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HOMOGENIZATION OF VARIATIONAL PROBLEMS
IN MANIFOLD VALUED SOBOLEV SPACES

JEAN-FRANCOIS BABADJIAN! AND VINCENT MILLOT?

Abstract. Homogenization of integral functionals is studied under the constraint that admissible
maps have to take their values into a given smooth manifold. The notion of tangential homogenization
is defined by analogy with the tangential quasiconvexity introduced by Dacorogna et al. [Calc. Var.
Part. Diff. Eq. 9 (1999) 185-206]. For energies with superlinear or linear growth, a I'-convergence result
is established in Sobolev spaces, the homogenization problem in the space of functions of bounded
variation being the object of [Babadjian and Millot, Calc. Var. Part. Diff. Eq. 36 (2009) 7-47].
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1. INTRODUCTION

The homogenization theory aims to find an effective description of materials whose heterogeneities scale
is much smaller than the size of the body. The simplest example is periodic homogenization for which the
microstructure is assumed to be periodically distributed within the material. In the framework of the Calculus
of Variations, periodic homogenization problems rest on the study of equilibrium states, or minimizers, of
integral functionals of the form

/Qf<§,Vu) dz, u:Q— R (1.1)

under suitable boundary conditions, where 2 C RY is a bounded open set and f : RY x RN — [0, +00)
is some oscillating integrand with respect to the first variable. To understand the asymptotic behavior of
(almost) minimizers of such energies, it is convenient to perform a I'-convergence analysis (see [13] for a detailed
description of this subject) which is an adequate theory to study such variational problems. It is usual to
assume that the integrand f satisfies uniform p-growth and p-coercivity conditions (with 1 < p < 400) so that
one should ask the admissible fields to belong to the Sobolev space WP, For energies with superlinear growth,
i.e., p > 1, this problem has a quite long history, and we refer to [20] in the convex case. Then it has received
the most general answer in the independent works of [7,21], showing that such materials asymptotically behave
like homogeneous ones. These results have been subsequently generalized into a lot of different manners. Let
us mention [9] where the authors add a surface energy term allowing for fractured media. In that case, Sobolev
spaces are not adapted to take into account eventual discontinuities of the deformation field across the cracks.
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In many applications admissible fields have to satisfy additional constraints. This is for example the case in
the study of equilibria for liquid crystals, in ferromagnetism or for magnetostrictive materials where the order
parameters take their values into a given manifold. It then becomes necessary to understand the behaviour of
integral functionals of the type (1.1) under this additional constraint. For fixed € > 0, the possible lack of lower
semicontinuity of the energy may prevent the existence of minimizers (with eventual boundary conditions).
It leads to compute its relaxation under the manifold constraint. In the framework of Sobolev spaces, it
has been studied in [1,12], and the relaxed energy is obtained by replacing the integrand by its tangential
quasiconvexification which is the analogue of the quasiconvex envelope in the non constrained case. We finally
mention a slightly different problem originally introduced in [6,10], where the energy is assumed to be finite
only for smooth maps. Recent generalizations can be found in [19] where the study is performed within the
framework of Cartesian Currents (see [18]). It shows the emergence in the relaxation process of non local effects
of topological nature related to the non density of smooth maps (see [4,5]).

The aim of this paper is to treat the problem of manifold constrained homogenization, i.e., the asymptotic
as ¢ — 0 of energies of the form (1.1) defined on manifold valued Sobolev spaces. Let us make the idea more
precise. We consider a connected smooth submanifold M of R? without boundary. The tangent space of M at
a point s € M will be denoted by Ts(M). The class of admissible maps we are interested in is defined as

W M) == {ue WHP(R?) : u(x) € M for LN-ae. z € Q}-

For a smooth M-valued map, it is well known that first order derivatives belong to the tangent space of M.
For u € WhP(Q; M), this property still holds in the sense that Vu(z) € [Ty, (M)]Y for LV-a.e. 2 € Q.
The energy density f: RY x RN — [0, +00) is assumed to be a Carathéodory integrand satisfying:

(Hy) for every ¢ € R¥N the function f(-,&) is 1-periodic, i.e., if {ey,...,en} denotes the canonical basis
of RV, one has f(y + e;, &) = f(y,€) for every i = 1,..., N and y € RY;

(H3) there exist 0 < a < 8 < 400 and 1 < p < 400 such that
alelP < f(y,&) < BA+|EP)  for ae. y € RY and all £ € RN,

For € > 0, we define the functionals F. : LP(£; R%) — [0, +00] by

Folu) = /Qf (g,Vu> dr  if u € WhHP(Q; M),

400 otherwise.

For energies with superlinear growth, we have the following result.

Theorem 1.1. Let M be a connected smooth submanifold of R? without boundary, and f : RN x RN —
[0,4+00) be a Carathéodory function satisfying (Hy) and (Hs) with 1 < p < 4o00. Then the family {Fe}eso
I'-converges for the strong LP-topology to the functional Fiom : LP(Q;R?) — [0, 4+00] defined by

/Tfhom(u,vu)dl‘ if u € WP (Q; M),
fhom(u) = Q

400 otherwise,

where for every s € M and & € [Ts(M)]V,

t—+oo @

Tfuon(5.6) = tim ot { o+ Tty o W00 100 (12

1s the tangentially homogenized energy density.

If the integrand f has a linear growth in the {-variable, i.e., if f satisfies (Hz) with p = 1, we assume in
addition that M is compact, and that
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(Hs) there exists L > 0 such that

[f(y,€) = fly. ) < Lg— €| forae yeRY and all ¢, & € RPN,

Then the following representation result on W11(€; M) holds:

Theorem 1.2. Let M be a connected and compact smooth submanifold of R? without boundary, and f :
RN x RN — [0,4+00) be a Carathéodory function satisfying (Hy) to (Hz) with p = 1. Then the family
{F.}es0 T-converges for the strong L'-topology at every u € WH1(Q; M) to From : WH(Q; M) — [0, +00),
where

thm(u) = / Tfhom(uavu) dl‘,
Q
and T from is given by (1.2).

We would like to emphasize that the use of hypothesis (Hgz) is not too restrictive. Indeed, the I'-limit remains
unchanged upon first relaxing the functional F. (at fixed ¢ > 0) in WH(Q;R?). It would lead to replace the
integrand f by its tangential quasiconvexification which, by virtue of the growth condition (H7), does satisfy
such a Lipschitz continuity assumption (see [12]).

We finally underline that Theorem 1.2 is not completely satisfactory in its present form. Indeed, in the
case of an integrand with linear growth, the domain of the I'-limit is obviously larger than the Sobolev space
WLL(Q; M) and the analysis has to be performed in the space of functions of bounded variation. In fact
Theorem 1.2 is a first step in this direction and the complete study in BV-spaces can be found in [3].

The paper is organized as follows. The study of the energy density T from and its main properties are presented
in Section 2. A locality property of the I'-limit is established in Section 3. The upper bound inequalities in
Theorems 1.1 and 1.2 are the object of Section 4. The lower bounds are obtained in Section 5 where the proofs
of both theorems are completed.

Notations

We start by introducing some notations. Let € be a generic bounded open subset of RY. We denote by
A(Q) the family of all open subsets of 2. We write B*(s,r) for the closed ball in R¥ of center s € R* and radius
r>0,Q:=(-1/2,1/2)N the open unit cube in RY, and Q(z¢, p) := 70 + p Q.

The space of real valued Radon measures in § with finite total variation is denoted by M(£2). We denote
by LV the Lebesgue measure in RY. If 4 € M(Q) and A\ € M(f) is a nonnegative Radon measure, we denote
by g—‘; the Radon-Nikodym derivative of p with respect to A. By a generalization of Besicovitch Differentiation
Theorem (see [2], Prop. 2.2), there exists a Borel set E such that A(E) = 0 and

d_u r)= lim ————=
= Q)

for all z € Suppu \ E.

2. PROPERTIES OF THE HOMOGENIZED ENERCGY DENSITY

In this section we present the main properties of the energy density T fhom defined in (1.2). We consider the
bulk energy density

T fuom(s, &) := lim inf inf {]{O : FW,§+Vo(y))dy : v € Wé’“((O,t)N;Ts(M))}
BN

t—+oco ¢

defined for s € M and ¢ € [T5(M)]". Our first concern is to show that the liminf above is actually a limit.
To this purpose we shall introduce a new energy density f for which we can apply classical homogenization
theories.
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For s € M we denote by P, : RY — T,(M) the orthogonal projection from R? into T;(M), and we set

P, (&) == (Ps(&1),.. ., Pu(én)) for &= (&1,...,én) € RPN,

Given the Carathéodory integrand f : RY x RN — [0, +00) satisfying assumptions (Hi) and (Hz) with
1 < p < +oo, we define f: RY x M x RN — [0, +00) by

fy:8,8) = [y, Ps(€)) + € = PP (2.1)

The new integrand_f is a Carathéodory function, and f(-, s, &) is 1-periodic for every (s,£) € M x RN, By
assumption (Hs), f also satisfies uniform p-growth and p-coercivity conditions, i.e.,

NP < F(yos,€) < BA+]EP) for every (s,€) € M x RPN and ae. y € RY, (2.2)

for some constants 0 < o < 3/ < +o0.

Proposition 2.1. Let f : RN x RN — [0, 4+00) be a Carathéodory integrand satisfying (Hy) and (Hs) with
1 <p < +oo. Then the following properties hold:

(i) for every s € M and & € [Ts(M)]V,

T from(s,§) = lim inf {]{O : f(y,£+V<p(y))dy:¢€W§’°°((0,t)N;Ts(M))},
)N

t—+oco ¢

and ~
Tfhom(sag) = fhom(saf)a (23)

where

t——4oo ¢

From(5,€) = lim mf{]{o) f<y,s,s+w<y>>dy:saeW&’°°<<o,t>N;Rd>}
N

is the usual homogenized energy density of f (see, e.g., [8], Chap. 14);

(ii) the function T fuom is tangentially quasiconver, i.e., for all s € M and all ¢ € [Ts(M)]V,
Tfhom(sa 5) < LTfhom(S; g + VSO(ZJ)) dy

for every ¢ € WOI’OO(Q;TS(M)). In particular T from(s, ) is rank one convex;

(iii) there exists C' > 0 such that

alg]? < T from(s, §) < B(1+[E7), (2.4)

and
|Tfhom(3;£) - Tf}10111(57§1)| S C(l + |€|p—1 + |§I|p—1)|€ - €l| (25)
for every s € M and &, £ € [Ts(M)]V.

Proof. Fix s € M and ¢ € [Ts(M)|V. For any ¢t > 0, we introduce

R A C LA G A I

@
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and

@

eyt { £ fls e Vo s € W (0.0 |
0,t
By classical results (see, e.g., [8], Prop. 14.4), there exists

lim fi(s,&) for every s € M and ¢ € [Ts(M)]V.

t——+oo

Hence to prove (i), it suffices to show that T'f;(s, £) = fi(s, ) for every t > 0. For any ¢ € Wy ™ ((0,1); Ty(M)),
we have

ft(s,«E)S][ f(y757§+V<p)dy=][ [y, &+ V) dy,
0.6)N (0.4)N

since E+V(y) € [Ts(M)]N for a.e. y € (0,t)V. Taking the infimum over all such ¢’s in the right hand side of the
previous inequality yields f;(s, &) < T'f:(s,&). To prove the converse inequality we pick up ¢ € Wol 2(0,6)N; RY)
and we set ¢ = Py(¢)). One easily checks that ¢ € Wy >((0,£)N; Ts(M)) and V¢p = P,(V4) ae. in (0,1)V.
Therefore

Tfi(s,€) < ][

(0,5)N

Swerviay=4f

S+ T drs | Fs e
0,t
Then the converse inequality arises taking the infimum over all admissible 9’s.
By standard results fuom(s,-) is a quasiconvex function for every s € M (see, e.g., [8], Thm. 14.5). As a

consequence, for any s € M, € € [To(M)]N and ¢ € Wy (Q; Ts(M)), we have
Tfhom(sag) = fhom(sag) S /Q?hom(sag+ VCP) dy = /QTfhom(S;g + VCP) dya

which proves that T fhom is tangentially quasiconvex. As a consequence of (2.3) and the fact that fhom(s,-) is
rank one convex, it follows that T fhom(s, ) is rank one convex as well.

The proof of (2.4) is immediate in view of (H;) and the definition of T fyom. Moreover rank one convex func-
tions satisfying uniform p-growth and p-coercivity conditions are p-Lipschitz (see, e.g., [11], Lem. 2.2, Chap. 4),
and thus (2.5) holds. O

Remark 2.1. It readily follows from the previous proof that Proposition 2.1 still holds for any Carathéodory
integrand f : RN x M x RIXN _, [0, 4+00) instead of f, provided that: f(:c,s,f) = f(y,§) for every s € M,
every € € [To(M)]Y and a.e. y € RN; f(.,s,-) satisfies (H,) and (Hy) for every s € M with uniform estimates
with respect to s.

Remark 2.2. If dim(M) = 1 then T5(M) is a one dimensional linear subspace of R for every s € M. Hence,
given s € M, we can identify Ts(M) with R through some linear mapping i, : R — T5(M). Using the applica-
tion s, we can also identify [Ts(M)]N with RN setting for z = (21,...,2n5) € RN, i4(2) := (is(21), .. .,is(2n))-
Define f(y,s,z2) :== f(y,is(2)) for (y,5,2) € Q x M x RN. By (2.3) and [8], Remark 14.6, we can replace in
formula (1.2) homogeneous boundary conditions by periodic boundary conditions, and the limit as t — +o00 by
the infimum over all ¢ € N. Moreover, in the scalar case the homogenization formula can be reduced to a single
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cell formula (see, e.g., [8], Chap. 14). Therefore

T foom(s, &) = inf inf {]{0 ox Fly, &+ Vo) dy : o € W ((0,0)N; Ts(M))}

teN

— inf inf {][ s i MO+ Vo) dy o€ W#”((o,t)N)}

teN

mf{/fy, §) +Ve)dy: ¢€W1°°(Q)}
_ nf{/@f(y,€+Vg0)dy:(,DEW;OO(QETS(M))}'

This remark states that whenever the manifold M is one dimensional, test functions in the minimization
problem (1.2) are in fact scalar valued, and thus, one can compute the tangentially homogenized energy density
over one single cell instead of an infinite set of cells. Note that this is not true in general even in the non
constrained case (see, e.g., the counter-example in [21], Thm. 4.3).

We conclude this section with an elementary example where the dependence on the s-variable is explicit. It
shows that tangential homogenization does not reduce in general to standard homogenization. The construction
is based on a rank one laminate for which direct computations can be performed.

Example 2.1. Assume that M =S! and for z € RY, ¢ = (&;) € RV,

N

= Z (a(@1)[€1; 1% + blz1)|€2517),

j=1

where a,b € L*°(R) are 1-periodic and bounded from below by a positive constant. Arguing as in Remark 2.2
and [13], Example 25.6, one may compute for s = (s1, s9) € St and ¢ € [T5(SY)]V

2

Tfhom S g Z |€1]|2 + |£2j| )

with

1/2 dt !

([ ) e
_1/2 a(t)sy + b(t)sT

OZJ(S) = 1/2

/ (a(t)s3 +b(t)s7) dt otherwise.

~1/2
Compare this result with [13], Example 25.6.

To treat the homogenization problem with p = 1, we will need to extend the function f to the whole space
RY x R? x R¥*N _ We state in the following lemma our extension procedure.

Lemma 2.1. Assume that M is compact. Let f : RN x RN — [0, +00) be a Carathéodory function satisfy-
ing (Hy) to (Hs3) with p= 1. Then there exists a Carathéodory function g : RNV x RY x R¥>*N — [0, +00) such
that

9(y,5,€) = f(y,€) fors e M and ¢ € [Ty(M)]V, (2.6)
and satisfying:
(i) g is 1-periodic in the first variable;
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(ii) there exist 0 < o < [’ such that

€ < gly,s,6) < B+ (€]) (2.7)

for every (s,&) € R x RN gnd a.e. y € RY;
(iii) there exist C > 0 and C' > 0 such that

l9(y,5.6) = g(y, ", §)| < Cls — 5’| [¢], (2.8)

and
|g(ya5a§)7g(ya5a§/)| SC,|§7€/| (29)
for every s, s' € RY, every € € RN and a.e. y € RV.
Proof. For §y > 0 fixed, let U := {s € R? : dist(s, M) < 50} be the dp-neighborhood of M. Choosing 69 > 0
small enough, we may assume that the nearest point projection II : «f — M is a well defined Lipschitz mapping.
Then the map s € U +— Py, is Lipschitz. Now we introduce a cut-off function x € C2° (R%; [0, 1]) such that
x(t) = 1 if dist(s, M) < d0/2, and x(s) = 0 if dist(s, M) > 3d9/4. We define

Py(€) :== x(s)Prys)(§) for (s,€) € R? x RN,
We consider the integrand g : RY x R% x RN — [0, +00) given by

g(ya 5;5) - f(yaps(g)) + |£ - Ps(f”

One may check that g is a Carathéodory function, that g(-, s, ¢) is 1-periodic for every (s, &) € R? x RN and
that (Hs) yields (2.7). Then (2.8) and (2.9) follow from (Hs) and the Lipschitz continuity of s +— Ps. O

Remark 2.3. In view of (2.6), one may argue exactly as in the proof of (2.3) to show that

T from(5,€) = ghom(s,&) for every s € M and ¢ € [Ty(M)]V, (2.10)

where

t——4o0 ¢

ghom(s,€) == lim inf {]{0 o~ 9(y,5,E+Vo(y)dy: ¢ € W&’m((O,t)N;Rd)} :

Hence upon extending T fhom by gnom outside the set {(s,£) € R* x RN : s € M, € € [T,(M)]V}, we can
tacitly assume 7 fhom to be defined over the whole RY x R¥*¥,

3. LOCALIZATION

In this section we show that a suitable functional larger than the I'-limit is a measure. It will allow us to
obtain the upper bound on the I'-limit (see Lem. 4.1) through the blow-up method introduced in [15,16].

Let us consider an arbitrary sequence {e,} \, 0. Along this sequence we define the T'(LP)-lower limit
F: LP(Q;R?) — [0, +o0] by

F(u) := inf {Hminf Foo (up) : uy € WHP(Q M), up — uin L”(Q;Rd)} :

{un,} | n—+o0

The idea is to localize the functionals {F. }n,eny on the family A(Q) of all open subsets of 2. For every
u € LP(Q;R?) and every A € A(R), define

(u, A) /f(;,Vu) de  if u € WhHP(Q; M),
u, = A n

Fe

n

400 otherwise.
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Given a compact set K C M and a subsequence {ex} := {&,,} \, 0F, we introduce for u € W?(£; M) and
Ae AQ),

f,ésk}(u, A) = {inf} { limsup Fr, (ug, A) : up — u weakly in WhP(Q; RY),
Uk k—4o00

uy, — w uniformly and uy(z) = u(z) whenever dist (u(z),K) > 1 for a.e. x € Q }

A key point in the upcoming analysis is the following locality result.

Lemma 3.1. For every u € WhP(Q; M), there exists a subsequence {ey} such that the set function f,{ca’“}(u, )
is the restriction to A(2) of a Radon measure absolutely continuous with respect to the Lebesque measure LN .

Proof. From the p-growth condition (Hs) we infer that for any subsequence {ey},
Fi (u, A) < 5/ (1+ |Vul?) dz, (3.1)
A

so it remains to prove the existence of a suitable subsequence {ej} for which f,{ca’“}(u, -) is (the trace of) a
Radon measure.

Step 1. We start by proving that for any subsequence {e;} the following subadditivity property holds:
{ex} {ex} {ex} ol
Fie M u, A) < Fe M (u, B) + Fg M (u, A\ C) (32)

for every A, B and C € A(Q) such that C € B C A. Given n > 0 arbitrary, there exist sequences {uy},
{vp} € WHP(Q; M) such that ug and vy converge weakly to u in WHP(QRY), ug(x) = vi(z) = u(x) if
dist (u(x),K) > 1 for a.e. & € Q, uy, and vy, are uniformly converging to u, and

limsup F, (ux, B) < f,{ca’“}(u, B) +n,

k—-+oo - {6 } . (33)
limsup F, (v, A\ C) < Fe "' (u, A\ C) +n.
k—+o00

Let K" := {s € M :dist (s,K) < 1}, then K’ is a compact subset of M and uy(z) = vi(z) = u(z) if u(z) € K’
for a.e. x € (L.
Consider L := dist(C,9B), M € N, and for every i € {0,..., M} define

i L
B; = {x € B : dist(x,0B) > ZM}

Giveni € {0,...,M — 1} let S; :== B; \ Bit1, and ¢; € C°(€2;]0,1]) be a cut-off function satisfying

1 in Bi+1, 2M
. _ o< 2.
Gi(®) {0 in Q\ B;, and VG| < =7



HOMOGENIZATION OF VARIATIONAL PROBLEMS IN MANIFOLD VALUED SOBOLEV SPACES 841

By Lemma 3.2 and Remark 3.3 in [12], there exist § > 0, ¢ > 0, and a uniformly continuously differentiable
mapping ® : Ds x [0,1] — M, where

Ds == {(s0,51) € M x M : dist(so, K') < 9, dist(s1,K’) <6, [so — s1| <3},

such that
0P
®(s0,51,0) =50, P(s0,51,1) = 51, 5(30751,75) < c[so — s1], (3.4)
and
|®(s0,51,t) — so| < c|so— s1]- (3.5)

Since {uy} and {vx} are uniformly converging to u, one can choose k large enough to ensure that
||’U,k - uHLoo(Q;Rd) <9, Hvk - UHLOO(Q;Rd) <0 and ||’U,k - Uk”Loo(Q;]Rd) <.

Therefore for a.e. z € Q, dist(ug(z),K’) < ¢ and dist(vg(z), K’) < § whenever u(z) € K’'. Now we are allowed
to define

wpi(z) = {@(vk(x),uk(m),g(x)) if u(z) € K,
P Lu(e) if u(a) & K,

and wy,; € WHP(Q; M). Using the p-growth condition (Hz) together with (3.4), we derive

/ f (E,Vw;m-) dzx S/ f (E,Vuk) dx—l—/ f (E,Vvk) dzx
A €k B €k A\C  \€k

+co/ (1 + | Vgl + [Voul? + MPlug — vel?) da,

i

for some constant Cp > 0 independent of k, ¢ and M. Summing up over i € {0,..., M — 1} and dividing by M
yields

= /f(i,vu;m> dz§/f<£,vuk) d:c+/ f(i,wk> dz
M = J4° \ex B~ \Ek AT \Ek

C
+—°/ (1 + |Vupl? + |Vop [P + MPJuy, — v|?) da.
M B\C

Il
o

Hence one may find some i, € {0,..., M — 1} such that @y, := wy;, satisfies
/ f (E,Vwk) do < / f (3,vuk) do +/ f (ﬁ,wk) da
A \ek B~ \Ek AT \¢ek
C
+ MO (14 [Vugl? + [Vog|? + MPlug — vg]?) dz. (3.6)

B\C
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From (3.4) and (3.5) we deduce that w; — wu uniformly, w;, — u in WP(Q;R?), and wy(z) = u(x) if

dist(u(z), ) > 1 for a.e. x € Q. Taking {w;} as competitor for f,gs’“}(u, A), and using (3.6) together with (3.3)
leads to

flgsk} (’LL7 A) S lim sup ]:Ek (wk, A)
k—-+oo

< limsup {fgk (ug, B) + Fey (v, A\ O)
k—+o00

C
+ 2 (1+|Vuk|p+|Vvk|p+Mp|uk—vk|p)dx}
M B\C

< FEw, B) + FE (u, A\ T) + 2

C
+ =2 sup / (I + |Vug|? + |Vog|P) da.
keN JB\C

Then property (3.2) arises sending first M — +o0, and then n — 0.

Step 2. Now we complete the proof of Lemma 3.1. Using a standard diagonal argument, we construct a
subsequence {e} \, 0" and a sequence {u,} C W1P(Q, M) satisfying

lim F;, (ug, Q) = inf {liminf Fe, (0g, Q) v, — u weakly in WHP(Q; R?),
k— o0 {vr} L k—+o0

v — w uniformly and v (2) = u(x) whenever dist (u(z), ) > 1 for a.e. z € Q }

By construction of {e;} and {ux}, we have i lirf Fero(ug, Q) = f,ge’“}(u, Q). Up to the extraction of a further

subsequence, we may assume that
f <;,vuk) LYNLQEp in M(Q),
€k
for some nonnegative Radon measure u € M(Q2). By lower semicontinuity, we have

w(Q) < lim F, (ug, Q) = FEY (1, Q).

k——+oo

We claim that
f,{cg’“}(u, A) = p(A) for any A € A(Q).
We fix A € A(Q) and we start by proving the inequality “<”. Given n > 0 arbitrary we can select, in view

of (3.1), C € A(Q), C CcC A, such that f,{ca’“}(u,A\a) < 7. Then inequality (3.2) implies that for any
Be AQ),C cCc BCC A,

F (u, A) <+ limsup Fe, (ug, B) < 0+ u(B) < n+ u(A),
k—-+oo

and the conclusion follows from the arbitrariness of 7.
Conversely, for any B € A(f2), B CC A, we have

u(Q) < FE (u, Q) < FE (u, A) + FEY (0, @\ B)
< FEH (u, A) + p(\ B) < FEH (u, A) + p(Q\ B) < FEH (u, A) + p(Q) — u(B).

Therefore u(B) < f,gsk}(u, A) and the conclusion follows by inner regularity of u. O
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4. THE UPPER BOUND

We now make use of the previous locality result to show the upper bound. This will be done thanks to a
blow-up analysis in the spirit of [12], Theorem 3.1.

Lemma 4.1. For every p € [1,+00) and u € WHP(Q; M), we have F(u) < Fhom(u).

Proof. Step 1. Let u € WP(Q; M). Given R > 0 arbitrary large, we set K := M N B%(0, R), and we consider
the subsequence {ej} given by Lemma 3.1. Obviously F(u) < f,ésk}(u, Q). We claim that

A < [ {xnllu) Thom 90+ 51~ xulu)) 1+ V) f s, (41

where xr(t) = 1 for t < R and yg(t) = 0 otherwise. We postpone the proof of (4.1) to the next step, and we
complete now the proof of Lemma 4.1.

Consider a sequence R; — +o00 as j — +o0o. Since xg, — 1 pointwise, we deduce from Fatou’s lemma
together with (2.4) that

Flu) < limsup/g{XRj(|u|)Tfhom(u,Vu) + B(1 = xg,(Ju) (1 + |Vu|p)}d:£ < /QTfhom(u,Vu)d:E,

j—+o0

which is the announced estimate.

Step 2. Thanks to Lemma 3.1, to obtain (4.1) it suffices to prove that

AFEH (u, )

oy (@) < Xr(Ju(@o)) T from(u(zo), Vu(zo)) + B(1 = xr(lulzo))) (1 + |Vu(zo)[")

for £LN-a.c. zo € Q.
Let z9 € Q be a Lebesgue point of u and Vu such that u(zo) € M, Vu(zg) € [Tyey)(M)]V, and the

Radon-Nikodym derivative of f,{ca’“}(u, -) with respect to the Lebesgue measure £V exists. Note that almost
every points in 2 satisfy these properties. Now set so := u(zg) and & := Vu(xy).

Case 1. Assume that so € K. Then, using (H2), we derive that

A7 (u, ) A Q. p) . -
%T(xo):plgég ~ N Shﬂ%ﬁ“ﬁiﬁf” N Fer (u, Q(x0, p))

. B
< lim — (1 +[VulP)dz = B(1 + &),
p—0% pN Q(z0,p) ( )

which is the desired estimate.

Case 2. Now we assume that sop € K. Fix 0 < n < 1 arbitrary. By Proposition 2.1, claim (i), there exist j € N
and o € Wy ™((0,7)N; T, (M)) such that

7{0 . f(. 80+ Vo) dy < T from(s0, &) + - (4.2)
5]

Extend ¢ to RY by j-periodicity, and define oy, (z) := & o + exp(x/cr).
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Let U be an open neighborhood of M such that the nearest point projectionII : f — M defines a C'-mapping.
Fix 0,30 € (0, 1) such that B%(sq,28y) C U, and consider § = §(c) € (0, ) for which

|VII(s) — VII(s')| < o for all 5,5’ € B%(sg, o) satisfying |s — s'| <. (4.3)
Next we introduce a cut-off function ¢ € C2°(R%; [0, 1]) satisfying
1 for x € B40,6/4), C
((x) = with  |[V(¢] < 5
0 forx ¢ B%0,§/2),

and we define
wi(z) = u(z) +exC(u(x) — so)p(z/ek).
Let ky € N be such that

2ek|lell L ((0,5)~ e
max{sknsanwo,j)mu@d)||v<||Lw<Rd;Rd>, SOLED L <1 for any k> ko. (4.4)

Define for every k > ko,

ug(z) := M(wg(x)).
Remark that by (4.4), for a.e. € Q and all k > kg, one has wy(x) € B%(sq,d) whenever |u(x) — so| < §/2
while wg(z) = u(x) when |u(z) — so| > §/2. Hence uy is well defined, {ux} C WP(Q; M), and for a.e. z € €,
ug(z) = u(x) whenever dist (u(z), ) > 1. Moreover,

ur — ull poo (ray = [TH(wi) — TH(w) || oo ({ju—so|<s/2}:Re) < €k VI oo (Ba(50,80)58) 12l Lo ((0,5)~ ;rey — O

as k — +o00. Now the Chain Rule formula yields
Vug(x) = VII(wyg(x)) (Vu(:n) + ek (p(x/er) @ VE(u(z) — s0)) Vu(z) + ((u(z) — so)Vga(m/sk)),
and consequently

[V (@)] < VI o (0, 80100) (1 Erl1Pl o (0,33 IV C e ) V()] + 966 e o,y v oy ).
By (4.4) it follows that for any k > ko,
[Vur(z)| < Co(|Vu(z) — &l +1) (4.5)
for some constant Cy = Cy(so,&0,d0,7) > 0 independent of x and k. Hence the sequence {uy} is uniformly

bounded in W1P(Q;RY) so that ux — u in WP(Q; R?).
Then we observe that |Vuy| < 2Cj a.e. in {|Vu — &| < o} while

IVorll Lo (rax vy < [€ol + [Vl oo ((0,5)V maxn)y.

Set
M = maX{ZCO, |€0| + ||V(‘0||Loo((0’j)N;Rd><N)}7 (46)

(which only depends on sg, &, dp and 7) so that

[Vup| <M and |Vei| <M ae. in {|Vu—§| <o} (4.7)
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Next for a.e. x € {|u —so| < 0/4} N {|Vu —&| < o}, we have ((u(x) —s0) = 1 and
[Vug(z) = Vor (2)] < [VIH(w)Vu(z) — &of + [VIwr)V(r/er) — Vo(z/er)|
< [VI(wy) = VI(so)| [Vu(a)] 4+ [VII(so)| [Vu(z) — &l
+ [VI(wk) — VI(s0)[ [Vl oo ((0,) v irtx vy,

845

where, in the last inequality, we have used the fact that VII(so)V(y) = Ve(y) since Vo(y) € [Ty, (M)]N for
a.e. y € RN, Using (4.3) and the fact that |wy — so| < & a.e. in {Ju— so| < 3/4} N {|Vu — &| < o}, we deduce

[Vug(z) — Vo (@)| < (|Vu(@)| + [VII(so)| + |Vl Lo ((0,5)n raxn))o < Cro

(4.8)

for a.e. x € {Jlu—so| < §/4} N{|Vu—&| < o}, where C; = C1(s0, &0, d0,n) > 0 is a constant independent of o,

k and x.
Now we estimate

dFE (u, ) FE (u,Q (a0, p))

(xg) = lim

dﬁN p—0+ pN
. . 1 T
< limsuplimsup — fl—,Vug | de
p—0t k—too P JQ(wo,p)  \Ek
<

1
limsuplimsup—N/ f <£,Vuk> dx
p—0t  k—too P JQ(xo.p)N{|u—s0|>5/4}  \Ek

1
+ lim sup lim sup —/ (E,Vuk) dx
p—0t k—too P JQ(zo,0)N{|u—so|<6/4}N{|Vu—E&o|<o} €k

1
+ lim sup lim sup — <£,Vuk> dx
p—0t k—+oo P JQ(zo,p)N{|u—s0|<6/4}N{|Vu—Eo| >0} €k

= L +1h+Is.

Thanks to (4.5), the p-growth condition (Hz) and our choice of xg, we have
. 1
I < Climsup — (14 |Vu(x) = &lP) da
p=0t P JQ(z0,p)N{lu—s0|>5/4}

4
< Climsup][ |Vu(z) — &P do + ¢ limsup][ |u(z) — so|dz =0,
Q(z0,p) Q(x0,p)

p—0+ o p—0+
while

1
I3 < Climsup — (1+ |Vu(z) — &) dx

p—0t+ P /Q(a;g,p)ﬂ{u—so|<6/4}ﬂ{|Vu—§020}
C
< Clim sup][ [Vu(z) — &o|P dz + — lim sup][ [Vu(z) — &o|dx = 0.
Q(0,0) g Q(x0.p)

p—0F p—0F

(4.9)

(4.10)

(4.11)

Let us now treat the integral I. Since, for a.e. y € RY the function f(y,-) is continuous, it is uniformly
continuous on BN (0, M) where M > 0 is given in (4.6). Define the modulus of continuity of f(y,-) over

BN (0, M) by

w(y,t) = sup{|f(y.&) — f(y.€)]: & € € BXN(0, M) and [¢ — &'| < t}-
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It turns out that w(y, ) is increasing, continuous and w(y, 0) = 0, while w(-, t) is measurable (since the supremum
can be restricted to all admissible £ and £’ having rational entries) and 1-periodic. Thanks to (4.7) and (4.8)

we get that
‘f (im(:c)) .y (3, wm))‘ <w (ﬁ, cla)
€k Ek €k

for a.e. € Q(zo,p) N{|lu—so| < d/4} N{|Vu—&]| < og}.
Integrating over the set Q(xq, p) N {|u— so| < §/4} N{|Vu — &| < ¢}, and taking the limit as k& — +o00, we
obtain in view of the Riemann-Lebesgue lemma that

F(Lvu@) - (£.v00)|as <

€k
1imsupp7N/ w <£,Cla) dx = / w(y, Cio) dy,
ko0 Q(zo.p)  \Ek Q

where we have used the fact that y — w(y, C10) is a measurable 1-periodic function. Observe that the Dominated
Convergence Theorem together with w(y,0) = 0 implies

limsup p~ /
k—+o00 Q(zo,p)N{|u—s0|<6/4}N{|Vu—E&o|<o}

lim [ w(y,Cio)dy =0. (4.12)
o—0t
Q
‘We have obtained
1
Ir < 1imsup1imsup—N/ f (ﬁ,V@k) dx +/ w(y,Cio) dy. (4.13)
p—0t  k—doo P JQ(wo,p)  \Ek Q

Using the definition of ¢, and the Riemann-Lebesgue lemma, we infer from (4.2) that

lim sup lim sup LN /Q( )f (ﬁwfo + Vo (ﬁ)) dz = ]{0 ; f(y,60+Ve(y) dy < T from(s0, &) +n. (4.14)
To,p SN

p—0t  k—4o0 P €k €k

Hence gathering (4.9)—(4.11), (4.13) and (4.14) we deduce that

A7 (s )

(IO) S Tfhom(507§0) + / W(y, CIU) dy + n.
dLN Q

Thanks to (4.12), the thesis follows sending first o — 0, and then n — 0. O

5. THE LOWER BOUND

We now investigate the I'-lim inf inequality still through the blow-up method. In contrast with Lemma 4.1
we will distinguish energies with superlinear growth and energies with linear growth. We will conclude this
section with the proofs of Theorems 1.1 and 1.2.

5.1. The case of superlinear growth

The case p > 1 is based on an equi-integrability result known as Decomposition Lemma [17], Lemma 1.2,
which allows to consider sequences with p-equi-integrable gradients. It enables to use properties valid up to sets
where the energy remains small.
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Lemma 5.1. Assume p € (1,+00). Then F(u) > Fhom(u) for every u € WHP(Q; M).

Proof. Let u € WH?(Q; M). By a standard diagonal argument, we first obtain a subsequence {e,} (not
relabeled) and {u,} C W1P(€; M) such that u,, — u in LP(£;R?) and

F(u) = lim ! (E,Vun> dz < +o0.
Q

n—-—4oo En

Define the sequence of nonnegative Radon measures
i = f (;, Vun) VL Q.
En

Extracting a further subsequence if necessary, we may assume that there exists a nonnegative Radon measure
p € M(Q) such that j, — u in M(Q). Using Lebesgue Differentiation Theorem one can split p into the sum
of two mutually disjoint nonnegative measures pu = u® + p® where p® < £V and p° is singular with respect
to £N. Since () < () < F(u), it is enough to check that

d
dﬁ—uN(mo) > T from(u(z0), Vu(zg))  for LN-a.e. zo € Q.

Step 1. Select a point xg € Q2 which is a Lebesgue point of u and Vu, a point of approximate differentiability
of u (so that u(zg) € M, Vu(xg) € [Ty(zg)(M)]Y), and such that the Radon-Nikodym derivative of 1 with
respect to the Lebesgue measure £V exists and is finite. Note that almost every points xy in  satisfy these
properties. As in the proof of Lemma 4.1, set s := u(zo) and & := Vu(zg).

Let {px} \, 0" be such that u(0Q(zo,px)) = 0 for every k € N. Using the integrand f defined in (2.1) one
obtains

il - 1 P\ \P0 PR
dEN (l‘o) kil}r/loo p]kv
I 1 CICYZI))
k—+o00 n—+o00 pkN
. . To + prYy
=1 1 _— d
it [ (22 Vet ) a
. . —(xo+
= khm lim f (70 pky,un(xo + pry), Vun(aco + Pky)) dy
—+o00 n—+o00 Q En
. . —(xo+
= khm lim f (*O pky, So + kan,k(y)7 an,k(y)) dy,
—+o0 n—+00 Q n

where we have set vy, 1 (y) := [un (xo+pry) — 50] /pk. Note that since xg is a point of approximate differentiability
of u and u,, — u in LP(Q;R?), we have

— gy — _ p
lim lim / [vnx(y) — Eoy[Pdy = lim lu(y) — so — &o (y — zo)| dy = 0.
Q

k—-too noo k=400 JQ(z0,p1) AR

Hence one can find a diagonal sequence ¢, := e,,, < p; such that, setting vi(y) := vn, £(y) and vo(y) := &y,
v — vg in LP(Q;RY) and

(wo) = lim [ f

dp 7 Lo+ pry
ALy k—+o0 Q )

.50 + PRk (y), Vvk(y)) dy. (5.1)



848 J.-F. BABADJIAN AND V. MILLOT

Next observe that {Vuv;} is bounded in LP(Q;R4*Y) thanks to the coercivity condition (2.2). By the De-
composition Lemma [17], Lemma 1.2, we now find a sequence {v;} C W1>(Q;R%) such that v, = v on a
neighborhood of 9Q, v — vy in LP(Q;R?), the sequence of gradients {|Voy [P} is equi-integrable, and

lim 7 (xo + pry
k—-+oo Q

. - [ X0+ _
,30+pkvk<y>,wk<y>) dy > timsp [ f(—o "ky,so+pkvk<y>,ka<y>) dy. (5.2)
k—+o00 JQ €k

Step 2. Write

To _ my + s, with my, € ZV and s, € [0,1)",
Ek
and define -
Tp = —ksk —0 and 6 :=¢er/pr — 0.
Pk

By the 1-periodicity of f with respect to its first variable, (5.1) and (5.2), we infer

dp . Tkt Yy ~
—_— > 1 d
o (@) =2 im sup /Qf ( 5 S0 T ke (y), Vvk(y)) y
> limsup / f <5£, s0 + prvk(y — k), Vo (y — Zk)) dy. (5.3)
k—-+oo zp+Q k

Extend v; by 0, and ©; by vg to the whole RY. As z; — 0 it follows that £V ((Q — zx)AQ) — 0, and the
equi-integrability of {|Vug|P} together with the p-growth condition (2.2) implies

/ f(%750+pkvk(y—xk),Vvk(y—wk)) dy <6 (1+[Vop[?) dy — 0.
QA(zk+Q) k (Q—zr)AQ
Hence (5.3) yields
du (:E)>limsup/f Y s + prwy, Vwy, | dy (5.4)
dLnN 0) = PR 5k’ 0 kWk, k ’ .

where wy (y) 1= vi(y — x1) and Wy (y) := Uk (y — z) converge to vo in LP(Q;RY), and {|Vwy|P} is equi-integrable
as well.

Step 3. For M > 1 and k € N, consider the set Ey i, := {z € Q : |Vwy| < M}. By Chebyschev inequality, (5.4)
and (2.2), LY(Q \ Eam k) < C/MP for some constant C' > 0 independent of k and M.

By the Scorza-Dragoni Theorem (see [14], p. 235), for any 1 > 0, we may find a compact set K, C @ such
that LV (Q \ K,;) < nand f: K, x RN — [0, +00) is continuous. In particular the restriction of f(-,s,-) to

K, x B&*N(0, M) is uniformly continuous for every s € M. Therefore the function ¥, s : [0, +00) — [0, +00)
defined by

\Iln,M(t) = sup {|f(y7£) - f(y7£/)| Yy S Kna fa gl S BdXN(OﬂM)v |£ - £/| S t}a
is continuous, satisfies ¥, 27(0) = 0, and is bounded. In view of (2.1), we have
|fT(ya 317§) - f(ya 327§)| < lII"],I\/I(]\4|PS1 - PS2|) + CVJWlPé‘l - PS2| = li177,1\/1(|Psl - PS2|)
for every y € K, 51,52 € M and £ € B¥N (0, M), where the constant Cj; > 0 only depends on M and p.

Define
Kreri= | (0+Ky).
LezN
Since f is 1-periodic in the first variable,

|f(ya 5175) - f(ya 527£)| < an,M(|PS1 - P52|) (55)
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for every y € KP', 51,55 € M and & € BN (0, M) . From (5.4) and (5.5) it follows that

d _
ljv (z0) Zlimsup/ f (E,So + Pkwkavwk> dy
df k—+oo JEn kN (6 KR™) Ok

Zlimsup/ f (i,so,vm> dy
k—+o00 EMykﬁ((snger) 6kf

- 1imsup/ \I~j777M(|P$0+pkwk(y) - PSO|) dy.
k—+o0o JQ

Since \i/,],M is continuous and bounded, ‘i/mM(O) = 0, and (up to a subsequence) Py, w,(y) — Ps, for a.e.
y € Q, we obtain by Dominated Convergence that

lim lijﬁ»M(|PS0+Pkwk(y) — Py |) dy =0,

k—+4o00 Q
and thus
dp . (Y _
——(zg) > hmsup/ f (—,SO,Vwk) dy. 5.6
dﬁN( ) k—too JEa in(Ge KTy \ Ok (5.6)

From the p-growth condition (2.2) and the Riemann-Lebesgue Lemma, we deduce that

limsup/ f <i, $0, vwk) dy < limsup 8'(1+ MP)LY(Q\ (6,KE™))
k—+oo J By \@GeK2T) " \ Ok k—+00

=31+ MP)LN(Q\ K,) < B'(1+ MP).
Hence (5.6) yields
gt 2y [ 1 (507 )t
——(xg) > limsu =, 80, Vwy, | dy — B'(1 + MP)n,
dEN( 0) m sup Ekaf 5 S0 Ve | dy B )n

and sending n — 0, we derive
—(l‘o) > lim Sup/ f —y So Vo dy (5 Z)
acy k—+oco JEn i 5k T g ' .

Since LY (Q\ Ear k) — 0 as M — +oo (uniformly with respect to k), the equi-integrability of {|Vwy|P} and the
p-growth condition (2.2) imply

sup/ .f(iasoavu_)k> dyéﬂ’sup/ (1+|VwgP)dy — 0 as M — +oo.
keN JQ\En Ok keN JQ\En
Plugging this estimate in (5.7) leads to

dp . (v _
—_ > 1 = dy.
N (o) = erigf/gf <5k,50,Vwk) y
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Since wy — vo in LP(Q;RY), we can invoke standard homogenization results (see, e.g., [8], Thm. 14.5) to infer
that

thUp/ f(%aSO;VU_}k> dy Z/ friom (50, Vv0) dy = from (50, &0)-
k—+oo JQ k Q

In view of Proposition 2.1 we finally conclude

dp

dE—N(rTO) > f_'hom(SO;gO) = Tfhom(507£0);

and the proof is complete. O

5.2. The case of linear growth

We now treat the case p = 1 assuming that the function u belongs to W11(Q; M). In contrast with the case
p > 1, there is no equi-integrability result as the Decomposition Lemma. We follow here the approach of [15].

Lemma 5.2. Assume p = 1. Then F(u) > From(u) for every u € WhH(Q; M).

Proof. Let u € WH1(Q; M). By a standard diagonal argument, we first obtain a subsequence {e,} (not
relabeled) and {u,} C WH1(; M) such that u,, — u in L(;RY) and

F(u) = lim f (;,Vun> dz < +o0.
Q n

n—-+o0o

Up to the extraction of a further subsequence, we may assume that there exists a nonnegative Radon measure
€ M(Q) such that

f<E;,Vun) LNL QS in M(9). (5.8)

Hence it is enough to prove that p(€2) > Fnom(u). As in the proof of Lemma 5.1, it suffices to show that

——(20) = T from(u(zo), Vu(xg)) for LN-ae. x € Q.

The proof will be divided into three steps. We first apply the blow-up method which reduces the study to affine
limiting functions. Then we reproduce the argument of [15] which enables us to replace the original sequence
by a uniformly converging one without increasing the energy. We will conclude using a classical homogenization
result.

Step 1. Select a point xg € Q2 which is a Lebesgue point of u and Vu, a point of approximate differentiability
of u (so that u(zg) € M, Vu(zo) € [Ty(z,)(M)]Y) and such that the Radon-Nikodym derivative of y with
respect to the Lebesgue measure £V exists and is finite. Note that £V-almost every points g in €2 satisfy these
properties. We write sg := u(xo) and & := Vu(zp).

Up to a subsequence, we may assume that there exists a nonnegative Radon measure A € M(Q) such that
(14| Vau, )£V L Q5 X in M(Q). Consider a sequence {p} N\, 01 such that Q(zo,2px) C Q and u(Q(zo, pr)) =
AMOQ(xo, pr)) = 0 for each k € N. Then (5.8) yields

w(Q(xg, pr)) = lim f (ﬁ,Vun> dz. (5.9)
Q(@o,pr)

n—-—4oo En
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Set 7, == &, [xo/En] € e,Z". Since 7, — xo, given r € (1,2) we have Q(7,, pr) C Q(z0,7px) Whenever n is
large enough, and we may define for x € Q(0, px), vn(2) := un(z + 7). By continuity of the translation in L*,
we get that

/ [vn () —u($+x0)|dx=/ |tn () — u(x + 2o — 7)) | da
Q(0,px) Q(Tn,pk)
< / [tn (z) —u(z + 2o — 70)|dz — 0. (5.10)
Q(zo,rpr) n—+eo

Changing variable in (5.9) and using the periodicity condition (H7) of f(,€) and the growth condition (Hs),
we are led to

x4+ T
€n

— lim f(ﬁ,vun) dz
=40 JQ(@o—Tn.0k) En

> limsup/ f (ﬁ,V’un) dox — 6limsup/
n—toe JQ(.pr)  \En n—+00 JQ(rn.pr)\Q(0.p1)

, Vg (2 + Tn)) dz

n—-+o00

w(Qro.pr)) = lim / (
Q(xo—Tn,pk)

(1+ |Vu,|) de. (5.11)
On the other hand, by our choice of py,

lim sup/ (1 + |Vu,|)dz < limsup lim sup/
n=+00 JQ(7n,06)\Q(20,0k) r—1t n—=+400 JQ(20,mor)\Q(z0,pk)

< limsup A (Q(Io, rox) \ Q(zo, pk))

r—1+

S )\(8@(1’0, Pk)) = 0;

(1+ |Vuy,|)da

so that the last term in (5.11) vanishes. Hence

M(Q(x07pk)) > hmsup / f <£7vvn) dI,
Q(0,pk)

n—-+o0o En
where {v,} C WH1(Q(0, pr); M) satisfies v, — u(xo + -) in LY (Q(0, pr); R?) by (5.10).
Now we consider for every n, a sequence {v, ;j} C C> (Q(O, Pk); Rd) such that v, ; — v, in WHHQ(0, pi); RY),

Un,j — U and Vo, ; — Vo, a.e. in Q(0, pi) as j — +oo (we emphasize that in general, v, ; is not M-valued).
Considering the integrand g given by Lemma 2.1, one may check

lim g (i,vmj, an,j) dr = / g (i,vn,an) dz = / f (i, an) dz,
I710JQ.pr)  \En Q.pr)  \En Q0,pr)  \En
so that we can find a diagonal sequence v, := vy, ;, satisfying v, — u(xo + -) in L'(Q(0, px); RY) and

w(Q(zo, pr)) > limsup / g (i,vn, an) dx. (5.12)
Q(O7pk)

n—-+00 En
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Changing variable in (5.12) yields

d
E_ () > limsup lim sup / g (M O (o1 2), Vou (pr x>) dz
dl k—+oco0 n—+oo JQ En

= lim sup lim sup / g (p;_:n, 50 + Pk Wn, ks Vwmk) dz, (5.13)
Q

k—-+o00 n—-+4o0 n

where we have set wy, ,(x) := [ﬁn(pk x) — 50} /pk. Since xq is a point of approximate differentiability of u and
Up — u(zo + ) in LY(Q(0, pr); RY), we have

[u(y) — s0 — &o (y — o)
k=00 JQ(20,pk) pi\f+1

dy = 0. (5.14)

k—+o0 n—+oco

lim  lim /|wn7k(:ﬂ)f§0x|dx: lim
Q

In view of (5.13) and (5.14), we can find a diagonal sequence €, < p? such that wy = wp, r — wo in L*(Q;RY)
with wo(z) := & z, and

dﬁ—#N(xo) > 11133?(}15 /Qg <§—k,80 + Pk W, Vwk> dz, (5.15)

where 0y, 1= €p, /pr — 0.

Step 2. We now argue as in Step 3 of the proof of [15], Theorem 2.1, to show that there exists a sequence
{wi} € WH°(Q;R?) such that Wy, — wp in L>(Q;RY), {w}} is uniformly bounded in W11 (Q;R?) and

d
dﬁ—”N(xo) > 11133?;5 /Qg (;—ksO + Pk Wk, Vm) dz. (5.16)

Given 0 < s < t, let {5+ € C°(R;[0,1]) be a cut-off function satisfying (s.(7) = 1 if |7] < s, (s4(7) = 0 if
|| >t and |C} ;| < C/(t — s). Define

wk ;= wo + Cot(Jwr — wol) (wi — wo).

Obviously,
||w§,t —wol oo (@ira) < L (5.17)
and the Chain Rule formula gives

Vwk, = Vg + (ot (Jwr — wol) (Vg — Vwo) + ¢4 (Jwk — wol) (wi — wo) ® V]wy — wol. (5.18)

In particular,

x x
/ g (—, S0 + Pk w’;’t, wayt> dz = / g <—, S0 + pr Wi, Vwk) dx
Q" \% {lwk—wol<s}  \Ok
x
+f o (s + pru Vuk, ) ds
{s<|wi—wo|<t} Ok

+/ g (ﬁ,so + pr w0,§0> dz. (5.19)
{lww—wo|>1}  \Ok

From the growth condition (2.7), we infer that

T

/ 9(5—750+Pkw0,€0) dz < B'(1+ |&o]) £V ({Jwr — wo| > t}), (5.20)
{lwy —wo|>t} k
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and (5.18) yields

/ 9 (52 S0+ pr Wiy, Vw’;,t) da < 0/ (1+ [Vwg = &ol) de
{s<|wp —wo|<t} k {s<lwi—wo|<t}
C

Observe that for £'-a.e. t > 0,

lim (1+|Vwy, — &) dy < Cy lim £V ({s < Jwp — wo| < t}) =0,
S=tT J{s<|wi—wo| <t} st~

and by the Coarea formula,

1
lim / lwi, — wol |V]wg — wol | d
=t 1= 8 Jacuw—wol <t}

= lim L/ THN L {Jwg — wo| = 7}) dr = tHY " ({Jwy, — wo| = t}).

s—t—t— 5§

Moreover, in view of (2.7) and (5.15) we infer that

/‘V|wk7w0||d:c§C/(1+|Vwk|)dy§C’o.
Q Q

+ / lwi — wo| |V]wy — wol | dz.
t—s {s<|wi —wo|<t}

853

(5.21)

(5.22)

(5.23)

Applying [15], Lemma 2.6, there exists ¢, € (||wk - wo||1L/12(Q,Rd), lwi — w0||2/1?ZQ,Rd)) such that (5.22) and (5.23)

hold with ¢ = ¢, and
Co

—1/6 '
tn (Jn = ol 1 {gym)

According to (5.22), (5.23) and (5.24), there exists sj € (||wk - w0||2/12(Q_Rd), tk) such that

/ (1+ [y — &) da <
{sk<|wr—wo|<tr}

tHY T ({lwr — wo| = ti}) <

=

and
1 Co

; / |wk7w0|‘V|wk7wo||dx§ =y +
k= Sk J{si<|wyp—wo|<ti} In <||wk — wOHLl(Q-Rd))

)

x| =

while (5.20) together with Chebyshev inequality yields

z 1/2
g<_,SO+Pkwo,§o> dy < Ollwg — woll747 5. -
/{Iwk—wo>tk} Ok L1(Q;R?)

T ek
Define now wy = wy, ,,

(5.25), (5.26) and (5.27), we deduce

T T
limsup/ g (—, So + pkﬁk,VEk> dx < limsup/ g (—, S0 + Pk wk,Vwk) dax,
k—too Jo  \ Ok k—too Jo  \ Ok

(5.24)

(5.25)

(5.26)

(5.27)

so that W, — wp in L>®°(Q;R?) by (5.17). Moreover, gathering (5.19), (5.21),
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which proves (5.16). The fact that {Vaw}} is uniformly bounded in L!(Q;R4*") is a consequence of (5.16) and
the coercivity condition (2.7).

Step 3. Since {||Wk|| Lo (qg;re)} and {[|VWk||L1(grax~)} are uniformly bounded, we derive from (2.8) that

) z I x _
kETm/CQ}L(J(a,SoJrPkwk,Vwk) 9<a,50,vwk>

In view of (5.16), it leads to

dx = 0.

d . x __
(w—uN(IO) > khljrfloo g <$, vawk) dx.
- Q

Using standard homogenization results (see e.g., [8], Thm. 14.5) together with (2.10), we finally conclude that

dp
acy

(1'0) Z ghom(50;£0) = Tfhom(507£0)7

which completes the proof of the lemma. O

5.3. Proof of Theorems 1.1 and 1.2 completed

Since LP(2;RY) is separable (1 < p < +00), there exists a subsequence {¢,, } such that F is the I-limit of
{Fe,, } for the strong LP(£2; R%)-topology (see [13], Thm. 8.5).

Case p > 1. In view of (H3) and the closure of the pointwise constraint under strong LP-convergence, we have
F(u) < +oc if and only if u € WHP(Q; M). Hence, as a consequence of Lemmas 4.1 and 5.1, the functionals
{]—‘Enk} [-converge t0 Fhom in LP(£;R?). Since the I'-limit does not depend on the extracted subsequence, we
get in light of [13], Proposition 8.3, that the whole sequence {F., } T'-converges to From-

Case p = 1. As a consequence of Lemmas 4.1 and 5.2, the functionals { 7., } T-converge to Fhom in W (9; M).

Again, the T'-limit does not depend on the extracted subsequence, so that the whole sequence {F., } I'-converges
t0 Fhom in WHL(Q; M). O
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