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SEMICONTINUITY THEOREM IN THE MICROPOLAR ELASTICITY ∗
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1

and Igor Velčić
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Abstract. In this paper we investigate the equivalence of the sequential weak lower semicontinuity of
the total energy functional and the quasiconvexity of the stored energy function of the nonlinear microp-
olar elasticity. Based on techniques of Acerbi and Fusco [Arch. Rational Mech. Anal. 86 (1984) 125–145]
we extend the result from Tambača and Velčić [ESAIM: COCV (2008) DOI: 10.1051/cocv:2008065]
for energies that satisfy the growth of order p ≥ 1. This result is the main step towards the general
existence theorem for the nonlinear micropolar elasticity.
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Introduction

In micropolar elasticity, in contrast to the classical elasticity where the motion of a material particle is fully
described by a vector function called deformation function ϕ : Ω → R

3, we suppose that material particles
undergo an additional micromotion, corresponding to the rotation R : Ω → SO(3) of the material particle at
the microscale. Such generalized continua are introduced by the Cosserat brothers in [5]. For the overview of
the micropolar elasticity, which is a special case of the microstretch continua see [7]. For the physical relevance
of the micropolar (and micromorphic) elasticity in conjunction with finite elasto-plasticity and elastic metallic
foams see [18,21].

Existence theorems in the linearized micropolar elasticity are usually based on the uniform positivity of the
stored energy function (see [8] or [2]). A new approach has been recently taken by Jeong and Neff in [9] in
considering the weakest possible, conformally invariant curvature expression (see [10,22]). In this way, physical
inconsistencies present for uniform positive curvature assumptions can be avoided (see [16]). The first existence
theorems for geometrically exact Cosserat and micromorphic models, based on convexity arguments are also
given by Neff in [17] (micromorphic elasticity is more general theory than micropolar elasticity). Also, for
generalized continua with microstructure the existence theorem is given in [11] where convexity in the derivative
of the variable which describes microstructure is demanded (in the micropolar case that would mean convexity
in ∇R). In our work we extend these developments in the micropolar case to more general constitutive behavior.

An approach to the existence theorems in the classical elasticity for general energy is based on the direct
methods of the calculus of variations, see [3,6]. This approach is applied in [26] to obtain an existence theorem
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for the nonlinear micropolar elasticity. It is based on the equivalence of the sequential weak lower semicontinuity
of the total energy function and the quasiconvexity in ∇ϕ and ω (a variable which is introduced in [25] and
is related to ∇iR). This approach provided, under certain conditions, the equivalence for the stored energy
function satisfying the growth condition of order p, only for p > m, where m is the dimension of the reference
configuration Ω of the micropolar body.

In this paper we apply the techniques of [1] and [6], pp. 367–393, and extend the equivalence for stored energy
functions with growth condition in ∇ϕ of order r and growth condition in ω of order p for all p, r ∈ [1,∞].
Therefore quadratic stored energy functions (analogous to the Biot material, see [4,25]) are now included in the
theory. As a direct consequence of the obtained result the existence of a minimizer of the total energy follows.
Moreover, we expect to use the result in justification of lower-dimensional models from the three-dimensional
equations by means of Γ-convergence starting from general energy functions. For the derivation and justification
of the models for geometrically exact Cosserat plates and shells see [15,19,20,25].

Through the paper we use the notation ‖ · ‖ for the norm in the appropriate Euclidean space. As a rule lower
subscript denotes the element of a sequence, upper subscript, e.g. Rj , denotes the jth column of the matrix R
and upper subscripts in brackets, e.g. R(ij), or R(i), denotes the i, j element of the matrix R or ith element of
a vector R. By Av we denote skew-symmetric matrix associated to its axial vector v, i.e. Avx = v × x.

1. Micropolar elasticity, semicontinuity, quasiconvexity

Let Ω ⊂ R
m, m = 1, 2, 3, be an open bounded set with the Lipschitz boundary. The strain energy functional

of the homogeneous micropolar body with the reference configuration Ω is given by

I(ϕ,R; Ω) =
∫

Ω

W (∇ϕ(x),R(x),∇R(x))dx,

where W is the stored energy function (i.e. the volume density of the internal energy in the reference configu-
ration). As R is a rotation the matrix ∂iRR

T
is skew-symmetric. Its axial vector we denote by ωi, i.e.

Aωi = ∂iRR
T
, i = 1, . . . , m,

where the notation Aωi stands for the skew-symmetric matrix with the axial vector ωi. This definition is the
same as in [25,26] since ωi then satisfy

∂iR = ωi × R = AωiR, i = 1, . . . , m,

where the vector product is taken with respect to the columns of R. Then vectors ωi can also be expressed by

ωi = ω(R)i =
1
2
R

j × ∂iR
j
, i = 1, . . . , m,

where R =
(
R

1
R

2
R

3
)

and the summation convention is used. In the same manner we denote ω =(
ω1 . . . ωm

)
. Now we change the dependence of the stored energy function and assume that the energy

functional is given by

I(ϕ,R; Ω) =
∫

Ω

W (∇ϕ(x),R(x),ω(x))dx.

Motivation for this change is that, due to R being rotation (pointwise it belongs to the three-dimensional man-
ifold SO(3)) derivatives of R are dependent (there are 27 of them). However, ω have independent components
and there is one-to-one, purely algebraic, correspondence between (R, ∂R) and (R,ω) for R ∈ SO(3). Note as
well that there is an analogy between vector columns of ω and angular velocity. For that change the following
Lemma 1.1 is essential. That all 27 ∂iR derivatives can be controlled by 9 independent components is obvious
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by the geometry of SO(3). In [23] it is shown that R
T

CurlR is isomorphic to ω and suggested as curvature
measure. The reason why we work with ω is the way the oscillations of R affect ω (see Rem. 2.2).

Lemma 1.1. Let Ω ⊂ R
m be a bounded open set and p ∈ [1,∞]. Let Rk,R ∈ W 1,p(Ω, SO(3)) and let

ωi
k = ω(Rk)i,ωi = ω(R)i. Then Rk → R in W 1,p(Ω, R3×3) if and only if

Rk → R in Lp(Ω, R3×3) and ωi
k → ωi in Lp(Ω, R3), i = 1, . . . , m.

Moreover, the same holds for the weak convergence (weak * for p = ∞).

Proof. See Lemma 2.7 and Remark 2.8 from [26]. �

Note also that, since R is bounded we can control the norm of ∇R by the norm ω and the opposite
(i.e. there exist constants C1, C2 > 0, which depend on the vector and matrix norm we choose, such that
C1‖∂iR‖ ≤ ‖ωi‖ ≤ C2‖∂iR‖).

In the sequel we discuss the sequential weak lower semicontinuity of the functional I. It is important
to guarantee that the weak limit of the minimizing sequence is the global minima of the functional i.e. to
guarantee the existence of the solution of the minimum of the energy of micropolar body (see Prop. 2.2 in [26]).
In the case of the classical elasticity the sequential weak lower semicontinuity of the total energy (under some
additional conditions on the stored energy function) is equivalent to the quasiconvexity of the stored energy
function in ∇ϕ. Let us recall the definition of the quasiconvex functions.

Definition 1.2. The function W : R
n×m → R is quasiconvex if it is Borel measurable, locally integrable and

satisfies

W (A) ≤ 1
meas(D)

∫
D

W (A + ∇χ(x))dx

for every open bounded set D ⊂ R
m with Lipschitz boundary, for every A ∈ R

n×m and χ ∈ W 1,∞
0 (D, Rn).

In the last definition W 1,∞
0 (D, Rn) is understood in the sense of Meyers, see [12], i.e. a set of W 1,∞(D, Rn)

functions with the zero trace at the boundary; that is different from the closure of C∞
0 (D, Rn) in W 1,∞(D, Rn)

norm.
One should also note that in the definition of quasiconvexity it is enough to demand the property for an

arbitrary cube D (see [6], Rem. 5.2, p. 157).
In [26] we have proved the equivalence of the sequential weak lower semicontinuity of the total energy

function I and the quasiconvexity of the energy density function W in ∇ϕ and ω (the first and third variable)
in the case of micropolar elasticity. The technique we have applied provided insight into the problem, but
unfortunately we were able to prove the sufficiency result only for p > m which excludes some important energy
density functions quadratic in ∇ϕ or ω. The necessity and sufficiency results proven in [26] are as follows.

Theorem 1.3 (necessity of quasiconvexity). Let Ω ⊂ R
m be an open bounded set, let W : R

3×m × SO(3) ×
R

3×m → R be continuous and let the functional defined by

I(ϕ,R; Ω) =
∫

Ω

W (∇ϕ(x),R(x),ω(x))dx

be sequentially weakly lower semicontinuous, i.e. it satisfies the condition

I(ϕ,R; Ω) ≤ lim inf
k→∞

I(ϕk,Rk; Ω) (1.1)

for every sequence ((ϕk,Rk))k ⊂ W 1,∞(Ω; R3) × W 1,∞(Ω; SO(3)) that converges weak ∗ to (ϕ,R) in
W 1,∞(Ω; R3) × W 1,∞(Ω; R3×3).
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Then W is quasiconvex in the first and the last variable i.e. W satisfies

W (A,R,B) ≤ 1
meas(D)

∫
D

W (A + ∇χ(x),R,B + ∇ψ(x))dx

for every open bounded set D with Lipschitz boundary, for every A,B ∈ R
3×m, R ∈ SO(3) and for every

χ,ψ ∈ W 1,∞
0 (D, R3).

Since weak* convergence is stronger than weak convergence in any W 1,p this theorem also implies that
quasiconvexity of energy density function is necessary for sequential weak lower continuity with respect to W 1,p.

Theorem 1.4 (sufficiency of quasiconvexity). Let Ω ⊂ R
m be an open bounded set with the Lipschitz boundary

and m < p < ∞. Let W : R
3×m × SO(3) × R

3×m → R be quasiconvex in the first and the last variable and
satisfies (a), (b), (c), (d) below. Let

I(ϕ,R; Ω) =
∫

Ω

W (∇ϕ(x),R(x),ω(x))dx.

Then for every sequence ((ϕk,Rk))k ⊂ W 1,p(Ω, R3) × W 1,p(Ω, SO(3)) which converges weakly to (ϕ,R) in
W 1,p(Ω, R3) × W 1,p(Ω, R3×3) one has

I(ϕ,R; Ω) ≤ lim inf
k

I(ϕk,Rk; Ω).

The conditions (a), (b), (c), (d) are given by
(a) W (A,R,B) ≤ Kg(1 + ‖A‖p + ‖B‖p), A,B ∈ R

3×m, R ∈ SO(3);
(b) |W (A1,R,B1) − W (A2,R,B2)| ≤ Kg(1 + ‖A1‖p−1 + ‖B1‖p−1 + ‖A2‖p−1 + ‖B2‖p−1)(‖A1 − A2‖ +

‖B1 − B2‖),
A1,A2,B1,B2 ∈ R

3×m, R ∈ SO(3);
(c) W ≥ −β, for some β ≥ 0;
(d) |W (A,R1,B) − W (A,R2,B)| ≤ Kg(1 + ‖A‖p + ‖B‖p)‖R1 − R2‖,

A,B ∈ R
3×m, R1,R2 ∈ SO(3).

Additionally we have proved that for p = ∞ the conditions (a), (b), (c) and (d) are not necessary (see Rem. 4.7
in [26]). Moreover, the conditions (b) and (d) for general p can be replaced by objectivity, quasiconvexity and
the condition (a) (see Prop. 4.9 in [26]).

In the following section we improve Theorem 1.4 in three directions. First we show that the condition p > m
is not necessary. Second, we show that the conditions (b) and (d) are also not necessary (without imposing
objectivity). Third, we allow the growth condition in ∇ϕ and ω to be different, allowing greater class of stored
energy functions. The proof is technically involved and uses techniques adapted from Acerbi and Fusco [1].
Using Theorem 2.13 we can restate Theorem 2.5 from [26] as follows.

Theorem 1.5. Let Ω ⊂ R
m be an open bounded set with the Lipschitz boundary and p, r ∈ 〈1,∞〉. Let

W : R
3×m × SO(3) × R

3×m → R be a quasiconvex in the first and the last variable (see Thm. 1.3 for the
definition) and objective function which satisfies

(a) (growth condition) W (A,R,B) ≤ K(1 + ‖A‖r + ‖B‖p), A,B ∈ R
3×m, R ∈ SO(3);

(b) (coercivity) there exist C1 > 0 and C2 ∈ R such that

W (A,R,B) ≥ C1(‖A‖r + ‖B‖p) + C2, A,B ∈ R
3×m,R ∈ SO(3).

Then the total energy functional I∗ defined by

I∗(ϕ,R) =
∫

Ω

(
W (∇ϕ,R,ω) − Πf (ϕ) − ΠM(R)

)
dV −

∫
ΓS

Πn(ϕ)dS −
∫

ΓC

ΠMc(R)dS (1.2)
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attains its minimum in the set

Φ =
{
(ϕ,R) ∈ W 1,r(Ω, R3) × W 1,p(Ω, SO(3)),ϕ|Γ = gd,R|Γ = Rd

}
,

provided that Γ is a part of the boundary with non-zero measure and the set Φ is non-empty. Here Πf , ΠM,

Πn, ΠMc are potentials of external loads and ΓS , ΓC , Γ are parts of boundary, gd : Γ → R
3, Rd : Γ → SO(3)

(see [14] or [26] for details).

Remark 1.6. If we introduce a simple isotropic quadratic stored energy function (as treated e.g. in [14]) of
the type (U = R

T∇ϕ – first Cosserat deformation tensor see [18])

W (∇ϕ,R,ω) = μ‖symU − I‖2 + μc‖skewU‖2 +
λ

2
tr[U − I]2 + μLp

c‖ω‖p

we conclude that the coerciveness assumption in Theorem 1.5 would imply μc > 0. This is undesirable property
since there are some physical situations where μc = 0 is a reasonable demand (see [18]). However, in the
existence proof the coerciveness is needed just to conclude that the minimizing sequence is bounded. Therefore
we can deal with this situation like in [17], using extended three dimensional Korn’s inequality proved in [24]
(which improves the result in [13]). For this we need p > 3. Thus we have the existence result for this energy
as well (which can also be proved by convexity arguments, see [17]) for any p > 1 if μc > 0 and for any p > 3 if
μc = 0. The case μc = 0 and 1 ≤ p ≤ 3 (called the “fracture case” by Neff) remains open.

2. The main theorem

In this section we formulate and prove the sufficiency of quasiconvexity of the energy density function theorem.
We do it in two steps. In the first step we prove that the convergence (1.1) holds for a perturbations of rotation by
equiintegrable sequence of rotations (Thm. 2.4). In the second step we extend it on all perturbations (Thm. 2.13).

By direct calculation we obtain the following lemma.

Lemma 2.1. Let Rk,R : Ω → SO(3) smooth enough. Then

ωi
k = ωi + ∂i

(
1
2
R

j ×Rj

k

)
+
(
R

j

k −Rj
)
× ∂iR

j
+

1
2

(
R

j

k −Rj
)
× ∂i

(
R

j

k −Rj
)
, (2.1)

for i = 1, 2, 3.

Remark 2.2. If we suppose that (Rk)k ⊂ W 1,p(Ω, SO(3)) and Rk ⇀ R ∈ W 1,p(Ω, R3×3), Lemma 2.1 tells us
how a weakly convergent sequence of rotations changes ωk = ω(Rk) in the neighborhood of its limit ω = ω(R).
Essentially, ωk are equal to ω + ∇ζ where ζ ⇀ 0 in W 1,p(Ω, R3) (the other parts can be shown to be not
important for the sequential weak lower semicontinuity of the functional I, since they converge to 0 strongly
in Lp on an arbitrarily subset Ω1 ⊂ Ω). This establishes the analogy between ω and ∇ϕ for the deformation ϕ
since ∇ϕk = ∇ϕ+∇(ϕk −ϕ). This is the key observation which justifies the use of the variable ω in answering
the question of sequential weak lower semicontinuity of the functional I.

By direct adaption of the proof of Lemma 8.7. from [6], p. 371, we conclude the following lemma.

Lemma 2.3. Let D ⊂ R
m be a cube parallel to the axes, p, r ∈ [1,∞], W : R

n×m ×R
k×m → R be quasiconvex,

i.e. it is Borel measurable and locally integrable function which satisfies

W (A,B) ≤ 1
meas(D)

∫
D

W (A + ∇χ(x),B + ∇ψ(x))dx,
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for every open bounded set D ⊂ R
m with Lipschitz boundary, for every A ∈ R

n×m, B ∈ R
k×m and χ ∈

W 1,∞
0 (D, Rn),ψ ∈ W 1,∞

0 (D, Rk), and also satisfies

• if p, r ∈ [1,∞〉
−β ≤ W (A,B) ≤ Kg(1 + ‖A‖r + ‖B‖p);

• if p = ∞, r ∈ [1,∞〉
−β ≤ W (A,B) ≤ η(‖B‖)(1 + ‖A‖r),

where η is a continuous and increasing function;
• if p ∈ [1,∞〉, r = ∞

W (A,B) ≤ η(‖A‖)(1 + ‖B‖p),

where η is a continuous and increasing function;
• if p = ∞, r = ∞

|W (A,B)| ≤ η(‖A‖, ‖B‖),
where η is a continuous and increasing functions in each of its arguments (if W is continuous this is
satisfied).

Then we have

W (A,B)meas(D) ≤ lim inf
k→∞

∫
D

W (A + ∇χk(x),B + ∇ψk(x))dx

for every A ∈ R
n×m, B ∈ R

k×m and χk ⇀ 0 weakly in W 1,r(D; Rn) (weak * if r = ∞), ψk ⇀ 0 weakly in
W 1,p(D; Rk) (weak * if p = ∞).

Proof. Let D0 ⊂ D be a cube and let R = 1
2dist(D0, D). Let M ∈ N and let D0 ⊂ Dm ⊂ D, 1 ≤ m ≤ M be

such that
dist(D0, ∂Dm) =

m

M
R, 1 ≤ m ≤ M.

We choose ϕm ∈ C∞(D), 1 ≤ m ≤ M such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ ϕm ≤ 1

ϕm(x) =
{

1 if x ∈ Dm−1

0 if x ∈ D\Dm

|∇ϕm| ≤ aM
R ,

(2.2)

where a > 0 is a constant. Let
χm

k = ϕmχk, ψm
k = ϕmψk.

Then χm
k ,ψm

k = 0 on ∂D so we may use the quasiconvexity of W to get∫
D

W (A,B)dx ≤
∫

D

W (A + ∇χm
k (x),B + ∇ψm

k (x))dx

≤
∫

D\Dm

W (A,B)dx +
∫

Dm\Dm−1
W (A + ∇χm

k (x),B + ∇ψm
k (x))dx

+
∫

Dm−1
W (A + ∇χk(x),B + ∇ψk(x))dx.

We then deduce that∫
Dm

W (A,B)dx ≤
∫

Dm\Dm−1
W (A + ∇χm

k (x),B + ∇ψm
k (x))dx +

∫
Dm−1

W (A + ∇χk(x),B + ∇ψk(x))dx.
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We may also rewrite the above inequality in the following way∫
Dm

W (A,B)dx ≤
∫

D

W (A + ∇χk(x),B + ∇ψk(x))dx

−
∫

D\Dm−1
W (A + ∇χk(x),B + ∇ψk(x))dx

+
∫

Dm\Dm−1
W (A + ∇χm

k (x),B + ∇ψm
k (x))dx

=
∫

D

W (A + ∇χk(x),B + ∇ψk(x))dx + α1 + α2. (2.3)

By choosing R sufficiently small, since W is bounded below, we have that

α1 ≤ ε. (2.4)

We estimate α2

α2 =
∫

Dm\Dm−1
W (A + ∇χm

k (x),B + ∇ψm
k (x))dx

for p, r ∈ [1,∞〉. Cases p = ∞, r ∈ [1,∞〉 and r = ∞, p ∈ [1,∞〉 proceed similarly. The case p = ∞, r = ∞,
using the boundness of sequences ‖∇χm

k ‖L∞ , ‖∇ψm
k ‖L∞ is simple.

Let α denotes a generic constant. Then for p, r ∈ [1,∞〉 we estimate

α2 ≤ α

∫
Dm\Dm−1

(1 + ‖A + ∇χm
k (x)‖r + ‖B + ∇ψm

k (x)‖p)dx

≤ α

∫
Dm\Dm−1

(1 + ‖A‖r + ‖ϕm∇χk + χk∇ϕm‖r + ‖B‖p + ‖ϕm∇ψk +ψk∇ϕm‖p)dx

≤ α

∫
Dm\Dm−1

(1 + ‖A‖r + ‖∇χk‖r +
(

aM

R

)r

‖χk‖r + ‖B‖p + ‖∇ψk‖p +
(

aM

R

)p

‖ψk‖p)dx. (2.5)

Summing (2.3) for m = 1 to M and using (2.4) and (2.5) we have

M

∫
D

W (A + χk(x),B +ψk(x))dx − W (A,B)

(
M∑

m=1

measDm

)
≥

− Mε − α

∫
DM\D0

(1 + ‖A‖r + ‖∇χk‖r +
(

aM

R

)r

‖χk‖r + ‖B‖p + ‖∇ψk‖p +
(

aM

R

)p

‖ψk‖p)dx.

Dividing the above inequality by M and letting k → ∞, using Sobolev imbedding and recalling that χk ⇀ 0
in W 1,r(D; Rn) and ψk ⇀ 0 in W 1,p(D; Rk), we have that

lim inf
k→∞

∫
D

W (A + χk(x),B +ψk(x))dx − W (A,B)

(
1
M

M∑
m=1

measDm

)
≥ −ε − γ

M
,

where γ is a constant. Letting m → ∞, taking into account the arbitrariness of D0 and ε we obtain the
statement of the theorem. �

In the following theorem we prove that the semicontinuity (1.1) holds for equiintegrable sequences adapting
the proof of Lemma 8.14 in [6], p. 384.
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Theorem 2.4. Let Ω ⊂ R
m be an arbitrary bounded open set and p, r ∈ [1,∞〉. Let W : R

3×m×SO(3)×R
3×m →

R be continuous, quasiconvex in the first and last variable and

(1) W (A,R,B) ≥ −β, A,B ∈ R
3×m, R ∈ SO(3);

(2) W (A,R,B) ≤ Kg(1 + ‖A‖r + ‖B‖p), A,B ∈ R
3×m, R ∈ SO(3).

Let ϕ ∈ W 1,r(Ω, R3), (Rk)k ⊂ W 1,p(Ω, SO(3)). Let ϕk ⇀ ϕ ∈ W 1,r(Ω, R3), Rk ⇀ R ∈ W 1,p(Ω, R3×3).
Moreover, let the sequences of L1(Ω) functions (‖∇ϕk‖r)k and (‖ωk‖p)k be equiintegrable (this is not a condition
for r = 1 or p = 1). Let I be the functional defined on W 1,r(Ω, R3) × W 1,p(Ω, SO(3)) by

I(ϕ,R; Ω) =
∫

Ω

W (∇ϕ,R,ω).

Then

lim inf
k→∞

I(ϕk,Rk; Ω) ≥ I(ϕ,R; Ω). (2.6)

Proof. Without loss of generality we can assume β = 0 (otherwise we prove the theorem for W + β). First we
take Ω = 〈0, 1〉m. There exists a subsequence ((ϕkn

,Rkn))n such that

lim inf
k→∞

I(ϕk,Rk; Ω) = lim
n→∞ I(ϕkn

,Rkn ; Ω). (2.7)

In the sequel we consider this subsequence only and denote it by ((ϕk,Rk))k. Because of the equiintegrability
there is a function η : R

+ → R
+ which is continuous nondecreasing such that η(0) = 0 and for every measurable

B ⊂ Ω one has ∫
B

(1 + ‖∇ϕ(x)‖r + ‖∇ϕk(x)‖r + ‖ω(x)‖p + ‖ωk(x)‖p)dx ≤ η(meas(B)).

Let ε > 0. Then there exists α(ε) ≥ 1 such that for

Eε = {x ∈ Ω : ‖∇ϕ(x)‖r ≤ α(ε) and ‖ω(x)‖p ≤ α(ε)}

one has

meas(Ω\Eε) < ε,

∫
Ω\Eε

(‖∇ϕ(x)‖r + ‖ω(x)‖p)dx < ε.

We also take Kε ⊂ Ω, a compact set such that meas(Ω\Kε) ≤ ε
α(ε) and that (the representatives of) R,∇ϕ,ω

are continuous on Kε and Rk → R strongly in L∞(Kε, R
3×3); this can be done by Lusin’s and Egoroff’s

theorem. Because of the boundedness of (∇ϕk)k and (ωk)k in Lr(Ω) i.e. Lp(Ω), using Chebyshev’s inequality,
there exists M(ε) (independent of k) such that meas(Ω\Hε

k) < ε
α(ε) where

Hε
k =

{
x ∈ Ω : ‖∇ϕk(x)‖ ≤ M(ε) and ‖ωk(x)‖ ≤ M(ε)

}
·

Using Lemma 2.1 we obtain

ωk(x) = ω(x) + ∇
(

1
2
R

j
(x) × R

j

k(x)
)

+ sk(x) a.e. in Ω,
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where ‖sk‖L∞(Kε∩Hε
k,R3×m) → 0. Let us define

ψk(x) =
1
2
R

j
(x) × R

j

k(x).

Note that for some Cψ > 1 we have

‖∇ψk(x)‖p ≤ Cψ(‖ω(x)‖p + ‖ωk(x)‖p) a.e. in Ω, k ∈ N. (2.8)

We divide Ω in open cubes Qn
h of length size 2−n such that

Ω =
2nm⋃
h=1

Qn
h ∪ Z, (2.9)

where Z is of measure zero. For all n, h such that meas(Qn
h ∩ Kε ∩ Eε) �= 0 let us choose xn

h ∈ Qn
h ∩ Kε ∩ Eε

such that R(xn
h) is a rotation (see Rem. 2.5). Then

I(ϕk,Rk; Ω) ≥ I(ϕk,Rk; Kε ∩ Eε ∩ Hε
k) = I1 + I2 + I3 + I4 + I5,

where

I1 =
∫

Kε∩Eε∩Hε
k

[
W (∇ϕk(x),Rk(x),ωk(x)) − W (∇ϕk(x),R(x),ω(x) + ∇ψk(x))

]
dx,

I2 =
∑

h

∫
Qn

h∩Kε∩Eε∩Hε
k

[
W (∇ϕ(x) + ∇(ϕk −ϕ)(x),R(x),ω(x) + ∇ψk(x))

−W (∇ϕ(xn
h) + ∇(ϕk −ϕ)(x),R(xn

h),ω(xn
h) + ∇ψk(x))

]
dx,

I3 =
∑

h

∫
Qn

h∩Kε∩Eε∩Hε
k

[
W (∇ϕ(xn

h) + ∇(ϕk −ϕ)(x),R(xn
h),ω(xn

h) + ∇ψk(x))

−W (∇ϕ(xn
h),R(xn

h),ω(xn
h))
]
dx,

I4 =
∑

h

∫
Qn

h∩Kε∩Eε∩Hε
k

[
W (∇ϕ(xn

h),R(xn
h),ω(xn

h)) − W (∇ϕ(x),R(x),ω(x))
]
dx,

I5 = I(ϕ,R, Kε ∩ Eε ∩ Hε
k).

Sequences (∇ϕk)k, (ωk)k, (∇ψk)k are bounded in L∞(Kε ∩ Hε
k). Therefore the arguments of W in I1 and

I2 belong to the compact set. Applying the uniform continuity of W we conclude limk→∞ I1 = 0 (recall
that ‖sk‖L∞(Kε∩Hε

k,R3×m) → 0). Using also that ∇ϕ,R,ω are uniformly continuous on Kε we conclude that
limn→∞ I2 = limn→∞ I4 = 0, uniformly by k (note that difference in the arguments of W in this case is
independent of k). Therefore we take n large enough such that I2 + I4 ≤ ε.
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Now we estimate I3. We first estimate the integral over Qn
h\(Kε ∩ Eε ∩ Hε

k)∣∣∣∣∑
h

∫
Qn

h\(Kε∩Eε∩Hε
k)

[W (∇ϕ(xn
h) + ∇(ϕk −ϕ)(x),R(xn

h),ω(xn
h) + ∇ψk(x)) − W (∇ϕ(xn

h),R(xn
h),ω(xn

h))]dx

∣∣∣∣
≤
∑

h

∫(
(Qn

h
\Kε)∪(Qn

h
\Hε

k
)
) ∣∣W (∇ϕ(xn

h) + ∇(ϕk −ϕ)(x),R(xn
h),ω(xn

h) + ∇ψk(x))
∣∣

+
∑

h

∫(
(Qn

h\Kε)∪(Qn
h\Hε

k)
) ∣∣W (∇ϕ(xn

h),R(xn
h),ω(xn

h))
∣∣dx

+
∑

h

∫
Qn

h\Eε

∣∣W (∇ϕ(xn
h) + ∇(ϕk −ϕ)(x),R(xn

h),ω(xn
h) + ∇ψk(x))

∣∣
+
∑

h

∫
Qn

h\Eε

∣∣W (∇ϕ(xn
h),R(xn

h),ω(xn
h))
∣∣dx

= J1 + J2 + J3 + J4.

Using (2.8) and the growth condition we conclude

|J1| ≤
∑

h

∫(
(Qn

h\Kε)∪(Qn
h\Hε

k)
)K ′(1 + ‖∇ϕ(xn

h)‖r + ‖∇(ϕk(x)‖r + ‖∇ϕ(x)‖r + ‖ω(xn
h)‖p + ‖∇ψk(x)‖p)dx

≤ 4K ′ε + K ′Cψη(2ε),

In the similar way we conclude
|J2| ≤ 6Kgε.

Now we estimate J3

|J3| ≤ K ′∑
h

∫
Qn

h\Eε

(1 + ‖∇ϕ(xn
h)‖r + ‖∇ϕk(x)‖r + ‖∇ϕ(x)‖r + ‖ω(xn

h)‖p + ‖∇ψk(x)‖p)dx

≤ K ′η(ε) + 2K ′
∫

Ω\Eε

α(ε) ≤ K ′η(ε) + 2K ′
∫

Ω\Eε

(‖∇ϕ(x)‖r + ‖ω(x)‖p) ≤ 3K ′η(ε).

In the similar way
|J4| ≤ 3Kgε.

Thus using Lemma 2.3 we have

lim inf
k→∞

I3 ≥
∑

h

lim inf
k→∞

∫
Qn

h

· −
∑

h

lim sup
k→∞

∫
Qn

h\(Kε∩Eε∩Hε
k)

· ≥ lim inf
k→∞

∫
Qn

h

· − O(ε) ≥ −O(ε)

where limε→0 O(ε) = 0. Finally, in the same manner we estimate

I5 ≤ Kg

∫
Ω\(Kε∩Eε∩Hε

k
)

(1 + ‖ϕ(x)‖r + ‖ω(x)‖r)dx ≤ Kgη(meas(Ω\(Kε ∩ Eε ∩ Hε
k))) ≤ Kgη(3ε),

which can be written as
I5 = I(ϕ,R; Kε ∩ Eε ∩ Hε

k) ≥ I(ϕ,R; Ω) − Kgη(3ε),
therefore

lim inf
k→∞

I(ϕk,Rk; Ω) ≥ I(ϕ,R; Ω) − O(ε).

Since ε can be arbitrarily small we have the claim.
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Now we have to prove the claim for an arbitrary bounded open Ω. First, we can prove the claim for any cube
in the same way as above. From the properties of the Lebesgue integral we have

I(ϕ,R; Ω) = sup

{
n∑

l=0

I(ϕ,R; Dl) : n ∈ N, Dl ⊂ Ω, Dl disjoint open cubes

}
·

The property (2.6), because it holds for every I(ϕ,R, Dk), also holds for every sum. Moreover (2.6) holds
for the supremum of an arbitrary set of functionals if it holds for every functional in that set, so we have the
claim. �

Remark 2.5. In Theorem 2.4 we have chosen xn
h and then ∇ϕ(xn

h), R(xn
h), ω(xn

h). Of course that this does
not make sense for classes of functions ∇ϕ, R, ω equal just almost everywhere. It should be read that we
take some special representants (continuous on Kε) whose existence is guaranteed by Lusin’s theorem and then
choose ∇ϕn

h := ∇ϕ(xn
h), R

n

h := R(xn
h), ωn

h := ω(xn
h) (we must also choose xn

h such that R(xn
h) is a rotation

which is possible if meas(Qn
h ∩ Kε) > 0). These values are good approximations of every representant in the

class ∇ϕ i.e. R i.e. ω in the set Qn
h ∩ Kε in the sense that for n large enough and every h we have that

‖∇ϕ(x) − ∇ϕn
h‖ ≤ ε a.e. in Qn

h ∩ Kε i.e. ‖R(x) − R
n

h‖ ≤ ε a.e. in Qn
h ∩ Kε i.e. ‖ω(x) − ωn

h‖ ≤ ε a.e. in
Qn

h ∩ Kε.

Remark 2.6. The statement of Theorem 2.4 holds for p, r ∈ [1,∞] under the assumptions of Lemma 2.3.
When p = ∞ and r = ∞ the proof is direct, without the construction of the sets Kε, Eε, H

k
ε . When just one

of them is infinity, we proceed defining Kε, Eε, H
k
ε in the same as in the proof using the sequence, ‖∇ϕk‖ or

‖ωk‖, which is not uniformly bounded.

The following four lemmas will be useful. The proofs are given in [1].

Lemma 2.7. Let G ⊂ R
m be a measurable set such that meas(G) < ∞. Assume (Mk)k is a sequence of

measurable subsets of G such that for some ε > 0 holds

meas(Mk) ≥ ε k ∈ N.

Then there exists a subsequence (Mkh
)h such that

⋂
h∈N

Mkh
�= ∅.

Lemma 2.8. Let (φk)k ⊂ L1(Rm) be bounded. Then for every ε > 0 there exists (Aε, δ, S) where Aε is
measurable and meas(Aε) < ε, δ > 0, and S is an infinite subset of N, such that for all k ∈ S∫

B

|φk(x)|dx < ε

whenever B and Aε are disjoint and meas(B) < δ.

Let r > 0 and x ∈ R
n. We denote Br(x) = {y ∈ R

m : ‖y − x‖ < r}. Then meas(Br(x)) = C(m)rm, where
C(m) is the volume of the unit ball in R

m.

Definition 2.9. Let u ∈ C∞
0 (Rm). We define

(M∗u)(x) = (Mu)(x) +
m∑

i=1

(M∂iu)(x),

where
(Mu)(x) = sup

r>0

1
C(m)rm

∫
Br(x)

|u(y)|dy.
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Lemma 2.10. If u ∈ C∞
0 (Rm) then M∗u ∈ C0(Rm) and

|u(x)| +
m∑

i=1

|∂iu(x)| ≤ (M∗u)(x)

for every x ∈ R
m. Moreover, if p > 1, then there is c(m, p) > 0 such that

‖M∗u‖Lp(Rm) ≤ c(m, p)‖u‖W 1,p(Rm)

and if p = 1 then there is c(m) > 0 such that for all λ > 0 one has

meas{x ∈ R
m : (M∗u) ≥ λ} ≤ c(m)

λ
‖u‖W 1,1(Rm).

Lemma 2.11. Let u ∈ C∞
0 (Rm), λ > 0 and

Hλ = {x ∈ R
m : (M∗u)(x) < λ}·

Then for every x, y ∈ Hλ we have
|u(y) − u(x)|

|y − x| ≤ c(m)λ.

By expanding the exponential function in the Taylor series we obtain the following lemma.

Lemma 2.12. Let Ω ⊂ R
m be an open bounded set with the Lipschitz boundary and p ∈ [1,∞〉. Let R ∈

W 1,p(Ω, SO(3)) and ψk,ψ ∈ W 1,∞(Ω, R3) such that ψk → ψ strongly in L∞(Ω, R3). Then

exp(Aψk
)R → exp(Aψ)R strongly in L∞(Ω, R3×3).

Additionally, if ψk ⇀ ψ weak* in W 1,∞(Ω, R3) then:
(a) exp(Aψk

) ⇀ exp(Aψ) weak* in W 1,∞(Ω, R3×3);
(b) exp(Aψk

)R → exp(Aψ)R strongly in L∞(Ω, R3×3);
(c) exp(Aψk

)R ⇀ exp(Aψ)R weakly in W 1,p(Ω, R3×3).

In the following theorem we prove the statement of Theorem 2.4 without imposing the condition of equi-
integrability. The idea behind it is to approximate sequences (ϕk)k, (Rk)k, such that ϕk ⇀ ϕ,Rk ⇀ R by
equiintegrable sequences (ϕ̂k)k, (R̂k)k which satisfy for arbitrary small ε:

(1) lim infk→∞ I(ϕk,Rk) ≥ lim infk→∞ I(ϕ̂k, R̂k) − O(ε);
(2) ϕ̂k ⇀ ϕ̂, R̂k ⇀ R̂;
(3) meas{ϕ �= ϕ̂ or R �= R̂} = O(ε).

The claim then follows by applying Theorem 2.4. The same construction was applied in [1]. The novelty here is
the approximations of rotations from Lemma 2.12 i.e. R̂k = exp(Aψk

)R, where ψk ⇀ ψ weak* in W 1,∞(Ω, R3)
and meas{ψ �= 0} = O(ε).

Theorem 2.13. Let p, r ∈ 〈1,∞〉 and Ω ⊂ R
m be an arbitrary open bounded set. Let W : R

3×m × SO(3) ×
R

3×m → R be continuous, quasiconvex in the first and last variable which satisfies
(1) W (A,R,B) ≥ −β, A,B ∈ R

3×m, R ∈ SO(3);
(2) W (A,R,B) ≤ Kg(1 + ‖A‖r + ‖B‖p), A,B ∈ R

3×m, R ∈ SO(3).
Let ϕk,ϕ ∈ W 1,r(Ω, R3), Rk,R ∈ W 1,p(Ω, SO(3)), ϕk ⇀ ϕ weakly in W 1,r(Ω, R3) and Rk ⇀ R weakly
in W 1,p(Ω, R3×3). Then we have

I(ϕ,R; Ω) ≤ lim inf
k→∞

I(ϕk,Rk; Ω).
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Proof. Without loss of generality we can assume that β = 0 (otherwise we prove the statement for W +β). We
shall prove the theorem for Ω = 〈0, 1〉m. Then for an arbitrary open Ω one can follow the same reasoning as in
Theorem 2.4. For an arbitrary sequence ((ϕk,Rk))k let us choose a subsequence ((ϕkn

,Rkn))n such that

lim inf
k→∞

I(ϕk,Rk; Ω) = lim
n→∞ I(ϕkn

,Rkn ; Ω). (2.10)

In the sequel we consider only this subsequence and denote it by ((ϕk,Rk))k.
For ε > 0 we define

η(ε) = sup

{∫
B

(1 + ‖∇ϕ(x)‖r + ‖ω(x)‖p)dx : B ⊂ Ω measurable, meas(B) ≤ ε

}
·

Then η : R
+ → R

+ is continuous nondecreasing function such that η(0) = 0 and for every measurable B ⊂ Ω
one has ∫

B

(1 + ‖∇ϕ(x)‖r + ‖ω(x)‖p)dx ≤ η(meas(B)).

Let, for each k ∈ N, ϕ̃k ∈ W 1,r(Rm, R3) denotes the extension of ϕk and let (zk)k ⊂ C∞
0 (Rm, R3) be such that

‖zk − ϕ̃k‖W 1,r(Rm,R3) ≤ 1
k

k ∈ N.

Let R̃k, R̃ ∈ W 1,p(Rm, R3×3) be the extensions of Rk,R. Let (Mk)k, (Sk)k ⊂ C∞
0 (Rm, R3×3) be such that

‖Mk − R̃k‖W 1,p(Rm,R3×3) ≤ 1
k
, ‖Sk − R̃‖W 1,p(Rm,R3×3) ≤ 1

k
, k ∈ N.

Then there is C(Ω) > 0 such that

‖R̃k‖L∞(Rm,R3×3) ≤ C(Ω), ‖R̃(x)‖L∞(Rm,R3×3) ≤ C(Ω),

‖Mk‖L∞(Rm,R3×3) ≤ C(Ω), ‖Sk‖L∞(Rm,R3×3) ≤ C(Ω).

Let us fix ε > 0. By Lusin’s, Egoroff’s and Sobolev’s embedding theorem there is a compact Kε ⊂ Ω such that
meas(Ω\Kε) ≤ ε, (the representatives of) R, ϕ, ω are continuous on Kε and

(1) ϕk −ϕ→ 0 strongly in L∞(Kε, R
3);

(2) zk −ϕk → 0 strongly in L∞(Kε, R
3), ∇zk −∇ϕk → 0 strongly in L∞(Kε, R

3×m);
(3) Rk → R strongly in L∞(Kε, R

3×3);
(4) Sk → R strongly in L∞(Kε, R

3×3), ∂iSk → ∂iR strongly in L∞(Kε, R
3×3), for i = 1, . . . , m;

(5) Mk −Rk → 0 strongly in L∞(Kε, R
3×3), ∂iMk −∂iRk → 0 strongly in L∞(Kε, R

3×3), for i = 1, . . . , m.

Using Lemma 2.8 for every of 21 sequences (M∗z(i)
k )r, i = 1, 2, 3 and (M∗M (ij)

k )p, (M∗S(ij)
k )p, i, j = 1, 2, 3 we

can choose subsequences still denoted by (zk), (Mk), (Sk), subset Aε ⊂ Ω meas(Aε) < ε and a real number
δ > 0 such that∫

B

[(
M∗z(i)

k

)
(x)
]r

dx < ε,

∫
B

[(
M∗M (ij)

k

)
(x)
]p

dx < ε,

∫
B

[(
M∗S(ij)

k

)
(x)
]p

dx < ε (2.11)

for every k ∈ N, i, j = 1, 2, 3 and B ⊂ Ω\Aε such that meas(B) < δ. By Lemma 2.10 we have the boundedness
of the above sequences in Lr(Ω), Lp(Ω) and Lp(Ω), respectively. By Chebyshev’s inequality we can choose
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λ1(ε) > 0, λ2(ε) > 0 such that λ1(ε)r = λ2(ε)p and

meas
{
x ∈ R

m :
(
M∗z(i)

k

)
(x) ≥ λ1(ε)

}
< min(ε, δ),

meas
{
x ∈ R

m :
(
M∗M (ij)

k

)
(x) ≥ λ2(ε)

}
< min(ε, δ),

meas
{
x ∈ R

m :
(
M∗S(ij)

k

)
(x) ≥ λ2(ε)

}
< min(ε, δ),

for all k ∈ N, i, j = 1, 2, 3. We set

H
λ1(ε)
i,k =

{
x ∈ R

m :
(
M∗z(i)

k

)
< λ1(ε)

}
,

J
λ2(ε)
ij,k =

{
x ∈ R

m :
(
M∗M (ij)

k

)
< λ2(ε)

}
,

L
λ2(ε)
ij,k =

{
x ∈ R

m :
(
M∗S(ij)

k

)
< λ2(ε)

}
,

for all k ∈ N, i, j = 1, 2, 3 and define

Hε
k =

3⋂
i=1

H
λ1(ε)
i,k

3⋂
i,j=1

J
λ2(ε)
ij,k

3⋂
i,j=1

L
λ2(ε)
ij,k , k ∈ N.

By Lemma 2.11 there is a constant c(m) > 0 such that for all x, y ∈ H
λ(ε)
k and all i, j = 1, 2, 3 one has∣∣∣z(i)

k (x) − z
(i)
k (y)

∣∣∣
|y − x| ≤ c(m)λ1(ε),∣∣∣M (ij)

k (x) − M
(ij)
k (y)

∣∣∣
|y − x| ≤ c(m)λ2(ε),∣∣∣S(ij)

k (x) − S
(ij)
k (y)

∣∣∣
|y − x| ≤ c(m)λ2(ε).

Let g
(i)
k , N

(ij)
k , T

(ij)
k be the Lipschitz extensions of z

(i)
k , M

(ij)
k , S

(ij)
k outside Hε

k with the Lipschitz constant not
greater than c(m)λ1(ε) i.e. c(m)λ2(ε). Because Hε

k is an open set we have

g
(i)
k (x) = z

(i)
k (x), ∇g

(i)
k (x) = ∇z

(i)
k (x),

N
(ij)
k (x) = M

(ij)
k (x), ∇N

(ij)
k (x) = ∇M

(ij)
k (x),

T
(ij)
k (x) = S

(ij)
k (x), ∇T

(ij)
k (x) = ∇S

(ij)
k (x),

for all x ∈ Hε
k . Also we can assume (if not cutting the Lipschitz function we obtain the Lipschitz function with

the same constant) that ∥∥∥g(i)
k

∥∥∥
L∞(Rm)

≤
∥∥∥z(i)

k

∥∥∥
L∞(Hε

k)
≤ λ1(ε), (2.12)∥∥∥N (ij)

k

∥∥∥
L∞(Rm)

≤
∥∥∥M (ij)

k

∥∥∥
L∞(Hε

k
)
≤ C(Ω), (2.13)∥∥∥T (ij)

k

∥∥∥
L∞(Rm)

≤
∥∥∥S(ij)

k

∥∥∥
L∞(Hε

k)
≤ C(Ω). (2.14)
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Therefore, at least on a subsequence, one has

g
(i)
k ⇀ g(i) weak* in W 1,∞(Ω), (2.15)

N
(ij)
k ⇀ N (ij) weak* in W 1,∞(Ω), (2.16)

T
(ij)
k ⇀ T (ij) weak* in W 1,∞(Ω) (2.17)

for all i, j = 1, 2, 3. We now define gk = (g(i)
k )i=1,2,3, Nk = (N (ij)

k )i,j=1,2,3, Tk = (T (ij)
k )i,j=1,2,3, g = (g(i))i=1,2,3,

N = (N (ij))i,j=1,2,3, T = (T (ij))i,j=1,2,3 and

ψk =
1
2
T j

k ×N j
k, ψ =

1
2
T j ×N j .

Note that on Kε one has

Sj
k ×M j

k =
(
Sj

k −Rj
)
×M j

k +R
j ×

(
M j

k −Rj

k

)
+R

j ×Rj

k.

Therefore Sj
k ×M j

k tends uniformly to 0 on Kε, so using Lemma 2.12 we obtain

‖ψk‖L∞(Kε∩Hε
k,R3) → 0,

∥∥∥ exp(Aψk
)R − R

∥∥∥
L∞(Kε∩Hε

k,R3×3)
→ 0. (2.18)

Also note, because of (2.13), (2.14), (2.16), (2.17), it holds

ψk ⇀ ψ weak* in W 1,∞(Ω, R3),

‖ψk‖L∞(Rm,R3) ≤ 3
2
C(Ω)2,

‖∇ψk‖L∞(Rm,R3m) ≤ 3C(Ω)c(m)λ2(ε).

Using Lemma 2.1 one has

ωi
k(x) = ωi(x) + ∂i

(
1
2
R

j
(x) ×Rj

k(x)
)

+ si
k(x) a.e. in Ω.

Boundedness of ∂iMk on Hε
k and ∂iMk − ∂iRk → 0 strongly in L∞(Kε, R

3×m), i = 1, . . . , m imply∥∥∥∂iRk

∥∥∥
L∞(Kε∩Hε

k,R3×3)
< c(m)λ2(ε) + 1

for almost every k. As ∂iR is continuous on Kε (and thus also bounded) and Rk → R strongly in L∞(Kε, R
3×3)

we have that ‖si
k‖L∞(Kε∩Hε

k,R3) → 0. Now, because of uniform continuity of W on compact sets and the
boundedness of ∇ϕk, ∇gk, ωk on Kε ∩ Hε

k and the fact that ‖∇ϕk −∇zk‖L∞(Kε∩Hε
k) → 0 we have that

lim
k→∞

∫
Kε∩Hε

k

∣∣∣∣W (∇ϕk,Rk,ωk

)− W

(
∇gk,R,ω + ∇

(
1
2
R

j ×Rj

k

))∣∣∣∣ = 0. (2.19)

In the same way we conclude

lim
k→∞

∫
Kε∩Hε

k

∣∣∣∣W (
∇gk,Rk,ω + ∇

(
1
2
R

j ×Rj

k

))
− W

(
∇gk,R,ω + ∇ψk

)∣∣∣∣ = 0. (2.20)
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By developing exponential function we have that

exp(Aψk(x)) = I + Aψk(x) + rk(x)

with the estimates for i = 1, . . . , m

‖rk‖L∞(Rm,R3×3) ≤ exp
(

3
2
C(Ω)2

)
, ‖∂irk‖L∞(Rm,R3×3) ≤ exp

(
3
2
C(Ω)2

)
3C(Ω)c(m)λ2(ε),

‖rk‖L∞(Kε∩Hε
k,R3×3) → 0, ‖∂irk‖L∞(Kε∩Hε

k,R3×3) → 0. (2.21)

Let us define

μi
k =

1
2

(
exp(Aψk

)R
j
)
× ∂i

(
exp(Aψk

)R
j
)
, i = 1, . . . , m.

After an easy calculation using (2.21) we obtain

μk = ω + ∇ψk + vk, ‖vk‖L∞(Kε∩Hε
k
,R3×3) → 0.

Additionally, using (2.18), as before (see (2.19) and (2.20)), we conclude

lim
k→∞

∫
Kε∩Hε

k

∣∣∣W(
∇gk,R,ω + ∇ψk

)
− W

(
∇gk, exp(Aψk

)R,μk

)∣∣∣ = 0. (2.22)

Using (2.19), (2.20), (2.22) and nonnegativity of W we have

lim inf
k→∞

I
(
ϕk,Rk; Ω

)
≥ lim inf

k→∞
I
(
ϕk,Rk; (Kε\Aε) ∩ Hε

k

)
≥ lim inf

k→∞
I
(
gk, exp(Aψk

)R; (Kε\Aε) ∩ Hε
k

)
. (2.23)

Since

meas[(Kε\Aε)\Hε
k] ≤

3∑
i=1

meas
[
(Kε\Aε)\Hλ1(ε)

i,k

]
+

3∑
i,j=1

meas
[
(Kε\Aε)\Jλ2(ε)

ij,k

]

+
3∑

i,j=1

meas
[
(Kε\Aε)\Lλ2(ε)

ij,k

]
≤ 21 min(ε, δ),
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using the growth condition and the definition of Aε we have

I(gk, exp(Aψk
)R, (Kε\Aε)\Hε

k) ≤
∫

(Kε\Aε)\Hε
k

Kg(1 + ‖∇gk‖r + ‖μk‖p)

≤
∫

(Kε\Aε)\Hε
k

K ′
(

1 + ‖∇gk‖r +
m∑

i=1

‖∂i[exp(Aψk
)R]‖p

)

≤
∫

(Kε\Aε)\Hε
k

2p−1K ′
(

1 + ‖∇gk‖r +
m∑

i=1

‖∂i exp(Aψk
)‖p + ‖ω‖p

)

≤
∫

(Kε\Aε)\Hε
k

22p−2K ′′
(

1 + (2c(m))rλ1(ε)r + exp

(
p
3
2
C(Ω)2

)
3pC(Ω)pc(m)pλ2(ε)p + ‖ω‖p

)
(recall that λ1(ε)r = λ2(ε)p)

≤ K1(m; Ω)
∫

(Kε\Aε)\Hε
k

(1 + |λ1(ε)|r + ‖ω‖p)

≤ K1(m; Ω)η(21ε) + K1(m; Ω)

(
3∑

i=1

∫
(Kε\Aε)\H

λ1(ε)
i,k

(
M∗z(i)

k

)r

+
3∑

i,j=1

∫
(Kε\Aε)\J

λ2(ε)
i,k

(
M∗M (ij)

k

)p

+
3∑

i,j=1

∫
(Kε\Aε)\L

λ2(ε)
i,k

(
M∗S(ij)

k

)p
)

= O(ε).

Therefore, taking into account (2.23) we obtain

lim inf
k→∞

I
(
ϕk,Rk; Ω

)
≥ lim inf

k→∞
I
(
gk, exp

(
Aψk

)
R; Kε\Aε

)
− O(ε).

Because gk,ψk are bounded in W 1,∞(Ω, R3) there exists a constant C(ε, Ω, m) such that for all k

‖gk‖W 1,∞(Ω,R3) ≤ C(ε, Ω, m), ‖μk(x)‖ ≤ C(ε, Ω, m)(1 + ‖ω(x)‖) a.e. in Ω.

Together with the growth condition of W it implies that there exists Ω′
ε ⊂ Ω which contains Kε\Aε such that∣∣∣I(gk, exp

(
Aψk

)
R; Kε\Aε

)
− I
(
gk, exp

(
Aψk

)
R; Ω′

ε

)∣∣∣ < ε.

Using nonnegativity of W and Theorem 2.4 (it is easy to prove equiintegrability of gk and exp (Aψk
)R, since

gk,ψk ∈ W 1,∞(Ω, R3)) and Lemma 2.12 we obtain

lim inf
k→∞

I
(
ϕk,Rk; Ω

)
≥ lim inf

k→∞
I
(
gk, exp(Aψk

)R; Ω′
ε

)
− O(ε) − ε

≥ I
(
g, exp(Aψ)R; Ω′

ε

)
− O(ε) − ε. (2.24)

Now we have to relate g and ψ with ϕ and φ and 0. Let us define

G = {x ∈ Ω : g �= ϕ ∨ψ �= 0}·

On a subsequence one has zk(x) → ϕ(x), 1
2S

j
k(x) ×M j

k(x) → 0 a.e. in Ω. Therefore measure of

G̃ = G ∩
{

x ∈ Ω : zk(x) → ϕ(x) ∧ 1
2
Sj

k(x) ×M j
k(x) → 0

}
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is the same as meas(G). We shall prove that meas(G) ≤ 22ε. Let us assume the opposite, i.e. meas(G) > 22ε.
Then by the definition of Hε

k it follows meas(Rm\Hε
k) < 21ε. Therefore meas(Hε

k ∩ G̃) ≥ ε. Then by Lemma 2.7
at least on a subsequence we have (⋂

h∈N

Hε
kh

)⋂
G̃ �= ∅.

For every x̃ which belongs to the set on the left hand side one has

g(x̃) = lim
h→∞

gkh
(x̃) = lim

h→∞
zkh

(x̃) = ϕ(x̃),

ψ(x̃) = lim
h→∞

ψkh
(x̃) = lim

h→∞
1
2
Sj

kh
(x̃) ×M j

kh
(x̃) = 0

which is in contradiction with the definition of G. Thus we have

lim inf
k→∞

I
(
ϕk,Rk; Ω

)
≥ I

(
ϕ,R; Ω′

ε\G
)
− O(ε) − ε

≥ I
(
ϕ,R; Ω

)
− O(ε) − ε − η(24ε).

Arbitrariness of ε implies the claim. �
Remark 2.14. The statement of the theorem holds for all p, r ∈ [1,∞], under the assumptions of Lemma 2.3.
When p = 1 or r = 1 or p = ∞ or r = ∞ we can do the same analysis, but we do not change the sequence which
is equiintegrable. For example when p = 1 or p = ∞ we do not need to approximate Rk (the construction of ψk

and sets J
λ2(ε)
ij,k , L

λ2(ε)
ij,k is unnecessary). The construction of gk remains the same (if r ∈ 〈1,∞〉). Theorem 2.4

is then applied directly on (gk)k, (Rk)k to obtain (2.24).
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