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QUASICONVEX RELAXATION OF MULTIDIMENSIONAL CONTROL
PROBLEMS WITH INTEGRANDS f(t, ξ, v)

Marcus Wagner
1

Abstract. We prove a general relaxation theorem for multidimensional control problems of Dieudonné-
Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The
relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex
envelope with respect to the gradient variable, possesses the same finite minimal value as the original
problem, and admits a global minimizer. As an application, we provide existence theorems for the
image registration problem with convex and polyconvex regularization terms.

Mathematics Subject Classification. 26B05, 26B25, 49J20, 49J45, 68U10.

Received October 27, 2008.
Published online March 31, 2010.

1. Introduction

1.1. Dieudonné-Rashevsky type problems with nonconvex integrands

The present paper is concerned with the existence theory for multidimensional control problems with non-
convex integrands f(t, ξ, v), which depend not only on v but explicitly on t and ξ as well, while the control set
is assumed to be convex. More precisely, we study problems of the type

(P): F (x) =
∫

Ω

f(t, x(t), Jx(t)) dt −→ inf !; x ∈ W 1,∞
0 (Ω, Rn); (1.1)

Jx(t) =

⎛⎜⎜⎜⎝
∂x1

∂t1
(t) ...

∂x1

∂tm
(t)

... ...
∂xn

∂t1
(t) ...

∂xn

∂tm
(t)

⎞⎟⎟⎟⎠ ∈ K ⊂ R
nm (∀) t ∈ Ω (1.2)

and choose n � 1, m � 2, Ω ⊂ R
m as the closure of a bounded strongly Lipschitz domain with o ∈ int (Ω) and

the control set K ⊂ R
nm as a convex body with o ∈ int (K). The integrand f(t, ξ, v) : Ω × R

n × K → R is,
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in general, nonconvex with respect to v. The structure of (P) as an optimal control problem will become clear
if one introduces formal control variables u ∈ L∞(Ω, Rnm) with Jx(t) = u(t).

Problems of this kind, also called Dieudonné-Rashevsky type problems, arise e.g. in elasticity theory2, in pop-
ulation dynamics3 and in the framework of mathematical image processing4. In order to motivate the necessity
to treat nonconvex integrands, we mention the following problems from image processing: the image registration
problem with polyconvex regularization5, the determination of the optical flow with nonconvex regularization6

and the optimal control formulation of the Shape-from-Shading problem (multiple image method)7. All these
problems must be formulated with dimensions n = m = 2, consequently, in analogy to the multidimensional
Calculus of Variations we have to look for a quasiconvex relaxation instead of a convex one.

A significant difference between variational and optimal control problems results lies in the fact that the
integrand in (P) is defined a priori on v ∈ K only. The examples from [36], pp. 16 ff., and [37], p. 241 f., show
that, in order to conserve the minimal value of (P) in the process of relaxation, the integrand must be extended
to v ∈ R

nm \ K “in the best possible way”, i.e. by (+∞). For this reason, the quasiconvex functions used in the
forming of a possible envelope must be allowed to take the value (+∞) as well. We will consider the following
classes of integrands:

Definition 1.1. Let Ω ⊂ R
m be the closure of a bounded strongly Lipschitz domain and K ⊂ R

nm a convex
body with o ∈ int (K).

1) (Function class FK.) We say that a function f : R
nm → R ∪ { (+∞) } belongs to the class FK iff f

∣∣K
∈ C 0(K, R) and f

∣∣ ( R
nm \ K ) ≡ (+∞).

2) (Function class F̃K.) We say that a function f(t, ξ, v) : Ω × R
n × R

nm → R ∪ { (+∞) } belongs to
the class F̃K iff there exists a m-dimensional Lebesgue null set N ⊂ Ω with:

a) f(t, ξ, v) = (+∞) for all (t, ξ, v) ∈ (
Ω \ N

) × R
n × (

R
nm \ K

)
;

b) f(t, ξ, v) < (+∞) for all (t, ξ, v) ∈ (
Ω \ N

) × R
n × K;

c) the restriction f
∣∣ ((Ω \ N

) × R
n × K

)
is Borel measurable with respect to t and continuous with

respect to (ξ, v);
d) f satisfies a growth condition8

∣∣f(t, ξ, v)
∣∣ � A(t) + B(ξ, v) ∀ (t, ξ, v) ∈ Ω × R

n × K (1.3)

where A ∈ L1(Ω, R), A
∣∣ int (Ω) is continuous, and B is bounded on every bounded subset of

R
n × K.

For the special case where the integrand in (P) resp. its extension to the whole space R
nm belongs to FK and,

consequently, depends on v only, a relaxation theorem has been proved in [38] (cited below as Thm. 1.3, 2)).
In this case, the appropriate envelope for the integrand turns out to be the so-called lower semicontinuous
quasiconvex envelope (see Def. 2.6 below). The main result of the present paper is the generalization of this
relaxation result to Dieudonné-Rashevsky type problems with integrands f ∈ F̃K. We will see that the known
proof scheme from the multidimensional Calculus of Variations works in the case of control problems (P) as well:
the general situation can be reduced to the case f = f(v) where the theorem has been already established9.

2[33], p. 531 f., [34] and [35], pp. 76 ff.
3[6,18].
4[8,19], [36], pp. 108 ff., and [42,43].
5See Section 4 below where this problem will be considered in detail.
6E.g. regularization terms of Perona-Malik type, cf. [3], pp. 90–93, and [36], p. 114. Instead, in [25], p. 82, a polyconvex

regularization term has been proposed.
7Cf. [42], pp. 564 ff.
8Cf. [1], p. 132, Theorem [II.1], (II.4), and p. 134. The continuity of the majorant A is required in the proof of Proposition 3.3,

Step 1, below, in order to assure the openness of the level sets of A.
9Cf. [12], pp. 377 ff.
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1.2. Relaxation of (P) by replacement of the integrand; main result

Relaxation of a variational or optimal control problem means to define a new problem with the same minimal
value as before, whose feasible domain contains the original one (possibly in the sense of an embedding), and
whose objective is lower semicontinuous with respect to an appropriate topology10. The fact that the relaxed
problem admits global minimizers justifies the subsequent application of direct numerical methods11. In the
present paper, the relaxation of (P) will be performed through the replacement of the integrand f within the
objective by an appropriate semiconvex envelope12. The conditions, which must be satisfied by this envelope,
are summarized in the following theorem.

Theorem 1.2 (relaxation of the problem (P)). Consider the problem (P) under the assumptions from Section 1.1
and a function f#(t, ξ, v) : Ω × R

n × R
nm → R ∪ { (+∞) } with the following properties:

a) There exists an m-dimensional Lebesgue null set N ⊂ Ω such that it holds for all (t̂, ξ̂) ∈ (
Ω \ N

) × R
n:

The effective domain of the function f#(t̂, ξ̂, · ) : R
nm → R ∪ { (+∞) } is a Borel set with K ⊆

dom
(
f#(t̂, ξ̂, · ) ), and the restriction of f#(t̂, ξ̂, · ) to its effective domain is a Borel measurable function

which is bounded from below on every bounded subset of its domain.

b) It holds that f#(t, ξ, v) � f(t, ξ, v) for all (t, ξ, v) ∈ (
Ω \ N

) × R
n × K, consequently,

F#(x) =
∫

Ω

f#(t, x(t), Jx(t)) dt �
∫

Ω

f(t, x(t), Jx(t)) dt = F (x) for all admissible functions in (P).

c) For every sequence { xN } of admissible functions in (P) with xN ∗−⇀ L∞(Ω,R
n) x̂ and

JxN ∗−⇀ L∞(Ω,R
nm) Jx̂, the lower semicontinuity relation F#(x̂) � lim inf N→∞ F#(xN ) holds.

d) The minimal values of (P) and the following problem (P)# coincide:

(P)# : F#(x) =
∫

Ω

f#(t, x(t), Jx(t)) dt −→ inf !; x ∈ W 1,∞
0 (Ω, Rn); Jx(t) ∈ K (∀) t ∈ Ω. (1.4)

Then the (finite) minimal values of the problems (P) and (P)# are identical, and every minimizing sequence
{ xN } of (P) contains a subsequence { xN ′ } converging together with their generalized derivatives weakly∗ (in
the sense of L∞(Ω, Rn) resp. L∞(Ω, Rnm) ) to a global minimizer x̂ of (P)#.

Only a few relaxation results are known for problems of type (P). We mention the following theorems of
Ekeland/Témam and Wagner, assuming that the integrands as members of the function classes FK resp. F̃K

are defined from the outset on the whole space R
nm:

Theorem 1.3. Consider the problem (P) under the assumptions from Section 1.1.
1) 13 (Convex relaxation of (P), the integrand depends on t and v only, n = 1.) Assume further that m � 2,

n = 1, and K = K(o, �) ⊂ R
nm is a closed ball centered at the origin. The integrand f(t, v) : Ω ×

R
nm → R ∪ { (+∞) } belongs to F̃K but does not depend on ξ. Then the function f#(t, v) : Ω × R

nm →
R ∪ { (+∞) }, which is defined as the convex envelope of f with respect to v by

f#(t̂, v) = f c(t̂, v) = sup
{
g(v)

∣∣ g : R
nm → R convex, g(w) � f(t̂, w) ∀w ∈ R

nm
}

(1.5)

for all t̂ ∈ (
Ω \ N

)
and by zero for all t̂ ∈ N, admits the properties a)–d) from Theorem 1.2.

2) 14 (Quasiconvex relaxation of (P), the integrand depends on v only, n � 1.) Assume further that m � 2,
n � 1, and K ⊂ R

nm is an arbitrary convex body with o ∈ int (K). The integrand f(v) : R
nm →

10Cf. [9], pp. 2 ff. and pp. 16 ff., as well as [31], pp. vii ff.
11Cf. [29], pp. 15 ff., and [12], pp. 3 ff.
12Concerning relaxation of (P) by introduction of generalized controls (“Young measures”), see [39,41].
13[16], p. 327, Corollary 2.17, together with p. 334, Proposition 3.4, and p. 335 f., Proposition 3.6.
14[38], p. 309, Theorem 1.3.
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R ∪ { (+∞) } does not depend on t and ξ and belongs to FK. Then the function f#(v) : R
nm →

R ∪ { (+∞) }, which is defined as the lower semicontinuous quasiconvex envelope of f by

f#(v) = f (qc)(v) = sup
{
g(v)

∣∣ g : R
nm → R quasiconvex, lower semicontinuous,

g(w) � f(w) ∀w ∈ R
nm

}
, (1.6)

admits the properties a)–d) from Theorem 1.2.

As the main result of the present paper, we prove the following generalization of Theorem 1.3:

Theorem 1.4 (quasiconvex relaxation of (P) in the general case, n � 1). Consider the problem (P) under the
assumptions from Section 1.1. In particular, we assume that m � 2, n � 1, K ⊂ R

nm is an arbitrary convex
body with o ∈ int (K), and the integrand f(t, ξ, v) : Ω × R

n × R
nm → R ∪ { (+∞) } belongs to the function

class F̃K. Then the function f#(t, ξ, v) : Ω × R
n × R

nm → R ∪ { (+∞) }, which is defined as the lower
semicontinuous quasiconvex envelope of f with respect to v by

f#(t̂, ξ̂, v) = f (qc)(t̂, ξ̂, v) = sup
{
g(v)

∣∣ g : R
nm → R quasiconvex and lower semicontinuous,

g(w) � f(t̂, ξ̂, w) ∀w ∈ R
nm

}
(1.7)

for all fixed (t̂, ξ̂) ∈ (
Ω \ N

) × R
n and by zero for all (t̂, ξ̂) ∈ N × R

n, possesses the properties a)–d) from
Theorem 1.2. Consequently, the problem

(P)(qc) : F (qc)(x) =
∫

Ω

f (qc)(t, x(t), Jx(t)) dt −→ inf !; x ∈ W 1,∞
0 (Ω, Rn); Jx(t) ∈ K (∀) t ∈ Ω (1.8)

has the same finite minimal value as the problem (P), and every minimizing sequence { xN } of (P) contains
a subsequence { xN ′ } converging weakly∗ (in the sense of L∞(Ω, Rn) resp. L∞(Ω, Rnm) ) together with their
generalized derivatives to a global minimizer x̂ of (P)(qc).

As a consequence of Theorem 1.4, we obtain the following existence result for problems (P) with polyconvex
integrands:

Theorem 1.5 (existence theorem for (P) with polyconvex integrand). Consider the problem (P) under the
assumptions of Section 1.1. In particular, we assume that m � 2, n � 1, K ⊂ R

nm is an arbitrary convex body
with o ∈ int (K), and the integrand f(t, ξ, v) : Ω × R

n × R
nm → R ∪ { (+∞ ) } belongs to F̃K. Furthermore,

for all fixed (t̂, ξ̂) ∈ (
Ω \ N

) × R
n, let f(t̂, ξ̂, v) : R

nm → R ∪ { (+∞) } be polyconvex as a function of v
(see Def. 3.9 below) where N ⊂ Ω is the m-dimensional Lebesgue null set from Definition 1.1, 2). Then the
problem (P) admits a global minimizer x̂ ∈ W 1,∞

0 (Ω, Rn).

1.3. Outline of the paper

We close this section with a collection of notations and a short recall of some auxiliary facts from measure
theory. In Section 2, we start with the definition of quasiconvexity for functions, which may take the value
(+∞), and summarize the properties of the lower semicontinuous quasiconvex envelope f (qc) for integrands
f = f(v) ∈ FK. Then we turn to the closer investigation of the lower semicontinuous quasiconvex envelope
for integrands f = f(t, ξ, v) ∈ F̃K, which is formed with respect to the variable v. In this case, we prove a
number of estimates (Thms. 2.11, 2.12 and 2.14) as well as an growth condition for f (qc) (Thm. 2.13). Section 3
contains the proofs of Theorems 1.2, 1.4 and 1.5. Finally, in Section 4, applying our general theorems to a basic
problem from mathematical image processing, we obtain existence results for the image registration problem in
the presence of convex and polyconvex regularization terms.
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1.4. Notations and abbreviations

Let k ∈ { 0, 1, ..., ∞} and 1 � p � ∞. Then C k(Ω, Rr), Lp(Ω, Rr) and W k,p(Ω, Rr) denote the spaces of
r-dimensional vector functions whose components are k-times continuously differentiable, belong to Lp(Ω, R)
or to the Sobolev space of Lp(Ω, R)-functions with weak derivatives up to kth order in Lp(Ω, R), respectively.
In addition, functions within the subspaces C k

0(Ω, Rr) ⊂ C k(Ω, Rr) and W 1,p
0 (Ω, Rr) ⊂ W 1,p(Ω, Rr), 1 �

p < ∞, are compactly supported while the components of x ∈ W 1,∞
0 (Ω, Rr) possess Lipschitz continuous

representatives15 with zero boundary values. The symbols xtj and ∂x/∂tj may denote the classical as well as
the weak partial derivative of x by tj . Jx denotes the Jacobi matrix of the function x.

We denote by int (A), ri (A), ∂A, rb (A), cl (A), co (A) and |A | the interior, relative interior, boundary,
relative boundary, closure, the convex hull and the r-dimensional Lebesgue measure of a set A ⊆ R

r, respectively.
�A : R

r → R with �A(t) = 1 ⇐⇒ t ∈ A and �A(t) = 0 ⇐⇒ t /∈ A is the characteristic function of the set A.
Defining R = R ∪ { (+∞) }, we equip R with the natural topological and order structures where (+∞) is the
greatest element.

Throughout the whole paper, we consider only proper functions f : R
nm → R, assuming that the effective

domain dom(f) = {v ∈ R
nm

∣∣ f(v) < (+∞)} is always nonempty. The restriction of the function f to the
subset A of its range of definition is denoted by f

∣∣A. If a function f : R
nm → R belongs to the function

class FK defined above then its restriction f
∣∣K is bounded and uniformly continuous. Consequently, the

class FK and the Banach space C 0(K, R) are isomorphic and isometric.
A convex body K ⊂ R

nm will be understood as a convex, compact set with nonempty interior16. A point
v ∈ K is called extremal point of K iff from v = λ′ v′ + λ′′ v′′, λ′, λ′′ > 0, λ′ + λ′′ = 1, v′, v′′ ∈ K it follows
that v′ = v′′ = v. The set of all extremal points of K is denoted by ext (K). Every convex body possesses at
least one extremal point. A convex subset Φ ⊆ K is called a face of K iff from v ∈ Φ and v = λ′ v′ + λ′′ v′′, λ′,
λ′′ > 0, λ′ + λ′′ = 1, v′, v′′ ∈ K it follows that v′, v′′ ∈ Φ17. The body K itself as well as Ø will be regarded as
improper faces. All nonempty faces of a convex body form compact sets. The dimension k of a face is that of
its affine hull; we define Dim (Ø) = (−1). Thus the null-dimensional faces of K are precisely the singletons { x },
x ∈ ext (K).

Finally, we introduce three nonstandard notations. “{ xN } , A” denotes a sequence { xN } with members
xN ∈ A. If A ⊆ R

r then the abbreviation “ (∀) t ∈ A” has to be read as “for almost all t ∈ A” resp. “for all
t ∈ A except a r-dimensional Lebesgue null set”. The symbol o denotes, depending on the context, the zero
element resp. the zero function of the underlying space.

1.5. Auxiliary facts from measure theory

Definition 1.6 (Carathéodory functions). Let K ⊆ R
nm be a Borel set. Then a function f(t, ξ, v) : Ω × R

n ×
K → R is called a Carathéodory function iff there exists a m-dimensional Lebesgue null set N ⊂ Ω such that
the restriction f

∣∣ ( (
Ω \ N

) × R
n × K

)
is Borel measurable with respect to t and continuous with respect

to (ξ, v).

From Definition 1.1, 2) it is clear that the restrictions of the functions f ∈ F̃K to Ω×R
n ×K are Carathéodory

functions.

Theorem 1.7 (Scorza-Dragoni theorem). 18Let K ⊆ R
nm be a Borel set. Then the function f(t, ξ, v) :

Ω × R
n × K → R is a Carathéodory function iff the following holds: for every compact subset Ω0 ⊆ Ω

and arbitrary ε > 0 there exists a compact subset Ωc ⊆ Ω0 with |Ω0 \ Ωc | � ε such that the restriction
f
∣∣ (Ωc × R

n × K
)

is a continuous function with respect to (t, ξ, v).

15[17], p. 131, Theorem 5.
16Cf. [7,32].
17We dispense with the distinction between “facets” and “faces”, cf. [7], p. 30.
18[16], p. 235, Scorza-Dragoni Theorem.
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Lemma 1.8. 19Given an open set Ω ⊂ R
m and a function x ∈ L1(Ω, Rn), then for arbitrary values η > 0 and

δ > 0, one can find finitely many mutually disjoint closed cubes Qs ⊆ Ω, 1 � s � r, with edge length 0 < ηs � η,
with the following properties:

1)
∣∣Ω \ ⋃ r

s=1 Qs

∣∣ � δ; (1.9)

2)
∣∣∣xi(t) − 1

|Qs |
∫

Qs

xi(τ) dτ
∣∣∣ � δ (∀) t ∈ Qs, 1 � s � r, 1 � i � n. (1.10)

2. The lower semicontinuous quasiconvex envelope

2.1. Quasiconvex functions which can take the value (+∞)

Definition 2.1 (quasiconvex functions with values in R). 20A function f : R
nm → R with the following

properties is said to be quasiconvex:
a) dom(f) ⊆ R

nm is a nonempty Borel set;
b) f

∣∣ dom(f) is Borel measurable and bounded from below on every bounded subset of dom (f);
c) for all v ∈ R

nm, f satisfies Morrey’s integral inequality

f(v) � 1
|Ω |

∫
Ω

f(v + Jx(t)) dt ∀x ∈ W 1,∞
0 (Ω, Rn), (2.1)

or equivalently

f(v) = inf
{

1
|Ω |

∫
Ω

f( v + Jx(t) ) dt
∣∣ x ∈ W 1,∞

0 (Ω, Rn), v + Jx(t) ∈ R
nm (∀) t ∈ Ω

}
. (2.2)

Here Ω ⊂ R
m is the closure of a bounded strongly Lipschitz domain.

We adopt the convention that the integral
∫
A (+∞) dt takes the values zero or (+∞) if either A ⊆ R

m is an
m-dimensional Lebesgue null set or has positive measure. Note that the values of the integrand f cannot be
changed even on a Lebesgue null set of R

nm. If dom (f) is a convex body then the set of “test functions” within
Morrey’s integral inequality can be restricted as follows:

Theorem 2.2 (Morrey’s integral inequality for functions with dom (f) = K). 21Let a convex body K ⊂ R
nm

and a function f : R
nm → R with dom (f) = K be given. Assume that f

∣∣K is measurable and bounded. Then
f satisfies Morrey’s integral inequality in a point v ∈ K iff

f(v) = inf
{

1
|Ω |

∫
Ω

f(v + Jx(t)) dt
∣∣ x ∈ W 1,∞

0 (Ω, Rn), v + Jx(t) ∈ K (∀) t ∈ Ω
}

. (2.3)

2.2. The envelope f∗ related to K

In this subsection, we fix a convex body K ⊂ R
nm with o ∈ int (K) and the quantities cK = Dist (o, ∂K) and

CK = Max
(
1, Max v∈K | v | ), thus 0 < cK � CK and Diam (K) � 2 CK.

Definition 2.3 (envelope f∗ related to K). 22 Consider the convex body K ⊂ R
nm mentioned above and a

function f : R
nm → R with the following properties: the set dom (f) is measurable, f

∣∣dom (f) is a measurable

19Slightly modified from [38], p. 318, Lemma 3.4. The proof remains unchanged.
20[40], p. 73, Definition 2.9, as a specification of [4], p. 228, Definition 2.1, in the case p = (+∞). Cf. also [10], p. 16.
21[40], p. 74, Theorem 2.11, (2).
22The function f∗ has been introduced in [26], p. 356, in the special case K = K(o, �) and in [13], p. 27, Theorem 7.2, for

arbitrary convex bodies K. In both cases it was assumed that f ∈ C 0(K, R). We follow [40], p. 80, Definition 3.1, and formulate

the definition from the outset for functions f : R
nm → R.
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function, and f is bounded from below on R
nm. Then we define for v ∈ R

nm:

f∗(v) = inf
{

1
|Ω|

∫
Ω

f(v + Jx(t)) dt
∣∣ x ∈ W 1,∞

0 (Ω, Rn), v + Jx(t) ∈ K (∀) t ∈ Ω
}

. (2.4)

In the following, we will make use of two particular properties of f∗:

Theorem 2.4 (definition of f∗ does not depend on Ω). 23Let K ⊂ R
nm and f : R

nm → R be given as in
Definition 2.3. If both sets Ω, Ω̃ ⊂ R

m are closures of bounded strongly Lipschitz domains then

f∗(v) = inf
{

1
|Ω|

∫
Ω

f(v + Jx(t)) dt
∣∣ x ∈ W 1,∞

0 (Ω, Rn), v + Jx(t) ∈ K (∀) t ∈ Ω
}

(2.5)

= inf

{
1

|Ω̃|

∫
Ω̃

f(v + Jx(t)) dt
∣∣ x ∈ W 1,∞

0 (Ω̃, R
n), v + Jx(t) ∈ K (∀) t ∈ Ω̃

}
. (2.6)

Theorem 2.5 (special sequence { xN } realizing the infimum in Def. 2.3). 24Let K ⊂ R
nm and f : R

nm → R

be given as in Definition 2.3. Assume that Ω ⊂ R
m is a closed cube. Then for every v ∈ R

nm there exists a
sequence { xN } ,W 1,∞

0 (Ω, Rn) with

f∗(v) = lim
N→∞

1
|Ω |

∫
Ω

f( v + JxN (t)) dt,

v + JxN (t) ∈ K (∀) t ∈ Ω ∀N ∈ N, xN ∗−⇀ L∞(Ω,R
n) o and JxN ∗−⇀ L∞(Ω,R

nm) o. (2.7)

2.3. The lower semicontinuous quasiconvex envelope f (qc)(v) for f ∈ FK

Definition 2.6 (lower semicontinuous quasiconvex envelope f (qc) for functions with values in R). 25To a function
f : R

nm → R bounded from below, we define the lower semicontinuous quasiconvex envelope f (qc) : R
nm → R

through

f (qc)(v) = sup
{
g(v)

∣∣ g : R
nm → R quasiconvex and lower semicontinuous,

g(w) � f(w) ∀w ∈ R
nm

}
. (2.8)

Remarks.

a) Definition 2.6 is motivated by the observation that any finite, quasiconvex function g : R
nm → R is

from the outset continuous26. If a measurable function f is bounded from below and takes only values
in R then Definition 2.6 coincides with the usual definition of the quasiconvex envelope27, and the
function f (qc) is quasiconvex and continuous as well.

b) If two functions f1, f2 : R
nm → R are bounded from below then the implication f1(v) � f2(v)

∀ v ∈ R
nm =⇒ f1

(qc)(v) � f2
(qc)(v) ∀ v ∈ R

nm holds28.
c) For f ∈ FK, f (qc) satisfies the inequality f c(v) � f (qc)(v) � f(v) for all v ∈ R

nm, which implies partic-
ularly f (qc)(v) = (+∞) for all v ∈ R

nm \ K and f (qc)(v) = f(v) for all v ∈ ext (K). Furthermore, f (qc)

itself is a lower semicontinuous and quasiconvex function and is, consequently, admissible in the process

23[13], p. 28 f., Step 1.
24[13], p. 35, Step 6.
25[40], p. 76, Definition 2.14, (2).
26[12], p. 159, Theorem 5.3, (iv).
27Cf. [12], p. 156 f., Definition 5.1, ii).
28[40], p. 76, Lemma 2.15, (3).
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of its own forming29. Thus it follows that f (qc) is the largest quasiconvex, lower semicontinuous function
below f in this case30.

The structure of the lower semicontinuous quasiconvex envelope for an integrand f ∈ FK will be described
by the following representation theorem:

Theorem 2.7 (representation theorem for f (qc)). 31For arbitrary f ∈ FK, the lower semicontinuous quasiconvex
envelope f (qc) can be represented as

f (qc)(v0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f∗(v0)

∣∣ v0 ∈ int (K);

lim
v→v0, v ∈R∩ int (K)

f∗(v)
∣∣ v0 ∈ ∂K;

(+∞)
∣∣ v0 ∈ R

nm \ K

(2.9)

where f∗(v) is defined by (2.4) (see Def. 2.3 above).

In the following theorems, the relation between the uniform continuity of the restriction of f ∈ FK to K and
the continuity resp. semicontinuity of f (qc) will be quantified. We will relate to a convex body K ⊂ R

nm with
the quantities cK and CK introduced in Section 2.2 above.

Theorem 2.8 (ε-δ relation for the restriction of f (qc) to faces of K). 32Let f ∈ FK and a k-dimensional face
Φ ⊆ K, 0 � k � nm, be given. Assume that the uniform continuity of f on K is described through the ε-δ
relation ∣∣ v′ − v′′

∣∣ � δ(ε) < 1 =⇒ ∣∣ f(v′) − f(v′′)
∣∣ � ε ∀ v′, v′′ ∈ K. (2.10)

Then f (qc)
∣∣Φ obeys the following ε-δ relation:

∣∣ v′ − v′′
∣∣ � δ(ε)

4 CK
· Min

(
1, Dist (v′, rb (Φ)), Dist (v′′, rb (Φ))

)
(2.11)

=⇒ ∣∣ f (qc)(v′) − f (qc)(v′′)
∣∣ � 2 ε ∀ v′, v′′ ∈ ri (Φ)

where CK is the quantity defined in the beginning of Section 2.2.

As a particular consequence of this theorem, the restriction f (qc)
∣∣ int (K) is continuous.

Theorem 2.9 (ε-δ relation for f (qc) along rays starting from o). 33Let f ∈ FK be given. Assume that the
uniform continuity of f on K is described again through the ε-δ relation∣∣ v′ − v′′

∣∣ � δ(ε) < 1 =⇒ ∣∣ f(v′) − f(v′′)
∣∣ � ε ∀ v′, v′′ ∈ K. (2.12)

Consider two points v, w ∈ K, which a) are situated on the same ray R starting from o, and b) satisfy
0 � Dist (w, ∂K) � Dist (v, ∂K) < 1

2 cK. Then f (qc) obeys the following ε-δ estimate, which holds uniformly for
all rays starting from the origin:

Dist (w, v) � δ(ε) · cK

6 CK
=⇒ f (qc)(w) − f (qc)(v) � −2 ε. (2.13)

cK and CK are the quantities defined in the beginning of Section 2.2.

29[13], p. 76, Theorem 2.17.
30[13], p. 77, Theorem 2.18.
31[13], p. 95, Theorem 4.1.
32[13], p. 82, Theorem 3.5, together with Theorem 2.7 above.
33[40], p. 88, Theorem 3.12, together with Theorem 2.7 above.
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2.4. The lower semicontinuous quasiconvex envelope f (qc)(t, ξ, v) for f ∈ F̃K

Theorem 2.10 (properties of f (qc) for f ∈ F̃K). Let f ∈ F̃K be given. Then for every fixed (t̂, ξ̂) ∈ (
Ω \ N

)×R
n

it holds that
1) f c(t̂, ξ̂, v) � f (qc)(t̂, ξ̂, v) � f(t̂, ξ̂, v) for all v ∈ R

nm, which implies particularly f (qc)(t̂, ξ̂, v) = (+∞)
for all v ∈ R

nm \ K and f (qc)(t̂, ξ̂, v) = f(t̂, ξ̂, v) for all v ∈ ext (K).
2) f (qc)(t̂, ξ̂, v) : R

nm → R is the largest lower semicontinuous, quasiconvex function below f(t̂, ξ̂, v).
3) f (qc)(t̂, ξ̂, v) admits the representation

f (qc)(t̂, ξ̂, v0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f∗(t̂, ξ̂, v0)

∣∣ v0 ∈ int (K);

lim
v→v0, v ∈R∩ int (K)

f∗(t̂, ξ̂, v)
∣∣ v0 ∈ ∂K;

(+∞)
∣∣ v0 ∈ R

nm \ K

(2.14)

where f∗(t̂, ξ̂, v) is defined through

f∗(t̂, ξ̂, v) = inf
{

1
|Ω|

∫
Ω

f(t̂, ξ̂, v + Jx(t)) dt
∣∣ x ∈ W 1,∞

0 (Ω, Rn), v + Jx(t) ∈ K (∀) t ∈ Ω
}

. (2.15)

4) Let a k-dimensional face Φ ⊆ K, 0 � k � nm, be given. Assume that the uniform continuity of f(t̂, ξ̂, v)
on K is described through the ε-δ relation∣∣ v′ − v′′

∣∣ � δ(ε) < 1 =⇒ ∣∣ f(t̂, ξ̂, v′) − f(t̂, ξ̂, v′′)
∣∣ � ε ∀ v′, v′′ ∈ K. (2.16)

Then f (qc)(t̂, ξ̂, v)
∣∣Φ obeys the following ε-δ estimate:

∣∣ v′ − v′′
∣∣ � δ(ε)

4 CK
· Min

(
1, Dist (v′, rb (Φ)), Dist (v′′, rb (Φ))

)
(2.17)

=⇒ ∣∣ f (qc)(t̂, ξ̂, v′) − f (qc)(t̂, ξ̂, v′′)
∣∣ � 2 ε ∀ v′, v′′ ∈ ri (Φ)

with CK from Section 2.2. In particular, f (qc)(t̂, ξ̂, v)
∣∣ int (K) is continuous, and f (qc)(t̂, ξ̂, v)

∣∣ (1− γ)K
is uniformly continuous for every 0 < γ < 1.

5) Assume that the uniform continuity of f(t̂, ξ̂, v) on K is described by the ε-δ relation from Part 4).
If two points v, w ∈ K a) are situated on the same ray R starting from the origin and b) satisfy
0 � Dist (w, ∂K) � Dist (v, ∂K) < 1

2 cK then the ε-δ estimate

Dist (w, v) � δ(ε) · cK

6 CK
=⇒ f (qc)(t̂, ξ̂, w) − f (qc)(t̂, ξ̂, v) � −2 ε (2.18)

holds. Here cK and CK are the quantities from Section 2.2, and the estimate is the same for all rays R
starting form the origin.

Proof.

1)–3) If a function f(t, ξ, v) ∈ F̃K is given then, in consequence of Definition 1.1, 2), the function
f(t̂, ξ̂, v) : R

nm → R belongs to FK for every fixed (t̂, ξ̂) ∈ (
Ω \ N

) × R
n. Thus Parts 1)–3) result from

the remarks after Definition 2.6 and the theorems from [40] cited there.

4)–5) For every fixed (t̂, ξ̂) ∈ (
Ω \ N

) × R
n, the function f(t̂, ξ̂, v) : R

nm → R is uniformly continuous on K.
Consequently, 4) and 5) will be implied by Theorems 2.7, 2.8 and 2.9. �
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Theorem 2.11 (generalization of Thm. 2.8 for f ∈ F̃K). Let a function f ∈ F̃K and compact subsets Ωc ⊆ Ω
and Ac ⊂ R

n be given such that the restriction f
∣∣ (Ωc × Ac × K

)
is continuous with respect to (t, ξ, v). Assume

that this (uniform) continuity may be described by the ε-δ relation∣∣t′ − t′′
∣∣ +

∣∣ξ′ − ξ′′
∣∣ +

∣∣v′ − v′′
∣∣ � δ0(ε) < 1 (2.19)

=⇒ ∣∣f(t′, ξ′, v′) − f(t′′, ξ′′, v′′)
∣∣ � ε ∀ (t′, ξ′, v′), (t′′, ξ′′, v′′) ∈ (

Ωc × Ac × K
)
.

1) Then the restriction f (qc)(t, ξ, v)
∣∣ (Ωc × Ac × int (K)

)
obeys the following continuity relation with

respect to (t, ξ, v):

∣∣t′ − t′′
∣∣ +

∣∣ξ′ − ξ′′
∣∣ +

∣∣v′ − v′′
∣∣ � δ0(ε)

4 CK
· Min

(
1, Dist (v′, ∂K), Dist (v′′, ∂K)

)
(2.20)

=⇒ ∣∣f (qc)(t′, ξ′, v′) − f (qc)(t′′, ξ′′, v′′)
∣∣ � 6 ε ∀ (t′, ξ′, v′), (t′′, ξ′′, v′′) ∈ (

Ωc × Ac × int (K)
)
.

2) For every 0 < γ < 1, the restriction f (qc)(t, ξ, v)
∣∣ (Ωc × Ac × (1− γ)K

)
is uniformly continuous with

respect to (t, ξ, v).

Proof.

1) For arbitrary (t′, ξ′, v′), (t′′, ξ′′, v′′) ∈ (
Ωc × Ac × int (K)

)
, it holds that∣∣f (qc)(t′, ξ′, v′) − f (qc)(t′′, ξ′′, v′′)

∣∣ � D1 + D2 + D3 with (2.21)

D1 =
∣∣f (qc)(t′, ξ′, v′) − f (qc)(t′′, ξ′, v′)

∣∣; (2.22)

D2 =
∣∣f (qc)(t′′, ξ′, v′) − f (qc)(t′′, ξ′′, v′)

∣∣; (2.23)

D3 =
∣∣f (qc)(t′′, ξ′′, v′) − f (qc)(t′′, ξ′′, v′′)

∣∣. (2.24)

Fixing now ε > 0, we find x1 ∈ W 1,∞
0 (Ω, Rn) with (2.25)

f (qc)(t′, ξ′, v′) � 1
|Ω |

∫
Ω

f(t′, ξ′, v′ + Jx1(t) ) dt � f (qc)(t′, ξ′, v′) + ε and v′ + Jx1(t) ∈ int (K) (∀) t ∈ Ω

(cf. [37], p. 21, Thm. 3.4, 2), and [40], p. 81, Thm. 3.4, (2)). Then from the continuity relation (2.19) it follows
that ∣∣ t′ − t′′

∣∣ � δ0(ε)

=⇒ 1
|Ω |

∫
Ω

(
f(t′, ξ′, v′ + Jx1(t) ) − f(t′′, ξ′, v′ + Jx1(t) )

)
dt +

1
|Ω |

∫
Ω

f(t′′, ξ′, v′ + Jx1(t) ) dt

� f (qc)(t′, ξ′, v′) + ε (2.26)

=⇒ −ε + f (qc)(t′′, ξ′, v′) � −ε +
1

|Ω |
∫

Ω

f(t′′, ξ′, v′ + Jx1(t)) dt � f (qc)(t′, ξ′, v′) + ε (2.27)

=⇒ f (qc)(t′′, ξ′, v′) − f (qc)(t′, ξ′, v′) � 2 ε. (2.28)

After exchanging the roles of t′ and t′′, we get analogously

f (qc)(t′, ξ′, v′) − f (qc)(t′′, ξ′, v′) � 2 ε (2.29)

and together
D1 =

∣∣f (qc)(t′, ξ′, v′) − f (qc)(t′′, ξ′, v′)
∣∣ � 2 ε. (2.30)



200 M. WAGNER

Further, we may choose x2 ∈ W 1,∞
0 (Ω, Rn) with

f (qc)(t′′, ξ′, v′) � 1
|Ω |

∫
Ω

f(t′′, ξ′, v′ + Jx2(t)) dt � f (qc)(t′′, ξ′, v′) + ε (2.31)

and v′ + Jx2(t) ∈ int (K) (∀) t ∈ Ω,

which implies together with the continuity relation (2.19):∣∣ ξ′ − ξ′′
∣∣ � δ0(ε)

=⇒ 1
|Ω |

∫
Ω

(
f(t′′, ξ′, v′ + Jx2(t)) − f(t′′, ξ′′, v′ + Jx2(t))

)
dt +

1
|Ω |

∫
Ω

f(t′′, ξ′′, v′ + Jx2(t)) dt

� f (qc)(t′′, ξ′, v′) + ε (2.32)

=⇒ −ε + f (qc)(t′′, ξ′′, v′) � −ε +
1
|Ω|

∫
Ω

f(t′′, ξ′′, v′ + Jx2(t)) dt � f (qc)(t′′, ξ′, v′) + ε (2.33)

=⇒ f (qc)(t′′, ξ′′, v′) − f (qc)(t′′, ξ′, v′) � 2 ε. (2.34)

After exchanging the roles of ξ′ and ξ′′, we get

f (qc)(t′′, ξ′, v′) − f (qc)(t′′, ξ′′, v′) � 2 ε (2.35)

as well. Together we find
D2 =

∣∣f (qc)(t′′, ξ′, v′) − f (qc)(t′′, ξ′′, v′)
∣∣ � 2 ε. (2.36)

In order to estimate D3, we apply Theorem 2.10, 4). Summing up, we arrive at the following ε-δ relation:

∣∣t′ − t′′
∣∣ +

∣∣ξ′ − ξ′′
∣∣ +

∣∣v′ − v′′
∣∣ � δ0(ε)

4CK
· Min

(
1, Dist (v′, ∂K), Dist (v′′, ∂K)

)
(2.37)

=⇒ ∣∣f (qc)(t′, ξ′, v′) − f (qc)(t′′, ξ′′, v′′)
∣∣ � 6ε ∀ (t′, ξ′, v′), (t′′, ξ′′, v′′) ∈ (

Ωc × Ac × int (K)
)
.

In analogy to [40], p. 82, Theorem 3.6, (1), the estimate (2.37) implies the continuity of f (qc)(t, ξ, v) with respect
to (t, ξ, v) on

(
Ωc × Ac × int (K)

)
.

2) Let 0 < γ < 1 be fixed. On
(
Ωc × Ac × (1 − γ)K

)
, we have

Min
(
1, Dist (v′, ∂K) , Dist (v′′, ∂K)

)
� Min

(
1, Dist ( (1 − γ)K , ∂K)

)
, (2.38)

and (2.20) becomes a uniform continuity relation on this set. �

Theorem 2.12 (generalization of Thm. 2.9 for f ∈ F̃K). Let a function f ∈ F̃K and compact subsets Ωc ⊆ Ω
and Ac ⊂ R

n be given such that the restriction f
∣∣ (Ωc × Ac × K

)
is continuous with respect to (t, ξ, v). Assume

that the uniform continuity relation (2.19) holds. If the points v, w ∈ K a) are situated on the same ray R
starting from o and b) satisfy 0 � Dist (w , ∂K) � Dist (v , ∂K) < 1

2 cK then the ε-δ estimate

Dist (w , v) � δ0(ε) · cK

6 CK
=⇒ f (qc)(t̂, ξ̂, w) − f (qc)(t̂, ξ̂, v) � −2 ε (2.39)

holds. In particular, the estimate is the same for all rays R starting form the origin and all (t̂, ξ̂) ∈ Ωc × Ac.

Proof. The estimate from Theorem 2.10, 5) does not depend on the choice of (t̂, ξ̂) ∈ Ωc × Ac. �
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Theorem 2.13 (growth condition for f (qc)). Let a function f ∈ F̃K and a compact subset Ac ⊂ R
n be given.

The the function f (qc), which is formed with respect to the variable v, satisfies the growth condition∣∣f (qc)(t, ξ, v)
∣∣ � A(t) + C2 (2.40)

for all (t, ξ, v) ∈ (
Ω \ N

) × Ac × K. A is the same function as in the growth condition for f from Defini-
tion 1.1, 2).

Proof. From the growth condition in Definition 1.1, 2), Theorem 2.10, 1) and the representation theorem for
the convex envelope (cf. [12], p. 52, Thm. 2.35), we deduce for arbitrary (t̂, ξ̂, v) ∈ (

Ω \ N
) × Ac × K:

A(t̂) + C2 � A(t̂) + B(ξ̂, v) � f(t̂, ξ̂, v) � f (qc)(t̂, ξ̂, v) � f c(t̂, ξ̂, v)

= inf
{

nm+1∑
s=1

λs f(t̂, ξ̂, vs)
∣∣ ∑

s
λs = 1,

∑
s

λs vs = v, 0 � λs � 1 , vs ∈ K, 1 � s � nm + 1
}

� inf
{
−

nm+1∑
s=1

λs · | f(t̂, ξ̂, vs) |
∣∣ ...

}
� inf

{
nm+1∑
s=1

λs

(−A(t̂) − B(ξ̂, vs)
) ∣∣ ...

}
� −A(t̂) − C2

(2.41)

and, consequently, | f (qc)(t, ξ, v) | � A(t) + C2 for all (t, ξ, v) ∈ (
Ω \ N

) × Ac × K. �

Theorem 2.14. 34Consider a function f ∈ F̃K and compact subsets Ωc ⊆ Ω and Ac ⊂ R
n such that the

restriction f
∣∣ (Ωc × Ac × K

)
is continuous with respect to (t, ξ, v). Assume further that Ωa ⊂ Ω is open.

1) Let functions x ∈ W 1,∞
0 (Ω, Rn) with x(t) ∈ Ac ∀ t ∈ Ωc and u ∈ L∞(Ω, Rnm) with u(t) ∈ K (∀) t ∈ Ω

be given. Then for every ε > 0, we may find an index K0 ∈ N with∣∣∣ ∫
Ωa ∩Ωc

(
f (qc)(t, x(t), u(t)) − f (qc)

(
t,

K − 1
K

x(t),
K − 1

K
u(t)

))
dt

∣∣∣ � 7 |Ωa ∩ Ωc | ε ∀K � K0(ε). (2.42)

2) For every ε > 0, we may find an index K1 ∈ N such that for arbitrary functions x ∈ W 1,∞
0 (Ω, Rn) with

x(t) ∈ Ac ∀ t ∈ Ωc and u ∈ L∞(Ω, Rnm) with u(t) ∈ K (∀) t ∈ Ω the following estimate holds:∫
Ωc

(
f (qc)(t, x(t), u(t)) − f (qc)

(
t,

K − 1
K

x(t),
K − 1

K
u(t)

))
dt � −8 |Ωc| ε ∀K � K1(ε). (2.43)

K1 does not depend on x and u but on Ωc only.

Proof. 1) Obviously, it holds that∣∣∣ ∫
Ωa ∩Ωc

(
f (qc)(t, x(t), u(t)) − f (qc)

(
t,

K − 1
K

x(t),
K − 1

K
u(t)

))
dt

∣∣∣
�

∣∣∣ ∫
Ωa ∩Ωc

(
f (qc)(t, x(t), u(t)) − f (qc)

(
t, x(t),

K − 1
K

u(t)
))

dt
∣∣∣ +

∣∣∣∫
Ωa∩Ωc

(
f (qc)

(
t, x(t),

K − 1
K

u(t)
)

− f (qc)
(
t,

K − 1
K

x(t),
K − 1

K
u(t)

))
dt

∣∣∣. (2.44)

In consequence of Theorem 2.13, we may apply Lebesgue’s dominated convergence theorem to the first member,
which results in ∣∣∣ ∫

Ωa ∩Ωc

(
f (qc)(t, x(t), u(t)) − f (qc)

(
t, x(t),

K − 1
K

u(t)
))

dt
∣∣∣ � |Ωa ∩ Ωc | ε (2.45)

34Generalization of [38], p. 320, Lemma 3.6.
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if K � K ′
0(ε). Assume that the uniform continuity of the function f(t, ξ, v) on the compact set

(
Ωc × Ac × K

)
is described again by the ε-δ relation (2.19). By Theorem 2.11, 2), we get from this relation a uniform continuity
relation for f (qc)(t, ξ, v)

∣∣ (Ωc × Ac × K−1
K K

)
:

∣∣t′ − t′′
∣∣ +

∣∣ξ′ − ξ′′
∣∣ +

∣∣v′ − v′′
∣∣ � δ1(ε) =

δ0(ε)
4CK

· Min
(
1,

cK

K

)
(2.46)

=⇒ ∣∣f (qc)(t′, ξ′, v′) − f (qc)(t′′, ξ′′, v′′)
∣∣ � 6 ε ∀ (t′, ξ′, v′), (t′′, ξ′′, v′′) ∈

(
Ωc × Ac × K − 1

K
K
)

.

If we choose K � K ′′
0 (ε) with Diam (Ac)/K ′′

0 (ε) � δ1(ε) then (2.46) implies the following estimate for the second
member in (2.44):

∣∣∣ ∫
Ωa ∩Ωc

(
f (qc)

(
t, x(t),

K − 1
K

u(t)
)
− f (qc)

(
t,

K − 1
K

x(t),
K − 1

K
u(t)

))
dt

∣∣∣
�

∫
Ωa ∩Ωc

∣∣∣ f (qc)
(
t, x(t),

K − 1
K

u(t)
)
− f (qc)

(
t,

K − 1
K

x(t),
K − 1

K
u(t)

)∣∣∣ dt � 6 |Ωa ∩ Ωc | ε. (2.47)

For K0(ε) = Max
(
K ′

0(ε), K
′′
0 (ε)

)
, the claimed inequality results from (2.45) and (2.47).

2) Let us decompose:∫
Ωc

(
f (qc)(t, x(t), u(t)) − f (qc)

(
t,

K − 1
K

x(t),
K − 1

K
u(t)

))
dt

=
∫

Ωc

(
f (qc)(t, x(t), u(t)) − f (qc)

(
t, x(t),

K − 1
K

u(t)
))

dt +
∫

Ωc

(
f (qc)

(
t, x(t),

K − 1
K

u(t)
)

− f (qc)
(
t,

K − 1
K

x(t),
K − 1

K
u(t)

))
dt. (2.48)

From the uniform continuity relation (2.19) for f(t, ξ, v)
∣∣ (Ωc × Ac × K

)
and Theorem 2.12 we deduce that for

Dist
(

u(t),
K − 1

K
u(t)

)
=

|u(t)|
K

� CK

K
� δ0(ε) · cK

6CK
, (2.49)

i.e., for all K ∈ N with
1
K

� 1
K ′

1(ε)
� δ0(ε) · cK

6(CK)2
, (2.50)

the estimate

f (qc)(t, x(t), u(t)) − f (qc)

(
t, x(t),

K − 1
K

u(t)
)

� −2 ε (2.51)

holds for all t ∈ Ωc. From (2.51), we obtain∫
Ωc

(
f (qc)(t, x(t), u(t)) − f (qc)

(
t, x(t),

K − 1
K

u(t)
))

dt � −2 |Ωc| ε. (2.52)
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If K � K ′′
1 (ε) with Diam (Ac)/K ′′

1 (ε) � δ1(ε) then we get from the uniform continuity relation (2.46) for
f (qc)(t, ξ, v)

∣∣ (Ωc × Ac × K−1
K K

)
:∫

Ωc

(
f (qc)

(
t, x(t),

K − 1
K

u(t)
)
− f (qc)

(
t,

K − 1
K

x(t),
K − 1

K
u(t)

))
dt

� −
∫

Ωc

∣∣∣ f (qc)
(
t, x(t),

K − 1
K

u(t)
)
− f (qc)

(
t,

K − 1
K

x(t),
K − 1

K
u(t)

)∣∣∣dt � −6 |Ωc| ε. (2.53)

Combining (2.52) and (2.53), we arrive at the claimed inequality with K � K1(ε) = Max
(
K ′

1(ε), K
′′
1 (ε)

)
. �

3. The relaxation theorem for problems (P) with integrands f(t, ξ, v)

3.1. Proof of Theorem 1.2

We start with the following lemma:

Lemma 3.1. 35The feasible domain B of (P) is convex and bounded in W 1,∞
0 (Ω, Rn)-norm.

Proof. Together with K, B is convex. The boundedness of B follows from the equivalence of the norms ‖ x ‖1 =
‖ x ‖L∞(Ω,Rn) + ‖ Jx ‖L∞(Ω,Rnm) and ‖ x ‖2 = ‖ Jx ‖L∞(Ω,Rnm) on W 1,∞

0 (Ω, Rn) (cf. [11], p. 37, Thm. 1.47). �

Together with the growth condition d) from Definition 1.1, 2), Lemma 3.1 implies the boundedness of F

on B. Consequently, (P) admits a finite minimal value m. Consider a minimizing sequence { xN } , W 1,∞
0 (Ω, Rn)

of (P). The L∞-norm bounded sequences { xN } and { JxN } must contain weakly∗-convergent subsequences
{ xN ′ } ∗−⇀ L∞(Ω,R

n) x̂ resp. { JxN ′ } ∗−⇀ L∞(Ω,R
nm) ŷ with ŷ = Jx̂. [11], p. 36, Corollary 1.45, implies the

norm convergence xN ′ →L∞(Ω,R
n) x̂ and even the uniform convergence xN ′ →C0(Ω,R

n) x̂ since the functions
are continuous. By [15], p. 429, Theorem 7, the convex, bounded, norm-closed set { z ∈ L∞(Ω, Rnm)

∣∣ z(t) ∈
K (∀) t ∈ Ω } is weak∗-closed as well, and the feasibility of x̂ ∈ B results. From assumption b) it follows that

F#(xN ′
) � F (xN ′

) ∀N ′ ∈ N, (3.1)

and with c) we obtain

F#(x̂) � lim inf
N ′→∞

F#(xN ′
) � lim inf

N ′→∞
F (xN ′

) = lim
N→∞

F (xN ) = m. (3.2)

Finally, if we denote the minimal value of (P)# by m# then d) implies

m# � F#(x̂) � m = m#, (3.3)

and x̂ turns out to be a global minimizer of (P)#. The proof of Theorem 1.2 is complete. �

3.2. Proof of the relaxation Theorem 1.4

Sketch of the proof. We have to prove that the lower semicontinuous quasiconvex envelope f (qc) of f ∈ F̃K,
which is formed with respect to the variable v, obeys the conditions a)–d) from Theorem 1.2. We prove the
fulfillment of a) and b) in Proposition 3.2, the lower semicontinuity of the relaxed objective functional F (qc) in
Proposition 3.3 and the coincidence of the minimal values of (P) and (P)(qc) in Proposition 3.8.

35Cf. [30], p. 222, Lemma 2.1.
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Proposition 3.2 (f (qc) satisfies the conditions a) and b) from Thm. 1.2). Consider the problem (P) under
the assumptions of Theorem 1.4. Then the function f (qc), which is defined for (t̂, ξ̂) ∈ (

Ω \ N
) × R

n as the
lower semicontinuous quasiconvex envelope of f with respect to v and for (t̂, ξ̂) ∈ N × R

n by zero, possesses the
properties a) and b) from Theorem 1.2.

Proof. For fixed (t̂, ξ̂) ∈ (
Ω \ N

) × R
n, f (qc)(t̂, ξ̂, · ) possesses the effective domain K by Theorem 2.10, 1).

Due to Theorem 2.10, 2), the restriction f (qc)(t̂, ξ̂, · ) ∣∣K to the compact set K is lower semicontinuous and,
consequently, measurable. The boundedness from below on K can be confirmed analogously to the proof of
Theorem 2.13, and condition a) is satisfied. In consequence of the inequality

f (qc)(t̂, ξ̂, v) � f(t̂, ξ̂, v) ∀ v ∈ R
nm (3.4)

from Theorem 2.10, 1), condition b) is satisfied as well. �
Proposition 3.3 (lower semicontinuity of the functional F (qc)( · ) ). Consider again the problem (P) un-
der the assumptions of Theorem 1.4. Then for every sequence { xN } of admissible functions for (P), from
xN ∗−⇀ L∞(Ω,R

n) x̂ and JxN ∗−⇀ L∞(Ω,R
nm) Jx̂ it follows that

F (qc)(x̂) =
∫

Ω

f (qc)(t, x̂(t), Jx̂(t)) dt � lim inf
N→∞

∫
Ω

f (qc)(t, xN (t), JxN (t)) dt = lim inf
N→∞

F (qc)(xN ). (3.5)

Proof. The proof of Proposition 3.3 will be divided into eight steps.

Step 1. Application of the Scorza-Dragoni theorem to f ∈ F̃K. B denotes again the feasible domain of (P).
From Lemma 3.1 we deduce that

C1 = sup
{|x(t)| ∣∣ x ∈ B

}
< (+∞). (3.6)

Then from the growth condition d) in Definition 1.1, 2) it follows that

C2 = sup
{
B(ξ, v)

∣∣ |ξ| � C1, |v| � CK

}
< (+∞). (3.7)

Now we fix ε > 0. Then, in relation to the integrable function A from the growth condition, we may choose a
sufficiently large number C3 � 1 such that the set

Ωa =
{
t ∈ int (Ω)

∣∣ A(t) < C3

}
(3.8)

satisfies ∣∣Ω \ Ωa

∣∣ � ε/C2 as well as
∫

Ω \Ωa

A(t) dt � ε. (3.9)

In view of Lemma 3.1, for the proof of the lower semicontinuity of the cost functional it suffices to deal with
the restriction of the integrand f to the set Ω × Ac × K where Ac = K(o, C1) ⊂ R

n 36. Thus we apply the
Scorza-Dragoni theorem (Thm. 1.7) to the restriction f

∣∣ (Ω × Ac × K
)

and find a compact subset Ωc ⊆ Ω
with ∣∣Ω \ Ωc

∣∣ � ε/(C2 + C3) (3.10)
such that the further restriction f

∣∣ (Ωc ×Ac ×K
)

is continuous with respect to (t, ξ, v). Since
(
Ωc ×Ac ×K

) ⊂
Ω × R

n × K is compact, this restriction obeys a uniform continuity relation, which may be stated as∣∣t′ − t′′
∣∣ +

∣∣ξ′ − ξ′′
∣∣ +

∣∣v′ − v′′
∣∣ � δ2(ε) � δ0(ε) · Min

(
1,

1
3(C1 + CK)

)
(3.11)

=⇒ ∣∣f(t′, ξ′, v′) − f(t′′, ξ′′, v′′)
∣∣ � ε ∀ (t′, ξ′, v′), (t′′, ξ′′, v′′) ∈ (

Ωc × Ac × K
)
.

In addition, the continuity of A
∣∣ int (Ω) implies that the level set Ωa is open.

36Cf. also [27], p. 251, Corollary 3.12.
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Step 2. Restriction of F (qc)(x) to Ωa ∩ Ωc. �

Lemma 3.4. Let functions x ∈ W 1,∞
0 (Ω, Rn) with x(t) ∈ Ac ∀ t ∈ Ωc and u ∈ L∞(Ω, Rnm) with u(t) ∈ K

(∀) t ∈ Ω be given. Then it holds that

∣∣∣ ∫
Ω

f (qc)(t, x(t), u(t)) dt −
∫

Ωa ∩Ωc

f (qc)(t, x(t), u(t)) dt
∣∣∣ � 3 ε. (3.12)

Proof. By Theorem 2.13, we obtain∣∣∣ ∫
Ω

f (qc)(t, x(t), u(t)) dt −
∫

Ωa ∩Ωc

f (qc)(t, x(t), u(t)) dt
∣∣∣

=
∣∣∣∫

Ωa ∩ (Ω \Ωc)

f (qc)(t, x(t), u(t)) dt +
∫

Ω \Ωa

f (qc)(t, x(t), u(t)) dt
∣∣∣ (3.13)

�
∫

Ωa ∩ (Ω \Ωc)

∣∣ f (qc)(...)
∣∣ dt +

∫
Ω \Ωa

∣∣f (qc)(...)
∣∣dt (3.14)

�
∫

Ωa ∩ ( Ω \Ωc )

(
A(t) + C2

)
dt +

∫
Ω \Ωa

(
A(t) + C2

)
dt (3.15)

� ε + 2 ε (3.16)

by definition of Ωa and Ωc. �

Step 3. Decomposition of the integrals. Consider a sequence of admissible functions { xN } , B with
{ xN } ∗−⇀ L∞(Ω,R

n) x̂ and { JxN } ∗−⇀ L∞(Ω,R
nm) Jx̂. As in the proof of Theorem 1.2, this implies the uni-

form convergence xN →C0(Ω,R
n) x̂ and the feasibility of the limit element x̂. We define:

yN(t) = xN (t) − x̂(t) =⇒ JyN(t) = JxN (t) − Jx̂(t); (3.17)

xN →C0(Ω,R
n) x̂ =⇒ yN →C0(Ω,R

n) o; (3.18)

JxN ∗−⇀ L∞(Ω,R
nm) Jx̂ =⇒ JyN ∗−⇀ L∞(Ω,R

nm) o; (3.19)

JxN (t) ∈ K (∀) t ∈ Ω ∀N ∈ N =⇒ Jx̂(t) + JyN (t) ∈ K (∀) t ∈ Ω ∀N ∈ N. (3.20)

Using an index K ∈ N to be qualified in Step 4 below, we define further

zN(t) =
K − 1

K
yN (t) =⇒ JzN (t) =

K − 1
K

JyN (t); (3.21)

ẑ(t) =
K − 1

K
x̂(t) =⇒ Jẑ(t) =

K − 1
K

Jx̂(t); (3.22)

yN →C0(Ω,R
n) o =⇒ zN →C0(Ω,R

n) o; (3.23)

JyN ∗−⇀ L∞(Ω,R
nm) o =⇒ JzN ∗−⇀ L∞(Ω,R

nm) o; (3.24)

Jx̂(t) + JyN (t) ∈ K (∀) t ∈ Ω ∀N ∈ N =⇒ Jẑ(t) + JzN(t) ∈ K − 1
K

K (∀) t ∈ Ω ∀N ∈ N; (3.25)

Jx̂(t) ∈ K (∀) t ∈ Ω =⇒ Jẑ(t) ∈ K − 1
K

K (∀) t ∈ Ω. (3.26)
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Now we decompose the integrals as follows:∫
Ωa ∩Ωc

f (qc)(t, xN (t), JxN (t)) dt =
∫

Ωa ∩Ωc

f (qc)(t, x̂(t) + yN(t), Jx̂(t) + JyN (t)) dt

= J1(N) + J2(N) + J3(N) + J4(N) + J5(N) with (3.27)

J1(N) =
∫

Ωa ∩Ωc

(
f (qc)(t, x̂(t) + yN (t), Jx̂(t) + JyN (t)) − f (qc)(t, ẑ(t) + yN(t), Jẑ(t) + JzN(t))

)
dt;

(3.28)

J2(N) =
∫

Ωa ∩Ωc

(
f (qc)(t, ẑ(t) + yN(t), Jẑ(t) + JzN(t)) − f (qc)(t, ẑ(t), Jẑ(t) + JzN(t))

)
dt;

(3.29)

J3(N) =
∫

Ωa ∩Ωc

f (qc)(t, ẑ(t), Jẑ(t) + JzN(t)) dt −∑
s

∫
Ωa ∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s + JzN (t)) dt;

(3.30)

J4(N) =
∑
s

∫
Ωa ∩Qs

(
f (qc)(ts, [ẑ]s, [Jẑ]s + JzN(t)) dt − f (qc)(ts, [ẑ]s, [Jẑ]s + J

(
ϕs(t) · zN (t)

)
)
)

dt

(3.31)

J5(N) =
∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s +
(
ϕs(t) · JzN(t) + ∇ϕs(t)TzN(t)

)
) dt. (3.32)

The precise choice of K ∈ N, Qs ⊂ Ωa, ts ∈ Qs, [ ẑ ]s ∈ R
n, [ Jẑ ]s ∈ R

nm and ϕs ∈ C∞
0 (Qs, R

n) will be
explained in the following steps.

Step 4. Investigation of J1(N) and J2(N). Applying Theorem 2.14, we find, in relation to ε > 0 fixed above,
two indices K0(ε) and K1(ε) ∈ N with∣∣∣ ∫

Ωa ∩Ωc

(
f (qc)

(
t,

K − 1
K

x̂(t),
K − 1

K
Jx̂(t)

)
− f (qc)(t, x̂(t), Jx̂(t))

)
dt

∣∣∣ � 7 |Ωa ∩ Ωc | ε ∀K � K0(ε) (3.33)

and∫
Ωc

(
f (qc)(t, xN (t), JxN (t)) − f (qc)

(
t,

K − 1
K

xN (t),
K − 1

K
JxN (t)

))
dt (3.34)

=
∫

Ωc

(
f (qc)(t, x̂(t) + yN (t), Jx̂(t) + JyN(t)) − f (qc)(t, ẑ(t) + yN (t), Jẑ(t) + JzN (t))

)
dt � −8 ε

∣∣Ωc

∣∣
for all K � K1(ε) and all N ∈ N. We choose K � Max

(
K0(ε), K1(ε)

)
. Then from Theorem 2.13, for arbitrary

N ∈ N it follows that∣∣∣ ∫
Ωc \Ωa

(
f (qc)(t, x̂(t) + yN (t), Jx̂(t) + JyN (t)) − f (qc)(t, ẑ(t) + yN (t), Jẑ(t) + JyN(t))

)
dt

∣∣∣
�

∫
Ωc \Ωa

∣∣ f (qc)(t, x̂(t) + yN (t), Jx̂(t) + JyN (t))
∣∣ dt +

∫
Ωc \Ωa

∣∣ f (qc)(t, ẑ(t) + yN (t), Jẑ(t) + JzN(t))
∣∣ dt

� 2
∫

Ωc \Ωa

(
A(t) + C2

)
dt � 2

∫
Ω \Ωa

(
A(t) + C2

)
dt � 4 ε. (3.35)
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Together we arrive at

J1(N) =
∫

Ωa ∩Ωc

(
...
)

dt =
∫

Ωc

(
...
)

dt −
∫

Ωc \Ωa

(
...
)

dt �
∫

Ωc

(
...
)

dt −
∣∣∣ ∫

Ωc \Ωa

(
...
)

dt
∣∣∣ (3.36)

=⇒ lim inf
N→∞

J1(N) � −(
8 |Ωc | + 4

)
ε. (3.37)

By Theorem 2.11, 2), the function f (qc)(t, ξ, v)
∣∣ (Ωc × Ac × K−1

K K
)

is uniformly continuous with respect
to (t, ξ, v). Then from the uniform convergence yN →C0(Ω,R

n) o it follows that

lim inf
N→∞

J2(N) = lim
N→∞

J2(N) = 0. (3.38)

Step 5. Investigation of J3(N). Due to (2.37), (2.38) and

Min
(
1, Dist

((
1 − 1

2K

)
K, ∂K

))
= Min

(
1,

cK

2K

)
� Min

(
ε, 1,

cK

2K
,
Diam (Ac)

2K

)
, (3.39)

the uniform continuity of f (qc)(t, ξ, v) on
(
Ωc × Ac × (1 − 1

2K )K
)

may be described by the relation

∣∣ t′ − t′′
∣∣ +

∣∣ ξ′ − ξ′′
∣∣ +

∣∣ v′ − v′′
∣∣ � δ3(ε) =

δ2(ε)
4 CK

· Min
(

ε, 1,
cK

2K
,
Diam (Ac)

2 K

)
(3.40)

=⇒ ∣∣f (qc)(t′, ξ′, v′) − f (qc)(t′′, ξ′′, v′′)
∣∣ � 6 ε ∀ (t′, ξ′, v′), (t′′, ξ′′, v′′)∈

(
Ωc × Ac ×

(
1 − 1

2K

)
K
)
.

In view to the proof of Proposition 3.8 below, we choose

δ4(ε) = Min
((

δ2(ε)
)2

, δ3(ε)
)

(3.41)

and apply Lemma 1.8 to the open set Ωa ⊂ R
m, the functions ẑ and Jẑ and the numbers

η = δ = Min
(
ε,

δ4(ε)
3
√

m
,

δ4(ε)
3
√

n
,

δ4(ε)
3
√

nm
,

cK

2 nm K

)
· (3.42)

We find a finite number of mutually disjoint closed cubes Qs ⊂ Ωa with edge length less or equal than
1

3
√

m
δ4(ε) and∣∣∣∣∣Ωa \

r⋃
s=1

Qs

∣∣∣∣∣ � ε; (3.43)

∣∣∣ ẑi(t) − 1
|Qs |

∫
Qs

ẑi(τ) dτ
∣∣∣ � δ4(ε)

3
√

n
(∀) t ∈ Qs, 1 � s � r, 1 � i � n; (3.44)∣∣∣ ∂ẑi(t)

∂tj
− 1

|Qs |
∫

Qs

∂ẑi(τ)
∂tj

dτ
∣∣∣ � δ4(ε)

3
√

nm
(∀) t ∈ Qs, 1 � s � r, 1 � i � n, 1 � j � m. (3.45)

Let us choose now points ts ∈ Qs \ N in such a way that
(
Qs ∩ Ωc

) \ N �= Ø implies ts ∈ (
Qs ∩ Ωc

) \ N.
From the convexity of the integral (cf. [5], Chap. IV, Sect. 6, p. 204, Corollaire) it follows that

[ẑ]s =
(

1
|Qs |

∫
Qs

ẑ1(τ) dτ, ...,
1

|Qs|
∫

Qs

ẑn(τ) dτ

)T

∈ K − 1
K

Ac (3.46)
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and

[Jẑ]s =

⎛⎜⎜⎜⎜⎝
1

|Qs|
∫

Qs

∂ẑ1

∂t1
(t) dt ...

1
|Qs|

∫
Qs

∂ẑ1

∂tm
(t) dt

... ...
1

|Qs|
∫

Qs

∂ẑn

∂t1
(t) dt ...

1
|Qs|

∫
Qs

∂ẑn

∂tm
(t) dt

⎞⎟⎟⎟⎟⎠ ∈ K − 1
K

K (3.47)

for all 1 � s � r. We deduce further that

∣∣ t − ts
∣∣ � δ4(ε)

3
∀ t ∈ Qs;

∣∣ ẑ(t) − [ ẑ ]s
∣∣ � δ4(ε)

3
∀ t ∈ Qs; (3.48)

∣∣Jẑ(t) − [Jẑ]s
∣∣ � Min

(
δ4(ε)

3
,

cK

2K

)
(∀) t ∈ Qs (3.49)

as well as (3.50)

[Jẑ]s + JzN(t) = Jẑ(t) + JzN(t) +
(
[Jẑ]s − Jẑ(t)

) ∈ K − 1
K

K + K
(
onm,

cK

2K

)
⊆ 2K − 1

2K
K (∀) t ∈ Qs,

which implies, in particular, f (qc)( ts, [ ẑ ]s, [ Jẑ ]s + JzN(t) ) < (+∞) for almost all t ∈ Qs. Then for almost all
t ∈ Qs and 1 � s � r it holds that∣∣t − ts

∣∣ +
∣∣ẑ(t) − [ẑ]s

∣∣ +
∣∣Jẑ(t) − [Jẑ]s

∣∣ � δ4(ε), (3.51)

and we obtain

J3(N) =
∫

(Ωa∩Ωc)\∪r
s=1Qs

f (qc)(t, ẑ(t), Jẑ(t) + JzN (t)) dt

+
∑
s

∫
Ωa ∩Ωc ∩Qs

(
f (qc)(t, ẑ(t), Jẑ(t) + JzN(t)) − f (qc)(ts, [ ẑ ]s, [ Jẑ ]s + JzN(t))

)
dt

−∑
s

∫
( Ωa \Ωc )∩Qs

f (qc)(ts, [ ẑ ]s, [ Jẑ ]s + JzN(t)) dt (3.52)

� −
∫

(Ωa∩Ωc)\∪r
s=1Qs

∣∣f (qc)(...)
∣∣ dt −∑

s

∫
Ωa∩Ωc∩Qs

∣∣∣ ... ∣∣∣ dt −∑
s

∫
(Ωa \Ωc)∩Qs

∣∣f (qc)(...)
∣∣ dt

(3.53)

� −
∫

(Ωa∩Ωc)\∪r
s=1Qs

(
A(t) + C2

)
dt −∑

s

∫
Ωa∩Ωc∩Qs

∣∣∣ ... ∣∣∣ dt −∑
s

∫
(Ωa\Ωc)∩Qs

(
A(t) + C2

)
dt

(3.54)

� −
∫

(Ωa∩Ωc)\∪r
s=1Qs

(
C2 + C3

)
dt −∑

s

∫
Ωa∩Ωc∩Qs

∣∣∣ ... ∣∣∣ dt −∑
s

∫
(Ωa\Ωc)∩Qs

(
C2 + C3

)
dt

(3.55)

� −
∫

Ωa\∪r
s=1Qs

(
C2 + C3

)
dt −∑

s

∫
Ωa∩Ωc∩Qs

∣∣∣ ... ∣∣∣dt −∑
s

∫
Ω\Ωc

(
C2 + C3

)
dt (3.56)

� −ε
(
C2 + C3

)− 6 ε
∣∣Ωa

∣∣− ε (3.57)

=⇒ lim inf
N→∞

J3(N) � −(
6 |Ωa | + C2 + C3 + 1

)
ε. (3.58)
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Step 6. Investigation of J4(N) and J5(N). Before we can exploit the quasiconvexity of f (qc), the values of zN

on the boundaries ∂Qs of the cubes must be altered to zero. We proceed in the following way. First, we choose
closed cubes Q0

s ⊂ int (Qs) with the same center as Qs and |Qs \ Q0
s | � ε · |Qs |. Let Dist (∂Q0

s, ∂Qs) = κs.
Then we define functions ϕs ∈ C∞(Qs, R) with

ϕs(t)

⎧⎪⎨⎪⎩
= 1

∣∣ t ∈ Q0
s;

∈ [0, 1]
∣∣ t ∈ Qs \ Q0

s;
= 0 | t ∈ ∂Qs

(3.59)

and | ∇ϕs(t) | � C6/κs � Max 1 � s � r

(
C6/κs

)
with a constant C6 > 0. Let us investigate now the arguments

[Jẑ]s + ϕs(t) · JzN(t) + ∇ϕs(t)TzN (t). (3.60)

By Step 5, [ Jẑ ]s as well as [ Jẑ ]s +JzN(t) belong to 2K−1
2K K for almost all t ∈ Ω. Since 0 � ϕs(t) � 1 it follows

that

[Jẑ]s + ϕs(t) · JzN (t) ∈ [
[Jẑ]s, [Jẑ]s + JzN (t)

] ⊂ 2K − 1
2K

K (3.61)

for almost all t ∈ Ω. With a further constant C7 > 0, we may estimate

∣∣ ∇ϕs(t)T zN (t)
∣∣ � C7 ·

∣∣∇ϕs(t)
∣∣ · ‖ zN ‖C0(Ω,Rn) � Max

1�s�r

C6C7

κs
· ‖ zN ‖C0(Ω,Rn). (3.62)

The convergence zN →C0(Ω,R
n) o implies for all sufficiently large N � N0(ε):∣∣ ∇ϕs(t)TzN(t)

∣∣ � cK

4K
(3.63)

and

[Jẑ]s + ϕs(t) · JzN (t) + ∇ϕs(t)TzN(t) ∈ 2K − 1
2K

K + K
(
onm,

cK

4K

)
⊆ 4K − 1

4K
K. (3.64)

Consequently, for all N � N0(ε) and all 1 � s � r and almost all t ∈ Ω it results that

f (qc)
(
ts, [ẑ]s, [Jẑ]s + ϕs(t) · JzN(t) + ∇ϕs(t)TzN (t)

)
< (+∞). (3.65)

We obtain∫
Ωa∩Qs

(
f (qc)(ts, [ẑ]s, [Jẑ]s + JzN (t)) − f (qc)(ts, [ẑ]s, [Jẑ]s + J

(
ϕs(t) · zN(t)

)
)
)

dt (3.66)

=
∫

Ωa∩(Qs\Q0
s)

(
...
)

� −
∫

Qs\Q0
s

∣∣∣...∣∣∣ � −2
∫

Qs\Q0
s

(
A(t) + C2

)
dt � −2 ε

∣∣Qs

∣∣(C2 + C3

)
for all 1 � s � r. Summing up, we arrive at (3.67)

J4(N) =
∑
s

∫
Ωa∩Qs

(
f (qc)(ts, [ẑ]s, [Jẑ]s + JzN(t)) − f (qc)(ts, [ẑ]s, [Jẑ]s + J

(
ϕs(t) · zN(t)

)
)
)

dt

� −2 ε
∑
s

∣∣Qs

∣∣(C2 + C3

)
� −2 ε

∣∣Ωa

∣∣(C2 + C3

)
=⇒ lim inf

N→∞
J4(N) � −2 ε

∣∣Ωa

∣∣(C2 + C3

)
. (3.68)
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Now from the quasiconvexity of the functions f (qc)(ts, [ẑ]s, ·) (Thm. 2.10, 2)) it follows for all 1 � s � r:

1
|Ω|

∫
Ω

(
f (qc)(ts, [ẑ]s, [Jẑ]s + J

(
ϕs(t) · zN(t)

)
) − f (qc)(ts, [ẑ]s, [Jẑ]s)

)
dt (3.69)

=
1
|Ω|

∫
Ωa∩Qs

(
f (qc)(ts, [ẑ]s, [Jẑ]s + J

(
ϕs(t) · zN(t)

)
) − f (qc)(ts, [ẑ]s, [Jẑ]s)

)
dt � 0,

which gives finally

J5(N) =
∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s + J
(
ϕs(t) · zN(t)

)
) dt (3.70)

�
∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt (3.71)

and
lim inf
N→∞

J5(N) �
∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt. (3.72)

Step 7. Synopsis of the previous Steps 2–6.

Lemma 3.5. It holds that

lim inf
N→∞

∫
Ω

f (qc)(t, xN (t), JxN (t)) dt �
∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt − C4ε (3.73)

with C4 = (2C2 + 2C3 + 6) |Ωa | + 8 |Ωc | + C2 + C3 + 5.

Proof. From Lemma 3.4 and (3.27), it follows that

lim inf
N→∞

∫
Ω

f (qc)(t, xN (t), JxN (t)) dt � lim inf
N→∞

∫
Ωa∩Ωc

f (qc)(t, xN (t), JxN (t)) dt − 3 ε

� lim inf
N→∞

J1(N) + lim inf
N→∞

J2(N) + lim inf
N→∞

J3(N) + lim inf
N→∞

J4(N) + lim inf
N→∞

J5(N) − 3 ε. (3.74)

From Steps 4–6, we conclude with (3.37), (3.38), (3.58), (3.68) and (3.71):

lim inf
N→∞

J1(N) + lim inf
N→∞

J2(N) + lim inf
N→∞

J3(N) + lim inf
N→∞

J4(N) + lim inf
N→∞

J5(N) (3.75)

� −(
8 |Ωc | + 4

)
ε − (

6 |Ωa | + C2 + C3 + 1
)
ε − 2 ε

∣∣Ωa

∣∣(C3 + C2

)
+

∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt,

which gives together

lim inf
N→∞

∫
Ω

f (qc)(t, xN (t), JxN (t)) dt �
∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt − C4ε. (3.76)

Step 8. Conclusion of the proof. �
Lemma 3.6. It holds that∣∣∣∣∫

Ω

f (qc)(t, x̂(t), Jx̂(t)) dt −∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt

∣∣∣∣ � C5ε (3.77)

with C5 = 6 |Ωa | + 7 |Ωa ∩ Ωc | + C2 + C3 + 4.
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Proof. Let us decompose∫
Ω

f (qc)(t, x̂(t), Jx̂(t)) dt −∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt = J6 + J7 + J8 with (3.78)

J6 =
∫

Ω

f (qc)(t, x̂(t), Jx̂(t)) dt −
∫

Ωa∩Ωc

f (qc)(t, x̂(t), Jx̂(t)) dt; (3.79)

J7 =
∫

Ωa∩Ωc

f (qc)(t, x̂(t), Jx̂(t)) dt −
∫

Ωa∩Ωc

f (qc)(t, ẑ(t), Jẑ(t)) dt; (3.80)

J8 =
∫

Ωa∩Ωc

f (qc)(t, ẑ(t), Jẑ(t)) −∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt. (3.81)

From Lemma 3.4 it follows that |J6| � 3 ε, and the index K had been chosen in the definition of ẑ in such a
way that the inequality (3.33) holds. Consequently, we find |J7| � 7 |Ωa ∩Ωc | ε. When estimating J8, by (3.51)
we obtain analogously to (3.58):

J8 =
∫

(Ωa∩Ωc)\∪r
s=1Qs

f (qc)(t, ẑ(t), Jẑ(t)) dt

+
∑
s

∫
Ωa∩Ωc∩Qs

(
f (qc)(t, ẑ(t), Jẑ(t)) − f (qc)(ts, [ẑ]s, [Jẑ]s)

)
dt

−∑
s

∫
(Ωa\Ωc)∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt (3.82)

=⇒ ∣∣J8

∣∣ �
∫

(Ωa∩Ωc)\∪r
s=1Qs

∣∣f (qc)(...)
∣∣ dt +

∑
s

∫
Ωa∩Ωc∩Qs

∣∣∣ ... ∣∣∣dt +
∑
s

∫
(Ωa\Ωc)∩Qs

∣∣f (qc)(...)
∣∣ dt

(3.83)

�
∫

(Ωa∩Ωc)\∪r
s=1Qs

(
A(t) + C2

)
dt +

∑
s

∫
Ωa∩Ωc∩Qs

∣∣∣ ... ∣∣∣dt +
∑
s

∫
(Ωa\Ωc)∩Qs

(
A(t) + C2

)
dt

(3.84)

�
∫

(Ωa∩Ωc)\∪r
s=1Qs

(
C2 + C3

)
dt +

∑
s

∫
Ωa∩Ωc∩Qs

∣∣∣ ... ∣∣∣ dt +
∑
s

∫
(Ωa\Ωc)∩Qs

(
C2 + C3

)
dt

(3.85)

�
∫

Ωa\∪r
s=1Qs

(
C2 + C3

)
dt +

∑
s

∫
Ωa∩Ωc∩Qs

∣∣∣ ... ∣∣∣ dt +
∑
s

∫
Ω\Ωc

(
C2 + C3

)
dt (3.86)

� (C2 + C3) ε + 6 |Ωa | ε + ε. (3.87)

We arrive at ∣∣∣∫
Ω

f (qc)(t, x̂(t), Jx̂(t)) dt −∑
s

∫
Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt
∣∣∣ �

∣∣J6

∣∣ +
∣∣J7

∣∣ +
∣∣J8

∣∣
� 3 ε + |Ωa ∩ Ωc| ε +

(
6 |Ωa | + C2 + C3 + 1

)
ε. (3.88)

Finally, we deduce from Lemmas 3.5 and 3.6:

lim inf
N→∞

∫
Ω

f (qc)(t, xN (t), JxN (t)) dt �
∫

Ω

f (qc)(t, x̂(t), Jx̂(t)) dt − (
C4 + C5

)
ε. (3.89)
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Since neither C4 nor C5 depends on ε, (3.89) implies the claimed lower semicontinuity relation∫
Ω

f (qc)(t, x̂(t), Jx̂(t)) dt � lim inf
N→∞

∫
Ω

f (qc)(t, xN (t), JxN (t)) dt, (3.90)

and the proof of Proposition 3.3 is complete. �

Corollary 3.7. The problem (P)(qc) admits a global minimizer x̂ ∈ W 1,∞
0 (Ω, Rn).

Proof. The feasible domain of the problem (P)(qc) is identical with the feasible domain B of (P). Consequently,
Lemma 3.1 together with Theorem 2.13 implies the boundedness of F (qc) on B:

∣∣F (qc)(x)
∣∣ �

∫
Ω

∣∣f (qc)(t, x(t), Jx(t))
∣∣ dt �

∥∥A
∥∥
L1(Ω,R)

+ C2 · |Ω| < (+∞), (3.91)

and (P)(qc) admits a minimizing sequence { xN } , W 1,∞
0 (Ω, Rn). Analogously to the proof of Theorem 1.2, we

may assume from the outset that { xN } ∗−⇀ L∞(Ω,R
n) x̂ and { JxN } ∗−⇀ L∞(Ω,R

nm) Jx̂ with x̂ ∈ B. Denoting
the (finite) minimal value of (P)(qc) by m(qc), we conclude from Proposition 3.3:

m(qc) � F (qc)(x̂) � lim inf
N→∞

F (qc)(xN ) = lim
N→∞

F (qc)(xN ) = m(qc), (3.92)

and x̂ is a global minimizer of (P)(qc). �

Proposition 3.8 (coincidence of the minimal values of (P) and (P)(qc) ). The problems (P) and (P)(qc) possess
global minimizers, and its minimal values are identical.

Proof. Let x̂ ∈ W 1,∞
0 (Ω, Rn) be a global minimizer of (P)(qc) (its existence is assured by Cor. 3.7). We have to

prove that

F (qc)(x̂) =
∫

Ω

f (qc)(t, x̂(t), Jx̂(t)) dt (3.93)

can be approximated arbitrarily close with terms

F (x) =
∫

Ω

f(t, x(t), Jx(t)) dt (3.94)

where the functions x ∈ B are admissible in (P). Let us fix ε > 0. For 1 � s � r, we may write in accordance
with Theorem 2.5:∫

Ωa∩Qs

f (qc)(ts, [ẑ]s, [Jẑ]s) dt = |Qs| · f (qc)(ts, [ẑ]s, [Jẑ]s) = lim
N→∞

∫
Qs

f(ts, [ẑ]s, [Jẑ]s + JwN
s (t)) dt,

(3.95)

assuming that wN
s ∈ W 1,∞

0 (Qs, R
n), [ Jẑ ]s + JwN

s (t) ∈ K (∀) t ∈ Ω and lim N→∞ ‖wN
s ‖C0(Qs,Rn) = 0 (cf. the

proof of Lem. 3.1). Consequently, there exist functions ws ∈ W 1,∞
0 (Qs, R

n) with the following properties:

[Jẑ]s + Jws(t) ∈ K (∀) t ∈ Ω; (3.96)

‖ws ‖C0(Qs,Rn) � δ4(ε)
3

; (3.97)∣∣∣∫
Qs

(
f(ts, [ẑ]s, [Jẑ]s) − f(ts, [ẑ]s, [Jẑ]s + Jws(t))

)
dt

∣∣∣ � ε. (3.98)
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Since δ4(ε) � Diam (Ac)/(2K), from | ẑ(t) − [ ẑ ]s | � δ4(ε)/3 ∀ t ∈ Qs it follows that

ẑ(t) + ws(t) ∈ K − 1
K

Ac + K
(

o,
δ4(ε)

3

)
+ K

(
o,

δ4(ε)
3

)
=⇒ ẑ(t) + ws(t) ∈ Ac. (3.99)

Further, from | Jẑ(t) − [ Jẑ ]s | � δ4(ε)/3 �
(
δ2(ε)

)2 (∀) t ∈ Qs we conclude that

Jẑ(t) + Jws(t) ∈ cK +
(
δ2(ε)

)2

cK
K (3.100)

for almost all t ∈ Qs and all 1 � s � r, thus

cK

cK +
(
δ2(ε)

)2

(
Jẑ(t) + Jws(t)

) ∈ K (3.101)

for almost all t ∈ Qs and all 1 � s � r. We gather all functions ws into a single function w ∈ W 1,∞
0 (Ω, Rn)

defined by

w(t) =
r∑

s=1
�Qs(t)ws(t) (3.102)

and study the difference∣∣∣∣∣
∫

Ωa∩Ωc

f

(
t,

cK

cK +
(
δ2(ε)

)2 (ẑ(t) + w(t)),
cK

cK +
(
δ2(ε)

)2 (Jẑ(t) + Jw(t))

)
dt

−∑
s

∫
Ωa∩Qs

f
(
ts, [ẑ]s, [Jẑ]s + Jws(t)

)
dt

∣∣∣ � J9 + J10 + J11 with (3.103)

J9 =

∣∣∣∣∣
∫

(Ωa∩Ωc)\∪r
s=1Qs

f

(
t,

cK

cK +
(
δ2(ε)

)2 (ẑ(t) + w(t)),
cK

cK +
(
δ2(ε)

)2 (Jẑ(t) + Jw(t))

)
dt

∣∣∣∣∣; (3.104)

J10 =

∣∣∣∣∣∑s
∫

Ωa∩Ωc∩Qs

(
f

(
t,

cK

cK +
(
δ2(ε)

)2 (ẑ(t) + w(t)),
cK

cK +
(
δ2(ε)

)2

(
Jẑ(t) + Jw(t)

))
(3.105)

− f(ts, [ẑ]s, [Jẑ]s + Jws(t))

)
dt

∣∣∣∣∣;
J11 =

∣∣∣∣∣∑s
∫

(Ωa\Ωc)∩Qs

f(ts, [ẑ]s, [Jẑ]s + Jws(t))
)

dt

∣∣∣∣∣. (3.106)

In view of the growth condition for f and the definitions of Ωa, Ωc and
⋃

s Qs, we arrive at

J9 �
∫

(Ωa∩Ωc)\∪r
s=1Qs

∣∣f(...)
∣∣ dt �

∫
(Ωa∩Ωc)\∪r

s=1Qs

(
A(t) + C2

)
dt �

∫
(Ωa∩Ωc)\∪r

s=1Qs

(
C2 + C3

)
dt

�
∫

Ωa\∪r
s=1Qs

(
C2 + C3

)
dt � (C2 + C3)ε; (3.107)

J11 �
∑
s

∫
(Ωa\Ωc)∩Qs

∣∣f(...)
∣∣ dt �

∑
s

∫
(Ωa\Ωc)∩Qs

(
A(t) + C2

)
dt

�
∑
s

∫
(Ωa\Ωc)∩Qs

(
C3 + C2

)
dt �

∑
s

∫
Ω\Ωc

(
C3 + C2

)
dt � ε. (3.108)
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For J10, we obtain:

J10 �
∑
s

∫
Ωa∩Ωc∩Qs

∣∣∣∣∣f
(

t,
cK

cK +
(
δ2(ε)

)2 (ẑ(t) + ws(t)),
cK

cK +
(
δ2(ε)

)2 (Jẑ(t) + Jws(t))

)
(3.109)

− f

(
ts,

cK

cK +
(
δ2(ε)

)2 ([ẑ]s + ws(t)),
cK

cK +
(
δ2(ε)

)2 ([Jẑ]s + Jws(t))

) ∣∣∣∣∣ dt

+
∑
s

∫
Ωa∩Ωc∩Qs

∣∣∣∣∣f
(

ts,
cK

cK +
(
δ2(ε)

)2 ([ẑ]s + ws(t)),
cK

cK +
(
δ2(ε)

)2 ([Jẑ]s + Jws(t))

)

− f(ts, [ẑ]s, [Jẑ]s + Jws(t))

∣∣∣∣∣ dt.

By (3.41) and (3.51), the difference of the arguments within the first member can be estimated as follows:∣∣t − ts
∣∣ +

cK

cK +
(
δ2(ε)

)2

∣∣ẑ(t) − [ẑ]s
∣∣ +

cK

cK +
(
δ2(ε)

)2

∣∣Jẑ(t) − [Jẑ]s
∣∣ � δ3(ε) � δ2(ε). (3.110)

For the second member, the following estimate holds:∣∣∣∣∣
(
δ2(ε)

)2

cK +
(
δ2(ε)

)2 [ẑ]s +
cK

cK +
(
δ2(ε)

)2 ws(t)

∣∣∣∣∣ +

(
δ2(ε)

)2

cK +
(
δ2(ε)

)2

∣∣ [Jẑ]s + Jws(t)
∣∣

�
(
δ2(ε)

)2

cK +
(
δ2(ε)

)2 (C1 + CK) +
cK

cK +
(
δ2(ε)

)2 · δ4(ε)
3

(3.111)

� cK

3
(
cK +

(
δ2(ε)

)2) · δ2(ε) � δ2(ε). (3.112)

(3.110) and (3.112) give together

J10 � 2
∑
s
|Qs|ε � 2|Ωa|ε. (3.113)

Finally, we apply Lemma 3.6 in order to summarize∣∣∣∣∣F
(

cK

cK +
(
δ2(ε)

)2 (ẑ + w)

)
− F (qc)(x̂)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ωa∩Ωc

f

(
t,

cK

cK +
(
δ2(ε)

)2 (ẑ(t) + w(t)),
cK

cK +
(
δ2(ε)

)2 (Jẑ(t) + Jw(t))

)
dt

−
∫

Ω

f (qc)(t, x̂(t), Jx̂(t)) dt

∣∣∣∣∣ (3.114)

� C5ε + J9 + J10 + J11 �
(
C5 + 1 + C2 + C3 + 2 |Ωa |

)
ε. (3.115)
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The function
cK

cK +
(
δ2(ε)

)2 (ẑ + w) (3.116)

is admissible in (P), and the proof of Proposition 3.8 is complete. �
This completes the proof of Theorem 1.4. �

3.3. Proof of the existence Theorem 1.5

The notion of polyconvexity is defined as follows:

Definition 3.9 (polyconvex function with values in R). 37A function r(v) : R
nm → R is said to be polyconvex

iff it can be represented as a composition r(v) = h
(
g(v)

)
of a convex function h with those mapping g, which

assigns to every (n, m)-matrix v ∈ R
nm the vector of all its subdeterminants.

Since (P) and f satisfy all assumptions of the relaxation Theorem 1.4, we have to prove that, for all fixed
(t̂, ξ̂) ∈ (

Ω \ N
) × R

n, the polyconvex function f(t̂, ξ̂, v) coincides with its lower semicontinuous quasiconvex en-
velope f (qc)(t̂, ξ̂, v) on the whole space R

nm. The lower semicontinuity of f(t̂, ξ̂, · ) results from Definition 1.1, 2),
Part c), and by Remark c) after Definition 2.6, it holds that f(t̂, ξ̂, v) = f (qc)(t̂, ξ̂, v) = (+∞) for v ∈ (

R
nm\ K

)
.

It remains to confirm that f(t̂, ξ̂, v) satisfies Morrey’s integral inequality where dom
(
f(t̂, ξ̂, · ) ) = K. For

v ∈ (
R

nm \ K
)
, this will be implied by [37], p. 238, Theorem 2, i); for v ∈ K, we may take over the proof

from [12], p. 161, Proof of Theorem 5.3, Part 2. In this case, however, we may restrict ourselves to test functions
x ∈ W 1,∞

0 (Ω, Rn) with v + Jx(t) ∈ K (∀) t ∈ Ω (Thm. 2.2), and the integrals within the proof remain finite. �

4. Existence of global minimizers for the image registration problem

with a polyconvex regularization term

4.1. Elastic image registration resp. elastic image matching

Consider a rectangular domain Ω ⊂ R
2 with edges a and b, containing the origin as the point of intersection

of its diagonals38. Assume that two greyscale images I0(t), I1(t) : Ω → [ 0, 1 ] are given where I0 is considered
as the reference image. Then we search for a deformation x(t) : Ω → R

2, which satisfies I1( t − x(t) ) ≈ I0(t),
thus bringing I1 in the best possible correspondence with I0. The knowledge about x will be further exploited
e.g. in order to decide whether the objects captured in I1 and I0 are identical or to gain information about
its possible evolution. In view of the numerous applications of imaging in modern science, engineering and
medicine, this problem has to be considered as a basic problem in mathematical image processing39.

The determination of x leads, however, to an ill-posed problem. For its solution, variational methods have
been proposed, which are based on the minimization of the defect of the greyscale values40(

I1(t − x(t)) − I0(t)
)2 (4.1)

or the difference of the normal directions to the isophotes41∥∥∇I1(t − x(t))
∥∥2 · ∥∥∇I0(t)

∥∥2 − (∇I1(t − x(t))T∇I0(t)
)2 (4.2)

37[12], p. 157, Definition 5.1, (iii).
38In the literature, the image registration problem has been studied on a rectangular parallelepiped Ω ⊂ R

3 as well. Here we
confine ourselves to the two-dimensional case.

39Cf. the introduction in [28], pp. 1 ff. and pp. 21 ff.
40See e.g. [24], p. 331, [22,23], [28], pp. 77 ff. [2] aims for the determination of a “optical flow field”, which is, in fact, a

deformation x as well. Cf. also [42], p. 562 f.
41If one cannot expect a correspondence between the intensities of I0 and I1 (“multimodal matching”) then this approach leads

to a matching of the edge structures within the images. See e.g. [14,20,21].
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together with a regularization term involving the first-order generalized partial derivatives of x. The corre-
sponding variational problems can be stated within Sobolev spaces as follows:

(V)1 : F (x) =
∫

Ω

(
I1( t − x(t)) − I0(t)

)2

dt + μ ·
∫

Ω

r
(
Jx(t)

)
dt −→ inf !; x ∈ W 1,p

0 (Ω, R2) (4.3)

resp.

(V)2 : F (x) =
∫

Ω

(∥∥∇I1(t − x(t))
∥∥2∥∥∇I0(t)

∥∥2 − (∇I1(t − x(t))T∇I0(t)
)2

)
dt (4.4)

+ μ ·
∫

Ω

r
(
Jx(t)

)
dt −→ inf !; x ∈ W 1,p

0 (Ω, R2)

with (sufficiently regular, if necessary presmoothed) image data I0(t), I1(t) : Ω → [ 0, 1 ] 42, 2 � p < ∞,
a regularization parameter μ > 0 and integrands r(v) originating from models of elasticity theory as convex or
polyconvex functions43.

The optimal control reformulation of the elastic image problem is motivated by the observation that the
validity of the underlying elasticity models is constrained by a threshold for the developing shear stresses.
Consequently, a convex gradient restriction of the type

Jx(t) ∈ K ⊂ R
2×2 (∀) t ∈ Ω (4.5)

with a convex body K ⊂ R
2×2 should be incorporated, thus converting (V) into a multidimensional control

problem of the type (P). Then in analogy to [8,19], the simultaneous detection of the “discontinuities” of x
(i.e. regions with large gradients ∇x1, ∇x2) will be made possible where the indicator corresponds to the
distance Dist

(
Jx(t), ∂K

)
. Note further that problem (P) allows for a very efficient numerical solution, even in

presence of additional state and control constraints44.

4.2. Image registration as a multidimensional control problem with convex regularization

Let us consider first image registration problems with convex regularization terms from linear elasticity45.
In this case, the addition of a convex gradient restriction is mandatory since the modulus of the resulting shear
stress, which is proportional to ‖ Jx ‖ , must be uniformly bounded. Then from (V)1 and (V)2, we obtain the
following optimal control problems:

(P)1 : F (x) =
∫

Ω

(
I1(t − x(t)) − I0(t)

)2

dt + μ ·
∫

Ω

2∑
i,j=1

(∂xi(t)
∂tj

+
∂xj(t)

∂ti

)2

dt −→ inf !; (4.6)

x ∈ W 1,p
0 (Ω, R2); Jx(t) ∈ K ⊂ R

2×2 (∀) t ∈ Ω

resp.

(P)2 : F (x) =
∫

Ω

(∥∥∇I1(t − x(t))
∥∥2 ∥∥∇I0(t)

∥∥2 − (∇I1(t − x(t))T∇I0(t)
)2

)
dt (4.7)

+ μ ·
∫

Ω

2∑
i,j=1

(∂xi(t)
∂tj

+
∂xj(t)

∂ti

)2

dt −→ inf !; x ∈ W 1,p
0 (Ω, R2); Jx(t) ∈ K ⊂ R

2×2 (∀) t ∈ Ω

42In order to guarantee the existence of the integrals within the objectives, it should be demanded that additionally t−x(t) ∈ Ω
holds for almost all t ∈ Ω. This condition, however, can be eliminated if the image data I0 and I1 are embedded into a sufficiently
large black frame, i.e. they will be extended by zero to R

2 \ Ω (cf. [23], p. 1078).
43Examples will be treated in detail in the following subsections.
44Cf. [43].
45We follow [23], p. 1079 f.
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with 2 � p < ∞ and μ > 0. K ⊂ R
2×2 is a convex body with o ∈ int (K); the properties of the image data I0,

I1 : Ω → [ 0, 1 ] will be made precise in the following theorem.

Theorem 4.1 (existence theorem for (P)1 and (P)2).
1) Consider the problem (P)1 with the above mentioned assumptions about the data. Assume further that

I0 ∈ L∞(Ω, R) and I1 ∈ C 0
0(Ω, R). Then (P)1 admits a global minimizer x̂ ∈ W 1,∞

0 (Ω, R2).
2) Consider the problem (P)2 with the above mentioned assumptions about the data. Assume further that

I0 ∈ W 1,∞
0 (Ω, R) and I1 ∈ C 1

0(Ω, R). Then (P)2 admits a global minimizer x̂ ∈ W 1,∞
0 (Ω, R2) as well.

Proof. 1) The assumed zero boundary condition allows us to extend the image data I0, I1 by zero to R
2 \ Ω.

With the convex body K, we associate the convex indicator function �K(v) : R
2×2 → R defined by

�K(v) =
{

0
∣∣ v ∈ K;

(+∞)
∣∣ v ∈ (

R
2×2 \ K

)
.

(4.8)

On Ω × R
2 × R

2×2, we define the function

f1(t, ξ, v) =
(
I1(t − ξ) − I0(t)

)2 + μ ·
2∑

i,j=1

(
vij + vji

)2 + �K(v) (4.9)

with the properties a)–c) from Definition 1.1, 2). Since I0(t), I1(t − ξ) ∈ [ 0, 1 ] it holds that

∣∣f1(t, ξ, v)
∣∣ � I1(t − ξ)2 + I0(t)2 + 2I0(t)I1(t − ξ) + μ ·

2∑
i,j=1

(
vij + vji

)2 (4.10)

� 4 + μ ·
2∑

i,j=1

(
vij + vji

)2 ∀ (t, ξ, v) ∈ (
Ω \ N

)× R
2 × K, (4.11)

and f1 satisfies the growth condition d) from Definition 1.1, 2) with A(t) ≡ 4 and B(ξ, v) =
μ · ∑ 2

i,j=1 ( vij + vji )2. Finally, f1(t̂, ξ̂, v) is convex with respect to v for all fixed (t̂, ξ̂) ∈ (
Ω \ N

) × R
2,

and by Remark c) after Definition 2.6, it follows for all v ∈ R
2×2:

f c
1(t̂, ξ̂, v) � f

(qc)
1 (t̂, ξ̂, v) � f1(t̂, ξ̂, v) � f c

1(t̂, ξ̂, v). (4.12)

Now the claim results from Theorem 1.4.
2) On Ω × R

2 × R
2×2, we define the function

f2(t, ξ, v) =
∥∥∇I1(t − ξ)

∥∥2 · ∥∥∇I0(t)
∥∥2 − (∇I1(t − ξ)T∇I0(t)

)2 + μ ·
2∑

i,j=1

(
vij + vji

)2 + �K(v), (4.13)

admitting the properties a)–c) from Definition 1.1, 2). In consequence of our assumptions, ‖∇I0 ‖ is bounded
almost everywhere and ‖∇I1 ‖ is bounded everywhere by a constant C > 0, and we obtain the estimate

∣∣ f2(t, ξ, v)
∣∣ � C4

(
1 +

∣∣ cos�(∇I1(t − ξ),∇I0(t))
∣∣ ) + μ ·

2∑
i,j=1

(
vij + vji

)2

∀ (t, ξ, v) ∈ (
Ω \ N

)× R
2 × K. (4.14)

Consequently, f2 satisfies the growth condition d) with A(t) ≡ 2 C4 and B(ξ, v) = μ ·∑ 2
i,j=1 ( vij +vji )2. Again

f2(t̂, ξ̂, v) is a convex function with respect to v for all fixed (t̂, ξ̂) ∈ (
Ω \ N

) × R
2, and the proof can be finished

as in Part 1). �
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4.3. Image registration as a multidimensional control problem
with polyconvex regularization

As an alternative approach, the image registration problem has been considered with polyconvex regulariza-
tion instead of convex ones, corresponding with hyperelastic material laws. In view of the hyperelastic behaviour
of human tissue, this is particularly reasonable within registration problems from medical imaging. Additionally,
the further restriction to orientation-preserving, bijective deformations (i.e. Det (Jx) > 0 ) has been proposed46.
Leaving aside the latter condition for the moment, we arrive at the following optimal control problems47:

(P)3 : F (x) =
∫

Ω

(
I1(x(t)) − I0(t)

)2

dt + μ ·
∫

Ω

(
c1

∥∥ Jx(t)
∥∥ p + c2

(
DetJx(t)

)2
)

dt −→ inf !;

x ∈ W 1,p
0 (Ω, R2); Jx(t) ∈ K ⊂ R

2×2 (∀) t ∈ Ω (4.15)

resp.

(P)4 : F (x) =
∫

Ω

(∥∥∇I1(x(t))
∥∥2∥∥∇I0(t)

∥∥2 − (∇I1(x(t))T∇I0(t)
)2

)
dt (4.16)

+μ ·
∫

Ω

(
c1

∥∥ Jx(t)
∥∥ p + c2

(
DetJx(t)

)2
)

dt −→ inf !; x ∈ W 1,p
0 (Ω, R2); Jx(t) ∈ K ⊂ R

2×2 (∀) t ∈ Ω

with 2 � p < ∞, μ > 0 and weights c1, c2 > 0. K ⊂ R
2×2 is again a convex body with o ∈ int (K). We will

use the matrix norm ‖M ‖ = trace (MTM ). The properties of the image data I0, I1 : Ω → [ 0, 1 ] will be
described in the following theorem.

Theorem 4.2 (existence theorem for (P)3 and (P)4).
1) Consider the problem (P)3 with the above mentioned assumptions about the data. Assume further that

I0 ∈ L∞(Ω, R) and I1 ∈ C 0
0(Ω, R). Then (P)3 admits a global minimizer x̂ ∈ W 1,∞

0 (Ω, R2).
2) Consider the problem (P)4 with the above mentioned assumptions about the data. Assume further that

I0 ∈ W 1,∞
0 (Ω, R) and I1 ∈ C 1

0(Ω, R). Then (P)4 admits a global minimizer x̂ ∈ W 1,∞
0 (Ω, R2) as well.

Proof. 1) Again we may assume that the image data I0, I1 have been extended by zero to R
2 \ Ω. On

Ω × R
2 × R

2×2, we define the function

f3(t, ξ, v) =
(
I1(ξ) − I0(t)

)2 + μ ·
(
c1

∥∥ v
∥∥p + c2

(
Det v

)2
)

+ �K(v), (4.17)

which satisfies a)–c) from Definition 1.1, 2). Analogously to the proof of Theorem 4.1, 1), since∣∣f3(t, ξ, v)
∣∣ � 4 + μ ·

(
c1 ‖ v ‖p + c2

(
Det v

)2
)

∀ (t, ξ, v) ∈ (
Ω \ N

)× R
2 × K, (4.18)

the growth condition d) is satisfied as well with A(t) ≡ 4 and B(ξ, v) = μ
(
c1 ‖ v ‖p + c2 (Det v )2

)
. Note that,

for every fixed (t̂, ξ̂) ∈ (
Ω \ N

)
, the function f3(t̂, ξ̂, v) is polyconvex with respect to v as the sum of the

polyconvex functions
(
I1(t̂− ξ̂)− I0(t̂)

)2 +μ · (c1‖ v ‖p + c2(Det v)2
)

and �K(v). Consequently, Theorem 1.5 can
be applied, and (P)3 admits a global minimizer.

2) We may argue in analogy to Part 1) and the proof of Theorem 4.1, noting that, for all (t, ξ, v) ∈(
Ω \ N

) × R
2 × K, the integrand

f4(t, ξ, v) =
∥∥∇I1(ξ)

∥∥2 · ∥∥∇I0(t)
∥∥2 − (∇I1(ξ)T∇I0(t)

)2 + μ ·
(
c1

∥∥ v
∥∥p + c2

(
Det v

)2
)

+ �K(v) (4.19)

46[14], p. 673 f.
47Subsequently, the deformation will be described directly and not by means of displacement variables.
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obeys the estimate∣∣f4(t, ξ, v)
∣∣ � C4

(
1 +

∣∣cos�(∇I1(ξ),∇I0(t))
∣∣) + μ ·

(
c1

∥∥ v
∥∥p + c2

(
Det v

)2
)

+ �K(v). (4.20)

�

4.4. Image registration as a multidimensional control problem with the constraint
Det (Jx) > 0 and polyconvex regularization

We consider (P)3 together with the additional restriction Det (Jx) > 0 and the polyconvex penalty term48

−c3 · ln
(
DetJx(t)

)
(4.21)

with c3 > 0 within the objective. This leads to the problem

(P)5 : F (x) =
∫

Ω

(
I1(x(t)) − I0(t)

)2

dt + μ ·
∫

Ω

(
c1

∥∥ Jx(t)
∥∥ p + c2

(
Det Jx(t)

)2 (4.22)

−c3 · ln
(
Det Jx(t)

))
dt −→ inf !;

x ∈ W 1,p
0 (Ω, R2); Jx(t) ∈ K ∩ {v ∈ R

2×2
∣∣Det (v) > 0} ⊂ R

2×2 (∀) t ∈ Ω, (4.23)

which does not match the analytical situation described in Section 1.1 since the compact control domain K
has to be intersected with an open set. Nevertheless, an existence theorem for (P)5 can be easily derived from
Theorem 4.2, 1).

Theorem 4.3 (existence theorem for (P)5). Consider the problem (P)5 under the following assumptions about
the data: 2 � p < ∞, I0 ∈ L∞(Ω, R), I1 ∈ C 0

0(Ω, R), μ > 0, c1, c2, c3 > 0, and K ⊂ R
2×2 is a convex body

with o ∈ int (K). Then (P)5 admits a global minimizer x̂ ∈ W 1,∞
0 (Ω, R2).

Proof. The assumptions about (P)5 guarantee the existence of feasible solutions, e.g.

x(t) = ε · Min
(

Dist (t, ∂Ω),
a

4
,

b

4

)
·
(

cosα − sinα
sin α cosα

) (
t1
t2

)
(4.24)

for sufficiently small α > 0 and ε > 0. Since Jx(t) ∈ K (∀) t ∈ Ω, the objective is bounded from below. Conse-
quently, (P)5 admits a minimizing sequence { xN } , W 1,p

0 (Ω, R2) ∩ W 1,∞
0 (Ω, R2), whose members are feasible

in (P)3 as well. Along a subsequence { xN ′ } ⊆ { xN } with xN ′ ∗−⇀ L∞(Ω,R
2)x̂ and JxN ′ ∗−⇀ L∞(Ω,R

2×2)Jx̂, we
observe by Theorems 4.2, 1) and 1.4:∫

Ω

(
I1(x̂(t)) − I0(t)

)2

dt + μ ·
∫

Ω

(
c1

∥∥ Jx̂(t)
∥∥ p + c2

(
DetJx̂(t)

)2
)

dt (4.25)

� lim inf
N ′→∞

∫
Ω

(
I1(xN ′

(t)) − I0(t)
)2

dt + μ ·
∫

Ω

(
c1

∥∥ JxN ′
(t)

∥∥ p + c2

(
DetJxN ′

(t)
)2

)
dt.

To the polyconvex integrand f5 : R
2×2 → R defined by

f5(v) =
{−μc3 ln(Det v)

∣∣ Det v > 0,

(+∞)
∣∣ Det v � 0,

(4.26)

48[14], p. 674, (3.2).
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we may apply [12], p. 391 f., Theorem 8.16, together with the Remark ibid., p. 392: after choosing m = n = 2
and p = 2, the convex function h(v, δ) : R

5 → R defined by

h(v, δ) =
{−μ c3 ln δ

∣∣ δ > 0;
(+∞)

∣∣ δ � 0
(4.27)

is bounded from below by h(v, δ) � −μ c3 δ where the constant function (−μ c3) belongs to L2(Ω, R). For the
subsequence { xN ′ } , it holds JxN ′ −⇀L2(Ω,R

2×2) Jx̂ as well, and from the cited theorem we conclude that

−μ

∫
Ω

c3 ln
(
Det Jx̂(t)

)
dt � lim inf

N ′→∞

(
−μ

∫
Ω

c3 ln
(
Det JxN ′

(t)
)
dt

)
. (4.28)

(4.25) and (4.28) give together the existence of a global minimizer of (P)5. �

The existence of a global minimizer for the modified problem (P)4 can be confirmed in a completely analogous
way if the assumptions about the data are carried over from Theorem 4.2, 2).

Acknowledgements. I wish to express my gratitude to Prof. B. Dacorogna and Prof. S. Luckhaus for their invitations to
stay at the EPF Lausanne and the Max Planck Institute for Mathematics in the Sciences, Leipzig, where the present
paper has been finished in autumn 2008.
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