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THE SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL
WITH AN APPLICATION TO QUANTUM SYSTEMS
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Abstract. The motivation of this article is double. First of all we provide a geometrical framework to
the application of the smooth continuation method in optimal control, where the concept of conjugate
points is related to the convergence of the method. In particular, it can be applied to the analysis of
the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this
study is used to complete the analysis of two-level dissipative quantum systems, where the system is
depending upon three physical parameters, which can be used as homotopy parameters, and the time-
minimizing trajectory for a prescribed couple of extremities can be analyzed by making a deformation
of the Grushin metric on a two-sphere of revolution.
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1. Introduction

A smooth continuation method consists in the following. Suppose one wants to find a solution of a system
of equations

F (x) = 0,

where F : Rn �→ Rn is a smooth mapping. In the smooth continuation method, we consider a smooth
homotopy path H(x, λ), such that H(x, 0) = G(x) and H(x, 1) = F (x), where G is a map having known zero
points. This leads to the smooth numerical continuation method (see [2]), where the solutions are computed
iteratively along the path using a Newton-type algorithm. This general method can be applied in Optimal
Control. Indeed, from the Pontryagin maximum principle [1,25], the optimal solution for a fixed set of boundary
conditions can be computed by solving a shooting equation and the smooth continuation method can be applied
if one can construct a smooth homotopy path. In particular, the smooth numerical continuation method
was successfully applied to a recent research project in orbital transfer, where low propulsion is used (see for
instance [18,20]). In such problems, the continuation parameter can be the maximum thrust or it can be
introduced as a regularizing parameter in the cost. Indeed, the physical optimal problem amounts to minimize
the time of transfer or to maximize the final mass, and in the second case this leads to a L1 optimization
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problem which is non smooth but can be regularized using an homotopy from L2 to L1 [19]. This kind of study
is interesting from the numerical point of view but leads to very interesting geometric questions, in particular
to ensure the convergence of the method. The main problem as pointed out in previous articles (see e.g. [9]) is
to relate the smoothness of the path to the concept of conjugate point introduced in [10].

The motivation of this article is double. First of all, our aim is to provide a neat geometric framework for
the application of the smooth continuation method in optimal control. To gain smoothness, we restrict to the
time-minimum transfer from q0 to q1 for a system of the form

dq
dt

= F0(q) +
m∑

i=1

uiFi(q),

where the control u = (u1, . . . , um) is such that ‖u‖ ≤ 1. Such a problem has many applications in control
engineering e.g. in space mechanics (orbit transfer, space mission SMART-1) or in quantum control [16,21] and
is a natural generalization of geometric problems: If the drift F0 = 0 and m = n, where n is the dimension of
the state it corresponds to a Riemannian problem, if m < n it is a sub-Riemannian problem. In the case F0 �= 0
it describes the Zermelo-type navigation problem [3]. For all this family of systems the maximum principle leads
to the application of a shooting method using the Hamiltonian

H = H0 +

(
m∑

i=1

H2
i

)1/2

,

where Hi denotes the Hamiltonian lift
Hi = 〈p, Fi(q)〉,

and H is smooth except on the surface Σ : Hi = 0; i = 1, . . . ,m called the switching surface. To apply
the smooth continuation method to this kind of system one must consider a one-parameter family Hλ of such
Hamiltonians. The smoothness of the path and the convergence of the method are related to the non-existence
of conjugate points, as introduced in [10] in the smooth case, generalizing the concept of conjugate points for
Lagrange problem in the classical calculus of variations [4,24]. Moreover they can be numerically computed
using the COTCOT code presented in the afore-mentioned article. Also the variational equation which is used
to calculate the conjugate points permits in parallel to generate numerically the derivative of the shooting
equation. A striking consequence of this analysis is to deduce the main theoretical result of this article: if we
consider a one-parametric family of Riemannian metrics gλ, a uniform bound of the injectivity radii gives an
upper bound between the distance from q0 to q1 for which the continuation method converges. If this result is an
interesting bridge between geometry and convergence of numerical methods, our aim is to illustrate the different
points which are important to analyze the more general case: estimation of the position of the conjugate points
related to the concept of curvature in the Riemannian case, which has to be numerically computed in general,
existence of optimal solutions related to controllability problems, non compactness in general of the domain of
the shooting mapping and singularities due to the existence of a switching surface Σ on which the Hamiltonian
vector field

−→
H is not smooth. All these problems will be discussed in details in the section devoted to the

application of the continuation method to the time-minimal control of two-level dissipative quantum systems
which is the second motivation of this article. For such systems, the dynamics is governed by the following
equations:

dx
dt

= −Γx+ u2z

dy
dt

= −Γy − u1z

dz
dt

= γ− − γ+z + u1y − u2x,
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where Λ = (Γ, γ−, γ+) is the set of dissipation parameters, and the control u is the complex field u1 + iu2 =
‖u‖eiα, and where up to a rescaling one can assume ‖u‖ ≤ 1. There are several reasons to consider that for the
time-minimal control problem, the smooth continuation method is well adapted to analyze the system. Indeed,
from our previous study [6,12] we know that when Γ = γ+ and γ− = 0, the time-minimizing control problem
can be reduced to analyze the quasi-Riemannian metric

g = dφ2 + tan2 φdθ2

on the two-sphere of revolution endowed with spherical coordinates (φ, θ), called the Grushin metric. For such a
metric, the conjugate and cut loci were computed in [11] and it can be taken as a starting point of a continuation
method, the one-parameter deformation being either λ = Γ − γ+ with γ− fixed or λ = γ− with Γ − γ+ = 0.
Such a study is particularly important in quantum control for the spin 1/2 model, where the control is the
magnetic field [14,21,22,27] and the homotopy parameters have a clear physical interpretation. Moreover for
these systems, the control is computed as an open-loop function and the continuation method allows to study
the dependence of the optimal solution upon dissipation parameters. This is an important issue especially since
closed-loop control is delicate to implement in quantum mechanics due to the question of measurements. Also
the method can be extended to the N -level case, where the dimension of the state space is N2 − 1 [28,29].

This article is organized in two sections. The first section presents the geometric foundations of the smooth
continuation method in optimal control. It is based on the previous works in [5,9,10] and the consequence
is to produce the global convergence result about the smooth continuation method, in the Riemannian case.
Also all the proper concepts are introduced for the application of the method to more general cases, as the
one encountered in the quantum control problem. The second section contains the application of this method
to the analysis of the time-minimal transfer in two-level dissipative quantum systems. It is composed of three
distinct parts. The first one recall the main properties of the extremal flow which is a prerequisite analysis
before applying a shooting method. The second part concerns the numerical computation of conjugate points
which is crucial to estimate the transfer time for which the continuation method can be applied. In the final
part, we present numerical results about the continuation method. We consider homotopies on both Γ − γ+

and γ−. The continuation method is implemented in a simple numerical framework using Matlab routines,
based on a discretization of the homotopy path, and a refined approach which consists in following the smooth
path of the zeros solutions by integrating along the path the implicit ODE describing this set [13].

2. The smooth continuation method in optimal control

2.1. Preliminaries

In this section we recall some standard results concerning singular trajectories in optimal control. For a more
detailed exposition see [8].

We consider the time optimal control problem with fixed extremities q0 and q1 for a smooth system

q̇ = F (q, u),

where q ∈ M , M being an n-dimensional smooth manifold, and the control function u(·) ∈ U where U is the
set of bounded measurable mappings with values in a m-dimensional control domain U . First of all we recall
the maximum principle:

Proposition 2.1. If (q, u) is an optimal control trajectory pair defined on [0, T ], then there exists an absolutely
continuous trajectory z = (q, p) in T ∗M , such that almost everywhere on [0, T ] we have

q̇ =
∂H

∂p
(q, p, u), ṗ = −∂H

∂q
(q, p, u)



270 B. BONNARD ET AL.

and
H(q, p, u) = max

v∈U
H(q, p, v).

Moreover, the mapping z �→M(z) = max
v∈U

H(z, v) is constant and positive.

Definition 2.1. The mapping
H : T ∗M × U �→ R

is called the pseudo-Hamiltonian. A pair (z, u), which solves the maximum principle, is called extremal.

Application 2.1. Assume that U is a m-dimensional manifold. Restricting to a chart one can assume that
locally U = Rm and the maximization condition leads to

∂H

∂u
= 0.

In order to solve this equation we introduce the strong Legendre condition:
(A1) The quadratic form ∂2H

∂u2 is negative definite along the reference trajectory.
According to the implicit function theorem, the extremal control is then locally defined as a smooth function

of z. Plugging this function into the pseudo-Hamiltonian one gets a smooth true Hamiltonian.

Application 2.2. Consider the control system of the form

F (q, u) = F0(q) +
m∑

i=1

uiFi(q)

and assume that the control domain is the unit ball ‖u‖ ≤ 1. Then the maximization condition leads to the
following stratification. Introduce the Hamiltonian lifts

Hi(z) = 〈p, Fi(q)〉

and let
Σ : Hi = 0, i = 1, . . . ,m

be the switching surface. Then outside Σ an extremal control is given by

ui =
Hi(

m∑
i=1

H2
i

)1/2
, i = 1, . . . ,m. (2.1)

Plugging this control into H one can define a true Hamiltonian function

Hr = H0 +

(
m∑

i=1

H2
i

)1/2

.

The smooth solutions of the corresponding Hamiltonian system are called extremals of order zero.

The following result is crucial:

Proposition 2.2. Extremal controls of order zero correspond to singularities of the end-point mapping

Eq0,T : u(·) ∈ L∞[0, T ] �→ q(T, u(·), q0)

where q(·) is the trajectory of the system corresponding to u(·) with the control domain on the sphere ‖u‖ = 1
and starting at q0.
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Proof. The proof is simple and can be obtained by the following computation. For instance, consider the case
of S1: u2

1 + u2
2 = 1. Applying the maximization condition to

H = H0 + u1H1 + u2H2

outside Σ one gets the unique solution (2.1).
If we restrict to S1, we obtain for ‖u1‖ �= 1 the condition u2 = ε

√
1 − u2

1, ε = ±1, and H takes the form

H = H0 + u1H1 + ε
√

1 − u2
1H2.

Then the maximization condition
∂H

∂u
= 0

gives H2
1 = u2

1(H
2
1 +H2

2 ). In addition, the Legendre condition ∂2H
∂u2 ≤ 0 imposes εH2 ≥ 0. �

As a consequence, we can use all the machinery involving the second order optimality conditions for singular
extremals implemented in the COTCOT code. We introduce the following construction (see [8]).

Consider the time minimal control problem for a system of the form q̇ = F (q, u), q(0) = q0, where F :
Rn ×Rm �→ Rn is smooth and the control domain is U = Rm. Each time-minimal control on [0, T ] corresponds
to a singularity of the end-point mapping, and from the maximum principle any singular pair (q, u) can be
lifted into a singular extremal (q, p, u), where for all t > 0, p is orthogonal to the image of the derivative of
the end-point mapping evaluated for u

∣∣
[0,t]

. Assuming (A1) a singular control can be computed as a smooth
mapping u(q, p) and we note Hr(z) = H(z, u(z)). This corresponds precisely to the true Hamiltonian computed
for our family of systems

F (q, u) = F0 +
m∑

i=1

uiFi(q), ‖u‖ ≤ 1.

The extremal is called normal if Hr > 0 and abnormal if Hr = 0. In addition to (A1) we consider the following
assumptions:
(A2) Hr > 0 (normal case).
(A3) The singularity of the end-point mapping is of co-dimension one in each sub-interval of [0, T ].

Definition 2.2. Let exp t
−→
H r be the one-parameter flow of the Hamiltonian vector field

−→
H r and π : (q, p) �→ q

be the standard projection.The exponential mapping is the application

expq0
: R

+ × S
n−1 �→ R

n

defined by
expq0

(t, p0) = π exp t
−→
H r(q0, p0),

where p0 can be restricted to the unit sphere.

Definition 2.3. As before, let
−→
H r(z) be the smooth Hamiltonian vector field associated to Hr, and let z(t) be

a reference extremal curve defined on [0, T ]. The variational equation

δż =
∂
−→
H r

∂z
(z)δz

is called the Jacobi equation, whose non-trivial solutions J(t) = (δq(t), δp(t)) are called Jacobi fields. The
field J(t) is said vertical at time t if δq(t) = 0. A time tc is called (geometrically) conjugate to t0 = 0 if there
exists a Jacobi field vertical at zero and at tc. In this case the point q(tc) is said to be conjugate to q(0).
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The next statement is clear.

Proposition 2.3. The point q(tc) is conjugate to q(0) if and only if the mapping

p0 ∈ S
n−1 �→ expq0

(tc, p0)

is not of full rank n− 1 at p0.

The following result is crucial (see [26]):

Proposition 2.4. Let z(t) = (q(t), p(t)) be a reference extremal curve on [0, T ] satisfying (A1), (A2) and (A3).
The extremal trajectory q(·) is locally time minimal (for the L∞ topology of the sets of control) up to the first
geometric conjugate time.

2.1.1. The algorithm

Conjugate points are computed numerically using the COTCOT code with the following algorithm.
We restrict to the (n− 1)-dimensional subspace generated by the Jacobi fields

Ji(t) = (δqi(t), δpi(t)), i = 1, . . . , n− 1

with δqi(0) = 0 and p(0)δpi(0) = 0. A conjugate time occurs at t = tc such that

rank{M(t) = dπ(J1(t), . . . , Jn−1(t))} ≤ n− 2,

where the rank can be computed using a Singular Value Decomposition (SVD) of the matrix M(t), whose
smallest singular value vanishes at a conjugate time tc.

Since the derivative of the exponential mapping with respect to time t is dq
dt = F (q, u), where u is the extremal

control, this is equivalent (in the normal case) to find a zero of the determinant:

det
(
δq1(t), . . . , δqn−1(t), F (q(t), u(t))

)
.

This analysis can be extended to the abnormal case for single-input control systems. We next present the
geometric framework adapted to our class of systems.

2.1.2. The bi-input case

Consider a system of the form

dq
dt

= F0(q) + u1F1(q) + u2F2(q), u2
1 + u2

2 ≤ 1.

The corresponding Hamiltonian is given by

H(z) = H0(z) + u1H1(z) + u2H2(z), z ∈ T ∗
R

n.

In order to describe the extremals for a control on the sphere u2
1 + u2

2 = 1 one can parameterize the controls by
setting

u1 = cosα, u2 = sinα

and use α as a new scalar parameter. We get a single input non-linear control system

dq
dt

= F0(q) + cosαF1(q) + sinαF2(q), α ∈ R. (2.2)
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On the other hand, by standard Goh transformation one can use as a new control variable the derivative v = α̇.
Hence the original system is transformed into an extended system, which linearly depends on the control:

dq̃
dt

= F̃0(q̃) + vG̃0(q̃), q̃ = (q, α) ∈ R
n+1.

The following result is standard.

Proposition 2.5 (see [5]). Generic singular extremals of the system (F̃0, G̃0) and the control

ũ(z̃) = −{{HG̃0
, HF̃0

}, HF̃0
}

{{HG̃0
, HF̃0

}, HG̃0
}

are the integral curves of a smooth Hamiltonian vector field H̃r(z̃) of the constrained space

HG̃0
= {HG̃0

, HF̃0
} = 0,

where

HF̃0
= 〈p̃, F̃0〉, HG̃0

= 〈p̃, G̃0〉.
They correspond to singular extremals of the original system.

2.1.3. Algorithm for the computation of tcc in the abnormal case

The following result comes from [5].

Proposition 2.6. Under generic conditions in the abnormal case a singular extremal is time-minimal up to a
first conjugate time tcc.

Remark 2.1. The conditions for which the result holds are detailed in [5] and can be easily checked.

In the abnormal case the algorithm for computing tcc differs from the one in the normal case. We present it
for the extended system. The Jacobi equation is the variational equation associated to H̃r(z̃). Let us consider
the (n− 2) Jacobi fields satisfying at time t = 0 the linearized constraints

dHF̃0
= dHG̃0

= dH{G̃0,F̃0} = 0

normalized by the condition p̃(0)δp̃(0) = 0 and the semi-verticality condition δq̃(0) ∈ RG̃0(q̃0). A conjugate
time is a time tcc such that

rank{dπ̃(J1(tcc)), . . . ,dπ̃(Jn−2(tcc)), F̃0(q̃(tcc)), G̃0(q̃(tcc))} ≤ n− 1.

It is worth to point out that both normal and abnormal cases can be set in an uniform framework. The Jacobi
equations with the corresponding end-points conditions can be reduced to a self-adjoint operator of order 2(n−1)
in the normal case and of order 2(n− 2) in the abnormal case, which can be normalized to

D(x) = (l0x(r))r + (l1x(r−1))r−1 + . . .+ lrx = 0,

where r = n− 1 in the normal case and r = n− 2 in the abnormal one and l0, . . . , lr are real-valued functions.
For instance, if n = 3, it depends upon three functions li(q̃(t)) in the normal case and upon two functions in
the abnormal case.
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2.2. Shooting equation, central field and smooth continuation technique

Definition 2.4. Finding the extremities q0, q1, which solve the shooting equation in our problem for [0, T ]
means solving the equation

E(x) − q1 = 0,
where x = (p(0), T ) ∈ Sn−1 × R+, and E is the exponential mapping expq0

.

The following result is crucial:

Proposition 2.7. In the normal case, the mapping E is of full rank at x = (p(0), T ) if and only if q1 is not
conjugate to q0 along the reference extremal.

The shooting equation is connected to the concept of central field that we introduce in the next section.

2.2.1. Construction of a central field

Let z(t) = (q(t), p(t)) be the reference extremal curve defined on [0, T ], i.e., the integral curve of the smooth
Hamiltonian vector field satisfying assumptions (A1), (A2) and (A3). In addition we assume that t �→ q(t) is
one-to-one on [0, T ] and [0, T ] contains no conjugate time. Therefore by the implicit function theorem we can
imbed q(·) into a central field W formed by the extremal curves initiating from q0, each point of the domain
W \ {q0} being the image of a unique pair (p1, t1) by the exponential mapping. The following proposition is
crucial3.

Proposition 2.8. Assume that there exists an open neighborhood W of the state space Rn and two smooth
mappings S : W �→ R and û : W �→ U such that for each pair (q, u) we have:

H ′(q, dS(q), û(q)) ≥ H ′(q, dS(q), u),

where H ′(q, p, u) = 〈p, F (q, u)〉 − 1 and H ′(q, dS(q), û(q)) = 0. Then the reference trajectory t �→ q(t) with
control u(t) = û(q(t)) is optimal among all the smooth trajectories of the system with the same extremities and
contained in W .

Proof. Let 0 < t0 < t1 ≤ T and let (q′, u′) be a trajectory of the system on [t′0, t′1], contained in W and satisfying
the boundary conditions

q(t0) = q′(t′0), q(t1) = q′(t1).
If we denote T (q, û) = t1 − t0 and T (q, u′) = t′1 − t′0 the respective transfer times, then we must prove that
T (q′, u′) ≥ T (q, û). By definition, we have:

H ′(q′(t), dS(q′(t)), u′(t)) = 〈dS(q′(t)), F (q′(t), u′(t))〉 − 1.

Therefore integrating we obtain

T (q′, u′) =

t′1∫
t′0

dt = S(q′(t′1)) − S(q′(t′0)) −
t′1∫

t′0

H ′(q′(t), dS(q′(t), u′(t)))dt.

Similarly with H ′(q(t), dS(q(t)), û(q)) = 0 we have

T (q, û) =

t1∫
t0

dt = S(q(t1)) − S(q(t0)).

3I. Kupka, private communication.



SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL 275

Hence

T (q, û) − T (q′, u′) =

t′1∫
t′0

H ′(q′(t), dS(q′), u′(t))dt,

and taking into account the maximization condition we deduce that the integral in the right-hand side is
negative. �
Construction of S. The function S can be found from the Hamilton-Jacobi-Bellman equation

max
v∈U

H

(
q,
∂S

∂q
, v

)
= 1.

On the other hand, it can be constructed geometrically using symplectic geometry methods. Let us introduce
the set

L =
{
q, p =

∂S

∂q

}
·

Then L is a Lagrangian manifold with generating mapping S and moreover, the standard projection π :
(q, ∂S

∂q ) �→ q is a diffeomorphism. More precisely, we have:

Proposition 2.9. Under our assumptions, the reference extremal curve is time-minimal in a simply connected
domain W with respect to all other smooth curves solving the system with the same extremities and contained
in the domain covered by the central field.

Proof. The construction is the following. Let Lt be the image of the fiber T ∗
q0
M by exp t

−→
H r, and let L =⋃

t>0
Lt ∩ {H ′ = 0}. For each t > 0 the set Lt is a Lagrangian manifold, and hence its intersection with the

zero-level set H ′ = 0 is an isotropic manifold of dimension n− 1. A straightforward computation tells us that L
is locally (along the reference extremal curve) a Lagrangian manifold, where S is the generating mapping. The
set W is formed by requiring that the standard projection π : L �→M is a diffeomorphism. �

2.2.2. Smooth continuation method in the normal case

In many applications we can imbed the smooth Hamiltonian Hr into a smooth family of Hamiltonians Hλ(z),
where λ ∈ [0, 1] is a homotopy parameter and H1(z) = Hr. This leads to a one-parameter family of shooting
equations

E(x, λ) = q1,

where
E(x, λ) = expλ

q0
(p(0), T ), x = (p(0), T ).

Considering the normal case, we have the following proposition.

Proposition 2.10. For each λ the exponential mapping is of maximal rank if and only if the point q1 is non-
conjugate to q0. Moreover, in this case the solutions of the parameterized shooting equation form a smooth
curve, which can be parameterized by λ.

Proof. The parameterized shooting equation is E(x, λ) = q1, where x = (p(0), T ), and p(0) is normalized by
Hλ = 1. If ∂E

∂x is of maximal rank for each λ, the solution will form a smooth curve λ �→ x(λ). �
Hence this leads to a smooth continuation method to compute the solutions of the shooting equation. Obvi-

ously this straightforward application of the implicit function has to be adapted to an optimal control problem
and more precisely to the concept of central field associated to the problem. The main steps are the following.
1. Starting point of the continuation method. For λ = 0 we pick up a reference extremal z(t) on [0, T0]
starting from (q0, p0) and satisfying the assumptions. This defines around the reference trajectory a central
field with domain W0 and expq0

(p0, T0) = q1.
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Clearly a crucial point is to find the starting point such that W0 is the biggest possible in length T0 and in
size of the conic neighborhood around p0.

2. Construction of the path. One must find a discretization 0 = λ0, λ1, . . . , λN = 1 of [0, 1], where the
shooting equation is solved iteratively from λi to λi+1. If the Newton method is used, this step requires the
computation of the derivative of the exponential mapping since

xi+1 = xi − E′(xi)−1E(xi).

Let us recall the standard result from the differential calculus:

Lemma 2.1. The derivative of the exponential mapping is the solution of the Jacobi equation which is vertical
at time t = 0: δq(0) = 0.

We then construct a sequence of solutions (p0, T0), . . . , (pN , TN) of the shooting equation, and the corre-
sponding central field domains W0, . . . ,WN . In particular, in this construction the crucial point is to ensure the
absence of conjugate points in the whole interval [0, Ti]. The convergence of the method can also fail because
the continuation path can go to the infinity.

Hence practically, a good knowledge of the geometric properties of the extremals is required. We introduce
the following definition.

Definition 2.5. Let us denote by C(q0) the conjugate locus formed by the set of first conjugate points of the
extremal curves starting at q0. The cut locus Cut(q0) is the set of points where geodesics cease to be globally
optimal. Denote i(q0) the minimum time to reach the cut locus from q0 and the injectivity radius is

i(M,F (q, u), U) = inf
q0∈M

i(q0).

The separating line SL(q0) is the set where two minimizing geodesics starting at q0 intersect.

2.2.3. An example: the Riemannian case

In the Riemannian case if we parameterize the curves by arc-length the time minimization problem is equiv-
alent to minimizing the distance. In this case we can prove that the continuation method converges provided
that the length of the extremal is shorter than the injectivity radius. More precisely we recall the following
classical result [17]:

Proposition 2.11. Let g be a complete Riemannian metric on a manifold M . Then
1. A cut point is either a conjugate point or it belongs to the separating line.
2. If q1 is a point that realizes the injectivity radius inf

q0∈M
i(q0), then either q1 is conjugate to q0 or there are two

minimizing extremal curves joining q0 and q1 that form a two-halves of the same closed geodesic.

From this, using the convergence result from [2] we deduce the following theorem.

Theorem 2.1. Let gλ, λ ∈ [0, 1], be a smooth family of complete Riemannian metrics on M . Let us fix the
initial point q0. Denote iλ(q0) the minimum time the extremal curves starting at q0 needs to reach the cut locus,
and by iλ = inf

q0∈M
iλ(q0) the injectivity radius in the corresponding metric. Then

1. For times shorter than inf
λ
iλ(q0), the continuation method with initial condition of the shooting equation at q0

converges.
2. For times shorter than inf

λ
iλ the continuation method converges for every initial condition for the shooting

equation.
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3. Application to the quantum control

3.1. Mathematical model

For dissipative quantum control, the state of an N -level system is represented by a density operator ρ, which
belongs to

pos(N) = {ρ ∈ GL(n,C), ρ = tρ, ρ ≥ 0, Trρ = 1}
and solves the Lindblad equation [15,16]

iρ̇ = −[Hu, ρ] + iL(ρ),

where Hu is the total Hamiltonian Hu = H0 + H · u, H0 being the field-free Hamiltonian of the system,

H · u =
m∑

i=1

uiHi representing the control field and L being the dissipation operator. More precisely, the

equation can be decomposed into the diagonal terms

ρ̇nn = −i[Hu, ρ]nn −
∑
k �=n

γknρnn + γnkρkk

and off-diagonal terms:
ρ̇kn = −i[Hu, ρ]kn − Γknρkn, k �= n.

The system depends upon 3(N − 1)/2 parameters which have the following property: γnk and Γnk are real
and non-negative, Γnk = Γkn, and moreover, we have certain constraints in form of inequalities to ensure that
ρ ∈ pos(N), which can be deduced from the Routh-Hurtwitz criteria. For the two-level case controlled by a
complex field, making the Rotating Wave Approximation, in suitable coordinates the system takes the following
form:

dx
dt

= −Γx+ u2z

dy
dt

= −Γy − u1z

dz
dt

= γ− − γ+z + u1y − u2x,

where Λ = (Γ, γ+, γ−) is the set of parameters satisfying

2Γ ≥ γ+ ≥ |γ−|, γ+ = γ12 + γ21, γ− = γ12 − γ21,

and u = u1 + iu2 is the complex control filed, which can be constrained to ‖u‖ ≤ 1, whence x = 2Re(ρ12),
y = 2Im(ρ12) and z = ρ22 − ρ11. For this system the unit ball ‖q‖ ≤ 1 is invariant for the dynamics, while
‖q‖ = 1 represents pure states. In this form, the parameters are related to those in Bloch equation, Γ and
γ+ are the rates of decreasing of x and z respectively, while γ−/γ+ represents the equilibrium state of the free
motion.

In this representation, the dissipation corresponds to the drift term, while controls u1 and u2 act as rotation
around x and y axes respectively. Next we introduce the geometric coordinates to analyze the time-minimal
control problem.

3.2. Geometric coordinates

To make the geometric analysis, the system is written using the spherical coordinates (ρ, θ, φ), where ρ is the
distance to the origin which represents the purity of the system (a pure state is a point of the sphere), θ is the
angle around the z-axis, and φ is the angle along the meridian from the North pole. Setting

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ,
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and making a feedback transformation

v1 = u1 cos θ + u2 sin θ, v2 = −u1 sin θ + u2 cos θ,

we obtain the following system:

dρ
dt

= γ− cosφ− ρ(γ+ cos2 φ+ Γ sin2 φ)

and
dφ
dt

= −γ− sinφ
ρ

+
sin 2φ

2
(γ+ − Γ) + v2

dθ
dt

= −v1 cotφ.

It represents a coupling between the evolution of the purity and the system on the two-sphere of revolution.
This leads to the definition of the geometric problem, where only the φ and θ variables are controlled. This
corresponds to the so-called reduced problem. In addition, the energy

T∫
0

(v2
1 + v2

2)dt

defines a metric g = dφ2 + tan2 dθ2 on the two-sphere of revolution. This metric is called the standard Grushin
metric on the two-sphere of revolution.

The Hamiltonian Hr, which corresponds to the extremals of order zero, in spherical coordinates takes the
form

Hr = −ρ(γ+ cos2 φ+ Γ sin2 φ)pρ +
[
−γ− sinφ

ρ
+

1
2

sin 2φ(γ+ − Γ)
]
pφ +

√
p2

φ + p2
θ cot2 φ.

Notice that Hr does not depend on θ, so we can immediately deduce that pθ is an integral of the motion.
Moreover, we have:

Proposition 3.1. Let r = ln ρ be a new variable. Then for γ− = 0 the Hamiltonian reads

Hr = −(γ+ cos2 φ+ Γ sin2 φ)pr +
1
2

sin 2φ(γ+ − Γ)pφ +
√
p2

φ + p2
θ cot2 φ.

Hence r and θ are cyclic coordinates and pr and pθ are first integrals of the motion. Thus the system in this
case is Liouville integrable.

3.3. Parameterization of the extremals in the integrable case

For the analysis of the problem by means of a continuation method it is important to have an explicit
representation of the extremals in the integrable case. Also in this case the variational equation is integrable
and in particular one can compute the Jacobian of the shooting equation.

3.3.1. The Grushin case

In this case the Hamiltonian takes the form

Hr =
1
2

(
p2

φ +
p2

θ

G(φ)

)
, G(φ) = tan2 φ.
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If we introduce Gλ(φ) = sin2 φ
1−λ sinφ , where λ ∈ [0, 1], then the one-parameter family of Hamiltonians

Hλ =
1
2

(
p2

φ +
p2

θ

Gλ(φ)

)

shows that we have an homotopy from the round metric on the two-sphere of revolution, which corresponds to
λ = 0, to the Grushin case with λ = 1, so that for λ ∈ [0, 1[ the associated family of metrics are Riemannian
metrics on the whole sphere, while for λ = 1 we have a pole for the metric on the equator φ = π/2. This
singularity has no consequence for the parameterized extremals. Using dφ

dt = pφ, one can write

Hλ = H1 +
1
2
p2

θ(1 − λ),

and parameterizing by arc-length: Hλ = 1/2, one gets the level set

H1 =
1
2
− 1

2
p2

θ(1 − λ).

Hence the integration of the Grushin case gives the solution for every λ and the extremals have the same
transcendence. In the Grushin case, the integration is as follows.

We write

H1 =
1
2

[(
dφ
dr

)2

+ ν cot2 φ

]
, ν = p2

θ > 0,

and we fix the level set to 1/2. To integrate, we observe that we can consider the trajectory starting at t = 0
from the equator. Consider the branch in the North hemisphere such that dφ

dt < 0. Let us introduce the angle
ψ = π/2 − φ. Then we have ∫

cosψdψ
(1 −m2 sin2 ψ)1/2

=
1
m

arcsin(m sinψ),

where m2 = ν + 1. Hence we obtain

φ(t) = − arcsin
[

1
m

sinmt
]

+
π

2
·

To complete the integration, we write
dθ
dt

=
pθ

sin2 φ
− pθ

and use the formula ∫
dx

1 − a sin2 x
=

1√
1 − a

arctan[
√

1 − a tanx],

for a < 1. This leads to the following proposition.

Proposition 3.2. The branches of extremals in the North hemisphere starting from the equator, not contained
in a meridian plane and such that φ is decreasing, are given by

φ(t) =
π

2
− arcsin

[
1
m

sinmt
]
, m = (p2

θ + 1)1/2,

θ(t) = pθ

[
1√

m2 − 1
arctan

√
m2 − 1
m

tan t− t

]
.
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3.3.2. Integrability and homotopy

In the Riemannian case we can either minimize the time, parameterizing the trajectories by arc-length, or
minimize the energy. For a system with a drift this leads to two different Hamiltonians, which can be related
through the homotopy

Hλ = H0 + (H2
1 +H2

2 )λ,

where λ = 1/2 corresponds to the time and λ = 1 corresponds to the energy minimizing problems.
One can also consider the imbedding into a 3-dimensional Riemannian problem

Hλ = (λH0)2 +H2
1 +H2

2 ,

where λ is a weight ponderating the drift. The extremal trajectories can be tracked by the true system, if the
corresponding component u0 = λH0 is positive.

Hence, besides the parameters in the model which can be used to define homotopy paths, we can introduce
homotopy parameters related to homotopy in the cost. Also we can replace the time-minimal control by the
problem of calculating the solution which represents an extremum of the purity ρ of the system. This problem is
connected to the problem of minimizing time but with no end-point condition on this variable, this is the so-called
reduced problem. All those problems can be described by a family of Hamiltonians depending upon parameters,
in which the Hamiltonian problem associated to time is imbedded. With respect to those Hamiltonians, the
Grushin one represents the candidate to start the continuation, especially if there is no end-point condition on
the purity.

Next we discuss the energy minimization problem since in this case one can get an explicit parameterization
of the Hamiltonian if γ− = 0.

3.3.3. The case of energy

In the normal case, if γ− = 0 the Hamiltonian is

H = −pr(γ+ cos2 φ+ Γ sin2 φ) +
1
2
pφ sin 2φ(γ+ − Γ) +

1
2
(p2

φ + p2
θ cot2 φ).

One has

pφ =
dφ
dt

+
Γ − γ+

2
sin 2φ.

If we fix the level set to h, then we get
1
2

(
dφ
dt

)2

+ V (φ) = h,

where V (φ) represents a potential given by

V (φ) = −pr(γ+ cos2 φ+ Γ sin2 φ) − 1
2

(Γ − γ+)2

4
sin2 2φ+

1
2
p2

θ cot2 φ,

which describes the evolution of the φ-variable associated to a mechanical system. In particular, the solutions
can be understood by analyzing the graph of V (φ), and the equilibrium states can be obtained by solving
∂V
∂φ = 0. A trivial solution corresponds to the equator φ = π/2, otherwise we must solve

2pr(Γ − γ+) sin4 φ+ sin4 φ(1 − 2 sin2 φ)(Γ − γ+)2 + p2
θ = 0.

To find the solution from dφ
dt = ±√2(h− V (φ), we must evaluate an elliptic integral of the form

∫
dφ√

2(h− V (φ))
=
∫

dX√
P (X)

,
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where X = sin2 φ and

P (X) = 4(1 −X)[−X3(Γ − γ+)2 +X2(Γ − γ+)(2pr + Γ − γ+) +X(2h+ 2prγ+ + p2
θ) − p2

θ].

This calculation can be reduced to an elliptic integral of the first kind using a transformation of the form
(see [23]):

u =
X − p

X − q
·

Hence X is the image of the inverse transformation of an elliptic function of the first kind. To integrate the
remaining variable, we write

dθ
dt

= pθ

(
1
X

− 1
)
,

dr
dt

= −(Γ − γ+)X − γ+.

These equations can be integrated using special functions according to formulae of [23], p. 92.
The time minimal case is more intricate because we cannot reduce the problem to the integration of a

one-dimensional mechanical system.

3.4. Classification of the asymptotics of the extremal solutions

This classification coming from [12] is important because it is related to the accessibility problem and to the
existence of conjugate points. The extremal curves of order zero are solutions of

ρ̇ = γ− cosφ− ρ(γ+ cos2 φ+ Γ sin2 φ),

φ̇ =
γ− sinφ

ρ
+
γ+ − Γ

2
sin 2φ+

pφ

Q
,

θ̇ =
pθ cot2 φ

Q
,

and
ṗρ = (γ+ cos2 φ+ Γ sin2 φ)pρ − γ−

ρ2
sinφpφ,

ṗφ = (γ− sinφ+ ρ(Γ − γ+) sin 2φ)pρ − (−γ−
ρ

cosφ+ (γ+ − Γ) cos 2φ)pφ +
cosφ

Q sin3 φ
p2

θ,

ṗθ = 0, Q =
√
p2

θ cot2 φ+ p2
φ.

The behaviors of the solutions are intricate, but one can classify them by their asymptotic properties. First of
all, let us describe the solutions in the Grushin case.

3.4.1. Classification of the extremals in the Grushin case

Assume γ− = 0, Γ = γ+. In this case the purity ρ of the system cannot be controlled and the study of the
extremals reduces to the analysis of the geodesics of the Grushin metric on the two sphere of revolution, which
was done in [6]. The geodesics are
a) meridian circles
or
b) periodic trajectories in the plane (φ, pφ) with θ̇ periodic. Moreover, these trajectories are invariant for the
central symmetry: (φ, pφ) �→ (π − φ,−pφ), and can be constructed by integrating over a half-period.
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3.4.2. Classification of extremals in the case γ− = 0

In this case, on the two-sphere of revolution, the reduced system defines a system of the form

q̇ = G0(q) +
2∑

i=1

uiGi(q).

It describes a Zermelo navigation problem on the two-sphere, where the drift term G0 represents the current:

G0 =
γ+ − Γ

2
sin 2φ

∂

∂ρ
,

and

G1 =
∂

∂φ
, G2 = − cotφ

∂

∂θ

form a frame for the metric g = dφ2 + tan2 dθ2, which is singular on the equator φ = π/2. The current can be
compensated by a feedback with ‖u‖ < 1 if |γ+ − Γ| < 2. This leads to the following discussion.

Case |γ+ − Γ| < 2. In this case the reduced system defines a Finsler geometric problem for which roughly the
extremals are deformations of the geodesics of g = dφ2 + tan2 dθ2. The main properties are described below.

Proposition 3.3. If for fixed (pr, pθ) the level set of Hr = ε, ε ∈ {0, 1}, is compact, contains no singular points
and admits a central symmetry with respect to the set {φ = π/2, pφ = 0}, then it contains a periodic trajectory
(φ, pφ) of period T and we have two generically distinct extremals curves q+(t), q−(t), starting from the same
point and intersecting with the same length T/2 at a point such that φ(T/2) = π − φ(0).

Only these extremals are observed numerically.

Case |γ+−Γ| > 2. We have two types of extremals, characterized by their projection on the two-sphere: Those
lying in a band along the equator and described by the previous proposition, and those crossing the band near
φ = π/4, and whose asymptotic properties are described in the next proposition.

Proposition 3.4. If |Γ − γ+| ≥ 2, then we have extremal trajectories such that φ̇ → 0, |pφ| → +∞ when
t→ +∞, while θ̇ → 0.

Proof. The existence of such extremals is related to the non-compactness of the level set of the Hamiltonian.
Their appearance becomes clear from the following geometric property. In the North hemisphere the current is
maximal for φ0 = π/4, and it cannot be compensated in a band |φ − φ0| ≤ M . Indeed, consider the reduced
system on the sphere. By taking v1 = 0 we restrict the problem to meridian planes. Then the system becomes

dφ
dt

=
γ+ − Γ

2
sin 2φ+ v2.

Taking v2 with magnitude 1, this equation has a singularity when

(γ+ − Γ)2

4
sin2 2φ = 1.

This defines the asymptotic set S for the φ variable. �

The integrable case is non-generic, but it guides the classification of the generic case.
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3.4.3. Generic classification of the extremals in the case γ− �= 0

We have two cases, observed in the numerical calculations.
Case a). It is a situation where |pφ| → +∞ as t → +∞, while cotφ remains finite. Hence v1 → 0 and
v → ε = ±1. From the system we deduce the relations:

γ−
ρ

cosφ = γ+ cos2 φ+ Γ sin2 φ,

γ−
ρ

sinφ = (γ+ − Γ) cosφ sinφ+ ε.

Taking the quotient and simplifying one gets that tanφ = ε/Γ, which gives the asymptotics:

φ = arctan
1
Γ

if γ− > 0;

or

φ = π − arctan
1
Γ

if γ− < 0.

From that, we deduce the asymptotic for ρ. We have:

Proposition 3.5. In the case a), where |pφ(t)| → +∞ as t→ +∞, the asymptotic stationary points (ρF , φF , θF )
of the dynamics are given by

ρF =
|γ−|

√
1 + Γ2

1 + γ+Γ
,

φF =
{

arctan 1
Γ if γ− > 0

π − arctan 1
Γ if γ− < 0.

Case b). It is the situation where pφ is unbounded but oscillates while φ→ 0 ( mod π) as t→ +∞ and at the
infinity pφ dominates cotφ. The control field v2 acquires here a bang-bang structure related to the unbounded
and oscillating behavior of pφ. In this case φ tends to 0 or π and the limit is not depending upon the parameters.
The asymptotic of ρ can be easily computed.

Proposition 3.6. In the case b), where lim
t→+∞φ(t) = 0 mod π, the asymptotic limit of the dynamics is char-

acterized by

ρF =
|γ−|
γ+

,

φF =
{

0 if γ− > 0
π if γ− < 0.

3.5. Numerical estimation of the conjugate points

The estimation of conjugate and cut points is important for the convergence of the continuation method. We
present the results using numerical simulations.

3.5.1. The Grushin case

In this case we can compute the conjugate and cut points following the results of [11]. Indeed, in the Grushin
case the ρ variable cannot be controlled and we can restrict the analysis to the Grushin metric g = dφ2+tan2 φdθ2

on the two sphere of revolution. For the computation of the conjugate and cut loci of a point q0 = (φ(0), θ(0)),
where θ(0) can be set to 0, we distinguish the following three cases.

• φ(0) = 0 or π. In this case q0 is a pole and the conjugate and cut loci are formed by the antipodal pole;
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• φ(0) �= kπ
2 , k = 0, 1, . . . If q0 is neither a pole nor a point on the equator, the cut locus is a segment of the

antipodal parallel, while the conjugate locus has the shape of an astroid with four cusps. The distance
to the cut locus can be easily computed: it is the length of the unique geodesic starting tangentially to
the parallel and reaching the antipodal parallel in a tangent way.

• φ(0) = π/2. In this case the cut locus is the whole equator minus the initial point, while the conjugate
points accumulate at φ(0). Hence the distance to the cut locus is zero.

In conclusion, we have an exact computation of the distance to the cut locus. But since the conjugate points
accumulate near the initial point when φ(0) = π/2, the injectivity radius of the metric is zero.

We present numerical estimates of the first conjugate point both in the abnormal and normal cases. It is
motivated by the following observation.

Lemma 3.1. In the Grushin case a singular trajectory is not strict, i.e., it admits a normal and an abnormal
extremal lift.

Proof. Indeed, the co-dimension of the singularity mapping is clearly two, since ρ is not controllable. Taking
the coordinates (r, φ, θ), the adjoint component can be set to 0 or to 1 in the Hamiltonian Hr reduced to

Γpr +
√
p2

φ + cot2 φp2
θ. In the first case Hr �= 0, but in the second case Hr can be set to 0, which corresponds

to the abnormal case. �

3.5.2. Estimation of the conjugate points in the abnormal case

In this case, the abnormal extremal flow can be computed as a system

dq̃
dt

= F̃ (q̃) + vG̃(q̃)

in dimension 4, where q̃ = (x, y, z, v). We use the following relations:

〈p̃, F̃ 〉 = 〈p̃, G̃〉 = 〈p̃, [G̃, F̃ ]〉 = 0,

〈p̃, [[G̃, F̃ ], F̃ ] + v[[G̃, F̃ ], G̃]〉 = 0.

Eliminating p̃, the abnormal control can be found from the equation

D + vsD
′ = 0,

where we have introduced the determinants

D = det{F̃ , G̃, [G̃, F̃ ], [[G̃, F̃ ], F̃ ]},

D′ = det{F̃ , G̃, [G̃, F̃ ], [[G̃, F̃ ], G̃]},
and the abnormal extremal flow is defined by a vector field denoted F̃s, while the variational equation reduces
to

dδq̃
dt

=
∂F̃s

∂q
(q̃(t))δq̃.

To test the existence of conjugate points, one has to compute the single Jacobi field J1(t), whose projection on
the q̃-state is denoted by δ1q̃ and is obtained by integrating the variational equation with the initial condition

δ1q̃(0) =
∂

∂α
·
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Figure 1. Evolution of the angle φ in the abnormal case as a function of time for Γ = 2.5,
γ+ = 2 and γ− = 0. Initial values are taken to be φ(0) = π/4, pθ = 2 and pφ(0) = 1. The
horizontal solid line indicates the position of the equator. Evolution of the two singular values
as a function of time. The solid and dashed vertical lines correspond respectively to the position
of the conjugate point with the abnormal (time tcc) and normal tests (time tc).

The conjugate point calculation concludes by checking the semi-verticality test

δ1q̃(tcc) ∈ span{G̃(q̃(tcc)), F̃ (q̃(tcc))}.

This corresponds to the optimality test provided the generic conditions described in [5] are satisfied.
This test can be also checked on the original system in the form δ1q(tcc) ∈ R(q̇(tcc)). Computing the Lie

brackets one gets:
D′ = z(−Γ(x2 + y2) + γ−z − γ+z

2),

D = (x cosα+ y sinα)[z2(2Γ − γ+) + (x sinα− y cosα)(2Γz(γ+ − Γγ−) − Γγ−) + Γ(x2 + y2)].
The result of the simulations using a SVD to test the conjugate points for the original system are represented
below in Figures 1 and 2 for γ− = 0 and γ− �= 0. We have chosen examples where conjugate points occur.
Another information of these figures is the location of conjugate points computed with the test in the normal
case, which confirms numerically the theoretical result tcc ≤ tc.

3.5.3. Estimation of the conjugate points in the normal case

Since the system is of dimension 4, one needs to compute two Jacobi fields to find the conjugate points. We
present in Figures 3–6 the results of the test using a SVD technique. Also we observe the following:

• In the integrable case γ− = 0 conjugate points occur only when the evolution of the φ variable is periodic
as can be seen in Figure 4. We observe no conjugate point in Figure 3 where φ tends to a constant as
t→ +∞.
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Figure 2. Same as Figure 1 but for pφ(0) = −1, Γ = 2.5 and γ− = −0.5.
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Figure 3. Evolution of the angle φ as a function of time for Γ = 4.5, γ+ = 2 and γ− = 0.
Initial values are taken to be φ(0) = 2π/5, pρ(0) = 0.25, pθ = 8 and pφ(0) = 10. Evolution of
the two singular values as a function of time. We observe no conjugate point.
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Figure 4. Same as Figure 3 but for pφ(0) = 2.637. The vertical solid line indicates the position
of the first conjugate point along the extremal trajectory.

• In the generic case γ− �= 0 conjugate points are observed in case a) as illustrated in Figure 5 whereas
there is no conjugate point in case b) as can be seen in Figure 6.

3.6. The continuation method

The continuation method was both implemented in a simple numerical framework using MatLab routines
(discretization of the parameter interval which can be normalized to [0, 1], and at each step the Newton routine
was used to compute the root) and by using a smooth approach. In this second case, a unique shooting is
necessary to initialize the continuation method.

For geometric reasons the continuation method is splitted into two parts.
• Continuation method for the reduced problem: the final purity is not controlled and the transversality

condition pρ(tf ) = 0 at the final time tf is added in the shooting equation. Observe that for this modified
shooting problem the rank condition is equivalent to the non-existence of focal points (see [12]).

• Continuation method for the full problem. In this case, we have to check that the final purity belongs
to the accessible set for every value of the dissipation parameters.

We present two numerical examples illustrating these two situations. The smooth and the discrete continuation
approaches have been implemented in each case. We denote respectively by (pρf = 0, φf , θf ) and (ρf , φf , θf )
the target states of the control in the first and second cases. In the first case where the final purity is not
fixed, we consider the homotopy method with respect to the parameter Γ and in the second case a continuation
with respect to γ−. Knowing the starting point of the continuation method (pρ(0), pφ(0), tf ), we use the two
continuation algorithms to determine new triplets (pρ(0), pφ(0), tf ) such that the system reaches the same target
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Figure 5. Same as Figure 4 but for Γ = 2.5, γ+ = 2, γ− = −0.5, φ(0) = π/4, pρ(0) = 0.1,
pθ = 2 and pφ(0) = −2.
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Figure 6. Same as Figure 5 but for Γ = 4.5. There is no conjugate point.
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Figure 7. Continuation with respect to Γ. The parameters of the initial point are Γ = 2.5,
γ+ = 2, γ− = −0.1, φ(0) = π/4, pρ(0) = −0.1564, pθ = 8 and pφ(0) = −1. The initial time
is tf = 0.4259. The target state corresponds to φf = 0.845096, θf = 0.04015590 and pρf = 0.
Three figures represent the evolution of the adjoint states pρ(0) and pφ(0) and of the control
duration tf as a function of Γ for the Newton-type continuation (dashed line) and the smooth-
type one (solid line). The last figure displays the projection of the extremal trajectory solution
of the continuation problem onto the Bloch sphere for Γ = 2.5 and γ+ = 2.

state when the dissipation parameters vary. The adjoint state pθ is kept fixed in the computation, while the
value of the Hamiltonian, which remains positive, changes at each step. Figures 7 and 9 represent the different
results we have obtained. In each case the control duration is chosen small enough to be before the first
conjugate point. Note the smooth evolution of the three parameters pφ(0), pρ(0) and tf when the continuation
parameters vary. The results of the two methods are very close to each other. The step size of the discrete
approach is respectively taken to be 0.05 and 0.01 in the first and second cases. With this step size which
is not representative of our control problem (larger step size can be chosen), the Newton algorithm does not
encounter any problem to converge. The shooting equation is solved with an accuracy better than 10−12 in the
two continuation methods.

In the second case, when we consider a final condition on the radial coordinate, some problems of accessibility
have been encountered. As a preliminary study, we have therefore to check that the target state belongs to
the accessibility set for every value of the dissipation parameters used in the continuation method. When this
condition is satisfied, we have observed no problem of convergence for the continuation method. This condition
is more difficult to fulfill for long control durations. Figure 11 illustrates the constraint due to the accessibility
set in the second case. For given values of dissipation parameters and of pρ, we have determined the values
of pφ(0) and tf allowing to reach the point of coordinates (φf , θf ). We have then plotted the corresponding
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Figure 8. Evolution of the continuation parameter Γ as a function of the number of steps for
the discrete method (solid line) and the smooth one (dashed line).
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Figure 9. Same as Figure 7 but for a continuation with respect to γ−. The parameters of
the initial point are Γ = 2.5, γ+ = 2, γ− = −0.1, φ(0) = π/4, pρ(0) = −10.0208, pθ = 8 and
pφ(0) = −1. The initial time is tf = 0.32. The target state corresponds to ρf = 0.47182,
φf = 0.77468 and θf = 0.32774.

radial coordinate ρf as a function of pρ. Note that the diagram is symmetric with respect to the vertical
axis pρ = 0 and has roughly the same form up to vertical translations for different values of the dissipation
parameters. Figure 11 shows the values of the radial coordinate ρf that can be reached when φf and θf are fixed.
Using such a diagram for different dissipation parameters, one can check that the point (ρf , φf , θf ) belongs to
the accessible set. Figures 8 and 10 represent the evolution of the continuation parameters as a function of
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Figure 10. Same as Figure 8 but for the continuation parameter γ−.
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Figure 11. Plot of ρf as a function of pρ(0) for Γ = 2.5, γ+ = 2 and γ− = 0.1. Other
parameters are taken to be φ(0) = π/4, pθ = 8, φf = 0.77468 and θf = 0.32774. The equation
of the horizontal line is ρf = 0.47182, which corresponds to the target state.

the number of steps. The step size of the Newton algorithm has been chosen so that the number of steps of
the two approaches be roughly the same. Note the non-trivial behavior of the continuation parameter in the
second case.
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