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NONLINEAR FEEDBACK STABILIZATION
OF A TWO-DIMENSIONAL BURGERS EQUATION ∗
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Abstract. In this paper, we study the stabilization of a two-dimensional Burgers equation around
a stationary solution by a nonlinear feedback boundary control. We are interested in Dirichlet and
Neumann boundary controls. In the literature, it has already been shown that a linear control law, de-
termined by stabilizing the linearized equation, locally stabilizes the two-dimensional Burgers equation.
In this paper, we define a nonlinear control law which also provides a local exponential stabilization of
the two-dimensional Burgers equation. We end this paper with a few numerical simulations, comparing
the performance of the nonlinear law with the linear one.
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1. Introduction

In this paper we are interested in the local feedback stabilization of a scalar Burgers type equation, in a two
dimensional domain Ω, of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tz − νΔz + z∂1z + z∂2z = f in Ω × (0,∞),

ν
∂z

∂n
= g + mu on Γ × (0,∞),

z(0) = w + y0 in Ω.

(1.1)

In this setting the symbols ∂1 and ∂2 denote the partial derivatives with respect to x1 and x2 respectively, ν > 0
is the viscosity coefficient, u is the control, the function m is introduced to localize the control in a part of the
boundary Γ = ∂Ω, and w is a given stationary solution to equation

−νΔw + w∂1w + w∂2w = f in Ω, ν
∂w

∂n
= g on Γ. (1.2)

Keywords and phrases. Dirichlet control, Neumann control, feedback control, stabilization, Burgers equation, Algebraic Riccati
equation.
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We would like to find u in feedback form so that z − w is exponentially stable with a prescribed decay rate
−α < 0, for initial values y0 small enough in a space which is specified later on.

We also consider the same type of equation with a Dirichlet boundary control. In both cases, equations
satisfied by y = z − w may be written in the abstract form

y′ = Ay + F (y) + Bmu, y(0) = y0, (1.3)

where A, with domain D(A), is the infinitesimal generator of an analytic semigroup on a Hilbert space Y , F (y)
is the nonlinear term in the equation, Bm is the operator from a control space U into Y (in the considered
problems, Bm is an unbounded operator). We assume that the pair (A, Bm) is stabilizable.

Local stabilizability results may be proved for equation (1.3) (see e.g. [16] where stabilizability results are
established for the 2D-Navier-Stokes equations instead of a 2D-Burgers equation).

Therefore, if y0 is small enough in an appropriate norm, there exist controls u in L2(0,∞; U) for which the
solution yu to equation (1.3) obeys

J(yu, u) < ∞ where J(yu, u) =
1
2

∫ ∞

0

|yu(t)|2Y dt +
1
2

∫ ∞

0

|u(t)|2U dt.

Such a control can be obtained by solving the nonlinear closed loop system with a linear feedback law of the
form u = −B∗

mΠy, where Π is the solution to the algebraic Riccati equation of a LQR problem. This is the
way followed in [16]. In that case, we do not take into account the nonlinearity of the model in the feedback
law. One way to obtain another control, possibly more efficient or more robust, able to stabilize equation (1.3),
could be to look for a solution to the control problem

(P) inf
{
J(y, u) | (y, u) is solution of (1.3)

}
·

When Bm is a bounded operator, it can be shown that this problem admits a solution (provided that y0 is small
enough). If the Hamilton-Jacobi-Bellman equation〈

Ay + F (y),G(y)
〉
− 1

2
|B∗

mG(y)|2U +
1
2
|y|2Y = 0, for all y ∈ D(A), (1.4)

admits a solution G, then it can be used to determine a solution to (P) and the corresponding control in feedback
form (the gradient of the value function of (P) may provide a solution to equation (1.4)). But in the case when
Bm is an unbounded operator, equation (1.4) is not well posed since the nonlinear term B∗

mG(y) is not well
defined.

The main objective of this paper is to investigate an intermediate way (intermediate between the linear
feedback law and the nonlinear law determined by solving equation (1.4)). We are going to see that even if
equation (1.4) is not necessarily well posed, it is possible to find a nonlinear feedback law, obtained by using
a power series expansion method, which is a formal approximate solution to the Hamilton-Jacobi-Bellman
equation (1.4). This kind of method is well known in the case of systems governed by ordinary differential
equations (see [3]). Let us explain how we can obtain such a nonlinear feedback law in the case of equation (1.1).
The algebraic Riccati equation associated with J and with the linearized equation corresponding to (1.3) is

Π = Π∗ ≥ 0, ΠA + A∗Π − ΠBmB∗
mΠ + I = 0

(see (2.5) for a more precise statement). This equation is equivalent to

Π = Π∗ ≥ 0,
〈
Ay, Πy

〉
− 1

2
|B∗

mΠy|2U +
1
2
|y|2Y = 0, for all y ∈ D(A),
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which corresponds to (1.4) when F (y) = 0 and G(y) = Πy. Now, let us write a formal Taylor expansion of G
about 0

G(y) = G(0) + G′(0)y +
1
2
G′′(0)(y, y) + . . . (1.5)

By substituting (1.5) into (1.4) and by identifying the terms having the same order with respect to y we obtain

(a) |B∗
mG(0)|2U = 0 for the order 0;

(b)
〈
Ay,G(0)

〉
= 0 for the order 1;

(c)
〈
Ay,G′(0)y

〉
+

〈
F (y),G(0)

〉
− 1

2
|B∗

mG′(0)y|2U +
1
2
|y|2Y = 0 for the order 2;

(d)
1
2

〈
Ay,G′′(0)(y, y)

〉
− 1

2

〈
BmB∗

mG′(0)y,G′′(0)(y, y)
〉

+
〈
F (y),G′(0)y

〉
= 0 for the order 3.

We notice that
G(0) = 0, G′(0) = Π and G′′(0)(y, y) = −2A−∗

Π ΠF (y)

where A−∗
Π is the inverse of A∗

Π (the adjoint of AΠ = A − BmB∗
mΠ), is a triplet satisfying (a), (b), (c) and (d).

This is why we choose
u = −B∗

mΠy + B∗
mA−∗

Π ΠF (y)

as nonlinear feedback control law to stabilize equation (1.3). We prove that this feedback guarantees a local
stabilizability of the closed loop system. Though our approach is quite general and may be applied to various
systems, we only study it in the case of a two dimensional Burgers type equation with a control applied either
in a Dirichlet or a Neumann boundary condition. The case of the Navier-Stokes equations will be investigated
in a forthcoming paper.

The plan of this paper is as follows. We first study the case of a Neumann boundary control in Sections 2–6.
The adaptation to the case of a Dirichlet boundary control is performed in Section 7. We describe the precise
setting of our problem in Section 2. The properties of operators A, A∗, Bm, B∗

m, Π and AΠ are briefly recalled
in Section 3. In order to study the nonlinear closed loop system, we first establish a regularity result for a
nonhomogeneous closed loop linear equation in Section 4. The main result of the paper is stated in Theorem 5.1
and its proof is given in Section 5. We explain how to adapt the results of Section 6 to obtain a prescribed decay
rate. In Section 8, we present some numerical tests where we compare the linear and the nonlinear feedback
laws applied to the nonlinear system. Though there is no conclusion valid for all numerical tests, we present
examples for which the nonlinear feedback law is able to stabilize the nonlinear system while the linear feedback
law, with the same initial condition, is not able. We can observe that the behaviors of the solution of the closed
loop system with the linear and the nonlinear feedback laws are quite different.

Let us finally mention that many papers deal with the stabilization of the one dimensional viscous Burgers
equation. We refer to [11] for recent results in that direction (see also the references therein).

2. Setting of the problem

Throughout the following, Ω is either a rectangle in R
2 or a bounded domain in R

2 with a boundary Γ of
class C3. If one of these geometrical assumptions is satisfied, it can be shown that the solution to the second
order elliptic equations we consider, with homogeneous Neumann or Dirichlet boundary conditions, belongs
to Hs+2(Ω) if the right hand side belongs to Hs(Ω) with 0 ≤ s < 1/2. We set Σ∞ = Γ × (0,∞), and
Q∞ = Ω × (0,∞).

We make the following assumptions on the function m. When Ω is a domain with a boundary Γ of class C3,
we assume that m ∈ C2(Γ), m ≥ 0, and m(x) = 1 for all x ∈ Γc, where Γc is a nonempty open subset in Γ.

When Ω = ]0, a[ × ]0, b[ is a rectangle, we assume that m ∈ C2(Γa), Γa = {a} × [0, b], m ≥ 0, and m(x) = 1
for all x ∈ Γc, Γc is a nonempty segment in Γa. In the case of a Neumann boundary control, Γc can be either
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a segment in Γa satisfying Γc ⊂ Γa or Γc = Γa, and in that case m(x) = 1 for all x ∈ Γa. In the case of a
Dirichlet boundary control, we assume that m belongs to C2(Γa) ∩ H2

0 (Γa).
As indicated in the introduction, we first consider the case of a Neumann boundary control. We assume that

the solution w to equation (1.2) belongs to H3(Ω). If z is the solution to equation (1.1), then y = z − w obeys⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ty − νΔy + y(∂1w + ∂2w) + w(∂1y + ∂2y) + y(∂1y + ∂2y) = 0 in Q∞,

ν
∂y

∂n
= mu on Σ∞,

y(0) = y0 in Ω.

(2.1)

We denote by (A, D(A)) and (A∗, D(A∗)) the unbounded operators in L2(Ω) defined by

D(A) =
{

y ∈ H2(Ω) | ν
∂y

∂n
= 0 on Γ

}
, Ay = νΔy − y(∂1w + ∂2w) − w(∂1y + ∂2y),

D(A∗) =
{

y ∈ H2(Ω) | ν
∂y

∂n
+ yw = 0 on Γ

}
, A∗y = νΔy + w(∂1y + ∂2y).

Since w ∈ H3(Ω), we can easily verify that there exists λ0 > 0 in the resolvent set of A satisfying(
(λ0I − A)y, y

)
L2(Ω)

≥ ν

2
|y|2H1(Ω) for all y ∈ D(A),

and (
(λ0I − A∗)y, y

)
L2(Ω)

≥ ν

2
|y|2H1(Ω) for all y ∈ D(A∗).

(2.2)

Here | · |H1(Ω) denotes the usual norm in H1(Ω). We shall use the same type of notation for other spaces.
Following [6], Chapter 2, Part II, we are going to rewrite equation (2.1) as an evolution equation. To this aim,
we introduce N ∈ L(L2(Γ), H3/2(Ω)), the Neumann operator associated with λ0I − A, defined by Nu = y,
where y is the unique solution in H3/2(Ω) to equation

λ0y − νΔy + w(∂1y + ∂2y) + y(∂1w + ∂2w) = 0 in Ω, ν
∂y

∂n
= u on Γ.

The nonlinear term −y(∂1y + ∂2y), which is equal to −∂1(y2/2)− ∂2(y2/2), is rewritten as an element F (y) in
(D(A∗))′ as follows

〈F (y), Φ〉(D(A∗))′,D(A∗) =
1
2

∫
Ω

y2(∂1Φ + ∂2Φ) − 1
2

∫
Γ

y2 (n1 + n2)Φ for all Φ ∈ D(A∗),

where n = (n1, n2)T denotes the unit normal to Γ outward Ω. Let us observe that F (y) is well defined in
(D(A∗))′ for all y ∈ H1(Ω). Setting B = (λ0I − A)N , equation (2.1) may be rewritten in the form

y′ = Ay + BMu + F (y) in (0,∞), y(0) = y0, (2.3)

where M is the multiplication operator defined by Mu = mu. The operator Bm in the introduction is nothing
else than Bm = BM . As mentioned in the introduction, a way to look for a feedback control able to locally
stabilize the nonlinear equation (2.3) is to look for a feedback control stabilizing the linearized equation (see [16])

y′ = Ay + BMu in (0,∞), y(0) = y0. (2.4)

The stabilizability of the pair (A, BM) may be proved thanks to the null controllability result proved in [8] for
a similar equation with a distributed control. A feedback control stabilizing equation (2.4) can be determined
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by solving a Linear-Quadratic-Regulation problem with the identity as observation operator. In that case the
feedback is obtained by solving the algebraic Riccati equation

Π = Π∗ ∈ L(L2(Ω)), Π ≥ 0,

|Πy|D(A∗) ≤ |y|L2(Ω) for all y ∈ L2(Ω),

ΠA + A∗Π − ΠBM2B∗Π + I = 0.

(2.5)

The existence of a unique weak solution to the above algebraic Riccati equation may be deduced from [12],
while the estimate in the second line of (2.5) can be proved as in [16], Theorem 4.5. In Lemma 3.3, we show
that Π may be extended as an operator belonging to L((D(A∗))′, L2(Ω)).

We would like to study the following nonlinear feedback law

u = −MB∗Πy + MB∗A−∗
Π ΠF (y),

where Π is the solution to equation (2.5) and AΠ = A − BM2B∗Π. That means that we have to study the
following equation

y′ = AΠy + BM2B∗A−∗
Π ΠF (y) + F (y) in (0,∞), y(0) = y0. (2.6)

To study such an equation, we shall consider the nonhomogeneous equation

y′ = AΠy + f + BMg in (0,∞), y(0) = y0,

where f and g will play the role of F (y) and of MB∗A−∗
Π ΠF (y). Next, we shall use a fixed point method to

prove the existence of a solution to equation (2.6). Throughout the following, we use C, C1, . . . , C4 to denote
various constants depending on Ω and w. They also may depend on some small parameter ε.

3. Properties of operators N , B, Π, AΠ and their adjoints

Let us first recall well known results which will be useful in what follows.

Theorem 3.1. The unbounded operator (A − λ0I) (respectively (A∗ − λ0I)) with domain D(A − λ0I) = D(A)
(respectively D(A∗ − λ0I) = D(A∗)) is the infinitesimal generator of a bounded analytic semigroup on L2(Ω).
Moreover, for all 0 ≤ α ≤ 1, we have

D((λ0I − A)α) = D((λ0I − A∗)α) = H2α(Ω) if α ∈ [0, 3/4[,

D((λ0I − A)α) =
{

z ∈ H2α(Ω) | ν
∂z

∂n
= 0 on Γ

}
if α ∈ ]3/4, 1],

and

D((λ0I − A∗)α) =
{

z ∈ H2α(Ω) | ν
∂z

∂n
+ zw = 0 on Γ

}
if α ∈ ]3/4, 1].

Proof. Under condition (2.2) the analyticity of the semigroup generated by (A−λ0I) is well known ([5], Chap. 1,
Thm. 2.12). The characterization of the domains of fractional powers of (λ0I−A) and (λ0I−A∗) may be deduced
from [14]. �

Observe that the semigroups (et(A−λ0I))t≥0 and (et(A∗−λ0I))t≥0 are exponentially stable on L2(Ω) and that

‖et(A−λ0I)‖L(L2(Ω)) ≤ e−βt and ‖et(A∗−λ0I)‖L(L2(Ω)) ≤ e−βt,

for all β < ν/2 (see [5], Chap. 1, Thm. 2.12).
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In the following, it is useful to introduce the notation

Hθ(Ω) = D
(
(λ0I − A∗)θ/2

)
and H−θ(Ω) = (Hθ(Ω))′ for 0 ≤ θ ≤ 2.

Lemma 3.1. (i) The operator N ∈ L(L2(Γ), L2(Ω)) satisfies

|Nu|H3/2(Ω) ≤ C|u|L2(Γ).

(ii) The operator N∗ ∈ L(L2(Ω), L2(Γ)), the adjoint operator of N ∈ L(L2(Γ), L2(Ω)), is defined by

N∗g = z|Γ, (3.1)

where z is the solution of

λ0z − νΔz − w(∂1z + ∂2z) = g in Ω, ν
∂z

∂n
+ wz = 0 on Γ. (3.2)

Proof. The proof of (i) is classical, it relies on regularity results for elliptic equations. The proof of (ii) relies
on Green formula. �

The operator B = (λ0I − A)N can be considered either as an unbounded operator from L2(Γ) into L2(Ω)
or as a bounded operator from L2(Γ) into (D(A∗))′. Thus B∗ can be considered as a bounded operator from
D(A∗) into L2(Γ).

Proposition 3.1. For all Φ ∈ D(A∗), B∗Φ is defined by

B∗Φ = N∗(λ0I − A∗)Φ = Φ|Γ
and we have

|MB∗Φ|Hs−1/2(Γ) ≤ C|Φ|Hs(Ω) if 1/2 < s ≤ 2.

Proof. The proof directly follows from the expression obtained for N∗. �
Lemma 3.2. The solution Π ∈ L(L2(Ω)) to the algebraic Riccati equation (2.5) may be extended as a linear
and continuous operator from (D(A∗))′ into L2(Ω).

Proof. Let z belong to (D(A∗))′ and (zn)n ⊂ L2(Ω) be such that zn → z in (D(A∗))′. For all y in L2(Ω), since
Π belongs to L(L2(Ω), D(A∗)), we have

|(Πy, zn)L2(Ω)| =
∣∣〈Πy, zn〉D(A∗),(D(A∗))′

∣∣ ≤ C|zn|(D(A∗))′ |y|L2(Ω).

Using Π = Π∗, we obtain
|(y, Πzn)L2(Ω)| ≤ C|zn|(D(A∗))′ |y|L2(Ω).

Thus
|Πzn|L2(Ω) ≤ C|zn|(D(A∗))′ .

Passing to the limit in the above estimate, we obtain that Π ∈ L((D(A∗))′, L2(Ω)). �
Following [1,16], we can define (AΠ, D(AΠ)) by

D(AΠ) =
{
y ∈ L2(Ω) | Ay − BM2B∗Πy ∈ L2(Ω)

}
=

{
y ∈ H2(Ω) | ν

∂y

∂n
+ M2B∗Πy = 0 on Γ

}
,

and
AΠy = Ay − BM2B∗Πy for all y ∈ D(AΠ).
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Lemma 3.3. (i) The operator (AΠ, D(AΠ)) is the infinitesimal generator of an analytic semigroup exponentially
stable on L2(Ω). The adjoint of the unbounded operator (AΠ, D(AΠ)) in L2(Ω) is defined by

D(A∗
Π) = D(A∗), A∗

ΠΦ = A∗Φ − (B∗Π)∗M2B∗Φ for all Φ ∈ D(A∗
Π).

(ii) A∗
Π is bijective from D(A∗) into L2(Ω).

Proof. For (i), see e.g. [16]. To prove (ii) it is enough to observe that A∗
Πy = f ∈ L2(Ω) if and only if

y = −
∫ ∞

0

eτA∗
Πfdτ ∈ D(A∗

Π). �

4. Nonhomogeneous equations

In the following, we shall use the notations

Hs,r(Q∞) = L2(0,∞; Hs(Ω)) ∩ Hr(0,∞; L2(Ω)) and Hs,r(Σ∞) = L2(0,∞; Hs(Γ)) ∩ Hr(0,∞; L2(Γ)).

Let us first recall a regularity result for the equation

y′ = (A − λ0I)y + BMh, y(0) = 0, (4.1)

where λ0 is chosen so that (2.2) is satisfied.

Lemma 4.1. If h ∈ Hs,s/2(Σ∞) with 0 ≤ s < 3/2, s �= 1, and h(·, 0) = 0 on Γ when s > 1, then the solution
of equation (4.1) obeys

‖y‖Hs+3/2,s/2+3/4(Q∞) ≤ C‖h‖Hs,s/2(Σ∞).

Proof. See [15], Chapter 4, Part 13. �

We now study the equation
y′ = AΠy + f + BMg, y(0) = y0. (4.2)

We recall the following isomorphism lemma that we will use later on.

Lemma 4.2. Let Y be a Hilbert space and suppose that A is the infinitesimal generator of an analytic semigroup
of negative type on Y . Then, the mapping

L2(0,∞; Y ) ∩ H1(0,∞; (D(A∗))′) → L2(0,∞; D(A∗)′) × [D(A∗), Y ]′1/2

y → (y′ − Ay, y(0))

is an isomorphism.

Proof. The proof is a direct consequence of [5], Chapters 1–3. �

Theorem 4.1. If f ∈ L2(0,∞;H−1+ε(Ω)), g ∈ L2(Σ∞), y0 ∈ Hε(Ω) with 0 ≤ ε < 1/2, then equation (4.2)
admits a unique solution in L2(0,∞; L2(Ω)) ∩ H1(0,∞; (D(A∗))′) which obeys

‖y‖H1+ε,1/2+ε/2(Q∞) ≤ C1

(|y0|Hε(Ω) + ‖f‖L2(0,∞;H−1+ε(Ω)) + ‖g‖L2(Σ∞)

)
. (4.3)

Proof. We clearly have f +BMg ∈ L2(0,∞; (D(A∗
Π))′) = L2(0,∞; (D(A∗))′) since D(A∗

Π) = D(A∗). Moreover,
y0 ∈ Hε(Ω) ⊂ [D(A∗), L2(Ω)]′1/2. We can apply Lemma 4.2. Thus the solution to equation (4.2) obeys

‖y‖L2(0,∞;L2(Ω)) ≤ C
(|y0|Hε(Ω) + ‖f‖L2(0,∞;H−1+ε(Ω)) + ‖g‖L2(Σ∞)

)
.
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Let us show that this solution belongs to H1+ε,1/2+ε/2(Q∞) and obeys the estimate (4.3). Due to the definition
of AΠ, y is solution of

y′ = Ay + f + BM(g − MB∗Πy), y(0) = y0.

We set y = y1 + y2 where y1 is solution to

y′
1 = (A − λ0I)y1 + f̃ , y1(0) = y0, (4.4)

with f̃ = f + λ0y ∈ L2(0,∞;H−1+ε(Ω)), and y2 is solution to

y′
2 = (A − λ0I)y2 + BMh, y2(0) = 0, (4.5)

with h = g − MB∗Πy. Let us first estimate y1. We can check that

Hε(Ω) =
[
[D(A∗), L2(Ω)]′1/2, [L

2(Ω), D(A)]1/2

]
(1+ε)/2

.

Moreover,
f̃ ∈ L2(0,∞;H−1+ε(Ω)) = L2(0,∞; [D(A∗), L2(Ω)]′(1+ε)/2).

By interpolation, with Lemma 4.2 and [5], Chapter 3, it follows that

y1 ∈ L2(0,∞; [L2(Ω), D(A)](1+ε)/2) ∩ H1(0,∞; [D(A∗), L2(Ω)]′(1+ε)/2).

As [L2(Ω), D(A)](1+ε)/2 ⊂ H1+ε(Ω), we clearly obtain y1 ∈ L2(0,∞; H1+ε(Ω)). Finally, by interpolation y1 ∈
H1/2+ε/2(0,∞; L2(Ω)) and

‖y1‖H1+ε,1/2+ε/2(Q∞) ≤ C(|y0|Hε(Ω) + ‖f‖L2(0,∞;H−1+ε(Ω)) + ‖y‖L2(0,∞;L2(Ω)))

≤ C(|y0|Hε(Ω) + ‖f‖L2(0,∞;H−1+ε(Ω)) + ‖g‖L2(Σ∞)).

Since h belongs to L2(Σ∞), due to Lemma 4.1, y2 belongs to H1+ε,1/2+ε/2(Q∞) and we have

‖y2‖H1+ε,1/2+ε/2(Q∞) ≤ C(‖g‖L2(Σ∞) + ‖y‖L2(Q∞)).

The proof is complete. �

5. Stabilization of the two dimensional Burgers equation

In this section, we prove a stabilization result for which the exponential decay is not prescribed. We shall
explain in Section 6 how to adapt this result to obtain the exponential decay rate.

Let us consider the Burgers equation with the nonlinear feedback law

y′ = AΠy + BM2B∗A−∗
Π ΠF (y) + F (y), y(0) = y0. (5.1)

Theorem 5.1. Let ε belong to the interval ]1/4, 1/2[. There exist μ0 > 0 and a nondecreasing function η
from R

+ into itself, such that if μ ∈ (0, μ0) and |y0|Hε(Ω) ≤ η(μ), then equation (5.1) admits a unique solution
in the set

Dμ =
{

y ∈ H1+ε,1/2+ε/2(Q∞) | ‖y‖H1+ε,1/2+ε/2(Q∞) ≤ μ
}
·

To prove this result, we use a fixed point theorem and we consider the equation

y′ = AΠy + F (z) + BM2B∗A−∗
Π ΠF (z), y(0) = y0, (5.2)
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for all z in Dμ. Equation (5.2) is nothing else than equation (4.2) with

f = F (z), g = MB∗A−∗
Π ΠF (z).

In the first subsection, we estimate F (z) and G(z) = MB∗A−∗
Π ΠF (z) when z belongs to Dμ.

5.1. Analysis of F (z) and G(z)

Lemma 5.1. Let ε belong to the interval ]1/4, 1/2[. If z belongs to H1+ε,1/2+ε/2(Q∞) then F (z) ∈ L2(0,∞;
H−1+ε(Ω)) and we have

‖F (z)‖L2(0,∞;H−1+ε(Ω)) ≤ C2‖z‖2
H1+ε,1/2+ε/2(Q∞).

(The constant C2 depends on ε.)

Proof. Step 1. Let us first show that

|∂iΦ|H−ε(Ω) ≤ C|Φ|H1−ε(Ω), i = 1, 2 for all Φ ∈ H1(Ω).

We know that ∂i is linear continuous from H1(Ω) to L2(Ω). The operator ∂i may be extended as a bounded
linear operator from L2(Ω) to H−1(Ω) by the formula

〈∂iΦ, y〉H−1(Ω),H1
0 (Ω) = −

∫
Ω

Φ ∂iy for all y ∈ H1
0 (Ω).

By interpolation ∂i is linear and continuous from H1−ε(Ω) to H−ε(Ω) if ε ∈ [0, 1/2[.

Step 2. By definition, for all Φ ∈ L2(0,∞; H1(Ω)), we have∫ ∞

0

〈F (z), Φ〉H−1+ε(Ω),H1−ε(Ω) dt =
1
2

∫
Q∞

z2(∂1Φ + ∂2Φ) − 1
2

∫
Σ∞

z2 (n1 + n2)Φ.

Since z belongs to H1+ε,1/2+ε/2(Q∞), from [9], Theorem B.3, it follows that z2 belongs to H2ε,ε(Q∞) and that

‖z2‖H2ε,ε(Q∞) ≤ C‖z‖2
H1+ε,1/2+ε/2(Q∞). (5.3)

Moreover, z2 ∈ L2(0,∞; H2ε(Ω)) ⊂ L2(0,∞; Hε(Ω)), and for i = 1, 2, we have∣∣∣∣∫
Q∞

z2∂iΦ
∣∣∣∣ ≤ C‖z2‖L2(0,∞;Hε(Ω))‖∂iΦ‖L2(0,∞;H−ε(Ω))

≤ C‖z2‖H2ε,ε(Q∞)‖Φ‖L2(0,∞;H1−ε(Ω)).

Thanks to estimate (5.3) we obtain∣∣∣∣∫
Q∞

z2∂iΦ
∣∣∣∣ ≤ C‖z‖2

H1+ε,1/2+ε/2(Q∞)‖Φ‖L2(0,∞;H1−ε(Ω)).

Let us consider the second term. From the trace theorem in [15], Theorem 2.1, p. 10, since ε > 1/4 we have
z2|Σ∞ ∈ H2ε−1/2,ε−1/4(Σ∞). Moreover, Φ|Σ∞ belongs to L2(0,∞; H1/2−ε(Γ)), and therefore Φ|Σ∞ ∈ L2(Σ∞)
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since ε < 1/2. We finally obtain∣∣∣∣∫
Σ∞

z2 (n1 + n2)Φ
∣∣∣∣ ≤ C‖z2‖H2ε−1/2,ε−1/4(Σ∞)‖Φ‖L2(0,∞;H1−ε(Ω))

≤ C‖z2‖H2ε,ε(Q∞)‖Φ‖L2(0,∞;H1−ε(Ω))

≤ C‖z‖2
H1+ε,1/2+ε/2(Q∞)

‖Φ‖L2(0,∞;H1−ε(Ω)),

and the proof is complete. �

Lemma 5.2. Let ε belong to the interval ]1/4, 1/2[. The mapping F is locally Lipschitz continuous from
H1+ε,1/2+ε/2(Q∞) into L2(0,∞;H−1+ε(Ω)). More precisely, we have

‖F (z1) − F (z2)‖L2(0,∞;H−1+ε(Ω)) ≤ C2(‖z1‖H1+ε,1/2+ε/2(Q∞) + ‖z2‖H1+ε,1/2+ε/2(Q∞))‖z1 − z2‖H1+ε,1/2+ε/2(Q∞),

where the constant C2 is the same constant as in Lemma 5.1.

Proof. We first write∫ ∞

0

〈F (z1) − F (z2), Φ〉H−1+ε(Ω),H1−ε(Ω) =
1
2

∫
Q∞

(z2
1 − z2

2)(∂1Φ + ∂2Φ) − 1
2

∫
Σ∞

(z2
1 − z2

2)Φ(n1 + n2).

As in the proof of Lemma 5.1, for i = 1, 2 we obtain∣∣∣∣∫
Q∞

(z2
1 − z2

2)∂iΦ
∣∣∣∣ ≤ C‖(z2

1 − z2
2)‖L2(0,∞;Hε(Ω))‖∂iΦ‖L2(0,∞;H−ε(Ω))

≤ C‖(z1 − z2)(z1 + z2)‖H2ε,ε(Q∞)‖Φ‖L2(0,∞;H1−ε(Ω)).

Then, from [9], Theorem B.3, it follows that∣∣∣∣∫
Q∞

(z2
1 − z2

2)∂iΦ
∣∣∣∣ ≤ C‖z1 − z2‖H1+ε,1/2+ε/2(Q∞)‖z1 + z2‖H1+ε,1/2+ε/2(Q∞)‖Φ‖L2(0,∞;H1−ε(Ω)).

Let us consider the second term. As in the proof of Lemma 5.1, we have∣∣∣∣∫
Σ∞

(z2
1 − z2

2)Φ(n1 + n2)
∣∣∣∣ ≤ C‖z2

1 − z2
2‖H2ε−1/2,ε−1/4(Σ∞)‖Φ‖L2(0,∞;H1−ε(Ω))

≤ C‖(z1 − z2)(z1 + z2)‖H2ε,ε(Q∞)‖Φ‖L2(0,∞;H1−ε(Ω))

≤ C‖z1 − z2‖H1+ε,1/2+ε/2(Q∞)‖z1 + z2‖H1+ε,1/2+ε/2(Q∞)‖Φ‖L2(0,∞;H1−ε(Ω))

and the proof is complete. �

Lemma 5.3. Let ε belong to [0, 1/2[. If h ∈ Hε(Ω), then

|A−∗
Π h|H2+ε(Ω) ≤ C3|h|Hε(Ω). (5.4)

Proof. We want to show that, for all h ∈ Hε(Ω), the solution y to A∗
Πy = h belongs to H2+ε(Ω). Since h

belongs to L2(Ω), due to Lemma 3.3 y belongs to D(A∗
Π) = D(A∗). Moreover, y is solution to

(A∗ − λ0I)y = h + ΠBM2B∗y − λ0y.
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As y belongs to D(A∗), due to Proposition 3.1, M2B∗y belongs to H3/2(Γ). For 1/2 < θ ≤ 2, since B ∈
L(L2(Γ),H−θ(Ω)) and ε < 1, we have

|BM2B∗y|H−1+ε/2(Ω) ≤ C|M2B∗y|L2(Γ).

Since Π ∈ L(L2(Ω), D(A∗)) and Π ∈ L(D(A∗)′, L2(Ω)) (see Lem. 3.2), by interpolation we have

Π ∈ L(H−2+ε(Ω),Hε(Ω)).

We finally obtain

|ΠBM2B∗y|Hε(Ω) ≤ C|M2B∗y|L2(Γ).

We have to solve

(A∗ − λ0I)y = h1

with h1 = h + ΠBM2B∗y − λ0y ∈ Hε(Ω). The proof follows from regularity results for elliptic equations. �

Lemma 5.4. Assume that 1/4 < ε < 1/2. For all z ∈ H1+ε,1/2+ε/2(Q∞), we have

‖G(z)‖L2(Σ∞) ≤ C4‖z‖2
H1+ε,1/2+ε/2(Q∞).

(The constant C4 depends on ε.)

Proof. Let us recall that G(z) = MB∗A−∗
Π ΠF (z). Due to Lemma 5.1, F (z) belongs to L2(0,∞;H−1+ε(Ω)) and

‖F (z)‖L2(0,∞;H−1+ε(Ω)) ≤ C2‖z‖2
H1+ε,1/2+ε/2(Q∞).

Moreover, using Lemma 3.2, by interpolation, Π ∈ L(H−1+ε(Ω),H1+ε(Ω)). Thus,

‖ΠF (z)‖L2(0,∞;H1+ε(Ω)) ≤ C‖z‖2
H1+ε,1/2+ε/2(Q∞).

Then, thanks to Lemma 5.3, since H1+ε(Ω) ⊂ Hε(Ω), we have

‖A−∗
Π ΠF (z)‖L2(0,∞;H2+ε(Ω)) ≤ C‖z‖2

H1+ε,1/2+ε/2(Q∞).

Finally, with Proposition 3.1 we obtain

‖MB∗A−∗
Π ΠF (z)‖L2(0,∞;H1/2+ε(Γ)) ≤ C‖z‖2

H1+ε,1/2+ε/2(Q∞)

and the proof is complete. �

Lemma 5.5. Assume that 1/4 < ε < 1/2. For all z1 and z2 in H1+ε,1/2+ε/2(Q∞), we have

‖G(z1) − G(z2)‖L2(Σ∞) ≤ C4(‖z1‖H1+ε,1/2+ε/2(Q∞) + ‖z2‖H1+ε,1/2+ε/2(Q∞))‖z1 − z2‖H1+ε,1/2+ε/2(Q∞),

where the constant C4 is the same constant as in Lemma 5.4.
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Proof. In Lemma 5.2, we have proved that F is locally Lipschitz continuous from H1+ε,1/2+ε/2(Q∞) into
L2(0,∞;H−1+ε(Ω)). Then, following the proof of Lemma 5.4, the result follows easily. �

5.2. Proof of Theorem 5.1

Proof. We set

μ0 =
1

4C1(C2 + C4)
and η(μ) =

3
4C1

μ

where the constants C1, C2 and C4 are defined respectively in Theorem 4.1, Lemmas 5.1 and 5.4. For all
z ∈ H1+ε,1/2+ε/2(Q∞), we denote by yz the solution to the equation

y′ = AΠy + F (z) + BM2B∗A−∗
Π ΠF (z), y(0) = y0. (5.5)

We are going to prove that the mapping M : z → yz is a contraction in Dμ.
(i) Let us take z in Dμ. From Lemma 5.1, F (z) belongs to L2(0,∞;H−1+ε(Ω)). Moreover, from Lemma 5.4
and Theorem 4.1, G(z) belongs to L2(Σ∞) and

‖yz‖H1+ε,1/2+ε/2(Q∞) ≤ C1

(|y0|Hε(Ω) + ‖G(z)‖L2(Σ∞) + ‖F (z)‖L2(0,∞;H−1+ε(Ω))

)
.

Then, using Lemmas 5.1 and 5.4, we have

‖yz‖H1+ε,1/2+ε/2(Q∞) ≤ C1

(
|y0|Hε(Ω) + C4‖z‖2

H1+ε,1/2+ε/2(Q∞)
+ C2‖z‖2

H1+ε,1/2+ε/2(Q∞)

)
≤ C1

( 3
4C1

μ + (C2 + C4)‖z‖2
H1+ε,1/2+ε/2(Q∞)

)
≤ 3

4
μ + C1(C2 + C4)μ2 < μ if μ < μ0.

Thus M is a mapping from Dμ into itself.
(ii) Let us consider z1 and z2 in Dμ. From Theorem 4.1, it follows that

‖yz1 − yz2‖H1+ε,1/2+ε/2(Q∞) ≤ C1

(‖G(z1) − G(z2)‖L2(Σ∞) + ‖F (z1) − F (z2)‖L2(0,∞;H−1+ε(Ω))

)
.

If μ < μ0, using Lemmas 5.2 and 5.5, we have

‖yz1 − yz2‖H1+ε,1/2+ε/2(Q∞) ≤ C1(C2 + C4)(‖z1‖H1+ε,1/2+ε/2(Q∞)+‖z2‖H1+ε,1/2+ε/2(Q∞))‖z1 − z2‖H1+ε,1/2+ε/2(Q∞)

≤ 2C1(C2 + C4)μ‖z1 − z2‖H1+ε,1/2+ε/2(Q∞) ≤
1
2
‖z1 − z2‖H1+ε,1/2+ε/2(Q∞).

The mapping M is a contraction in Dμ and system (5.1) admits a unique solution in the set Dμ. �

6. Stabilization with a given decay rate

In this section, we explain how to adapt the results of Section 5 to obtain a prescribed exponential decay
rate −α < 0. We briefly recall the method used in [16]. For that, we set

ŷ = eαty, û = eαtu.

If
y′ = Ay + F (y) + BMu, y(0) = y0, (6.1)
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then ŷ is solution to the system

ŷ′ = (A + αI)ŷ + e−αtF (ŷ) + BMû, ŷ(0) = y0.

Let us set Aα = A + αI, and let Πα ∈ L(L2(Ω)) be the solution to the algebraic Riccati equation

Πα = Π∗
α ∈ L(L2(Ω)), Πα ≥ 0,

|Παy|D(A∗) ≤ |y|L2(Ω) for all y ∈ L2(Ω),

ΠαAα + A∗
αΠα − ΠαBM2B∗Πα + I = 0.

(6.2)

Now, we consider the nonlinear law

û = −MB∗Παŷ + MB∗A−∗
α,Πα

Παe−αtF (ŷ),

where

D(Aα,Πα) =

{
y ∈ H2(Ω) | ν

∂y

∂n
+ M2B∗Παy = 0 on Γ

}
, Aα,Παy = Aαy − BM2B∗Παy

for all y ∈ D(Aα,Πα) = D(AΠα). Then, we have to study the following system

ŷ′ = Aα,Πα ŷ + BM2B∗A−∗
α,Πα

Παe−αtF (ŷ) + e−αtF (ŷ), ŷ(0) = y0. (6.3)

We can remark that Aα,Παy = AΠαy + αy.

Theorem 6.1. For all 1/4 < ε < 1/2, there exist μ0 > 0 and a nondecreasing function η from R
+ into itself,

such that if μ ∈ (0, μ0) and |y0|Hε(Ω) ≤ η(μ), then equation (6.1) admits a unique solution in the set

Dμ,α =
{
y ∈ H1+ε,1/2+ε/2(Q∞) | ‖eα(·)y‖H1+ε,1/2+ε/2(Q∞) ≤ μ

}
·

Proof. We consider equation (6.3) and we want to show that this equation admits a unique solution ŷ ∈ Dμ,0.
We substitute F (y) by e−αtF (ŷ), A by A+αI and Π by Πα, and the proof follows the lines of Theorem 5.1. �

7. Dirichlet boundary control

In this section, we are going to study the case of a Dirichlet boundary control. Let w be a solution to the
stationary Burgers equation in Ω with Dirichlet boundary conditions

−νΔw + w(∂1w + ∂2w) = f in Ω, w = g on Γ. (7.1)

The purpose of this part is to determine a boundary control u, in feedback form, localized in a part of the
boundary Γ, so that the corresponding control system{

∂tz − νΔz + z(∂1z + ∂2z) = f in Ω × (0,∞),

z = g + Mu on Σ∞, z(0) = w + y0 in Ω,
(7.2)

is exponentially stable with a prescribed decay rate, for initial values y0 small enough in L2(Ω) (or more generally
in Hε(Ω) with 0 ≤ ε < 1/2). The operator M is defined as in Section 2. Setting y = z−w, the function y obeys{

∂ty − νΔy + y(∂1w + ∂2w) + w(∂1y + ∂2y) + y(∂1y + ∂2y) = 0 in Ω × (0,∞),

y = Mu on Σ∞, y(0) = y0 in Ω.
(7.3)



942 L. THEVENET ET AL.

R
apide N

ot

H
ig

hl
ig

ht
 P

ap
er

We denote by (A, D(A)) and (A∗, D(A∗)) the unbounded operators in L2(Ω) defined by

D(A) = H2(Ω) ∩ H1
0 (Ω), Ay = νΔy − y(∂1w + ∂2w) − w(∂1y + ∂2y),

D(A∗) = H2(Ω) ∩ H1
0 (Ω), A∗y = νΔy + w(∂1y + ∂2y).

(7.4)

There exists λ0 > 0 an element in the resolvent set of A for which the coercivity conditions stated in (2.2) in the
case of Neumann boundary conditions are still true for the above operators. We denote by D ∈ L(L2(Γ), L2(Ω))
the operator defined by Du = y, where y is the unique solution in H1/2(Ω) to the equation

λ0y − νΔy + w(∂1y + ∂2y) + y(∂1w + ∂2w) = 0 in Ω, y = u on Γ.

The nonlinear term −y(∂1y + ∂2y) is rewritten as an element F (y) in (D(A∗))′ as follows

〈F (y), Φ〉(D(A∗))′,D(A∗) =
1
2

∫
Ω

y2(∂1Φ + ∂2Φ) for all Φ ∈ D(A∗).

Let us observe that F (y) is well defined in (D(A∗))′ for all y ∈ H1(Ω). Setting B = (λ0I −A)D, equation (7.3)
may be rewritten in the form

y′ = Ay + BMu + F (y) in (0,∞), y(0) = y0. (7.5)

As for a Neumann boundary control, we want to study the following nonlinear feedback law

u = −MB∗Πy + MB∗A−∗
Π ΠF (y),

where Π is the solution to the algebraic equation (2.5) and AΠ is defined in Section 2, except that now A is
defined by (7.4) and B = (λ0I − A)D. We indicate in the following the results corresponding to a Dirichlet
boundary control, and we give the proofs only when they differ from the case of a Neumann boundary control.

The stabilizability of the pair (A, BM) follows from null controllability results for advection-diffusion equa-
tions with homogeneous Dirichlet boundary conditions and with a distributed control (see e.g. [7] and the
references therein).

7.1. Properties of some operators

The analogues of Theorem 3.1, Lemma 3.1, and Proposition 3.1 are stated below. The statement of Lemma 3.3
can be rewritten word for word in the case of Dirichlet boundary conditions. More precisely, we have

D(AΠ) =
{
y ∈ H2(Ω) | y + M2B∗Πy = 0 on Γ

}
and D(A∗

Π) = D(A).

Theorem 7.1. The unbounded operator (A − λ0I) (respectively (A∗ − λ0I)) with domain D(A − λ0I) = D(A)
(respectively D(A∗−λ0I) = D(A∗)) is the infinitesimal generator of a bounded analytic semigroup exponentially
stable on L2(Ω). Moreover, we have

D((λ0I − A)α) = D((λ0I − A∗)α) =

{
H2α(Ω) if α ∈ [0, 1/4[,{
z ∈ H2α(Ω) | z = 0 on Γ

}
if α ∈ ]1/4, 1].

Lemma 7.1. The operator D satisfies

|Du|Hs+1/2(Ω) ≤ C(s)|u|Hs(Γ) for all 0 ≤ s ≤ 2.
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The operator D∗, the adjoint operator of D ∈ L(L2(Γ), L2(Ω)), is defined by

D∗g = −ν
∂z

∂n
, (7.6)

where z is the solution of

λ0z − νΔz − w(∂1z + ∂2z) = g in Ω, z = 0 on Γ. (7.7)

Proposition 7.1. For all Φ ∈ D(A∗), B∗Φ is defined by

B∗Φ = D∗(λ0I − A∗)Φ = −ν
∂Φ
∂n

,

and
|MB∗Φ|Hs−3/2(Γ) ≤ C|Φ|Hs(Ω) if 3/2 < s < 5/2.

7.2. Nonhomogeneous equations

In this subsection and the following one, the constants C1, . . . , C4 are not necessarily the same as in Section 5.
We first state optimal regularity results for the solution to the equation

y′ = (A − λ0I)y + BMh, y(0) = 0. (7.8)

Lemma 7.2. Assume that h ∈ Hs,s/2(Σ∞) with 0 ≤ s ≤ 3/2, s �= 1, and that h(·, 0) = 0 on Γ if s > 1. Then,
the solution of equation (7.8) obeys

‖y‖Hs+1/2,s/2+1/4(Q∞) ≤ C‖h‖Hs,s/2(Σ∞).

Proof. The proof relies on [15], Chapter 4, Part 13. �
We now study the equation

y′ = AΠy + f + BMg, y(0) = y0. (7.9)

Theorem 7.2. If f ∈ L2(0,∞;H−1+ε(Ω)), g ∈ H1/2+ε,1/4+ε/2(Σ∞), y0 ∈ Hε(Ω) with 0 ≤ ε < 1/2, then
equation (7.9) admits a unique solution in L2(0,∞; L2(Ω)) ∩ H1(0,∞; (D(A∗))′) which obeys

‖y‖H1+ε,1/2+ε/2(Q∞) ≤ C1

(|y0|Hε(Ω) + ‖f‖L2(0,∞;H1−ε(Ω)) + ‖g‖H1/2+ε,1/4+ε/2(Σ∞)

)
.

Proof. We use the same strategy as in the proof of Theorem 4.1. In particular y1 and y2 are defined in a similar
way. First notice that the existence of y in L2(Q∞) and the estimate of y1 can be obtained as in the proof of
Theorem 4.1. The only difference is in the estimate of y2. Let us recall that y2 is the solution to

y′
2 = (A − λ0I)y2 + BMh, y2(0) = 0,

with h = g −MB∗Πy. Since y belongs to L2(Q∞), the function h = g−MB∗Πy belongs to L2(0,∞; H1/2(Γ)).
With Lemma 7.2 we have

‖y2‖H1/2,1/4(Q∞) ≤ C‖h‖L2(Σ∞) ≤ C(‖g‖H1/2+ε,1/4+ε/2(Σ∞) + ‖y‖L2(Q∞)).

Thus, with the estimate on y1, it follows that y belongs to H1/2,1/4(Q∞) and h ∈ H1/2,1/4(Σ∞). Still using
Lemma 7.2, the solution y2 belongs to H1,1/2(Q∞), and

‖y2‖H1,1/2(Q∞) ≤ C‖h‖H1/2,1/4(Σ∞) ≤ C(‖g‖H1/2+ε,1/4+ε/2(Σ∞) + ‖y‖H1/2,1/4(Q∞)). (7.10)



944 L. THEVENET ET AL.

R
apide N

ot

H
ig

hl
ig

ht
 P

ap
er

Therefore y belongs to H1,1/2(Q∞). Since MB∗Π ∈ L(L2(Ω), L2(Γ)), the term MB∗Πy belongs to H1/2(0,∞;
L2(Γ)). Moreover, as in [16], Remark 4.4, MB∗Π ∈ L(Hε(Ω), H1/2+ε(Γ)). Then, MB∗Πy belongs to L2(0, ∞;
H1/2+ε(Γ)). From these results, it follows that

h ∈ H1/2+ε,1/4+ε/2(Σ∞).

We still use Lemma 7.2 to prove that y2 belongs to H1+ε,1/2+ε/2(Q∞), and we can conclude with the estimate
on y1. �

7.3. Stabilization of the two dimensional Burgers equation

Consider the Burgers equation with the nonlinear feedback law

y′ = AΠy + BM2B∗A−∗
Π ΠF (y) + F (y), y(0) = y0. (7.11)

It has the same form as equation (5.1), but the operators AΠ, B, Π are different.

Theorem 7.3. For all 0 ≤ ε < 1/2, there exist μ0 > 0 and a nondecreasing function η from R
+ into itself,

such that if μ ∈ (0, μ0) and |y0|Hε(Ω) ≤ η(μ), then equation (7.11) admits a unique solution in the set

Dμ =
{

y ∈ H1+ε,1/2+ε/2(Q∞) | ‖y‖H1+ε,1/2+ε/2(Q∞) ≤ μ
}
·

As in Section 5, the proof of Theorem 7.3 follows from a fixed point theorem, and it relies on estimates for
F (z) and G(z) = MB∗A−∗

Π ΠF (z).

Lemma 7.3. If 0 ≤ ε < 1/2 and z belongs to H1+ε,1/2+ε/2(Q∞), then F (z) ∈ L2(0,∞;H−1+ε(Ω)) and we have

‖F (z)‖L2(0,∞;H−1+ε(Ω)) ≤ C2‖z‖2
H1+ε,1/2+ε/2(Q∞).

Proof. The proof follows the lines of Lemma 5.1 and is easier because we only have to estimate the term∫ ∞

0

〈F (z), Φ〉H−1+ε(Ω),H1−ε(Ω) =
1
2

∫
Q∞

z2(∂1Φ + ∂2Φ). �

Similarly, we can prove the following lemma.

Lemma 7.4. F is locally Lipschitz continuous from H1+ε,1/2+ε/2(Q∞) into L2(0,∞;H−1+ε(Ω)) for all 0 ≤
ε < 1/2. More precisely, we have

‖F (z1) − F (z2)‖L2(0,∞;H−1+ε(Ω)) ≤ C2(‖z1‖H1+ε,1/2+ε/2(Q∞) + ‖z2‖H1+ε,1/2+ε/2(Q∞))‖z1 − z2‖H1+ε,1/2+ε/2(Q∞)

(and the constant C2 depends on ε).

Lemma 7.5. If 0 ≤ ε < 1/2 and if h ∈ Hε(Ω), then

|A−∗
Π h|H2+ε(Ω) ≤ C3|h|Hε(Ω). (7.12)

Proof. In the case of Dirichlet boundary conditions, B belongs to L(L2(Γ),H−θ(Ω)) for 3/2 < θ ≤ 2. Since
ε < 1/2, we have

|BM2B∗y|H−2+ε(Ω) ≤ C|M2B∗y|L2(Γ).

Then, the proof is similar to the one of Lemma 5.3. �
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Lemma 7.6. Assume that 0 ≤ ε < 1/2. For all z ∈ H1+ε,1/2+ε/2(Q∞), we have

‖G(z)‖H1/2+ε,1/4+ε/2(Σ∞) ≤ C4‖z‖2
H1+ε,1/2+ε/2(Q∞).

Proof. The proof of estimate in L2(0,∞; H1/2+ε(Γ)) is similar to the one of Lemma 5.4. We want to prove that

‖G(z)‖H1/4+ε/2(0,∞;L2(Γ)) ≤ C4‖z‖2
H1+ε,1/2+ε/2(Q∞).

Step 1. We first show

‖z2‖H1/4+ε/2(0,∞;H−1/2+ε(Ω)) ≤ C‖z‖2
H3/8+ε/4(0,∞;H1/4+ε/2(Ω)).

To prove this estimate we cannot apply the results in [9] because the exponent −1/2 + ε is negative. We are
going to use the same method as in [10].

Since z belongs to H1+ε,1/2+ε/2(Q∞), by interpolation z belongs to Hσ(0,∞; Hs(Ω)) with σ = 3/8 + ε/4
and s = 1/4 + ε/2. We look for σ̃ and s̃ such that z2 ∈ H σ̃(0,∞; H s̃(Ω)). To obtain such a result, we use an
extension operator (extending functions defined in Ω × (0,∞) to functions defined in R

n+1 with n = 2) and
the estimate for the extended function is obtained via a Fourier transform. There exists an extension operator
P ∈ L(H1(Ω), H1(Rn)) such that Pz|Ω = z for all z ∈ H1(Rn), and moreover P is also continuous from L2(Ω)
into L2(Rn). We extend functions defined in (0,∞) to functions defined in R by symmetry. We denote by P̃
the extension operator consisting in first applying P and next the extension with respect to the time variable.
Since σ ∈ (0, 1) and s ∈ (0, 1), we have

‖P̃ z‖Hσ(R;Hs(Rn)) ≤ C‖z‖Hσ(0,∞;Hs(Ω)).

Let us show that if z belongs to Hσ(R; Hs(Rn)), then z2 belongs to H σ̃(R; H s̃(Rn)) for some σ̃ and s̃ that we
are going to characterize. The Fourier transform of z2 in R

n+1 obeys

(1 + |τ |2)σ̃/2(1 + |ζ|2)s̃/2ẑ2(τ, ζ) =
∫

Rn+1
G(ζ̃ , η̃)z1(η̃)z1(ζ̃ − η̃)dη̃,

with
ζ̃ = (τ, ζ) ∈ R × R

n, η̃ = (λ, η) ∈ R × R
n,

z1(η̃) = (1 + |λ|2)σ/2(1 + |η|2)s/2ẑ(η̃), G(ζ̃ , η̃) = G1(τ, λ)G2(ζ, η),

and {
G1(τ, λ) = (1 + |λ|2)−σ/2(1 + |τ − λ|2)−σ/2(1 + |τ |2)σ̃/2,

G2(ζ, η) = (1 + |η|2)−s/2(1 + |ζ − η|2)−s/2(1 + |ζ|2)s̃/2.

Since z belongs to Hσ(R; Hs(Rn)), we clearly have z1 ∈ L2(Rn+1). We follow the proofs of [10], Theorem 8.3.1,
p. 189, and [9], Theorem B.3. We recall that if TG(f, h) is defined by

TG(f, h)(ζ̃) =
∫

Rn+1
G(ζ̃ , η̃)f(ζ̃ − η̃)h(η̃)dη̃

for f and h ∈ C∞
0 (Rn+1), then

‖TG(f, h)‖L2(Rn+1) ≤ B‖f‖L2(Rn+1)‖h‖L2(Rn+1), (7.13)
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when either (a), (b) or (c) holds

(a)
∫

Rn+1
|G(ζ̃ , η̃)|2dη̃ ≤ B2 for all ζ̃,

(b)
∫

Rn+1
|G(ζ̃ , η̃)|2dζ̃ ≤ B2 for all η̃,

(c)
∫

Rn+1
|G(ζ̃ , ζ̃ − η̃)|2dζ̃ ≤ B2 for all η̃.

We first remark that
(1 + |τ |2)σ̃/2(1 + |ζ|2)s̃/2ẑ2(τ, ζ) = TG(z1, z1)(ζ̃)

and we look for σ̃ and s̃ such that TG(z1, z1) belongs to L2(Rn+1). Moreover, we clearly have∫
Rn+1

|G(ζ̃ , η̃)|2dη̃ =
∫

R

|G1(τ, λ)|2dλ

∫
Rn

|G2(ζ, η)|2dη.

Therefore it is sufficient to prove (a), (b) or (c) for G1 and G2. Following the proof of [10], Theorem 8.3.1,
p. 189, these conditions are satisfied for

σ̃ = 1/4 + ε/2 and s̃ = −1/2 + ε.

From (7.13), it follows that TG(z1, z1) ∈ L2(Rn+1), that is to say z2 ∈ H1/4+ε/2(R; H−1/2+ε(Rn)), and

‖z2‖H1/4+ε/2(0,∞;H−1/2+ε(Ω)) ≤ ‖z2‖H1/4+ε/2(R;H−1/2+ε(Rn)) ≤ C‖z‖2
H3/8+ε/4(R;H1/4+ε/2(Rn))

≤ C‖z‖2
H3/8+ε/4(0,∞;H1/4+ε/2(Ω))

.

Step 2. Estimate of F (z).

The operator ∂i belongs to L(H−1/2+ε(Ω),H−3/2+ε(Ω)). Indeed, for all Φ ∈ H3/2−ε(Ω) = H
3/2−ε
0 (Ω) and all

y ∈ H−1/2+ε(Ω) we have

| 〈∂iy, Φ〉H−3/2+ε(Ω),H3/2−ε(Ω) | = | − 〈y, ∂iΦ〉H−1/2+ε(Ω),H1/2−ε(Ω) |
≤ |y|H−1/2+ε(Ω)|∂iΦ|H1/2−ε(Ω)

≤ C|y|H−1/2+ε(Ω)|Φ|H3/2−ε(Ω).

It follows that
‖F (z)‖H1/4+ε/2(0,∞;H−3/2+ε(Ω)) ≤ C‖z‖2

H1+ε,1/2+ε/2(Q∞).

Step 3. Estimate of G(z).
Since Π ∈ L(L2(Ω), D(A∗)) and Π ∈ L((D(A∗))′, L2(Ω)), by interpolation we have

Π ∈ L(H−3/2+ε(Ω),H1/2+ε(Ω)).

Since H1/2+ε(Ω) ⊂ H1/2+ε(Ω) we obtain

‖ΠF (z)‖H1/4+ε/2(0,∞;H1/2+ε(Ω)) ≤ C‖z‖2
H1+ε,1/2+ε/2(Q∞).

Then, thanks to Lemma 7.5, as H1/2+ε(Ω) ⊂ Hε(Ω), we have

‖A−∗
Π ΠF (z)‖H1/4+ε/2(0,∞;H2+ε(Ω)) ≤ C‖z‖2

H1+ε,1/2+ε/2(Q∞).



NONLINEAR FEEDBACK STABILIZATION OF A TWO-DIMENSIONAL BURGERS EQUATION 947

R
ap

id
e 

N
ot

e

H
ighlight Paper

Finally, with Proposition 7.1, we obtain

‖MB∗A−∗
Π ΠF (z)‖H1/4+ε/2(0,∞;H1/2+ε(Γ)) ≤ C‖z‖2

H1+ε,1/2+ε/2(Q∞),

and the proof is complete. �

Lemma 7.7. Let ε belong to [0, 1/2). We have the following estimate

‖G(z1) − G(z2)‖H1/4+ε/2(0,∞;L2(Ω)) ≤ C4(‖z1‖H1+ε,1/2+ε/2(Q∞) + ‖z2‖H1+ε,1/2+ε/2(Q∞))‖z1 − z2‖H1+ε,1/2+ε/2(Q∞),

for all z1 and z2 in H1+ε,1/2+ε/2(Q∞).

Proof. The estimate in L2(0,∞; H1/2+ε(Γ)) can be obtained as in the proof of Lemma 5.5. The estimate in
H1/4+ε/2(0,∞; L2(Γ)) follows the lines of Lemma 7.6. Indeed, we only need to write

(1 + |τ |2)σ̃/2(1 + |ζ|2)s̃/2(ẑ2
1(τ, ζ) − ẑ2

2(τ, ζ)) = TG(z1 − z2, z1 + z2)(ζ̃),

which implies that

‖z2
1 − z2

2‖H1/4+ε/2(0,∞;H−1/2+ε(Ω)) ≤ C‖z1 + z2‖H3/8+ε/4(0,∞;H1/4+ε/2(Ω))‖z1 − z2‖H3/8+ε/4(0,∞;H1/4+ε/2(Ω))

≤ C(‖z1‖H1+ε,1/2+ε/2(Q∞) + ‖z2‖H1+ε,1/2+ε/2(Q∞))‖z1 − z2‖H1+ε,1/2+ε/2(Q∞). �

Then, the proof of Theorem 7.3 is the same as in the case of Neumann boundary conditions. The stabilization
result with a prescribed decay rate can be obtained as in Section 6.

8. Numerical simulations

The computational domain is Ω = (0, 1) × (0, 1). The spatial discretization is carried out using a P1 finite
element method on a structured triangular mesh. The grid is of size N = nx × nx. The time integration is
performed with the implicit scheme given by the matlab routine ode15s. The control function u, acting on the
boundary Γ1 ⊂ Γ, is discretized with the same finite element method. Therefore the discretized control is of
dimension nx.

8.1. Neumann boundary control

In this section, we set Γ1 = {1} × (0, 1) and Γ2 = Γ \ Γ1. We want to control the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ty − νΔy + y(∂1w + ∂2w) + w(∂1y + ∂2y) + y(∂1y + ∂2y) = 0 in Ω × (0,∞),

y(0) = y0 in Ω,

ν
∂y

∂n

∣∣∣
Γ1

= mu and ν
∂y

∂n

∣∣∣
Γ2

= 0 in (0,∞),

(8.1)

where

ν =
1
50

, w(x1, x2) = −0.2x1, m = 1 on Γ1, (8.2)

and w is solution to equation (1.2) with f(x1, x2) = 0.4x1 and g = −0.2νn1. The ODE system corresponding
to the semi-discretized system is

EN dyN (t)
dt

= ÃNyN (t) + B̃NuN(t) + F̃N (yN (t)) in (0,∞), yN(0) = yN
0 , (8.3)
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where EN ∈ R
N×N is the symmetric mass matrix, ÃN ∈ R

N×N is the stiffness matrix and B̃ ∈ R
N×nx is the

control matrix. The term F̃N (yN (t)) is the discretization in space of the nonlinear term of equation (8.1). We
set

AN = (EN )−1ÃN , BN = (EN )−1B̃N , and FN (yN (t)) = (EN )−1F̃N (yN (t)).

The solution ΠN of the associated finite dimensional Riccati equation is

(AN )∗ΠN + ΠNAN − ΠNBN (BN )∗ΠN + EN = 0. (8.4)

This equation is solved in a classical way, by determining the eigenvectors of the Hamiltonian matrix associated
to eigenvalues with negative real parts (see [13]). The linear feedback law is given by

uN
	 = KN

	 yN where KN
	 = −(BN )∗ΠN ,

and the nonlinear control is

uN
n	 = uN

	 + KN
n	F

N (yN (t)) where KN
n	 = B∗(AN − BN (BN )∗ΠN )−∗ΠN . (8.5)

Remark 8.1. From the expression of the linear operator (A, D(A)) associated to system (8.1) we notice that
the constant functions are the eigenvectors of A associated to the eigenvalue 0.2. Considering the data (8.2)
the matrix AN has only one positive eigenvalue equal to 0.2.

In the following tests, the Riccati equation (8.4) and the system (8.1) are solved with a grid of size 60 × 60
corresponding to 3600 unknowns and 6962 triangles. We compare the efficiency of the linear and the nonlinear
feedback laws for various initial conditions. All the uncontrolled solutions are unstable and blow up quickly.

Test 1. We take a constant perturbation z0 = δ. In Figure 1 we have plotted the evolution with time of
|u(t)|L2(Γ1) and |y(t)|L2(Ω).

We see that for δ = −0.0625 the linear law is more efficient than the nonlinear law since for t ≥ 6 the L2-norm
of y is smaller. We notice that for δ = 0.01 there is no significant difference between the solutions controlled
with the linear and the nonlinear control laws. For δ = 0.05 the linear law is unable to stabilize the system (8.1)
contrary to the nonlinear law, and for δ = 0.065 both linear and nonlinear controls are inefficient to stabilize
system (8.1).

Test 2. We choose z0 = δ sin(nπx1) cos(�πx2 − φ) with δ > 0, n, � ∈ N
∗ and φ = 0 or π/2. As previously, in

Figure 2 we have plotted the evolution with time of the L2-norm of the feedback laws and of the solution of
equation (8.1). We notice that in each test we have found a value of δ where the nonlinear law stabilizes the
Burgers equation contrary to the linear law.

8.2. Dirichlet boundary control

We want to control the following system⎧⎪⎪⎨⎪⎪⎩
∂ty − νΔy − αy + y(∂1y + ∂2y) = 0 in Ω × (0,∞),

y(0) = y0 in Ω,

y
∣∣
Γ1

= mu, and y
∣∣
Γ2

= 0 in (0,∞),

(8.6)

where ν =
1
50

and α > 0. The function m is a smooth function defined by

m(x, ξ) = H

(
x

ξ
− 1

)
− H

(
(x − 1)

ξ
+ 1

)
, ξ > 0, x ∈ R,
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Figure 1. Evolution with time of |u(t)|L2(Γ1) and |y(t)|L2(Ω) controlled with linear and
nonlinear laws with z0 = δ.
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Figure 2. Evolution with time of |u(t)|L2(Γ1) (left) and |y(t)|L2(Ω) (right) controlled
with linear and nonlinear laws with z0(x1, x2) = 0.125 sin(πx1) sin(πx2), z0(x1, x2) =
0.275 sin(3πx1) cos(πx2) and z0(x1, x2) = 0.525 sin(3πx1) cos(2πx2).

where

H(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ≤ −1,

0.5 + x(0.9375 − x2(0.625 − 0.1875x2)) if − 1 < x < 1,

1 if x ≥ 1.
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Figure 3. Graph of m(x, 0.01) for x ∈ [0, 0.03].

In the numerical simulations we set ξ = 0.01. The graph of the function m for x ∈ [0, 0.03] and ξ = 0.01 is given
in Figure 3.

To implement the inhomogeneous Dirichlet boundary condition on Γ1 we use a Robin condition of the form

ν
∂y

∂n

∣∣∣∣
Γ1

= −1
ε
(y − mu) with ε = 10−4.

This condition is very well adapted to take into account numerically the inhomogeneous Dirichlet condition [4]
and in particular the nonlinear feedback law. The eigenvalues of the operator Ay = νΔy + αy with y = 0 on Γ
are

λij = −ν(i2 + j2)π2 + α, i, j ∈ N
∗.

The corresponding eigenvectors are

ϕij(x1, x2) = δ sin(iπx1) sin(jπx2), δ ∈ R
∗.

In the following tests, the parameter α is equal to 0.6. With this choice the operator A has one positive
eigenvalue which is λ11 ≈ 0.2052.

We are going to see that we have different behaviors of controlled solutions depending on the choice of Γ1.
In Test 1, we choose Γ1 = {0}× (0, 1) and in Test 2 and Test 3 we choose Γ1 = {1}× (0, 1). In all cases, we set
Γ2 = Γ \ Γ1.

Test 1. The initial data is chosen as follows

y0(x1, x2) = 0.045 sin(πx1) sin(πx2) with (x1, x2) ∈ [0, 1]× [0, 1].

In Figure 4, we have plotted the L2-norm of y (left) and the L2-norm of ∇y (right) with respect to t. We
remark that after a transient stage, the L2-norm of y(t) and ∇y(t) are smaller with the nonlinear feedback law.
Figure 5 shows that, during the first seconds, the nonlinear control is stronger than the linear one.

Test 2. The initial data is chosen as follows

y0(x1, x2) = 0.2 sin(πx1) sin(πx2) with (x1, x2) ∈ [0, 1] × [0, 1].

As previously we have plotted in Figure 6 the L2-norm of y (left) and the L2-norm of ∇y (right) with respect
to t. The results are now different. By applying the control laws on the right boundary of the domain, the
linear law becomes more performant than the nonlinear one. In Figure 7 we remark that the linear control is
now stronger during the first seconds than the nonlinear one.
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Figure 4. Evolution with time of |y(t)|L2(Ω) (left) and |∇y(t)|L2(Ω) (right) uncontrolled and
controlled with linear and nonlinear laws.
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Figure 5. Evolution with time of |u	(t)|L2(Γ1) and |un	(t)|L2(Γ1).

0 5 10 15 20 250

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t

|y
(t)

| L2 (Ω
)

Solution

linear control
nonlinear control
without control

0 5 10 15 20 250

0.5

1

1.5

2

t

|∇
y(

t)|
L2 (Ω

)

Solution

linear control
nonlinear control
without control

Figure 6. Evolution with time of |y(t)|L2(Ω) (left) and |∇y(t)|L2(Ω) (right) uncontrolled and
controlled with linear and nonlinear laws.
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Figure 7. Evolution with time of |u	(t)|L2(Γ1) and |un	(t)|L2(Γ1).

Figure 8. Graphs of u	(t, x2) (left) and un	(t, x2) (right) for (t, x2) ∈ [0.01, 3.5]× [0, 1].

Test 3. In the last test, we increase the L∞−norm of the initial condition by taking

y0(x1, x2) = 0.25 sin(πx1) sin(πx2) with (x1, x2) ∈ [0, 1]× [0, 1].

The simulations are stopped for t = 3.5. In Figures 8 and 9 we notice that the nonlinear law grows up quickly
after t = 2.5. To explain more precisely these graphs, we have plotted the L2-norm of the linear part and the
nonlinear part of the nonlinear law (8.5) in Figure 10. The nonlinear term has an opposite sign to the linear
one and becomes too large after t = 2.5. It destabilizes the Burgers equation.

Remark 8.2. We have tested various values of δ for initial conditions of the form

y0(x1, x2) = δ sin(πx1) sin(πx2).

In all simulations, the linear law acts stronger than the nonlinear one. For some values of δ, the nonlinear
law is unable to stabilize the Burgers equation. The main advantage of the nonlinear law is that it limits the
overshoots during the first time steps. Therefore it seems more adapted in the real experimental configurations.
To improve the stabilization result, it should be interesting to build a feedback law defined with an appropriate
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Figure 9. Evolution with time of |u	(t)|L2(Γ1), |un	(t)|L2(Γ1) (left) and |y(t)|L2(Ω) (right) un-
controlled and controlled with linear and nonlinear laws.
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Figure 10. Evolution with time of L2-norm of the linear part and the nonlinear part of the
nonlinear law (8.5).

combination of the linear and the nonlinear laws. For that it is necessary to find Lyapunov functions for the
closed loop nonlinear systems. We think that the results in [1,2] can be very helpful for such an analysis.
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