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FINITENESS THEOREMS FOR THE COHOMOLOGY
OF AN OVERCONVERGENT ISOCRYSTAL ON A CURVE

BY RICHARD CREW*

ABSTRACT. - Let M be an overconvergent isocrystal on a smooth affine curve X / k over a perfect field of
characteristic p > 0, realized as a module on a suitable lifting of X with connection. We give a topological
condition on the connection which guarantees that the rigid cohomology of M is finite-dimensional. As a result,
one sees that M has finite-dimensional cohomology if it satisfies an analogue of Grothendieck's local monodromy
theorem. Some arithmetic applications are given. © Elsevier, Paris

RESUME. - Soit M un isocristal surconvergent sur une courbe X / k affine et lisse sur un corps parfait de
caracteristique p > 0, realise comme module a connexion sur un relevement convenable de X. Nous donnons une
condition de nature topologique sur la connexion pour que la cohomologie rigide de M soit de dimension finie. II
en resulte que la cohomologie de M sera de dimension finie si M verifie une analogue du theoreme de monodromie
locale de Grothendieck. On donne aussi des applications arithmetiques de ce resultat. © Elsevier, Paris

0. Introduction

Let X / k be a smooth scheme over a perfect field k of characteristic p > 0. In
[5, 8] Berthelot constructed a category of p-adic local coefficients on X, the category of
overconvergent isocrystals on X, and defined the rigid cohomology of an overconvergent
isocrystal on X. This theory generalizes previous constructions of Dwork, Washnitzer, and
Monsky [18, 30, 31]; there is also a definition of "rigid cohomology with supports" which
generalizes Dwork9 s "dual theory"; (as explained in [4 §3]. Now fairly simple examples
show that the cohomology of an isocrystal can be infinite-dimensional even when X is
a smooth curve, and the main result of this paper is to give a fairly general sufficient
condition for an overconvergent isocrystal on a smooth curve to have finite-dimensional
cohomology. When this condition is satisfied, we also give a proof of Poincare duality.

The condition we give (in §9.1 below) is an analytic condition on the behavior of
the isocrystal inside the tube of a singular point. It seems a difficult one to verify in
general, but it is automatic in one special case of interest, namely when the isocrystal
satisfies an analogue of Grothendieck9 s local monodromy theorem; we call such isocrystals
"quasi-unipotent" and the last few sections of this paper are devoted to some of their
properties. In particular, we are able to show that much of the first two chapters of Well
II is applicable to any quasi-unipotent .F-isocrystal; this includes the important theorem
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718 R. CREW

on the purity of the monodromy weight filtration [17 1.8.4-5], and the equidistribution
results for the Frobenius classes.

It seems reasonable to expect that any overconvergent isocrystal "of geometric origin"
is quasi-unipotent in the above sense. In fact, it might not be unreasonable to expect
that any overconvergent F-isocrystal is quasi-unipotent, though evidence for this is rather
fragmentary. In any case, there certainly do exist "strict isocrystals" (i.e. isocrystals
satisfying the finiteness condition) that have no Frobenius structure and thus do not come
from geometry, and one would like to know what their significance is. In this connection,
we must consider another construction of Berthelot, that of the category of arithmetic T>-
modules [7]. If X is a smooth curve, X ̂  X a smooth compactification of X, and M is
an overconvergent isocrystal on X, then the direct image sp^M of M under specialization
is a ^-module on X ([7] §4). It is not, however, necessarily a coherent T^-module on
X, and one is led to ask v/hen sp^M is coherent. Is it sufficient that M be strict? This
is not unreasonable, since both strictness of M and coherence of sp^M guarantee that
M has finite-dimensional cohomology; furthermore, in the case of the Kummer isocrystal
([6 5.12] and 6.10 below) these conditions turn out to be the same. On the other hand,
strictness of M is a condition only on the behaviour of M on the tube of X — X, and
the same cannot be said a priori for the coherence of sp^M. We hope that clarifying this
issue would shed light on both theories.

The first part of this paper is just a review of non-archimedean functional analysis;
in writing it I had in mind primarily the needs of algebraic geometers for whom this
may not be their favorite subject. It contains no new results, though it does collect a
few facts that can be difficult to dig out of the literature. The second and third parts are
devoted to the local and global parts of the theory. The motivating ideas are all from the
classical geometry of numbers (in "function field" form): if X '—> X is a smooth projective
embedding, and X is a formally smooth lifting of X, then to every point of X — X
we attach a "local algebra," and show that the global dagger algebra A1' associated to X
embeds, as a closed topological subspace, into the direct sum A100 of the local algebras
attached to the points of X — X. Furthermore A100 is topologically self-dual, while A1'
and A100 /A1' have dual topological types.

Since the original version of this paper was written, G. Christol and Z. Mebkhout [13,
28] have also obtained finiteness results for a isocrystals on a curve. Their methods are
completely different from the ones used here, but it is not unlikely that their hypotheses
are closely related to the one used here (cf. 9.1 below).

I am indebted to a number of individuals for helpful conversation and moral support,
and I would particularly like to thank F. Beckhoff, P. Berthelot, A. Huber, W. Messing,
S. Sperber, and P. Schneider. Many of the basic ideas of this paper were first worked out
during a visit to the Universite de Rennes, and much of the final manuscript was written
during another visit to the Universitat zu Koln. I would also like to thank the referee for
several helpful suggestions, and the National Security Agency for its support.

Notation

We will always denote by K a complete discretely valued field of characteristic 0, with
integer ring R and residue field k of characteristic p > 0. The value group of Kx is \KX |,
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FINITENESS THEOREMS 719

and v4^Iis tne group of "roots" of the value group, i.e the set of positive real numbers
r such that r71 G \KX\ for some integer n.

For any affinoid algebra A, we denote by | [A the spectral seminorm; if A is reduced
and Max(A) is the corresponding rigid-analytic space, we will also write | \x for | IA.

Part I

Functional analysis over a discretely valued field

In this section we will collect some basic results of non-archimedean functional analysis
that we will need later, or that the reader will probably want to be reminded of. There
is practically nothing new in this section, which should be read only as needed. Our
basic references are the papers of van Tiel [39], Serre [34], and Gruson [23], the book of
Monna [29], and, when all else fails, Bourbaki [EVT, AC].

We will assume throughout that K is discretely valued, although many of the results
in this section are valid in the more general setting of a locally convex space over a
maximally complete field. I have restricted the discussion to the case of a discretely valued
field, since this seems to be the case of geometric interest, and it allows a number of
technical simplifications.

1. Basic definitions

1.1. Let V be a K-vector space. A subset C C V is convex if for every x, y , z G C
and all a, &, c G R such that a + b + c = 1, we have ax + by + cz G C. A convex set
C is balanced if 0 G C. One checks immediately that C is convex and balanced if and
only if C is an J?-module; more generally, C is convex if and only if it is a translate of
a sub-JP-module of V. For any subset S C U we denote by r(*?) the convex hull of S\
i.e. the intersection of the convex subsets of V containing 5'.

If V is a topological J^-vector space, then V is locally convex if it has a neighborhood
basis consisting of convex sets (in [29, 39] these are called "locally ^-convex"). By
the above remarks, this is the same as saying that the topology of V is R-linear in the
sense of Bourbaki [AC III §2 Ex. 15]. The category of locally convex AT-spaces is an
additive category possessing arbitrary direct and inverse limits. Remember, however, that
the topology of a direct limit lim V{ is not necessarily separated, and is not necessarily the
same as the direct limit topology in the category of topological spaces (for this reason the
topology of lim Vi is sometimes called the "convex direct limit"). If W is locally convex,
then lim Vi —> W is continuous if and only if each Vi -^ W is continuous. If V^ Wi are
locally convex and Vi -^ Wi is continuous for all %, then lim Vi —> lim Wi is continuous.

The definitions of absorbing and bounded are the same as in the archimedean case: a
subset S C V is absorbing if for all v G V we have v G \S for some A G K', B C V is
bounded if for any open neighborhood U of 0 we have B C \U for some A G K. Evidently
a finite union of bounded sets is bounded, as is any subset of a bounded set. The closure
of a bounded set is bounded, for if B is bounded and B is the closure of B, then for any
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720 R. CREW

open neighborhood U of 0, we have B C \U for some A, and since ~B + \U = B + A(7,
we have B C A^7. If B is bounded, then so is the convex hull F(B) [39 I Th. 2.7]. If
V = lim V;, then B C V is bounded if and only if its image in each Vi is bounded.

i

Norms, seminorms, and metrics are denned in the usual way, except of course that
the triangle inequality is replaced by the ultrametric inequality. There is a one-to-one
correspondence between absorbing convex sets and seminorms with value group \KX\,
similar to the one which one obtains in the non-archimedean case: if S is absorbing and
convex, then we define ps '-= mfx^\s |A|; if p is a seminorm with the same value group
as the valuation of K, we define Sp = {v | p(v) < 1}; then S = Spg and p =- ps
[37 I Th. 2.9].

Recall that if / : V -^ W is a continuous linear map, then / is strict if Coim / ^ Im /;
i.e. if the subspace and quotient topologies on the image of / coincide.

1.2. Compactness notions play an important role in the duality theory of locally convex
spaces over a locally compact field. If K is not locally compact we need to use the notion
of JP-linear compactness (referred to, henceforth, as linear compactness). If M is any
J?-module, then a filter T on M is convex if it has a base consisting of convex sets; i.e.
translates of sub-J?-modules. We say that M is linearly compact if every convex filter in
M has an accumulation point (cf. [AC III §2 Ex. 15]). Suppose now that C is a convex
set in a locally convex K-space V\ then C is a translate of a sub-J?-module M of V, and
we say that C is linearly compact if M is. This is of course the same as saying that any
convex filter on C has an accumulation point; in particular, linear compactness is the same
as what van Tiel and Monna call c-compactness [29, 39].

1.3. Let V be a locally convex K-spsice. A linearly compact subset of V is closed, and
a closed convex subset of a linearly compact set is linearly compact. A linearly compact
subset of V is not necessarily bounded; for example K itself, being discretely valued, is
linearly compact (in fact, K is linearly compact if and only if it is maximally complete,
cf. [29 Ch. Ill §4]). The image of a convex linearly compact set under a continuous map
is linearly compact. A finite union of convex balanced linearly compact sets is linearly
compact. If {Vi} is an inverse system of locally convex K-spaces and V is the inverse
limit, then a convex closed C C V is linearly compact if and only if its image in each Vi is.

Recall that in a complete metric space, the compact subsets are the same as the closed,
totally bounded sets. A similar description of the convex linearly compact sets is true for
Banach spaces over a maximally complete field, as was first shown by Gruson [23]. If
we assume that the field is discretely valued, then this is true in greater generality. Recall
that a topological vector space is quasi-complete if every closed bounded set is relatively
linearly compact (a complete space is quasi-complete, but not conversely).

1.4. Proposition - Let C be a closed locally convex bounded subset of a complete convex
K-space V. Then C is linearly compact if and only if for any open neighborhood U of 0,
there is a finite set F C C such that C C r(F) + U.

Proof. - By translation we can assume that C is balanced; i.e. that C is a sub-J?-module
of V. Furthermore in 1.4 we can restrict our attention to the U that are convex open
neighborhoods of 0 G V, so that the U are sub-^R-modules of V as well. Since V is
complete and C is closed, C is complete and is the inverse limit of the C / ( C D U) where
U runs through a cofinal set of convex open neighborhoods of 0 (cf. [TG III 7.3 Cor.
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2]). Furthermore C is linearly compact if and only if each of the C/(C H U) are linearly
compact J%-modules in the discrete topology [AC III §2 Ex. 16(a)]. Since C is bounded,
the jR-module C/(C H U) is annihilated by a power of p. Since K is discretely valued,
the condition of 1.4 is equivalent to saying that C / ( C D U) is artinian. Thus, it is enough
to show that a discrete J^-module M annihilated by a power of p is linearly compact
if and only if it is artinian. But M has a filtration whose quotients are annihilated by a
uniformizer of K, so by he. cit. Ex. 15(c) it is enough to show that a discrete fc-vector
space is linearly compact if and only if it is finite-dimensional. Now by loc. cit. Ex. 20(d),
a vector space is linearly compact if and only if it is a product k1, and this is discrete
if and only if the index set I is finite.

D

1.5. Let B be a bornology on V, i.e. a nonempty collection of subsets of V with the
property that a finite union of elements of B is in B, and a subset of an element of B is in
B. For any locally convex space W, we denote by Hom^V, W) the space of continuous
linear maps V —> W, with the topology defined by taking as a basis of the neighborhoods
of 0 the sets {/ : V -^ W \ F(B) C U} for B G B and U open in W. When W = K, we
put Honi^ (V, K) = Vg, and denote by V the underlying vector space. The most important
cases of the latter construction are when B is the set of bounded sets, yielding the strong
dual V^ of V; the set of finite sets, yielding the weak dual V^ of V (the more usual
term for this is the weak* topology of V), and the set of convex linearly compact sets,
yielding the (convex linearly)-compact dual V^. We will also use on occasion the so-called
weak topology of V itself, which is the weakest topology on V such that all of the linear
functionals in V are continuous (i.e. the topology a(V^ V) in the notation of [EVT]).

1.6. For any locally convex V, the natural map V -^ (VwV ls an isomorphism of J^-vector
spaces [39 III Th. 4.10]. For any 5' C V, we denote by S° the polar of 5', defined by

^ - { / e y ' H A ^ I ^ i } .
When S is a linear subspace of V, then S° is of course just the annihilator S1' of S in V.

The bipolar S00 C V of 5' is the polar of S° C yj,, where we identify (TJJ ^ V;
it also has the description

S ° ° = { v ^ V \S°(v)\<l}.

If S is K -convex and closed w^ have then 5'°° = S since we have assumed that the
valuation of K is discrete; more generally, S'00 is the closure of F(5) [39 III 4.14]. When
K is not discretely valued, the situation is a little more complicated.

Recall that a set B C Hom(V, W) is equicontinuous if for every open subset U C W
there is an open set [/i C V such that f(U^) C U for all / G B. As in the archimedean
case, a subset of V is equicontinuous if and only if it is contained in the polar of a
neighborhood of 0 G V, and if and only if its polar contains a neighborhood of 0 G V.
From this one sees easily that the topology of V is the same as that of uniform convergence
in the equicontinuous subsets of V (via the identification V ^ (VwV)'

1.7. A locally convex space V is barreled if a subset T of V that is closed, convex,
balanced, and absorbing is a neighborhood of 0 (such sets are called barrels). The Banach-
Steinhaus theorem is true for barreled spaces: if V is barreled and W is locally convex,
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722 R. CREW

then a weakly bounded subset of Hom(V, W) is equicontinuous (in fact, this property
characterizes the barreled spaces). For any barreled space V and its strong dual V^ a
subset B of V (resp. V^) is bounded if and only if it is contained in the polar of an open
neighborhood U of 0 in V^ (resp. V\ and a subset U of V is a neighborhood of 0 in V
(resp. V^) if and only if it contains the polar of a bounded set of V^ (resp. V). Finally, any
quotient, inductive limit, and direct sum of barreled spaces is barreled. Closed subspaces
of barreled spaces are not necessarily barreled.

1.8. A locally convex space is bornological if every subset S C V which absorbs the
bounded sets of V is a neighborhood of 0 (i.e. if for any bounded set B, there is a A
such that B C \S', such subsets are sometimes called bornivorous). Bornological spaces
are precisely the spaces V for which continuous maps V -^ W to a locally convex space
are the same as locally bounded maps (i.e. f : V -^ W is continuous if and only if for
every bounded set B C V, f(B) is bounded, cf. [39 III 4.30]). Any inductive limit of
bornological spaces is bornological.

1.9. A locally convex K-vector space is semi-reflexive (resp. reflexive) if the natural map
V -^ [V^'s is an isomorphism of 7^-vector spaces (resp. of topological J^-vector spaces).
Since (V C W)^ V; e W^ a locally convex space V == M C N is semi-reflexive (resp.
reflexive) if and only if both M and N are semi-reflexive (resp. reflexive).

1.10. The most important category of spaces for us will be the category of Montel
spaces. A locally convex space is a Montel space if it is barreled, and if every closed
convex bounded subset is linearly compact (in [29] and [39] these are called c-Montel
spaces). A Montel space V is reflexive. If V = M 9 N , then V is Montel if and only
if both M and N are Montel.

2. Frechet and Banach spaces

2.1. For any set J, we define c(J) to be the Banach space of all sequences {a,}^j where
a,i G K and a, -^ 0 for the Frechet filter, and with norm given by |{aJ| = max, |a,|. If
V is a Banach space over K whose norm is such that \V\ = \K\, then V is isometric to
a space c(J) for some I . More generally, one can always (since K is discretely valued)
find a norm on V equivalent to the original one with the above property, so that any
Banach space over K is isomorphic (but not necessarily isometric) to some c(J). For such
spaces, the cardinality of I is an isometry invariant of K\ in fact if VQ is the Ji-module of
v G V such that \v < 1, then Vo ^R k ^ k1 as algebraic vector spaces. In fact |J| is an
isomorphism invariant, since norms defining the same topology are comparable.

If V is a Banach space over K, then an orthonormal basis of V is by definition a
set of vectors in V which correspond, under some isomorphism V ^ c(J), to the set of
"standard" basis vectors {^j}jcJ °f ^-O-

2.2. If V = c(J), then one checks immediately that the strong dual V^ of V can be
identified with that space of bounded sequences {a,}^j; it is a Banach space under the
norm |{a,}| = max, |a, . We have V^ ^ c(J) for some index set J, and if I is infinite
then J| = IA;!^!. From this it follows that if V is a reflexive Banach space over a
discretely valued field K, then V is finite-dimensional. In particular there are no infinite-
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FINITENESS THEOREMS 723

dimensional "Hilbert spaces" over K. This result holds under the weaker hypothesis that
K is maximally complete.

2.3. For any Banach space V over K, and any closed subspace W c V, the natural
projection map V —> V/W has a splitting; i.e a closed subspace of a Banach space is a
direct summand. The idea is that an orthonormal basis of V/W can be lifted to a basis
of a complement of W in V, cf. [34 Prop. 2].

2.4. Kolmogoroffs characterization of normed spaces is valid in the non-archimedean
case: a locally K-convex space is normable if and only if the origin has a bounded
neighborhood [29 III §3]. If U 3 0 is bounded, open and convex, then the the convex
functional pu associated to U (see 1.2.1) is a norm.

2.5. If V and W are Banach spaces, then a linear continuous map / : V -^ W is
completely continuous if it is contained in the closure in Roms{V,W) of the subspace
of linear maps of finite rank. A continuous map / : V —^ W is completely continous if
and only if for any bounded set B C V, f(B) is relatively linearly compact. In fact, if /
is completely continuous, let B be a bounded set in V and choose, for any convex open
neighborhood U of 0 € W, a linear map fu of finite rank such that f{b) - fu(b) G U for
any b G B. Since fu(-B) is a bounded subset of a finite-dimensional space, it is a finite
7?-module, and thus there is a finite set F C f{B) such that f(B) C r(F) + U. By 1.4,
the closure of f(B) is linearly compact. Conversely, if the closure of f{B) is linearly
compact, then for any open neighborhood U of 0 G W, we choose a finite F C f{B) such
that f(B) C r(F) + U. Since the subspace spanned by F is closed ([EVT I §2 Cor. 2]),
there is by 2.3 a projection map p \W —> (F), and if fu = p o /, then f(b) - fu{b) e U
for all b e B\ thus / is in the closure in Hom^Y, W) of the space of maps of finite rank.

For local fields this was first shown by Serre [34 Prop. 5], with "linearly compact"
replaced by compact. The case when K is maximally complete was treated by Gruson
[23]. Note that the archimedean case of this is true for Hilbert spaces, but not, in general,
for Banach spaces, even reflexive ones [19].

2.6. There is a characterization of Frechet spaces similar to the result of Kolmolgoroff
mentioned above: a locally convex space is Frechet if and only if it is complete, and the
filter of neighborhoods of 0 has a countable basis.

2.7. A Frechet space is barreled. The proof is basically the same as in the archimedean
case: let T C V be a barrel; then there is a countable sequence a^ G K such that
Un^nT = V. By Baire's theorem, T must then be a neighborhood of some v G V. Since
— v G T a s well, — v + r = = T i s a neighborhood of the origin. One can also show that a
Frechet space is bornological, cf, [EVT III §2 Prop. 2].

We will (rather abusively!) say that a locally convex J^-space is dual-of-Frechet if it
is isomorphic to the strong dual of a reflexive Frechet space (it is thus a DF-space in the
usual sense of the term, though not every DF-space is of this type). If V = M (B N, then
V is dual-of-Frechet if and only if both M and N are dual-of-Frechet; sufficiency is clear,
and to prove necessity, we note that if V = W'g for some reflexive Frechet space W,
then W ^ M^ C A^. Then M^ and A^ are Frechet, and are reflexive by 1.9; it follows
that M and N are dual-of-Frechet.
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724 R. CREW

2.8. Proposition - If a locally convex space V is both Frechet and dual-of-Frechet, then
it is finite-dimensional.

Proof. - The hypotheses imply that V is Banach. This is (or should be) a well known
fact in archimedean functional analysis; since it will be important in what follows, it is
probably worthwhile to recall the proof. By the criterion of 2.6, there is a countable convex
basis {Ui}i of the neighborhoods of 0 in V. Since V is the strong dual of a Frechet space,
there is a countable family {Bi}i of convex bounded sets of V such that any bounded
subset of V is contained in some Bi (cf. 1.5). For each n, choose a \n G K such that
^nBn C Un. It is easily checked that ^^ \nBn is bounded, and is of course convex
since the Bn are. Thus the closure U of ^^ \nBn is bounded, closed, convex, and it is
easily seen to be absorbing; i.e. U is a barrel. Since V is barreled, U is a neighborhood
of the origin, and since U is bounded, V is normable by Kolmogoroffs theorem. Since
V is complete, it is Banach.

Since V is the dual of a reflexive Frechet space, it is itself reflexive, and being a Banach
space, it is finite-dimensional by 2.2.

D
The following refinement of 1.4 is a non-archimedean version of [EVT IV §3 no. 5

Cor. 1]:

2.9. Proposition - Let V be a Frechet space and C C V a balanced convex closed
bounded subset. Then the following are equivalent:
(i) C is linearly compact;

(ii) C C T(F) for some compact subset F C C;

(iii) C C T(F), where F is the closure of a sequence of points ofC converging to 0.

Proof. - Suppose C C r(.F) for some compact subset of F C C, and let U be any open
neighorhood of 0. Since F is totally bounded, we have F C Fu + U for some finite subset
Fu C F and thus C C T(F) + U C T{Fu) + <7; the linear compactness of C follows
from 1.4, since U was arbitrary. Thus (ii) implies (i), and (iii) implies (ii), since a sequence
of points tending to 0 is relatively compact. To show that (i) implies (iii), we suppose that
C is balanced, convex (and thus a sub-Ji-module of V\ bounded and linearly compact.
Then from 1.4 (or from its proof) we see that for any neighborhood of 0, the J^-module
C/(C D U) is artinian. Since V is Frechet, it has a countable fundamental system {L^>o
of neighborhoods of 0 in V. We now choose a sequence of finite sets Fi C C as follows:
let FQ be any finite subset of C mapping to a set of generators of C/(C D Uo), and having
chosen Fn-i, we let Fn be the union of Fn-i and a finite subset of C D Un-i mapping
to a set of generators of the artinian module (CD Un-i)/{C D Un)' Then Fn generates
C/(Cr\ Un) for all n > 0 and thus the union of the Fn generates C. Let F be the closure of
this union; then F C C C T ( F ) , and F is the closure of a sequence of points tending to 0.

D

Remark. - In the notation of the preceding proof, we have F(F) + Un = r(F) + Un ==
T(Fn) + Un for all n. It then follows from 1.4 that F(F) is linearly compact, i.e., that
r(F) is relatively linearly compact.

Remark. - By translation, we can omit the hypothesis that C is balanced, at the cost of
replacing the phrase "converging to 0" in (iii) by "convergent."
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3. LF-spaces, strict maps, and duality

3.1. A separated locally convex K-spsice is an LF-space if there is a countable inductive
system {Vi}i of Frechet spaces such that V = lim Vi.

^ i
What is here defined as an LF-space is called a "generalized LF-space" by most writers,

who take an LF-space to be one for which the inductive limit is strict. We will not find
this last concept so useful. Since a separated quotient of a Frechet space is Frechet, we
can assume that the Vi are (not necessarily closed) subspaces of V.

3.2. Since a separated quotient of a Frechet space is Frechet, a separated quotient of
an LF-space is an LF-space. A closed subspace of an LF-space is not necessarily an
LF-space; if V = lim Vi and W C V is closed, then W = lim W D Vi as vector spaces,
which gives W an LF-space topology which may, however, be distinct from its original
(subspace) topology.

3.3. If V = M 9 N , then V is an LF-space if and only if M and N are LF-spaces.
The "only if part follows from 3.2, since M and N are separated quotients of M (B N.
On the other hand, if M = limA^, N = limNi with Mi, Ni Frechet, then we have
M 6 N ^ limM, Q lim TV, ^ lim(M, 9 TV,), since filtered inductive limits commute.

Since a Frechet space is bornological and barreled, and since these properties are passed
on to inductive limits, we see that an LF-space is bornological and barreled. In particular,
the Banach-Steinhaus theorem holds for LF-spaces, and a map from an LF-space to a
locally convex 1^-space is continuous if and only if it is bounded.

3.4. The open mapping theorem is valid for LF-spaces: a continuous surjective map
/ : V —>• W of LF-spaces is open [EVT 11.36 Prop.10], and therefore strict. A continuous
map / : V —» W of LF-spaces with closed image is not necessarily strict, however, since
the induced topology on a closed subspace of an LF-space is not necessarily an LF-space
topology. This is the case, however, if the image is a topological direct summand:

3.5. Proposition - If f : V —> W is a continuous map of LF-spaces such that Im / is
a direct summand of W, then f is strict.

Proof. - Since finite direct sums in the category of locally convex A^-spaces are the
same as products, Im/ is a quotient of W, and therefore an LF-space. The result then
follows from the open mapping theorem.

D

3.6. Corollary - If f : V —> W is a continuous map of LF-spaces such that Coker f is
separated and finite-dimensional, then f is strict.

Proof. - The hypothesis says that Im / is closed and of finite codimension, so by [EVT
1.15 Prop. 3] Im/ is a summand of W, and the corollary follows from 3.4.

D

3.7. Strictness of a map can be difficult to show, and we will need a number of criteria
for it. Here is a simple one that is suprisingly useful: if fi : Vi —^ Wi is a finite collection
of continuous linear maps between locally convex ^-spaces, then the direct sum / = (B^
is strict if and only if each of the fi is strict. Since Im/ = (Dim/,, the question reduces
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immediately to the cases where / is either injective or surjective. When / is injective,
this follows from [EVT] II §5 n° 5 Prop. 8, since a finite sum is the same as a finite
product. When / is surjective, this follows from the fact that a projection map of a product
onto one of its factors is open.

3.8. Proposition - Let V, W be separated, locally convex K-spaces, and f : V -^ W
a continuous linear map. Then f is strict if and only if
(i) the image of t f is closed in V^;

(ii) any equicontinuous subset oflm^ is the image of an equicontinuous subset ofW'^.
If f is strict, then

(3.8.1) KerY = (ImJ)^ Im^ = (KerJ)^

and there are canonical isomorphisms

(3.8.2) Coker \f -^(Ker // Ker V -^(Coker //

of K-vector spaces.
See [EVT IV §4 n° 1 Prop. 2]; note that the isomorphisms in 3.8.2 are not necessarily

topological isomorphisms for the strong dual topology. We will apply 3.8 in the case when
V and W are LF-spaces, in which case "equicontinuous" in the above proposition can
be replaced by "bounded."

We will say that an exact sequence of locally convex J^-spaces is strict exact if the
maps in it are strict (this is sometimes called "topologically exact").

3.9. Proposition - The transpose of a strict exact sequence of separated locally convex
spaces is exact.

Proof. - If U -^ V —> W is strict exact, then it is strict exact for the weak topologies
on U, V, and W [EVT II §6 no. 5 Cor. 3] and then the exactness of W -> V -> V
follows from [EVT II §6 no. 5 Rem. (1)].

D
Note that in 3.9, the case V -^ W -^ 0 is obvious, and the case 0 —^ W -^ V is just

the Hahn-Banach theorem. To be sure, the Hahn-Banach theorem is itself an important
ingredient in the proofs of 3.8 and 3.9; For a proof of Hahn-Banach in the case of a
maximally complete field, see [29 Ch. 5 §1].

The transpose of a strict map is not necessarily strict for the strong topology on the dual
spaces. For the linearly-compact dual topology, we have the following result (the argument
is basically that of [EVT IV §4 no. 2 lemme 1]):

3.10. Proposition - Let f : V —> W be a continuous linear map of semi-complete locally
convex K-vector spaces. Then tj\WI^—> V^ is strict if and only if f{V) is closed in W,
and for every convex bounded linearly compact subset C C W, there is a convex bounded
linearly compact subset D C V such that f{D) = C.

Proof. - It follows from Mackey's theorem [39 III 4.18.a] that we can identify V = (V^
and W = (W'^)'\ then / can be identified with the transpose of Y, and the convex
equicontinuous subsets of V and W are exactly the convex relatively linearly compact
subsets of V resp. W. Condition (ii) of 3.8 follows directly from this. As to condition
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(i), we need only note that a subspace of W is closed if and only if it is closed in the
weak topology of W (cf. [39 III 4.20.b]).

D

3.11. Proposition - If V and W are Frechet spaces, then a continuous linear map
f : V —^ W is strict if and only (/'V : W^ —^ V^ is strict.

Proof. - If */ is strict, then f(V) is closed in W by 3.10, and so / is strict. To show
the converse, it is enough to show that for any balanced convex linearly compact C C W,
there is a convex linearly compact D C V such that f(D) = C. By 2.9 we can write
C C r(.F), Where F is the closure of a sequence of points converging to 0. Since / is
strict and V, W are metrizable, v/e can find a set G C V that is the closure of a sequence
converging to 0, such that f(G) --= F. We then have f(T(G)) =T(F), and by the remark
after Proposition 2.9, T(G) is linearly compact. Then D = F(G) H jf'^C) is linearly
compact as well, and f(D) = C.

D
Of course, if V, W are Montel spaces (the case of interest to us) then the linearly

compact dual is the same as the strong dual:

3.12. Corollary -IfV and W are Frechet-Montel spaces, then f : V —> W is strict
if and only if tj : W^ —^ V^ is strict.
Finally we will need the following result, whose proof is left the reader:

3.13. Proposition - Suppose that the rows of the commutative diagram

0 —-> A' —> A —> A" —> 0

If [f If"
0 —-> B' —> B —> B" —> 0

are strict exact. Then in all of the maps in the six-term exact sequence

0 -> Ker /' -^ Ker / -> Ker /// -> Coker // -> Coker / -^ Coker /// -^ 0

are continuous, and the maps

Ker f -^ Ker/
Coker f -^ Coker f"

are strict.

Part II

Local Duality

The "local algebras" introduced in §4 play a role here similar to that of local fields in the
classical geometry of numbers. The main results are the various duality theorems, either
"quasi-coherent" (Theorem 5.4) or "de Rham" (Theorem 6.3).
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4. Local algebras

4.1. Let I be an interval (closed, open, or half-open) in the set [0, oo] of nonnegative
extended real numbers. We denote by Aj the J^-algebra of formal Laurent series in the
variable x convergent when \x\ G I (when oo G J, this just means that the Laurent series
is a power series in x~1). When I C J , then there is a natural ring homomorphism
Aj ^-> Aj, and we have

(4.1.1) Ai = n Aj
J C I

where J runs through the set of closed intervals contained in I . We define, finally,

A = limA(^i)
r<i

so that A is the algebra of Laurent series convergent in some annulus r < \x\ < 1. We
will call a topological J^-algebra isomorphic to A a local algebra', in later sections such
algebras will be attached to points on a smooth curve over k.

Note that A is also the direct limit of the A[^I) for r < 1; one could further restrict
the r to belong to a dense subset of H (for example -^/pp^. For later use we record the
observation that a Laurent series ^^j a^ defines an element of A if and only if its
coefficients satisfy the condition

(4.1.2) |a-^| < CV for some C > 0, r < 1 and all n > 0;

(4.1.3) for every s < 1, there is a Cg > 0 such that |a_n| < CsSn for all n < 0

and these conditions imply that

(4.1.4) / G A^I)

( A ^ ^or ^^V s < 1' ̂ ^ is a Cg > 0 such that \f\[r,s} < max((7, Cs} whenever
\r < s < 1.

Obviously 4.1.3 is equivalent to the condition that for all positive s < 1, the set of la^]^
for n > 0 is bounded.

4.2. The rings Aj just introduced all have obvious topologies. If I is a closed interval,
then Ai is a Banach space; if furthermore the endpoints of I belong to ^/I-J^I, then Aj is a
reduced affinoid algebra, and the Banach norm is the supremum norm on the corresponding
affinoid space. We will assume from now on that the endpoints of all intervals belong to
^/\K^\. If I is open or half-open, then we give Aj the inverse limit topology arising from
4.1.1. Note that only a countable set of intervals J appear in 4.1.1, since the endpoints
belong to \/\K^ |; thus the topology of Aj is Frechet. A basis of the open neighborhoods
of 0 is given by the sets

U^j=-.{feAi\ \f(x)\<e when \x\ E J}
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where e > 0 and J is a closed interval contained in J. A subset B c Ai is bounded if
and only if it is bounded in each of the Aj for J c J; i.e. if and only if it is uniformly
bounded on each closed annulus contained in I . For I = [r, 1), this is just the condition
that the estimates 4.1.2 and 4.1.3 hold for all elements of B with a fixed choice of C, C,.

Finally, we give A = limA(^i) the inductive limit topology. When we define the local
pairing (§5.1) we will see that A is separated; the reader can check that there is no vicious
circle. Since the A(^I) are Frechet, A is an LF-space, since again only a countable set of
r is involved. In particular, A is bornological and barreled, but not metrizable, as we shall
see later. Note, finally, that A is the (topological) inductive limit of the A^I) for r < 1.

It is clear that the rings A, Aj with the topologies just defined are topological rings;
i.e. that multiplication is continuous.

For any finite free A-module At, the open mapping theorem shows that the topology on
M arising from an identification M ̂  An is independent of the chosen isomorphism. One
checks immediately that any A-linear map M -> N of finite free A-modules is continuous;
in particular the topology on a finite free A-module M is the quotient topology for any
surjective A-linear map A^'—^M. One could try to use the same procedure to topologize
any A-module of finite type, but we will see later that such topologies are not necessarily
separated; consequently it is not, in general, true that the image of a continuous map
f : A71 -^ A^ is closed. Of course if the image of such an / is a direct summand of A^,
then it is closed, being the kernel of some continuous map A^ —> A771'.

For any interval J, let 1° denote the interior of I .

4.3. Lemma - If I , J are closed intervals such that J C 1° C I , then the inclusion
Ai c-^ Aj is completely continuous.

Proof. - The assertion is that the inclusion i : Aj ̂  Aj is a limit of maps of finite rank.
This is clear: if J == [r, s], I = [t, u}, then t < r, s < u, and we define IN '• Aj -^ Aj by

^N^^ar,Xn\——> ̂  a^X71.

n^I \n\<N

We have |% - i^\ < max^/r)^, O/^), whence i = ImiAr^.

D

4.4. Corollary - For any open interval I , a bounded set in Aj is relatively linearly
compact.

Proof. - Suppose that B c Aj is bounded; we must show that for any closed J C J,
the image of B in Aj is relatively linearly compact. Now we can choose a closed interval
J ' such that J C (J')0 C J7 C J, and as the image of B in Aj/ is bounded, its image
in Aj is relatively linearly compact by 4.3 and 2.5.

D
Since Aj is Frechet (and in particular barreled), we see that Aj is a Montel space

whenever I is open.

4.5. We will need some algebraic results on modules over Aj and A, which are apparently
well known, but for which I do not know of a convenient reference. For the case of Aro r},
most of these can be found in [26]; for later use we will treat more generally the case of
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an algebra of rigid-analytic functions on an connected admissible open subset X C P^.
Let A = F(X, Ox), and for any affinoid I C X set Ai = F(J, Oj); of course we have in
mind primarily the cases A = A(^I), A = A[^] for [s,t] C (r, 1).

Let us now choose a countable set S of open affinoids I C X such that X = U^J; then
A = DjAj. By [21 I 1.7, 1.2] we may suppose that the I are ordered by inclusion. Let
Div(Ar) (resp. Div^Aj)) denote the group of divisors (resp. positive divisors) of Aj,
and define Div(A) = Urn Div(Aj), Div+(A) = lim Div^Aj). For / e Aj or A we
denote by [/] the corresponding divisor. By [21 I 8.7 Cor] we know that the class group
of A is trivial, i.e. for any D e Div^A) (resp. Div^Aj)) there is an / in A (resp. Ai)
such that [/]=£). Since Ai is noetherian, it then follows that Ai is a PID.

Recall that an integral domain is a Prz^r ring (resp. a B^z^r rm^) if any finitely
generated ideal in it is projective (resp. principal). The first thing to observe is that A
is a Bezout ring:

4.6. Proposition - Any finitely generated ideal of A is principal.

Proof. - It is enough to see that any ideal (f,g) is principal. Since any element of
Diy^(A) is the divisor of some element of A, there is an h C A such that [h] is the
greatest common divisor of [/], [g\. By division, it is enough to show that if the divisors
of / and g are relatively prime, then (f,g) = A. But if [/], [g] are relatively prime, then
for any I C X, the sequence

0 -^ Ai -^ Ai^Ai -^ Ai -^0
h ^ (-gh.fh)

(x,y) ^ xf+yg

is exact, since Ai is a PID. Since for each J, the image of A in each Ai is dense, the
Mittag-Leffler criterion of [EGA Ojjj 13.2.4] shows that the inverse limit of the above set
of exact seqences is exact. Since A = lim Aj, we have {f,g) = A.

D

4.7. Corollary - Any torsion-free A-module is flat.

Proof. - From 4.6 we see that A is a Priifer ring, and any torsion-free module over
such a ring is flat [CE VII Prop. 4.2].

D

4.8. Proposition -'Let M be an A-module of finite presentation. Then
(i) M is coherent;

(ii) M is the direct sum of a finite free A-module and a torsion A-module of finite
presentation;

(iii) M has a presentation

(4.8.1) o -> ̂ n ̂  A771 ̂  M -^ 0;

(iv) M = lim M (g) Ai.<(— i
Proof. - Since A is a domain, 4.6 shows that any ideal of finite type in A is of finite

presentation. It then follows that A is coherent, and thus that any A-module of finite
presentation is coherent. If M is finitely generated and torsion-free, then it is free (in fact
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for any Priifer ring, any finitely generated torsion-free module is a sum of finitely generated
locally free ideals; here the ideals are actually free). For any M of finite presentation, let
Mtar denote the torsion submodule; then since N = M/Mtar is finitely generated and
torsion-free, it is free. Thus we can write M = N e Mtar. from which it follows that
Mtor is coherent, and is thus of finite presentation. This proves (ii); to show (iii), we
note that for any Priifer ring, a finitely generated submodule of a finitely generated'free
module is a finite sum of finitely generated ideals [CE I Prop 6.1]. Thus for a Bezout
ring, a finitely generated submodule of a finite free module is finite free. Now since M
is coherent, there is some surjective map A771 -^ M whose kernel is coherent; the kernel
is then finitely generated, and therefore free, which proves (iii). Finally, since Ai is a
torsion-free A-module, it is flat, and so tensoring 4.8.1 with each of the Ai yields an
inverse system of exact sequences

0 -^ A} -^ A? -^ M (g) Ai -^ 0

and the same Mittag-Leffler argument as in 4.6 shows that M ̂  lim M (g) Ai.<— i
D

Since the ring A is the direct limit of the A(^), an A-module M of finite presentation
is the extension of scalars M = Mr 0 A for some A(^i)-module Mr, r < 1. Furthermore
if we set M, = Mr 0 A(^I) for r < s < 1 then M = limM,. If / : M -^ N is a
morphism of A-modules of finite presentation, then there ̂  an r < 1, A(^I) -modules
Mr, Nr of finite presentation, and a morphism fr : Mr -^ Nr such that M = Mr 0 A
N = Nr (g) A, and / = /, 0 A.

4.9. Proposition - A is a Bezout ring. In particular, a torsion-free A-module is flat, and
an A-module of finite presentation is the direct sum of a finite free module and a torsion
A-module of finite presentation.

Proof. - Since any finitely generated ideal of A is induced from a finitely generated ideal
of some A(^I), 4.6 implies that a finitely generated ideal of A is principal. The assertions
of 4.9 follow from this, using the same argument as in the proof of 4.8.

D

5. Local duality I

5.1. We define ̂  to be the free A-module of rank one with basis d x / x , endowed with
the obvious topology. The main object of study in this section is the pairing

f5 i i) A x ̂ \ -^ K

(M ̂  (f^) = Res/cc;

where Res denotes the usual residue at x = 0; i.e. the coefficient of d x / x . We will often
use the basis element d x / x to identify A and Q^, in which case 5.1.1 becomes a pairing
A x A -> K, and (/, g) is the constant term of the product fg. This allows us to make a
number of arguments by symmetry. We let d : A -> ̂ \ be the usual exterior derivative,
so that we have Resd/ = 0, and consequently (f,dg) = ~(g,df).
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For any finite free A-module M, the pairing 5.1.1 extends in the obvious way:

^^ Mx(M^^\)^K
(m, m^ 0 dx/x) ̂  Res m^ {m) 0 ob/rc

Our first task is to show that 5.1.1 and 5.1.2 induce perfect topological dualities of the
spaces involved. We begin with some simple observations. The first is that if I = [r, s]
and / = Enez^^ ^ A^ then

|/|j = max |/|[r,r]? \f\[s,s] by the maximum principle
= max^lajr^ la^l^}
= max^o^r^, n < 0; |ao|; laj^, n > 0}

and therefore

N ̂  1/ lz .
From this it follows that for any r < 1 and any closed I C (r, 1) we have

(^1-3) \{f.9^dxlx)\<\fg\i<\f\i\g\i

if /, g are defined on (r, 1). If f G A(y,,i), the linear functional uj >-> (/,o;) is continuous
on A(^I) 0 d x / x for every 5 such that s < 1 (just pick an I C (r, 1) H (^, 1)). Thus
uj \-^ (f,^) is continuous on f^, and by symmetry we conclude from this that the pairing
5.1.1 is continuous in each argument, i.e. induces continuous maps

(5.1.4) A - (^)

^-<

Since / = Enez^^"7'"1^)^' we see that ° G A is the intersection of the kernels of
the continuous functionals ( ,a;n-lGb) for n G Z. Thus A -^ (f^^)' is injective, and A
is separated. In the same way, one sees using 5.1.2 that any finite free A-module M is
separated in its natural topology, and the natural map M —^ (M^ 0 ̂ l\)^ is continuous.

The next observation is the following: suppose i : A[^I) -^ K is a linear functional
on A[^I) such that \i(U^^,t})\ < 1 for some s < t < 1. Then if TT is a uniformizer of
K and |7r| = q~1, we have

(5.1.5) KM|, {^:;; ̂

In fact we can find elements On ^ K such that

(5.1.6) g-^^^^
Then since

^ n > 0
57' n < 0

5.1.6 yields

. ,-i ^ f^-1^ n ^ O
1 n l - ̂ e-1^ n ^ 0
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On the other hand, 5.1.6 and the hypothesis on i yield

|^n^)| ^ i
and thus

\W\ ̂  K1-1

from which 5.1.5 follows.
We can now show that the maps 5.1.4 are surjective; it is enough to treat the case of

^\ —^ A'. If i: A —> K is a continuous linear functional, then for every s < 1 the induced
map t : A[^I) —> K is continuous, and thus for every s < 1 there is a s < t < 1 and
an e > 0 depending on s such that |^(J3gj^t])| < 1. Then 5.1.5 shows that the numbers
a_n = ̂ (^n) satisfy the estimates 4.1.2 and 4.1.3, with r equal to any of the Fs obtained
above. We conclude that the Laurent series / = Suez anXn belongs to A, and evidently
^) = { g J ^ d x / x ) for any g <E A.

5.2. Lemma - For B C A, ^€ following are equivalent:
(i) 5 LS' bounded in A;

(ii) 5 C A[^I) for some r < 1, and is bounded in A[^I);
(iii) the image ofB under the map A —>• (^/s is bounded.

Proof. - Evidently (ii) implies (i). Since A -^ (^1J^ is continuous, the image of a
bounded set in A is weakly bounded. Since fl\ is barreled, the weakly and strongly bounded
sets in (^^)7 coincide. Thus (i) implies (iii), and it remains to show that (iii) implies (ii).
If the image of B in (^V is weakly bounded, then by the Banach-Steinhaus theorem,
this image is equicontinuous, so there is an open set U C A such that |(/, U 0 d x / x ) \ < 1
for all / G B. Thus for every s < 1 there is a s < t < 1 and an e > 0 depending on s
such that |(/, ^e,[s,t] ̂  d x / x ) \ < 1, and as before this shows that the estimates 4.1.2, 4.1.3
hold uniformly for all / G B; once again r can be any of the t just obtained. We conclude
that B C A[^I) and that B is bounded in A[^I).

D

5.3. Corollary - For any free A-module M of finite type, M is a Montel space.

Proof. - Since M ̂  An topologically, it is enough to check the case M = A. We know
that A is barreled, and by 5.2 and 4.4, a bounded set in A is relatively linearly compact.

5.4. Theorem - For any free A-module M of finite type, the map

(5.4.1) M^M^^V,

induced by the pairing 5.1.2 is a topological isomorphism.

Proof. - It is enough to check this for M = A. We first show that 5.4.1 is continuous,
and since A is bornological, it suffices to show that the image of a bounded set B in A
is bounded in (^^)^. Now since Q\ is barreled, the weakly and strongly bounded sets in
(P1^)' coincide. Thus it is enough to see that the image of a bounded set in A is weakly
bounded in (^V, and this is true because A —^ (^^w ls continuous.

We have already shown that A —^ ^\Ys ls surjective. To show that it is strict, we will
identify A ^ ^l\. Since A is Montel, it is reflexive, and thus the map A —^ A'g coincides
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with its own strong dual. Again since A is Montel, A^ is barreled, and so by 3.8 it suffices
to show that a subset of A is bounded if and only if its image in A^ is bounded, but this
is true by lemma 5.2 (in place of 3.8, one could use the description of the open subsets
of a barreled space in 1.7).

D
We now define A+ (resp. A~) to be the subspace of A consisting of formal Laurent

series in x for which the coefficient of xn vanishes for n < 0 (resp. n ^ 0), and we set
^+ = A+cte, ^~ = A~dx. Evidently (A+)-1- = ^+ for the local pairing, from which it
follows that A+, A~ are closed subspaces of A, and thus that A = A+ eA~ topologically.
The same of course goes for ^+.

5.5. Proposition - The induced topology ofA^ is Frechet, that ofA~ is dual-of-Frechet,
and with respect to the local pairing we have

(A^;^ ̂

Proof. - We have A+ = A[Q,I) which is Frechet in its natural topology; this
coincides with the topology induced from A by 3.5. Since A = A+ (B A~, we have
A, = (A+ C A-)', = (A+)', C (A-)',, and as (A+)^ = ^+, 5.4 implies that (A+/, ^ ^+.
It then follows that A~ is the dual of the reflexive Frechet space ?2+.

D

Remark. - Using results of Komatsu [25, 32], one can actually show directly that A+
(resp. A~) is Montel and Frechet (resp. dual-of-Frechet), and so give another proof of 5.3
and 5.4.

5.6. We now consider homomorphisms of local algebras, i.e. of topological 7^-algebras
isomorphic to A. Let A(a), A(b) be two such algebras, viewed as algebras of formal
Laurent series in the variables ta resp. tb. Suppose that A(a) —> A(b) is an injective
algebra homorphism such that

(5.6.1) ta=J^a^ a n ^ R
n^O

and we assume that ao is a non-unit in R, but that one of the a^ is a unit. Then
A(a) —> A(6) induces a homorphism A(a)+ -^ A(6)+, and if N is the smallest integer
such that ON e J^, then A(6) (resp. A(6)+) is free of rank N over A(a) (resp. A(a)+),
with basis 1, t b ^ . . . , t^~1. We will call this integer the degree of a over 6, and denote it by
deg(6/a). Note that A(6)+ being of finite rank over A(a)+ does not follow simply from
A(6) being of finite rank over A(a). We shall express all of these assumptions simply
by saying that the homomorphism A(a) —> A(6) is adapted to the parametrizations ta,
U of A(a) and A(6).

6. Local duality II

As always, a connection on an A-module M is a J^-linear map V : M -^ M 0 H\
satisfying Leibnitz's rule; the same goes for connections on Aj-modules for any I .
If (M,V) is an A-module of finite presentation with connection, then there is an
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r < 1 and an A^i)-module (My^Vy,) of finite presentation with connection such that
(M,V) = {Mr,^7r) 0 A. If At -^ N is a horizontal map of A-modules of finite
presentation with connection, then for some r < 1 there are Ay,-modules Mr, Nr of finite
presentation with connections and a horizontal map Mr -^ Nr which induces M —^ N.

Since the transpose of d : A — fl\ is —d, it follows that for any connection
V : M —^ M 0 ̂ l\ on a locally free A-module M, the transpose of V can, via 5.4,
be identified with the negative of the dual connection: *V == —V^

6.1. Proposition - If (M,V) is an A-module of finite presentation "with connection,
then M is free.

Proof. - We will show that this is also the case for a module of finite presentation over
any Aj. In any case, it is enough, by 4.8 and 4.9, to show that the module is torsion-free.
Consider first the case of an Aj-module M of finite presentation, where I is closed.
Then Aj is a principal ideal domain, so let (/) be the annihilator of Mfor, and suppose
m is a nonzero element of Mfor- From fm = 0 we get f'm + /V(m) == 0, whence
/2y(m) = 0. Thus V(m) G M^, so /V(m) = 0 and then f'm = 0. Therefore // G (/),
and since Aj is a principal ideal domain containing the rational numbers, (/) must be
the unit ideal, whence Mfor = 0-

In general Aj is an inverse limit of Aj with J closed, and for any Aj-module of finite
presentation we have M == lim M 0 Aj by 4.8. A connection on M induces one on
each of the M 0 Aj; since these are of finite presentation, they are torsion free, and
so M is too. Finally, suppose that (M, V) is an A-module of finite presentation with a
connection, and suppose that m is a torsion element of M. Then for some r < 1, we have
that M = Mr 0 A for some A[^i)-module Mr with connection. For r sufficiently close
to 1 we have m G Mr, whence m = 0.

D
If (M, V) is an A-module with connection, we define

HW=KerV
vo • / H^M^CokerV.

One sees immediately that any exact sequence

0 --> M' -^ M -. M" -> 0

of A-modules with connection gives rise to a six-term exact sequence

(6.1.2) 0 -^ H^M7) -> H°(M) -^ H^M'7) -> H^M7) -. H^M) -^ H^M") -. 0.

When M is free, we give the IP(M) the topologies induced by those of M, M 0 fl\.
Then H°(M) is separated, and is finite-dimensional as well:

6.2. Proposition - Let (M, V) be a flat A-module with connection. Then the natural
map A 0 H°(Af) —> M is injective. In particular, if M is free of finite type, then
dim^H°(M) <, ranl^M.

Proof. - Let g : A 0 H°(M) —> M denote the natural map, and suppose that
Sz fi ^ vi G Kerg is a nonzero element with as few terms as possible; then the Vi
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are linearly independent over K, and fi -^ 0. Since ̂  /,^ = 0, we have ̂  j[vi =- 0
since ^ G Ker V, so ]̂  j[ (g) ̂  G Ker^. Then by the hypothesis on ]̂  ̂  0 ̂ , we have

f[^fz^yz-fi^f^yz=o
i i

so for all i we have f[fi = A/i'- We now claim that for all i we have fi = c^/i for
some set of Ci G K. If /i is a unit in A, of course, then {fi/fiV == 0, and the assertion
is clear. In general, we can find an s < 1 such that the image of /i under the embedding
A ^ A[s,s] ls a umt^ a^ then do the same calculation in A[s,s]' I11 any case we get
^ J^ = f^ ̂  c^ = 0, and since M is flat, we get ]>^ c^ = 0, a contradiction.

D
The Ar-vector space H^M) is not in general finite-dimensional or separated, and the

main result of this section is a sufficient condition for finite-dimensionality. Let (At, V)
be any free A-module of finite type with connection; then the local pairing 5.1.2 induces
a pairing

(6.2.1) HP(M) x H1-^^ -^ K.

We will say that (M, V) is strict if the connection V : M —> M 0 ̂ \ is a strict map
of topological vector spaces. We will often say simply that "M is strict" and suppress
mention of the connection (even though it's what is being talked about).

6.3. Theorem - Let (At, V) be a free A-module of finite type "with connection. Then the
following conditions are equivalent:

(i) M is strict,
(ii) A^ is strict,
(ill) H^M) is finite-dimensional and separated.

If M is strict, then the pairing 6.2.1 is a perfect pairing of finite-dimensional K-vector
spaces.

Proof. - If M is strict, then the short exact sequence

0 -^ H°(M) —> M -^ M 0 ̂ \

is strict exact, so its transpose

M^ ̂  M^ 0 ̂  —— H^M^ —— 0

is exact. Since H°(M) is finite-dimensional, the last exact sequence shows that the
cokernel of Vv is finite-dimensional; it is also separated, by part (i) of 3.8. Then by the
open mapping theorem 3.6, A^ is strict. If M^ is strict, then the above argument with A^
in place of M shows that H^M) is finite-dimensional and separated. Finally if H^M) is
finite-dimensional and separated, then the strictness of V again follows from 3.6.

D

6.4. Corollary - Let

0 -> M' -^ M -^ M" -^ 0
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be an exact sequence of finite free A-modules -with strict connection. If M is strict, then
so are M' and M".

Proof. - Since M, M', and M" are free, the exact sequence in 6.4 splits as an exact
sequence of A-modules, and thus as an exact sequence of topological vector spaces over K.
It is thus strict exact, and from this it easily follows that H^M) -^ H^M") is strict and
surjective. Since M is strict, H^M) is separated and finite-dimensional, so the same must
be true of H^M'7). Then by 6.3, M" is strict. Since M^ is also strict, the same argument
shows that the quotient M'^ of M^ is strict. We conclude again by 6.3 that M' is strict.

D
I do not know if the converse of 6.4 is true. If M/ and M" are strict, then it follows from

6.3 that H^M) is finite-dimensional, but I do not know how to prove that it is separated.

6.5. Proposition - Suppose that (M,V) is a finite free A-module with connection, and
that L / K is a finite extension. Then M is strict if and only if the induced connection on
M 0 L is.

Proof. - If n is the degree of L / K , then M (g) L ^ Mn and / 0 L ^ /n, and the
assertion follows from 3.7.

D

6.6. If M, N are two finite free A-modules with connection, we denote by Ext^M, N)
the first Yoneda Ext group in the category of finite free A-modules with connection. One
checks immediately, using the usual arguments, that

(6.6.1) Hom(M, N) ̂  H0^ 0 N) Ext\M, N) ̂  H^M" 0 N)

functorially in M, N. With the identifications 6.6.1, the exact sequence 6.1.2 is the long
exact sequence of Yoneda Ext groups

0 -^ Hom(A, N) -^ Hom(A, M) -^ Hom(A, A) ->
{ ) Exi\A,N) -> Ext^A^M) -^ Ext^A^A) -^ 0.

We will say that a connection V on a finite free A-module M is unipotent if (M, V)
is a successive extension of trivial rank one objects (A,d).

If V is a finite-dimensional vector space and C G End V, then we denote by
(V ^K ^Vc) tne A-module with connection given by

(IT
(6.6.3) Vc=G(g)—

x

If N is a nilpotent matrix, then the corresponding module with connection (V^K^N)
is unipotent. Conversely, every module with unipotent connection has this form (cf. [24
2.4.3]):

6.7. Proposition - The functor

(6.7.1) F ' . ( y , N ) ^ ( V ^ K A ^ N )

induces an equivalence of the category of finite-dimensional K-vector spaces with a nilpotent
endomorphism, and the category of finite free A-modules with unipotent connection.
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Proof. - Denote by C the category of (V.TV), V the category of finite free A-modules
with unipotent connection, and F : C —^ V the functor 6.7.1. We show, first, that for any
two objects (V,N), (V^TV7) of C, F induces isomorphisms

^ Homc((y, TV), (V7,TVQ) —— Homp(F((V, TV)), F((y', TV7)))
Ext^((y, TV), (r, 7VQ)-^ Ext^(F((y, TV)), ̂ ((r, TV')))

The Ext groups in T) are the same as the Ext groups in the category of finite free
A-modules with connection, so that we can use 6.6.1. The Ext groups in C have the
following description: if (V, TV) and (V7, TV') are objects ofC, then Hom((Y, TV), (V, TV'))
(resp. Ext^l^TV), (V.TV7))) is the kernel (resp. cokernel) of the induced nilpotent
endomorphism of V^ (g) V. In particular, the exact sequence of Ext groups in P can be
truncated after the sixth term. Since any object of C or T) is a successive extension of trivial
ones, and since F(K^O) = (A,d), an easy induction on the length of an object reduces
the proof of 6.7.2 to the case (V, TV) = (V, TV) = (K, 0), in which case it is immediate.

From the first isomorphism in 6.7.2 we see that F is fully faithful. To show that it is
essentially surjective, we again argue by induction. If (M, V) is an object of P of positive
rank, then by induction there is an exact sequence

(6.7.3) 0 -> F(V, TV) -> M -^ F(K, 0) -. 0

and the second isomorphism in 6.7.2 shows that there is an exact sequence

0 --, (y, N) -^ ( V ' , TV7) -> (K, 0) -> 0

in C whose image is 6.7.3. We conclude that F(Y,TV) = M.
D

Remark. - Recalling again the descriptions of the Ext groups, we see that for
any (V,TV), F(V,N) = (M,V), we see that the natural maps KerTV ^ KerV,
(CokerTV) (g) d x / x —^ CokerV induce topological isomorphisms

H"(M)^ KerTV
vo" / H^M)^ CokerTV.

Furthermore, the "normal form" provided by 6.7 shows that if (M, V) is unipotent and
(M,V) = F(V,TV), then

/ A \ n

V = [ JKe rV( : r—) .
^ \ dx }

n>0 v /

Then the functor 6.7.1 has a quasi-inverse given by

( / _ j \ n / i \ \

(6.7.5) (M,V)^ y = [ J K e r V f r r — ) , T V = V ( ^ - — )
n>o Y dx^ Y d x ) I

(cf. [24 2.4.3.3]).

6.8. Corollary - An A-module with unipotent connection is strict.
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Proof. - By 6.3 it is enough to show that H^M) is finite-dimensional and separated,
and this follows from the previous remark.

D
We now consider the behavior of the functor 6.7.1 under base change. Let (f) : A(a) —^

A(b) be a homomorphism of local algebras of the type described in 5.6. Denote by 2^
(resp. Vb) the category of finite free A(a)-modules (resp. A(6)-modules) with unipotent
connections. Since <^* is exact and the pullback of a trivial connection is trivial, <^* induces
a functor ^* : T>a -^ Vb.

6.9. Proposition - With the above notation, <^* : Va —^ ^b is an equivalence of categories.

Proof. - Fix a pair of local parameters ta, tb adapted to ( / ) in the sense of 5.6, and denote
by Fa : C -^ Da, Fb : C —^ Vb the corresponding functors. It is enough to show that for
any (V^N) in C there is an isomorphism

(6.9.1) Fb(V, N) -^ ^*OW N))

since this shows that ^)* is essentially surjective, while on the other hand the full faithfulness
of ( / ) * follows from 6.9.1 and the description 6.6.1 of the Horn groups. Now an isomorphism
such as 6.9.1 can be identified with an automorphism B of V 0 A(fc) satisfying

d B • B - l - } - B N B - l d ^ = N d ^ .
tb ta

There is automorphism Bo of V such that BoNBo1 = deg{b/a)N, so if we look for a B
of the form B = CBo, with C commuting with N , the above condition becomes

dC.C-^Nf^-degWa)^-}.
\ta tb )

By 5.6.1 and the Weierstrass factorization theorem, we have

ReSbdta/ta = deg(&/a)

which shows that there is a g G A(&) satisfying

(6.9.2) ^^ -deg(&/a)^
ta ^

and we can take C = exp{gN).
D

Remark. - Since the choice of Bo made above is arbitrary, we do not obtain an
isomorphism of functors Fb ^ ( / ) * o Fa.

We saw earlier that (V 0 A, V^v) is strict whenever N is nilpotent; we now give a
criterion for strictness of (V 0 A, Vc) in general. Recall that a € K is said to be a
p-adic Liouville number if |a — n\ < r^l for some r < 1 and infinitely many n G Z.
Equivalently, a is not p-adically Liouville if for every positive r < 1 there is a C > 0
such that |n - a| > Cr^ for all n.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



740 R. CREW

6.10. Proposition - The connection Vc is strict if and only if the eigenvalues ofC are
not p-adic Liouville numbers.

Proof. - By 3.7 and 6.5, we can assume that all the eigenvalues of C belong to K, and
that C consists of a single Jordan block. If the eigenvalue of this block is an integer, then
Vc is equivalent to VTV for some nilpotent matrix N\ such a connection is unipotent, and
therefore strict by 6.6. We will therefore assume that the eigenvalue is not an integer, and
we consider first the case n = 1, so that the connection can be written

rff

V{f)=(xff-a)^-^.

with a ^ Z. Since

V(^ a^} = ̂ (n - 0)0^ 0 -x-
nCZ n6^

we see that if a is not p-adic Liouville, then Va is actually surjective, and therefore
strict by the open mapping theorem. Suppose, on the other hand, that Va is strict, and
that a is not an integer. Since the topological transpose of Va can be identified with
—V-a and KerV-a = 0, we have CokerVa = 0. Thus Va is surjective, and since it is
strict, the inverse map is continuous and must map bounded sets to bounded sets. Since
{x^ <S> dx/x}n^o is bounded, we see that the set of

V^iy 0 dx/x) =(n- a)"1^ n ̂  0

is bounded. From 4.1.3, we conclude that for all r < 1 there is a Cr > 0 such that
\n - a\~1 < CrT^ for all n > 0; i.e. n - a\ > C^1^ whenever n > 0, which
so to speak is half of the condition defining a p-adic non-Liouville number. To obtain
the other half, we choose an r < 1, and can then find dn G K, n < 0 such that
q~1 < lan^l^] = dn^ < 1, where q~1 is the valuation of a uniformizer of K. Since
{dnX71} 0 d x / x is bounded, the same argument as above shows that

V^a^ 0 d x / x ) = an{n - a)-1^ n < 0

is bounded. By 4.1.2 there is a Cr > 0 and an s such that r < s < 1 for which

|a,(n - a)-1! < C^-" <,Cr n < 0

and since q~lr~n < |ayj, we have

\n - a\ > C^K > (oCr^r^ = (gO)"1^1 n ̂  0

which shows that a is not p-adic Liouville.
We now consider the general case, where C is a single Jordan block with non-integral

eigenvalue a. If a is not p-adic Liouville, then the above argument shows that the connection
Va is surjective; repeated application of the exact sequence 6.1.2 then shows that Vc
is surjective, and is therefore strict by the open mapping theorem. If on the other hand
Vc is known to be strict, then repeated application of 6.4 shows that Va is strict, and
consequently a is not p-adic Liouville.

D
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Part III

Global duality and finiteness

The first step in this section is to establish a duality result of the sort familiar in the
geometry of numbers (7.5, 7.7). We follow the classical procedure in reducing to the case
of an open subset of the projective line; this means we need additional hypotheses on the
nature of the lifting of the curve that must certainly be unnecessary (and one hopes that
a better understanding of rigid-analytic duality would allow us to eliminate them). After
proving the main results of the paper in §9, we give some applications in §10.

7. Dagger algebras and the global pairing

7.1. Let us first recall some ideas and results from [5,8]. Let X / k be a smooth fe-scheme,
and X/fc a formally smooth lifting. Points of the affinoid space X^ correspond to closed
formal subschemes of X/R that are finite, flat, and integral over jR. Then reduction modulo
the maximal ideal of jR yields the specialisation morphism sp : X^ —> X. If U C X
is locally closed, then the tube }U[^^ of U in X^ is defined to be the inverse image
sp^^U} of U under specialization. We will often drop the subscript and denote the tube
simply by }U[.

Suppose X C y are smooth over fc, with formally smooth liftings X C 2). A strict
neighborhood V of ]X[^arz in 2)"^ is an admissible open subspace such that {VJV — X[}
is an admissible cover of 2)°^ (cf. [8 1.2.1]). We will be mainly interested in the case
when X, Y are smooth geometrically connected curves, in which case the filter of strict
neighborhoods of }X[ in 2) has a countable cofinal set of affinoid strict neighborhoods.

We now fix our attention on the following situation: X ̂  X is an inclusion of smooth
curves, X is affine, X is projective, and X ̂  X lifts to a morphism X c—^ X of formally
smooth formal .R-schemes. For any strict neighborhood V of ]X[, set

Av=WOy)

and, for V running through a cofinal set of strict neighborhoods of ]X[,

(7.1.1) A ^ = l i m A y
v

Note that X is essentially determined by X\ X and X are not, but we will not indicate
them in the notation.

Suppose that / : Y -^ X is a fc-morphism of smooth affine curves, sitting in a cartesian
diagram _

y<-^F
4 U
X ̂  X

where X, Y are smooth and projective, and suppose finally that f \Y —>~K lifts to a map
/ : 2) —> X of formally smooth formal Ji-schemes. If V is a strict neighborhood of ]X[
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in X^, then f~\V) is a strict neighborhood of ]Y[ in 2)^, since the admissible cover
^J^ - -^[} of ]^[has as its inverse image the admissible cover {/^(l^jy - Y[} of

. It follows that / induces a I^-algebra homomorphism

A^ -^ Ay.

It is known that A^ is a noetherian ring [22]; however the simpler arguments of [8]
are enough to show that A^ is a coherent ring, which is all that we will really need.
Thus any A^module of finite presentation is coherent. Since the Ay are coherent (and
even noetherian, when V is affinoid), it follows from the general properties of coherent
rings that the family of functors

(Ay-modules) —> (A^modules)
M ^ M 0Ay A!

induces an equivalence of the category of A^modules with the inductive limit of the
categories of Ay-modules,, as V runs through a cofinal set of strict neighborhoods of
]X[^. In other words, for any coherent A^module M there is a strict neighborhood
V and a coherent Ay-module My such that M = My 0Av A1', and for any linear map
M -^ N of A^modules, there is a V and Ay-modules My, TVy such that M -^ N is
induced by an Ay-linear My -^ TVy.

For any coherent A^module M such that M = My 0 A1', we have

(7.1.2) M= lim r^V^Mv)
v'cv

where .My is the sheaf on V corresponding to My, and V runs through a cofinal set of
strict neighborhoods of }X[. In fact, since My is coherent, we have

T(V\Mv) = Ay 0Av My

and thus

(7.1.3) M = M y 0 A + = l l m M y ( g ) A v A y / ^limr^.My).
V V

From 7.1.2 it follows that any coherent A^module has a natural topology, arising
from the direct limit in 7.1.2. We claim that it is separated. In fact, for any V C V,
the map T(y',Mv) —^ F^X^.Mv) is continuous, and is injective by [8 2.1.11]. The
map M —> nX^.A/fy) is therefore continuous and injective. Since X^ is affinoid,
r^^A^y) is a Banach space and in particular is separated; then M must be separated
as well. Furthermore the natural topology of the ̂ (V^ My) is Frechet, (or even Banach, if
V is affinoid); then, since ̂ an has a countable fundamental system of strict neighborhoods,
the topology of M is that of an LF-space. Since an A1'-linear map M —> N arises from
some map My —> Ny of Ay-modules for some V, we also see from 7.1.2 that an AUinear
map of coherent A^modules is continuous.

7.2. We now explain how to attach a local algebra of the sort studied in §5 to a point
a G X of a smooth algebraic curve. By shrinking X, we can assume that X is affine, and
thus has a formally smooth lifting X/R. Since X is formally smooth, the inductive limit

(7.2.1) A(a) = limr(yn]a[, 0^\
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where V runs through the set of strict neighborhoods of }X — a[ in X^, is a local
algebra. More precisely, if ta is a local section of 0^ reducing to a local parameter of
Oa, then A(a) is the J^-algebra of formal Laurent series in ta convergent in some annulus
r < \ta\ < 1, and A(a)+ is the ^-algebra of analytic functions on ]a[. It is clear from
the definition that the natural map

(7.2.2) r(Y,Ox-)——A(a)

is continuous for the natural topologies.
This construction is essentially independent of the choice of X. In fact if X' is another

choice, then for any affine neighborhood U of a, the restrictions of X, X7 to U are
isomorphic (since both are formally smooth liftings of X). It follows that ]a[x can be
identified with ]a[xs and thus a strict neighborhood of }U — a[ in X^ can be identified
with a strict neighborhood of }U - a[ in X an. The corresponding local algebras attached
to a will therefore be non-canonically isomorphic.

Suppose / : V —>• X is a morphism of smooth affine curves; then any lifting 2), X
of y, X will be formally smooth, and thus there is a lifting f : V) —^ X of Y ^ X. If
b G Y and f{b) = a, then 2) — X induces a J^-algebra homorphism A(a) —>• A(&), and
if we choose local sections ta, tb reducing to local parameters at a and &, then ta, h are
adapted to A(a) -^ A{b) in the sense of 5.6. The rank deg(6/a) of A(6) over A(a) is of
course the same as the rank of 0^ over Oa'

7.3. Now suppose that we are given an embedding X ^—> X of smooth curves with X
affine and ~X projective, and set D = X - X. Fix a lifting X -^ X of X —> X and let
A1' = A^ be as in 7.1.1; the construction of 7.2 is applicable (with X in place of X, to
be sure), and the inductive limit of 7.2.2 as V ranges over all strict neighborhoods of }X[
in X^ is a continuous embedding A1' ̂  A(a), for any a G D. If we put

(7.3.1) A^-^A(a),
aCD

then the direct sum of the embeddings A^ ̂  A(a) is an embedding A^ ——> A1^0. We
define A^ by the exactness of the sequence

0 -, A^ ̂  A^ -^ A^ -> 0

and we will drop the subscript X whenever possible. If M is any locally free A1^ -module,
we have an exact sequence

(7.3.2) 0 -^ M -^ M 0A+ A100 -^ M 0A+ A^ -^ 0.

If M is a coherent A1'-module M arising from a locally free sheaf M.v on a strict
neighborhood V of ]X[, then

(7.3.3) M0AtA^= Urn ny'n^.My)
y'cv

In fact, since My = T{V,Mv) is a finite Ay-module, we have
M 0A+ A^ = My (g)A^ A^

= lim My 0A^ ny'n]^ Oy/)
=]\mv' Y(y'n}D[,Mv).

V
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As before, 7.3.3 allows us to topologize M^A100 for any coherent A^module M. However
if M 0 A100 is a locally free finitely generated A^-module, we have

(7.3.4) M 0^t A^ = ̂  M 0^ A(rr)
.cGD

by 7.3.1, and if M is locally free, each term of the right hand side is a free A(a;)-module (by
proposition 4.8). Thus, when M is finite and locally free, there are two natural topologies
on M 0 A100, induced by 7.3.3 and 7.3.4, and we claim that they coincide. This is clear if
M = A1' or, more generally, if M is free. In general, if M is finite and locally free, we can
choose a finite free A1^-module N of which M is a direct summand. Then for the topology
defined by 7.3.3 or 7.3.4, M is a topological summand of N , as the inclusion M ̂  N and
projection N -^ M are both continuous. The topologies defined by 7.3.3 and 7.3.4 coincide
for N, so they coincide for M. This argument also shows that this topology is separated.

Put
^\, =iimr(y^).

For any strict neighborhood V of]X[ we have ̂  = T{V, ̂ )0A1', so that Q^ is locally
free, and the above considerations apply to M = f^. We will use the abbreviations

^loc = ̂  0^ A100

^u = ̂  0^ A^.

If M is a locally free A7-module M, the global pairing is defined by

(M 0 A^) x (M^ 0 ̂ c) -> K
(7^ (M.(^)) - ((^(^^^(m^),

x^D

where the ( , )a denotes the local pairing 5.1.1 on A(a). From 5.4, we see that 7.3.5
induces an isomorphism of each of M 0 A100, M^ 0 ̂ loc with the strong dual of the other.

7.4. Lemma - For the pairing 7.3.5 we have

71^0^ CM^-.

Proof. - From the definition, one sees immediately that it is enough to treat the case
M = A1', in which case the assertion is equivalent to the following: for uj G ^ l t , we have

(7.4.1) (1^}=^;(1^},=0.
x^D

The analytic curve X^ has an (essentially unique) algebraization X; it is a smooth
projective curve, and we can identify the points of ^an with the closed points of X. Denote
by A the ring of meromorphic functions on X whose poles lie in }D[, and by f^ the
corresponding module of 1-forms. If uj G ̂ , then for any a G D we have

(7.4.2) Res^ = ̂  Res,
x^]D[

where the residue on the left hand side is the one defined in 5.1, i.e. the one which figures
in the local pairing ( , )„, while the residues on the right hand side are the ordinary
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residues of LO at points x in the analytic space ]a[. If ta is local section of 0^ chosen as
in 7.2, then 7.4.2 follows from the identity (ta - b^dta =- t^dta • (1 - b/ta)-".

It follows from 7.4.2 and the classical residue theorem that (1,^) == 0 for all uj e f^.
Since the pairing 7.3.5 is continuous and ̂  is dense in ^^, we must have (l,ci;) == 0
for all uj G ^l\^.

D
In the case when the A^module M arises from a locally free sheaf M on X^, we have

F(]D[,M) C M (g) A^0, and with respect to the pairing 7.3.5 we have

(7.4.3) r(p[, M^ = r(]P[, M" 0 ̂ ).

In fact, r(].D[,.M) is a free A^-module by 4.8, so 7.4.3 reduces immediately to the case
M = C^an, in which case it reduces to the evident equality (A(a)+)-L = A(a)+ for a e D.

We can now prove the main result of this section:

7.5. Theorem - Let X, ~X, X, X, A1' be as in 7.3. Then for any coherent locally free
A1-module M, the natural topology ofM is dual-of-Frechet, M 0A+ A^ is Frechet, and
the exact sequence

(7.5.1) 0 -^ M -> M 0A+ A100 -^ M 0^t A^ -> 0

is split exact (and consequently strict exact). With respect to the pairing 7.3.5 we have

(7.5.2) M±=M^^ ̂ 'At

and the maps

(7.5.3) M -^ {M^ 0 ̂ y,
M0^ _^ (M^

induced by 7.3.5 and 7.5.1-2 are topological isomorphisms.

Proof. - First, note that 7.5.3 follows from 7.5.2 and the assertions about 7.5.1. Next,
it is clear that 7.5 is true for a direct sum if and only if it is true for the summands, so
if we represent M as a summand of a finite free A1^-module, then we can reduce first to
the case of a free module, and then to the case of A1' itself. Finally, we observe that if 7.5
is true after making a finite extension of scalars K ' / K , then it is true by 3.7, so at any
point we can pass to a finite extension of the base.

We ̂ laim that after passing to a finite extension of K (if necessary), there is a divisor
E on X^ supported in ]D[, whose associated line bundle C = C(E) on X^ satisfies

(7.5.4) ^o(Tn^)=^l{Tn^)=0.

In fact, if g \s_ the genus of X"", a generic divisor E of degree g - 1 satisfies the
condign H^X071, C{E)) = 0 (cf. for example [2] Chapter 1, §2), and the equality
H^X ,£(£')) = 0 follows from the Riemann-Roch theorem. Here "generic" means:
belonging to a Zariski-open subset of the symmetric product (X^)^-^ of g - 1 copies
of X^; to define "Zariski-open," we fix, as in the proof of 7.4, an algebraization X/K
of X071 and identify the closed points of (X)^-1) with the points of (X^)^-1). To see
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that we can arrange to have E supported in }D[, it is sufficient to observe that the analytic
subspace QI^)07"10 C (X^)^"^, being of dimension g - 1, intersects any Zariski-open
subset of (X^-1).

Put, as usual,

L=limr(V,C)

where V runs through the set of strict neighborhoods of }X[ in X .By construction, C
and 0-^r. are isomorphic on X — E, So if we choose an isomorphism C ^ O^arz on
y - E, we obtain isomorphisms L ^ A1' and L 0 A^ ^ A^. If L^ (g) ̂  ^ n^,
2^ 0 ̂ oc ^ fl100 are the corresponding dual isomorphisms, then by construction they are
compatible with the pairing 7.3.5. Thus it suffices to prove 7.5 when M = L.

We now choose, for each a G D, a section ta as in 7.2, so that ]a[ is the locus of
\ta\ < 1. For any r G ^/\KX | such that 0 < r < 1, we let [D]r be the union of the disks
\ta\ < ̂  and ]J9[^=]7^[—[Z)]r. If V is a affinoid strict neighborhood of }X[ in X , then
for some r, {V, [-D]r} is an admissible affinoid cover of X" , and the complex

W ̂  e r([^ £) - r(v n [2^ £)

calculates the H^X^,/^). By 7.5.4 these vanish, so that

r(v, c) e r([7?],, £) -^ r(v n [^],, £)

This is actually a topological isomorphism: it is continuous, and since the spaces occurring
here are all Frechet, the open mapping theorem is applicable, and the map is open. Passing
to the inverse limit as r —> 0 yields an isomorphism

r(V, c) e r(]D[, c) -^ r(vn}D[^ c)

which is in fact a topological isomorphism (we can regard direct sum as a direct product,
and inverse limits commute with products). Similarly passing to the direct limit over V
yields a topological isomorphism

(7.5.5) L C r(]P[, £) —. L 0 A100

(one could also observe that the isomorphism in 7.5.5 is continuous, and show that it is a
topological isomorphism by appealing to the open mapping theorem for LF-spaces stated
in 3.4). We conclude that 7.5.1 is split exact when M = L.

By Serre duality, ^v (g) ̂  satisfies 7.5.4 as well, and we have lim I^V,/^ (g) 01) ^
L^ 0 0^, so 7.5.5 yields

(7.5.6) (^v 0 ̂ ) C F(]^[, £Y 0 Q1) -^ L^ (g) ̂ oc.

From 7.4 we have L^ (g) ^1 C L-1, so 7.5.6 yields

(7.5.7) L^ (g) ̂  = ̂  + r(]P[, ̂  (g) O1).
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On the other hand, 7.4.3 for L = M reads

(7.5.8) r(]p[, r)^ = r(]D[, ̂  0 o1)
and since 7.3.5 is nondegenerate, 7.5.5 and 7.5.8 yield

L1- n r(]D[, c^ 0 n1) = ̂  n r(]i?[, r)-1- = (£ 0 A100)^ = o.
It follows that the sum in 7.5.7 is direct:

i^ 0 ̂ loc =L±e r(]D[, ̂  0 n1)
Comparing this with 7.5.6, and recalling that L^ 0 f2^ C L1', we see that the latter
inclusion must be an equality:

L^ 0 0^ = L^

and, by symmetry,

(7.5.9) L=(£v0^t)±

which is 7.5.2 for M = £.
It remains to prove the assertion about the topologies of L and L 0 A^; of course it

follows from 7.5.2 and 7.5.3 that it is enough to show that L0A^ is Frechet. By definition
L 0 A^ ^ (L 0 A100)/!., so 7.5.5 yields a topological isomorphism L 0 A^ ^ F(]^[, £).
The latter space is Frechet - it is a countable inverse limit of spaces of the form r([2^]^, £),
and these are Banach. We conclude that L 0 A^ is Frechet.

D

Remark. - It may seem perverse to prove, using Serre duality and the Riemann-Roch
theorem, an assertion which resembles closely the ones used classically to give adelic
proofs of Serre duality, Riemann-Roch, etc. But it does not seem particularly easy or
enlightening to prove 7.5 in its full generality by the classical procedure, i.e. by reducing
to the case X = P1. The problem is that it is not in general possible to lift a morphism
X —> P1 to a morphism X —» P1 over R, where X has been given in advance (cf. the
remark after 8.3) Of course, if one doesn't care which lifting of X is being used (as is
the case in §8-9) then this doesn't much matter.

Various authors [10, 38] have discussed Serre duality in the context of open rigid-analytic
spaces, and 7.5 is obviously connected with this circle of ideas. For example, if M. is a
locally free sheaf on X071, then one can show that (M 0 A^/T^D^ M) ̂  H^ (]D[, M),
where the cohomology with compact support is defined in [10]; then 7.4.3 is equivalent
to the isomorphism }l°{}D[,My ^ H^G^.A^ 0 O1) which is a special case of the
duality results proven in [10].

To interpret 7.5.3 in this vein, we suppose that the A^-module M is arises from a locally
free sheaf M.v on some strict neighborhood V of ]X[. If V is a Stein space (in the sense
of [10 4.1]) then by [10 4.21] there is a topological isomorphism

(7.5.10) r(V, {MvY ^ Ws ^ H^V, My).
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Now ]X[ has a fundamental system of strict Stein neighborhoods, and it can be shown
that there is a topological isomorphism

(7.5.11) M^ ^ lim H^V^Mv)
]X[CV'CV

obtained by passing to the inverse limit in 7.5.10 and applying 7.5. On the other hand,
one has

(7.5.12) M^ 0 ̂  = lim H^V, M^ 0 Q1).
]X[CV'CV

If one had an a priori proof of 7.5.11, one could presumably deduce 7.5 from the duality
of 7.5.11 and 7.5.12; however, there seems to be no simple way to relate the two side
of 7.5.11, nor is it at all clear how the duality 7.5.3, which is defined by the global
pairing 7.3.5, is related to the corresponding duality isomorphism of [10 4.22], which is
constructed using embeddings into affine spaces, and which does not result in an explicit
formula for the residue (though there is a residue map constructed (implicitly) in [10] §5).

8. Isocrystals on a curve

8.1. We now, finally, turn to the study of overconvergent isocrystals on a smooth affine
curve, and of their cohomology. Since we will not consider any other kind of variety, the
definitions we give will be special to the case of a curve. In what follows, "isocrystaF
will mean "overconvergent isocrystal."

Let X C Y be an open immersion of smooth curves, and set D = Y — X. Fix a lifting
X C 2). An overconvergent isocrystal on X/K overconvergent around D is a locally free
A^ -module M endowed with a connection V : M —^ 0^ with the following property: if
M = My(g)A1' for some strict neighborhood of^inS)"71, and if the connection extends to
V (which it must, for some V), then the connection induces an isomorphism p^M ̂  p^M
on some strict neighborhood W of the tube }X[^an^arz of the image of the diagonal
X c—^ X x X, where pi :]Y[^arz^arz—>'\Y[y)art s^e the projections; the isomorphism must
satisfy the usual kind of cocycle condition. The meaning of this condition is twofold. First,
for any x e X, the connection must, by means of its associated Taylor series, induce a
trivialization of M|]rc[. Second, for any x G D, the connection must induce a trivialization
of the restriction of M to any disk in yn]a;[ of sufficiently small radius, but with the
condition that the radius of the disk must approach 1 as the disk itself approaches the edge
of }x[. In [8] Berthelot shows that the category of isocrystals on X/K overconvergent
around D is independent of the choice of liftings of X, V, is functorial in X, V, and is
of local nature on Y. When Y = X is a smooth complete curve containing X, then the
corresponding category is simply called the category of (overconvergent) isocrystals on
X / K ' , as before it is functorial in X / K and is of local nature on X.

For any A^-module M with a connection, we denote by HQ^(M) the de Rham
cohomology of M:

HDn(M)=H-([M-^M0^])
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and similarly for any complex of A1' -modules with connection. In particular, if M is an
isocrystal on X/K represented by a finite locally free A^-module M with connection
V : M —^ M 0 0^, then the de Rham cohomology of (M,V) is exactly the rigid
cohomology of the isocrystal M:

(8.1.1) W(X^M)=R^(M)

(in general one needs sheaf hypercohomology, but since the strict neighborhoods can be
taken to be quasi-Stein, we do not need to do this). To define the cohomology with compact
supports, we pick a smooth compactification X c ~X and a lifting X c X, and suppose
that M is an overconvergent isocrystal on X / K , represented as a locally free sheaf with
connection (My, V) on some_ strict neighborhood V of }X[ in y. If D = ~X - X and
iv : Vn]jD[—^ V, jv ' ' V —> X^ are the natural inclusions, then H^(X,M) is defined by

H^(X,M) = H^X^lim^y.aMy -^ iy^yMy} ̂ L ̂ yV))

=lmi H^VJMy -^ zy^My] 02-^V)

where we now let V run through a cofinal system of strict neighborhoods of }X[ (since
X is quasicompact, the direct limit commutes with cohomology). We can choose a
set of affinoid strict neighoborhoods (quasi-Stein would suffice), in which case 7.1.3 and
7.3.4 show that

(8.1.3) H;(X, M) = H^([M -. M 0^i A^]) = H^(M 0 A^-l])

or in other words

H^X, M) == Ker(V : M 0 A^ -^ M 0 f2^)
H^X, M) === Coker(V : M (g) A^ -> M 0 ̂ )
H^(^M) = = 0 ^1,2.

From 8.1.1 and 8.1.3, we see that the exact sequence of modules with connection

0 -^ M -^ M 0 A100 -> M 0 A^ -> 0

yields, upon taking de Rham cohomology, the exact sequence

0 ̂  H°(X,M) -^ H^(M 0 A^) ̂  H^(X,M) ̂(8.1.4)
H^X^M) -. HDp(M0 A^) -^ H^Z.M) -. 0

If we think of 8.1.4 as the p-adic analogue of the long exact sequence relating the
cohomology with and without supports of a lisse ^-adic sheaf, then we see that the
Hj^A^A^) are to be thought of as a sort of local cohomology (as the H'(J9, fRj^M),
to be more precise). Pursuing the analogy leads us to define the "middle" or parabolic
cohomology by

(8.1.5) H^(X, M) = Im(H^(Z, M) -^ H^X, M)).

The coboundary map 9 has the explicit description

H^M)^^0^00^^0^ -H^,^"^

m i—> V(m)
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(8.1.6) H1^ M) ̂  (^^^(M^A^)
pv ? / V(M)

This of course is just the classical definition of parabolic cohomology (1-cycles trivial at
infinity, modulo global 1-chains).

Denote by K the "constant" isocrystal (A^, d). By the definition given above, we have

^^X^K)=^oc/^+dAloc)

and since by 7.4.1 we have (l,^) = 0 for uj G 0^, the map

^oc -^ K
uj ^ (1,0;)

passes to the quotient by ̂  + dA100. We obtain thus the trace map

(8.1.7) Q^x^K)^K

and we will see later that it is an isomorphism (this can also be deduced from the excision
exact sequence (cf. [5 §3.1]) and Berthelot's comparison theorem [9 1.9] for rigid and
crystalline cohomology). For any isocrystal M on X / K , we can compose 8.1.7 with the
cup product

H;(X,M) x H2-^^) -. R\X^K)

to obtain a pairing

(8.1.8) H^(^ M) x H2-^, A^) -. K.

Since the dual of H^M) -. H^M) is H^A^) ̂  H^A^), 8.1.8 induces
a pairing

(8.1.9) H^X, M) x H^X, Mv) ̂  A:.

8.2. Suppose j : U ̂  X is the inclusion of an open subset, and M is an isocrystal
on U. For later purposes we will need some variants of the above construction, which
could be thought of as providing H1^ Rj^M) and H^Xj.M). With D = X ?- X as
before, and E = X - U, we set

A(E)=@A{x)cA^= Q) A(x) A^=A^/(A(^)+A^).
.cG^ .E€DU£;

Since A(E) n A^ = 0 in A^, there is an exact sequence

0 -. A(E) -. A^ - A^E -^ 0.

If M is an isocrystal on (7, realized as a locally free A^-module with connection, we can
tensor the above sequence v/ith M over A\j

(8-2-1) 0 ̂  A(£') 0 M ̂  A^ 0 M ̂  AX,£; 0 M -^ 0.

4e SERIE - TOME 31 - 1998 - N° 6



FINITENESS THEOREMS 751

and pursuing the same analogy as in the paragraph after 8.1.4, we define

(8.2.2) H;(Z, Rj^M) = K^{AX,E ^ M)

Note that we don't give an independent definition of Rj^M\ The exact sequence of De
Rham cohomology is

. . 0 ̂  H^(A(J?) 0 M) -> Q^M) - Q^X^Rj^M) -.
v / ^DRW) (S) M) -^ H^, M) -^ H^(X, R^M) -. 0

from which one sees that the notation is justified by the ^-adic analogy. Define H^(X,j>,M)
to be the image of H^((7,M) —> H^(X,J?j^M), so that 8.2.3 yields an exact sequence

(8.2.4) 0 -. H^(A(^) 0 M) -^ K^(U, M) -^ Q^XJ^M) -^ 0

and set, finally,

(8.2.5) 1^(XJ^M)=R^M).

These definitions can also be justified by the ^-adic analogy.
Suppose now that / : Y —^ X is finite etale, and choose compactifications X ^-> X,

Y <—^ Y of X, V; then f : Y —> X extends (uniquely) to a finite, generically etale
morphism f \Y —> X. Choose, finally, a formally smooth lifting X of X. Our construction
of the direct image of an isocrystal under / will need:

8.3. Lemma - With the above notation, there is a lifting 2) —^ X of Y —> X, with
2) proper and flat.

Proof. - By standard arguments, it is enough to show that there is no obstruction to
infinitesimal liftings. Suppose, then, that XQ, YQ are two curves, smooth and proper over
a ring Ro and fo : Yo ^ Xo is a finite, flat, generically etale J?o-morphism. Suppose
also that R^ —^ RQ is a surjective ring homomorphism with kernel I such that I2 = 0,
and X^ is a lifting of Xo to 7?i, i.e. a flat J?i-scheme such that XQ = X^ (g)j^ RQ. The
obstruction to finding a lifting /i : Vi —^ Xi of /o is a class in ExtJ^Lyo/j^Oyo)^
where Lyo/Xo ls ^e relative cotangent complex of /o- Since Xo, YQ are smooth, we
have LYQ/XO ^ [f5^11^ / R ~' ̂  I R ]' wlt^ ̂  two terms m degrees —1 and 0. If we
put L^ = RHom(ly,°/xo,Oyo\ ^hen L^ ^ [(0^/^)v - WX,/R^ since
fS^x./R^ ^/Ro are locally free. Since /o is generically etale, fS^x,/R, -^ ^/Ro is

an isomorphism on an open subset of Vo, so the support of /H^(L^ ,^ ) is zero-dimensional
for i = 0,1 and H^L^ / y ) = 0 for i > 1. Thus' \ YQ I A o /

Ext^(£y,/^,0yj ̂  H^VO,^/^) - 0

It follows that there are no obstructions to lifting /o to a morphism f\ : Vi —^ Xi, with
YI flat over J?i.

D

Remark. - If a lifting 2) of V is specified in advance, then one cannot in general hope to
lift / : Y —> X to a morphism 2[ —^ X, since in this case (with the notation of the above
proof) the obstruction lies in Ext^Ly^/^, Ovo). which need not vanish in this situation.
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Suppose now that M is an isocrystal on V, represented by a locally free sheaf My on
some strict neighborhood V of ]Y[ in 2)^ endowed with a connection V overconvergent
around Y - Y. By the maximum principle, there exists a strict neighborhood T/o of ]X[
in X such that / (Vo) C V. Since V —> X is finite and flat, the same is true for
2) —^ X, and thus for / (Vo) —^ Vo. It follows that /*My is a locally free sheaf on Vo.
The fact that the natural (Gauss-Manin) connection on f^My is overconvergent follows
from Lemma 3.5.2 of [14]1.

For later use we will need an explicit description of the local behavior of the connection.
First, for a G X — X we have

(8.3.1) (AMy) 0 A(a) = ([) My(^A(b)
6C"F-y, b-^a

where as in 7.2 we embed A^ ̂  A(a), A^ c— A(&). Choose local coordinates ta, U as
in the last paragraph of 7.2. In A(V) we have d / d t a = (dta/dtb)d/dta, and since ta is a
power series in t^ with bounded (in fact with integral) coefficients, dta/dt^ is a unit in
A(6). It follows that the action of \^{d/dta) on {f^My 0 A(a)) is given by

(8.3.2) ^{d/dta)\My 0 A{V) = (dta/dt^V^d/dtb).

If M is an overconvergent isocrystal on X / K , then one defines /*M in the obvious
way: we represent M as a locally free sheaf with overconvergent connection on some strict
neighborhood V of ]X[ in X , and the pullback by f represents /*M.

Remark. - Since overconvergence is a purely local property, the use of 8.3 to define
direct and inverse images is overkill, and is an artifact of our somewhat naive definition of
an overconvergent isocrystal. In the situation of 8.3, the map Y —^ X is a local complete
intersection, and so has local liftings. These can be used to define f^M locally, and the
resulting isocrystals patch together.

9. Strict isocrystals and global duality

9.1. Suppose now that X / k is a smooth curve, and M is an (overconvergent) isocrystal
on X / K . If we choose, as always, a smooth completion X C X and a lifting X C X,
then M can be identified with a locally free sheaf M with a connection V overconvergent
around D = X — X. Let A^ be the dagger-algebra associated to the lifting X, and for any
a € D let A(a) be the local algebra at a, and f^ the corresponding module of differentials.
We shall say that M is strict at a if the induced connection M 0 A (a) —^ M 0 f^ is
strict in the sense of §6; i.e. if it is strict as a map of topological K- vector spaces. From
the results in 7.2, we see that this notion is independent of the choice of X c—^ X and of
the lifting X ^-» X, and is in fact local around a for the etale topology on X. We will
say that an isocrystal M on X/K is strict if for some smooth compactification X ̂  X
it is strict around each point of X — X\ obviously this is independent of the choice of

1 We should point out a misprint in [14]: the arrows in the displayed diagram of [14] 3.5.2 should go in the
same direction as the corresponding arrows of [14] 3.5.1.
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X. An equivalent condition is that for any choice of X c—^ X and X ^-» 3C, the induced
map M 0 A100 -> M 0 ̂ oc is strict.

This condition might seem like a rather difficult one to verify, and in general it is.
There nonetheless seems to be plenty of examples. Suppose, for example, that k is finite
and M satisfies the Robba condition with non-Liouville exponents (cf. [12 §4]) in each
disk ]a[, a e ~X - X. Then Christol and Mebkhout show [12 §6.2] that the restriction of
M to each ]a[ is isomorphic to one of the form 6.7.1, where the eigenvalues of C are
non-Liouville, and it follows from 6.10 that M is strict. If the isocrystal arises from an
algebraic differential equation with regular singularities, and no two singularities have the
same reduction (the case studied by Adolphson [1]), then the condition is that the exponents
in the usual sense are not p-adic Liouville. Another class of examples, distinct from those
just described, is that of the quasi-unipotent isocrystals, which we discuss in §10.

9.2. Proposition - Let X / k be a smooth affine curve and M an isocrystal on X / K .
Then M is strict if and only if M^ is strict.

Proof. - This follows immediately from 6.3 and the definitions.
D

9.3. Proposition - Let TT : Y --> X be an etale cover of smooth curves. If M is a strict
isocrystal on Y / K , then TT^M is a strict isocrystal on X / K .

Proof. - In the notation of 8.5, it is enough to show that V(d/dta) is a strict
endomorphism of (j^My) 0 A(a), while by hypothesis V(d/d^) is a strict endomorphism
of My 0 A(b) for each b —> a. The assertion in question follows from 8.5.1 and 8.5.2,
since multiplication by the unit {dta/dtb)~1 is a topological isomorphism.

D

9.4. Proposition - Let TT : Y --> X be a finite etale cover of smooth curves, and M an
isocrystal on X / K . If TT*M is strict, then so is M. If TT : Y —^ X can be compactified
to a finite etale map Y —> X with Y, X proper and smooth over k, and if M is strict,
then so is TT*M.

Proof. - The last assertion simply restates the fact the strictness of an isocrystal at a
point is etale local around that point. As to the first part of 9.4, note that there is an
exact sequence of isocrystals

0 -, M -^ 7r,7r*M -^ N -^ 0

on X / K . If TT*M is strict, then so is TT^M by 9.3, and then the strictness of M
follows from 6.4.

D

We can now prove the main result of this paper:

9.5. Theorem - Let X / k be a smooth affine curve, and M a strict isocrystal on
X / K . Then the three K-vector spaces W{X,M), W^X.M), and Q^X.M) are finite-
dimensional, and the pairings 8.1.8-9

K^X^M)xQ2-^(X^M^^K
^ b ' ± ) H^A^xH^M^-.^
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are perfect pairings of finite-dimensional vector spaces.

Proof. - The map V : M -> M 0 ̂  induces maps V^c : At 0 A^ —^ At 0 ^zoc,
V^, : M 0 A^ -^ M 0 f^, which sit in a commutative diagram

0 —> M —> M^A100 —> M^A^ —> 0
(9.5.2) J v ^ ^

0 —> M0^ —^ M^^00 —> M^^ —> 0.

The proof is based on a study of this diagram, and of a portion of the six-term exact
sequence

(9.5.3)
0 ̂  H°(M) ̂  H^(M 0 A100) -^ H^(M) ̂

H^M) -^ HDR(M 0 A^) -^ H^(M) -^ 0

arising from it. We endow the spaces in 9.5.3 with the topologies they have as subspaces
(resp. quotients) of the spaces in the first (resp. second) row of 9.5.2. By 3.13, the maps in
9.5.3 are continuous, and K^{M 0 A100) -^ H^(M) is actually strict. Note, finally, that
by 6.7.1, the pairing 8.4.2 coincides with the pairing induced by the global pairing 6.2.6.

By 9.2, M^ is strict. Thus if at any point we have proven a general fact about M, then
it holds for M^ too. The remainder of the proof is in a sequence of simple steps:

Step 1. V, V/oc, and V^ are strict, and H^(M) is finite-dimensional and separated: for
V^c, this is true by definition. By 6.3, H^A^O^) is finite-dimensional and separated;
then since K^^M^A1^) -^ H^(M) is strict and surjective, H^(M) is finite-dimensional
and separated. In particular, the image of Vqu is closed, and since M 0 A9", M 0 W
are Frechet spaces, Vg^ is strict. Since they are Montel spaces as well, the strong dual
Vv : M'7 -> Mv 0 ̂  of V^ is strict; then the same is true for V.

Step 2. H^(M) is Frechet-Montel: it is certainly Frechet, being a closed subspace of a
Frechet space. Being Frechet, it is barreled, so it is enough to show that any convex closed
bounded subset of H^(M) is linearly compact, which is true because M 0 A^ is Montel.

Step 3. The duality pairing 8.4.2 induces a topological isomorphism H^(M) ^ H^^M^:
since the sequence

(9.5.4) 0 -> H^(Af) ̂  M 0 A^ ̂  M 0 ̂ qu -^ H^M) -^ 0

is strict exact, and since all the spaces in it are Frechet-Montel (this has been shown for
the first three, and by step 1, H^(M) is even finite-dimensional), the strong dual of 9.5.4
is strict exact by 3.12. By 9.2

(9.5.5) 0 ̂  H^A^) -^ A^ -. M" 0 0^ -^ H^A^) -. 0

is also strict exact. Finally by 6.8.2, M^ -^ M^ 0 ̂  is the strong dual of
M 0 A^ -^ M 0 ̂ n; thus 9.5.5 is the strong dual of 9.4.4, and the assertion follows
immediately.

Step 4. H^Af) is dual-of-F'rechet: this follows from steps 2 and 3.
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Step 5. H^(M) is finite-dimensional: we see from 9.5.3 and step 2 that H^M) inherits
a Frechet topology from H^(M). On the other hand, H^M 0 A^) is finite-dimension
and separated, so 9.5.3 shows that we have a direct sum decomposition

H^M^H^A^eF
where F is finite-dimensional and separated. Thus H^(M) inherits a dual-of-Frechet
topology from H^M). However, since the cokernel of H^(M) -^ H^M) is finite-
dimensional and separated, H^(Af) -^ H^M) is strict by 3.6, and the finite-dimensionality
of H^(M) follows from 2.8.

Step 6. IP(M), H^(M) are all finite-dimensional: for i = 1, this follows from 9.5.3 and
step 5; for H^(M) this is step 1; for H°(M) this is clear.

Step 7. the pairings 9.5.1 are perfect: this follows from steps 3 and 6.

D
Remark. - It would be interesting to know if the strictness of M is necessary for the

conclusion of 9.5.

The isocrystal K = (A\ d) is strict, and one checks easily that H°(X, K) = K, so we
see that the trace map R^{X,K) —^ K is an isomorphism. If we assume that X has a
fc-rational point, then this result can be extended as follows. Pick XQ e X{k}\ then for
any (overconvergent) isocrystal on X / K , the 0-category [M\ generated by M is a neutral
Tannakian category, and we denote by DGal(M.xo) the group scheme of automorphisms
of the fiber functor corresponding to XQ. The group DGal(M, xo) plays the role here of a
"geometric monodromy group"; it is an algebraic group with a canonical representation on
the fiber M^, and the theory of Tannakian categories gives an equivalence of [M] with the
category of representations of DGal{M,xo) on finite-dimensional ^-vector spaces (for a
summary, see [15] and the references given there). Under this equivalence, the subspace
(M^)^"^^0) C M^ corresponds to the largest constant sub-isocrystal of M, and is
thus isomorphic to H°(X, M). Suppose now that M is strict; then by 9.5, H^(X, M) is dual
to the invariants of DGal{X,xo) acting on (AP^, and is thus canonically isomorphic
to the coinvariants of DGal{X,xo) on M^o:

9.6. Corollary - Suppose XQ e X(k). For any strict isocrystal M on X / K , we have

(^•l) H^M) ^ (M,J^(M,.o)
functorially in M.

Remark. - When k is finite, say \k\ = g, the q^ -power Frobenius F acts linearly on the
IP(Z, K) and the H^.(X, K). Using the excision exact sequence together with Berthelofs
comparison theorem [5 Prop. 2 and 9 Prop. 1.9] for the rigid and crystalline cohomology
of a proper smooth scheme, we find that

(9.6.2) R^X^K)^K(-l)

as ^-spaces with a Frobenius action; as usual, the "-1" denotes a Tate twist. Suppose
now that (M, $) is strict F-isocrystal on X / K ' , i.e. a strict isocrystal endowed with a
semi-linear isomorphism $ : F*M—>M. Since the duality pairing 9.5.1 is natural in
its arguments, we get

(9-614) H^(M) c. (M,J^(M,.o)(-l).
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10. Quasi-unipotent isocrystals

10.1. Let X / k be a smooth affine curve, and M an isocrystal on X / K . Pick a smooth
compactification X ̂  X, a lifting X c—^ X of it, and a locally free sheaf with connection
(M, V) representing M. For x € X - X, we will say that M is unipotent at x if the local
connection M 0 A(rr) is unipotent in the sense of §5; i.e. if it is a successive extension
of trivial modules with connection (A(rc),d). We will say that M is unipotent if it is
overconvergent, and if for some choice of X c—^ X it is unipotent at every point of X — X\
the usual arguments show that if this is the case for one smooth compactification, then it
is true for any other. Finally, we say that M is quasi-unipotent if there is a finite etale
cover TT : Y —> X such that 7r*M is unipotent.

In this section we shall show that many of Deligne's results on ^-adic sheaves in [17]
hold, with a suitable formulation, for quasi-unipotent F-isocrystals, and the reader may
therefore wish for some examples. Examples will be given in a moment, but it should
be pointed out that it seems reasonable that any overconvergent F-isocrystal on a smooth
curve is quasi-unipotent. In fact, N. Tsuzuki has recently shown [36, 37] that this is indeed
the case for any overconvergent unit-root ^-isocrystal. In the general case, the assertion
amounts to an analogue of Grothendieck's local monodromy theorem for F-isocrystals,
so it seems reasonable to suspect that at least any i^-isocrystal "of geometric origin" is
quasi-unipotent.

In a number of situations studied classically, the isocrystal arises by "analytification" of
an algebraic differential equation on a smooth lifting of the curve, and one can hope to
establish quasi-unipotence by an explicit calculation. If the equation is regular singular,
for example, then the isocrystal is quasi-unipotent if all the exponents are rational, as one
sees easily using ChristoFs transfer theorem [11]. In the irregular singular case one must
analyze the Turritin normal form of the equation at the singular points; one example, a
certain generalized hypergeometric equation, is worked out in [16]. In all these examples,
the isocrystals are "of geometric origin."

Suppose that X / k is a smooth curve embedded in a projective smooth curve X / k , and
/ : y —> X is proper. Suppose further that X, Y can be given logarithmic structures such
that X, V, and / are all log-smooth. Then in [20] §2e it is shown that the relative rigid
cohomology of a convergent isocrystal on Y is represented by logarithmic isocrystals on
X / K , sit least when / can be lifted to R etale locally on X. In particular, if f : Y —^ X
is the restriction of / to X, then the relative rigid cohomology of / should be represented
by logarithmic (i.e. unipotent, in our sense) isocrystals on X / K . It would be interesting
to know whether this kind of result could be extended to a family f : Y —^ X which is
merely "potentially logarithmic" (i.e. semi-stable).

10.2. Proposition - Let X / k be a smooth affine curve. A quasi-unipotent isocrystal on
X / K is strict, and any subquotient of a quasi-unipotent isocrystal is quasi-unipotent. The
category of quasi-unipotent isocrystals on X / K is an abelian subcategory of the category
of isocrystals on X / K , and is stable under tensor products and internal Horn.

Proof. - The second assertion follows immediately from the definitions. As to the first,
we can use 9.3 to reduce to the case of a unipotent isocrystal, in which case the assertion
follows from 6.6.

D
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10.3. Proposition - Let TT : Y —> X be a finite etale map. If M is a quasi-unipotent
isocrystal on Y / K , then TT^M is quasi-unipotent on X / K . If M is an isocrystal on X / K ,
then M is quasi-unipotent if and only if TT^M is quasi-unipotent.

Proof. - This follows immediately from the definititions, and the descriptions in 8.5 of
the direct and inverse images by a finite etale map.

D

10.4. From now on we suppose that k is a finite field with cardinality q, and that X has
a fc-rational point XQ. We denote by F : X —> X the q^ -power Frobenius morphism on X.
Suppose that (M, $) is an overconvergent J^-isocrystal on X / K , i.e. an overconvergent

r^f

isocrystal on X/K with a Frobenius structure $ : F^M —> M. In [15] it was shown that
Grothendieck's global monodromy theorem holds for the group DGal(M^xo) alluded to
in the last section: the radical of DGal(M.Xo) is unipotent. We also showed in [15 §5]
how to construct an extension

(10.4.1) 0 —— DGal(M, xo) —— W^ —— W ( k / k ) —— 0

of affine AT-groups playing the role of a "Weil group" for M (more precisely, playing the
role of the extension 1.3.7.1 of [17]). In particular, for any closed point x of X, there
is a canonical conjugacy class Froba. € W^{K) where K is an algebraic closure of K.
If M corresponds to a representation p : DGal{M) —> GL(V) (where V = M^o), then
p extends canonically to a representation of W^, and for any closed point x G \X\, the
pair (M^,p(Probx)) is isomorphic to (Mr,^). With the monodromy theorem and the
Well group formalism, we can use Deligne's procedure [17 §1.3] to construct a theory of
determinantal weights associated to a choice of isomorphism L : K ^ C, where K is an
algebraic closure of K (cf. [15 5.6, 5.7]).

If p is the representation of W^ corresponding to the ^-isocrystal (M,^>), then the
L-function of (M, $) can be written

(10.4.2) £(X,M,T)= J] de^l-^Frob^T^")-1.
xe\x\

On the other hand it has been long known that L{M, T) has a cohomological formula

(10.4.3) L(X,M,T) =-- JJdet(l - TF^Q^X^M))^1^1

i

(cf. [18, 31, 33 and 27]). Suppose now that M is quasi-unipotent; then by 10.2, the
finiteness theorem 9.5 is applicable to the objects of [M]. In particular, if (M,<&) is a
quasi-unipotent .F-isocrystal (i.e. a quasi-unipotent isocrystal with a Frobenius structure),
then the L-function of any tensor power of M is rational, and its denominator is controlled
by the formula 9.7.4.

We are now in a position to retrace the argument of [17 §1.4-5]; we will leave this to
the reader, and merely state the results. Let X/k be a smooth curve over a finite field,
and (M, <E>) an overconvergent isocrystal on X / K . If i : K ^ C is an isomorphism, then
we say that (M,$) is pointwise u-pure of weight w if for every closed point x G \X\,
the eigenvalues of b(^x\Mx} are pure of weight w; it is i-mixed if it is a successive
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extension of pointwise ^-pure F-isocrystals; and finally it is i-real if for every x e |X[,
the characteristic polynomial of <I>a. is real. Then following loc. cit. step by step yields

10.5. Theorem - Let (M, <i>) be a quasi-unipotent F-isocrystal on a smooth curve X / k
over a finite field. If M is i-real, then the irreducible constituents of'(M, <I>) are i-pure.

Note that for the argument to work, we need the finiteness results (and thus quasi-
unipotence) not just for M but for all of the even tensor powers C^M of M (cf. [17
1.5.2.1]).

10.6. We now explain how to set up a local monodromy formalism; here again we only
get useful results if we restrict our attention to quasi-unipotent isocrystals.

If A is a local algebra, then the category of finite free A-modules is a K-linear Tannakian
category; it is not necessarily neutral since the obvious fiber functor (M, V) is A-valued
and not JT-valued. If we look, instead, at the category of finite free A-modules with
unipotent connection, however, then there is a J^-valued fiber functor (cf. [23, 2.4] where
this is done in a algebraic setting). By Proposition 6.7 the category of free A-modules with
a unipotent connection is equivalent to the category of K- vector spaces with a nilpotent
endomorphism. If we combine the functor 6.7.5 with the obvious functor (V, N) i-» V,
we obtain a AT-valued fiber functor. Since the category of vector spaces with a nilpotent
endomorphism is equivalent to the category of representations of the additive group G a / K ,
we see that this is also the case for the category of finite, free A-modules with unipotent
connection; the equivalence, of course, depends on the choice of local parameter of A
(since 6.7.5 does).

Suppose now that X / k is a smooth affine curve. Fix an embedding X ^-> X, into a
smooth project! ve curve, and let x G D = X — X. As a substitute for a generic point of
the local ring of X at x, we will consider systems (/ : U —> X ^ U ^ y ^ t ) where

(i) U is smooth, and / : U —^ X is quasi-finite and etale outside of x,
(ii) U is a formal lifting of U,

(iii) y is a point of U such that f(y) = x, and
(iv) t is a local section of Ou reducing to a local parameter of Ou at y.

We will say that T] "lies over x C X." A morphism

(/' : V -. XM1^1^ - (f : U -. X ^ ^ y ^ t )

is a commutative diagram

U' <— U ' —> ~X
(10-6.1) 1 [ |

U <— U —> X

such that U ' —^ U maps y ' —^ y (we make no condition on the parameters t, t ' ) . The
(U^U^y^t) form a filtered projective system.

Let rj = ( / : [ / — » X ^ U ^ y ^ t ) be as in the last paragraph. If M is an isocrystal on
X / K , then its pullback to U can be represented as a locally free sheaf with connection
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(My, V) on some strict neighborhood V of }U - ./'-l(;r)[ in ^an, and as in 7.2 we have
an embedding Y{V,Oy) ̂  A(y). Then

M^y)={My^)(S)A(y)

is a locally free A(^)-module with connection. Suppose, finally, that M^AQ/) is unipotent
(we will express this by saying that M is unipotent at ^), and that y is a fc-rational point of U.
Then the choice (in rj) of the parameter t singles out an isomorphism M^^y) = ̂ o^A(^)
via the functor 6.7.5, and the connection has the form V = N 0 d / t for some nilpotent
endomorphism of VQ. We put

M^=Vo

and think of M^ as the "fiber of M at rf' and TV as the corresponding "monodromy
operator." We have

(10.6.2) (A^,AO,) , V) = (M^ 0^ A(,/), N 0 d^)-

It follows from 6.9 that this construction is essentially independent of the choice of t. To
express this more precisely, let t, t1 be two choices of parameters, from which we get to
K- valued fiber functors on the 0-category [M^AQ/)] generated by M^AQ/); then by the
general theory of Tannakian categories, these fiber functors are isomorphic, so that M^
and M^ carry (non-canonically) isomorphic representations of G>a' From 6.9 it follows
that if T/ —^ T] is a morphism and M is unipotent at rj, then it is unipotent at T/, and the
corresponding representations of Ga are isomorphic.

Suppose now that M is unipotent at 77 = (U,U,y,t), and that M has a Frobenius
structure, i.e. an isomorphism ^ : F*M——>M such that <1>V == V<I>. If / is the residual
degree of k { y ) / k , and if (f) : U -> U is a lifting of Ff : U -> £/, then ^ induces
an isomorphism (f)*M^^{y) —>M^^{y)' Now we can always choose a ^ and a ^ such
that (f)(t) = t^, qy being the cardinality of k(y), and this case one can check by a
direct calculation (using the condition that <&V == V$) that ^IM^A^) is induced by an
endomorphism F of M^ such that

(10.6.3) F N = q y N F .

It is not so clear in this situation that the endomorphism F of M^ is independent of the
choices made (in particular, that of t).

Recall now that if we are given any vector space V with a nilpotent endomorphism
N : V —> V, then there is a unique increasing filtration M.' of V, stable under N , such
that NM^ C .A/P"2, and Nk induces an isomorphism

A^gr^y—gr^y
(this is the monodromy weight filtration; cf. [17 1.6.1]). Consider now the case when
V = M^ and N is the monodromy operator. We obtain a filtration M' of Mr, which, by
10.6.2, induces a filtration on M^^{y) by horizontal submodules. The induced connections
on the quotients gr^M^A^) are trivial, so that the gr-^M^^y) extend canonically to
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isocrystals Qk on the point Spec(fc(^)). The Qk can be identified canonically with the
gr^My, which are their fibers at t = 0; in particular, the gr^M^ are independent, up
to canonical isomorphism, of the choices of the lifting U and the parameter t. On the
other hand, it follows from 10.6.3 that M is stable under F, and the induced filtration of
M^A(y) is stable under ^f. Now ^f acting on M^AQ/) is induced by F acting on M^
and the action of ^f on the graded pieces gr^M^^(y) acts on the canonical extension
Gk of the gr^M^AQ/); we can then canonically identify the F-action on gr^A^, with the
fiber at t = 0 of the ^-action on the Qk. We conclude that the action of F on the graded
pieces gr^My, of the monodromy filtration is independent, up to canonical isomorphism,
of any of the choices made.

Thus if (M,<I>) is an F-isocrystal on X/K and M is unipotent at T/, we can speak
of the eigenvalues of $ acting M^, and in particular of the //-weights of M at 77. If M
is quasi-unipotent, then by definition there is an rj such that M is unipotent at rf, and
any T ] ' such that T ] ' —> T] will give rise to the same weights (the corresponding points y
might have different residue fields, and so the eigenvalues need not be the same). Finally,
if re G X - X, then any two 77, T/ lying over x are dominated by a third, so we can
speak unambiguously of the monodromy filtration of M at x, and of the weights of the
Frobenius on the "generic fiber" at re.

10.7. We can now explain how to prove an analogue of Theorem 1.8.4 of [17] for a
quasi-unipotent F-isocrystal; the key point is to make sense of formula 1.8.1.1 of he. cit.,
i.e. the cohomological formula for the direct image of a lisse ^-adic sheaf on a dense open
subset of a smooth curve. Suppose that X is a smooth affine curve, j : U ̂  X is a dense
open subset, and M is an isocrystal on U / K . As always we choose a formally smooth
lifting of X, so that to any a G X - U we can associate a local algebra A(a) and a map
A^ —^ A(a). If we represent the isocrystal M as a locally free sheaf with connection
(M, V) on some strict neighborhood of ]£/[, then M 0 A(a) is a finite free A(a)-module
with connection. Then H°(M 0 A(a)) will play the role of the fiber of the direct image
at a G X. If M has a Frobenius structure <I>, then we define

(10.7.1) L(XJ^M,T):=L(U^M,T) J] det(l - T^^H^M 0 A(a)))-1.
aex-u

Now for our purposes, the essential point of [17 1.8.1.1] is that the numerator of the
L-function L(U, M, T) is already divisible by the product of the det(l - T^^H^M 0
A(a))), so that L(XJ^M,T) will have no more poles than L(U,M,T). To see that this
is the case, we observe that by 10.4.3, 10.7.1, and 8.2.4-5 we have

flO 7 2) L(X i M T) - ̂ -TFWXJ^M))(10.7.2) W.^M,r) - det(l-rF*|H2(X^M))'

We can now follow the argument of [17 1.8.1-2] more or less word-for-word. Suppose
that M is pointwise //-pure on U of weight /3 (as before, X is affine, so that ~X -^ X),
and choose a point x e X - U. From 10.7.2, one sees in the usual way [17 1.8.1] that
i det(l - TF*|H°(M 0 AQr))) has no pole for |T| < q-(W)/\ so that

1^)1 <.€^\
for any eigenvalue a of F* on H°(M 0 A(a;)); i.e. the weights of F* on H°(M 0 A(x))
are at most /3 + 2. Applying this argument to (g^M in place of M, and noting that
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<S>kQO(M0A(x)) C H^^M^ACr)), we find that the weights ofF* on H°(M0A(.r))
are at most (3 + 2 / k . Letting k --> oo, we find that the weights of F* on H°(M 0 A(x))
are at most f3. From this, the argument of the proof of [17 1.8.4] yields

10.8. Theorem - Suppose that U c X, M is i-pure on U / K of weight /3, and (M, <I>)
is unipotent at some T] lying above x G X - U. Then for each i, gi^Mr, is i'pure of
weight /? + %.

If M is the restriction of an isocrystal on X, then the monodromy filtration is trivial,
and just as in [17] we get

10.9. Corollary - If (M, $) is a quasi-unipotent F-isocrystal on X / K , and is i-pure of
weight /3 on some dense open subset U C X, then (M, <1>) is i-pure on all of X.

10.10. We will conclude by remarking that the results of [17 §2] on the equidistribution
of Frobenius classes are valid for a quasi-unipotent F-isocrystal on a smooth curve. Let
us recall how these results are formulated; the proofs are those of [17 §2], virtually
without change.

Pick as before an algebraic closure K of K and an isomorphism i : K ^ C. Let M be
an F-isocrystal on X / K ' , then we denote by

O-^G^-^GC-^I-^O

the extension of scalars by K ^ K—>C of the exact sequence 10.4.1. There is a
subgroup GR C Gc projecting onto Z, such that G^ H C?R is a maximal compact subgroup
of G^ [17 2.2.1]. The conjugacy classes of GR are the intersections with GR of the
conjugacy classes of C?c. Suppose now that M is ^-mixed. Then as in [17 2.2.6], the
semisimple components of the conjugacy classes iFrobx G Gc lie in C?R (i.e. come from
conjugacy classes of Gp). Denote by G^ the space of conjugacy classes of C?R, and by
^ the direct image on G^ of the measure

^ = ]̂  deg^^-^^^Frob^)
x € \ X \
n>0

where 6{g) denotes the Dirac delta-measure at g € C?R. On the other hand, denote by
dg the Haar measure on GR normalized so that G^ has measure one; by p,o the product
of dg by the characteristic function of the elements of positive degree, and by /^ the
direct image of IIQ on G^. Finally, let G\ denote the subset of G^ consisting of classes
of degree n. Let z be an element of the center of G^ of positive degree; such elements
exist by the global monodromy theorem ([15 1.3.11] and 10.4 above). The equidistribution
theorem is the following:

10.11. Theorem - Suppose that (M, <I>) is b-mixed and quasi-unipotent on X / K . Then
for any i, we have

^"(/^+nde^))-^

weakly as n —> oo.
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As in [17 §2.2], the key point is to show that if M is ^-pure of weight zero, then the
L-function L(X,M,T) has no zero for |T| = q~1, which is shown using the method of
Hadamard and de la Vallee-Poussin [17 2.1.4 and 2.2.8-9].

Again as in [17], this assertion is the "first step" towards the Riemann hypothesis:

10.12. Theorem - Suppose that (M, <I>) is quasi-unipotent on X/K and i-pure of-weight
(3. Then the weights of F rob emus on H^(X, M) are strictly less than /3 + 2.
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