. (2.6)

We have to note here that, since detritus settle before water passes to the second tank, the ini-
tial organic detritus concentration u4,2(0) (that is, the fourth component of M1(u1(T 1))) will be
considered null.

• Objective function: Due to the fact that we are interested in reducing the total processing time
T 1 + T 2 of water inside the bioreactor, and in minimizing the final phytoplankton concentration of
water leaving the second tank, we are led to consider the following cost functional J given by:

J(T 1, T 2, ρ1, ρ2) = N1(T 1 + T 2) +
N2

meas(Ω2)

∫
Ω2

u2,2(T 2)dx, (2.7)

where N1, N2 ≥ 0 are two scaling factors.

• State constraints: As commented in the first section, the final nitrogen concentration in each tank
must be lower than a given threshold, and the final organic detritus concentration in each tank must
be greater than another given threshold. These constraints translate into the relations given by
B = (B1, B2, B3, B4):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B1(T 1, T 2, ρ1, ρ2) = 1
meas(Ω1)

∫
Ω1

u1,1(T 1)dx ≤ σ1,

B2(T 1, T 2, ρ1, ρ2) = 1
meas(Ω2)

∫
Ω2

u1,2(T 2)dx ≤ σ2,

B3(T 1, T 2, ρ1, ρ2) = 1
meas(Ω1)

∫
Ω1

u4,1(T 1)dx ≥ θ1,

B4(T 1, T 2, ρ1, ρ2) = 1
meas(Ω2)

∫
Ω2

u4,2(T 2)dx ≥ θ2,

(2.8)

for certain given values σ1, σ2, θ1, θ2 > 0.

• Control constraints: Finally, for technological reasons, the permanence times (T 1, T 2) must take
their values between two fixed bounds 0 < Tmin < Tmax < ∞, that is, they must lie in the set

V1
ad = {(T 1, T 2) ∈ R

2 : Tmin ≤ T 1, T 2 ≤ Tmax} (2.9)

which is a compact, convex, and nonempty subset of R
2.
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By similar motivations, the quantities (ρ1, ρ2) of phytoplankton added to the tanks must be nonneg-
ative and bounded by a maximal admissible value K > 0, that is, they must lie in the set

V2
ad = {(ρ1, ρ2) ∈ L2((0, Tmax) × Ω1) × L2((0, Tmax) × Ω2) :

0 ≤ ρ1(t, x) ≤ K a.e. (t, x) ∈ (0, Tmax) × Ω1,

0 ≤ ρ2(t, x) ≤ K a.e. (t, x) ∈ (0, Tmax) × Ω2}
(2.10)

which is a closed, bounded, convex, and nonempty subset of L2((0, Tmax) × Ω1) × L2((0, Tmax) × Ω2).
In order to simplify the notations, we will denote Vad = V1

ad × V2
ad. So, the control must satisfy

(T 1, T 2, ρ1, ρ2) ∈ Vad.
Thus, the formulation of the time optimal control problem, denoted by (P), will be the following:

(P) inf
{
J(T 1, T 2, ρ1, ρ2) such that (T 1, T 2, ρ1, ρ2) ∈ Vad and (u1,u2) satisfies (2.4)–(2.5) and (2.8)

}
.

3. Analysis of the control problem

Since the problem we are dealing with depends on varying (although bounded) final times, we need to assume
that the water velocities wj , j = 1, 2, and the corresponding water temperatures θj , j = 1, 2, in the coupled
state systems (2.4)–(2.5) are defined all along the whole time interval [0, Tmax].

As a first step we will introduce several notations for the functional spaces to be used in the below sections:
We denote L3

σ(Ωj) the closure in L3(Ωj)3 of the space {v ∈ D(Ωj)3 : div(v) = 0}, j = 1, 2. We define
Vj = [H1(Ωj)]4, Hj = [L2(Ωj)]4, j = 1, 2, which can be considered within the classical framework Vj ⊂ Hj ≡
H′

j ⊂ Vj , j = 1, 2. Finally, W 1,p,q(0, Tmax; V, V ′) denotes the functional space given by:

W 1,p,q(0, Tmax; V, W ) =

{
v ∈ Lp(0, Tmax; V ) :

dv

dt
∈ Lq(0, Tmax; W )

}
,

for any Banach spaces V ⊂ W , and for 1 ≤ p, q ≤ ∞.
Then, as was demonstrated by the authors in [3] (using similar arguments to previous paper [2] for a problem

related to food technology), the eutrophication systems (2.4)–(2.5) admit a solution under non-smooth hypothe-
ses. To be exact, if we assume that the initial conditions and the source terms are nonnegative and bounded,
and that the fluid velocities and temperatures satisfy:

wj ∈ L2+δ(0, Tmax; L3
σ(Ω)), j = 1, 2, for some δ ≥ 0,

θj ∈ L2((0, Tmax) × Ωj), j = 1, 2,

such that 0 ≤ θj(t, x) ≤ M a.e. (t, x) ∈ (0, Tmax) × Ωj ,

(3.1)

then the state systems (2.4)–(2.5) admit a unique solution uj ∈ W 1,2,1+ε(0, Tmax;Vj ,V′
j)∩[L∞((0, Tmax)×Ωj)]4,

j = 1, 2, for a certain small ε ≥ 0. (In particular, for δ = 0 we have ε = 0, and for δ → ∞, we have ε → 1; see [3].)
Moreover, this solution (u1,u2) is nonnegative and bounded (in previous space norm) by a value depending on
the time bound Tmax, the fluid velocities (w1,w2), the controls (ρ1, ρ2), and the initial condition u1

0.
Unfortunately these mild hypotheses – which will assure the existence of solution for the time optimal control

problem (P) – are not enough in order to allow us the derivation of optimality conditions for this problem. To
do this we will need to impose the following stronger hypotheses on water velocities and temperatures:

wj ∈ W 1,∞,∞(0, Tmax; L3
σ(Ωj), L3

σ(Ωj)), j = 1, 2,

θj ∈ W 1,∞,∞(0, Tmax; L∞(Ωj), L∞(Ωj)), j = 1, 2,

such that 0 ≤ θj(t, x) ≤ M a.e. (t, x) ∈ (0, Tmax) × Ωj .

(3.2)
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Finally, we will introduce the following definition:

Definition 3.1. We will say that (T 1, T 2, ρ1, ρ2) ∈ Vad is a feasible control for the time optimal control prob-
lem (P) if the associated state (u1,u2), solution of coupled systems (2.4)–(2.5), satisfies the constraints (2.8).

Then, we can prove the following existence result under mild hypotheses (3.1):

Theorem 3.2. Let us assume that the set of feasible controls is nonempty. Let u1
0 ∈ [L∞(Ω1)]4 be such

that 0 ≤ ui,1
0 (x) ≤ M a.e. x ∈ Ω1, i = 1, . . . , 4, and let us assume that the water velocities and temperatures

(w1,w2, θ1, θ2) satisfy the regularity hypotheses (3.1), for δ > 0. Then, there exist elements (T̃ 1, T̃ 2, ρ̃1, ρ̃2, ũ1, ũ2)
∈ Vad × (W 1,2,1+ε(0, T̃ 1;V1,V′

1) ∩ [L∞((0, T̃ 1)×Ω1)]4)× (W 1,2,1+ε(0, T̃ 2;V2,V′
2)∩ [L∞((0, T̃ 2)×Ω2)]4), with

ε > 0, such that (T̃ 1, T̃ 2, ρ̃1, ρ̃2) is a solution of the time optimal control problem (P) with associated state
(ũ1, ũ2).

Proof. To prove the existence of optimal control for problem (P) we will consider a minimizing sequence
{(T 1

n , T 2
n , ρ1

n, ρ2
n,u1

n,u2
n)}n∈N ⊂ Vad×(W 1,2,1+ε(0, T 1

n ;V1,V′
1)∩[L∞((0, T 1

n)×Ω1)]4)×(W 1,2,1+ε(0, T 2
n ;V2,V′

2)∩
[L∞((0, T 2

n)×Ω2)]4), that is, for all n ∈ N, the pair (u1
n,u2

n) verifies the state systems (2.4)–(2.5) with associated
control (ρ1

n, ρ2
n), satisfies the constraints (2.8), and:

lim
n→∞J(T 1

n , T 2
n , ρ1

n, ρ2
n) = inf

{
J(T 1, T 2, ρ1, ρ2) such that (T 1, T 2, ρ1, ρ2) ∈ Vad

and (u1,u2) satisfies (2.4)–(2.5) and (2.8)
}
.

From the uniqueness of solution of state systems (2.4)–(2.5) we can assure that (u1
n,u2

n) are defined for the
whole time interval (0, Tmax), for all n ∈ N. Then we have, thanks to the estimates obtained in [3] and to the
boundedness of the set Vad, that the sequence of states {(u1

n,u2
n)}n∈N is bounded, i.e.

‖uj
n‖W 1,2,1+ε(0,Tmax;Vj ,V′

j)∩[L∞((0,Tmax)×Ωj)]4 ≤ C(Tmax, M), j = 1, 2, ∀n ∈ N. (3.3)

Thus, since the inclusion W 1,2,1+ε(0, Tmax;Vj ,V′
j)∩[L∞((0, Tmax)×Ωj)]4 ⊂ [L

10
3 −γ((0, Tmax)×Ωj)]4 is compact

∀γ > 0 (for instance, applying Lem. 7.8 of Roub́ıček [17] with the choices V1 = H1(Ωj), V2 = L6−δ(Ωj) (for any
δ > 0 small we have that the inclusion H1(Ωj) ⊂ L6−δ(Ωj) is compact), V3 = H1(Ωj)′, H = L2(Ωj) and V4 =
Lμ(Ωj) (with any μ−1 = 1−λ

2 + λ
6−δ for λ ∈ (0, 1)), we have the compact inclusion W 1,2,1+ε(0, Tmax;Vj ,V′

j) ∩
L∞((0, Tmax) × Ωj) ⊂ L

2
λ (0, Tmax; Lμ(Ωj)); then, by choosing δ > 0 such that μ = 2

λ = 10
3 − γ we obtain the

desired inclusion (we must recall here that p = 10
3 is the greatest exponent p such that L2(0, Tmax; H1(Ωj)) ∩

L∞(0, Tmax; L2(Ωj)) ⊂ Lp((0, Tmax) × Ωj)), there exist subsequences, still denoted in the same way, such that:

ρj
n ⇀ ρ̃j in L2((0, Tmax) × Ωj), j = 1, 2,

uj
n ⇀ ũj in L2(0, Tmax;Vj), j = 1, 2,

uj
n → ũj in [L

10
3 −γ((0, Tmax) × Ωj)]4, ∀γ > 0, j = 1, 2,

uj
n(t) ⇀ ũj(t) in Hj, ∀t ∈ [0, Tmax], j = 1, 2,

T j
n → T̃ j in R, j = 1, 2.

(3.4)

As a first point we will demonstrate that (ũ1, ũ2) is the state associated to the control (T̃ 1, T̃ 2, ρ̃1, ρ̃2).
In order to do this, we will pass to the limit in the state systems satisfied by the states (u1

n,u2
n) associated

to the controls (T 1
n , T 2

n , ρ1
n, ρ2

n). We consider the very weak formulation of these state systems as defined
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in (0, Tmax) × Ω1 and (0, Tmax) × Ω2, respectively:

4∑
i=1

⎧⎨⎩
∫

(0,Tmax)×Ω1

μi∇ui,1
n · ∇zidxdt +

∫
(0,Tmax)×Ω1

w1
i · ∇ui,1

n zidxdt −
∫ Tmax

0

〈
dzi

dt
(t), ui,1

n (t)

〉
V′

1,V1

dt

⎫⎬⎭
=

4∑
i=1

{∫
(0,Tmax)×Ω1

Ai(t, x,u1
n)zidxdt +

∫
Ω1

ui,1
0 zi(0)dx

}
+
∫

(0,Tmax)×Ω1

ρ1
nz2dxdt,

∀z ∈ W 1,∞,∞(0, Tmax;V1,V′
1) such that z(Tmax) = 0, (3.5)

4∑
i=1

⎧⎨⎩
∫

(0,Tmax)×Ω2

μi∇ui,2
n · ∇zidxdt +

∫
(0,Tmax)×Ω2

w2
i · ∇ui,2

n zidxdt −
∫ Tmax

0

〈
dzi

dt
(t), ui,2

n (t)

〉
V′

2,V2

dt

⎫⎬⎭
=

4∑
i=1

∫
(0,Tmax)×Ω2

Ai(t, x,u2
n)zidxdt +

1
meas(Ω1)

3∑
i=1

∫
Ω2

[∫
Ω1

ui,1
n (T 1

n)dx

]
zi(0)dx +

∫
(0,Tmax)×Ω2

ρ2
nz2dxdt,

∀z ∈ W 1,∞,∞(0, Tmax;V2,V′
2) such that z(Tmax) = 0. (3.6)

Passing to the limit in all the terms in (3.5) and in almost all the terms in (3.6) is a direct consequence
of the convergences in (3.4). The only terms in (3.6) where we can not pass to the limit in an immediate
way are those of the form

∫
Ω1

ui,1
n (T 1

n)dx. However, for those terms the pass to the limit can be obtained
by means of the change of variable τ = t

T 1
n

in the state system corresponding to tank 1. So, if we denote
vi,1

n (τ) = ui,1
n (T 1

nτ) = ui,1
n (t), this state system turns into:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂vi,1
n

∂τ + T 1
nw1

i · ∇vi,1
n − T 1

n∇ · (μi∇vi,1
n ) = T 1

nAi(t, x,v1
n) + δ2iT

1
nρ1

n in (0, 1)× Ω1,

∂vi,1
n

∂n = 0 on (0, 1) × ∂Ω1,

vi,1
n (0) = ui,1

0 in Ω1,

where δ2i denotes the Kronecker’s delta, that is, δ2i = 1 if i = 2, and δ2i = 0 if i �= 2.
Arguing as for equation (3.5) we can pass to the limit in above system, and obtain the existence of a

subsequence of {v1
n}n∈N (still denoted in the same way) converging to ṽ1, with ṽi,1(τ) = ũi,1(T̃ 1τ), in similar

spaces as {u1
n}n∈N in (3.4). In particular, we have that:

v1
n(τ) ⇀ ṽ1(τ) in H1, ∀τ ∈ [0, 1]. (3.7)

But, this convergence implies, in a direct manner, that:

lim
n→∞

∫
Ω1

vi,1
n (1)dx =

∫
Ω1

ṽi,1(1)dx, (3.8)

or, equivalently, that:

lim
n→∞

∫
Ω1

ui,1
n (T 1

n)dx =
∫

Ω1

ũi,1(T̃ 1)dx. (3.9)

So, we have just proved that (ũ1, ũ2) is the unique state associated to the control (T̃ 1, T̃ 2, ρ̃1, ρ̃2).
On the other hand, from the properties of Vad, it is clear that (T̃ 1, T̃ 2, ρ̃1, ρ̃2) ∈ Vad. Thus, we are only

left to prove that (ũ1, ũ2) satisfy the constraints (2.8). The first and third constraints are satisfied, as a direct
consequence of convergence (3.9). For demonstrating the verification of the other two constraints we only need
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to use the new change of variable τ = t
T 2

n
in the state system corresponding to Tank 2. So, if we denote

vi,2
n (τ) = ui,2

n (T 2
nτ) = ui,t

n (t), by similar arguments to those given for the state system corresponding to Tank 1,
we obtain that:

lim
n→∞

∫
Ω2

ui,2
n (T 2

n)dx =
∫

Ω2

ũi,2(T̃ 2)dx, (3.10)

from which we conclude that constraints (2.8) are satisfied.
Moreover, by convergences (3.4) and (3.10), we deduce that:

lim
n→∞J(T 1

n , T 2
n , ρ1

n, ρ2
n) = J(T̃ 1, T̃ 2, ρ̃1, ρ̃2), (3.11)

i.e. (T̃ 1, T̃ 2, ρ̃1, ρ̃2) is a solution of the time optimal control problem (P). �

4. Optimality conditions

In this section we will obtain the necessary first order optimality conditions for characterizing the solutions
of the time optimal control problem (P). As noted in the previous section, since two of the control variables are
the permanence times (T 1, T 2), we will need to guarantee the differentiability of the states with respect to the
time t. So, we will need to impose the more restrictive hypotheses (3.2) on the fluid velocities and temperatures
to assure the existence of optimality conditions. To obtain these optimality conditions we will use a change of
time variable (introducing a new control v in the spirit of the original ideas of Raymond and Zidani [15]), since
a simple scaling of time has shown to be insufficient for our purposes. It is worthwhile remarking here that
the time transformation by introducing a new control v had been previously introduced – within the ordinary
differential equations framework – in the classical book of Zeidler [21], for instance.

For a better organization and understanding of the results exposed in this section, we will divide it into two
subsections. In the first one we will analyze how to obtain the optimality conditions for a new optimal control
problem (P̃) with fixed final time, obtained from the problem (P) via a change of the time variable. In the
second subsection we will use the results obtained in the first one in order to derive the optimality conditions
for the original time optimal control problem (P).

4.1. The problem with fixed final time

For any given time interval [0, T ] ⊂ R with T > 0, and for R
+∗ = (0,∞), we will consider a function

v ∈ C([0, 1]; R+
∗ ) such that: ∫ 1

0

v(ζ)dζ = T. (4.1)

Associated to above function, we will define the following change of variable:

t = φ(τ) :=
∫ τ

0

v(ζ)dζ, τ ∈ [0, 1], (4.2)

that implies dφ
dτ (τ) = v(τ), which will give rise to the new state equations.

Then if for each one of both tanks Ωj , j = 1, 2, we consider the corresponding change of variable t = φj(τ) =∫ τ

0
vj(ξ)dξ, τ ∈ [0, 1], we will introduce the following notations:

yj(τ) := (uj ◦ φj)(τ) = uj(t), �j(τ) := (ρj ◦ φj)(τ) = ρj(t), j = 1, 2. (4.3)

Applying above changes of variable to our original optimal control problem with varying final time (P), we
can rewrite it under the following alternative form of an optimal control problem with fixed final time:



A TIME OPTIMAL CONTROL PROBLEM 731

• Controls: The four new design variables will be the functions vj(τ), j = 1, 2, for the changes of time
variables, and the corresponding transformed quantities �j(τ, x) of phytoplankton added in the tank Ωj ,
j = 1, 2, along the new time interval (0, 1).

• State systems: We consider the two transformed state systems for the concentrations of nitrogen,
phytoplankton, zooplankton, and organic detritus in each one of the tanks, and two new state equations
for the corresponding changes of time variable in each one of the tanks.

– Species in tank Ω1:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂yi,1

∂τ + v1(τ)w1
i (φ1(τ), x) · ∇yi,1 − v1(τ)∇ · (μi∇yi,1)

= v1(τ)Ai(φ1(τ), x,y1) + δ2iv
1(τ)�1(τ) in (0, 1) × Ω1,

∂yi,1

∂n = 0 on (0, 1) × ∂Ω1,

yi,1(0) = ui,1
0 in Ω1.

(4.4)

– Species in tank Ω2:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂yi,2

∂τ + v2(τ)w2
i (φ2(τ), x) · ∇yi,1 − v2(τ)∇ · (μi∇yi,2)

= v2(τ)Ai(φ2(τ), x,y2) + δ2iv
2(τ)�2(τ) in (0, 1) × Ω2,

∂yi,2

∂n = 0 on (0, 1) × ∂Ω2,

yi,2(0) = 1
meas(Ω1)M

i
1(y

1(1)) in Ω2.

(4.5)

– Change of time variable in tank Ω1:{
dφ1

dτ (τ) = v1(τ) in (0, 1),

φ1(0) = 0.
(4.6)

– Change of time variable in tank Ω2:{
dφ2

dτ (τ) = v2(τ) in (0, 1),

φ2(0) = 0.
(4.7)

• Objective function:

J̃(v1, v2, �1, �2) = N1

∫ 1

0

(v1(τ) + v2(τ))dτ +
N2

meas(Ω2)

∫
Ω2

y2,2(1)dx. (4.8)

• State constraints:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B̃1(v1, v2, �1, �2) = 1
meas(Ω1)

∫
Ω1

y1,1(1)dx ≤ σ1,

B̃2(v1, v2, �1, �2) = 1
meas(Ω2)

∫
Ω2

y1,2(1)dx ≤ σ2

B̃3(v1, v2, �1, �2) = 1
meas(Ω1)

∫
Ω1

y4,1(1)dx ≥ θ1,

B̃4(v1, v2, �1, �2) = 1
meas(Ω2)

∫
Ω2

y4,2(1)dx ≥ θ2.

(4.9)

• Control constraints: As commented in above paragraphs, functions (v1, v2) corresponding to the
changes of time variable must lie in the set

W1
ad = {(v1, v2) ∈ C([0, 1]; R+)2 : Tmin ≤ v1(τ), v2(τ) ≤ Tmax, ∀τ ∈ [0, 1]}. (4.10)
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Moreover, the transformed quantities (�1, �2) of phytoplankton added to both tanks must lie in the
set

W2
ad = {(�1, �2) ∈ L2((0, 1) × Ω1) × L2((0, 1) × Ω2) :

0 ≤ �1(τ, x) ≤ K a.e. (τ, x) ∈ (0, 1) × Ω1,

0 ≤ �2(τ, x) ≤ K a.e. (τ, x) ∈ (0, 1) × Ω2}.
(4.11)

So, if we denote Wad = W1
ad × W2

ad, which is a closed, bounded, convex, and nonempty subset of
C([0, 1]; R+)2 × L2((0, 1) × Ω1) × L2((0, 1) × Ω2), the control must satisfy (v1, v2, �1, �2) ∈ Wad.

Thus, the formulation of the optimal control problem with fixed final time, denoted by (P̃), will be the
following:

(P̃) inf
{
J̃(v1, v2, �1, �2) such that (v1, v2, �1, �2) ∈ Wad and (y1,y2, φ1, φ2)

satisfies (4.4)–(4.5), (4.6)–(4.7) and (4.9)
}
.

By introducing the above changes of time variable we actually transform time into two new state variables φj ,
j = 1, 2, which will be determined by the new control variables vj , j = 1, 2, by means of the initial value
problems (4.6)–(4.7).

The existence and uniqueness of solution of the new state systems (4.4)–(4.5) and (4.6)–(4.7) is again a direct
application of well-known techniques:

Lemma 4.1. For any given element (v1, v2, �1, �2) ∈ Wad, there exists (y1,y2, φ1, φ2) ∈ (W 1,2,2(0, 1;V1,V′
1)∩

[L∞((0, 1) × Ω1)]4) × (W 1,2,2(0, 1;V2,V′
2) ∩ [L∞((0, 1)× Ω2)]4) × C1([0, 1]; R)2 the unique solution of the state

systems (4.4)–(4.5) and (4.6)–(4.7).
Moreover, for (y1,y2), we have the estimates:

‖yj‖W 1,2,2(0,1;Vj ,V′
j)∩[L∞((0,1)×Ωj)]4 ≤ C, j = 1, 2,

0 ≤ yj(τ, x) ≤ C, a.e. (τ, x) ∈ (0, 1) × Ωj , j = 1, 2,

where C = C(Tmin, Tmax, M) is a non-negative constant only depending on Tmin, Tmax and M .

Proof. Existence, uniqueness and boundedness of solution (y1,y2) for the state systems (4.4)–(4.5) can be
obtained by the same arguments to those used in the proof of existence, uniqueness and boundedness of solution
for the original state systems (2.4)–(2.5). The only difference here is that the diffusive part of the partial
differential operator (that is, the terms of the form vj(τ)∇ · (μi∇yi,j)) are affected by time-varying coefficients:
However, this fact does not represent any difficulty in our arguing, since those coefficients vj ∈ L∞(0, 1) are
bounded from below by a strictly positive value Tmin.

Finally, existence and uniqueness of solution (φ1, φ2) of the state equations (4.6)–(4.7) can be obtained from
classical results for ordinary differential equations. �

Next, following the ideas of Raymond and Zidani [15], we will prove a result stating the equivalence between
the new optimal control problem (P̃) and original time optimal control problem (P). In order to this, we need
to introduce the following definition:

Definition 4.2. We will say that (v1, v2, �1, �2) ∈ Wad is a feasible control for the optimal control problem (P̃) if
the associated state (y1,y2, φ1, φ2), solution of systems (4.4)–(4.5) and (4.6)–(4.7), satisfies the constraints (4.9).
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Theorem 4.3. Problems (P̃) and (P) are equivalent in the following sense:

(a) Let (v1, v2, �1, �2) ∈ Wad be a feasible control for problem (P̃). Then, there exists a feasible control
(T 1, T 2, ρ1, ρ2) ∈ Vad for problem (P), such that:

�j = ρj ◦ φj , φj(1) = T j, j = 1, 2,

J̃(v1, v2, �1, �2) = J(T 1, T 2, ρ1, ρ2).

(b) Let (T 1, T 2, ρ1, ρ2) ∈ Vad be a feasible control for problem (P). Then, for all (v1, v2) ∈ C([0, 1]; R+)2,
such that Tmin ≤ v1(τ), v2(τ) ≤ Tmax, ∀τ ∈ [0, 1], and T j =

∫ 1

0
vj(ξ)dξ, the element (v1, v2, �1, �2) with

�j = ρj ◦ φj is a feasible control for problem (P̃). Moreover,

J(T 1, T 2, ρ1, ρ2) = J̃(v1, v2, �1, �2).

Proof. Since part (b) of the theorem is a direct consequence of above computations in this subsection, we are only
left to prove part (a). Let (v1, v2, �1, �2) ∈ Wad be a feasible control for problem (P̃). Since vj(τ) ≥ Tmin > 0,
∀τ ∈ [0, 1], j = 1, 2, we know that the mappings φj(τ) =

∫ τ

0 vj(ξ)dξ, j = 1, 2, are strictly increasing in the
interval [0, 1]. Thus, for j = 1, 2, the mapping φj : [0, 1] → [0, φj(1)] is bijective, which allows us to define the
inverse mapping (φj)−1 : [0, φj(1)] → [0, 1]. So, let us consider the element (T 1, T 2, ρ1, ρ2) defined by:

T j = φj(1), j = 1, 2,

ρj(t, x) =

{
�((φj)−1(t), x), if t ≤ φj(1)

0, if t > φj(1)
j = 1, 2.

Now it is a direct computation to demonstrate that the element (T 1, T 2, ρ1, ρ2) above defined is a feasible control
for problem (P). �

The key point in the proof of the equivalence between both control problems relies in the choice of the controls
(v1, v2) such that they are strictly positive. Our arguments would not remain true if we substitute the condition
Tmin ≤ v1(τ), v2(τ) ≤ Tmax, ∀τ ∈ [0, 1], in the definition of Wad by the (more natural at a first sight) condition
Tmin ≤ ∫ 1

0
v1(τ)dτ,

∫ 1

0
v2(τ)dτ ≤ Tmax, due to the fact that, under this latter condition, it is possible to find

controls vj ∈ C([0, 1]; R+) but taking null values in a subinterval of [0, 1]. In this case, we could not assure the
mapping φj to be bijective, and both control problems should not be necessarily equivalent.

The most evident advantage of dealing with the optimal control problem (P̃) instead of the original time
optimal control problem (P) is that (P̃) is a problem with fixed final time, which will allow us to obtain, in a
simpler way, the optimality conditions for our problem.

Let us derive now the optimality conditions for the optimal control (P̃). In order to do this, we begin by an
analysis of the behavior of the derivatives of the nonlinear operator A = (A1, A2, A3, A4) : R

+×Ω×[R+]4 −→ R
4

with respect to the time t ∈ R
+ and to the real variable u ∈ [R+]4. On one hand, it is clear that, ∀u ∈ [R+]4, the

Jacobian DuA(t, x,u) will be given by the following matrix with Caratheodory coefficients in R
+ × Ω× [R+]4:⎛⎜⎜⎜⎜⎜⎜⎜⎝

−CncL(t, x) KN
(KN +u1)2

u2 −CncL(t, x) u1

KN +u1 + CncKr 0 CncKrdΘθ(t,x)−20

L(t, x) KN
(KN +u1)2

u2 L(t, x) u1

KN +u1 − (Kr + Kmf ) − Kz
KF

(KF +u2)2
u3 −Kz

u2

KF +u2 0

0 CfzKz
KF

(KF +u2)2
u3 CfzKz

u2

KF +u2 − Kmz 0

0 Kmf Kmz −KrdΘθ(t,x)−20

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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and that, ∀t ∈ R
+, the derivative DtA(t, x,u) will be given by the following vector with Caratheodory compo-

nents in R
+ × Ω × [R+]4:

DtA(t, x,u) =

⎛⎜⎜⎜⎜⎜⎝
−Cnc

∂L
∂t (t, x) u1

KN+u1 u2 + CncKrdΘθ(t,x)−20 ln(Θ)∂θ
∂t (t, x)u4

∂L
∂t (t, x) u1

KN+u1 u2

0

−KrdΘθ(t,x)−20 ln(Θ)∂θ
∂t (t, x)u4

⎞⎟⎟⎟⎟⎟⎠ .

So, for θ satisfying hypothesis (3.2), we have for i, j = 1, . . . , 4:

∣∣∣∣∂Ai

∂uj
(t, x,u)

∣∣∣∣ ≤ c0 +
4∑

k=1

ckuk, ∀(t, x,u) ∈ R
+ × Ω × [R+]4, (4.12)

∣∣∣∣∂Ai

∂t
(t, x,u)

∣∣∣∣ ≤ 4∑
k=1

ckuk, ∀(t, x,u) ∈ R
+ × Ω × [R+]4, (4.13)

with c0, c1, . . . , c4 non-negative constants.
Then, we can demonstrate the following result stating the differentiability of the state system with respect

to the time control variable v:

Theorem 4.4. We consider, for any given 0 < C1 < C2 < ∞, the following closed, convex subset of
C([0, 1]; R+

∗ ):

ΨC1,C2 = {v ∈ C([0, 1]; R+) : C1 ≤ v(τ) ≤ C2, ∀τ ∈ [0, 1]} (4.14)

and define, ∀v ∈ ΨC1,C2 , the element uv ∈ W 1,2,2(0, 1;V,V′) ∩ [L∞((0, 1)×Ω)]4 as the solution of the system,
for i = 1, . . . , 4: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ui

∂τ + v(τ)wi(φv(τ), x) · ∇ui − v(τ)∇ · (μi∇ui)

= v(τ)Ai(φv(τ), x,u) + δ2iv(τ)� in (0, 1) × Ω,

∂ui

∂n = 0 on (0, 1) × ∂Ω,

ui(0) = ui
0 in Ω,

(4.15)

where initial condition u0 ∈ [L∞(Ω)]4 is such that 0 ≤ ui
0(x) ≤ M a.e. x ∈ Ω, i = 1, . . . , 4, distributed control

� ∈ L2((0, 1) × Ω) is such that 0 ≤ �(τ, x) ≤ M a.e. (τ, x) ∈ (0, 1) × Ω, water velocity w and temperature θ
satisfy hypothesis (3.2), and φv ∈ C1([0, 1]; R) is the solution of the following initial value problem:

{
dφv

dτ (τ) = v(τ) in (0, 1),

φv(0) = 0.
(4.16)

If ∀v1, v2 ∈ ΨC1,C2 and ∀δ ∈ (0, 1) we denote vδ = v1 + δ(v2 − v1), then we have that uvδ
verifies the equality:

uvδ
= uv1 + δh + rδ,
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where h ∈ W 1,2,2(0, 1;V,V′) is the solution of the system, for i = 1, . . . , 4:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂hi

∂τ + v1(τ)wi(φv1 (τ), x) · ∇hi − v1(τ)∇ · (μi∇hi) = v1(τ)[DuA(φv1 (τ), x,uv1 )h]i

+ (φv2(τ) − φv1(τ))
{

v1(τ)[DtA(φv1 (τ), x,uv1 )]i − v1(τ)Dtw(φv1(τ), x) · ∇ui
v1

}
+ (v2(τ) − v1(τ))

{
∇ · (μi∇ui

v1
) − wi(φv1 (τ), x) · ∇ui

v1
+ Ai(φv1 (τ), x,uv1 ) + δ2i�

}
in (0, 1) × Ω,

∂hi

∂n = 0 on (0, 1) × ∂Ω,

hi(0) = 0 in Ω,

(4.17)

and where rδ ∈ W 1,2,2(0, 1;V,V′) is such that:

lim
δ→0

1
δ
‖rδ‖W 1,2,2(0,1;V,V′) = 0. (4.18)

Proof. For system (4.17) we can obtain, arguing as in the first part of Lemma 4.1, the existence of a unique

solution h ∈ W 1,2,2(0, 1;V,V′) ∩ [L∞((0, 1) × Ω)]4. Then, if we define zδ =
uvδ

− uv1

δ
− h =

rδ

δ
, we have that

zδ ∈ W 1,2,2(0, 1;V,V′) satisfies the system, for i = 1, . . . , 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂zi
δ

∂τ + vδ(τ)
δ wi(φvδ

(τ), x) · ∇ui
vδ

− v1(τ)
δ wi(φv1 (τ), x) · ∇ui

v1
− v1(τ)wi(φv1(τ), x) · ∇hi

− vδ(τ)
δ ∇ · (μi∇ui

vδ
) + v1(τ)

δ ∇ · (μi∇ui
v1

) + v1(τ)∇ · (μi∇hi)

= vδ(τ)
δ

(
Ai(φvδ

(τ), x,uvδ
)
)− v1(τ)

δ

(
Ai(φv1(τ), x,uv1 )

)− v1(τ)[DuA(φv1 (τ), x,uv1 )h]i

− (v2(τ) − v1(τ))
{
∇ · (μi∇ui

v1
) − wi(φv1(τ), x) · ∇ui

v1
+ Ai(φv1 (τ), x,uv1 )

}
− (φv2(τ) − φv1 (τ))

{
v1(τ)[DtA(φv1 (τ), x,uv1 )]i − v1(τ)Dtw(φv1 (τ), x) · ∇ui

v1

}
in (0, 1) × Ω,

∂zi
δ

∂n = 0 on (0, 1) × ∂Ω,

zi
δ(0) = 0 in Ω.

(4.19)

To complete the proof we only have to demonstrate that limδ→0 ‖zδ‖W 1,2,2(0,1;V,V′) = 0. In order to obtain
this, we consider the following Taylor series expansions valid a.e. (τ, x) ∈ (0, 1) × Ω, for i = 1, . . . , 4:

Ai(φvδ
(τ), x,uvδ

(τ, x)) − Ai(φv1 (τ), x,uv1 (τ, x))

=
∫ 1

0

∂Ai

∂t
(φv1 (τ) + θ(φvδ

(τ) − φv1 (τ)), x,uv1 (τ, x))(φvδ
(τ) − φv1(τ))dθ

+
∫ 1

0

∇uAi(φvδ
(τ), x,uv1 (τ, x) + θ(uvδ

(τ, x) − uv1(τ, x))) · (uvδ
(τ, x) − uv1(τ, x))dθ,

(4.20)

wi(φvδ
(τ), x) − wi(φv1(τ), x) =

∫ 1

0

Dtw(φv1 (τ) + θ(φvδ
(τ) − φv1 (τ)), x)(φvδ

(τ) − φv1(τ))dθ. (4.21)
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Thus, bearing in mind that vδ

δ − v1
δ = v2 − v1, from (4.20)–(4.21) we have that a.e. (τ, x) ∈ (0, 1) × Ω, for

i = 1, . . . , 4:

vδ(τ)
δ

Ai(φvδ
(τ), x,uvδ

(τ, x)) − v1(τ)
δ

Ai(φv1(τ), x,uv1 (τ, x)) = (v2(τ) − v1(τ))Ai(φv1(τ), x,uv1 (τ, x))

+
vδ(τ)

δ

∫ 1

0

∂Ai

∂t
(φv1(τ) + θ(φvδ

(τ) − φv1(τ)), x,uv1 (τ, x))(φvδ
(τ) − φv1(τ))dθ

+
vδ(τ)

δ

∫ 1

0

∇uAi(φvδ
(τ), x,uv1 (τ, x) + θ(uvδ

(τ, x) − uv1(τ, x))) · (uvδ
(τ, x) − uv1(τ, x))dθ,

(4.22)

vδ(τ)
δ

wi(φvδ
(τ), x) · ∇ui

vδ
(τ, x) − v1(τ)

δ
wi(φv1(τ), x) · ∇ui

v1
(τ, x) = (v2(τ) − v1(τ))wi(φv1 (τ), x) · ∇ui

v1
(τ, x)

+
vδ(τ)

δ
wi(φvδ

(τ), x) · ∇(ui
vδ

− ui
v1

)(τ, x)

+
vδ(τ)

δ

∫ 1

0

Dtw(φv1 (τ) + θ(φvδ
(τ) − φv1(τ)), x)(φvδ

(τ) − φv1(τ)) · ∇ui
v1

(τ, x)dθ,

(4.23)

vδ(τ)
δ

∇ · (μi∇ui
vδ

(τ, x)) − v1(τ)
δ

∇ · (μi∇ui
v1

(τ, x)) = (v2(τ) − v1(τ))∇ · (μi∇ui
v1

(τ, x))

+
vδ(τ)

δ
∇ · (μi∇(ui

vδ
− ui

v1
)(τ, x)). (4.24)

We also define the following terms, for i = 1, . . . , 4:

Aδ(τ, x) =
∫ 1

0

DuA(φvδ
(τ), x,uv1 (τ, x) + θ(uvδ

(τ, x) − uv1(τ, x)))dθ (4.25)

f i
δ(τ, x) =

{
vδ(τ)

∫ 1

0

∇uAi(φvδ
(τ), x,uv1 (τ, x) + θ(uvδ

(τ, x) − uv1(τ, x)))dθ

− v1(τ)∇uAi(φv1 (τ), x,uv1 (τ, x))
}
· h(τ, x)

+
{

vδ(τ)
∫ 1

0

∂Ai

∂t
(φv1(τ) + θ(φvδ

(τ) − φv1(τ)), x,uv1 (τ, x))dθ

− v1(τ)
∂Ai

∂t
(φv1(τ), x,uv1 (τ, x))

}
φvδ

(τ) − φv1(τ)
δ

−
{

vδ(τ)
∫ 1

0

Dtw(φv1 (τ) + θ(φvδ
(τ) − φv1(τ)), x) · ∇ui

v1
(τ, x)dθ

− v1(τ)Dtw(φv1 (τ), x) · ∇ui
v1

(τ, x)
}

φvδ
(τ) − φv1(τ)

δ

− (vδ(τ)wi(φvδ
(τ), x) − v1(τ)wi(φv1(τ), x)) · ∇hi(τ, x)

+ (vδ(τ) − v1(τ))∇ · (μi∇hi(τ, x)). (4.26)

Thus, from equalities (4.22)–(4.24), taking into account that
ui

vδ
−ui

v1
δ −hi = zi

δ and φvδ
−φv1
δ = φv2 −φv1 , and

using notations (4.25)–(4.26), we have that above system (4.19), satisfied by zδ, can be rewritten in the following
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equivalent way, for i = 1, . . . , 4:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂zi
δ

∂τ + vδ(τ)wi(φδ(τ), x) · ∇zi
δ − vδ(τ)∇ · (μi∇zi

δ)

= vδ(τ)[Aδ(τ, x)zδ ]i + f i
δ(τ, x) in (0, 1) × Ω,

∂zi
δ

∂n = 0 on (0, 1) × ∂Ω,

zi
δ(0) = 0 in Ω.

(4.27)

Now, thanks to estimate (4.12), we have:

‖Aδ‖L∞((0,1)×Ω)4×4 ≤ C, ∀δ ∈ (0, 1). (4.28)

Then, choosing as test function zδ in system (4.27), integrating by parts and taking into account the bound-
edness of vδ and Aδ, we obtain a.e. τ ∈ (0, 1):

‖zδ(τ)‖2
H + 2μ

∫ τ

0

vδ(s)
∫

Ω

∇zδ : ∇zδdxds ≤ C

∫ τ

0

‖zδ(s)‖2
Hds +

∫ τ

0

‖fδ(s)‖2
Hds,

with μ = min{μ1, . . . , μ4}. Then, by Gronwall’s Lemma, we obtain that:

‖zδ‖W 1,2,2(0,1;V,V′) ≤ C‖fδ‖L2((0,1)×Ω).

On the other hand, thanks to estimates (4.12) and (4.13), by the dominated convergence Lebesgue’s Theorem,
we deduce that:

lim
δ→0

‖fδ‖L2((0,1)×Ω)) = 0.

Thus, we conclude the convergence of zδ to 0 or, equivalently, the desired convergence (4.18). �
By completely analogous arguments we can also prove the following result for the differentiability of the state

system with respect to the distributed control variable �:

Theorem 4.5. We consider, for any given C > 0, the following closed, convex subset of L2((0, 1) × Ω)):

ΥC = {� ∈ L2((0, 1) × Ω) : 0 ≤ �(τ, x) ≤ C a.e. (τ, x) ∈ (0, 1) × Ω} (4.29)

and define, ∀� ∈ ΥC, the element u� ∈ W 1,2,2(0, 1;V,V′)∩[L∞((0, 1)×Ω)]4 as the solution of the system (4.15),
where initial condition u0 ∈ [L∞(Ω)]4 is such that 0 ≤ ui

0(x) ≤ M a.e. x ∈ Ω, i = 1, . . . , 4, water velocity w
and temperature θ satisfy hypothesis (3.2), mapping v ∈ C([0, 1]; R+

∗ ), and φv ∈ C1([0, 1]; R) is the solution of
the initial value problem (4.16).

If ∀�1, �2 ∈ ΥC and ∀δ ∈ (0, 1) we denote �δ = �1 + δ(�2 − �1), then we have that u�δ
verifies the equality:

u�δ
= u�1 + δh + rδ,

where h ∈ W 1,2,2(0, 1;V,V′) is the solution of the system, for i = 1, . . . , 4:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂hi

∂t + v(τ)wi(φv(τ), x) · ∇hi − v(τ)∇ · (μi∇hi)

= v(τ)[DuA(φv(τ), x,uρ1 )h]i + δ2iv(τ)(�2 − �1) in (0, 1) × Ω,

∂hi

∂n = 0 on (0, 1) × ∂Ω,

hi(0) = 0 in Ω,
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and where rδ ∈ W 1,2,2(0, 1;V,V′) is such that:

lim
δ→0

1
δ
‖rδ‖W 1,2,2(0,1;V,V′) = 0. (4.30)

We must remark here that above result remains true under the milder hypothesis (3.1) with the only difference
that u�, h and rδ ∈ W 1,2,1(0, 1;V,V′). In the proof, since zδ ∈ L2(0, 1;V) but ∂zδ

∂t ∈ L1(0, 1;V′), we can not
use zδ as test function in the derivation of the energy estimate for zδ(τ). So, we will need to use, instead of
it, a truncate of zδ (now in L∞(0, 1;V)) as test function, following the same arguments as those previously
introduced by the authors in [2].

Corollary 4.6. Let u0 ∈ [L∞(Ω)]4 be such that 0 ≤ ui
0(x) ≤ M a.e. x ∈ Ω, i = 1, . . . , 4, and let w and θ

satisfy hypothesis (3.2). Then, for any given 0 < C1 < C2 and C > 0, the mapping

S : ΨC1,C2 × ΥC −→ W 1,2,2(0, 1;V,V′)

(v, �) −→ S(v, �) = uv,�

(4.31)

where uv,� ∈ W 1,2,2(0, 1;V,V′) is the solution of system (4.15), with φv ∈ C1([0, 1]; R) the solution of initial
value problem (4.16), is Gateaux differentiable.

Then, as a direct consequence of above results, we obtain the Gateaux differentiability of the mapping
control-state for the optimal control problem (P̃):

Theorem 4.7. Let initial condition u1
0 ∈ [L∞(Ω1)]4 be such that 0 ≤ ui,1

0 (x) ≤ M a.e. x ∈ Ω1 and let water
velocities w1, w2 and temperatures θ1, θ2 be such that satisfy hypothesis (3.2). Let us consider the following
mapping:

T : Wad −→ W 1,2,2(0, 1;V1,V′
1) × W 1,2,2(0, 1;V2,V′

2)

(v1, v2, �1, �2) −→ T(v1, v2, �1, �2) = (T1(v1, v2, �1, �2),T2(v1, v2, �1, �2)) = (y1,y2)

where (y1,y2) are the solutions of state systems (4.4)–(4.5) with controls (v1, v2, �1, �2). Then, T is Gateaux
differentiable. Moreover, ∀(ṽ1, ṽ2, �̃1, �̃2), (v1, v2, �1, �2) ∈ Wad the corresponding derivatives are given by:

D�1T1(ṽ1, ṽ2, �̃1, �̃2)(�1 − �̃1) = v1
�1 ∈ W 1,2,2(0, 1;V1,V′

1) ∩ [L∞((0, 1) × Ω1)]4 is the solution of system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂vi,1
�1

∂τ + ṽ1(τ)w1
i (φ̃1(τ), x) · ∇vi,1

�1 − ṽ1(τ)∇ · (μi∇vi,1
�1 )

= ṽ1(τ)[DuA(φ̃1(τ), x, ỹ1)v1
�1 ]i + δ2iṽ

1(τ)(�1 − �̃1) in (0, 1) × Ω1,

∂vi,1
�1

∂n = 0 on (0, 1) × ∂Ω1,

vi,1
�1 (0) = 0 in Ω1,

(4.32)

where ỹj = Tj(ṽ1, ṽ2, �̃1, �̃2), j = 1, 2, and φ̃j are the changes of variable φ̃j(τ) =
∫ τ

0 ṽj(ζ)dζ, j = i, 2.
D�2T1(ṽ1, ṽ2, �̃1, �̃2)(�2 − �̃2) = v1

�2 = 0.

D�1T2(ṽ1, ṽ2, �̃1, �̃2)(�1 − �̃1) = v2
�1 ∈ W 1,2,2(0, 1;V2,V′

2) ∩ [L∞((0, 1) × Ω2)]4 is the solution of system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂vi,2
�1

∂τ + ṽ2(τ)w2
i (φ̃2(τ), x) · ∇vi,2

�1 − ṽ2(τ)∇ · (μi∇vi,2
�1 )

= ṽ2(τ)[DuA(φ̃2(τ), x, ỹ2)v2
�1 ]i in (0, 1) × Ω2,

∂vi,2
�1

∂n = 0 on (0, 1) × ∂Ω2,

vi,2
�1 (0) = 1

meas(Ω1)M
i
1(v

1
�1 (1)) in Ω2.

(4.33)
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D�2T2(ṽ1, ṽ2, �̃1, �̃2)(�2 − �̃2) = v2
�2 ∈ W 1,2,2(0, 1;V2,V′

2) ∩ [L∞((0, 1) × Ω2)]4 is the solution of system:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂vi,2
�2

∂τ + ṽ2(τ)w2
i (φ̃2(τ), x) · ∇vi,2

�2 − ṽ2(τ)∇ · (μi∇vi,2
�2 )

= ṽ2(τ)[DuA(φ̃2(τ), x, ỹ2)v2
�2 ]i + δ2iṽ

2(τ)(�2 − �̃2) in (0, 1) × Ω2,

∂vi,2
�2

∂n = 0 on (0, 1) × ∂Ω2,

vi,2
�2 (0) = 0 in Ω2.

(4.34)

Dv1T1(ṽ1, ṽ2, �̃1, �̃2)(v1 − ṽ1) = v1
v1 ∈ W 1,2,2(0, 1;V1,V′

1) is the solution of system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vi,1
v1

∂τ + ṽ1(τ)w1
i (φ̃1(τ), x) · ∇vi,1

v1 − ṽ1(τ)∇ · (μi∇vi,1
v1 ) = ṽ1(τ)[DuA(φ̃1(τ), x, ỹ1)v1

v1 ]i

+ (φ1(τ) − φ̃1(τ))
[
ṽ1(τ)DtA

i(φ̃1(τ), x, ỹ1) − ṽ1(τ)Dtw1(φ̃1(τ), x) · ∇ỹi,1
]

+ (v1(τ) − ṽ1(τ))
[
∇ · (μi∇ỹi,1) − w1

i (φ̃
1(τ), x) · ∇ỹi,1 + Ai(φ̃1(τ), x, ỹ1) + δ2i�̃

1
]

in (0, 1) × Ω1,

∂vi,1
v1

∂n = 0 on (0, 1) × ∂Ω1,

vi,1
v1 (0) = 0 in Ω1,

(4.35)
where φ1 ∈ C1([0, 1]; R) is the solution of the initial value problem (4.6).

Dv2T1(ṽ1, ṽ2, �̃1, �̃2)(v2 − ṽ2) = v1
v2 = 0.

Dv1T2(ṽ1, ṽ2, �̃1, �̃2)(v1 − ṽ1) = v2
v1 ∈ W 1,2,2(0, 1;V2,V′

2) is the solution of system:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂vi,2
v1

∂τ + ṽ2(τ)w2
i (φ̃2(τ), x) · ∇vi,2

v1 − ṽ2(τ)∇ · (μi∇vi,2
v1 )

= ṽ2(τ)[DuA(φ̃2(τ), x, ỹ2)v2
v1 ]i in (0, 1) × Ω2,

∂vi,1
v1

∂n = 0 on (0, 1) × ∂Ω2,

vi,1
v1 (0) = 1

meas(Ω1)M
i
1(v

1
v1 (1)) in Ω2.

(4.36)

Dv2T2(ṽ1, ṽ2, �̃1, �̃2)(v2 − ṽ2) = v2
v2 ∈ W 1,2,2(0, 1;V2,V′

2) is the solution of system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vi,2
v2

∂τ + ṽ2(τ)w2
i (φ̃2(τ), x) · ∇vi,2

v2 − ṽ2(τ)∇ · (μi∇vi,2
v2 ) = ṽ2(τ)[DuA(φ̃2(τ), x, ỹ2)v2

v2 ]i

+ (φ2(τ) − φ̃2(τ))
[
ṽ2(τ)DtA

i(φ̃2(τ), x, ỹ2) − ṽ2(τ)Dtw2(φ̃2(τ), x) · ∇ỹi,2
]

+ (v2(τ) − ṽ2(τ))
[
∇ · (μi∇ỹi,2) − w2

i (φ̃
2(τ), x) · ∇ỹi,2 + Ai(φ̃2(τ), x, ỹ2) + δ2i�̃

2
]

in (0, 1) × Ω2,

∂vi,2
v2

∂n = 0 on (0, 1) × ∂Ω2,

vi,2
v2 (0) = 0 in Ω2,

(4.37)
where φ2 ∈ C1([0, 1]; R) is the solution of the initial value problem (4.7).

First order optimality conditions for state constrained optimal control problems can be obtained by different
techniques. However, in, our particular case, and due to its special features, we will derive optimality conditions
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for optimal control problem (P̃) by using the following abstract result of Casas [8], whose application to our
problem is immediate:

Theorem 4.8. Let us consider the following optimization problem:

(Q) inf
b∈Uad

F (b) subject to G(b) ∈ E,

where Uad and E are, respectively, two convex subsets of two Banach spaces V and W , satisfying
◦
E �= ∅, and

F : V −→ (−∞, +∞] and G : V −→ W are two Gateaux differentiable mappings. Then, if b̃ ∈ Uad is a solution
of problem (Q), there will exist elements γ ≥ 0 and λ ∈ W ′ such that:

γ + ‖λ‖W ′ > 0, (4.38)〈
λ, β − G(b̃)

〉
W ′,W

≤ 0, ∀β ∈ E, (4.39)〈
γF ′(b̃) +

[
DG

Db
(b̃)
]∗

λ,b − b̃
〉

V ′,V
≥ 0, ∀b ∈ Uad. (4.40)

Moreover, if the problem (Q) is qualified, that is, if there exists an element b0 ∈ Uad satisfying:

G(b̃) +
DG

Db
(b̃)(b0 − b̃) ∈ ◦

E, (4.41)

then we obtain above relations for γ > 0.

In order to simplify the notation in below paragraphs we will introduce the following functionals Hj :
R

+
∗ × {u ∈ Vj : ui(x) ≥ 0 a.e. x ∈ Ωj} × Vj × L2(Ωj) × R → R, j = 1, 2, define as:

Hj(t,u,p, ρ, γ) = γN1 +
∫

Ωj

A(t, x,u(x)) · p(x)dx +
∫

Ωj

p2(x)ρ(x)dx −
∫

Ωj

Λμ∇u(x) :

∇p(x)dx −
∫

Ωj

∇u(x)wj(t, x) · p(x)dx,

where Λμ is the diagonal matrix whose diagonal is given by (μ1, μ2, μ3, μ4).
Then, as a consequence of the adaptation of above Theorem 4.8 to our fixed final time problem (P̃), we have

the following results providing us with first order optimality conditions for the problem:

Theorem 4.9. Let initial condition u1
0 ∈ [L∞(Ω1)]4 be such that 0 ≤ ui,1

0 (x) ≤ M a.e. x ∈ Ω1 and let water
velocities w1, w2 and temperatures θ1, θ2 be such that satisfy hypothesis (3.2). Let (ṽ1, ṽ2, �̃1, �̃2) ∈ Wad be
a solution of the optimal control problem (P̃) with associated state (ỹ1, ỹ2, φ̃1, φ̃2) ∈ (W 1,2,2(0, 1;V1,V′

1) ∩
[L∞((0, 1)×Ω1)]4)× (W 1,2,2(0, 1;V2,V′

2)∩ [L∞((0, 1)×Ω2)]4)×C1([0, 1]; R)2. Then, there exist elements γ ≥ 0
and λ = (λ1, λ2, λ3, λ4) ∈ R

4, with (γ, λ) �= 0 ∈ R
5, such that:

〈λ, B̃(ṽ1, ṽ2, �̃1, �̃2) − β〉R4 ≥ 0, ∀β ∈ [0, σ1] × [0, σ2] × [θ1,∞) × [θ2,∞), (4.42)
2∑

j=1

∫
(0,1)×Ωj

ṽj(�j − �̃j)q2,jdxdτ ≥ 0, ∀(�1, �2) ∈ W2
ad, (4.43)

2∑
j=1

∫ 1

0

(
vj(τ) − ṽj(τ)

) [
rj(τ) + Hj(φ̃j(τ), ỹj(τ),qj(τ), �̃j(τ), γ)

]
dτ ≥ 0, ∀(v1, v2) ∈ W1

ad, (4.44)
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where (q1,q2) ∈ (W 1,2,2(0, 1;V1,V′
1)∩ [L∞((0, 1)×Ω1)]4)× (W 1,2,2(0, 1;V2,V′

2)∩ [L∞((0, 1)×Ω2)]4) (adjoint
states associated to the distributed controls) are the solutions of the following coupled linear adjoint systems, for
i = 1, . . . , 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂qi,2

∂τ − ṽ2(τ)w2
i (φ̃2(τ), x) · ∇qi,2 − ṽ2(τ)∇ · (μi∇qi,2)

= ṽ2(τ)[DuA(φ̃2(τ), x, ỹ2)Tq2]i in (0, 1) × Ω2,
∂qi,2

∂n = 0 on (0, 1) × ∂Ω2,

q2(1) =

⎡⎢⎢⎣
0
γ

meas(Ω2)

0
0

⎤⎥⎥⎦+

⎡⎢⎢⎣
λ2

meas(Ω2)

0
0
λ4

meas(Ω2)

⎤⎥⎥⎦ in Ω2,

(4.45)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂qi,1

∂τ − ṽ1(τ)w1
i (φ̃

1(τ), x) · ∇qi,1 − ṽ1(τ)∇ · (μi∇qi,1)

= ṽ1(τ)[DuA(φ̃1(τ), x, ỹ1)Tq1]i in (0, 1) × Ω1,
∂qi,1

∂n = 0 on (0, 1) × ∂Ω1,

q1(1) = 1
meas(Ω1)M2(q2(0)) +

⎡⎢⎢⎣
λ1

meas(Ω1)

0
0
λ3

meas(Ω1)

⎤⎥⎥⎦ in Ω1,

(4.46)

and where (r1, r2) ∈ C([0, 1]; R)2 (adjoint states associated to the time controls) are the solutions of the following
uncoupled final time problems, for j = 1, 2:{

−drj

dτ (τ) = ṽj(τ)〈qj(τ), DtA(φ̃j(τ), x, ỹj(τ)) − Dtwj(φ̃j(τ), x) · ∇ỹj(τ)〉Vj ,V′
j

in (0, 1),

rj(1) = 0.
(4.47)

Proof. In order to adapt our optimal control problem (P̃) to the abstract framework presented in Theorem 4.8,
we consider V = L2((0, 1) × Ω1) × L2((0, 1) × Ω2) × C([0, 1]; R+)2, W = R

4, Uad = Wad, E = [0, σ1] × [0, σ2] ×
[θ1,∞) × [θ2,∞) ⊂ R

4, b = (v1, v2, �1, �2), F = J̃ , and G = B̃. Let b̃ = (ṽ1, ṽ2, �̃1, �̃2) be a solution of the
problem (P̃). Then, thanks to Theorem 4.8, we obtain the existence of elements γ ≥ 0 and λ ∈ R

4, with
γ + ‖λ‖R4 > 0, such that: 〈

λ, β − G(b̃)
〉

R4
≤ 0, ∀β ∈ E, (4.48)

and〈
γF ′(b̃) +

[
DG

Db
(b̃)
]∗

λ,b − b̃
〉

V ′,V
= γF ′(b̃)(b − b̃) +

〈
λ,

DG

Db
(b̃)(b − b̃)

〉
R4

≥ 0, ∀b ∈ Uad. (4.49)

On one hand, it is clear that inequality (4.48) is equivalent to condition (4.42). On the other hand, taking
into account the notations and results from Theorem 4.7, we have that:〈

λ, DG
Db (b̃)(b − b̃)

〉
R4

= λ1
meas(Ω1)

∫
Ω1

(
v1,1

�1 (1) + v1,1
v1 (1)

)
dx

+ λ2
meas(Ω2)

∫
Ω2

(
v1,2

�1 (1) + v1,2
�2 (1) + v1,2

v1 (1) + v1,2
v2 (1)

)
dx

+ λ3
meas(Ω1)

∫
Ω1

(
v4,1

�1 (1) + v4,1
v1 (1)

)
dx

+ λ4
meas(Ω2)

∫
Ω2

(
v4,2

�1 (1) + v4,2
�2 (1) + v4,2

v1 (1) + v4,2
v2 (1)

)
dx.

(4.50)
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From the boundedness and non-negativity of the solutions of the state systems (4.4)–(4.5), we can deduce
the existence of unique solutions (q1,q2) ∈ (W 1,2,2(0, 1;V1,V′

1) ∩ [L∞((0, 1)× Ω1)]4)× (W 1,2,2(0, 1;V2,V′
2) ∩

[L∞((0, 1) × Ω2)]4) for the adjoint systems (4.45)–(4.46). Thus, the mapping:

τ ∈ (0, 1) → ṽj(τ)〈qj(τ), DtA(φ̃j(τ), x, ỹj(τ)) − Dtwj(φ̃j(τ), x) · ∇ỹj(τ)〉Vj ,V′
j

lies in space L1(0, 1), for j = 1, 2, and, as a direct consequence of classical results for ordinary differential
equations, there exists a unique solution rj ∈ C([0, 1]; R) for the adjoint equations (4.47). (Actually, rj ∈
W 1,1(0, 1), j = 1, 2.)

Taking as test function z1 = q1(τ) in (4.32) and z2 = q2(τ) in (4.33)–(4.34), integrating along the time
interval (0, 1), adding obtained expressions, and making use of integration by parts, we obtain:

γ
N2

meas(Ω2)

∫
Ω2

(
v2,2

�1 (1) + v2,2
�2 (1)

)
dx +

λ1

meas(Ω1)

∫
Ω1

v1,1
�1 (1)dx +

λ2

meas(Ω2)

∫
Ω2

(
v1,2

�1 (1) + v1,2
�2 (1)

)
dx

+
λ3

meas(Ω1)

∫
Ω1

v4,1
�1 (1)dx +

λ4

meas(Ω2)

∫
Ω2

(
v4,2

�1 (1) + v4,2
�2 (1)

)
dx

=
2∑

j=1

∫
(0,1)×Ωj

ṽj(�j − �̃j)q2,jdxdτ. (4.51)

Taking now as test function z1 = q1(τ) in (4.35) and z2 = q2(τ) in (4.36)–(4.37), and integrating again along
the time interval (0, 1), we also obtain:

∫ 1

0

(vj(τ)−ṽj(τ))
∫

Ωj

[A(φ̃j(τ), x, ỹj (τ))·qj(τ)+�̃jq2,j−Λμ∇ỹj(τ) : ∇qj(τ)−∇ỹj(τ)wj(φ̃j(τ), x)·qj(τ)]dxdτ

=
∫ 1

0

(vj(τ) − ṽj(τ))Hj(φ̃j(τ), ỹj(τ),qj(τ), �̃j(τ), 0)dτ, (4.52)∫ 1

0

(φj(τ) − φ̃j(τ))ṽj(τ)
∫

Ωj

[DtA(φ̃j(τ), x, ỹj(τ)) · qj(τ) − Dtỹj(τ)wj(φ̃j(τ), x) · qj(τ)]dxdτ

= −
∫ 1

0

〈
drj

dτ
(τ), (φj(τ) − φ̃j(τ))

〉
dτ =

∫ 1

0

rj(τ)(vj(τ) − ṽj(τ))dτ. (4.53)

Repeating now above arguments, we obtain:

γN1

2∑
j=1

∫ 1

0

(vj(τ) − ṽj(τ))dτ + γ
N2

meas(Ω2)

∫
Ω2

(
v2,2

v1 (1) + v2,2
v2 (1)

)
+

λ1

meas(Ω1)

∫
Ω1

v1,1
v1 (1)dx +

λ2

meas(Ω2)

∫
Ω2

(
v1,2

v1 (1) + v1,2
v2 (1)

)
dx

+
λ3

meas(Ω1)

∫
Ω1

v4,1
v1 (1)dx +

λ4

meas(Ω2)

∫
Ω2

(
v4,2

v1 (1) + v4,2
v2 (1)

)
dx

=
2∑

j=1

∫ 1

0

(
vj(τ) − ṽj(τ)

) (
rj(τ) + Hj(φ̃j(τ), ỹj(τ),qj(τ), �̃j(τ), γ)

)
dτ. (4.54)
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Finally, from equalities (4.51)–(4.54), we have, ∀b ∈ Wad, that:

γF ′(b̃)(b − b̃) +
〈

λ,
DG

Db
(b̃)(b − b̃)

〉
R4

=
2∑

j=1

∫
(0,1)×Ωj

ṽj(�j − �̃j)q2,jdxdτ

+
2∑

j=1

∫ 1

0

(
vj(τ) − ṽj(τ)

)
[rj(τ) + Hj(φ̃j(τ), ỹj(τ),qj(τ), �̃j(τ), γ)]dτ. (4.55)

Taking this expression to (4.49) we obtain conditions (4.43)–(4.44), which concludes the proof. �

4.2. The original time optimal control problem

Once we have obtained, in the above subsection, the desired optimality conditions for the auxiliary optimal
control problem with fixed final time (P̃), we can use them to recover the optimality conditions for our original
time optimal control problem (P). So, we have the following results:

Theorem 4.10. Let (T̃ 1, T̃ 2, ρ̃1, ρ̃2) ∈ Vad be a solution of the time optimal control problem (P) with associated
state (ũ1, ũ2) ∈ (W 1,2,2(0, T̃ 1;V1,V′

1) ∩ [L∞((0, T̃ 1) × Ω1)]4) × (W 1,2,2(0, T̃ 2;V2,V′
2) ∩ [L∞((0, T̃ 2) × Ω2)]4).

Then, there exist elements γ ≥ 0 and λ = (λ1, λ2, λ3, λ4) ∈ R
4, with (γ, λ) �= 0 ∈ R

5, such that:

〈λ,B(T̃ 1, T̃ 2, ρ̃1, ρ̃2) − β〉R4 ≥ 0, ∀β ∈ [0, σ1] × [0, σ2] × [θ1,∞) × [θ2,∞), (4.56)
2∑

j=1

∫
(0,T̃ j)×Ωj

(ρj − ρ̃j)p2,jdxdτ ≥ 0, ∀(ρ1, ρ2) ∈ V2
ad, (4.57)

∑2
j=1(T

j − T̃ j)
[
sj(tj) + Hj(tj , ũj(tj),pj(tj), ρ̃j(tj), γ)

] ≥ 0

a.e. tj ∈ (0, T̃ j), j = 1, 2, ∀(T 1, T 2) ∈ V1
ad,

(4.58)

where (p1,p2) ∈ (W 1,2,2(0, T̃ 1;V1,V′
1) ∩ [L∞((0, T̃ 1) × Ω1)]4) × (W 1,2,2(0, T̃ 2;V2,V′

2) ∩ [L∞((0, T̃ 2) × Ω2)]4)
(adjoint states associated to the distributed controls) are the solutions of the following coupled adjoint systems,
for i = 1, . . . , 4:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂pi,2

∂t − w2
i · ∇pi,2 −∇ · (μi∇pi,2) = [DuA(t, x, ũ2)Tp2]i in (0, T̃ 2) × Ω2,

∂pi,2

∂n = 0 on (0, T̃ 2) × ∂Ω2,

p2(T̃ 2) =

⎡⎢⎢⎣
0
γ

meas(Ω2)

0
0

⎤⎥⎥⎦+

⎡⎢⎢⎣
λ2

meas(Ω2)

0
0
λ4

meas(Ω2)

⎤⎥⎥⎦ in Ω2,

(4.59)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂pi,1

∂t − w1
i · ∇pi,1 −∇ · (μi∇pi,1) = [DuA(t, x, ũ1)Tp1]i in (0, T̃ 1) × Ω1,

∂pi,1

∂n = 0 on (0, T̃ 1) × ∂Ω1,

p1(T̃ 1) = 1
meas(Ω1)

M2(p2(0)) +

⎡⎢⎢⎣
λ1

meas(Ω1)

0
0
λ3

meas(Ω1)

⎤⎥⎥⎦ in Ω1,

(4.60)
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and where (s1, s2) ∈ C([0, T̃ 1]; R)×C([0, T̃ 2]; R) (adjoint states associated to the time controls) are the solutions
of the following uncoupled final time problems, for j = 1, 2:{ −dsj

dt (t) = 〈pj(t), DtA(t, x, ũj(t)) − Dtwj(t) · ∇ũj(t)〉Vj ,V′
j

in (0, T̃ j),

sj(T̃ j) = 0.
(4.61)

Proof. The result will be a consequence of the equivalence of problems (P) and (P̃), as proved in Theorem 4.3.
So, let us consider a pair of mappings (ṽ1, ṽ2) ∈ W2

ad such that:

φ̃j(1) =
∫ 1

0

ṽj(ζ)dζ = T̃ j, j = 1, 2,

and let (�̃1, �̃2) ∈ W1
ad be the elements given by:

�̃j(τ) = (ρ̃j ◦ φ̃j)(τ), j = 1, 2.

Then we have, thanks to Theorem 4.3, that the control (ṽ1, ṽ2, �̃1, �̃2) ∈ Wad is a solution of optimal control
problem (P̃) with associated state (ỹ1, ỹ2) ∈ (W 1,2,2(0, 1;V1,V′

1)∩ [L∞((0, 1)×Ω1)]4)× (W 1,2,2(0, 1;V2,V′
2)∩

[L∞((0, 1) × Ω2)]4) such that ỹj(τ) = (ũj ◦ φ̃j)(τ), j = 1, 2. Then, from the results of Theorem 4.7, there
will exist elements γ ≥ 0, λ ∈ R

4, with (γ, λ) �= 0, (q1,q2) ∈ (W 1,2,2(0, 1;V1,V′
1) ∩ [L∞((0, 1) × Ω1)]4) ×

(W 1,2,2(0, 1;V2,V′
2) ∩ [L∞((0, 1) × Ω2)]4), and (r1, r2) ∈ C([0, 1]; R)2, satisfying the systems (4.45)–(4.47) and

verifying the conditions (4.42)–(4.44).
Now, we will define the adjoint states associated to the distributed controls (p1,p2) ∈ (W 1,2,2(0, T̃ 1;V1,V′

1)∩
[L∞((0, T̃ 1)×Ω1)]4)× (W 1,2,2(0, T̃ 2;V2,V′

2)∩ [L∞((0, T̃ 2)×Ω2)]4 associated to the distributed controls for the
problem (P), given by:

qj(τ) = (pj ◦ φ̃j)(τ), j = 1, 2,

and define the adjoint states (s1, s2) ∈ C([0, T̃ 1]; R) × C([0, T̃ 2]; R) associated to the time controls for the
problem (P) as:

rj(τ) = (sj ◦ φ̃j)(τ), j = 1, 2.

It is clear, by using the changes of variables tj = φ̃j(τ), j = 1, 2, that the pair (p1,p2) is solution of the
systems (4.59)–(4.60), and that the pair (s1, s2) is solution of the problems (4.61), for j = 1, 2. These changes
of variable also allows us to obtain, in a direct manner, that condition (4.42) is equivalent to condition (4.56),
and that condition (4.43) leads to condition (4.57).

However, obtaining condition (4.58) is not so immediate from condition (4.44), so we will need to apply
more refined arguments: Let us begin by analyzing the extreme case where any of the optimal times satisfies
T̃ j = Tmin. It is obvious in this case that the only possible choice of the mapping ṽj associated to the change
of variable will be ṽj(τ) = Tmin, ∀τ ∈ [0, 1]. If we consider now an arbitrary mapping h ∈ C([0, 1]; R) such that
1 ≤ h(τ) ≤ Tmax

Tmin
, ∀τ ∈ [0, 1], it is evident that vj(τ) = Tminh(τ) is a time control satisfying the constraints

imposed for the definition of Wad. Thus, from condition (4.44), we have that:

∫ 1

0

(vj(τ) − ṽj(τ))[rj (τ) + Hj(φ̃j(τ), ỹj(τ),qj(τ), �̃j(τ), γ)]dτ =
∫ 1

0

Tmin(h(τ) − 1)[rj(τ)

+ Hj(φ̃j(τ), ỹj(τ),qj(τ), �̃j(τ), γ)]dτ =
∫ Tmin

0

(h◦(φ̃j)−1(tj)−1)[sj(tj)−Hj(tj , ũj(tj),pj(tj), ρ̃j(tj), γ)]dtj ≥ 0,
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Table 1. Coefficients for numerical example.

Coefficients Values Units
μi, i = 1, . . . , 4 2.00 × 10−3 m2·s−1

Cnc 2.70 × 10−1 -
KN 2.80 × 10−2 mg·L−1

KF 2.00 × 10−1 mg·L−1

Kmf 3.80 × 10−7 s−1

Kmz 3.78 × 10−7 s−1

Kr 3.80 × 10−7 s−1

Kz 2.30 × 10−6 s−1

Krd 2.30 × 10−5 s−1

Cfz 6.00 × 10−1 -
Θ 1.05 -
θ 19.00 ◦ C
ν 1.50 × 10−5 s−1

φ 8.50 × 10−1 m−1

I0 100.00 Cal·m−2·s−1

Is 90.00 Cal·m−2·s−1

Ct 1.06 -
Wfd 1.00 × 10−2 m·s−1

from which we can deduce that:

sj(tj) −Hj(tj , ũj(tj),pj(tj), ρ̃j(tj), γ) ≥ 0 a.e. tj ∈ [0, Tmin]. (4.62)

For the other extreme case T̃ j = Tmax, we have that ṽj(τ) = Tmax, ∀τ ∈ [0, 1], and, arguing as in previous case,
we obtain that:

sj(tj) −Hj(tj , ũj(tj),pj(tj), ρ̃j(tj), γ) ≤ 0 a.e. tj ∈ [0, Tmax]. (4.63)

Finally, for the intermediate case Tmin < T̃ j < Tmax, we also have that:

sj(tj) −Hj(tj , ũj(tj),pj(tj), ρ̃j(tj), γ) = 0 a.e. tj ∈ [0, T̃ j]. (4.64)

From any of the above three conditions (4.62)–(4.64) we can obtain condition (4.58), which concludes the
proof. �

We must note here that the choice of the time controls in space C([0, 1]; R+∗ ) have allowed us to obtain
condition (4.58). However, if we had chosen the time controls simply in R

+
∗ (corresponding to linear – and

simpler – changes of variable of the type t = φ(τ) = Tτ , with T > 0), we would obtain, instead of optimality
condition (4.58), the more restrictive condition:

2∑
j=1

(T j − T̃ j)
∫ T̃ j

0

[sj(t) −Hj(t, ũj(t),pj(t), ρ̃j(t), γ)]dt ≥ 0, ∀(T 1, T 2) ∈ V1
ad.

It is also worthwhile remarking here that, for the particular case when the water velocities are null (that is,
wj = 0, for j = 1, 2) and the water temperatures are smooth enough, similar optimality conditions have been
obtained (see, for instance, Raymond and Zidani [15,16]) by using Pontryagin’s maximum principle.
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Table 2. Results for numerical example.

Element Initial value Optimal value
J 4.86007× 105 1.57356× 105

B1 2.22887× 10−1 2.19282× 10−1

B2 2.20001× 10−1 1.80000× 10−1

B3 3.98949× 10−2 2.05899× 10−2

B4 5.67390× 10−2 3.99999× 10−2
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Figure 1. Averaged concentrations of nitrogen in the second tank Ω2.

5. Practical conclusions

After a long (and sometimes tedious) derivation, we obtain existence of optimal solutions for the control
problem and a first order optimality condition in order to characterize them. This optimality condition can be
used – after a discretization process – to compute a numerical solution of the original problem. For the sake of
completeness, we introduce here some numerical results obtained for a realistic example consisting of two tanks
of equal dimensions 20 m× 20 m × 16 m. We consider the physical coefficients as given in Table 1.

Moreover, the initial conditions for the first tank will be given by u1,1
0 = 0.28 mg·L−1, u2,1

0 = 0.01 mg·L−1,
u3,1

0 = 0.02 mg·L−1 and u4,1
0 = 4.50 mg·L−1.

For the other values related to state and control constraints, we have taken the thresholds σ1 = 0.23,
σ2 = 0.18, θ1 = 0.015 and θ2 = 0.04 (i.e. we are imposing a nitrogen reduction of the 82% in the first tank and
of the 64% in the second one), a phytoplankton upper bound K = 100, and time bounds Tmin = 135/2 = 67.5
and Tmax = 2× 135 = 270, i.e., we are restricting our search to time variations between the half and the double
of a starting time period of 135 h.

Finally, for the numerical solution of the eutrophication systems, we have considered a tetrahedral regular
mesh of both tanks formed by P1 finite elements with a characteristic size of 1 m, and – for a starting time
period of 135 h – a time step length of 3 h (with a total number of 45 time steps).

Then, applying an interior-point algorithm we have passed, in 22 iterations, from the initial times T 1 =
T 2 = 135, to the optimal times T 1 = 77.05 and T 2 = 76.57. Thus, as a first consequence, we have obtained
a significant time reduction for the whole process of about a 42%. The values showing the reduction of the
objective function and the accomplishment of the state constraints can be seen in Table 2.

In Figure 2 we can see the averaged concentrations of organic detritus for the second tank, corresponding to
the initial and the optimal controls. We can observe how, after the optimal permanence time T 2, the fourth
constraint B4 is also active.

In Figure 1 we show the averaged concentrations of nitrogen for the second tank, corresponding to the initial
and the optimal controls. We can observe how, after the optimal permanence time T 2 = 76.57, the second
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Figure 2. Averaged concentrations of organic detritus in the second tank Ω2.
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Figure 3. Averaged concentrations of phytoplankton in the second tank Ω2.

constraint B2 reaches the exact threshold σ2. Moreover, daily oscillations due to night/day luminosity variations
can be clearly identified.

Finally, in Figure 3 we show the averaged concentrations of phytoplankton for the second tank, corresponding
to the initial and the optimal controls. We can see the significant decrease of the value obtained for the controlled
case, which stays always under the value obtained for the uncontrolled one.
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