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NECESSARY CONDITIONS FOR WEAK LOWER SEMICONTINUITY
ON DOMAINS WITH INFINITE MEASURE

Stefan Krömer
1

Abstract. We derive sharp necessary conditions for weak sequential lower semicontinuity of integral
functionals on Sobolev spaces, with an integrand which only depends on the gradient of a scalar field
over a domain in R

N . An emphasis is put on domains with infinite measure, and the integrand is
allowed to assume the value +∞.
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1. Introduction

We consider functionals of the type

G(u) :=
∫

Ω

g(∇u) dx, (1.1)

where u ∈ L1,p
∼ (Ω) or u ∈ (L1,p ∩ Lq)(Ω). A definition of these spaces is given below. Here and throughout

the rest of the paper, all functions are real-valued (except gradients, which take values in R
N ). Moreover,

throughout we assume that

Ω ⊂ R
N is nonempty, open and connected, 1 ≤ p < ∞ and 1 ≤ q < ∞, (1.2)

g : R
N → R ∪ {+∞} is a Borel function, and (1.3)

g(ξ) ≥ −C |ξ|p for every ξ ∈ R
N , (1.4)

with a constant C > 0, which makes sure that G as a map into R ∪ {+∞} is well defined on each of the two
mentioned spaces of admissible functions. Although the results below do not require any further assumptions
on Ω (unless explicitly stated otherwise), our main focus is on domains with infinite measure.

A natural space of admissible functions for G is

L1,p(Ω) :=
{

u ∈ W 1,p
loc (Ω)

∣∣∣∣
∫

Ω

|∇u|p dx < ∞
}

,
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equipped with the seminorm

||u||L1,p(Ω) :=
(∫

Ω

|∇u|p dx

) 1
p

, where |∇u| :=

(
N∑

i=1

(∂iu)2
) 1

2

.

This becomes a norm if we identify functions whose gradients coincide almost everywhere. Thus we are looking
at the space

L1,p
∼ (Ω) :=

{
[u]
∣∣u ∈ L1,p(Ω)

}
,

where [u] = {ũ ∈ L1,p(Ω) | ∇u = ∇ũ a.e.}. This is a Banach space with the norm ||[u]||L1,p∼ (Ω) := ||u||L1,p(Ω),
and weak convergence of a sequence (un) in L1,p

∼ (Ω) is equivalent to the weak convergence of (∇un) in Lp(Ω; RN )
(see e.g. [5]). As an alternative setting, we also discuss the space (L1,p ∩ Lq)(Ω) for 1 < q < ∞, which is a
Banach space with respect to the norm

||u||(L1,p∩Lq)(Ω) :=
(∫

Ω

|∇u|p dx

) 1
p

+
(∫

Ω

|u|q dx

) 1
q

.

The special case q = p includes the classical Sobolev space W 1,p(Ω). On domains with infinite measure, L1,p∩Lq

consist of functions u which in some sense vanish at infinity as integrability of |u|q is required. Moreover, note
that if p < N , we have a natural identification L1,p

∼ (Ω) = (L1,p ∩ Lp∗
)(Ω) with p∗ := pN

N−p for a large class of
domains Ω with infinite measure and suitable geometrical properties, including the whole space. For details, we
refer to the appendix.

As lower semicontinuity of functionals with respect to suitable weak topologies is the cornerstone of the
so-called direct methods in the calculus of variations, there is a rich literature providing conditions of the
integrand g which ensure this property of the corresponding functional G. In our simple setting, G is wslsc2 in
L1,p
∼ (Ω) provided that g is convex, lsc3 in R

N and nonnegative (for p > 1). Of course, this is a rather standard
result, which we recall in Section 2. It is natural to ask whether these sufficient conditions are sharp, and thus
we are interested in finding conditions on g which are necessary for wslsc4 of G, much in the spirit of [2] but now
for functionals depending on the gradient. Also note that the precise knowledge of conditions on the integrand
which are necessary and sufficient for wslsc is crucial for determining the representation of a relaxed functional
(the largest wslsc functional below a given functional which is not wslsc). If Ω has finite measure, necessary
conditions for wslsc of G are well known even for more general functionals, although usually g is also assumed to
be real-valued, or even to satisfy a p-growth condition ([1,3], e.g.). The case of a domain with infinite measure
together with an integrand g which is allowed to assume the value +∞ has been open so far.

The main results of this note, Theorem 4.1 (for G defined on L1,p
∼ ) and Theorem 4.2 (for G defined on

L1,p ∩Lq) in Section 4, state that the aforementioned sufficient conditions are indeed essentially necessary if Ω
has infinite measure. The word “essentially” is included here to signify that – somewhat surprisingly – there
are counterexamples for functionals which are trivial in the sense of Definition 3.1, as we shall see in Section 3.
The main task in the proof of our main results hence is to make use of suitable conditions which rule out trivial
functionals to avoid this problem. On a technical level, complications in the proof come from the fact that on
a domain with infinite measure, functions with merely bounded gradient in general do not have p-integrable
gradient, which prevents the use of the simple constructions one could utilize to deduce properties of g from the
ones of G for functionals on domains with finite measure, in analogy of the corresponding results for functionals
not involving derivatives in Lp spaces, presented in [2]. Thus, we have to rely on a known admissible function u
with G(u) < ∞ to correct the behavior of explicitly constructed functions in the outer part of Ω in such a way

2Weakly sequentially lower semicontinuous, i.e., lim inf G(wn) ≥ G(w) whenever wn ⇀ w weakly.
3(Sequentially) lower semicontinuous, i.e., lim inf g(ξn) ≥ g(ξ) whenever ξn → ξ.
4Weak sequential lower semicontinuity.
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that weak differentiability is preserved and G stays finite. We are able to do this by exploiting some of the
properties of the “pyramid” of Lemma 3.5, on which our construction is based.

2. Sufficient conditions

For comparison with our main result in Section 4, we now recall the standard conditions implying wslsc of G.
In our simple setting, they go back to the following well-known abstract result.

Theorem 2.1 (e.g. [1] or [3]). Let X be a Banach space and let F : X → R ∪ {+∞} be convex and strongly
lsc5. Then F is wslsc on X.

In our framework, this yields:

Corollary 2.2. Let p ∈ [1,∞), let X = L1,p
∼ (Ω) or X = (L1,p ∩ Lq)(Ω), respectively, and suppose that g is

convex, lsc and nonnegative. Then G is wslsc on X.

Proof. Since convexity of g immediately implies convexity of G, it suffices to show that G is strongly lsc, and
the latter is a consequence of Fatou’s lemma. �

In the case p = 1, a slight improvement is possible.

Corollary 2.3. Let X = L1,1∼ (Ω) or X = (L1,1 ∩ Lq)(Ω), respectively. Moreover, suppose that g is convex and
lsc, and g(ξ) ≥ ν · ξ for a constant ν ∈ R

N . Then G is wslsc on X.

Proof. By Corollary 2.2, we get wslsc of G̃(u) := G(u)−f(u), where f(u) :=
∫
Ω

ν ·∇u dx. Since f is a continuous
linear functional on X , this implies wslsc of G. �

Of course, these results are not sharp in general, and the extent to which the assumptions can be relaxed
in fact strongly depends on the domain. For domains with finite measure, it is well known that besides (1.4),
no additional lower bounds on g are needed (the convexity of g and (1.4) still imply that g(ξ) ≥ ν · ξ − C for
constants ν ∈ R

N and C ∈ R, and for domains with finite measure, this suffices even for p > 1). Neither are the
sufficient conditions given in the corollaries above sharp in general for domains with infinite measure. However,
this is entirely due to the fact that the value +∞ is allowed for g, which may cause the existence of trivial
functionals with nontrivial Lagrangian g as we shall see next.

3. Trivial functionals

Definition 3.1. A function F : D → R ∪ {+∞} is called trivial, if it is finite at at most finitely many points
in D.

The use of the term “trivial” here is motivated by the fact that such a functional is automatically lsc, no
matter what topology is being used. If Ω has finite measure, G defined on L1,p

∼ (Ω) is trivial if and only if g is
finite at at most one point and G defined on (L1,p ∩ Lq)(Ω) is trivial if and only if g ≡ +∞. For domains with
infinite measure, the picture is more complicated, and this has immediate consequences concerning necessary
conditions for wslsc of G, as the following examples illustrate.

Example 3.2. Consider Ω = R
N with N ≥ 2, and

g(ξ) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if ξ = 0,
2 if ξ = e (a fixed unit vector),
1 if ξ =

(
1 + 1

n

)
e for an n ∈ N,

+∞ elsewhere.

In this case, G : L1,p
∼ (Ω) → (−∞,∞] is finite only at [0]. In particular, G is (strongly) lsc and wslsc in L1,p

∼ ,
despite the fact that g is neither lsc nor convex.

5(Sequentially) lower semicontinuous with respect to the strong (norm) convergence in X.
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Proof. Consider [u] ∈ L1,p∼ (RN ) with G(u) < ∞. For E := R
N \ {∇u = 0} we have |E| < ∞ and ∇u(x) ∈ {αe |

α ≥ 1} for a.e. x ∈ E. In particular, ∇u is always parallel to e, whence u is constant on the hyperplanes

Ht := {x ∈ R
N | x · e = t}

for a.e. t ∈ R, and thus ∇u ∈ {αe | α ≥ 1} a.e. on Ht, for a.e. t such that HN−1(Ht ∩E) (the N −1-dimensional
measure of Ht ∩ E) is positive. Hence,

∞ >

∫
Ω

g(∇u) ≥
∫

S

g(∇u) ≥ |S| for the strip S :=
⋃

HN−1(Ht∩E)>0

Ht.

But by Fubini’s theorem, |S| < ∞ if and only if |E| = 0. �

Note that the above example strongly hinges on the geometry of the domain, here the whole space. If the
class of admissible functions is subject to a built-in decay at infinity, such as in W 1,p(RN ) or L1,p

∼ (RN ) =
L1,p(RN ) ∩ Lp∗

(RN ) for p < N (cf. Thm. A.2), even more general constructions are possible.

Example 3.3. For N ≥ 2 consider the convex cone

Ω = Λ := {x ∈ R
N | x · e > γ |x|}, with e ∈ SN−1 and γ ∈ [0, 1) fixed,

and assume that there are two unit vectors μ, ν ∈ Λ such that {g < ∞} ⊂ Hμ ∩ H−ν , where Hξ := {y ∈ R
N |

y · ξ ≥ 0}. Then G : L1,p ∩ Lq(Λ) → R ∪ {∞} is finite at most at u = 0. In particular, it is strongly lsc and
wslsc, despite the fact that g does not have to be lsc or convex.

Proof. Consider u ∈ L1,p(RN ) ⊂ Lq(RN ) with G(u) < ∞. As a consequence, ∇u ∈ Hμ ∩ H−ν a.e., which
implies that for a.e. x0 ∈ Λ, v : (0,∞) → R, v(t) := u(x0 + tμ), is nondecreasing, and w : (0,∞) → R,
w(t) := u(x0 + tν), is nonincreasing. Moreover, since v ∈ Lq((0,∞)) for a.e. x0 ∈ Ω, we infer that v(t) → 0 as
t → +∞, for any such x0. As a consequence, v ≤ 0 for a.e. x0, whence u ≤ 0 a.e. Repeating the argument with
w instead of v, we also get u ≥ 0 a.e. �

Example 3.4. Consider Ω = R
N and assume that g(ξ) = +∞ for any ξ ∈ H , where H ⊂ R

N is a given open
half-space. Then G : L1,p ∩ Lq(RN ) → R ∪ {∞} is finite at most at u = 0. In particular, it is strongly lsc and
wslsc, despite the fact that g does not have to be lsc or convex.

Proof. Consider u ∈ L1,p(RN ) ⊂ Lq(RN ) with G(u) < ∞, and let e denote the unit vector in R
N such that

H = {y ∈ R
N | e · y > 0}. Arguing as in the proof of Example 3.3, we get that for a.e. x0 ∈ R

N , v : R → R,
v(t) := u(x0 + te), is nonincreasing, and v(t) → 0 as t → ±∞. Hence v = 0 for a.e. x0, and u = 0 a.e.,
accordingly. �

Example 3.4 works whenever 0 is not contained in the interior of the convex hull of the set {g < ∞} := {ξ ∈
R

N | g(ξ) < ∞}. If this behavior is ruled out, we have the following construction, which will be at the heart of
the proofs of Section 4:

Lemma 3.5. Let F ⊂ R
N be a finite set such that 0 ∈ (coF )◦, the interior of the convex hull of F (in particular,

F has at least N + 1 elements). Then the piecewise affine “pyramid”

P (x) := min
{

η · x =
∑N

i=1 ηixi

∣∣∣ η ∈ F
}
, x ∈ R

N ,

is a continuous function which satisfies P ∈ W 1,∞
loc (RN ), ∇P ∈ F a.e., P (0) = 0, and P (x) ≤ −a |x| for

x ∈ R
N , with the constant a := −min{P (x) | |x| = 1} > 0.
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Remark 3.6. If 0 ∈ (coE)◦, where E ⊂ R
N is an infinite set, it is always possible to select a subset F ⊂ E

with at most 2N elements such that 0 ∈ (co F )◦, cf. [4].

Remark 3.7. The crucial property of P for our arguments below is its uniform negative linear growth as
|x| → ∞. To be more precise, we essentially need that for a suitable finite subset F ⊂ {g < ∞}, the associated P
has the property that

P (x) ≤ −a |x| + C for every x ∈ Ω with constants a > 0 and C ∈ R. (3.1)

Alternatively, with obvious changes in the proofs, we could work under the assumption that

P̃ (x) ≥ a |x| − C for every x ∈ Ω with constants a > 0 and C ∈ R,

where P̃ (y) := max{η · y | η ∈ F} for y ∈ R
N .

(3.2)

Here, note that both conditions are invariant with respect to translations of Ω up to a possible change in the
constant C, and P̃ (x) = −P (−x), which means that (3.1) holds for Ω if and only if (3.2) holds for Ω̃ := −Ω
instead of Ω. Technically, (3.1) (or its variant (3.2)) is important for us because it allows us to build a piece
of P into a given admissible function for G: Whenever u is an admissible function with G(u) < ∞ such that u
has “sublinear growth” in the sense of (3.3) below, (3.1) implies that v := max{P + h, u} (with arbitrary fixed
h ∈ R, the choice of which can be used to make sure that v �≡ u) differs from u only on a set of finite measure,
whence v is an admissible function for G and G(v) < ∞ (since ∇P ∈ F ⊂ {g < ∞} a.e.).

In case Ω = R
N , one easily checks that (3.1) and (3.2) each hold if and only if 0 ∈ (co F )◦ (or, equivalently,

0 ∈ (co{g < ∞})◦, with a suitable choice of F ⊂ {g < ∞}). If Ω is not the whole space, it may happen that
(3.1) or (3.2) leads to a weaker requirement on the set {g < ∞}. Our results below, including the ones of
Section 4, stay true if instead of 0 ∈ (co{g < ∞})◦, we assume that either (3.1) or (3.2) holds for a suitable
finite set F ⊂ {g < ∞}. Some examples are indicated in Section 5.

Proof of Lemma 3.5. The definition of P immediately implies that P is continuous, P (0) = 0 and P ∈ W 1,∞
loc

with ∇P ∈ F a.e. Moreover, for any x ∈ R
N \ {0}, there exists a η = η(x) ∈ F such that x · η < 0, because

otherwise F would be a subset of the half-space {y ∈ R
N | x · y ≥ 0}, which contradicts our assumption

that 0 ∈ (coF )◦. Hence P (x) < 0 for every x �= 0. Finally, since P is 1-homogeneous, this also implies that
P (x) ≤ −a |x|. �

In particular, Lemma 3.5 leads to the following conditions to rule out trivial functionals. In all of them, we
have to assume the existence of one function u at which G is finite. For the most general statement, we also
need some control of the behavior of u as |x| → ∞, that is, we require “sublinear growth” at infinity in the
sense that

{x ∈ Ω | |u(x)| ≥ a |x|} has finite measure for every a > 0. (3.3)

Theorem 3.8. Suppose that there exists u ∈ L1,p(Ω) with “sublinear growth” in the sense of (3.3) such that
G(u) ∈ R, and suppose that 0 ∈ (co{g < ∞})◦. Then G is nontrivial on L1,p

∼ (Ω). If, in addition, u ∈ Lq(Ω),
then G is also nontrivial on L1,p ∩ Lq(Ω).

The proof employs the following simple observation:

Lemma 3.9. Let Q be a function in L1,∞(Ω) such that Q(x) ≤ −s |x| on Ω, and suppose u ∈ L1,p(Ω) satis-
fies (3.3). Then {u < Q} = {x ∈ Ω | u(x) < Q(x)} has finite measure and v(x) := max{u(x), Q(x)} also is a
function in L1,p(Ω), with ∇v = ∇u a.e. on {u ≥ Q} and ∇v = ∇Q a.e. on {u < Q}.
Proof. Certainly, v is weakly differentiable, and its gradient is a function in Lp

loc of the form stated above.
Moreover, since Q(x) ≤ −s |x|, (3.3) implies that {u < Q} has finite measure. This, together with the fact that
∇Q is bounded, in turn entails that

∫
Ω
|∇v|p < ∞. �
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Proof of Theorem 3.8. Choose a suitable finite subset F ⊂ {g < ∞} such 0 ∈ (co F )◦, and let P denote the
associated pyramid introduced in Lemma 3.5. Then by the previous lemma, for any h ∈ R,

vh := max{u, P + h} = h + max{u − h, P}

is a function in L1,p(Ω). Moreover, {vh �= u} is a set of finite measure and (g ◦∇P )(Ω) ⊂ R is bounded, whence
G(vh) ∈ R. If u ∈ Lq(Ω), we also get that vh ∈ Lq(Ω). Finally, observe that {[vh] | h ∈ R} ⊂ L1,p∼ (Ω) is an
infinite set, whence G is nontrivial on L1,p

∼ (Ω). �

Observe that (3.3) holds for every u ∈ (L1,p ∩Lq)(Ω), and (3.3) is not a very strong restriction for functions
in L1,p, either. In particular, Corollary A.4 in the appendix states that for a large class of domains, every
function in L1,p satisfies (3.3).

Corollary 3.10. Suppose that Ω ⊂ R
N has the properties required in Corollary A.4. Moreover, suppose that

there exists u ∈ L1,p(Ω) such that G(u) ∈ R, and suppose that 0 ∈ (co{g < ∞})◦. Then G is nontrivial
on L1,p

∼ (Ω).

Corollary 3.11. Suppose that there exists u ∈ (L1,p ∩ Lq)(Ω) such that G(u) ∈ R, and suppose that
0 ∈ (co{g < ∞})◦. Then G is nontrivial on (L1,p ∩ Lq)(Ω).

As already mentioned in Remark 3.7, 0 ∈ (co{g < ∞})◦ in general is not necessary for nontrivial G. However,
this is the only condition on g which guarantees a nontrivial functional independently of the domain, as it is
necessary in case Ω = R

N . In particular, we have the following:

Corollary 3.12 (Ω = R
N ). G is nontrivial on (L1,p∩Lq)(RN ) if and only if there exists u ∈ (L1,p∩Lq)(RN )\{0}

such that G(u) ∈ R. Moreover, if 1 < p < N , the above remains true for L1,p
∼ (RN ) instead of (L1,p ∩ Lq)(RN ).

Proof. As “only if” is trivial, it suffices to show the converse. The existence of u �≡ 0 with G(u) ∈ R implies
0 ∈ (co{g < ∞})◦ by Example 3.4. Thus, the assertion is a consequence of the previous corollaries. �

4. Necessary conditions

Our main results are the following:

Theorem 4.1. Suppose that G(u) ∈ R for a function u ∈ L1,p(Ω) with “sublinear growth” in the sense of (3.3),
and suppose that 0 ∈ (co{g ∈ R})◦. Moreover, assume that G is wslsc in L1,p

∼ (Ω). Then g is lsc and convex. If,
in addition, the measure of Ω is infinite, then we also have that g(0) = 0, and for every ξ ∈ R

N ,

g(ξ) ≥ 0 if 1 < p < ∞,

g(ξ) ≥ ν · ξ if p = 1, where ν ∈ R
N is a constant.

(4.1)

Theorem 4.2. Suppose that G(u) ∈ R for a function u ∈ (L1,p ∩ Lq)(Ω), and suppose that 0 ∈ (co{g ∈ R})◦.
Moreover, assume that G is wslsc in (L1,p ∩ Lq)(Ω). Then the conclusion of Theorem 4.1 holds.

The proofs of the theorems are given at the end of this section.

Remark 4.3. Theorem 4.1 holds even for p = ∞ with only minor modifications in the proof (in the propositions
below), if weak convergence throughout is replaced by weak∗-convergence. In particular, G is then assumed to
be w∗-slsc6 in L1,∞∼ (Ω). The same can be said for Theorem 4.2 if either p = ∞ or q = ∞ or both.

6Sequentially lower semicontinuous with respect to weak∗-convergence.
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Obviously, assumption (3.3) for u in Theorem 4.1 can be dropped if Corollary A.4 is applicable (in particular,
p < N):

Corollary 4.4. Suppose that p and Ω satisfy the requirements of Corollary A.4, that G(u) ∈ R for a function
u ∈ L1,p(Ω), and that 0 ∈ (co{g ∈ R})◦. Moreover, assume that G is wslsc in L1,p

∼ (Ω). Then the conclusion of
Theorem 4.1 holds.

Finally, using Example 3.4 and Corollary 4.4, we observe that the simplest possible result holds for Ω = R
N

if p < N :

Corollary 4.5 (Ω = R
N ). Suppose that 1 < p < N and suppose that G(u) ∈ R for a function u ∈ L1,p(RN )\{0}.

Moreover, assume that G is wslsc in L1,p
∼ (RN ). Then the conclusion of Theorem 4.1 holds.

Below, we repeatedly use the following notion of convergence of sets:

Definition 4.6 (convergence of sets in measure). Given a sequence An of measurable sets in R
N and A ⊂ R

N

measurable, we say that An → A in measure, or LN− lim An = A, if

LN(A \ An) + LN(An \ A) → 0.

Here, LN is the Lebesgue measure in R
N .

The main part of the proof of Theorem 4.1 is split into two propositions.

Proposition 4.7. Suppose that G(u) ∈ R for a u ∈ L1,p(Ω) with “sublinear growth” in the sense of (3.3), and
suppose that 0 ∈ (co{g ∈ R})◦. Moreover, assume that G is strongly lsc in L1,p

∼ (Ω). Then g is lsc on R
N .

Proof. It is enough to show that g is lsc at every point ξ ∈ {g ∈ R}. Choose a finite subset F of {g ∈ R} such
that 0 ∈ (co F )◦, and let P denote the associated pyramid introduced in Lemma 3.5. Moreover, let (ξn) ⊂ R

N

be a sequence converging to ξ. W.l.o.g., we may assume that g(ξn) is bounded in R (using (1.4) to obtain the
bound from below). By extracting a subsequence, we can make sure that lim inf g(ξn) is actually a limit. Thus,
it suffices to show that

lim g(ξn) ≥ g(ξ). (4.2)

To exploit the strong lsc of G, we construct a suitable sequence of functions wn having slope ξn one a suitable
sets of positive measure, converging strongly to a limit function w, in such a way that – roughly speaking –
the affine parts of wn converge to an affine part of w with slope ξ (Fig. 1). Before we give the details, let us
describe the underlying idea of this construction: we first cut off the tip of P (together with a whole side, if ξn

or ξ does not lie in (co F )◦) with an affine function of slope ξn (or ξ), shift the result so that the former position
of the tip moves to some z ∈ Ω and then take the maximum with u to correct the behavior of this function
for large |x| to ensure that the resulting map wn (or w) belongs to L1,p(Ω). By first adding a suitably large
constant h to the truncated pyramid Qn (or Q), this can be done in such a way that a large part with slope ξn

(or ξ) is present in wn (or w). Technical difficulties arise mainly from the fact that we do not know anything
about u apart from (3.3), which makes controlling the unwanted side effects of the construction (caused by the
set where ∇w = ξ but ∇wn �= ξn and vice versa) rather arduous. In particular, the arguments below could be
greatly simplified if u ≡ 0.

For every x ∈ Ω and for the parameters h ∈ R (to be chosen later) and z ∈ Ω (chosen arbitrarily), let

w(x) := max{u(x), Q(x − z) + h} with Q(y) := min{P (y), ξ · y − 1},
wn(x) := max{u(x), Qn(x − z) + h} with Qn(y) := min{P (y), ξn · y − 1},

and

S := {x ∈ Ω | P (x − z) > Q(x − z)}, Sn := {x ∈ Ω | P (x − z) > Qn(x − z)},
T := {x ∈ Ω | u(x) ≤ P (x − z) + h}, R := {x ∈ Ω | u(x) = Q(x − z) + h}·
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�
�

�
�

���������
�
�
�
�

P (· − z) + h

slope ξ

u

z

slope ξn

Figure 1. An example for wn with Ω = R, in case ξ ∈ (coF )◦.

By definition,
w = u = wn a.e. on Ω \ T and thus ∇w = ∇u = ∇wn a.e. on Ω \ T ,

and T is a set of finite measure (for fixed h),
(4.3)

due to Lemma 3.5 and the “sublinear growth” (3.3) of u. By Lemma 3.9, w ∈ L1,p(Ω), wn ∈ L1,p(Ω) and
g(∇wn) ∈ L1(Ω). To show the strong convergence of wn to w in L1,p, observe that in addition to (4.3),
∇w(x) ∈ {∇u(x)} ∪ {ξ} ∪ F on T and ∇wn(x) ∈ {∇u(x)} ∪ {ξn} ∪ F on T . Since F ∪ {ξ} ∪ {ξn | n ∈ N} is
bounded in R and ∇wn → ∇w pointwise a.e. (because ∇Qn → ∇Q pointwise a.e.), this implies that wn → w
strongly in L1,p

∼ (Ω) by dominated convergence. The same argument also shows that g(∇wn) is bounded in
L1(Ω), and in particular, we also have g(∇w) ∈ L1(Ω) due to the strong lsc of G. By choosing h sufficiently
large, we can make sure that

LN(T ∩ S ∩ {u < w}) ≥ 1
2

min{LN(Ω ∩ S) , 1} > 0, (4.4)

since the measure of {u < w} ∩ S ⊂ T becomes arbitrarily large as h → ∞.
We are now in position to exploit the strong lsc of G. In the following, let V denote any measurable set with

S ∩ {u < w} ⊂ V ⊂ S ∩ ({u < w} ∪ R). (4.5)

As a consequence, ∇w = ξ a.e. on V by definition of S and R, and we have∫
V

g(ξ) +
∫

T\S

g(∇w) +
∫

(T∩S)\V

g(∇u) = G(w) −
∫

Ω\T

g(∇u)

≤ lim inf G(wn) −
∫

Ω\T

g(∇u)

= lim inf
(∫

T∩Sn∩{u<wn}
g(ξn) +

∫
T\Sn

g(∇w) +
∫

(T∩Sn)\{u<wn}
g(∇u)

)
(4.6)

where we used (4.3) and (4.5). It remains to resolve the lim inf in the last line of (4.6). We claim that V can
be chosen in such a way that

lim inf
(∫

T∩Sn∩{u<wn}
g(ξn) +

∫
T\Sn

g(∇w) +
∫

(T∩Sn)\{u<wn}
g(∇u)

)
=
∫

V

lim g(ξn)

+
∫

T\S

g(∇w) +
∫

T\V

g(∇u) (4.7)
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holds in addition to (4.5), at least for a suitable subsequence of ξn (not relabeled). Postponing the proof of this
for a moment, observe that (4.6) and (4.7) imply that

LN(V ) g(ξ) =
∫

V

g(ξ) ≤ lim
∫

V

g(ξn) = LN(V ) lim g(ξn),

and this yields (4.2), since 0 < LN(V ) ≤ LN(T ) < ∞ due to (4.4).
The proof of (4.7) is essentially a consequence of Lebesgue’s theorem on dominated convergence and the

regularity of the Lebesgue measure. First, we claim that

M ∩ Sn → M ∩ S in measure for every M ⊂ Ω with finite measure. (4.8)

For a proof, note that due to the locally uniform convergence of Qn to Q,

LN
(
M ∩ (S \ Sn)

)→ 0 and LN
(
M ∩ (Sn \ S̃)]

)→ 0,

where S̃ := {x ∈ Ω | P (x−z) ≥ Q(x−z)}. This already yields (4.8) since S̃ \S = {x ∈ Ω | P (x−z) = Q(x−z)}
is a set of measure zero, due to the fact that the affine function f(x) := x ·ξ−1 always intersects P transversally
(this is obvious if ξ /∈ F ⊃ ∇P (RN ), and even if ξ ∈ F , ∇P (S̃ \ S) ⊂ F \ {ξ} as the side of P with slope ξ
gets cut off completely by f in the definition of Q). As an immediate consequence of (4.8), also using that
g(∇u) ∈ L1(Ω), g(∇w) ∈ L1(Ω) and that g(ξn) is bounded, we may replace Sn with S or S ∩ Sn in (4.7) and it
thus suffices to show that

lim
∫

T∩S∩Sn∩{u<wn}
g(ξn) =

∫
T∩S∩V

g(ξ),

lim
∫

(T∩S∩Sn)\{u<wn}
g(∇u) =

∫
(T∩S)\V

g(∇u).
(4.9)

Since g(ξn) → g(ξ) and g(∇u) ∈ L1(Ω), (4.9) in turn follows once we show that

T ∩ S ∩ Sn ∩ {u < wn} = T ∩ S ∩ Sn ∩ {u < Qn(· − z) + h} → V in measure (4.10)

for a suitable V . As a first step, observe that

T ∩ S ∩ Sn ∩ {u < wn} ∩ {u < w} → T ∩ S ∩ {u < w} in measure, (4.11)

since wn → w pointwise a.e. and T has finite measure. Moreover, since u > Q(· − z) + h on Ω \ (R ∪ {u < w}),
the same argument yields that(

T ∩ S ∩ Sn ∩ {u < Qn(· − z) + h}) \ (R ∪ {u < w}) → ∅ in measure. (4.12)

To discuss the remainder, the limit of T ∩ S ∩ Sn ∩ {u < Qn(· − z) + h} ∩ R, we have to distinguish the points
where Qn > Q or Q < Qn, respectively, and since we work on S ∩ Sn, this comes down to comparing the affine
functions x �→ (x−z) · ξ and x �→ (x−z) · ξn. By passing to a subsequence of ξn (not relabeled), we may assume
that

ξ − ξn

|ξ − ξn| −→
n→∞ η, for an η ∈ R

N with |η| = 1. (4.13)

Define

Hn :=
{
x ∈ Ω

∣∣∣ (x − z) · ξ − ξn

|ξ − ξn| < 0
}
, H :=

{
x ∈ Ω

∣∣ (x − z) · η < 0
}
,
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and observe that

T ∩ Hn → T ∩ H in measure

due to (4.13). Together with (4.8), this implies that

T ∩ S ∩ Sn ∩ {u < Qn(· − z) + h} ∩ R = T ∩ S ∩ Sn ∩ Hn ∩ R → T ∩ S ∩ H ∩ R. (4.14)

Combined, (4.11), (4.12) and (4.14) yield (4.10) for

V :=
[
T ∩ S ∩ {u < w}] ∪ [T ∩ S ∩ R ∩ H

]
which obviously satisfies (4.5). This concludes the proof of (4.7). �

In case G is wslsc, we obtain:

Proposition 4.8. Suppose that G(u) ∈ R for a u ∈ L1,p(Ω) with “sublinear growth” in the sense of (3.3), and
suppose that 0 ∈ (co{g ∈ R})◦. Moreover, assume that G is wslsc in L1,p∼ (Ω). Then g is convex on R

N .

Proof. Let ξ1, ξ2 ∈ R
N with ξ1 �= ξ2 such that g(ξ1) < ∞ and g(ξ2) < ∞. We have to show that for every

θ1, θ2 ∈ (0, 1) with θ1 + θ2 = 1,

g(ξ̄) ≤ θ1g(ξ1) + θ2g(ξ2), where ξ̄ := θ1ξ1 + θ2ξ2. (4.15)

Let F be a finite subset of co{g ∈ R} such that 0 ∈ (coF )◦ and let P denote the associated pyramid introduced
in Lemma 3.5. We are going to prove (4.15) with arguments very similar to those applied in Proposition 4.7.
Essentially, we now truncate the pyramid with a laminate λn composed of piecewise affine functions whose
gradient oscillates faster and faster in {ξ1, ξ2} with average slope ξ̄. For any n ∈ N and y ∈ R

N define

λ(y) := ξ̄ · y and λn(y) := λ(y) + max
{

Λ
(
y + 2−nk(ξ1 − ξ̄)

) ∣∣ k ∈ Z
}

,

where Λ(y) := min{(ξ1 − ξ̄) · y, (ξ2 − ξ̄) · y}·

Observe that λ, λn ∈ W 1,∞
loc (RN ),

λ ∈ W 1,∞
loc (RN ), λn ∈ W 1,∞

loc (RN ), λn ≤ λn+1 ≤ λ, ∇λn ∈ {ξ1, ξ2} a.e.,

λn − λ → 0 in L∞(RN ), and ∇λn ⇀∗ ∇λ = ξ̄ in L∞(RN ).
(4.16)

Moreover,

LN(M ∩ {∇λn = ξi}) −→
n→∞ θiLN(M) , i = 1, 2, (4.17)

for every fixed measurable set M ⊂ R
N with finite measure. The laminate can be built into admissible functions

for G just as in Proposition 4.7. For every x ∈ Ω and for parameters h ∈ R (chosen below) and z ∈ Ω (chosen
arbitrarily), let

w(x) := max{u(x), Q(x − z) + h} with Q(y) := min{P (y), λ(y) − 1},
wn(x) := max{u(x), Qn(x − z) + h} with Qn(y) := min{P (y), λn(y) − 1},

and

S := {x ∈ Ω | P (x − z) > Q(x − z)}, Sn := {x ∈ Ω | P (x − z) > Qn(x − z)},
T := {x ∈ Ω | u(x) < P (x − z) + h}·
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We now list a few consequences of these definitions which will be used later. First, note that

w = wn = u on Ω \ T and thus ∇w = ∇wn = ∇u a.e. on Ω \ T ,

and T is a set of finite measure (for fixed h),
(4.18)

due to Lemma 3.5 and the “sublinear growth” (3.3) of u. In particular, w, wn ∈ L1,p
∼ (Ω). Second, since

λ ≥ λn+1 ≥ λn on R
N in L∞(RN ), we also have

w ≥ wn+1 ≥ wn, and S ⊂ Sn+1 ⊂ Sn for all n ∈ N, (4.19)

properties we could not get in Proposition 4.7, and which will allow us to use V := T ∩ S ∩ {u < w}. Third,

M ∩ Sn → M ∩ S in measure for every M ⊂ Ω with finite measure, (4.20)

which can be shown in the same way as (4.8) in the proof of Proposition 4.7. As a consequence of (4.20),
∇wn → ∇w strongly in Lp(T \ S; RN ) (note that wn = w on Ω \ (Sn ∪ S), and the sequence |∇wn|p is
equiintegrable by construction). In addition, we have that ∇wn = ∇λn ⇀ ∇λ = ∇w weakly in Lp(T ∩ S; RN).
Since wn = u = w on Ω \T , we infer that ∇wn ⇀ ∇w weakly in Lp(Ω; RN ), or, equivalently, wn ⇀ w weakly in
L1,p
∼ (Ω), so that we may employ the wslsc of G along the sequence wn. In particular, g(∇w) ∈ L1(Ω) as G(wn)

is bounded. As in the proof of Proposition 4.7, we choose h large enough so that

LN(T ∩ S ∩ {u < w}) ≥ 1
2

min{LN(Ω ∩ S) , 1} > 0. (4.21)

Due to the wslsc of G, we have

LN(T ∩ S ∩ {u < w}) g(ξ) +
∫

T\S

g(∇w) +
∫

T∩S∩{u≥w}
g(∇u) = G(w) −

∫
Ω\T

g(∇u)

≤ lim inf G(wn) −
∫

Ω\T

g(∇u)

= lim inf
(∫

T∩Sn∩{u<wn}
g(∇λn) +

∫
T\Sn

g(∇w) +
∫

T∩Sn∩{u≥wn}
g(∇u)

)

= lim inf
( 2∑

i=1

LN
(
T ∩ Sn ∩ {u < wn} ∩ {∇λn = ξi}

)
g(ξi) (4.22)

+
∫

T\Sn

g(∇w) +
∫

T∩S∩{u≥w}
g(∇u)

)

= LN(T ∩ S ∩ {u < w})
(
θ1g(ξ1) + θ2g(ξ2)

)
+
∫

T\S

g(∇w) +
∫

T∩S∩{u≥w}
g(∇u),

where we used (4.3) and (4.5), and the last equality above still has to be justified. Postponing this for a moment,
note that as a consequence,

Ag(ξ) ≤ A
(
σ1g(ξ1) + σ2g(ξ2)

)
, where A := LN(T ∩ S ∩ {u < w})

which implies (4.15). Here, note that A is finite and bounded away from zero due to (4.21).
As a consequence of Lebesgue’s theorem on dominated convergence, (4.20) and the fact that g(∇w) ∈ L1(Ω),

the last equality in (4.22) can be checked by showing that

T ∩ Sn ∩ {u < wn} → T ∩ S ∩ {u < w} in measure (4.23)
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and

LN
(
T ∩ Sn ∩ {u < wn} ∩ {∇λn = ξi}

) −→
n→∞ LN

(
T ∩ S ∩ {u < w}) θi (4.24)

for i = 1, 2. Here, we may replace Sn with S due to (4.20), and we also may replace {u < wn} by {u < w},
since {u < wn} ⊂ {u < w} due to (4.19) and

LN
({u < w} \ {u < wn}

)→ 0,

where we used that w−wn → 0 pointwise in Ω and {u < w} ⊂ T is a set of finite measure. This already finishes
the proof of (4.23), and (4.24) is a consequence of (4.23) combined with (4.17). �

Proof of Theorem 4.1. Since wslsc of G implies strong lsc of G, lsc of g is a consequence of Proposition 4.7
below, and convexity of g is due to Proposition 4.8. Now suppose that LN(Ω) = ∞. In this case, the existence
of u with

∫
Ω |g(∇u)| < ∞ and

∫
Ω |∇u|p < ∞ implies that there is a sequence ξn → 0 such that g(ξn) → 0. Since

g is lsc and (1.4) holds, we infer that g(0) = 0. If p > 1, any convex function satisfying (1.4) and g(0) = 0 has
to be nonnegative. Finally, if p = 1, the subdifferential of the convex function g at 0 contains at least one point
ν ∈ R

N , and since g(0) = 0 and 0 is contained in the interior of {g < ∞} = co{g ∈ R}, this entails (4.1). �

Proof of Theorem 4.2. First, observe that Proposition 4.7 and Proposition 4.8 remain valid if L1,p
∼ (Ω) is replaced

by (L1,p∩Lq)(Ω) and u ∈ (L1,p∩Lq)(Ω) is given (in particular, u then satisfies (3.3)). In fact, the only thing we
have to show in addition in the proofs of the propositions is that in both cases, the corresponding constructed
sequence wn also satisfies wn → w strongly in Lq(Ω) (in Prop. 4.8, weak convergence would actually suffice,
but we get strong convergence anyway). Since wn = w = u on Ω \ T where T is a set of finite measure,
wn → w in Lq(Ω) is easily shown using dominated convergence. The rest of the proof is analogous to the proof
of Theorem 4.1. �

5. Concluding remarks

It is remarkable that the proof presented here does not directly use the assumption that the functional is
nontrivial. Instead, we had to assume that

0 ∈ (co{g < ∞})◦ ⊂ R
N , (5.1)

which as we saw is sufficient for G to be nontrivial on (L1,p∩Lq)(Ω) (if G �≡ ∞) with an arbitrary domain Ω, but
only for Ω = R

N , we know that (5.1) is necessary as well. It is actually not too difficult to find and use suitable
weaker replacements for this assumption on other domains with simple geometry, which again are necessary
and sufficient for nontrivial G. Basically, to get good candidates, we have to find characterizations of (3.1) and
(3.2), for given Ω in terms of the set {g < ∞}. Of course, while each such characterization always yields a
sufficient condition for nontrivial G, their necessity still remains unclear in general. Below, two simple examples
are given.

Example 5.1. For infinite strips of the form

Ω = R
k × ω with a bounded domain ω ⊂ R

N−k,

one can check that (3.1) and (3.2) each hold (with P defined as in Lem. 3.5, associated to a suitable finite set
F ⊂ {g < ∞}) if and only if

0 ∈ (coPk({g < ∞}))◦ ⊂ R
k, (5.2)
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where Pk is the projection (x1, . . . , xN ) �→ (x1, . . . , xk). Accordingly, G defined on (L1,p ∩ Lq)(Rk × ω) is
nontrivial if and only if G �≡ ∞ and (5.2) is satisfied (here, note that Ex. 3.4 can be easily adapted to show
“only if”). Moreover, (5.1) can be replaced by (5.2) in our main results for Ω = R

k × ω.

Example 5.2. For an infinite circular cone

Ω = Λ := {x ∈ R
N | x · e > γ |x|}, with e ∈ SN−1 and γ ∈ [−1, 1) fixed,

one can check that (3.1) holds (with P defined as in Lem. 3.5, associated to a suitable finite set F ⊂ {g < ∞})
if and only if

Λ ⊂ {0} ∪ U, where U :=
⋃

η∈{g<∞}{x ∈ R
N | x · η < 0}, (5.3)

and consequently, (3.2) holds if an only if

−Λ ⊂ {0} ∪ U. (5.4)

Accordingly, G defined on (L1,p ∩Lq)(Λ) is nontrivial if G �≡ ∞ and either (5.3) or (5.4) holds. If Λ is a convex
cone, i.e., if γ ≥ 0, the converse is also true due to Example 3.3. Moreover, (5.1) can be replaced by (5.3) as
well as by (5.4) in our main results for Ω = Λ.

Already in Example 5.2 with γ < 0, (5.3) or (5.4) combined with G �≡ ∞ is in fact no longer necessary
for nontrivial G. Moreover, trying to find a reasonably general classification of domains with a corresponding
list of characterizations for trivial functionals in terms of g seems to be a pretty hopeless task. It thus would
be interesting to know whether necessary conditions for wslsc of G in L1,p

∼ , especially if L1,p
∼ is not embedded

into some Lq, can be obtained without using domain-dependent assumptions like (5.1)–(5.4) or their technical
counterparts (3.1) and (3.2), respectively, instead trying to exploit directly that there is more than one function
on which G is known to be finite.

Another interesting question is whether our results, which are for scalar fields only, can be extended to the
vector case. Technically, this would require fundamentally new ideas, since joining pieces of functions together
by taking their maximum or minimum, which is the main method employed here, then no longer works well.
Moreover, characterizing trivial functionals on R

N again becomes a challenging – and maybe related – task. We
probably have to replace the convex hull in (5.1) by an appropriate notion of a quasiconvex hull. But which
one exactly? And how to use it? Is there always a suitable replacement for the pyramid in this case?

A. Appendix: Properties of L1,p(Ω)

We recall embeddings of L1,p on unbounded domains originally obtained in [6] in a framework more general
than presented here. For this purpose, we need certain properties of Ω specified below. The simplest examples
for domains satisfying (Ω : 1) and (Ω : 2) below are the whole space and infinite (circular) cones.

Definition A.1.

(i) A cone (with vertex at 0) is a set of the form

V = V (e, ε) :=
{
x ∈ R

N | e · x > (1 − ε) |x|} ,

where e · x denotes the Euclidean scalar product. (The parameters ε ∈ (0, 1) and e ∈ SN−1 specify the
opening angle and the axis direction of the cone.)

(ii) Two domains Ωi, Ωj ⊂ R
N are said to overlap on an outer cone if there is a cone V and a radius R > 0

such that V \ BR(0) ⊂ Ωi ∩ Ωj .
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(iii) Ω ⊂ R
N satisfies the infinite cone condition, if there exists a cone V such that Ω + V := {x + y | x ∈

Ω, y ∈ V } ⊂ Ω.
(iv) Ω ⊂ R

N satisfies condition (Ω : 1′), if

Ω satisfies the infinite cone condition with a cone V (e, ε), and

there is a μ ∈ (0, 1) such that e · x > μ2 |x| for every x ∈ Ωi.
(Ω : 1′)

(v) Ω ⊂ R
N satisfies condition (Ω : 1), if

Ω = ∪k
i=1Ωi for a finite number k of subdomains Ωi ⊂ Ω,

where each Ωi satisfies condition (Ω : 1′) and for any j ≥ 2,
there is an i < j such that Ωi and Ωj overlap on an outer cone.

(Ω : 1)

(This is condition (A) in [6].)
(vi) Ω ⊂ R

N satisfies condition (Ω : 2′), if

there exist z ∈ R
N and R > 0 such that

[
z + R

x − z

|x − z| , x
]

is contained in Ω for every x ∈ Ω with |x − z| > R.
(Ω : 2′)

(vii) Ω ⊂ R
N satisfies condition (Ω : 2), if

Ω = ∪k
i=1 ∪li

j=1 Ωij for a finite number of subdomains Ωij ,

such that each Ωij satisfies condition (Ω : 2′) and

Ω̃i := ∪li
j=1Ωij satisfies the infinite cone condition for every i.

(Ω : 2)

(This is condition (B) in [6].)
If p < N , L1,p

∼ is continuously embedded in Lp∗
for domains satisfying (Ω : 1), as the following result shows.

Theorem A.2 (cf. Thm. 1 in [6]). Suppose that 1 < p < N and that Ω ⊂ R
N is a domain satisfying (Ω : 1).

Then for any u ∈ L1,p(Ω), there is a h ∈ R such that u − h satisfies Sobolev’s inequality in the form

(∫
Ω

|u(x) − h|p∗
dx

) 1
p∗

≤ C

(∫
Ω

|∇u|p dx

) 1
p

(A.1)

with a constant C = C(N, p, Ω) > 0. Here, p∗ := pN
N−p .

If p ≥ N , the result above (with p∗ = ∞) is false in general. Nevertheless, something can still be said in form
of an estimate for a weighted norm.

Theorem A.3 (cf. Thms. 2 and 3 in [6]). Suppose that 1 < N ≤ p < ∞, that Ω ⊂ R
N is a domain satisfying

(Ω : 2) and and that B ⊂ Ω is a (bounded) open ball. Then for q ∈ [p,∞) and for any u ∈ L1,p(Ω),

(∫
Ω

(
γ(x) |u(x)| )q dx

) 1
q

≤ C

(∫
Ω

|∇u|p dx +
∫

B

|u|p dx

) 1
p

(A.2)

with a constant C = C(N, p, q, Ω, B) > 0. Here, the weight γ is given by

γ(x) :=

{
(1 + |x|)−1+ N

p −N
q if p > N ,

(1 + |x|)−1+ N
p −N

q (1 + |ln(|x|)|)−1 if p = N > 1.
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Moreover, the above is also true for p = ∞, as well as for q = ∞ if N < p, where the corresponding integral
norm in (A.2) has to be replaced by the essential supremum.

In some sense, this entails sublinear growth at infinity whenever p < ∞:

Corollary A.4. Let Ω ⊂ R
N be open and connected. Moreover, suppose that either 1 < p < N and Ω is

a finite union of subdomains Ωi such that each Ωi satisfies (Ω : 1′) (but they do not necessarily overlap), or
1 < N ≤ p < ∞ and Ω satisfies (Ω : 2). Then for any u ∈ L1,p(Ω) and any a > 0, the set

{|u| > a |·|} := {x ∈ Ω | |u(x)| > a |x|}

has finite Lebesgue measure.

Proof. If p < N , since (Ω : 1′) implies (Ω : 1), (A.1) holds on each Ωi, with possibly different numbers hi. Of
course, this is only possible if {|u| > a |·|} ∩ Ωi has finite measure for each i. If p ≥ N , the weight function on
the left hand side of (A.2) satisfies γ(x) |x| → ∞ as |x| → ∞ for any choice of q > p, and thus the measure
of {|u| > a |·|} is finite as a consequence o (A.2). Here, note that the right hand side of (A.2) is finite since
L1,p ⊂ W 1,p

loc by definition. �
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