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A PENALTY METHOD FOR TOPOLOGY OPTIMIZATION SUBJECT
TO A POINTWISE STATE CONSTRAINT

Samuel Amstutz
1

Abstract. This paper deals with topology optimization of domains subject to a pointwise constraint
on the gradient of the state. To realize this constraint, a class of penalty functionals is introduced
and the expression of the corresponding topological derivative is obtained for the Laplace equation in
two space dimensions. An algorithm based on these concepts is proposed. It is illustrated by some
numerical applications.
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1. Introduction

Mathematicians and engineers have at disposal various methods to address shape and topology optimization
problems. They mainly rely on the following concepts: calculus of shape derivatives [19,24,31,33], construction
of relaxed formulations [2,9,10], propagation of level sets [4,7,35] and topological sensitivity analysis [15,16,32].
These methods have proven their efficiency to deal with academic or industrial problems in many fields of
applications, such as structural optimization, design of electromagnetic components, shape control of fluids,
and shape reconstruction from measurements. The treated problems are generally unconstrained or subject
to a small number of constraints, like a volume constraint. Yet, in structural optimization for instance, the
failure criteria generally involve spatial functions whose value at every point of the structure has to fulfill given
requirements. This gives rise to shape and topology optimization problems subject to infinitely many inequality
constraints. These problems, which are investigated in the present paper, concentrate several difficulties. Firstly,
pointwise state constraints are known to be delicate to handle, even in the classical framework of the control
by a function. One has to face a low regularity of the Lagrange multiplier, which is usually only a Borel
measure, making multiplier based algorithms hardly directly applicable. Possible cures have been devised
only recently [20,22,23]. Secondly, relaxing such problems seems to have no simple solution due to the local
nature of the constraint. Unless this latter is weakened like in [3], the proposed strategies lead to tremendous
computational efforts [12,14]. Finally, the set of definition of the constraint functional is deformed with the
design domain. In the related context of generalized semi-infinite programming, solution methods have been
developed only when the number of decision variables is finite and the problem has a special structure [28,29,34].
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For all these reasons, we opt for the use of a penalty method associated with a topological derivative based
algorithm. The advantage of the topological derivative is to allow topology variations without relaxation. We
recall that the principle consists in analyzing the behavior of the objective functional with respect to topology
perturbations, typically the nucleation of small holes in the domain. Penalty methods do not involve any
Lagrange multiplier, and penalty functionals defined in the variable domain can be constructed in a natural
way. Our framework is that of second order elliptic state equations. Among them, the linear elasticity equations
with a constraint on the principal stresses, like the Von Mises stress, are a target of major interest for the
applications. However, the multidimensionality of this system raises technical difficulties which we want to
avoid in a first step. Therefore, we focus in this paper on the scalar Laplace equation, whose solutions exhibit
a similar behavior near geometric singularities. By analogy with the principal stresses, we choose a constraint
acting on the gradient of the state. Using an adjoint method, we carry out the topological sensitivity analysis
of a class of smooth penalty functionals. Because such functionals do not allow for an exact penalization, we
construct a sequence of functionals from this class and use them within an iterative algorithm. Convergence
properties, which are always very hard to study whenever shapes are involved, are not investigated at the
theoretical level, but they are illustrated by some numerical experiments.

The paper is organized as follows. The model problem and the class of penalty functionals under consideration
are presented in Section 2. The topological sensitivity analysis of these functionals is carried out in Sections 3
and 4. The main result is stated in the end of the latter. A part of the proofs is gathered in Section 5 for
readability. The penalty functionals used in the computations are exhibited in Section 6, and the algorithm is
described in Section 7. Section 8 is dedicated to the numerical examples and concludes as to the efficiency of
the method.

2. Problem statement

2.1. The constrained problem

Let D be a bounded domain (connected open subset) of R
2 with a Lipschitz boundary Γ made of two disjoint

parts ΓD and ΓN , ΓD being of nonzero measure and ΓN being of class C1. Let E be a set of subdomains of D.
For all Ω ∈ E we define the piecewise constant function

αΩ =
{

αin in Ω,
αout in D\Ω,

where αin and αout are different positive numbers. In the applications, D\Ω will be occupied by a phase with
very low conductivity meant to approximate an empty region. Hence there will hold

αout

αin
� 1. (2.1)

Given a distribution g ∈ H1/2
00 (ΓN )′, we denote by uΩ ∈ H1(D) the solution of the boundary value problem:

⎧⎨
⎩
−div(αΩ∇uΩ) = 0 in D,

uΩ = 0 on ΓD,
αΩ∂nuΩ = g on ΓN .

(2.2)

We want to minimize over E an objective functional of the form Ω �→ IΩ(uΩ). In addition, given a 2 by 2
symmetric positive semidefinite matrix B, an open set D̃ ⊂ D and a positive constant M , we want to realize
the constraint

1
2
B∇uΩ · ∇uΩ ≤M a.e. in Ω ∩ D̃. (2.3)
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In summary, the problem under investigation reads:

min
Ω∈E

IΩ(uΩ) subject to (2.2) and (2.3). (2.4)

Due to the lack of convexity property, we will content ourselves with local minimizers. The class of perturbations
used to characterize these domains will be specified in Section 3.1.

2.2. Penalized formulation

Given a positive parameter γ, we consider the penalized objective functional

IγΩ(uΩ) = IΩ(uΩ) + γJΩ(uΩ) (2.5)

where the penalty functional JΩ is of the form

JΩ(u) =
∫
D̃

βΩΦ
(

1
2
B∇u · ∇u

)
dx, (2.6)

βΩ =
{

βin in Ω,
βout in D\Ω.

The above coefficients βin and βout are constants, ideally βout = 0 (however there will be a little restriction, see
Rem. 2.1). The function Φ : R+ → R+ is assumed to be nondecreasing with at most linear growth at infinity,
which allows to define JΩ(u) for all u ∈ H1(D). Although uΩ generally enjoys higher regularity, but not much
higher if the domain D has corners, this growth condition will be nevertheless useful for our analysis. For the
sake of readability, we denote Φ(1

2B∇u · ∇u) instead of Φ ◦ (1
2B∇u · ∇u). The penalized problem reads:

min
Ω∈E

IγΩ(uΩ) subject to (2.2). (2.7)

In general, problems (2.4) and (2.7) are not equivalent. More precisely, the penalization is said to be exact at
a local minimizer Ω� of (2.4) if Ω� is a local minimizer of (2.7). We expect that, like in nonlinear programming,
exactness can be generically achieved only if the penalty functional is non-differentiable (see e.g. [11]). However,
to enable the resolution of (2.7) by using the topological derivative, the function Φ has to be smooth (at least
C1). This difficulty can be overcome by two ways:

(1) Construct a sequence (γn)n∈N with limn→+∞ γn = +∞, then solve (2.7) with γn in place of γ for
increasing values of n.

(2) Construct a sequence of smooth penalty functions (Φn)n∈N tending to a presumed exact (non-diff-
erentiable) penalty function Φ∞, then solve (2.7) with γ fixed in advance and Φn in place of Φ for
increasing values of n.

We choose the second strategy, although the first one is far more common. This choice is justified by the
fact that the growth condition imposed on Φ prohibits the use of the classical quadratic penalty function
t �→ max(t−M, 0)2. We point out that this phenomenon is peculiar to nonsmooth domains, which we want to
be able to address (see Rem. 4.4). In the shape sensitivity framework with smooth boundaries, the quadratic
penalty function is used e.g. in [21].

An example of suitable sequence of penalty functions is given in Section 6. For the moment, we assume that
Φ and γ are given.

Remark 2.1. We will see that the subsequent analysis requires the condition

αout

αin
=
βout

βin
· (2.8)
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Hence βout cannot be equal to zero. Nevertheless, in view of (2.1), this limitation results only in a very minor
alteration of the initial problem.

3. Framework for the topological sensitivity analysis

3.1. Topology perturbations

In order to apply a topology optimization algorithm to problem (2.7) such as those proposed in [5,7,13,16,26],
we need to know the expression of the topological derivative of the functional IγΩ(uΩ). We assume that the
topological derivative of the objective functional IΩ(uΩ) is known. Therefore the theoretical part of this paper
is focused on the topological sensitivity analysis of the penalty functional JΩ(uΩ).

Starting from a current domain Ω ⊂ D, we consider two kinds of perturbation: the creation of a hole inside
Ω and the nucleation of a new connected component to Ω. Given a smooth bounded domain ω ⊂ R

2, a point
x0 ∈ D\∂Ω and a parameter ε > 0, we denote by ωε = x0 + εω the shifted and rescaled image of ω. In this
paper, we only consider circular perturbations, i.e. ω = B(0, 1), ωε = B(x0, ε). The new design domain Ωε is
defined by

Ωε =
{

Ω\ωε if x0 ∈ Ω,
Ω ∪ ωε if x0 ∈ D\Ω.

It is clear that ωε is contained either in Ω or in D\Ω provided that ε is small enough.
We assume from now on that x0 is fixed and, for notational simplicity, we denote (αε, βε, uε, Jε) instead

of (αΩε , βΩε , uΩε , JΩε) and (α0, β0, u0, J0) instead of (αΩ, βΩ, uΩ, JΩ). The state equations and the penalty
functional can be rewritten as: ⎧⎨

⎩
−div (αε∇uε) = 0 in D,

uε = 0 on Γ,
αε∂nuε = g on ΓN ,

(3.1)

Jε(u) =
∫
D̃

βεΦ
(

1
2
B∇u · ∇u

)
dx. (3.2)

In all the sequel, we suppose that ε does not exceed 1. Then, for both types of perturbations, αε and βε can be
expressed as:

αε(x) =
{
α0(x) if x ∈ D\ωε,
α1(x) if x ∈ ωε, βε(x) =

{
β0(x) if x ∈ D\ωε,
β1(x) if x ∈ ωε. (3.3)

It stems from the previous assumptions that α0, α1, β0 and β1 are constant in a neighborhood of x0. We denote
by α∗

0, α
∗
1, β

∗
0 and β∗

1 the corresponding values, namely (α∗
0, β

∗
0 , α

∗
1, β

∗
1) = (αin, βin, αout, βout) if x0 ∈ Ω, and

(α∗
0, β

∗
0 , α

∗
1, β

∗
1) = (αout, βout, αin, βin) if x0 ∈ D\Ω. Hence α∗

1 = α∗
0. In connexion with Remark 2.1 we assume

that
α∗

1

α∗
0

=
β∗

1

β∗
0

· (3.4)

3.2. A preliminary result

A proof of the following proposition can be found in [6].

Proposition 3.1. Let V be a Hilbert space. For all ε ∈ [0, ε0), ε0 > 0, consider a vector uε ∈ V solution of a
variational problem of the form

aε(uε, v) = �ε(v) ∀v ∈ V , (3.5)
where aε and �ε are a bilinear form on V and a linear form on V, respectively. For all ε ∈ [0, ε0), consider a
functional Jε : V → R and a linear form Lε(u0) ∈ V ′. Suppose that the following properties hold.

(1) There exist two numbers δJ1 and δJ2 and a function ε ∈ R
+ �→ f(ε) ∈ R such that, when ε goes to zero,

Jε(uε) = Jε(u0) + 〈Lε(u0), uε − u0〉+ f(ε)δJ1 + o(f(ε)), (3.6)
Jε(u0) = J0(u0) + f(ε)δJ2 + o(f(ε)). (3.7)
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(2) There exist two numbers δa and δ� such that

(aε − a0)(u0, vε) = f(ε)δa+ o(f(ε)), (3.8)
(�ε − �0)(vε) = f(ε)δ�+ o(f(ε)), (3.9)

where vε ∈ V is an adjoint state satisfying

aε(ϕ, vε) = −〈Lε(u0), ϕ〉 ∀ϕ ∈ V . (3.10)

Then we have
Jε(uε)− J0(u0) = f(ε)(δa− δ�+ δJ1 + δJ2) + o(f(ε)).

4. Topological sensitivity analysis of the penalty functional

In this section we check the hypotheses of Proposition 3.1 for the problem under consideration.

4.1. Adjoint state

The bilinear and linear forms associated with problem (3.1) are defined in the space V = {u ∈ H1(Ω),
u|ΓD

= 0} by

aε(u, v) =
∫
D

αε∇u · ∇v dx ∀u, v ∈ V , (4.1)

�ε(v) =
∫

ΓN

gvds ∀v ∈ V . (4.2)

Note that, as above, we will always denote the duality pairing between H
1/2
00 (ΓN ) and its dual by an integral.

Although the penalty functional (3.2) is not Fréchet-differentiable on V unless Φ is affine (see [8]), we define its
tangent linear approximation at the point u0 (unperturbed solution) in a natural way by:

〈Lε(u0), ϕ〉 =
∫
D̃

βεΦ′
(

1
2
B∇u0 · ∇u0

)
B∇u0 · ∇ϕdx ∀ϕ ∈ V .

However, to assure that this expression is well-defined, we make the additional assumption that Φ′ is bounded.
Then we define the function

k1 = Φ′
(

1
2
B∇u0 · ∇u0

)
χD̃, (4.3)

where χD̃ is the characteristic function of D̃. We derive from (3.10) that the adjoint state solves:

⎧⎨
⎩
−div (αε∇vε) = +div (βεk1B∇u0) in D,

vε = 0 on ΓD,
αε∂nvε = −βεk1B∇u0.n on ΓN .

(4.4)

4.2. Variation of the bilinear form

We begin by analyzing the asymptotic behavior of the quantity:

(aε − a0)(u0, vε) =
∫
ωε

(α1 − α0)∇u0 · ∇vεdx. (4.5)
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We take ε sufficiently small so that α1, α0, β1, β0 are constant in ωε. By introducing the variation ṽε = vε− v0,
we decompose (4.5) as:

(aε − a0)(u0, vε) = πε2(α∗
1 − α∗

0)∇u0(x0) · ∇v0(x0) + (α∗
1 − α∗

0)
∫
ωε

∇u0 · ∇ṽεdx+ E1(ε),

with

E1(ε) = (α∗
1 − α∗

0)
∫
ωε

[∇u0 · ∇v0 −∇u0(x0) · ∇v0(x0)] dx.

Starting from (4.4) and using (3.4), we obtain that ṽε solves:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−div(αε∇ṽε) = 0 in ωε ∪ (D\ωε),

[αε∂nṽε] = −(α∗
1 − α∗

0)
(
β∗
0
α∗

0
k1B∇u0 · n+∇v0 · n

)
on ∂ωε,

ṽε = 0 on ΓD,
∂nṽε = 0 on ΓN .

The notation [f ] stands for the jump of the function f across ∂ωε with the convention of a positive sign on the
interior side. We set

V =
β∗

0

α∗
0

k1(x0)B∇u0(x0) +∇v0(x0), (4.6)

and we approximate ṽε by the solution hVε of the auxiliary problem

⎧⎨
⎩

−ΔhVε = 0 in ωε ∪ (R2\ωε),[
αε∂nh

V
ε

]
= −(α∗

1 − α∗
0)V · n on ∂ωε,

hVε → 0 at ∞.
(4.7)

Possibly shifting the coordinate system, we assume from now on for simplicity that x0 = 0. For a circular
inclusion, the function hVε is known explicitly as:

hVε (x) = −ρ×
⎧⎨
⎩

V · x in ωε,

ε2
V · x
|x|2 in R

2\ωε, (4.8)

with

ρ =
α∗

1 − α∗
0

α∗
1 + α∗

0

· (4.9)

It admits the gradient:

∇hVε (x) = −ρ×
⎧⎨
⎩

V in ωε,

ε2
[
V

|x|2 − 2(V.x)
x

|x|4
]

in R
2\ωε. (4.10)

Denoting by

E2(ε) = (α∗
1 − α∗

0)
∫
ωε

∇u0 · ∇(ṽε − hVε )dx,

E3(ε) = (α∗
1 − α∗

0)
∫
ωε

(∇u0 −∇u0(x0)) · ∇hVε dx,
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we obtain straightforwardly

(α∗
1 − α∗

0)
∫
ωε

∇u0 · ∇ṽεdx = (α∗
1 − α∗

0)
∫
ωε

∇u0(x0) · ∇hVε dx+ E2(ε) + E3(ε)

= −πε2(α∗
1 − α∗

0)ρ∇u0(x0) · V + E2(ε) + E3(ε).

After rearrangement, we arrive at:

(aε − a0)(u0, vε) = πε2ρ

[
2α∗

0∇u0(x0) · ∇v0(x0)− (β∗
1 − β∗

0 )k1(x0)B∇u0(x0) · ∇u0(x0)
]

+
3∑
i=1

Ei(ε).

We shall prove in Section 5 that Ei(ε) = o(ε2) for i = 1, 2, 3. We conclude that (3.8) holds true with

f(ε) = ε2, (4.11)

δa = πρ

[
2α∗

0∇u0(x0) · ∇v0(x0)− (β∗
1 − β∗

0 )k1(x0)B∇u0(x0) · ∇u0(x0)
]
. (4.12)

4.3. Variation of the linear form

In our case, �ε is independent of ε, hence
δ� = 0. (4.13)

4.4. Partial variation of the penalty functional with respect to the state

We have to study the variation

VJ1(ε) := Jε(uε)− Jε(u0)− 〈Lε(u0), uε − u0〉
=

∫
D̃

βε

[
Φ
(

1
2
B∇uε · ∇uε

)
− Φ

(
1
2
B∇u0 · ∇u0

)
− Φ′

(
1
2
B∇u0 · ∇u0

)
B∇u0 · ∇(uε − u0)

]
dx.

Setting ũε = uε − u0, we obtain

VJ1(ε) =
∫
D̃

βε

[
Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇ũε +

1
2
B∇ũε · ∇ũε

)
− Φ

(
1
2
B∇u0 · ∇u0

)

− Φ′
(

1
2
B∇u0 · ∇u0

)
B∇u0 · ∇ũε

]
dx. (4.14)

By difference, we find that ũε solves:⎧⎪⎪⎨
⎪⎪⎩
−div(αε∇ũε) = 0 in ωε ∪ (D\ωε),

[αε∂nũε] = −(α∗
1 − α∗

0)∇u0 · n on ∂ωε,
ũε = 0 on ΓD,

∂nũε = 0 on ΓN .

(4.15)

Setting now U = ∇u0(x0), we approximate ũε by hUε solution to (4.7) with U substituted for V . It comes:

VJ1(ε) =
∫
D̃

βε

[
Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇hUε +

1
2
B∇hUε · ∇hUε

)
− Φ

(
1
2
B∇u0 · ∇u0

)

− Φ′
(

1
2
B∇u0 · ∇u0

)
B∇u0 · ∇hUε

]
dx+ E4(ε), (4.16)
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with

E4(ε) =
∫
D̃

βε

[
Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇ũε +

1
2
B∇ũε · ∇ũε

)

− Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇hUε +

1
2
B∇hUε · ∇hUε

)
− Φ′

(
1
2
B∇u0 · ∇u0

)
B∇u0 · (∇ũε −∇hUε )

]
dx.

We assume that x0 ∈ D̃. Otherwise, when x0 ∈ D\D̃, the theory developed in [6] applies and provides δJ1 = 0.
We exclude of our study the special case where x0 ∈ ∂D̃. In view of the decay of ∇hUε as well as the regularity
of u0 near x0, we write

VJ1(ε) =
∫

R2
β∗
ε

[
Φ
(

1
2
BU · U +BU · ∇hUε +

1
2
B∇hUε · ∇hUε

)
− Φ

(
1
2
BU · U

)

− Φ′
(

1
2
BU · U

)
BU · ∇hUε

]
dx+ E4(ε) + E5(ε),

with the adequate remainder E5(ε) and β∗
ε (x) = β∗

1 if x ∈ ωε, β∗
ε (x) = β∗

0 otherwise. Next we make the splitting

VJ1(ε) = VJ11(ε) + VJ12(ε) + E4(ε) + E5(ε),

where VJ11 and VJ12 correspond to an integration over ωε and R
2\ωε, respectively. Using (4.10) we obtain that

VJ11(ε) = ε2πβ∗
1

[
Φ
(

(1− ρ)2 1
2
BU · U

)
− Φ

(
1
2
BU · U

)
+ ρΦ′

(
1
2
BU · U

)
BU · U

]
.

Next, we define the function independent of ε

HU
ρ (x) = ∇hUε (εx) = −ρ

[
U

|x|2 − 2(U · x) x

|x|4
]

∀x ∈ R
2\ω. (4.17)

A change of variable yields

VJ12(ε) = ε2
∫

R2\ω
β∗

0

[
Φ
(

1
2
BU · U +BU ·HU

ρ +
1
2
BHU

ρ ·HU
ρ

)
− Φ

(
1
2
BU · U

)
− Φ′

(
1
2
BU · U

)
BU ·HU

ρ

]
dx.

We set

Ψρ(U) =
∫

R2\ω

[
Φ
(

1
2
B(U +HU

ρ ) · (U +HU
ρ )
)
−Φ

(
1
2
BU · U

)
−Φ′

(
1
2
BU · U

)(
BU ·HU

ρ +
1
2
BHU

ρ ·HU
ρ

)]
dx.

(4.18)
The extra term 1

2BH
U
ρ ·HU

ρ has been added so that Ψρ(U) vanishes whenever Φ is linear. Thus we have

VJ12(ε) = ε2β∗
0

[
Ψρ(U) +

1
2
Φ′
(

1
2
BU · U

)∫
R2\ω

BHU
ρ ·HU

ρ dx
]
.

A symbolic calculus of the above integral provides

VJ12(ε) = ε2β∗
0

[
Ψρ(U) + ρ2π

4
k1(x0)tr(B)|U |2

]
,
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where tr(B) stands for the trace of the matrix B. We shall prove in Section 5 that E4(ε) + E5(ε) = o(ε2).
Therefore we get

δJ1 = πβ∗
1

[
Φ
(

(1− ρ)2 1
2
BU · U

)
−Φ

(
1
2
BU · U

)
+ρk1(x0)BU ·U

]
+β∗

0

[
Ψρ(U)+ρ2π

4
k1(x0)tr(B)|U |2

]
. (4.19)

4.5. Partial variation of the penalty functional with respect to the domain

We assume again that x0 /∈ ∂D̃. We have

V J2(ε) := Jε(u0)− J0(u0)

=
∫
ωε∩D̃

(β1 − β0)Φ
(

1
2
B∇u0 · ∇u0

)
dx

= πε2(β∗
1 − β∗

0)χD̃(x0)Φ
(

1
2
B∇u0(x0) · ∇u0(x0)

)
+ E6(ε),

with E6(ε) = o(ε2) (see Sect. 5). Thus we obtain

δJ2 = π(β∗
1 − β∗

0)χD̃(x0)Φ
(

1
2
B∇u0(x0) · ∇u0(x0)

)
. (4.20)

4.6. Topological derivative

Before stating the main result of this paper, we make a regularity assumption which will be useful to establish
the needed estimates.

Assumption 4.1. If x0 ∈ D̃, then there exists η > 0 such that:

(1) B(x0, 2η) ⊂ D̃;
(2) u0, v0 ∈ C1,α(B(x0, 2η)), α > 0;
(3) u0 ∈ W 1,4(D̃\B(x0, 2η));
(4) every function u ∈ H1(D \B(x0, η)) satisfying

⎧⎨
⎩
−div(α0∇u) = 0 in D \B(x0, η),

u = 0 on ΓD,
α0∂nu = 0 on ΓN

(4.21)

belongs to W 1,4(D̃ \B(x0, 2η)).

Remark 4.2. Assumption 4.1 is little restrictive. It is satisfied for instance in the following situation, which
corresponds to the problems studied in Section 8:

• Φ′′, calculated in the sense of distributions, belongs to L∞
loc(R+), which implies that k1 is in W 1,∞ in

a neighborhood of x0 and thus guarantees by elliptic regularity that v0 is locally W 2,p for any p > 2,
itself imbedded in C1,1−2/p (see e.g. [17]);

• D is a Lipschitz polygon with edges (Γj)j=1,...,N and vertices (Si)i=1,...,P ;
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• on each edge Γj the boundary condition is either u = 0 or ∂nu = gj ∈ H1/2+δ(Γj), δ > 0;
• if a vertex Si ∈ Γj∩Γj+1 where the type of boundary condition changes belongs to ∂D̃, then the interior

angle between Γj and Γj+1 is lower than π and, in case it is equal to π
2 , the two boundary conditions

are compatible (see [18], Cor. 4.4.3.8);
• the interface ∂Ω\∂D is the disjoint union of arcs (Ij)j=1,...,K of class C1,1 such that each arc touches

the external boundary ∂D in two distinct points denoted by Ij ∩ ∂D = {Pj1, Pj2};
• if a junction point Pjk coincides with a vertex Si and belongs to ∂D̃, then the two interior angles defined

by these curves are less than or equal to π and the boundary condition is locally either u = 0 or ∂nu = 0
without changing.

This property is obtained by collecting results from [18,27,30] and using Sobolev imbedding theorems (see
e.g. [1]). We refer to these documents for possible extensions.

In view of Proposition 3.1, gathering (4.11), (4.12), (4.13), (4.19) and (4.20) provides the following result.

Theorem 4.3. Consider a function Φ ∈ C1(R+; R) with Φ′ Lipschitz continuous and bounded, and choose
x0 ∈ D\∂Ω\∂D̃. We assume that all the assumptions of Section 3.1 are satisfied as well as Assumption 4.1.
Then the reduced penalty function j(ε) = Jε(uε) admits the asymptotic expansion

j(ε)− j(0) = ε2G(x0) + o(ε2),

where the topological derivative (also called topological gradient) G is given by:

G = πρ [2α0∇u0 · ∇v0 + β0k1B∇u0 · ∇u0] + πβ1χD̃Φ
(

(1− ρ)2 1
2
B∇u0 · ∇u0

)

+ β0χD̃

[
Ψρ(∇u0) + ρ2π

4
k1tr(B)|∇u0|2

]
− πβ0χD̃Φ

(
1
2
B∇u0 · ∇u0

)
. (4.22)

We recall that k1, ρ and Ψρ are defined by (4.3), (4.9) and (4.18), respectively. The adjoint state v0 is the
unique solution of the boundary value problem:

⎧⎨
⎩
−div (α0∇v0) = +div (β0k1B∇u0) in D,

v0 = 0 on ΓD,
α0∂nv0 = −β0k1B∇u0.n on ΓN .

(4.23)

Remark 4.4.

(1) The assumption of boundedness of Φ′, which implies the Lipschitz continuity of Φ, will be used several
times in the proof of Theorem 4.3, but it can be weakened. However, in order to be assured of the
existence of an H1 solution to (4.4) when ∇u0 ∈ L4(D) (which is the best Lp regularity to be expected
in a Lipschitz domain), we need a growth condition of the type |Φ′(x)| ≤ a + b

√
x (see [8]). This

condition is obviously not fulfilled by penalty functions with quadratic growth. Conversely, if Φ′ had a
linear growth, we would need ∇u0 ∈ L6(D), hence every angle would have to be less that 3π/2. Thus
we have assumed that Φ′ is bounded for simplicity of the proofs as well as for practical reasons.

(2) Expression (4.22) is related to a very general result, therefore not fully explicit, stated in [25] for an
arbitrarily-shaped perforation with Neumann condition on its boundary. However, the proof given
in [25] is valid only if D has a smooth boundary. The capability to deal with domains with corners is
essential here, and significantly complicates the analysis.

(3) When Φ is convex, the function Ψρ is everywhere nonnegative by construction.
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4.7. Expression of Ψρ(U) in the isotropic case

When B is the identity matrix, we observe that Ψρ(U) is invariant by rotation of the vector U . Therefore
we can write

Ψρ(U) = Ψ̂ρ

(
1
2
|U |2

)
.

Plugging (4.17) into (4.18) and taking U parallel to the x-axis yields after a change of variable and rearrangement:

Ψ̂ρ(σ) = ρ

∫ ρ

0

∫ π

0

1
t2

[
Φ(σ(1 + t2 + 2t cos θ)) − Φ(σ)− Φ′(σ)σ(t2 + 2t cos θ)

]
dθdt. (4.24)

5. Auxiliary estimates

5.1. Preliminary lemmas

Lemma 5.1. (1) For any vector V ∈ R
2 and any positive radius R, we have

‖hVε ‖L2(D) = O(ε3/2),

‖∇hVε ‖Lp(D) = O(ε2/p) ∀p > 1,

‖hVε ‖Lp(D\B(x0,R)) + ‖∇hVε ‖Lp(D\B(x0,R)) = O(ε2) ∀p ≥ 1.

(2) Given a function ψ : D → R
2 which is Hölder continuous in the vicinity of x0, consider the solution wε

of the system:

⎧⎪⎪⎨
⎪⎪⎩
−div(αε∇wε) = 0 in ωε ∪ (D \ ωε),

[αε∂nwε] = −(α∗
1 − α∗

0)ψ · n on ∂ωε,
wε = 0 on ΓD,

∂nwε = 0 on ΓN .

(5.1)

Then we have
‖wε − hψ(x0)

ε ‖H1(D) = o(ε).

Proof. The first part of the lemma derives straightforwardly from the expressions (4.8) and (4.10). Therefore
we concentrate on the second part. To do so, we take an arbitrary test function ϕ ∈ V . On the one hand, the
variational formulation associated with (5.1) provides

∫
D

αε∇wε · ∇ϕdx = −(α∗
1 − α∗

0)
∫
∂ωε

(ψ · n)ϕds.

On the other hand, the Green formula together with (4.7) yield

∫
D

αε∇hε · ∇ϕdx = −(α∗
1 − α∗

0)
∫
∂ωε

(ψ(x0) · n)ϕds+ (αin − αout)
∫
∂Ω∩D

∂nhεϕds+
∫

ΓN

α0∂nhεϕds.

For notational simplicity, we have dropped the superscript in hψ(x0)
ε . It follows that the difference eε := wε−hε

satisfies∫
D

αε∇eε ·∇ϕdx = −(α∗
1−α∗

0)
∫
∂ωε

(ψ−ψ(x0)) ·nϕds− (αin−αout)
∫
∂Ω∩D

∂nhεϕds−
∫

ΓN

α0∂nhεϕds. (5.2)
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By a change of variable, the α-Hölder continuity of ψ in the vicinity of x0 (0 < α < 1) and the trace theorem,
we get for ε small enough

∣∣∣∣
∫
∂ωε

(ψ − ψ(x0)) · nϕds
∣∣∣∣ = ε

∣∣∣∣
∫
∂ω

(ψ(εx)− ψ(x0)) · nϕ(εx)ds
∣∣∣∣

≤ cε1+α‖ϕ(εx)‖H1/2(∂ω)

≤ cε1+α‖ϕ(εx)‖H1(ω)

≤ cεα‖ϕ‖L2(ωε) + cε1+α‖∇ϕ‖L2(ωε).

The Hölder inequality and the Sobolev imbedding theorem yield ‖ϕ‖L2(ωε) ≤ cε1/p‖ϕ‖L2p/(p−1)(ωε) ≤ cε1/p

‖ϕ‖H1(D) for any p > 1. It comes

∣∣∣∣
∫
∂ωε

(ψ − ψ(x0)) · nϕds
∣∣∣∣ ≤ c(εα+1/p + εα+1)‖ϕ‖H1(D).

We estimate the other terms of (5.2) with the help of the first part of the lemma. We arrive at

∣∣∣∣
∫
D

αε∇eε · ∇ϕdx
∣∣∣∣ ≤ c(εα+1/p + εα+1 + ε2)‖ϕ‖H1(D).

Besides, we have the boundary condition eε = −hε on ΓD, which satisfies ‖hε‖H1/2(ΓD) ≤ cε2. Thus we obtain
by elliptic regularity

‖eε‖H1(D) ≤ c(εα+1/p + εα+1 + ε2).

The proof is achieved by choosing any p ∈
(

1,
1

1− α
)

. �

Lemma 5.2. For the variation ũε = uε − u0 we have

‖ũε‖H1(D) = O(ε), (5.3)

‖ũε‖W 1,4(D̃\B(x0,2η))
= o(ε).

Proof. (1) In view of (4.15), (5.3) is a straightforward application of Lemma 5.1. Indeed, we have

‖ũε‖H1(D) ≤ ‖ũε − hUε ‖H1(D) + ‖hUε ‖H1(D).

The first term is a o(ε) and the second one is a O(ε).
(2) Let B be the set of all functions u ∈ H1(D\B(x0, η)) satisfying (4.21). Due to Assumption 4.1, we

have B|D̃\B(x0,2η)
⊂ W 1,4(D̃ \ B(x0, 2η)). It is then easy to check that B is a Banach space when it is

endowed with the norms

‖u‖1 = ‖u‖
H1(D\B(x0,η))

,

‖u‖2 = ‖u‖H1(D\B(x0,η))
+ ‖u‖W 1,4(D̃\B(x0,2η))

.

By virtue of the open mapping theorem, these norms are equivalent. Using Lemma 5.1 completes the
proof.

�
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5.2. Asymptotic behavior of the remainders

We shall prove that Ei(ε) = o(ε2) for i = 1, ..., 6. For simplicity, we use the letter c to denote any constant
independent of ε. We focus on the case where x0 ∈ D̃, the other case being treated in [6]. It will appear that
the function Φ needs to be extended to the whole real line. We still denote by Φ such an extension, constructed
in such a way that it is of class C1 on R with Lipschitz continuous and bounded derivative.

(1) Using the regularity of u0 and v0 near x0, it is straightforward to check that E1(ε) = O(ε2+α).
(2) It stems from the Cauchy-Schwarz inequality that

|E2(ε)| ≤ cε‖ṽε − hVε ‖H1(D).

We recall that V is defined by (4.6). Applying Lemma 5.1 with ψ = β∗
0
β∗
1
k1B∇u0 +∇v0 results in

‖ṽε − hVε ‖H1(D) = o(ε).

We conclude that E2(ε) = o(ε2).
(3) Using the Cauchy-Schwarz inequality, Lemma 5.1 and the regularity of u0 in the vicinity of x0, we

obtain straightforwardly that E3(ε) = O(ε2+α).
(4) We use the simplified notations D1 = B(x0, 2η) and D2 = D̃ \ B(x0, 2η). We make the splitting
E4(ε) = E1

4 (ε) + E21
4 (ε) + E22

4 (ε) with

E1
4 (ε) =

∫
D̃

βε

[
Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇ũε +

1
2
B∇ũε · ∇ũε

)

− Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇ũε +

1
2
B∇hUε · ∇hUε

)]
dx,

E2i
4 (ε) =

∫
Di

βε

[
Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇ũε +

1
2
B∇hUε · ∇hUε

)

− Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇hUε +

1
2
B∇hUε · ∇hUε

)
− Φ′

(
1
2
B∇u0 · ∇u0

)
B∇u0 · (∇ũε −∇hUε )

]
dx.

Using that Φ is Lipschitz continuous yields

|E1
4 (ε)| ≤ c

∫
D

βε

∣∣∣∣12B∇ũε · ∇ũε − 1
2
B∇hUε · ∇hUε

∣∣∣∣dx
≤ c‖∇ũε −∇hUε ‖L2(D)‖∇ũε +∇hUε ‖L2(D)

≤ c‖ũε − hUε ‖H1(D)(‖ũε‖H1(D) + ‖hUε ‖H1(D)).

Lemmas 5.1 and 5.2 entail E1
4 (ε) = o(ε2).

By the mean value theorem, there exists a function ξ : D1 → R such that almost everywhere in D1

Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇ũε +

1
2
B∇hUε · ∇hUε

)

− Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇hUε +

1
2
B∇hUε · ∇hUε

)
= Φ′(ξ)B∇u0 · (∇ũε −∇hUε ),



536 S. AMSTUTZ

and ∣∣∣∣ξ − 1
2
B∇u0 · ∇u0 − 1

2
B∇hUε · ∇hUε

∣∣∣∣ ≤ max(|B∇u0 · ∇ũε|, |B∇u0 · ∇hUε |). (5.4)

It comes

E21
4 (ε) =

∫
D1

βε

(
Φ′(ξ)− Φ′

(
1
2
B∇u0 · ∇u0

))
B∇u0 · (∇ũε −∇hUε )dx.

The W 1,∞ regularity of u0 in D1, the Cauchy-Schwarz inequality and the Lipschitz continuity of Φ′

yield:

|E21
4 (ε)| ≤ c

∥∥∥∥ξ − 1
2
B∇u0 · ∇u0

∥∥∥∥
L2(D1)

‖∇ũε −∇hUε ‖L2(D1).

Using (5.4) we get:

|E21
4 (ε)| ≤ c

(
‖B∇u0 · ∇ũε‖L2(D1) + ‖B∇u0 · ∇hUε ‖L2(D1) +

∥∥∥∥1
2
B∇hUε · ∇hUε

∥∥∥∥
L2(D1)

)
‖∇ũε −∇hUε ‖L2(D1).

Using again the W 1,∞ regularity of u0 in D1 together with Lemmas 5.1 and 5.2 we derive that E21
4 (ε) =

o(ε2).
It stems from the Lipschitz continuity of Φ and Lemma 5.1 that

E22
4 (ε) =

∫
D2

βε

[
Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇ũε

)
− Φ

(
1
2
B∇u0 · ∇u0 +B∇u0 · ∇hUε

)

− Φ′
(

1
2
B∇u0 · ∇u0

)
B∇u0 · (∇ũε −∇hUε )

]
dx+O(ε4).

This expression can be rewritten as:

E22
4 (ε) =

∫
D2

βε

[
Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇ũε

)
−Φ

(
1
2
B∇u0 · ∇u0

)
−Φ′

(
1
2
B∇u0 · ∇u0

)
B∇u0 · ∇ũε

]
dx

−
∫
D2

βε

[
Φ
(

1
2
B∇u0 · ∇u0 +B∇u0 · ∇hUε

)
−Φ

(
1
2
B∇u0 · ∇u0

)
−Φ′

(
1
2
B∇u0 · ∇u0

)
B∇u0 ·∇hUε

]
dx+O(ε4).

Using the mean value theorem and the Lipschitz continuity of Φ′, it comes

|E22
4 (ε)| ≤ c

∫
D2

|B∇u0 · ∇ũε|2dx+ c

∫
D2

|B∇u0 · ∇hVε |2dx+ cε4.

The Cauchy-Schwarz inequality together with the assumption that u0 ∈ W 1,4(D2) yield

|E22
4 (ε)| ≤ c‖∇u0‖2L4(D2)

‖∇ũε‖2L4(D2)
+ c‖∇u0‖2L4(D2)

‖∇hVε ‖2L4(D2) + cε4.

Using Lemmas 5.1 and 5.2, it comes E22
4 (ε) = o(ε2). We conclude that E4(ε) = o(ε2).

(5) We use the notation

VJ1(ε)− E4(ε) =
∫
D̃

βε(y)Fε(y, y)dy
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with

Fε(x, y) = Φ
(

1
2
B∇u0(x) · ∇u0(x) +B∇u0(x) · ∇hUε (y) +

1
2
B∇hUε (y) · ∇hUε (y)

)

− Φ
(

1
2
B∇u0(x) · ∇u0(x)

)
− Φ′

(
1
2
B∇u0(x) · ∇u0(x)

)
B∇u0(x) · ∇hUε (y). (5.5)

We have in this way

E5(ε) =
∫
D̃

βεFε(y, y)dy −
∫

R2
β∗
εFε(x0, y)dy. (5.6)

Next, we choose R ∈ (0, η] such that β0 and β1 are constant in B(x0, R). We split (5.6) as

E5(ε) =
∫
B(x0,R)

β∗
εFε(y, y)dy +

∫
D̃\B(x0,R)

βεFε(y, y)dy −
∫
B(x0,R)

β∗
εFε(x0, y)dy −

∫
R2\B(x0,R)

β∗
εFε(x0, y)dy.

We get E5(ε) = E1
5 (ε) + E2

5 (ε) + E3
5 (ε) with

E1
5 (ε) =

∫
B(x0,R)

β∗
ε [Fε(y, y)− Fε(x0, y)]dy,

E2
5 (ε) =

∫
D̃\B(x0,R)

βεFε(y, y)dy, E3
5 (ε) = −

∫
R2\B(x0,R)

β∗
εFε(x0, y)dy.

A change of variable yields (we recall that x0 is at the origin):

E1
5 (ε) = ε2

∫
R2
χB(0,R)(εx)β∗

ε (εx)[Fε(εx, εx)− Fε(x0, εx)]dx.

From (5.5) and the regularity assumptions, we obtain that

lim
ε→0

χB(0,R)(εx)β∗
ε (εx)[Fε(εx, εx)− Fε(x0, εx)] = 0 ∀x ∈ R

2. (5.7)

Now we write the decomposition

Fε(x, y) =
[
Φ
(

1
2
B∇u0(x) · ∇u0(x) +B∇u0(x) · ∇hUε (y) +

1
2
B∇hUε (y) · ∇hUε (y)

)

− Φ
(

1
2
B∇u0(x) · ∇u0(x) +B∇u0(x) · ∇hUε (y)

)]

+
[
Φ
(

1
2
B∇u0(x) · ∇u0(x) +B∇u0(x) · ∇hUε (y)

)

− Φ
(

1
2
B∇u0(x) · ∇u0(x)

)
− Φ′

(
1
2
B∇u0(x) · ∇u0(x)

)
B∇u0(x) · ∇hUε (y)

]
.

The Lipschitz continuity of Φ and Φ′ yields

|Fε(x, y)| ≤ c|∇hUε (y)|2 + c|∇u0(x)|2|∇hUε (y)|2 ∀x, y ∈ D̃. (5.8)

Using the regularity of u0 in B(x0, R), it follows that

|Fε(εx, εx)| + |Fε(x0, εx)| ≤ c|∇hUε (εx)|2 = c|HU
ρ (x)|2 ∀x ∈ B(0, R/ε).
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Figure 1. Left: graph of the function Θp for p = 1, 2, 3, 5, 10, respectively (from top to
bottom); right: graph of the function Ψ̂±1 for p = 1, ..., 10, respectively (from bottom to top
at t = 1).

The function HU
ρ is defined by (4.17) in R

2 \ω and constant in ω. Therefore |HU
ρ |2 is integrable over R

2.
In consequence of this and (5.7), the Lebesgue dominated convergence theorem yields E1

5 (ε) = o(ε2).
We bound E2

5 (ε) with the help of (5.8) and the Cauchy-Schwarz inequality. We obtain

|E2
5 (ε)| ≤ c‖∇hUε ‖2L2(D̃\B(x0,R))

+ c‖∇u0‖2L4(D̃\B(x0,R))
‖∇hUε ‖2L4(D̃\B(x0,R))

.

Then Lemma 5.1 provides E2
5 (ε) = O(ε4). In a similar way we obtain that E3

5 (ε) = O(ε4).
(6) When ε is sufficiently small, we have

E6(ε) = (β∗
1 − β∗

0 )
∫
ωε

[
Φ
(

1
2
B∇u0(x) · ∇u0(x)

)
− Φ

(
1
2
B∇u0(x0) · ∇u0(x0)

)]
dx.

Using the Lipschitz continuity of Φ and the α-Hölder continuity of ∇u0 in the vicinity of x0, we derive
that E6(ε) = O(ε2+α). This completes the proof of Theorem 4.3.

6. Example of penalty function

Given a real parameter p ≥ 1, we consider the penalty function:

Φp(t) = Θp

(
t

M

)

with
Θp : R+ → R+,

t �→ (1 + tp)1/p − 1.
The function Θp is plotted in Figure 1. It is straightforward to check that Θp satisfies the assumptions of
Theorem 4.3 for every p ≥ 1. Furthermore, when p goes to infinity, Θp converges uniformly on R+ to the
non-differentiable function:

Θ∞(t) =
{

0 if t ≤ 1,
t− 1 if t ≥ 1.
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The function Ψ̂ρ associated with Θp is also represented in Figure 1 for ρ = ±1 and p varying from 1 to 10.
Actually, when condition (2.1) is fulfilled, only the values of Ψ̂ρ for ρ = αin−αout

αin+αout
≈ 1 and ρ = αout−αin

αout+αin
≈ −1

are of interest. The double integral (4.24) has been computed by a quadrature method.

7. Algorithm

We come back to the problem described in Section 2. As said in Section 2.2, the proposed algorithm is based
on the conjecture that local minimizers of (2.4) are close (because βout = 0) to local minimizers of the problem

min
Ω∈E

IΩ(uΩ) + γ

∫
D̃

βΩΦ∞

(
1
2
B∇uΩ · ∇uΩ

)
dx subject to (2.2)

provided that γ is large enough. Because Φ∞ does not fulfill the assumptions of Theorem 4.3, we replace Φ∞
by Φp and let p go to infinity. The algorithm reads as follows.

(1) Choose γ large enough, an increasing sequence (pn)n∈N of positive numbers tending to infinity and an
initial domain Ω0 ∈ E . Set n = 0.

(2) Iterate:
• Starting from the domain Ωn, find Ωn+1 (local) solution of the problem

min
Ω∈E

IΩ(uΩ) + γ

∫
D̃

βΩΦpn

(
1
2
B∇uΩ · ∇uΩ

)
dx subject to (2.2); (7.1)

• Increment n← n+ 1.

8. Numerical results

In all the computations we take the conductivity coefficients αin = βin = 1 and αout = βout = 10−5. The
objective functional to be minimized is

IΩ(uΩ) = |Ω|+ λKΩ(uΩ), (8.1)

where |Ω| is the Lebesgue measure of Ω and KΩ(uΩ) is the energy

KΩ(uΩ) =
∫
D

αΩ|∇uΩ|2dx =
∫

ΓN

guΩds.

The topological sensitivity of |Ω| is obvious, and, using the notations of Theorem 4.3, that of the energy
functional is (see [6] or apply Thm. 4.3 with Φ = 2Id, B = I, D̃ = D and βΩ = αΩ):

KΩε(uΩε)−KΩ(uΩ) = −2πε2αΩ(x0)ρ|∇uΩ(x0)|2 + o(ε2).

We consider an isotropic constraint (B = I) over the whole domain (D̃ = D). We apply the algorithm described
in Section 7 with pn = 8× 2n, as it turns out in the proposed examples that starting with p0 = 8 does not raise
any numerical difficulty and allows a gain of time. The internal minimization problem (7.1) is solved using the
algorithm described in [7], which is based on a level-set domain representation and successive approximations
of topological optimality conditions. We assume that E contains all the domains which can be obtained in this
way. Since this procedure requires many evaluations of Ψ̂±1, this function is tabulated for each value of p,
with the sampling points concentrated at the locations of sharp variations. In every example, we take M = 2
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Figure 2. Computational domain and boundary conditions for the L-shaped conductor (left),
unconstrained solution (right).

Table 1. L-shaped conductor: data obtained after 3 iterations.

γ Q(Ω�) I(Ω�) CPU time (s)
102 1.5225 0.7777 193
103 1.0807 0.7899 249
104 1.0177 0.7922 387
105 0.9615 0.8002 468

and a full domain initialization, i.e. Ω0 = D. In order to measure a possible constraint violation, we will
compute the number

Q(Ω) = max
x∈Ω

√
1
2 |∇uΩ(x)|2

M
·

The computations are performed with the help of the PDE Toolbox of Matlab which generates P1 finite elements.

8.1. L-shaped conductor

We consider as first example the domain depicted in Figure 2 (left) and the objective functional (8.1). We
use a regular mesh containing 36 241 nodes. For comparison, we first solve the unconstrained problem (γ = 0)
with λ = 1 (see Fig. 2, right). As expected, the singularity of the solution at the re-entrant corner is preserved.

8.1.1. Influence of the penalty coefficient γ

We now run the algorithm with the same multiplier λ = 1 and different values of γ. Each time, we perform
3 iterations, corresponding to the parameters p0 = 8, p1 = 16 and p2 = 32. Some numerical data related to the
final domain Ω� are reported in Table 1. Unsurprisingly, Q(Ω�) decreases as γ increases, whereas the computer
time increases. This computer time is measured on a standard PC equipped with a 2.4 GHz processor. We notice
that the constraint is almost fulfilled for γ = 104. When γ = 105, the bound M is not attained at iteration 3,
but we can get Q(Ω�) closer to 1 by continuing the iterations. For instance, we obtain Q(Ω�) = 0.9945 by
iterating up to p = 256.

In view of these results, we now fix γ = 104. This value will be used in all the computations presented in the
sequel.

8.1.2. Influence of the number of iterations

The domains obtained at the end of some selected iterations are shown in Figure 3. We observe that there
is nearly no more evolution after iteration 3 (p = 32).
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Figure 3. L-shaped conductor with λ = 1 and γ = 104: snapshots for p = 8, p = 32 and
p = 128 (from left to right).
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Figure 4. Computational domain for the U-shaped conductor.

8.2. U-shaped conductor

We consider now an U-shaped conductor (see Fig. 4), discretized with the help of 36 241 nodes. The domain
obtained when solving the unconstrained problem with λ = 1 is depicted in Figure 5, left. Then we run two
computations with the constraint (see Fig. 5, middle and right). Each time we perform 3 iterations (up to
p = 32).

(1) Case 1: λ = 1. The obtained domain Ω� satisfies Q(Ω�) = 1.0028.
(2) Case 2: λ = 0.5. We arrive at Q(Ω�) = 0.9884.

8.3. S-shaped conductor

The description and the obtained domain Ω� for this problem are given in Figure 6. We have taken λ = 0.5,
a mesh with 15 641 nodes, and performed 5 iterations (up to p = 128), which used 204 s of CPU time. We have
got Q(Ω�) = 0.9905.

8.4. X-shaped conductor

We consider a last example (see Fig. 7) for which topology changes actually occur. The results obtained
with λ = 1 and a mesh of 20 769 nodes in the unconstrained and constrained cases are shown in Figure 8, left
and middle. For this latter case we have performed 5 iterations and we have got Q(Ω�) = 0.991. We notice
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Figure 5. Final design for the U-shaped conductor: unconstrained case (λ = 1, left), case 1
(λ = 1, middle), case 2 (λ = 0.5, right).
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Figure 6. S-shaped conductor.
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Figure 7. Computational domain for the X-shaped conductor.

that the two solutions do not have the same topology. Then we have performed the same computation on a
finer mesh (82 497 nodes, see Fig. 8, right, Q(Ω�) = 1.0014).

8.5. Conclusion

In contrast to standard algorithms based only on energy minimization, the proposed algorithm performs a
pointwise control of the state, and consequently avoids undesirable geometric singularities. Such singularities
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Figure 8. Unconstrained (left) and constrained (middle for the first mesh, right for the second
mesh) solutions for the X-shaped conductor.

are allowed to be present at the initialization since the domain is not bound to stay in the feasible set during the
iterations. In return, the constraint can be slightly violated when the algorithm is stopped. This shortcoming
can be easily bypassed by choosing M slightly lower than the targeted value. As already observed in classical
optimization, the choice of the penalization coefficient γ is a matter of compromise between the risk of significant
violation of the constraint if γ is too small and the ill-conditioning of the internal minimization problem (7.1)
if γ is too large, resulting in an increase of the computer cost. In practice, a few tries lead to a suitable
value. Finally, we point out that we have always used a regular and relatively fine mesh in order to capture
the singularities without influencing the optimization, but the use of a locally refined mesh, constructed in an
appropriate way at the beginning or adaptive, could significantly reduce the computational effort.
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