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A REGULARITY RESULT FOR A CONVEX FUNCTIONAL
AND BOUNDS FOR THE SINGULAR SET

Bruno De Maria1

Abstract. In this paper we prove a regularity result for local minimizers of functionals of the Calculus
of Variations of the type ∫

Ω

f(x, Du) dx

where Ω is a bounded open set in R
n, u ∈ W 1,p

loc (Ω; RN ), p > 1, n ≥ 2 and N ≥ 1. We use the technique
of difference quotient without the usual assumption on the growth of the second derivatives of the
function f . We apply this result to give a bound on the Hausdorff dimension of the singular set of
minimizers.
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1. Introduction and main results

In this paper we prove a regularity result for local minimizers of integral functionals of the Calculus of
Variations of the type:

F(u; Ω) :=
∫

Ω

f(x, Du) dx (1.1)

defined for Sobolev maps u ∈ W 1,p(Ω; RN ), p > 1. Here for n ≥ 2 and N ≥ 1, Ω is a bounded open set in R
n

and f : Ω × R
nN → R is a continuous function. The assumptions we are going to consider are the following.

There exist positive constants L, ν, c > 0 such that for every p > 1

(1 + |ξ|2) p
2 ≤ f(x, ξ) ≤ L(1 + |ξ|2) p

2 ; (H 1)

f

(
x,

ξ1 + ξ2

2

)
≤ 1

2
f(x, ξ1) +

1
2
f(x, ξ2) − ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2; (H 2)

|fξ(x1, ξ) − fξ(x2, ξ)| ≤ c|x1 − x2|α (1 + |ξ|2) p−1
2 ; (H 3)

for any ξ, ξ1, ξ2 ∈ R
nN , x, x1, x2 ∈ Ω and α ∈ (0, 1).
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Assumption (H2) is a uniform convexity condition for the function f with respect to the variable ξ, while
with assumption (H3) we are requiring the vector field x ∈ Ω → fξ(x, ξ) to be Hölder continuous for some
exponent α ∈ (0, 1) and for every ξ ∈ R

nN .
Since the functional (1.1) is convex there is no difference between minimizers and critical points, i.e. minimiz-

ers are precisely the weak solutions to the Euler system div fξ(x, Du) = 0. Moreover if we require f(·, ξ) ∈ C2,
so that (see Lem. 2.1 in the next section) (H2) is equivalent to the following ellipticity condition

〈
fξξ(x, ξ)λ, λ

〉 ≥ ν |λ|2 (1 + |ξ|2) p−2
2 ∀x ∈ Ω, ∀ξ, λ ∈ R

nN , (1.2)

the Euler system turns out to be elliptic. There is a vast literature on the study of the regularity for weak
solutions to this kind of systems and on the analogous issue for minimizers of functionals of the type F (see, for
example, [1,2,12,13,16]; see also [23] for a nice survey on the subject). The usual technique to get existence of
second derivatives when the elliptic system is not differentiable consists in constructing a suitable test function
using difference quotient and then in reading the Hölder condition on f as a kind of fractional differentiability
(see also [10,19,20]). In this way it is possible to show that the gradient of u belongs to some suitable fractional
order Sobolev space. This technique has been used, for example, in [21] where the weak solutions to elliptic
systems like

diva(x, Du) = 0 (1.3)

with a : Ω × M
N×n → M

N×n, have been studied under the following growth, ellipticity and continuity
assumptions:

|Dξa(x, ξ)| ≤ L(1 + |ξ|2) p−2
2 , (1.4a)

L−1|λ|2(1 + |ξ|2) p−2
2 ≤ ∂ak

i

∂ξh
j

(x, ξ)λk
i λh

j , (1.4b)

|a(x, ξ) − a(x0, ξ)| ≤ L|x − x0|α(1 + |ξ|2) p−1
2 (1.4c)

for any z, λ ∈ M
n×N and x, x0 ∈ Ω, where p ≥ 2, L ∈ (1, +∞) and α ∈ (0, 1) (see also [22]). As usual, a

key role in the proof of the existence of fractional derivatives is played by assumption (1.4a) that in the case
a(x, ξ) = fξ(x, ξ) becomes in turn an assumption on the growth of second derivatives of f ,

|D2f(x, ξ)| ≤ L(1 + |ξ|2) p−2
2 . (1.5)

Actually the main purpose of this paper is to provide a regularity result without any assumption on the
growth of D2f . This result relies essentially on a fundamental approximation procedure first introduced in [14].

In the case p ≥ 2, our main result is the following.

Theorem 1.1. Let f satisfy the assumptions (H1), (H2) and (H3), with p ≥ 2. If the function u ∈ W 1,p(Ω; RN )
is a local minimizer of F in Ω then for every Bρ ⊂ BR ⊂⊂ Ω we have that

Du ∈ W
k

p−1 ,p(Bρ; RnN ) ∩ L
np

n−kq (Bρ; RnN )

for every k ∈ (0, α), where q ≡ p
p−1 and

||Du||
L

np
n−kq (Bρ)

≤ c

(∫
BR

(1 + |Du(x)|p) dx

) 1
2

, (1.6)

with c ≡ c(n, N, L, ν, R, ρ, α, k, p).
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As far as we know, also in [11] the authors use the difference quotient method without the assumption (1.5)
(or (1.4a)) but our higher integrability exponent is greater than the one found in [11] where the anisotropic
growth conditions 1 < p ≤ q < p

(
n+α

n

)
were examined (see also [9] for the autonomous case and [5,25] for

polyconvex functionals). Here, the improved regularity stated in Theorem 1.1 depends on the assumption p ≥ 2.
In fact, in the case 1 < p < 2 our higher integrability exponent is slightly greater than the one obtained in [11]
in case α ≥ 1

2 while is again better if α < 1
2 . More precisely we have:

Theorem 1.2. Let f satisfy the assumptions (H1), (H2) and (H3), with 1 < p < 2. If the function u ∈
W 1,p(Ω; RN ) is a local minimizer of F in Ω then for every Bρ ⊂ BR ⊂⊂ Ω we have that

(1 + |Du(x)|2) p−2
4 Du(x) ∈ W k,2(Bρ; RnN ) ∩ L

2n
n−2k (Bρ; RnN) (1.7)

for every 0 < k < min
{
α, 1

2

}
. As a consequence

Du ∈ W k,p(Bρ; RnN ) ∩ L
np

n−2k (Bρ; RnN ) (1.8)

for every 0 < k < min
{
α, 1

2

}
and

||Du||
L

np
n−2k (Bρ)

≤ c

(∫
BR

(1 + |Du(x)|p) dx

) 1
2

, (1.9)

with c ≡ c(n, N, L, ν, R, ρ, α, k, p).

The proof of these two theorems is divided in two steps. In the first step we assume that f(·, ξ) ∈ C2 but
we are able to establish the estimates (1.6) and (1.9) independently of the C2 norm of the integrand f , by
adopting an argument first used in [14]. In the second step we remove the assumption f(·, ξ) ∈ C2 using an
approximation procedure introduced in [14] and developed in [7,10,15]. More precisely we approximate f by a
sequence {fh} of C2 functions which are strictly elliptic (and the ellipticity constant is precisely the ν appearing
in (H2)). The minimizers {uh} of {fh} all satisfy estimates (1.6) and (1.9). More important the estimates are
independent of the C2 norm of {fh} and thus are preserved in passing to the limit. Hence a control of the type

|D2f(x, ξ)| ≤ c (1 + |ξ|2) p−2
2 , ∀ (x, ξ) ∈ Ω × R

n,

on the growth of second derivatives of f never enters into play. It is worth pointing out that our crucial
estimates (1.6) and (1.9) are consequences of some nice embedding properties enjoyed by fractional order
Sobolev spaces (see [3]).

We remark that the cases 1 < p < 2 and p ≥ 2 have different technical difficulties and therefore they have
to be treated separately. The subquadratic case has been treated in [4] for the first time, in the quasiconvex
setting; however the paper [4] does not deal with the full case 1 < p < 2 but only with 2n/(n + 2) < p < 2. The
extension to the full interval 1 < p < 2 has been achieved in the subsequent paper [6].

Moreover we would like to notice that in the case p = 2 we recover the same regularity of [21] without the
growth assumption on the second derivatives (1.4a).

In the final part of this paper we apply the previous results to get a bound on the Hausdorff dimension of
the singular set.

2. Notations and preliminaries

In this section we explain the notations used in the paper and recall some useful results needed for the proof
of Theorems 1.1 and 1.2 that will be given in the next section.
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We shall indicate with BR(x0) the ball centered at the point x0 ∈ R
n and having radius R > 0. We shall

omit the center of the ball when no confusion arises. All the balls considered will be concentric unless differently
specified.

As usual {es}1≤s≤n is the standard basis in R
n and if u, v ∈ R

k the tensor product u ⊗ v ∈ R
k2

of u and v
is defined by (u ⊗ v)i,j := viwj .

In the estimates c is a constant, depending on the data of the problem, that may change from line to line.
Let us recall the following definition of local minimizer for the functional F .

Definition 2.1. A map u ∈ W 1,p(Ω; RN ) is a local minimizer of the functional F if

F(u; A) ≤ F(v; A)

whenever A ⊂⊂ Ω and u − v ∈ W 1,p
0 (A; RN ).

As we already said we need the machinery of fractional order Sobolev spaces. These spaces are defined as
follows.

Definition 2.2. If A is a smooth, bounded open subset of R
n and θ ∈ (0, 1), 1 ≤ p < +∞ a function u belongs

to the fractional order Sobolev space W θ,q(A; Rn) if and only if

||u||W θ,p :=
(∫

A

|u(x)|p dx

) 1
p

+
(∫

A

∫
A

|u(x) − u(y)|p
|x − y|n+pθ

dxdy

) 1
p

.

This quantity is a norm making W θ,p(A; Rn) a Banach space.

In the context of fractional order Sobolev spaces we have to use fractional difference quotient. Therefore we
introduce the following finite difference operator.

Definition 2.3. For every vector valued function F : R
n → R

N the finite difference operator is defined by

τs,hF (x) = F (x + hes) − F (x)

where h ∈ R, es is the unit vector in the xs direction and s ∈ {1, . . . , n}.
The following proposition describes some elementary properties of the finite difference operator and can be

found, for example, in [17].

Proposition 2.1. Let f and g be two functions such that F, G ∈ W 1,p(Ω), with p ≥ 1, and let us consider the
set

Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|} ·
Then

(d1) τs,hF ∈ W 1,p(Ω) and
Di(τs,hF ) = τs,h(DiF ).

(d2) If at least one of the functions F or G has support contained in Ω|h| then

∫
Ω

F τs,hGdx = −
∫

Ω

Gτs,−hF dx.

(d3) We have
τs,h(FG)(x) = F (x + hes)τs,hG(x) + G(x)τs,hF (x).



1006 B. DE MARIA

The following statement has been proved in [15]. It states that the condition of uniform convexity of the
functional F is equivalent to the ellipticity condition for the Euler system of F .

Lemma 2.1. Let f : R
nN → [0, +∞) be a C2 function and p > 1. Then f satisfies (H2) if and only if there

exists a constant c0 such that for all ξ ∈ R
nN

〈
fξξ(x, ξ)λ, λ

〉 ≥ c0ν (1 + |ξ|2) p−2
2 |λ|2 ∀λ ∈ R

nN .

where the constant ν is the same constant appearing in (H2).

The next result about finite difference operator is a kind of integral version of Lagrange theorem.

Lemma 2.2. If 0 < ρ < R, |h| < R−ρ
2 , 1 ≤ p < +∞, s ∈ {1, . . . , n} and F, DsF ∈ Lp(BR) then∫

Bρ

|τs,hF (x)|p dx ≤ |h|p
∫

BR

|DsF (x)|p dx.

Moreover ∫
Bρ

|F (x + hes)|p dx ≤ c(n, p)
∫

BR

|F (x)|p dx.

The following result is standard if p ≥ 2 and can be inferred from [2] (Lem. 2.2) in the case 1 < p < 2.

Lemma 2.3. For every p > 1 and G : BR → R
k there exists a positive constant c ≡ c(k, p) such that

|τs,h((1 + |G(x)|2)(p−2)/4G(x))|2 ≤ c(1 + |G(x)|2 + |G(x + hes)|2)(p−2)/2|τs,hG(x)|2

for every x ∈ Bρ, with |h| < R−ρ
2 and every s ∈ {1, . . . , n}.

Now we recall the fundamental embedding properties for fractional order Sobolev spaces. (For the proof see,
for example, [3].)

Lemma 2.4. If F : R
n → R

N , F ∈ L2(BR) and for some ρ ∈ (0, R), β ∈ (0, 1], M > 0,

n∑
s=1

∫
Bρ

|τs,hF (x)|2 dx ≤ M2|h|2β

for every h with |h| < R−ρ
2 , then F ∈ W k,2(Bρ; RN ) ∩ L

2n
n−2k (Bρ; RN) for every k ∈ (0, β) and

||F ||
L

2n
n−2k (Bρ)

≤ c
(
M + ||F ||L2(BR)

)
,

with c ≡ c(n, N, R, ρ, β, k).

The next result is in fact a reformulation of the previous lemma. We shall also need the following version of
embedding lemma since the cases 1 < p < 2 and p ≥ 2 have different technical difficulties.

Lemma 2.5. If F : R
n → R

N , F ∈ Lp(BR) with 1 < p < +∞ and for some ρ ∈ (0, R), β ∈ (0, 1], M > 0,

n∑
s=1

∫
Bρ

|τs,hF (x)|p dx ≤ Mp|h|pβ

for every h with |h| < R−ρ
2 , then F ∈ W k,p(Bρ; RN ) ∩ L

np
n−kp (Bρ; RN ) for every k ∈ (0, β) and

||F ||
L

np
n−kp (Bρ)

≤ c
(
M + ||F ||Lp(BR)

)
,

with c ≡ c(n, N, R, ρ, β, k).
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Now let us recall that the singular set Σ of a local minimizer u of the functional F is included in the set of
non-Lebesgue points of Du. Therefore the estimate for the Hausdorff dimension of Σ is an immediate corollary
of the regularity Theorems 1.1 and 1.2 through the application of the following proposition that can be found,
for example, in [20] (see also Sect. 4 in [21] for a simple proof).

Lemma 2.6. Let v ∈ W θ,p(Ω, RN ) where θ ∈ (0, 1), p > 1 and set

A :=

{
x ∈ Ω : lim sup

ρ→0+
−
∫

B(x,ρ)

|v(y) − (v)x,ρ|p dy > 0

}
,

B :=

{
x ∈ Ω : lim sup

ρ→0+
|(v)x,ρ| = +∞

}
·

Then

dimH(A) ≤ n − θp and dimH(B) ≤ n − θp.

3. A PRIORI estimates

In this section we prove the estimates (1.6) and (1.9) assuming that f satisfies the growth assumption (H1),
the Hölder condition (H3) and f(·, ξ) ∈ C2 for every ξ ∈ R

nN . Recall (see (2.1)) that under this last assump-
tion (H2) is equivalent to the ellipticity condition (1.2) with the same ν appearing in (H2). Then in the next
section we use the fundamental approximation procedure of [14], to prove Theorems 1.1 and 1.2. In any case
we explicitly point out that in this section we establish the estimates (1.6) and (1.9) independently of the C2

norm of f .
Now we observe that the convexity assumption (H2) together with (H1) implies the estimate

|fξ(x, ξ)| ≤ c(1 + |ξ|2) p−1
2 ∀ (x, ξ) ∈ Ω × R

nN , (3.1)

where c ≡ c(n, N, p, L).
We start proving (1.6).

Lemma 3.1. Suppose f satisfies (H1), (H3) for a p ≥ 2 and f(·, ξ) ∈ C2 for every ξ ∈ R
nN . If u ∈ W 1,p(Ω; RN )

is a local minimizer of F then the estimate (1.6) holds.

Proof. We assumed f(·, ξ) ∈ C2 so f satisfies the ellipticity condition (1.2) by Lemma 2.1. Let u ∈ W 1,p(Ω; RN )
be a local minimizer of the functional F and let us take 0 < R < 1 such that B2R ⊂⊂ Ω; then u is a solution
of the Euler system ∫

Ω

fξ(x, Du)Dϕdx = 0, (3.2)

for every ϕ ∈ W 1,p(Ω; RN ) such that suppϕ ⊂⊂ Ω.
Let η be a cut-off function in C1

0 (B3R/2) with 0 ≤ η ≤ 1, η ≡ 1 on BR and |Dη| < c/R. Let us consider
the function ϕ = η2(x)τs,−h(τs,hu) with s fixed in {1, . . . , n} (which from now on we shall omit for the sake of
simplicity) and |h| < R/10. Substituting in (3.2) the function ϕ we get

∫
B2R

η2(x)fξ(x, Du)D(τ−h(τhu)) dx = −2
∫

B2R

fξ(x, Du)η(x)Dη ⊗ τ−h(τhu) dx
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and thanks to (d1) and (d2) of Proposition 2.1 we get

∫
B2R

η2(x + hes) [fξ(x + hes, Du(x + hes)) − fξ(x + hes, Du(x))] D(τhu) dx

+
∫

B2R

η2(x + hes)[fξ(x + hes, Du(x)) − fξ(x, Du(x))] D(τhu) dx

+
∫

B2R

[η2(x + hes) − η2(x)] fξ(x, Du)D(τhu) dx

= 2
∫

B2R

fξ(x, Du) η(x)Dη ⊗ τ−h(τhu) dx.

Assumption (H3) and inequality (3.1) yield

∫
B2R

η2(x + hes) [fξ(x + hes, Du(x + hes)) − fξ(x + hes, Du(x))]D(τhu) dx

≤ c |h|α
∫

B2R

η2(x + hes)|D(τhu)|(1 + |Du|2) p−1
2 dx

+ c

∫
B2R

|η2(x + hes) − η2(x)| |D(τhu)| (1 + |Du|2) p−1
2 dx

+ c

∫
B2R

η(x) |Dη| |τ−h(τhu)| (1 + |Du|2) p−1
2 dx, (3.3)

with c ≡ c(n, N, p, L).
Now we can use the ellipticity condition (1.2) in the left hand side of (3.3) as follows

∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx

≤
∫

B2R

∫ 1

0

[fξξ(x + hes, Du + tτhDu)]η2(x + hes)D(τhu)D(τhu) dt dx

and, since

|τhDu|p = |τhDu|p−2|τhDu|2 ≤ c(n, p)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2

and p ≥ 2, we get the estimate

∫
B2R

η2(x + hes)|τhDu|p dx ≤ c |h|α
∫

B2R

η2(x + hes)|τhDu| (1 + |Du|2) p−1
2 dx

+ c

∫
B2R

|η2(x + hes) − η2(x)||τhDu| (1 + |Du|2) p−1
2 dx

+ c

∫
B2R

η(x)|Dη| |τ−h(τhu)| (1 + |Du|2) p−1
2 dx

:= (I) + (II) + (III), (3.4)

with c ≡ c(n, N, p, L, ν). We have to estimate the integrals appearing in the right hand side of (3.4). In what
follows ε is a real number such that 0 < ε < 1 to be chosen later.
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Let us begin from (I). We can apply Young’s inequality with the exponents p and q ≡ p
p−1 so we have

(I) ≤ c |h|qα

∫
B2R

η2(x + hes)(1 + |Du(x)|2) p
2 dx + c ε

∫
B2R

η2(x + hes)|τhDu|p dx

where c ≡ c(n, N, p, L, ν).
Let us estimate (II); we can apply Lagrange’s theorem to estimate |η2(x + hes) − η2(x)|, the assumptions

on |Dη| and again Young’s inequality with exponents p and q obtaining

(II) ≤ c
|h|
R

∫
B2R

|η(x + hes) + η(x)|(1 + |Du(x)|2) p−1
2 |τhDu| dx

≤ c
|h|q
Rq

∫
B2R

(1 + |Du(x)|2) p
2 dx + c ε

∫
B2R

|ηp(x + hes) + ηp(x)||τhDu|p dx

≤ c
|h|q
Rq

∫
B2R

(1 + |Du(x)|2) p
2 dx + c ε

∫
B2R

ηp(x + hes)|τhDu|p dx + c ε

∫
B2R

ηp(x)|τhDu|p dx

≤ c
|h|q
Rq

∫
B2R

(1 + |Du(x)|2) p
2 dx + c ε

∫
B2R

η2(x + hes)|τhDu|p dx + c ε

∫
B2R

η2(x)|τhDu|p dx,

where we used the assumptions p ≥ 2 and 0 ≤ η ≤ 1 to get the last estimate.
To estimate (III) we use, once again, Young’s inequality and the properties of η obtaining

(III) ≤ c
|h|q
Rq

∫
B2R

(1 + |Du(x)|2) p
2 dx +

c ε

|h|p
∫

B2R

ηp(x)|τ−h(τhu)|p dx. (3.5)

Now using the definition of τhu we can write the last integral in (3.5) as follows

c ε

|h|p
∫

B2R

|η(x − hes)(τhu)(x − hes) − η(x)(τhu)(x) + (η(x) − η(x − hes))(τhu)(x − hes)|p dx

≤ c ε

|h|p
∫

B2R

|τ−h(ητhu)(x)|p dx +
c

|h|p
∫

B2R

|η(x) − η(x − hes)|p |(τhu)(x − hes)|p dx

≤ cε

∫
B2R

|D(ητhu)(x)|p dx +
c ε

Rp

∫
B2R

|(τhu)(x − hes)|p dx, (3.6)

where we used Lemma 2.2 and Lagrange’s theorem to get the last estimate.
Recalling how we chose η and |h| at the beginning we can estimate the last sum in (3.6) with

c ε

∫
B2R

|D(ητhu)(x)|p dx +
c ε

Rp

∫
B2R

|(τhu)(x)|p dx

≤ cε

∫
B2R

ηp(x)|τh(Du)(x)|p dx + c ε

∫
B2R

|Dη|p|(τhu)(x)|p dx +
c ε

Rp

∫
B2R

|(τhu)(x)|p dx

≤ c ε

∫
B2R

η2(x)|τh(Du)(x)|p dx +
c ε

Rp

∫
B2R

|(τhu)(x)|p dx,

where we used the assumptions on p and η again. So we have

(III) ≤ c
|h|q
Rq

∫
B2R

(1 + |Du(x)|2) p
2 dx + c ε

∫
B2R

η2(x)|τh(Du)(x)|p dx +
c ε

Rp

∫
B2R

|(τhu)(x)|p dx.
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Since τhDu(x) = Du(x + hes) − Du(x) and noting that

c ε

∫
B2R

ηp(x)|τhDu|p dx ≤ c

∫
B2R

|η(x) − η(x + hes)|p|τh(Du)(x)|p dx + cε

∫
B2R

ηp(x + hes)|τhDu(x)|p dx

≤ c
|h|p
Rp

∫
B2R

|τhDu(x)|p dx +cε

∫
B2R

η2(x + hes)|τhDu|p dx

≤ c
|h|p
Rp

∫
B2R

(1 + |Du|2) p
2 dx + c ε

∫
B2R

η2(x + hes)|τhDu|p dx

we obtain

(III) ≤ c
|h|p
Rp

∫
B2R

(1 + |Du(x)|2) p
2 dx + c ε

∫
B2R

η2(x + hes)|τhDu|p dx + c
|h|q
Rq

∫
B2R

(1 + |Du(x)|2) p
2 dx.

Collecting the estimates for (I), (II) and (III) we get

∫
B2R

η2(x + hes)|τhDu|p dx ≤ c ε

∫
B2R

η2(x + hes)|τhDu|p dx + c
|h|p
Rp

∫
B2R

(1 + |Du(x)|2) p
2 dx

+ c |h|qα

∫
B2R

(1 + |Du(x)|2) p
2 dx + c

|h|q
Rq

∫
B2R

(1 + |Du(x)|2) p
2 dx.

Now choosing ε > 0 small enough we get

∫
B2R

η2(x + hes)|τhDu|p dx ≤ c |h|qα

∫
B2R

(1 + |Du(x)|2) p
2 dx + c

|h|q
Rq

∫
B2R

(1 + |Du(x)|2) p
2 dx

+ c
|h|p
Rp

∫
B2R

(1 + |Du(x)|2) p
2 dx,

but since qα < q, q ≤ 2 and recalling that R < 1 the following estimate easily follows

∫
B2R

η2(x + hes)|τhDu|p dx ≤ c |h|p( α
p−1 )

∫
B2R

(1 + |Du(x)|p) dx, (3.7)

with c ≡ c(n, N, L, ν, p, R). We can conclude applying Lemma 2.5 and performing a standard covering procedure.
�

Now we prove (1.9) again under the C2 regularity assumption on the integrand f .

Lemma 3.2. Suppose f satisfies (H1), (H3), for a 1 < p < 2 and f(·, ξ) ∈ C2 for every ξ ∈ R
nN . If

u ∈ W 1,p(Ω, RN ) is a local minimizer of F then the estimate (1.9) holds.

Proof. Let η be a cut-off function in C1
0 (B3R/2) with 0 ≤ η ≤ 1, η ≡ 1 on BR and |Dη| < c/R. Let us consider

the function ϕ = η2(x)τs,−h(τs,hu) with s fixed in {1, . . . , n} (which from now on we shall omit for the sake of
simplicity) and |h| < R/10. Substituting in (3.2) the function ϕ and arguing as in the first part of the proof



A REGULARITY RESULT FOR A CONVEX FUNCTIONAL AND BOUNDS FOR THE SINGULAR SET 1011

of Lemma 3.1 we get the estimate∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx

≤ c |h|α
∫

B2R

η2(x + hes)|τhDu| (1 + |Du|2) p−1
2 dx

+ c

∫
B2R

|η2(x + hes) − η2(x)||τhDu| (1 + |Du|2) p−1
2 dx

+ c

∫
B2R

η(x)|Dη| |τ−h(τhu)| (1 + |Du|2) p−1
2 dx

:=(I) + (II) + (III), (3.8)

with c ≡ c(n, N, p, L, ν). We have to estimate the integrals appearing in the right hand side of (3.8). In what
follows ε is a real number such that 0 < ε < 1 to be chosen later.

Let us begin from (I). Observing that

p − 1
2

=
p − 2

4
+

p

4
,

we can apply Young’s inequality with the exponent 2, so we have

(I) ≤ c |h|α
∫

B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−1
2 |τhDu| dx

≤ c ε |h|2α

∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p
2 dx

+ ε

∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx

≤ c ε |h|2α

∫
B2R

(1 + |Du(x)|2) p
2 dx

+ ε

∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx (3.9)

with c ≡ c(n, N, p, L, ν), where in the last inequality we used Lemma 2.2.
Now let us estimate (II). We can apply Lagrange’s theorem to estimate |η2(x+hes)−η2(x)|, the assumption

on |Dη| and again Young’s inequality with exponent 2 obtaining

(II) ≤ c
|h|
R

∫
B2R

|η(x + hes) + η(x)|(1 + |Du(x)|2 + |Du(x + hes)|2)
p−1
2 |τhDu| dx

≤ cε
|h|2
R2

∫
B2R

(1 + |Du(x)|2 + |Du(x + hes)|2)
p
2 dx

+ ε

∫
B2R

|η2(x + hes) + η2(x)|(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx

≤ cε
|h|2
R2

∫
B2R

(1 + |Du(x)|2) p
2 dx + ε

∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2dx

+ ε

∫
B2R

η2(x)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx (3.10)

where we used Lemma 2.2.
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To estimate (III) we use Hölder’s inequality, the definition of τhu and the properties of η and h obtaining

(III) ≤ c

R

(∫
B2R

(1 + |Du(x)|2 + |Du(x + hes)|2)
p
2

)1− 1
p
(∫

B2R

|τ−h(τhu)|p dx

) 1
p

≤ |h| c

R

∫
B2R

(1 + |Du(x)|p) dx, (3.11)

where we also used Lemma 2.2. Now set

Wh = Wh(Du) = 1 + |Du(x)|2 + |Du(x + hes)|2

and, since τhDu(x) = Du(x + hes) − Du(x), we get

c

∫
B2R

W
p−2
2

h η2(x)|τhDu|2 dx ≤ cε

∫
B2R

W
p−2
2

h |η(x) − η(x + hes)|2|τh(Du)(x)|2 dx

+ cε

∫
B2R

W
p−2
2

h η2(x + hes)|τh(Du)(x)|2 dx

≤ c
|h|2
R2

∫
B2R

W
p−2
2

h |τhDu(x)|2 dx + ε

∫
B2R

W
p−2
2

h η2(x + hes)|τhDu|2 dx

≤ c
|h|2
R2

∫
B2R

W
p−2
2

h |Du(x)|2 dx + c ε

∫
B2R

W
p−2
2

h η2(x + hes)|τhDu|2 dx

≤ c
|h|2
R2

∫
B2R

(1 + |Du(x)|2) p
2 dx + c ε

∫
B2R

W
p−2
2

h η2(x + hes)|τhDu|2 dx.

Collecting the estimates for (I), (II) and (III), we get∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx

≤ c ε

∫
B2R

W
p−2
2

h η2(x + hes)|τhDu|2 dx + c
|h|2
R2

∫
B2R

(1 + |Du(x)|p) dx

+ c ε |h|2α

∫
B2R

(1 + |Du(x)|p) dx + |h| c

R

∫
B2R

(1 + |Du(x)|p) dx.

From this estimate, choosing ε > 0 small enough, we get∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx

≤ c
|h|2
R2

∫
B2R

(1 + |Du(x)|p) dx + c ε |h|2α

∫
B2R

(1 + |Du(x)|p) dx + |h| c

R

∫
B2R

(1 + |Du(x)|p) dx,

but since 2α < 2 and R < 1 the following estimate easily follows∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx

≤ c|h|2α

∫
B2R

(1 + |Du(x)|p) dx + c|h|
∫

B2R

(1 + |Du(x)|p) dx, (3.12)

with c ≡ c(n, N, L, ν, p, R).
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Now if 2α < 1, that is α < 1
2 , we have

∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx ≤ c|h|2α

∫
B2R

(1 + |Du(x)|p) dx (3.13)

while, if α ≥ 1
2 we have

∫
B2R

η2(x + hes)(1 + |Du(x)|2 + |Du(x + hes)|2)
p−2
2 |τhDu|2 dx ≤ c|h|

∫
B2R

(1 + |Du(x)|p) dx. (3.14)

We can get the final estimate applying Lemma 2.3 which yields

∫
BR

|τs,h((1 + |Du(x)|2)(p−2)/4Du(x))|2 dx ≤ c|h|β
∫

B2R

(1 + |Du(x)|p) dx,

where

β = 2α if α <
1
2
,

β = 1 if α ≥ 1
2
·

Now we can conclude applying Lemma 2.4 and performing a standard covering procedure. �

4. The approximation

We need now the following fundamental result that can be obtained with a procedure first introduced in [14,15]
and then developed in [7,10], that plays a key role in the completion of the proof of our theorems.

Lemma 4.1. Let us suppose that the function f satisfies assumptions (H1), (H2) and (H3). Then there exist
a sequence fh(x, ·) ∈ C2(RnN ) and a constant c > 1 independent of h such that

(i) 1
c (1 + 1

h2 + |ξ|2) p
2 ≤ fh(x, ξ) ≤ cL

(
1 + 1

h2 + |ξ|2) p
2 ∀x ∈ Ω, ∀λ, ξ ∈ R

nN ;

(ii) ν
c |λ|2 (1 + |ξ|2) p−2

2 ≤ 〈D2
ijfh(x, ξ)λiλj

〉 ∀x ∈ Ω, ∀λ, ξ ∈ R
nN ;

(iii) |Dξfh(x1, ξ) − Dξfh(x2, ξ)| ≤ c|x1 − x2|α
(
1 + 1

h2 + |ξ|2) p−1
2 with α ∈ (0, 1);

(iv) fh → f uniformly on compact subsets of BR × R
nN .

where the number ν is the same appearing in (H1) so it is independent of h.

Let us observe that since every fh(x, ·) ∈ C2(RnN ) condition (ii) turns out to be equivalent to (H2) thanks
to Lemma 2.1.

Now we can complete the proof of Theorems 1.1 and 1.2 at once.

Proof of Theorems 1.1 and 1.2. Let us consider, for every h, the solution uh of the Dirichlet problem

min
{∫

BR

fh(x, Dv) dx : v ∈ u + W 1,p
0 (BR; RN )

}
·
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Thanks to Lemmas 1.1 and 1.2, the sequence {uh} turns out to be locally bounded in W 1,γ(BR; RN ) for every k
in (0, α), where

γ =
np

n − kq
if p ≥ 2;

γ =
np

n − 2k
if 1 < p < 2.

Therefore, up to a subsequence, {uh} converges weakly to some u∞ in W 1,γ
loc (BR; RN ); let us prove that u∞

verifies the estimates (1.6) and (1.9). From (i) we have

||Du∞||Lγ(Bρ) ≤ lim inf
h

||Duh||Lγ(Bρ) ≤ c lim inf
h

(∫
BR

(1 + |Duh|2)
p
2 dx

) 1
2

≤ c lim inf
h

(∫
BR

fh(x, Duh)dx

) 1
2

≤ c lim inf
h

(∫
BR

fh(x, Du) dx

) 1
2

≤ c

(∫
BR

(1 + |Du|2) p
2 dx

) 1
2

where we also used the minimality of uh.
Now, exploiting the local higher equi-integrability of {uh} which follows from the estimates provided by

Lemmas 1.1 and 1.2, we shall prove that u∞ ≡ u. Fixed M ∈ N we can consider for every ρ < R

∫
Bρ

f(x, Duh) dx =
∫

Bρ∩{|Duh|≤M}
f(x, Duh) dx +

∫
Bρ∩{|Duh|>M}

f(x, Duh) dx

≤
∫

Bρ∩{|Duh|≤M}
[f(x, Duh) − fh(x, Duh)] dx +

∫
Bρ

fh(x, Duh) dx

+
∫

Bρ∩{|Duh|>M}
f(x, Duh) dx.

Remembering that fh converges uniformly to f on compact subset (see (iii)) we have

lim
h

∫
Bρ∩{|Duh|≤M}

[f(x, Duh) − fh(x, Duh)] dx = 0,

therefore

lim inf
h

∫
Bρ

f(x, Duh) dx ≤ lim sup
h

∫
Bρ

fh(x, Duh) dx + lim sup
h

∫
Bρ∩{|Duh|>M}

f(x, Duh) dx. (4.1)

Moreover, since

lim sup
h

∫
Bρ∩{|Du|≤M}

[fh(x, Du) − f(x, Du)] dx = 0,

by the minimality of uh we can control the right hand side of (4.1) by

∫
Bρ

f(x, Du) dx + lim sup
h

∫
Bρ∩{|Du|>M}

fh(x, Du) dx + lim sup
h

∫
Bρ∩{|Duh|>M}

f(x, Duh) dx.
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Using the growth conditions (i) on f and fh we have

lim inf
h

∫
Bρ

f(x, Duh) dx ≤
∫

Bρ

f(x, Du) dx + cL

∫
Bρ∩{|Du|>M}

(1 + |Du|2) p
2 dx

+ cL lim sup
h

∫
Bρ∩{|Duh|>M}

(1 + |Duh|2)
p
2 dx, (4.2)

where L > 0 is the same growth constant appearing in the assumption (H1). Applying Hölder’s inequality we
can estimate the last integral in (4.2) with

lim sup
h

cL

⎡
⎣(∫

Bρ

(
1 + |Duh|2

) γp
2 dx

) 1
γ

· |{|Duh| > M} ∩ Bρ|1−
1
γ

⎤
⎦

where the first factor is finite and independent of h. So we get the estimate

lim inf
h

∫
Bρ

f(x, Duh) dx ≤
∫

Bρ

f(x, Du) dx + cL

(
lim sup

h
|{|Duh| > M} ∩ Bρ|

)1− 1
γ

+ cL

∫
Bρ∩{|Du|>M}

(1 + |Du|2) p
2 dx.

Note that

lim sup
M→+∞

∫
Bρ∩{|Du|>M}

(1 + |Du|2) p
2 dx = 0 and |{|Duh| > M} ∩ Bρ|Mγ ≤

∫
Bρ

|Duh|γ dx ≤ C

where the constant C does not depend on h. Therefore

|{|Duh| > M} ∩ Bρ| ≤ C

Mγ

for every h and
lim sup

h
|{|Duh| > M} ∩ Bρ| = 0

when M → +∞. Then we have∫
Bρ

f(x, Du∞) dx ≤ lim inf
h

∫
Bρ

f(x, Duh) dx ≤
∫

Bρ

f(x, Du) dx.

Passing to the limit as ρ ↑ R we can conclude∫
BR

f(x, Du∞) dx ≤
∫

BR

f(x, Du) dx.

Since u is a local minimizer of the functional F and u∞ ≡ u on the boundary of BR, the strict convexity of f
implies u∞ ≡ u. �

Now we can apply Theorems 1.1 and 1.2 to get a bound on the Hausdorff dimension of the singular set Σ of
minimizers of functional F .

We recall that a local minimizer of F is partially C1,μ-regular if there exists an open subset of full measure
Ω0 ⊆ Ω such that Du is Hölder continuous in Ω0.
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It is well known that, in general, in the vectorial case local minimizers are not everywhere regular. For coun-
terexamples to any type of regularity in the interior of Ω (even the L∞ one) of minimizers of regular variational
integrals in the vectorial case and solutions to nonlinear elliptic systems see for instance [8,18,24,26,27].

In this situation one can try to prove that the set Ω \Ω0 is “reasonably small” in the sense that it is not only
negligible but it has also a low Hausdorff dimension. Since the singular set of a local minimizer u is contained
in the set of non-Lebesgue points of Du, the conclusion is achieved by proving an estimate on the size of non-
Lebesgue point of functions belonging to a fractional order Sobolev space. For a more detailed discussion on
partial regularity and singular set see [22].

In our case we have the following result.

Corollary 4.1. If f is a C2 function satisfying the assumptions (H1), (H2), (H3) and the function u ∈
W 1,p(Ω; RN ) is a local minimizer of F in Ω, then for the Hausdorff dimension of the singular set Σ of the
function u the following estimates hold

dimH(Σ) ≤ n − αq if p ≥ 2;

dimH(Σ) ≤ n − βp if 1 < p < 2;

where q = p
p−1 and β := min

{
α, 1

2

}
.

Proof. If u ∈ W 1,p, p > 1, is a local minimizer of the functional F as a consequence of the Theorems 1.1 and 1.2
we have in particular that

Du ∈ W
k

p−1 ,p if p ≥ 2;

for every k ∈ (0, α) and
Du ∈ W k,p if 1 < p < 2;

for every k ∈ (0, β) where β := min
{
α, 1

2

}
. Therefore applying Lemma 2.6 we immediately conclude the

proof. �
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