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HOMOGENIZATION OF VARIATIONAL PROBLEMS
IN MANIFOLD VALUED SOBOLEV SPACES
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Abstract. Homogenization of integral functionals is studied under the constraint that admissible
maps have to take their values into a given smooth manifold. The notion of tangential homogenization
is defined by analogy with the tangential quasiconvexity introduced by Dacorogna et al. [Calc. Var.
Part. Diff. Eq. 9 (1999) 185–206]. For energies with superlinear or linear growth, a Γ-convergence result
is established in Sobolev spaces, the homogenization problem in the space of functions of bounded
variation being the object of [Babadjian and Millot, Calc. Var. Part. Diff. Eq. 36 (2009) 7–47].
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1. Introduction

The homogenization theory aims to find an effective description of materials whose heterogeneities scale
is much smaller than the size of the body. The simplest example is periodic homogenization for which the
microstructure is assumed to be periodically distributed within the material. In the framework of the Calculus
of Variations, periodic homogenization problems rest on the study of equilibrium states, or minimizers, of
integral functionals of the form ∫

Ω

f
(x
ε
,∇u

)
dx, u : Ω → R

d, (1.1)

under suitable boundary conditions, where Ω ⊂ RN is a bounded open set and f : RN × Rd×N → [0,+∞)
is some oscillating integrand with respect to the first variable. To understand the asymptotic behavior of
(almost) minimizers of such energies, it is convenient to perform a Γ-convergence analysis (see [13] for a detailed
description of this subject) which is an adequate theory to study such variational problems. It is usual to
assume that the integrand f satisfies uniform p-growth and p-coercivity conditions (with 1 ≤ p < +∞) so that
one should ask the admissible fields to belong to the Sobolev space W 1,p. For energies with superlinear growth,
i.e., p > 1, this problem has a quite long history, and we refer to [20] in the convex case. Then it has received
the most general answer in the independent works of [7,21], showing that such materials asymptotically behave
like homogeneous ones. These results have been subsequently generalized into a lot of different manners. Let
us mention [9] where the authors add a surface energy term allowing for fractured media. In that case, Sobolev
spaces are not adapted to take into account eventual discontinuities of the deformation field across the cracks.

Keywords and phrases. Homogenization, Γ-convergence, manifold valued maps.
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In many applications admissible fields have to satisfy additional constraints. This is for example the case in
the study of equilibria for liquid crystals, in ferromagnetism or for magnetostrictive materials where the order
parameters take their values into a given manifold. It then becomes necessary to understand the behaviour of
integral functionals of the type (1.1) under this additional constraint. For fixed ε > 0, the possible lack of lower
semicontinuity of the energy may prevent the existence of minimizers (with eventual boundary conditions).
It leads to compute its relaxation under the manifold constraint. In the framework of Sobolev spaces, it
has been studied in [1,12], and the relaxed energy is obtained by replacing the integrand by its tangential
quasiconvexification which is the analogue of the quasiconvex envelope in the non constrained case. We finally
mention a slightly different problem originally introduced in [6,10], where the energy is assumed to be finite
only for smooth maps. Recent generalizations can be found in [19] where the study is performed within the
framework of Cartesian Currents (see [18]). It shows the emergence in the relaxation process of non local effects
of topological nature related to the non density of smooth maps (see [4,5]).

The aim of this paper is to treat the problem of manifold constrained homogenization, i.e., the asymptotic
as ε → 0 of energies of the form (1.1) defined on manifold valued Sobolev spaces. Let us make the idea more
precise. We consider a connected smooth submanifold M of Rd without boundary. The tangent space of M at
a point s ∈ M will be denoted by Ts(M). The class of admissible maps we are interested in is defined as

W 1,p(Ω;M) :=
{
u ∈W 1,p(Ω; Rd) : u(x) ∈ M for LN -a.e. x ∈ Ω

}·
For a smooth M-valued map, it is well known that first order derivatives belong to the tangent space of M.
For u ∈W 1,p(Ω;M), this property still holds in the sense that ∇u(x) ∈ [Tu(x)(M)]N for LN -a.e. x ∈ Ω.

The energy density f : RN × Rd×N → [0,+∞) is assumed to be a Carathéodory integrand satisfying:
(H1) for every ξ ∈ Rd×N the function f(·, ξ) is 1-periodic, i.e., if {e1, . . . , eN} denotes the canonical basis

of RN , one has f(y + ei, ξ) = f(y, ξ) for every i = 1, . . . , N and y ∈ RN ;

(H2) there exist 0 < α ≤ β < +∞ and 1 ≤ p < +∞ such that

α|ξ|p ≤ f(y, ξ) ≤ β(1 + |ξ|p) for a.e. y ∈ R
N and all ξ ∈ R

d×N .

For ε > 0, we define the functionals Fε : Lp(Ω; Rd) → [0,+∞] by

Fε(u) :=

⎧⎨
⎩

∫
Ω

f
(x
ε
,∇u

)
dx if u ∈ W 1,p(Ω;M),

+∞ otherwise.

For energies with superlinear growth, we have the following result.

Theorem 1.1. Let M be a connected smooth submanifold of Rd without boundary, and f : RN × Rd×N →
[0,+∞) be a Carathéodory function satisfying (H1) and (H2) with 1 < p < +∞. Then the family {Fε}ε>0

Γ-converges for the strong Lp-topology to the functional Fhom : Lp(Ω; Rd) → [0,+∞] defined by

Fhom(u) :=

⎧⎨
⎩

∫
Ω

Tfhom(u,∇u) dx if u ∈W 1,p(Ω;M),

+∞ otherwise,

where for every s ∈ M and ξ ∈ [Ts(M)]N ,

Tfhom(s, ξ) = lim
t→+∞ inf

ϕ

{
−
∫

(0,t)N

f(y, ξ + ∇ϕ(y)) dy : ϕ ∈W 1,∞
0 ((0, t)N ;Ts(M))

}
(1.2)

is the tangentially homogenized energy density.
If the integrand f has a linear growth in the ξ-variable, i.e., if f satisfies (H2) with p = 1, we assume in

addition that M is compact, and that
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(H3) there exists L > 0 such that

|f(y, ξ) − f(y, ξ′)| ≤ L|ξ − ξ′| for a.e. y ∈ R
N and all ξ, ξ′ ∈ R

d×N .

Then the following representation result on W 1,1(Ω;M) holds:

Theorem 1.2. Let M be a connected and compact smooth submanifold of Rd without boundary, and f :
RN × Rd×N → [0,+∞) be a Carathéodory function satisfying (H1) to (H3) with p = 1. Then the family
{Fε}ε>0 Γ-converges for the strong L1-topology at every u ∈ W 1,1(Ω;M) to Fhom : W 1,1(Ω;M) → [0,+∞),
where

Fhom(u) :=
∫

Ω

Tfhom(u,∇u) dx,

and Tfhom is given by (1.2).

We would like to emphasize that the use of hypothesis (H3) is not too restrictive. Indeed, the Γ-limit remains
unchanged upon first relaxing the functional Fε (at fixed ε > 0) in W 1,1(Ω; Rd). It would lead to replace the
integrand f by its tangential quasiconvexification which, by virtue of the growth condition (H1), does satisfy
such a Lipschitz continuity assumption (see [12]).

We finally underline that Theorem 1.2 is not completely satisfactory in its present form. Indeed, in the
case of an integrand with linear growth, the domain of the Γ-limit is obviously larger than the Sobolev space
W 1,1(Ω;M) and the analysis has to be performed in the space of functions of bounded variation. In fact
Theorem 1.2 is a first step in this direction and the complete study in BV -spaces can be found in [3].

The paper is organized as follows. The study of the energy density Tfhom and its main properties are presented
in Section 2. A locality property of the Γ-limit is established in Section 3. The upper bound inequalities in
Theorems 1.1 and 1.2 are the object of Section 4. The lower bounds are obtained in Section 5 where the proofs
of both theorems are completed.

Notations

We start by introducing some notations. Let Ω be a generic bounded open subset of RN . We denote by
A(Ω) the family of all open subsets of Ω. We write Bk(s, r) for the closed ball in Rk of center s ∈ Rk and radius
r > 0, Q := (−1/2, 1/2)N the open unit cube in R

N , and Q(x0, ρ) := x0 + ρQ.
The space of real valued Radon measures in Ω with finite total variation is denoted by M(Ω). We denote

by LN the Lebesgue measure in RN . If μ ∈ M(Ω) and λ ∈ M(Ω) is a nonnegative Radon measure, we denote
by dμ

dλ the Radon-Nikodým derivative of μ with respect to λ. By a generalization of Besicovitch Differentiation
Theorem (see [2], Prop. 2.2), there exists a Borel set E such that λ(E) = 0 and

dμ
dλ

(x) = lim
ρ→0+

μ(Q(x, ρ))
λ(Q(x, ρ))

for all x ∈ Suppμ \ E.

2. Properties of the homogenized energy density

In this section we present the main properties of the energy density Tfhom defined in (1.2). We consider the
bulk energy density

Tfhom(s, ξ) := lim inf
t→+∞ inf

ϕ

{
−
∫

(0,t)N

f(y, ξ + ∇ϕ(y)) dy : ϕ ∈W 1,∞
0 ((0, t)N ;Ts(M))

}

defined for s ∈ M and ξ ∈ [Ts(M)]N . Our first concern is to show that the lim inf above is actually a limit.
To this purpose we shall introduce a new energy density f̄ for which we can apply classical homogenization
theories.
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For s ∈ M we denote by Ps : Rd → Ts(M) the orthogonal projection from Rd into Ts(M), and we set

Ps(ξ) := (Ps(ξ1), . . . , Ps(ξN )) for ξ = (ξ1, . . . , ξN ) ∈ R
d×N .

Given the Carathéodory integrand f : R
N × R

d×N → [0,+∞) satisfying assumptions (H1) and (H2) with
1 ≤ p < +∞, we define f̄ : RN ×M× Rd×N → [0,+∞) by

f̄(y, s, ξ) := f(y,Ps(ξ)) + |ξ − Ps(ξ)|p. (2.1)

The new integrand f̄ is a Carathéodory function, and f̄(·, s, ξ) is 1-periodic for every (s, ξ) ∈ M× Rd×N . By
assumption (H2), f̄ also satisfies uniform p-growth and p-coercivity conditions, i.e.,

α′|ξ|p ≤ f̄(y, s, ξ) ≤ β′(1 + |ξ|p) for every (s, ξ) ∈ M× R
d×N and a.e. y ∈ R

N , (2.2)

for some constants 0 < α′ ≤ β′ < +∞.

Proposition 2.1. Let f : RN × Rd×N → [0,+∞) be a Carathéodory integrand satisfying (H1) and (H2) with
1 ≤ p < +∞. Then the following properties hold:

(i) for every s ∈ M and ξ ∈ [Ts(M)]N ,

Tfhom(s, ξ) = lim
t→+∞ inf

ϕ

{
−
∫

(0,t)N

f(y, ξ + ∇ϕ(y)) dy : ϕ ∈W 1,∞
0 ((0, t)N ;Ts(M))

}
,

and
Tfhom(s, ξ) = f̄hom(s, ξ), (2.3)

where

f̄hom(s, ξ) := lim
t→+∞ inf

ϕ

{
−
∫

(0,t)N

f̄(y, s, ξ + ∇ϕ(y)) dy : ϕ ∈ W 1,∞
0 ((0, t)N ; Rd)

}

is the usual homogenized energy density of f̄ (see, e.g., [8], Chap. 14);

(ii) the function Tfhom is tangentially quasiconvex, i.e., for all s ∈ M and all ξ ∈ [Ts(M)]N ,

Tfhom(s, ξ) ≤
∫

Q

Tfhom(s, ξ + ∇ϕ(y)) dy

for every ϕ ∈ W 1,∞
0 (Q;Ts(M)). In particular Tfhom(s, ·) is rank one convex;

(iii) there exists C > 0 such that

α|ξ|p ≤ Tfhom(s, ξ) ≤ β(1 + |ξ|p), (2.4)

and
|Tfhom(s, ξ) − Tfhom(s, ξ′)| ≤ C(1 + |ξ|p−1 + |ξ′|p−1)|ξ − ξ′| (2.5)

for every s ∈ M and ξ, ξ′ ∈ [Ts(M)]N .

Proof. Fix s ∈ M and ξ ∈ [Ts(M)]N . For any t > 0, we introduce

Tft(s, ξ) := inf
ϕ

{
−
∫

(0,t)N

f(y, ξ + ∇ϕ) dy : ϕ ∈W 1,∞
0 ((0, t)N ;Ts(M))

}
,
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and

f̄t(s, ξ) := inf
ϕ

{
−
∫

(0,t)N

f̄(y, s, ξ + ∇ϕ) dy : ϕ ∈W 1,∞
0 ((0, t)N ; Rd)

}
·

By classical results (see, e.g., [8], Prop. 14.4), there exists

lim
t→+∞ f̄t(s, ξ) for every s ∈ M and ξ ∈ [Ts(M)]N .

Hence to prove (i), it suffices to show that Tft(s, ξ) = f̄t(s, ξ) for every t > 0. For any ϕ ∈ W 1,∞
0 ((0, t)N ;Ts(M)),

we have

f̄t(s, ξ) ≤ −
∫

(0,t)N

f̄(y, s, ξ + ∇ϕ) dy = −
∫

(0,t)N

f(y, ξ + ∇ϕ) dy,

since ξ+∇ϕ(y) ∈ [Ts(M)]N for a.e. y ∈ (0, t)N . Taking the infimum over all such ϕ’s in the right hand side of the
previous inequality yields f̄t(s, ξ) ≤ Tft(s, ξ). To prove the converse inequality we pick up ψ ∈ W 1,∞

0 ((0, t)N ; Rd)
and we set ψ̃ = Ps(ψ). One easily checks that ψ̃ ∈ W 1,∞

0 ((0, t)N ;Ts(M)) and ∇ψ̃ = Ps(∇ψ) a.e. in (0, t)N .
Therefore

Tft(s, ξ) ≤ −
∫

(0,t)N

f(y, ξ + ∇ψ̃) dy = −
∫

(0,t)N

f
(
y,Ps(ξ + ∇ψ)

)
dy ≤ −

∫
(0,t)N

f̄(y, s, ξ + ∇ψ) dy.

Then the converse inequality arises taking the infimum over all admissible ψ’s.
By standard results f̄hom(s, ·) is a quasiconvex function for every s ∈ M (see, e.g., [8], Thm. 14.5). As a

consequence, for any s ∈ M, ξ ∈ [Ts(M)]N and ϕ ∈W 1,∞
0 (Q;Ts(M)), we have

Tfhom(s, ξ) = f̄hom(s, ξ) ≤
∫

Q

fhom(s, ξ + ∇ϕ) dy =
∫

Q

Tfhom(s, ξ + ∇ϕ) dy,

which proves that Tfhom is tangentially quasiconvex. As a consequence of (2.3) and the fact that f̄hom(s, ·) is
rank one convex, it follows that Tfhom(s, ·) is rank one convex as well.

The proof of (2.4) is immediate in view of (H1) and the definition of Tfhom. Moreover rank one convex func-
tions satisfying uniform p-growth and p-coercivity conditions are p-Lipschitz (see, e.g., [11], Lem. 2.2, Chap. 4),
and thus (2.5) holds. �

Remark 2.1. It readily follows from the previous proof that Proposition 2.1 still holds for any Carathéodory
integrand f̂ : RN × M × Rd×N → [0,+∞) instead of f̄ , provided that: f̂(x, s, ξ) = f(y, ξ) for every s ∈ M,
every ξ ∈ [Ts(M)]N and a.e. y ∈ RN ; f̂(·, s, ·) satisfies (H1) and (H2) for every s ∈ M with uniform estimates
with respect to s.

Remark 2.2. If dim(M) = 1 then Ts(M) is a one dimensional linear subspace of Rd for every s ∈ M. Hence,
given s ∈ M, we can identify Ts(M) with R through some linear mapping is : R → Ts(M). Using the applica-
tion is, we can also identify [Ts(M)]N with RN setting for z = (z1, . . . , zN ) ∈ RN , is(z) := (is(z1), . . . , is(zN )).
Define f̂(y, s, z) := f(y, is(z)) for (y, s, z) ∈ Ω × M × RN . By (2.3) and [8], Remark 14.6, we can replace in
formula (1.2) homogeneous boundary conditions by periodic boundary conditions, and the limit as t→ +∞ by
the infimum over all t ∈ N. Moreover, in the scalar case the homogenization formula can be reduced to a single
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cell formula (see, e.g., [8], Chap. 14). Therefore

Tfhom(s, ξ) = inf
t∈N

inf

{
−
∫

(0,t)N

f(y, ξ + ∇ϕ) dy : ϕ ∈W 1,∞
# ((0, t)N ;Ts(M))

}

= inf
t∈N

inf

{
−
∫

(0,t)N

f̂(y, s, i−1
s (ξ) + ∇φ) dy : φ ∈ W 1,∞

# ((0, t)N )

}

= inf
{∫

Q

f̂(y, s, i−1
s (ξ) + ∇φ) dy : φ ∈W 1,∞

# (Q)
}

= inf
{∫

Q

f(y, ξ + ∇ϕ) dy : ϕ ∈W 1,∞
# (Q;Ts(M))

}
·

This remark states that whenever the manifold M is one dimensional, test functions in the minimization
problem (1.2) are in fact scalar valued, and thus, one can compute the tangentially homogenized energy density
over one single cell instead of an infinite set of cells. Note that this is not true in general even in the non
constrained case (see, e.g., the counter-example in [21], Thm. 4.3).

We conclude this section with an elementary example where the dependence on the s-variable is explicit. It
shows that tangential homogenization does not reduce in general to standard homogenization. The construction
is based on a rank one laminate for which direct computations can be performed.

Example 2.1. Assume that M = S1 and for x ∈ RN , ξ = (ξij) ∈ R2×N ,

f(x, ξ) =
N∑

j=1

(
a(x1)|ξ1j |2 + b(x1)|ξ2j |2

)
,

where a, b ∈ L∞(R) are 1-periodic and bounded from below by a positive constant. Arguing as in Remark 2.2
and [13], Example 25.6, one may compute for s = (s1, s2) ∈ S

1 and ξ ∈ [Ts(S1)]N ,

Tfhom(s, ξ) =
N∑

j=1

αj(s)
(|ξ1j |2 + |ξ2j |2

)
,

with

αj(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∫ 1/2

−1/2

dt
a(t)s22 + b(t)s21

)−1

if j = 1,

∫ 1/2

−1/2

(
a(t)s22 + b(t)s21

)
dt otherwise.

Compare this result with [13], Example 25.6.

To treat the homogenization problem with p = 1, we will need to extend the function f̄ to the whole space
RN × Rd × Rd×N . We state in the following lemma our extension procedure.

Lemma 2.1. Assume that M is compact. Let f : RN × Rd×N → [0,+∞) be a Carathéodory function satisfy-
ing (H1) to (H3) with p = 1. Then there exists a Carathéodory function g : RN × Rd × Rd×N → [0,+∞) such
that

g(y, s, ξ) = f(y, ξ) for s ∈ M and ξ ∈ [Ts(M)]N , (2.6)

and satisfying:
(i) g is 1-periodic in the first variable;
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(ii) there exist 0 < α′ ≤ β′ such that

α′|ξ| ≤ g(y, s, ξ) ≤ β′(1 + |ξ|) (2.7)

for every (s, ξ) ∈ Rd × Rd×N and a.e. y ∈ RN ;
(iii) there exist C > 0 and C′ > 0 such that

|g(y, s, ξ) − g(y, s′, ξ)| ≤ C|s− s′| |ξ|, (2.8)

and
|g(y, s, ξ) − g(y, s, ξ′)| ≤ C′|ξ − ξ′| (2.9)

for every s, s′ ∈ Rd, every ξ ∈ Rd×N and a.e. y ∈ RN .

Proof. For δ0 > 0 fixed, let U :=
{
s ∈ Rd : dist(s,M) < δ0

}
be the δ0-neighborhood of M. Choosing δ0 > 0

small enough, we may assume that the nearest point projection Π : U → M is a well defined Lipschitz mapping.
Then the map s ∈ U �→ PΠ(s) is Lipschitz. Now we introduce a cut-off function χ ∈ C∞

c (Rd; [0, 1]) such that
χ(t) = 1 if dist(s,M) ≤ δ0/2, and χ(s) = 0 if dist(s,M) ≥ 3δ0/4. We define

Ps(ξ) := χ(s)PΠ(s)(ξ) for (s, ξ) ∈ R
d × R

d×N .

We consider the integrand g : RN × Rd × Rd×N → [0,+∞) given by

g(y, s, ξ) = f(y,Ps(ξ)) + |ξ − Ps(ξ)|.

One may check that g is a Carathéodory function, that g(·, s, ξ) is 1-periodic for every (s, ξ) ∈ Rd ×Rd×N , and
that (H2) yields (2.7). Then (2.8) and (2.9) follow from (H3) and the Lipschitz continuity of s �→ Ps. �
Remark 2.3. In view of (2.6), one may argue exactly as in the proof of (2.3) to show that

Tfhom(s, ξ) = ghom(s, ξ) for every s ∈ M and ξ ∈ [Ts(M)]N , (2.10)

where

ghom(s, ξ) := lim
t→+∞ inf

ϕ

{
−
∫

(0,t)N

g(y, s, ξ + ∇ϕ(y)) dy : ϕ ∈W 1,∞
0 ((0, t)N ; Rd)

}
·

Hence upon extending Tfhom by ghom outside the set
{
(s, ξ) ∈ Rd × Rd×N : s ∈ M, ξ ∈ [Ts(M)]N

}
, we can

tacitly assume Tfhom to be defined over the whole Rd × Rd×N .

3. Localization

In this section we show that a suitable functional larger than the Γ-limit is a measure. It will allow us to
obtain the upper bound on the Γ-limit (see Lem. 4.1) through the blow-up method introduced in [15,16].

Let us consider an arbitrary sequence {εn} ↘ 0+. Along this sequence we define the Γ(Lp)-lower limit
F : Lp(Ω; Rd) → [0,+∞] by

F(u) := inf
{un}

{
lim inf
n→+∞ Fεn(un) : un ∈W 1,p(Ω;M), un → u in Lp(Ω; Rd)

}
·

The idea is to localize the functionals {Fεn}n∈N on the family A(Ω) of all open subsets of Ω. For every
u ∈ Lp(Ω; Rd) and every A ∈ A(Ω), define

Fεn(u,A) :=

⎧⎨
⎩

∫
A

f

(
x

εn
,∇u

)
dx if u ∈ W 1,p(Ω;M),

+∞ otherwise.
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Given a compact set K ⊂ M and a subsequence {εk} := {εnk
} ↘ 0+, we introduce for u ∈ W 1,p(Ω;M) and

A ∈ A(Ω),

F{εk}
K (u,A) := inf

{uk}

{
lim sup
k→+∞

Fεk
(uk, A) : uk ⇀ u weakly in W 1,p(Ω; Rd),

uk → u uniformly and uk(x) = u(x) whenever dist (u(x),K) > 1 for a.e. x ∈ Ω

}
·

A key point in the upcoming analysis is the following locality result.

Lemma 3.1. For every u ∈ W 1,p(Ω;M), there exists a subsequence {εk} such that the set function F{εk}
K (u, ·)

is the restriction to A(Ω) of a Radon measure absolutely continuous with respect to the Lebesgue measure LN .

Proof. From the p-growth condition (H2) we infer that for any subsequence {εk},

F{εk}
K (u,A) ≤ β

∫
A

(1 + |∇u|p) dx, (3.1)

so it remains to prove the existence of a suitable subsequence {εk} for which F{εk}
K (u, ·) is (the trace of) a

Radon measure.

Step 1. We start by proving that for any subsequence {εk} the following subadditivity property holds:

F{εk}
K (u,A) ≤ F{εk}

K (u,B) + F{εk}
K (u,A \ C) (3.2)

for every A, B and C ∈ A(Ω) such that C ⊂ B ⊂ A. Given η > 0 arbitrary, there exist sequences {uk},
{vk} ⊂ W 1,p(Ω;M) such that uk and vk converge weakly to u in W 1,p(Ω; Rd), uk(x) = vk(x) = u(x) if
dist (u(x),K) > 1 for a.e. x ∈ Ω, uk and vk are uniformly converging to u, and

⎧⎪⎨
⎪⎩

lim sup
k→+∞

Fεk
(uk, B) ≤ F{εk}

K (u,B) + η,

lim sup
k→+∞

Fεk
(vk, A \ C) ≤ F{εk}

K (u,A \ C) + η.
(3.3)

Let K′ :=
{
s ∈ M : dist (s,K) ≤ 1

}
, then K′ is a compact subset of M and uk(x) = vk(x) = u(x) if u(x) �∈ K′

for a.e. x ∈ Ω.
Consider L := dist(C, ∂B), M ∈ N, and for every i ∈ {0, . . . ,M} define

Bi :=
{
x ∈ B : dist(x, ∂B) >

iL

M

}
·

Given i ∈ {0, . . . ,M − 1} let Si := Bi \Bi+1, and ζi ∈ C∞
c (Ω; [0, 1]) be a cut-off function satisfying

ζi(x) =
{

1 in Bi+1,

0 in Ω \Bi,
and |∇ζi| ≤ 2M

L
·
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By Lemma 3.2 and Remark 3.3 in [12], there exist δ > 0, c > 0, and a uniformly continuously differentiable
mapping Φ : Dδ × [0, 1] → M, where

Dδ :=
{
(s0, s1) ∈ M×M : dist(s0,K′) < δ, dist(s1,K′) < δ, |s0 − s1| < δ

}
,

such that

Φ(s0, s1, 0) = s0, Φ(s0, s1, 1) = s1,
∂Φ
∂t

(s0, s1, t) ≤ c|s0 − s1|, (3.4)

and

|Φ(s0, s1, t) − s0| ≤ c|s0 − s1|. (3.5)

Since {uk} and {vk} are uniformly converging to u, one can choose k large enough to ensure that

‖uk − u‖L∞(Ω;Rd) < δ, ‖vk − u‖L∞(Ω;Rd) < δ and ‖uk − vk‖L∞(Ω;Rd) < δ.

Therefore for a.e. x ∈ Ω, dist(uk(x),K′) < δ and dist(vk(x),K′) < δ whenever u(x) ∈ K′ . Now we are allowed
to define

wk,i(x) :=
{

Φ(vk(x), uk(x), ζi(x)) if u(x) ∈ K′,
u(x) if u(x) �∈ K′,

and wk,i ∈W 1,p(Ω;M). Using the p-growth condition (H2) together with (3.4), we derive

∫
A

f

(
x

εk
,∇wk,i

)
dx ≤

∫
B

f

(
x

εk
,∇uk

)
dx+

∫
A\C

f

(
x

εk
,∇vk

)
dx

+ C0

∫
Si

(1 + |∇uk|p + |∇vk|p +Mp|uk − vk|p) dx,

for some constant C0 > 0 independent of k, i and M . Summing up over i ∈ {0, . . . ,M − 1} and dividing by M
yields

1
M

M−1∑
i=0

∫
A

f

(
x

εk
,∇wk,i

)
dx ≤

∫
B

f

(
x

εk
,∇uk

)
dx+

∫
A\C

f

(
x

εk
,∇vk

)
dx

+
C0

M

∫
B\C

(1 + |∇uk|p + |∇vk|p +Mp|uk − vk|p) dx.

Hence one may find some ik ∈ {0, . . . ,M − 1} such that w̄k := wk,ik
satisfies

∫
A

f

(
x

εk
,∇w̄k

)
dx ≤

∫
B

f

(
x

εk
,∇uk

)
dx+

∫
A\C

f

(
x

εk
,∇vk

)
dx

+
C0

M

∫
B\C

(1 + |∇uk|p + |∇vk|p +Mp|uk − vk|p) dx. (3.6)
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From (3.4) and (3.5) we deduce that w̄k → u uniformly, w̄k ⇀ u in W 1,p(Ω; Rd), and w̄k(x) = u(x) if
dist(u(x),K) > 1 for a.e. x ∈ Ω. Taking {w̄k} as competitor for F{εk}

K (u,A), and using (3.6) together with (3.3)
leads to

F{εk}
K (u,A) ≤ lim sup

k→+∞
Fεk

(w̄k, A)

≤ lim sup
k→+∞

{
Fεk

(uk, B) + Fεk
(vk, A \ C)

+
C0

M

∫
B\C

(1 + |∇uk|p + |∇vk|p +Mp|uk − vk|p) dx

}

≤ F{εk}
K (u,B) + F{εk}

K (u,A \ C) + 2η

+
C0

M
sup
k∈N

∫
B\C

(1 + |∇uk|p + |∇vk|p) dx.

Then property (3.2) arises sending first M → +∞, and then η → 0.
Step 2. Now we complete the proof of Lemma 3.1. Using a standard diagonal argument, we construct a
subsequence {εk} ↘ 0+ and a sequence {uk} ⊂W 1,p(Ω,M) satisfying

lim
k→+∞

Fεk
(uk,Ω) = inf

{vk}

{
lim inf
k→+∞

Fεk
(vk,Ω) : vk ⇀ u weakly in W 1,p(Ω; Rd),

vk → u uniformly and vk(x) = u(x) whenever dist (u(x),K) > 1 for a.e. x ∈ Ω
}
·

By construction of {εk} and {uk}, we have lim
k→+∞

Fεk
(uk,Ω) = F{εk}

K (u,Ω). Up to the extraction of a further

subsequence, we may assume that

f

( ·
εk
,∇uk

)
LN Ω �

⇀ μ in M(Ω),

for some nonnegative Radon measure μ ∈ M(Ω). By lower semicontinuity, we have

μ(Ω) ≤ lim
k→+∞

Fεk
(uk,Ω) = F{εk}

K (u,Ω).

We claim that
F{εk}

K (u,A) = μ(A) for any A ∈ A(Ω).
We fix A ∈ A(Ω) and we start by proving the inequality “≤”. Given η > 0 arbitrary we can select, in view
of (3.1), C ∈ A(Ω), C ⊂⊂ A, such that F{εk}

K (u,A \ C) ≤ η. Then inequality (3.2) implies that for any
B ∈ A(Ω), C ⊂⊂ B ⊂⊂ A,

F{εk}
K (u,A) ≤ η + lim sup

k→+∞
Fεk

(uk, B) ≤ η + μ(B) ≤ η + μ(A),

and the conclusion follows from the arbitrariness of η.
Conversely, for any B ∈ A(Ω), B ⊂⊂ A, we have

μ(Ω) ≤ F{εk}
K (u,Ω) ≤ F{εk}

K (u,A) + F{εk}
K (u,Ω \B)

≤ F{εk}
K (u,A) + μ(Ω \B) ≤ F{εk}

K (u,A) + μ(Ω \B) ≤ F{εk}
K (u,A) + μ(Ω) − μ(B).

Therefore μ(B) ≤ F{εk}
K (u,A) and the conclusion follows by inner regularity of μ. �
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4. The upper bound

We now make use of the previous locality result to show the upper bound. This will be done thanks to a
blow-up analysis in the spirit of [12], Theorem 3.1.

Lemma 4.1. For every p ∈ [1,+∞) and u ∈ W 1,p(Ω;M), we have F(u) ≤ Fhom(u).

Proof. Step 1. Let u ∈W 1,p(Ω;M). Given R > 0 arbitrary large, we set K := M∩Bd(0, R), and we consider
the subsequence {εk} given by Lemma 3.1. Obviously F(u) ≤ F{εk}

K (u,Ω). We claim that

F{εk}
K (u,Ω) ≤

∫
Ω

{
χR(|u|)Tfhom(u,∇u) + β

(
1 − χR(|u|))(1 + |∇u|p)}dx, (4.1)

where χR(t) = 1 for t ≤ R and χR(t) = 0 otherwise. We postpone the proof of (4.1) to the next step, and we
complete now the proof of Lemma 4.1.

Consider a sequence Rj → +∞ as j → +∞. Since χRj → 1 pointwise, we deduce from Fatou’s lemma
together with (2.4) that

F(u) ≤ lim sup
j→+∞

∫
Ω

{
χRj (|u|)Tfhom(u,∇u) + β

(
1 − χRj (|u|)

)(
1 + |∇u|p)} dx ≤

∫
Ω

Tfhom(u,∇u) dx,

which is the announced estimate.

Step 2. Thanks to Lemma 3.1, to obtain (4.1) it suffices to prove that

dF{εk}
K (u, ·)
dLN

(x0) ≤ χR(|u(x0)|)Tfhom(u(x0),∇u(x0)) + β
(
1 − χR(|u(x0)|)

)(
1 + |∇u(x0)|p

)

for LN -a.e. x0 ∈ Ω .
Let x0 ∈ Ω be a Lebesgue point of u and ∇u such that u(x0) ∈ M, ∇u(x0) ∈ [Tu(x0)(M)]N , and the

Radon-Nikodým derivative of F{εk}
K (u, ·) with respect to the Lebesgue measure LN exists. Note that almost

every points in Ω satisfy these properties. Now set s0 := u(x0) and ξ0 := ∇u(x0).

Case 1. Assume that s0 �∈ K. Then, using (H2), we derive that

dF{εk}
K (u, ·)
dLN

(x0) = lim
ρ→0+

F{εk}
K (u,Q(x0, ρ))

ρN
≤ lim sup

ρ→0+
lim sup
k→+∞

ρ−NFεk
(u,Q(x0, ρ))

≤ lim
ρ→0+

β

ρN

∫
Q(x0,ρ)

(1 + |∇u|p) dx = β
(
1 + |ξ0|p

)
,

which is the desired estimate.

Case 2. Now we assume that s0 ∈ K. Fix 0 < η < 1 arbitrary. By Proposition 2.1, claim (i), there exist j ∈ N

and ϕ ∈W 1,∞
0 ((0, j)N ;Ts0(M)) such that

−
∫

(0,j)N

f(y, ξ0 + ∇ϕ(y)) dy ≤ Tfhom(s0, ξ0) + η. (4.2)

Extend ϕ to RN by j-periodicity, and define ϕk(x) := ξ0 x+ εkϕ(x/εk).
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Let U be an open neighborhood of M such that the nearest point projection Π : U → M defines a C1-mapping.
Fix σ, δ0 ∈ (0, 1) such that Bd(s0, 2δ0) ⊂ U , and consider δ = δ(σ) ∈ (0, δ0) for which

|∇Π(s) −∇Π(s′)| < σ for all s, s′ ∈ Bd(s0, δ0) satisfying |s− s′| < δ . (4.3)

Next we introduce a cut-off function ζ ∈ C∞
c (Rd; [0, 1]) satisfying

ζ(x) =

⎧⎨
⎩

1 for x ∈ Bd(0, δ/4),

0 for x �∈ Bd(0, δ/2),
with |∇ζ| ≤ C

δ
,

and we define
wk(x) := u(x) + εkζ(u(x) − s0)ϕ(x/εk).

Let k0 ∈ N be such that

max
{
εk‖ϕ‖L∞((0,j)N ;Rd)‖∇ζ‖L∞(Rd;Rd),

2εk‖ϕ‖L∞((0,j)N ;Rd)

δ

}
< 1 for any k ≥ k0. (4.4)

Define for every k ≥ k0,
uk(x) := Π(wk(x)).

Remark that by (4.4), for a.e. x ∈ Ω and all k ≥ k0, one has wk(x) ∈ Bd(s0, δ) whenever |u(x) − s0| < δ/2
while wk(x) = u(x) when |u(x) − s0| ≥ δ/2. Hence uk is well defined, {uk} ⊂ W 1,p(Ω;M), and for a.e. x ∈ Ω,
uk(x) = u(x) whenever dist (u(x),K) > 1. Moreover,

‖uk − u‖L∞(Ω;Rd) = ‖Π(wk) − Π(u)‖L∞({|u−s0|<δ/2};Rd) ≤ εk ‖∇Π‖L∞(Bd(s0,δ0);Rd)‖ϕ‖L∞((0,j)N ;Rd) → 0

as k → +∞. Now the Chain Rule formula yields

∇uk(x) = ∇Π(wk(x))
(
∇u(x) + εk

(
ϕ(x/εk) ⊗∇ζ(u(x) − s0)

)∇u(x) + ζ(u(x) − s0)∇ϕ(x/εk)
)
,

and consequently

|∇uk(x)| ≤ ‖∇Π‖L∞(Bd(s0,δ0);Rd)

((
1 + εk‖ϕ‖L∞((0,j)N ;Rd)‖∇ζ‖L∞(Rd;Rd)

)|∇u(x)| + ‖∇ϕ‖L∞((0,j)N ;Rd×N)

)
.

By (4.4) it follows that for any k ≥ k0,

|∇uk(x)| ≤ C0(|∇u(x) − ξ0| + 1) (4.5)

for some constant C0 = C0(s0, ξ0, δ0, η) > 0 independent of x and k. Hence the sequence {uk} is uniformly
bounded in W 1,p(Ω; Rd) so that uk ⇀ u in W 1,p(Ω; Rd).

Then we observe that |∇uk| ≤ 2C0 a.e. in {|∇u− ξ0| < σ} while

‖∇ϕk‖L∞(Ω;Rd×N ) ≤ |ξ0| + ‖∇ϕ‖L∞((0,j)N ;Rd×N ).

Set
M := max

{
2C0, |ξ0| + ‖∇ϕ‖L∞((0,j)N ;Rd×N )

}
, (4.6)

(which only depends on s0, ξ0, δ0 and η) so that

|∇uk| ≤M and |∇ϕk| ≤M a.e. in {|∇u− ξ0| < σ}· (4.7)
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Next for a.e. x ∈ {|u− s0| < δ/4} ∩ {|∇u− ξ0| < σ}, we have ζ(u(x) − s0) = 1 and

|∇uk(x) −∇ϕk(x)| ≤ |∇Π(wk)∇u(x) − ξ0| + |∇Π(wk)∇ϕ(x/εk) −∇ϕ(x/εk)|
≤ |∇Π(wk) −∇Π(s0)| |∇u(x)| + |∇Π(s0)| |∇u(x) − ξ0|

+ |∇Π(wk) −∇Π(s0)| ‖∇ϕ‖L∞((0,j)N ;Rd×N ),

where, in the last inequality, we have used the fact that ∇Π(s0)∇ϕ(y) = ∇ϕ(y) since ∇ϕ(y) ∈ [Ts0(M)]N for
a.e. y ∈ RN . Using (4.3) and the fact that |wk − s0| < δ a.e. in {|u− s0| < δ/4} ∩ {|∇u− ξ0| < σ}, we deduce

|∇uk(x) −∇ϕk(x)| ≤ (|∇u(x)| + |∇Π(s0)| + ‖∇ϕ‖L∞((0,j)N ;Rd×N )

)
σ ≤ C1σ (4.8)

for a.e. x ∈ {|u− s0| < δ/4}∩ {|∇u− ξ0| < σ}, where C1 = C1(s0, ξ0, δ0, η) > 0 is a constant independent of σ,
k and x.

Now we estimate

dF{εk}
K (u, ·)
dLN

(x0) = lim
ρ→0+

F{εk}
K (u,Q(x0, ρ))

ρN

≤ lim sup
ρ→0+

lim sup
k→+∞

1
ρN

∫
Q(x0,ρ)

f

(
x

εk
,∇uk

)
dx

≤ lim sup
ρ→0+

lim sup
k→+∞

1
ρN

∫
Q(x0,ρ)∩{|u−s0|≥δ/4}

f

(
x

εk
,∇uk

)
dx

+ lim sup
ρ→0+

lim sup
k→+∞

1
ρN

∫
Q(x0,ρ)∩{|u−s0|<δ/4}∩{|∇u−ξ0|<σ}

f

(
x

εk
,∇uk

)
dx

+ lim sup
ρ→0+

lim sup
k→+∞

1
ρN

∫
Q(x0,ρ)∩{|u−s0|<δ/4}∩{|∇u−ξ0|≥σ}

f

(
x

εk
,∇uk

)
dx

=: I1 + I2 + I3. (4.9)

Thanks to (4.5), the p-growth condition (H2) and our choice of x0, we have

I1 ≤ C lim sup
ρ→0+

1
ρN

∫
Q(x0,ρ)∩{|u−s0|≥δ/4}

(1 + |∇u(x) − ξ0|p) dx

≤ C lim sup
ρ→0+

−
∫

Q(x0,ρ)

|∇u(x) − ξ0|p dx+
4C
δ

lim sup
ρ→0+

−
∫

Q(x0,ρ)

|u(x) − s0| dx = 0, (4.10)

while

I3 ≤ C lim sup
ρ→0+

1
ρN

∫
Q(x0,ρ)∩{|u−s0|<δ/4}∩{|∇u−ξ0|≥σ}

(1 + |∇u(x) − ξ0|p) dx

≤ C lim sup
ρ→0+

−
∫

Q(x0,ρ)

|∇u(x) − ξ0|p dx+
C

σ
lim sup
ρ→0+

−
∫

Q(x0,ρ)

|∇u(x) − ξ0| dx = 0. (4.11)

Let us now treat the integral I2. Since, for a.e. y ∈ RN , the function f(y, ·) is continuous, it is uniformly
continuous on Bd×N(0,M) where M > 0 is given in (4.6). Define the modulus of continuity of f(y, ·) over
Bd×N(0,M) by

ω(y, t) := sup{|f(y, ξ) − f(y, ξ′)| : ξ, ξ′ ∈ Bd×N(0,M) and |ξ − ξ′| ≤ t}·
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It turns out that ω(y, ·) is increasing, continuous and ω(y, 0) = 0, while ω(·, t) is measurable (since the supremum
can be restricted to all admissible ξ and ξ′ having rational entries) and 1-periodic. Thanks to (4.7) and (4.8)
we get that ∣∣∣∣f

(
x

εk
,∇uk(x)

)
− f

(
x

εk
,∇ϕk(x)

)∣∣∣∣ ≤ ω

(
x

εk
, C1σ

)

for a.e. x ∈ Q(x0, ρ) ∩ {|u− s0| < δ/4} ∩ {|∇u− ξ0| < σ}.
Integrating over the set Q(x0, ρ) ∩ {|u− s0| < δ/4} ∩ {|∇u− ξ0| < σ}, and taking the limit as k → +∞, we

obtain in view of the Riemann-Lebesgue lemma that

lim sup
k→+∞

ρ−N

∫
Q(x0,ρ)∩{|u−s0|<δ/4}∩{|∇u−ξ0|<σ}

∣∣∣∣f
(
x

εk
,∇uk(x)

)
− f

(
x

εk
,∇ϕk(x)

)∣∣∣∣dx ≤

lim sup
k→+∞

ρ−N

∫
Q(x0,ρ)

ω

(
x

εk
, C1σ

)
dx =

∫
Q

ω(y, C1σ) dy,

where we have used the fact that y �→ ω(y, C1σ) is a measurable 1-periodic function. Observe that the Dominated
Convergence Theorem together with ω(y, 0) = 0 implies

lim
σ→0+

∫
Q

ω(y, C1σ) dy = 0. (4.12)

We have obtained

I2 ≤ lim sup
ρ→0+

lim sup
k→+∞

1
ρN

∫
Q(x0,ρ)

f

(
x

εk
,∇ϕk

)
dx+

∫
Q

ω(y, C1σ) dy. (4.13)

Using the definition of ϕk and the Riemann-Lebesgue lemma, we infer from (4.2) that

lim sup
ρ→0+

lim sup
k→+∞

1
ρN

∫
Q(x0,ρ)

f

(
x

εk
, ξ0 + ∇ϕ

(
x

εk

))
dx = −

∫
(0,j)N

f(y, ξ0+∇ϕ(y)) dy ≤ Tfhom(s0, ξ0)+η. (4.14)

Hence gathering (4.9)–(4.11), (4.13) and (4.14) we deduce that

dF{εk}
K (u, ·)
dLN

(x0) ≤ Tfhom(s0, ξ0) +
∫

Q

ω(y, C1σ) dy + η.

Thanks to (4.12), the thesis follows sending first σ → 0, and then η → 0. �

5. The lower bound

We now investigate the Γ-lim inf inequality still through the blow-up method. In contrast with Lemma 4.1
we will distinguish energies with superlinear growth and energies with linear growth. We will conclude this
section with the proofs of Theorems 1.1 and 1.2.

5.1. The case of superlinear growth

The case p > 1 is based on an equi-integrability result known as Decomposition Lemma [17], Lemma 1.2,
which allows to consider sequences with p-equi-integrable gradients. It enables to use properties valid up to sets
where the energy remains small.
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Lemma 5.1. Assume p ∈ (1,+∞). Then F(u) ≥ Fhom(u) for every u ∈W 1,p(Ω;M).

Proof. Let u ∈ W 1,p(Ω;M). By a standard diagonal argument, we first obtain a subsequence {εn} (not
relabeled) and {un} ⊂W 1,p(Ω;M) such that un → u in Lp(Ω; Rd) and

F(u) = lim
n→+∞

∫
Ω

f

(
x

εn
,∇un

)
dx < +∞.

Define the sequence of nonnegative Radon measures

μn := f

( ·
εn
,∇un

)
LN Ω.

Extracting a further subsequence if necessary, we may assume that there exists a nonnegative Radon measure
μ ∈ M(Ω) such that μn

∗
⇀μ in M(Ω). Using Lebesgue Differentiation Theorem one can split μ into the sum

of two mutually disjoint nonnegative measures μ = μa + μs where μa � LN and μs is singular with respect
to LN . Since μa(Ω) ≤ μ(Ω) ≤ F(u), it is enough to check that

dμ
dLN

(x0) ≥ Tfhom(u(x0),∇u(x0)) for LN -a.e. x0 ∈ Ω.

Step 1. Select a point x0 ∈ Ω which is a Lebesgue point of u and ∇u, a point of approximate differentiability
of u (so that u(x0) ∈ M, ∇u(x0) ∈ [Tu(x0)(M)]N ), and such that the Radon-Nikodým derivative of μ with
respect to the Lebesgue measure LN exists and is finite. Note that almost every points x0 in Ω satisfy these
properties. As in the proof of Lemma 4.1, set s0 := u(x0) and ξ0 := ∇u(x0).

Let {ρk} ↘ 0+ be such that μ(∂Q(x0, ρk)) = 0 for every k ∈ N. Using the integrand f̄ defined in (2.1) one
obtains

dμ
dLN

(x0) = lim
k→+∞

μ(Q(x0, ρk))
ρN

k

= lim
k→+∞

lim
n→+∞

μn(Q(x0, ρk))
ρN

k

= lim
k→+∞

lim
n→+∞

∫
Q

f

(
x0 + ρky

εn
,∇un(x0 + ρky)

)
dy

= lim
k→+∞

lim
n→+∞

∫
Q

f̄

(
x0 + ρky

εn
, un(x0 + ρky),∇un(x0 + ρky)

)
dy

= lim
k→+∞

lim
n→+∞

∫
Q

f̄

(
x0 + ρky

εn
, s0 + ρkvn,k(y),∇vn,k(y)

)
dy,

where we have set vn,k(y) :=
[
un(x0+ρky)−s0

]
/ρk. Note that since x0 is a point of approximate differentiability

of u and un → u in Lp(Ω; Rd), we have

lim
k→+∞

lim
n→+∞

∫
Q

|vn,k(y) − ξ0 y|p dy = lim
k→+∞

∫
Q(x0,ρk)

|u(y) − s0 − ξ0 (y − x0)|p
ρN+p

k

dy = 0.

Hence one can find a diagonal sequence εk := εnk
< ρ2

k such that, setting vk(y) := vnk,k(y) and v0(y) := ξ0 y,
vk → v0 in Lp(Q; Rd) and

dμ
dLN

(x0) = lim
k→+∞

∫
Q

f̄

(
x0 + ρky

εk
, s0 + ρkvk(y),∇vk(y)

)
dy. (5.1)
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Next observe that {∇vk} is bounded in Lp(Q; Rd×N) thanks to the coercivity condition (2.2). By the De-
composition Lemma [17], Lemma 1.2, we now find a sequence {v̄k} ⊂ W 1,∞(Q; Rd) such that v̄k = v0 on a
neighborhood of ∂Q, v̄k → v0 in Lp(Q; Rd), the sequence of gradients {|∇v̄k|p} is equi-integrable, and

lim
k→+∞

∫
Q

f̄

(
x0 + ρky

εk
, s0 + ρkvk(y),∇vk(y)

)
dy ≥ lim sup

k→+∞

∫
Q

f̄

(
x0 + ρky

εk
, s0 + ρkvk(y),∇v̄k(y)

)
dy. (5.2)

Step 2. Write
x0

εk
= mk + sk with mk ∈ Z

N and sk ∈ [0, 1)N ,

and define
xk :=

εk

ρk
sk → 0 and δk := εk/ρk → 0.

By the 1-periodicity of f̄ with respect to its first variable, (5.1) and (5.2), we infer

dμ
dLN

(x0) ≥ lim sup
k→+∞

∫
Q

f̄

(
xk + y

δk
, s0 + ρkvk(y),∇v̄k(y)

)
dy

≥ lim sup
k→+∞

∫
xk+Q

f̄

(
y

δk
, s0 + ρkvk(y − xk),∇v̄k(y − xk)

)
dy. (5.3)

Extend vk by 0, and v̄k by v0 to the whole RN . As xk → 0 it follows that LN ((Q − xk)�Q) → 0, and the
equi-integrability of {|∇v̄k|p} together with the p-growth condition (2.2) implies∫

Q
(xk+Q)

f̄

(
y

δk
, s0 + ρkvk(y − xk),∇v̄k(y − xk)

)
dy ≤ β′

∫
(Q−xk)
Q

(1 + |∇v̄k|p) dy → 0.

Hence (5.3) yields
dμ

dLN
(x0) ≥ lim sup

k→+∞

∫
Q

f̄

(
y

δk
, s0 + ρkwk,∇w̄k

)
dy, (5.4)

where wk(y) := vk(y−xk) and w̄k(y) := v̄k(y−xk) converge to v0 in Lp(Q; Rd), and {|∇w̄k|p} is equi-integrable
as well.

Step 3. For M > 1 and k ∈ N, consider the set EM,k := {x ∈ Q : |∇w̄k| ≤M}. By Chebyschev inequality, (5.4)
and (2.2), LN (Q \ EM,k) ≤ C/Mp for some constant C > 0 independent of k and M .

By the Scorza-Dragoni Theorem (see [14], p. 235), for any η > 0, we may find a compact set Kη ⊂ Q such
that LN (Q \Kη) < η and f : Kη × Rd×N → [0,+∞) is continuous. In particular the restriction of f̄(·, s, ·) to
Kη × Bd×N(0,M) is uniformly continuous for every s ∈ M. Therefore the function Ψη,M : [0,+∞) → [0,+∞)
defined by

Ψη,M (t) = sup
{
|f(y, ξ) − f(y, ξ′)| : y ∈ Kη, ξ, ξ

′ ∈ Bd×N(0,M), |ξ − ξ′| ≤ t

}
,

is continuous, satisfies Ψη,M (0) = 0, and is bounded. In view of (2.1), we have

|f̄(y, s1, ξ) − f̄(y, s2, ξ)| ≤ Ψη,M

(
M |Ps1 − Ps2 |

)
+ CM |Ps1 − Ps2 | =: Ψ̃η,M

(|Ps1 − Ps2 |
)

for every y ∈ Kη, s1, s2 ∈ M and ξ ∈ Bd×N(0,M), where the constant CM > 0 only depends on M and p.
Define

Kper
η :=

⋃
�∈ZN

(
�+Kη

)
.

Since f̄ is 1-periodic in the first variable,

|f̄(y, s1, ξ) − f̄(y, s2, ξ)| ≤ Ψ̃η,M

(|Ps1 − Ps2 |
)

(5.5)
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for every y ∈ Kper
η , s1, s2 ∈ M and ξ ∈ Bd×N(0,M) . From (5.4) and (5.5) it follows that

dμ
dLN

(x0) ≥ lim sup
k→+∞

∫
EM,k∩(δkKper

η )

f̄

(
y

δk
, s0 + ρkwk,∇w̄k

)
dy

≥ lim sup
k→+∞

∫
EM,k∩(δkKper

η )

f̄

(
y

δk
, s0,∇w̄k

)
dy

− lim sup
k→+∞

∫
Q

Ψ̃η,M

(|Ps0+ρkwk(y) − Ps0 |
)
dy.

Since Ψ̃η,M is continuous and bounded, Ψ̃η,M (0) = 0, and (up to a subsequence) Ps0+ρkwk(y) → Ps0 for a.e.
y ∈ Q, we obtain by Dominated Convergence that

lim
k→+∞

∫
Q

Ψ̃η,M

(|Ps0+ρkwk(y) − Ps0 |
)
dy = 0,

and thus
dμ

dLN
(x0) ≥ lim sup

k→+∞

∫
EM,k∩(δkKper

η )

f̄

(
y

δk
, s0,∇w̄k

)
dy. (5.6)

From the p-growth condition (2.2) and the Riemann-Lebesgue Lemma, we deduce that

lim sup
k→+∞

∫
EM,k\(δkKper

η )

f̄

(
y

δk
, s0,∇w̄k

)
dy ≤ lim sup

k→+∞
β′(1 +Mp)LN (Q \ (δkKper

η ))

= β′(1 +Mp)LN (Q \Kη) ≤ β′(1 +Mp)η.

Hence (5.6) yields

dμ
dLN

(x0) ≥ lim sup
k→+∞

∫
EM,k

f̄

(
y

δk
, s0,∇w̄k

)
dy − β′(1 +Mp)η,

and sending η → 0, we derive

dμ
dLN

(x0) ≥ lim sup
k→+∞

∫
EM,k

f̄

(
y

δk
, s0,∇w̄k

)
dy. (5.7)

Since LN (Q \EM,k) → 0 as M → +∞ (uniformly with respect to k), the equi-integrability of {|∇w̄k|p} and the
p-growth condition (2.2) imply

sup
k∈N

∫
Q\EM,k

f̄

(
y

δk
, s0,∇w̄k

)
dy ≤ β′ sup

k∈N

∫
Q\EM,k

(1 + |∇w̄k|p) dy −→ 0 as M → +∞.

Plugging this estimate in (5.7) leads to

dμ
dLN

(x0) ≥ lim sup
k→+∞

∫
Q

f̄

(
y

δk
, s0,∇w̄k

)
dy.
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Since w̄k → v0 in Lp(Q; Rd), we can invoke standard homogenization results (see, e.g., [8], Thm. 14.5) to infer
that

lim sup
k→+∞

∫
Q

f̄

(
y

δk
, s0,∇w̄k

)
dy ≥

∫
Q

f̄hom(s0,∇v0) dy = f̄hom(s0, ξ0).

In view of Proposition 2.1 we finally conclude

dμ
dLN

(x0) ≥ f̄hom(s0, ξ0) = Tfhom(s0, ξ0),

and the proof is complete. �

5.2. The case of linear growth

We now treat the case p = 1 assuming that the function u belongs to W 1,1(Ω;M). In contrast with the case
p > 1, there is no equi-integrability result as the Decomposition Lemma. We follow here the approach of [15].

Lemma 5.2. Assume p = 1. Then F(u) ≥ Fhom(u) for every u ∈W 1,1(Ω;M).

Proof. Let u ∈ W 1,1(Ω;M). By a standard diagonal argument, we first obtain a subsequence {εn} (not
relabeled) and {un} ⊂W 1,1(Ω;M) such that un → u in L1(Ω; Rd) and

F(u) = lim
n→+∞

∫
Ω

f

(
x

εn
,∇un

)
dx < +∞.

Up to the extraction of a further subsequence, we may assume that there exists a nonnegative Radon measure
μ ∈ M(Ω) such that

f

( ·
εn
,∇un

)
LN Ω ∗

⇀μ in M(Ω). (5.8)

Hence it is enough to prove that μ(Ω) ≥ Fhom(u). As in the proof of Lemma 5.1, it suffices to show that

dμ
dLN

(x0) ≥ Tfhom(u(x0),∇u(x0)) for LN -a.e. x0 ∈ Ω.

The proof will be divided into three steps. We first apply the blow-up method which reduces the study to affine
limiting functions. Then we reproduce the argument of [15] which enables us to replace the original sequence
by a uniformly converging one without increasing the energy. We will conclude using a classical homogenization
result.

Step 1. Select a point x0 ∈ Ω which is a Lebesgue point of u and ∇u, a point of approximate differentiability
of u (so that u(x0) ∈ M, ∇u(x0) ∈ [Tu(x0)(M)]N ) and such that the Radon-Nikodým derivative of μ with
respect to the Lebesgue measure LN exists and is finite. Note that LN -almost every points x0 in Ω satisfy these
properties. We write s0 := u(x0) and ξ0 := ∇u(x0).

Up to a subsequence, we may assume that there exists a nonnegative Radon measure λ ∈ M(Ω) such that
(1+|∇un|)LN Ω ∗

⇀λ in M(Ω). Consider a sequence {ρk} ↘ 0+ such thatQ(x0, 2ρk) ⊂ Ω and μ(∂Q(x0, ρk)) =
λ(∂Q(x0, ρk)) = 0 for each k ∈ N. Then (5.8) yields

μ(Q(x0, ρk)) = lim
n→+∞

∫
Q(x0,ρk)

f

(
x

εn
,∇un

)
dx. (5.9)
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Set τn := εn

[
x0/εn

] ∈ εnZ
N . Since τn → x0, given r ∈ (1, 2) we have Q(τn, ρk) ⊂ Q(x0, rρk) whenever n is

large enough, and we may define for x ∈ Q(0, ρk), vn(x) := un(x + τn). By continuity of the translation in L1,
we get that

∫
Q(0,ρk)

|vn(x) − u(x+ x0)| dx =
∫

Q(τn,ρk)

|un(x) − u(x+ x0 − τn)| dx

≤
∫

Q(x0,rρk)

|un(x) − u(x+ x0 − τn)| dx −→
n→+∞ 0. (5.10)

Changing variable in (5.9) and using the periodicity condition (H1) of f(·, ξ) and the growth condition (H2),
we are led to

μ(Q(x0, ρk)) = lim
n→+∞

∫
Q(x0−τn,ρk)

f

(
x+ τn
εn

,∇un(x+ τn)
)

dx

= lim
n→+∞

∫
Q(x0−τn,ρk)

f

(
x

εn
,∇vn

)
dx

≥ lim sup
n→+∞

∫
Q(0,ρk)

f

(
x

εn
,∇vn

)
dx− β lim sup

n→+∞

∫
Q(τn,ρk)\Q(x0,ρk)

(1 + |∇un|) dx. (5.11)

On the other hand, by our choice of ρk,

lim sup
n→+∞

∫
Q(τn,ρk)\Q(x0,ρk)

(1 + |∇un|) dx ≤ lim sup
r→1+

lim sup
n→+∞

∫
Q(x0,rρk)\Q(x0,ρk)

(1 + |∇un|) dx

≤ lim sup
r→1+

λ
(
Q(x0, rρk) \Q(x0, ρk)

)
≤ λ(∂Q(x0, ρk)) = 0,

so that the last term in (5.11) vanishes. Hence

μ(Q(x0, ρk)) ≥ lim sup
n→+∞

∫
Q(0,ρk)

f

(
x

εn
,∇vn

)
dx,

where {vn} ⊂W 1,1(Q(0, ρk);M) satisfies vn → u(x0 + ·) in L1(Q(0, ρk); Rd) by (5.10).
Now we consider for every n, a sequence {vn,j} ⊂ C∞(

Q(0, ρk); Rd
)

such that vn,j → vn inW 1,1(Q(0, ρk); Rd),
vn,j → vn and ∇vn,j → ∇vn a.e. in Q(0, ρk) as j → +∞ (we emphasize that in general, vn,j is not M-valued).
Considering the integrand g given by Lemma 2.1, one may check

lim
j→+∞

∫
Q(0,ρk)

g

(
x

εn
, vn,j,∇vn,j

)
dx =

∫
Q(0,ρk)

g

(
x

εn
, vn,∇vn

)
dx =

∫
Q(0,ρk)

f

(
x

εn
,∇vn

)
dx,

so that we can find a diagonal sequence v̄n := vn,jn satisfying v̄n → u(x0 + ·) in L1(Q(0, ρk); Rd) and

μ(Q(x0, ρk)) ≥ lim sup
n→+∞

∫
Q(0,ρk)

g

(
x

εn
, v̄n,∇v̄n

)
dx. (5.12)
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Changing variable in (5.12) yields

dμ
dLN

(x0) ≥ lim sup
k→+∞

lim sup
n→+∞

∫
Q

g

(
ρk x

εn
, v̄n(ρk x),∇v̄n(ρk x)

)
dx

= lim sup
k→+∞

lim sup
n→+∞

∫
Q

g

(
ρk x

εn
, s0 + ρk wn,k,∇wn,k

)
dx, (5.13)

where we have set wn,k(x) :=
[
v̄n(ρk x) − s0

]
/ρk. Since x0 is a point of approximate differentiability of u and

v̄n → u(x0 + ·) in L1(Q(0, ρk); Rd), we have

lim
k→+∞

lim
n→+∞

∫
Q

|wn,k(x) − ξ0 x| dx = lim
k→+∞

∫
Q(x0,ρk)

|u(y) − s0 − ξ0 (y − x0)|
ρN+1

k

dy = 0. (5.14)

In view of (5.13) and (5.14), we can find a diagonal sequence εnk
< ρ2

k such that wk := wnk,k → w0 in L1(Q; Rd)
with w0(x) := ξ0 x, and

dμ
dLN

(x0) ≥ lim sup
k→+∞

∫
Q

g

(
x

δk
, s0 + ρk wk,∇wk

)
dx, (5.15)

where δk := εnk
/ρk → 0.

Step 2. We now argue as in Step 3 of the proof of [15], Theorem 2.1, to show that there exists a sequence
{wk} ⊂W 1,∞(Q; Rd) such that wk → w0 in L∞(Q; Rd), {wk} is uniformly bounded in W 1,1(Q; Rd) and

dμ
dLN

(x0) ≥ lim sup
k→+∞

∫
Q

g

(
x

δk
, s0 + ρk wk,∇wk

)
dx. (5.16)

Given 0 < s < t , let ζs,t ∈ C∞
c (R; [0, 1]) be a cut-off function satisfying ζs,t(τ) = 1 if |τ | ≤ s, ζs,t(τ) = 0 if

|τ | ≥ t and |ζ′s,t| ≤ C/(t− s). Define

wk
s,t := w0 + ζs,t(|wk − w0|)(wk − w0).

Obviously,
‖wk

s,t − w0‖L∞(Q;Rd) ≤ t, (5.17)
and the Chain Rule formula gives

∇wk
s,t = ∇w0 + ζs,t

(|wk − w0|
)
(∇wk −∇w0) + ζ′s,t

(|wk − w0|
)
(wk − w0) ⊗∇|wk − w0|. (5.18)

In particular,

∫
Q

g

(
x

δk
, s0 + ρk w

k
s,t,∇wk

s,t

)
dx =

∫
{|wk−w0|≤s}

g

(
x

δk
, s0 + ρk wk,∇wk

)
dx

+
∫
{s<|wk−w0|≤t}

g

(
x

δk
, s0 + ρk w

k
s,t,∇wk

s,t

)
dx

+
∫
{|wk−w0|>t}

g

(
x

δk
, s0 + ρk w0, ξ0

)
dx. (5.19)

From the growth condition (2.7), we infer that

∫
{|wk−w0|>t}

g

(
x

δk
, s0 + ρk w0, ξ0

)
dx ≤ β′(1 + |ξ0|)LN ({|wk − w0| > t}), (5.20)
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and (5.18) yields

∫
{s<|wk−w0|≤t}

g

(
x

δk
, s0 + ρk w

k
s,t,∇wk

s,t

)
dx ≤ C

∫
{s<|wk−w0|≤t}

(1 + |∇wk − ξ0|) dx

+
C

t− s

∫
{s<|wk−w0|≤t}

|wk − w0|
∣∣∇|wk − w0|

∣∣ dx. (5.21)

Observe that for L1-a.e. t > 0,

lim
s→t−

∫
{s<|wk−w0|≤t}

(1 + |∇wk − ξ0|) dy ≤ Ck lim
s→t−

LN
({s < |wk − w0| ≤ t}) = 0, (5.22)

and by the Coarea formula,

lim
s→t−

1
t− s

∫
{s<|wk−w0|≤t}

|wk − w0|
∣∣∇|wk − w0|

∣∣dx
= lim

s→t−

1
t− s

∫ t

s

τHN−1({|wk − w0| = τ}) dτ = tHN−1({|wk − w0| = t}). (5.23)

Moreover, in view of (2.7) and (5.15) we infer that
∫

Q

∣∣∇|wk − w0|
∣∣ dx ≤ C

∫
Q

(1 + |∇wk|) dy ≤ C0.

Applying [15], Lemma 2.6, there exists tk ∈
(
‖wk − w0‖1/2

L1(Q;Rd)
, ‖wk − w0‖1/3

L1(Q;Rd)

)
such that (5.22) and (5.23)

hold with t = tk, and

tkHN−1({|wk − w0| = tk}) ≤ C0

ln
(
‖wk − w0‖−1/6

L1(Q;Rd)

) · (5.24)

According to (5.22), (5.23) and (5.24), there exists sk ∈
(
‖wk − w0‖1/2

L1(Q;Rd)
, tk

)
such that

∫
{sk<|wk−w0|≤tk}

(1 + |∇wk − ξ0|) dx ≤ 1
k
, (5.25)

and
1

tk − sk

∫
{sk<|wk−w0|≤tk}

|wk − w0|
∣∣∇|wk − w0|

∣∣ dx ≤ C0

ln
(
‖wk − w0‖−1/6

L1(Q;Rd)

) +
1
k
, (5.26)

while (5.20) together with Chebyshev inequality yields

∫
{|wk−w0|>tk}

g

(
x

δk
, s0 + ρk w0, ξ0

)
dy ≤ C‖wk − w0‖1/2

L1(Q;Rd)
. (5.27)

Define now wk := wk
sk,tk

so that wk → w0 in L∞(Q; Rd) by (5.17). Moreover, gathering (5.19), (5.21),
(5.25), (5.26) and (5.27), we deduce

lim sup
k→+∞

∫
Q

g

(
x

δk
, s0 + ρk wk,∇wk

)
dx ≤ lim sup

k→+∞

∫
Q

g

(
x

δk
, s0 + ρk wk,∇wk

)
dx,
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which proves (5.16). The fact that {∇wk} is uniformly bounded in L1(Q; Rd×N) is a consequence of (5.16) and
the coercivity condition (2.7).

Step 3. Since {‖wk‖L∞(Q;Rd)} and {‖∇wk‖L1(Q;Rd×N )} are uniformly bounded, we derive from (2.8) that

lim
k→+∞

∫
Q

∣∣∣∣ g
(
x

δk
, s0 + ρk wk,∇wk

)
− g

(
x

δk
, s0,∇wk

)∣∣∣∣ dx = 0.

In view of (5.16), it leads to
dμ

dLN
(x0) ≥ lim

k→+∞

∫
Q

g

(
x

δk
, s0,∇wk

)
dx.

Using standard homogenization results (see e.g., [8], Thm. 14.5) together with (2.10), we finally conclude that

dμ
dLN

(x0) ≥ ghom(s0, ξ0) = Tfhom(s0, ξ0),

which completes the proof of the lemma. �

5.3. Proof of Theorems 1.1 and 1.2 completed

Since Lp(Ω; Rd) is separable (1 ≤ p < +∞), there exists a subsequence {εnk
} such that F is the Γ-limit of

{Fεnk
} for the strong Lp(Ω; Rd)-topology (see [13], Thm. 8.5).

Case p > 1. In view of (H2) and the closure of the pointwise constraint under strong Lp-convergence, we have
F(u) < +∞ if and only if u ∈ W 1,p(Ω;M). Hence, as a consequence of Lemmas 4.1 and 5.1, the functionals
{Fεnk

} Γ-converge to Fhom in Lp(Ω; Rd). Since the Γ-limit does not depend on the extracted subsequence, we
get in light of [13], Proposition 8.3, that the whole sequence {Fεn} Γ-converges to Fhom.

Case p = 1. As a consequence of Lemmas 4.1 and 5.2, the functionals {Fεnk
} Γ-converge to Fhom inW 1,1(Ω;M).

Again, the Γ-limit does not depend on the extracted subsequence, so that the whole sequence {Fεn} Γ-converges
to Fhom in W 1,1(Ω;M). �
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