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TYPES AND HECKE ALGEBRAS
FOR PRINCIPAL SERIES REPRESENTATIONS

OF SPLIT REDUCTIVE P-ADIC GROUPS

BY ALAN ROCHE

ABSTRACT. - We construct types in the sense of Bushnell and Kutzko for principal series representations of split
connected reductive p-adic groups (with mild restrictions on the residual characteristic) and describe the resulting
Hecke algebras. We discuss their interpretation as Iwahori Hecke algebras of related reductive groups (in general
disconnected). In addition, we describe how (parabolic) induction and (Jacquet) restriction functors and questions
about square-integrability can be transferred to this context. © Elsevier, Paris

RESUME. - On construit des types au sens de Bushnell et Kutzko pour les representations des series principales
des groupes deployes connexes reductifs p-adiques (avec de legeres restrictions sur la caracteristique residuelle)
et on decrit les algebres de Hecke qui en resultent. On discute comment ces algebres peuvent etre interpretees
comme des algebres de Iwahori-Hecke relatives a des groupes reductifs relies (en general non-connexes). De plus,
on decrit comment les foncteurs d'induction et de restriction et les questions relatives aux representations de carre
integrable peuvent etre consideres dans ce contexte. © Elsevier, Paris
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362 A. ROCHE

1. Introduction

Let F be a non-Archimedean local field and G the group of F-rational points of a
connected reductive algebraic group G defined over F. Let ?t(G) denote the category of
smooth complex representations of G. The Bernstein decomposition expresses the abelian
category SH(G) as a direct product

^(G)- n ?w)
se^c)

of full subcategories 9L,(G). The objects of 9^(G) are all (TT,V) e SH(G) such that all
irreducible subquotients of TT have fixed supercuspidal support modulo unramified twists.
Thus the indexing set 93 (G) consists of irreducible supercuspidal representations of Levi
subgroups of G (up to equivalence) modulo G-conjugation and twisting by unramified
characters. Following [13], we call ^(G) the Bernstein spectrum of G and refer to the
subcategories ^s(G) for s e 03 (G) as the components of the Bernstein decomposition.

If G is quasi-split (over F), then a minimal Levi subgroup of G is (the group of
^-rational points of) a torus. Thus an irreducible supercuspidal representation of a minimal
Levi subgroup is in this case a smooth character. We refer to the resulting subcategories
9ls(G) of y\(G) as the principal series components of the Bernstein decomposition (and
the corresponding elements of the Bernstein spectrum as principal series elements).

In this paper we study the principal series components of 91(G) via compact open data
under the assumption that G is split (over F). Fix such a component SHs(G). When F has
characteristic zero and certain mild restrictions are placed on the residual characteristic,
we explicitly describe an 5-type in G in the sense of Bushnell and Kutzko [13]. We also
describe the structure of the resulting Hecke algebras. (See the list preceding Theorem 4.15
and Remark 4.14 for a precise statement of the restrictions on residual characteristic and
related comments. If each irreducible factor of G is of type B, G or D, the only excluded
residual characteristic is two.) By very slightly modifying the methods of section 4, the
results of this paper may also be seen to hold when F has positive characteristic while
keeping the same restrictions on residual characteristic (see [2]).

These results may be rephrased as follows. Fix a split maximal torus T and a Borel
subgroup B containing T and write T and B for the corresponding groups of F-rational
points. Let °r be the unique maximal compact subgroup of T and \ : °T -^ Cx be
a smooth character. We construct a pair ( J , p ) = { J ^ p ^ ) where J is a compact open
subgroup of G and p is a smooth character of J (satisfying, in particular, J H T = °T and
p | J n T = ̂ ). We show that a smooth irreducible representation (TT, V) of G contains p
(on restriction to J ) if and only if TT is equivalent to a G-subquotient of Ind^(^) where \ is
a character of T extending \. This is precisely the statement that (J, p) is an 5^-type where
s^ is the principal series element of S(G) canonically determined by \. We write the
resulting component of the Bernstein decomposition as 91̂  (G) (i.e. 9^ (G) = 9^s (G)).

The pair (J,p) gives rise to an idempotent Cp in 'H(G), the convolution algebra of
compactly supported, locally constant functions $ : G -^ C. If (7r,V) is a smooth
representation of G, then ^{ep)V = CpV is the space V p of yo-isotypic vectors in V
(i.e. the sum of all J-subspaces of V isomorphic to p). It is clear that V p is a module
over the subalgebra e^(G)e^ of 7Y(G). The process V ^ V p defines a functor from
9l(G) to CpH(GYp - 9JloD (the category of left e^(G)e^-modules). From the general
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theory developed in Bushnell and Kutzko [13], the restriction of this functor to SH^(G)
is an equivalence of categories. Further let 9lp(G) denote the full subcategory of SH(G)
consisting of all smooth representations of G generated by their p-isotypic subspaces. Then
(again from [13]) the categories 9^(G) and 9^o(G) are equal (as subcategories of 9l(G)).
(In fact we rederive these results here by observing that (J, p] is an s^-type in G if and only
if the smooth compactly induced representation indp is a (finitely generated, projective)
generator of the category 9^ (G). We then invoke a general criterion ([3] chap. 2, thm. 1.5)
giving conditions under which a category admitting a projective generator is equivalent to
a module category (over the endomorphism ring of the projective generator)). When \ is
trivial, J is an Iwahori subgroup of G and p is the trivial character. These results therefore
generalise the well-known results of Borel [6] and Casselman [15] relating the unramified
principal series to representations generated by their Iwahori-fixed vectors.

Since p is a character, the algebra CpH(G}ep is simply T~L{G, p ) (the convolution algebra
of compactly supported, p~1 -spherical functions on G). We show there exists a family
of isomorphisms from 7^(G,p) to an algebra T~i^ where 7^ is a certain affine Hecke
algebra twisted by a certain complex group algebra (both defined in terms of ^). When \
is trivial, this reduces to the Iwahori-Matsumoto description of the Iwahori Hecke algebra.
More generally when ^ factors through °T —> T(fc^) (where kp is the residue field of
F), J is again an Iwahori subgroup and a description of the Hecke algebra 7Y(G, p ) in
these terms has already been given by Goldstein in [17] and (as a very special case of
the work of) Morris in [27].

We also construct a split reductive group H (in general disconnected) such that the
Hecke algebras 1-L{G, p) and T~t(H, lz) are isomorphic via a family of support-preserving
isomorphisms. Here 1̂ - is the trivial character of an Iwahori subgroup of H (the identity
component of H). The groups H and H admit natural interpretations in terms of Langlands
dual groups. (I am grateful to Neil Chriss and Alien Moy for suggesting versions of this.)
In particular, H is an endoscopic group of G. We discuss this in Section 8 and show that
the quotient H / H is always abelian and is trivial when G (more properly G) has connected
centre. Combining Kazhdan-Lusztig [24] with some Mackey theory arguments, we see that
the simple 1-L (G, p) -modules (and thus the irreducible objects in 9^ (G)) are essentially
classified. (The group H however need not have connected centre even if G has.) The
dual group interpretation of 7^(G, p ) may be used to naturally attach Langlands parameters
to principal series representations via the corresponding objects for representations of H
having a non-trivial Iwahori-fixed vector (which are known [24, 26] at least when H has
connected centre). We will write up the details and some consequences elsewhere.

The character \ also canonically determines a component 9^(T) of the Bernstein
decomposition of T. This is the full subcategory of 91 (T) consisting of all smooth
representations of T whose restriction to °T is a multiple of \. The pair (°T, %) is clearly
a type for 9^(T). In particular, the functor W ^ W^ : 9^(T) -^ T-t{T,^) - 9JtoD
is an equivalence of categories. The functors of (normalised and unnormalised) parabolic
induction from W.(T) to 9l(G) (with respect to B) restrict to 91̂  (T) to yield corresponding
functors from 9^(r) to 91̂  (G). We show in section 9 that these functors correspond via
the equivalences of categories 9^(T) ^ H(T, ̂ ) - QJtot) and 9^(G) ̂  H(G, p) - SJtoO
to 'algebraic' induction functors between 'H{T,\) - QJtoZ) and 1-C(G,p) - QJtoO induced
by appropriate twists of an algebra embedding ia : 1-i(T,\) -^ 7^(G,p). Given our

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



364 A. ROCHE

knowledge of the structure of the Hecke algebra 7i{G,p), these results are special cases
of (or immediate consequences of) a general result of Bushnell and Kutzko [13].

In^ addition, we show that the isomorphism of Hecke algebras between 7i{G, p} and
H(H, Lr) can be chosen to respect this extra structure. In particular, if w is a fixed
uniformiser in F and Y denotes the cocharacter lattice of T then the homomorphism
y \—^ y(w) : Y —> T splits the short exact sequence

1 —>°T —>T —>Y —>0.

Via this splitting we may view \ as a character of T (trivial on y{w} for y e V). The
group H also has T as a maximal torus and the Borel subgroup B in G determines
a Borel subgroup B(H) of H (containing T). We show there is an equivalence of
categories between 9^(G) = W^p(G) and 9li^(£T) (induced by an appropriately chosen
algebra isomorphism between 1-i(G, p ) and U{H, 1^)) under which the normalised induced
representation ^(^) corresponds to ?j|(^)(^). Here v is any unramified character of T.
This reduces questions concerning reducibility and composition series of general principal
series representations to the unramified case plus some simple Mackey theory (taking
account of the abelian component group). In the unramified case much information is
available (see Reeder [30] and the references therein).

The Hecke algebras we consider carry canonical inner products which are preserved
by our Hecke algebra isomorphisms. This has consequences for square-integrability
and formal degrees (more generally Plancherel measure). Following a standard abuse
of terminology, square-integrable here actually means square-integrable-mod-centre. We
borrow an ̂ argument from [10] to show that the equivalence of categories between y\p (G)
andJHi^(ff) (induced by a norm-preserving algebra isomorphism between H(G,p) and
H(H, l:r)) preserves square-integrability and formal degrees (given natural choices ofHaar
measures on G/ZG and H / Z ^ ) . As a trivial consequence of these calculations, we note
that the category SH^(G) =-- ^p(G) contains (non-zero) square-integrable representations
if and only if the endoscopic group H of G is elliptic.

The idea of studying the entire smooth dual of a y-adic group by the method of
restriction to compact open subgroups was pioneered by Howe. In particular, an early
paper of his [20] discusses the principal series of GL^^F) in terms of compact open data
(via a generalisation of the Satake isomorphism). Bushnell and Kutzko have described
the entire smooth dual of GL^^F) in terms of types [10] [11]. For general reductive
groups a similar description of the level-zero situation is given in Morris [28] (cf. also
Moy and Prasad [29]). Some special cases (of principal series types) for S L ] ^ ( F ) were
also treated in Sanje-Mpacko [31].

Our presentation is arranged as follows. In section 3, we construct the compact open
subgroup J = J^ and the smooth character p = p^. We also prove that J has an Iwahori
decomposition with respect to any Borel subgroup containing T and factors as °r times
the product of the affine root groups it contains (in any order). In section 4, we compute
the G-intertwining of p (equivalently the set of J double cosets which support a non-
zero element in 7i(G,p)). The key step adapts an argument from Howe and Moy ([19]
Lemma 4.4) to our situation. Section 5 contains a slight modification of a theorem in
[13] (which we use in showing that various Hecke algebra isomorphisms preserve inner
products). In section 6 we use this (along with known results in the level-zero situation)

46 SERIE - TOME 31 - 1998 - N° 3



TYPES AND HECKE ALGEBRAS FOR SPLIT REDUCTIVE p-ADIC GROUPS 365

to describe the structure of H{G,p). In section 7 we recall the definition of a type and
some consequences and show that { J ^ p ^ ) is an 5^-type. We define the groups H and
H in section 8 and show that T~i(G, p) is isomorphic to the Iwahori Hecke algebra of H.
We also discuss their interpretation in terms of Langlands parameters for T and give some
examples. Section 9 discusses the connection with parabolic induction. Finally, section 10
contains the calculations on square-integrability described above.

I am grateful to Paul Sally for support and encouragement throughout work on this
project. I owe a deep debt of gratitude to Philip Kutzko for many informative and
stimulating discussions which have strongly influenced this paper. I am also grateful to
Jeff Adier, Neil Chriss and Alien Moy for useful conversations.

2. Notation and some preliminaries

We continue with notation already introduced. Thus G is a split connected reductive
algebraic group defined over F with F-split maximal torus T where F is a non-
Archimedean local field. We write Op for the valuation ring in F, Pp for the unique
prime ideal in Op and kp for the residue field of F. Replacing G if necessary by an
F-isomorphic group, we may (and do) assume that G and T are defined and split over Z.
Then N = Ne(T) (the normaliser of T in G) is also defined over Z. Put °T = T(C^). It is
the unique maximal compact subgroup of T. If X = Hom(T, G^) is the lattice of rational
characters of T, then °T = [t <E T | val^(^(^)) = 0 {x G X)}. We write $ = $(G, T) for
the roots of G with respect to T and ^v = ^(G, T) for the corresponding coroots. We
fix a positive system $+ in $ and write II for the unique simple system contained in ^+.
We often write B == TU for the corresponding Borel subgroup (with unipotent radical U)
and B = TU for the opposite Borel subgroup (with unipotent radical 0). Write G, T, N,
B, U etc.. for the corresponding groups of F-rational points. We may (and do) fix root
group isomorphisms x^ : Go —^ L^ for a € $ such that the following hold:

i) There exists a Z-homomorphism <^ : SL2 —^ G satisfying x^{u) = ̂  ( u ) and

x,^u)=^(1 °V Furthermore, a\t} = ̂ (t ° V
\u ly \^u t )

ii) There exist integers C^ij (a, f3 G <&, /3 -^ -a, ia + j{3 G <i>) such that the
commutator of Xa(u) and x^{v) is given by:

[Xc,(u),X(3(v)} = JJ Xi^j^C^^ijU'V3)

i,j>0,ia-^-jl3e^

where the roots in the product are listed in some fixed order.
iii) If X^ = Gtea(l) e Lie(G) and H^ = [X^X-J G Lie(T) for a e ^>, then the

following equations hold:

(2.1) [X^Xft] = C^.^X^ i f a + / 3 G ^
= 0 i f a + ^ ^ u { 0 } ,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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(2.2) Mx^u).X^= ^ C^^X^ (a, /3 € $,/3 ̂  -a),
jX^+jae^

(2.3) Ad^(n).X_, = X-, + z^ - u^X^

(2.4) Ad^(n).^ = H - a{H)uX^ (H G Lie(T)).

We write 0 = Lie(G)(F) and t = Lie(T)(F). Finally, we write U^^-= x^(P^) for
k e z.

3. The pair {J^p^)

Let ^ : °r —> Cx be a smooth complex character. In this section we construct a compact
open subgroup J^ of C? and a smooth irreducible representation (in fact, a smooth character)
p^ of J^. The subgroup J^ contains °T and the character p^ extends \. We also establish
some properties of J^ (in particular Iwahori decompositions and root group factorizations)
for use in later sections. Our proof of these properties forces some restrictions on the
characteristic of the residue field kp of F. More precisely, we assume char kp is prime
to any integers which occur as ratios of squares of root lengths for pairs of roots in the
same irreducible component of $ (i.e. char kp is prime to any positive number of bonds
connecting nodes in the Dynkin diagram of <!>). Thus charfc^ ^ 2 (resp. charfc^ / 3) if
$ has factors of type Bn, Cn or F^ (resp. G^). We begin by recalling, in a very special
case, some results of Bruhat and Tits.

Suppose a function / : <I> —> Z satisfies:

/(a+/3) < f{a) +/(/?) if a , /3 ,a+/3e^
f(a) + /(-a) > 1 for a G ^.

In particular, / is concave in the sense of Bruhat and Tits (see [8], 6.4.3 and 6.4.5).
Let Uf - {U^jw : a G ^) and Jf = (°T,^). Note Jf = °TUf = Uf°T.
Further, let uf = U H Uf, Uj = U- H L^, £/j^ = Uf n U^ (for a G $) and

'̂) = (^J(a)^-aJ(-a)) (tor 0 C $).

LEMMA 3.1. - W^/i notation as above:

TJ-W .- TT . ,n.vn J_<p^(Q')+^(-^)^^7
/ ~ u-aJ(-a) v ' / > UQ/J(»)

/or ^ac/z a G $.
/I pfc \

Pwo/1 - The homomorphism ̂  ^ SL^(F) —> (U^, U-^} satisfies ̂  ( „ F j = C/a,fc

and ̂  ( /^ fc i )= U-a k (for fc G Z). By direct calculation,
V- ' F 1/

/^l ^(a)^ ( 1 0\ \ / 1 0\ /I P^^
\lo i )\v^ l))=W~a) ij^)^-)^ i J

4^^ S6RIE - TOME 31 - 1998 - N° 3
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where T^)^(_,) = { ( t ° ) | t e 1 + p^^^—)}. Applying ^, we obtain the
I V r / J

Lemma (since (^ (r. . 1 )= av(^)). D
V1- t /

LEMMA 3.2. - W?/z notation as above:
i) Uf^ = (7aj(a) for a C ^.
»,) 77^ product map FLe^ ̂ a "̂  ̂  ^ bijective for any ordering of the factors in

the product.
in) Uf = UJ °Tf U^ where °Tf = FL^ a^l + p^^-)).
iv) Jf = UJ °TU^.

Proof. - Since f is concave i), ii) and iii) follow from the corresponding parts
of [8] prop. 6.4.9 provided we show Nf = N D Uf coincides with °Tf. From [8]
prop. 6.4.9 iv), Nf = {N^ : a G $) where N^ = N H U^\ Lemma 3.1 implies
N H U^ = ̂ (1 + ^(a)+^-a)). Hence Nf = °Tf.

Part iv) is clear. D

If A : O^p —> Cx is a smooth character, we define the conductor of A, denoted cond(A),
to be the least integer n > 1 such that 1 + P^ C ker(A). (This is slightly different than
the usual notion (in that the trivial character has conductor one) but more convenient for
our purposes.) F6r each a € $, we may view \ o o^ as a smooth character of 0'p. We
write Co, for cond(^ o o^).

DEFINITION 3.3. - Define a function f^ : ^> —> Z as follows:

Ma)=[c^/2] forae^^
=[(c,+l)/2] forae<^-.

Here [x] denotes the largest integer < x.

LEMMA 3.4. - Suppose charkp 7^ 2 (resp. charkp / 3) if^ has irreducible factors of
type B^.Cn or F^ (resp. G^). Then:

i) /x(^+^) < ^ ( a ) + ^ ( / 3 ) ^ A a + / 3 e < l > .
ii) ^(a)+ f^-a) > 1 for a G ^.

Proof. - It is clear that ii) holds. To see i), note that by hypothesis charfc^ is prime
to any integers which occur as ratios of squares of root lengths for pairs of roots in the
same irreducible factor of <t>. Hence:

p(a + y?^ = gc^ + r^

where p^ q^ r G ~S- are each prime to char kp- Since x i—^ x8 : 1 + Pp —^ 1 + Pp (i > 1) is
bijective for s prime to charfc^, it follows that Ca+/? < max(c^, c^) Using this observation,
a short calculation (which we omit) establishes i). D

We assume from now on that the residual characteristic of F is restricted as in Lemma 3.4.
We define J^ to be J^. Similarly, let U^ = Uf^ and °T^ = °T^. From Lemma 3.2,
J^/U^ ^ "r/0^. By construction, °T^ C ker^. Hence \ defines a character of °T/°T^
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and so can be lifted to a character p^ of J^. As ^ is fixed, we often drop the subscripts
and write the pair ( J ^ ^ P ^ ) as (J,p).

Example 3.5. - Suppose G = SL^. Since °T ^ 0^, we may view ^ : °T -^ Cx as a
character of 0^. Let n = cond(^). Then

/nx -pl71^] '
^ A^/ /nx -pl71/^ \

•^= p[(%/2] '^ n^(F).
V F ^F /

Note that ^ extends to a character of J which is trivial on ?7a,[n/2] and on ?7-a,[(n+i)/2]
(where a is the unique positive root). By definition, p is this extension.

Let ^v be a system of positive roots in <&. Then ^+/ determines a unique Borel
subgroup B' containing T. We have B' = Tl/' where V = ILe^ ?7a- Let -Bf be the

opposite Borel so that ~B' == TI7' where V ' = IIae^-' ?7a (where <t>'~/ = -^+/). We say
J has an Iwahori decomposition with respect to the pair (T, B ' ) or with respect to the
positive system ^+/ if the product map:

(JnZZ7) x (JUT) x (Jn^^^J

is a bijection. (It is then automatically a homeomorphism.) We record some properties of
(J,p) in the next proposition.

PROPOSITION 3.6. - The pair (J,p) has the following properties:
i) J has Iwahori decompositions with respect to any positive system ^+/ in $. Further,

J H U ' == FL^-7 ^JxM- J ^ T = Q T , J n U f = FLe^ ̂ M w/^ [/' and

U1 denote the unipotent radicals of the pair of opposite Borel subgroups, B' and B ,
determined by ^+ .

ii) The character p : J -^ Cx satisfies p(j'_j'oJ^) = xU'o) where 3- ^ J n u ' '
Jo € J n T == °T anJ j + G J n E/' for U 1 and U ' as in i).

Proof. - Part i) follows from Lemma 3.2 (using the positive system ^+/ in place of
^+). Part ii) is clear from the definition of p. D

4. Intertwining

In this section we calculate the (^-intertwining of p. This serves as an essential first step
in our approach to determining the algebra structure of the Hecke algebra 1-L(G, p).

First we recall the relevant definitions. Let r be a smooth character of a compact open
subgroup K of G. An element g e G is said to intertwine r if

T \ K ^ 9 K ^ g r \ K n 9 K

where SK = gKg~1 and ^r(rc) = r{g~^xg) for x G (7^. We write Ic^r) for the set
of g e G which intertwine T. The Hecke algebra T-C(G,r) is the convolution algebra of
compactly supported functions ( f ) : G —> C such that ^(k^xk-z) = T^i)"1^^)^^)"1 for
fci, &2 G AT, x G G. It is easy to see that an element g e G intertwines r if and only if the
double coset KgK supports a non-zero function in H(G,r). Such a function (if it exists)
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is clearly unique up to a non-zero scalar. Thus the collection of double cosets K\IG(T)/K
parametrizes a vector space basis of 7^(G?,r).

We write W for the (ordinary) Weyl group of T in G. Thus W ^ N / T . We have
N_= °NT and °N n T = °r where °N = N(0p) and °T = T(0r). It follows that
W is also isomorphic to °N/°T. We write W for the extended affine Weyl group of T
in G. Thus W = Y xi W where Y = Hom(Gyn, T) is the lattice of rational cocharacters
of T. Let X = Hom(T, Grn) be the lattice of rational characters of T (as above) and
( , ) : X x Y —> Z the usual perfect pairing defined by x o y(-) = —^x^ for x G X,
y € Y. We have the following short exact sequence:

(4.1) 1 — — O T ^ T ^ Y — — 0

where i : °T —^ T is the inclusion map and the map HT : T —^ Y is defined by
(HT(t)^x} = V2i\p(x(t)) for x E X, t G T. The group °7V acts by conjugation on T and
°T. The subgroup °T acts trivially. We then obtain the usual action of W ^ °N/°T on T
and °T and hence on T/°r. Of course, W also acts on Y and it is easy to check that the
isomorphism r/°T ̂  Y induced by HT is TV-equivariant. Hence ON/OT^T/OT ^ TVKV,
i.e. N/°T ^ W ix V = W.

N acts on the group of smooth complex characters (°T)^ of °T by n^(t) = ^(n^tn)
for n ^ N , t e °T, ^ G (°T)^ T and hence °T act trivially. Thus the action factors to an
action ofW orW on (°T)^. We let N^ = {n €_N \ nx = x}, W^= {w (E W_\_wx = x}.
W^ = {w € W | w^ = x}. Note ̂  = V xi ̂ , ̂ /°r ^ W^, N^/T ^ W^.

PROPOSITION 4.1. - With notation as above:

la{p)nN=N^

Proof. - Suppose n G N lies in 2c(p). The condition

np\ JnnJ = p\ JnnJ

then implies n\ \ °T = ̂  | °T, i.e. n\ == ^ or n e ̂ .
Suppose n G A^ maps to w under N / T ^ TV. Let j G J D nJ. We have to show

^(j) = p^n^jn). Write j = j-joj-^ where j_ € J" n ?7~, j'o ^ °T and j+ € J H £7.
Let w"1^"^ = ̂ + , w"1^" = $~ . Then by Propn. 3.6, J has an Iwahori decomposition
with respect to the positive system ^+ . Let U1 and U be the unipotent radicals of the
corresponding pair of opposite Borels. The root space decompositions of U, U, U ' and U
imply n^Un = U ' and rr^Un = U . Hence n~ljn = n~lj-nn~ljQnn~lj^n expresses
n~ljn € J as an element of U ' T V. From J = (J n U ) (J n T) (J n U ' ) and uniqueness
of expression in U TU\ we see n~lj-n G J D ?7 and n~lj^n e J n U ' . Since both
J r\U and J n [// are contained in ker(p), we obtain:

p(n-1^) = ̂ "^on) = ̂ x(jo) = X(jo) = p(j).

This proves the proposition. D

Remark 4.2. - Suppose \ is a level-zero character, i.e. \ factors through °T -^ T(fe^).
Since J is then the standard Iwahori subgroup of G (with respect to ^+), Proposition 4.1
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and the Bruhat decomposition imply 2c(p) = J W ^ J . If ^ does not factor through
°T —^ T(fc^), we say ^ has positive level. In the remainder of this section, we show
TG^P) = J W ^ J also holds when \ has positive level (given char.F = 0 and certain
restrictions on charfc^ - see the list preceding theorem 4.15 for a precise statement).

The map from Y 0z F" to T induced by y 0 A i-̂  y(\) for y G Y, X G ^x is
an isomorphism of (topological) groups. For q G N, we write Tq for the image of
y 0 (1 + P^) under this map. We also have the isomorphism (of topological groups) from
V 0z F to i induced by y (g) A \—^ y(\) for y G V, A G F. We write 4 for the image of
Y (g) Pp for r G Z. The standard congruence (compact open) subgroups Kq (q G N) of G
and the corresponding Op "lattices ̂  (r G Z) of 5 are defined as follows:

Kq=(Tq,U^q:ae^>) ( q ^ l )

^==i,+^P^ ( r G Z ) .
QiG^>

Fix a Z-basis { ? / i , . . . , yn} of Y. For ^ G N, each element of Y 0 Pj. has a unique
expression of the form y-^ ® Ai + • - • + Vn ̂  An where A i , . . . , \n G P^. Define a function
Y : y <g) pj. ̂  y 0 (i + p^) by:

71

Y(2/i ® Ai + • • • + yn 0 AJ = Jjy, 0 (1 + A,).
i=l

This induces a function from iq to Tg which we again denote by Y. For q £ N define
7 : ̂  ^ ̂  by:

(4.2) ^(ffl+^^^)=y(ffl)J]^(^) (fflet,,^£Pj,(a£$)).
0'G^* aG^>

Here the elements of $ are listed in some fixed order. It is clear that 7 is a bijection
of sets. Suppose s G N is such that q < s < 2q .Then the bijections 7 : Aq —^ Kq and
7 : ^s —> Ks induce group isomorphisms:

Aq/A, ̂  K q / K , (q < s ^ 2q).

These isomorphisms are independent of the choice of Z-basis of Y and the listing of
roots in <I>.

We now construct a non-degenerate, AdG-invariant, symmetric bilinear form B on Q
given charF = 0 and certain restrictions on the residual characteristic (see 4.5). The form
will satisfy ̂  = ̂ i-^ for r G Z where ̂  = [X e 0 | B{X,Y) e PF (V V G J^)}
(see Lemma 4.3).

We assume thus that char.F = 0. Then S = 0' 9 3 where ^/ is semisimple
and 3 = 3(5) (i.e. 3 is the center of 0). The Killing form Bi of 0, defined by
Bi(^,Y) = tr(adX.adV) for X,Y G s, is an AdG?-invariant, symmetric bilinear form
on Q with radical 3.

Let (^ = Z ̂ v be the coroot lattice of G with respect to T. Let

^ = {y ^ Y | {y^a} - 0 (Va G $)}.
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Then Q^ + X^ has finite index in Y (see Springer [32]). Let V^ = Y 0 Q, V = X (g) Q,
V^ = ^v (g) Q, V^ = X^ (g) Q. The perfect pairing ( , ) : X x Y -> Z extends to a
non-degenerate Q-bilinear pairing ( , ) : V x V^ -> Q. We have yv = V^ C V^. Let
pi : l^ —^ y/ be projection onto the first factor. The coweight lattice Pv is defined by

(4.3) P" = {v G V^ | (v, a) (El (Va G $)}.

Then Q^ C Pv and P^/Q^ is finite. From the definition of X^ we see Y nV^ = X^.
It follows that p\ : V^ —> V^ induces an embedding:

(4.4) y/^+^O^-PW.
We impose the following condition on the characteristic of kp\

(4.5) charfc^ does not divide 2 ̂  : Q^

Thus if $ is irreducible the excluded residual characteristics are as follows:

• for type An primes dividing 2(n + 1)
• for type B^ C^ D^ 2
• for type EQ 2, 3
• for type Ej 2
• for type Es, F^ G^ 2.

If ^ is not irreducible, then the excluded primes are those attached to each of its
irreducible factors.

From 4.4 and 4.5, we obtain

i, = y 0 P^ = W + Xo^ ® P^ = Ov 0 P^ e x^ 0 p^ (q e z),
t = y (g) F = (^v + Xov) 0 F = ^v 0 F C X^ 0 F.

Define a form g { , ) : Q^ x Q^ -^ 1 as follows:

^1,92) = ^(/3,9i)</3^2) (91,92 e Ov).
/3e^>

Then g{, ) is symmetric, Z-bilinear, positive-definite (hence non-degenerate) and W-
invariant. By extension of scalars, we obtain a (non-degenerate) 0^-bilinear form
g{, ) : (^ ^ ^F x Q^ ^ OF —> OF (resp. a (non-degenerate) F-bilinear form
^(J^^FxQ^F-^F) .

The embedding:

,/ 0 A ̂  ^/(A) : (̂  0 F ̂  i Q/ G Ov, A G F)

has image V = t H ^/. The element av 0 1 is sent to Ha = [Xa,X-a\ for a G $. Note
that under this map the form g ( , ) : Qv (g) F x (^ (g) F —> F coincides with Bi | t' x t'.
Indeed adff^.X^ = ^(H^X^ = ('j.a^)X^ for a, (3 € $. Hence:

B^H^H^ = ^(7,av)(7,/?v) (a, /? G $)
7C^»

so that B^(Ha,H^) = ̂ (av,^v) for a, /3 G ^ as required.
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Suppose ^v has irreducible factors ^...,$^. Let ^ ( , ) = ^(, ) | Q^V where
Q^ = ^y- Then ^( , ) == CF=i^(, ) (in the obvious notation). Let k be the minimum
of gi(a^, Q^) as o^ ranges through $,Y. We define g\, ) to equal CF=i C^(, ). Denote
by B1 the corresponding form on Q\ Thus B' equals g ' { , ) on t' x f and B' coincides
with ^-lBl on the subalgebra of 5' of type $ , (?=! , . . . ,r).

If /? C $, and c^ G ^v, we have {/3, c^) = ̂ ff where ( , ) is any inner product
on V, = Q^ 0 Q which is invariant under Wi (the Weyl group of $^). In particular,
^av) = %tW ^PP056 ̂ (^v) = ^ for ̂  € ^v. Then

> v\ ~'9i\i i '"y J 7—1 / v /-)v\^^..(^^y^ ^-^09

, 2^(7^7-) . . y v.
^v^v)^ ?p )t

The quantity ^^v^v^ is a ratio of squares of root lengths in ̂  and thus is a unit in Op
(see the first paragraph of section 3). In particular, the matrix (^'(a^ ̂ v)) (o^, /^ e IIv)
can be transformed into the Cartan matrix of the root system ^v by multiplying certain
columns by elements of 0^. Since the determinant of the Cartan matrix of ^v equals
^ : Q^, we have det^^o^,/^)) e 0^. It follows that g\, ) induces an isomorphism
of O^-modules between Q^ 0 Op and Hom^^ 0 0^, 0^). We use this observation
in the proof of the next Lemma.

Fix a Z-basis { Z i , . . . ,^} of X^. Define a non-degenerate, symmetric, Z-bilinear form
( , )' : X^ x X^ —^ Z by (^,^y = 6ij for 1 < ^ j < r. It extends to a non-degenerate,
F-bilinear form ( , ) ' : X^ (g) F x X^ 0 F -^ F.

Since t = (^ 0 F e X^ 0 F, ^( J C ( , )' defines a non-degenerate, symmetric,
bilinear form on t x t. This extends to the form B = B1 © ( , )' on Q x Q (since Q = ̂  e 3
and 3 = X^ 0 F). Note that B is non-degenerate and Ad G- invariant (since Ad G acts
trivially on 3 and B | 0' x g' is a multiple of the Killing form on each of the simple
factors of the semisimple algebra ^/).

If £ is an 0^-lattice in Q (resp. t), we set:

^ = [X C Q (resp. t) | B{X,Y) e Vp (VV e £)}

LEMMA 4.3. - With notation as above:
i) ̂  - ii_,. (g G Z)
n) ̂  = ̂ i-,. (^ e Z)
Pwo/. - i) It is clear that ti_^ C t^-. To see the opposite inclusion, let a e i^. Write

a = ai + ^i where ai G (^ 0 F, ^i G X^ 0 F. Then i) B(a^Q^ 0 P|,) c P^
and ii) B{z^X^ 0 P|,) c Pp. Clearly ii) implies z^ € ̂  (since B | 3 x 3 = ( , )').
We have already observed that g\, ) induces an isomorphism of Op -modules between
(y 0 (Dp and Homo^^ 0 0^,0^). Hence there exist elements y ^ , . . . ,^ such that
^(^ ̂ Y) = ^j where 1̂  = { a ^ , . . . , a^f}. It follows that Fy^ + • • • + Fy^ = Ov 0 F
and Pj^i + . • . + P^yr = Qv 0 Pjr for any 5 G Z. Write ai = 2/1 0 Ai + • • • + ? / , 0 A^
for A i , . . . , A ^ e F. Then B(ai,ay 0 w^ = X^ implies each A, e P1"9. Hence
ai G Ov 0 7^-9.
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ii) Since the restriction of B to the subalgebra of 5' of type ^>i (i = 1 , . . . , r ) is a
multiple of the Killing form, B(i, Qa) = 0 for all a G ^ and B(0cn Q?) = 0 for a, f3 G ^
unless a + /3 = 0. Further, 2B(X,, X_^) = B{H^,H^) = g\o^, o^) is a unit in Op (by
the construction of g ' ) . It follows easily that X^ = ^i-g. D

Fix a smooth character ^ : F —> Cx such that 'PF C ker'0, 0^ (jL ker^. Let g, 5 G N
such that q < s < 2q. Then K q / K , ^ J^/^, and hence {Kq/K,y ^ (^/^)^. The
map X ̂  \l)x : ̂ 7^ -^ (^g/^F denned by

^(r)=^B(x,r)) ( forVc^)

is an isomorphism of groups. From Lemma 4.3, we see ^-s/^i-q ^ ( K q / K s J " .
Let ^ be the least positive integer such that \ \ Ti is trivial. Since ^ has positive level,

I > 2. Then J D J^_i D ̂ . We may view p \ K^ as an element of (Ki^/Ki)^. Thus
p | A^-i is parameterized by some element of ^i_^/^2-^. It is clear that this element
has the form a + ^2-! for some a G ii-i (since ^ is trivial on L^_i for all a e $).
For an appropriate choice of a € i^-i/i^-i, we will eventually show Zc(^) C J Cc(a) J
where (^(a) = {g ^ G \ ad^.a = a}.

This is the key step in an inductive argument that determines ̂ (p). The precise meaning
of appropriate is contained in the following Lemma. The proof requires us to exclude some
further residual characteristics. (This introduces additional restrictions only in the case
of exceptional groups.) More precisely, we say a prime p is bad for a root system ^
if Z^/Z^i has ^-torsion for some closed subsystem <&i of ^ (see Springer-Steinberg
[33] 4.3). For irreducible root systems, the bad primes are as follows:

• for type An none
• for types B^ Cn, D^ 2
• for types EQ, E^ F^ G^ 2, 3
• for type Es 2, 3, 5.

Clearly, the bad primes for a root system are the bad primes for its irreducible factors. We
assume charfc^ / p if p is a bad prime for <I>.

LEMMA 4.4. - Each coset a G i^-i/i^-i has a representative a such that a(a) ^
0 (mod PJ~1) for a G $ implies a(a) = 0.

Proof. - Replacing a by t^"1^, we may assume I = 1, i.e. a G io/ti. Let
<1>^- = [a € $ : a(ai) = 0 (mod P) for any (for all) ai G a}. It is easy to check
that $0- is a closed subsystem of <I> (i.e. if a, (3 G ̂  then Sa(/3) G $0- and Z$o-n $ = $0-).

Let Q = Z$ and Qa = Z^a:- Since charfc^ is not a bad prime for <I>, the quotient
Q 0 Op/Q-a 0 0^ is torsion-free. Therefore Q-a 0 0^ has a complement in Q 0 0^. In
particular, any Z-basis a i , . . . , a^ of Q-a extends to an 0^-basis a i , . . . , au, / ? i , . . . , Pv
of Q 0 OF.

Let II = {71, . . . , 7y,} be the set of simple roots in ^+ so that r = u-^-v. The determinant
of the Cartan matrix of $ is [P : Q] where P is the weight lattice (defined as in 4.3).
Since there is a canonical perfect pairing

(4.6) P/Q x P^^ —— Q/Z

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



374 A. ROCHE

we have [P : Q] = [P^ : Q^}. Thus charfc^ is prime to the determinant of the Cartan
matrix of $ so that the map

to —— OF
^(7l(^...,7rW)

is an isomorphism of Op -modules. It follows that the map

(4.7) to -^ 0^

^^(ai^) , . . . ,a ,(^) , /3i( t) , . . . ,^( t))

is also an isomorphism of 0^-modules. Under this isomorphism, i[ is identified with Pp.
For any ai G a, write ai =-- ao + z where ao ^o and ^ G 3- Let ̂  be the element of to
corresponding to (0 , . . . ,0 , /?i(ao), . . . ,/3^(ao)) under 4.7. Then a = a'o + ^ G a satisfies
the required condition. L]

We assume from now on that p \ J^_i corresponds to a coset a+^-z G ^i-^/^-z for
a as in the Lemma. We also assume that / = V is even. The slight modifications needed
to deal with the case in which / is odd are indicated below (see Remark 4.9).

DEFINITION 4.5. - Define a compact open subgroup L = La as follows:

L = {^_i, ;7^_i, U^ : a(a) = 0, /?(a) ^ 0)

It is clear that L is a subgroup of J. Let £ be the Op -lattice in Q that corresponds
to L. Thus:

£-i,_i+ ^ P^X^ ^ P^Xft
o:(a)=0 /3(a)^0

Now p | £ factors to L / K i and as before:

(L/K,r ^ (£/^r ^ ̂ /^ = ̂ i-^/^.
Again ^ | L is parameterized by a + £-1-.

The following lemma is proved in Adier [1].

LEMMA 4.6. - An element g G G lies in TG^P \ L) if and only if

(4.8) Adg (a + £^) H (a + £^) / 0

We sometimes write Jet a + -2"1) for the set of g e G which satisfy 4.8.
Suppose r G Z and g 6 N. In the proof of the next lemma, we make use of the

following identity:

(4.9) Ad7W.V = Y + adX(V) (mod ^+,+1) (for X G ̂  , Y G ̂ ).

A short calculation shows that if (4.9) holds for 7(^1) and 7(^2) for X^X^ G ^,
then it also holds for ^(X^(X^). Hence it only necessary to check (4.9) for X G iq
and X = uXa for a G $ and u E ?'?. Further since it is 0^-linear in V, we may
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assume Y e 4 or Y = vX^ for a e ^ and v e Pp. The relation therefore follows from
formulas (2.1), (2.2), (2.3) and (2.4).

LEMMA 4.7. - Let r C 1 and q G N. Suppose a G 4 ^c/z ^/^ a(a) 7^ 0 /or a G ^
implies valp(a(a)) = r. Suppose Y e a + ^i+^ ^MC/Z ^/za? V C ^(a) (mod^q+r) where
3fl(a) = {^ £ 0 I [a^] = 0}- 7^^ ̂  ^ Kq-conjugate to an element of^^a).

Proof. - We show Y is ^-conjugate to an element of 3g(a) (mod^+y,+i). An obvious
limiting argument then establishes the Lemma.

We have 3g(a) = t + Ea(a)=o0a. Put fl(+) = ^ a>o 0a, 0(-) = E ^<o fla.
v ' a(a)^0 a(a)^0

Then s = s(-) 9 So 0 fl(+) where So = 3s(a). For 5 C Z, put ^s(-) = fl(-) H ̂  and
^(+) = 0(+)H^. Write V = Yi+y' where Vi G 3^(0) and V G ^+,(-)+^+,(+).

For each 5 C Z, ad(a) restricts to give isomorphisms of 0^-modules:

ad(a):^(+) -^ ^+.(+)

ad(a):^(-) -^ ^+.(-)

Hence we can write V == ad (a) Z ' for some Z ' e *Sg(+) + ^g(-). Then by (4.9):

ad7(^).V = Y + [Z',y] (mod ^,+.+i)
= V + [ Z ' , a-{-W] (mod ^g+.+i) where W e ^+1)
=y-[a,Z'] (mod^+,+i)
^ Y ^ Y ' - Y ' (mod^+,+i)
^ yi (mod ^g+r+i)

D

COROLLARY 4.8. - For any Y € a + /C-^ r/^r^ ^5'̂  an x e L such that Ad xY e ^^(a).

Pwo/ - Note that fi^ = ^-z + ^l-^ /(+) + ^i-r(-). Therefore Y e a + &1- implies
y G a + ^2-< and Y G 3g(a)(mod^i_^). Thus we are in the situation of the previous
Lemma with r = 1 — I and q = V. It is clear that the element 7(^') constructed in the
proof belongs to L. The result follows. D

Remark 4.9. - Suppose now that I = 2V + 1 is odd. Define L to be the subgroup
generated by T;_i and the following affine root groups:

U^^i-i if a(a) = 0

U^y if /3(a) / 0 and f3 > 0
?7^/+i if /3(a) 7" 0 and /3 < 0.

It is clear that L is again a subgroup of J. Let Ki be the group generated by Ki and the
affine root groups V^^-\ if /3(a) 7^ 0 and /3 > 0. The map 7 (see equation 4.2) induces
an isomorphism L / K i ^ &/^i (in the obvious notation). (In particular, Ki is normal in
L and the quotient is abelian.) Hence

(wr^/^.
The character p | L is again parametrized by a + £~1. It is straightforward to verify that
Corollary 4.8 holds.
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LEMMA 4.10. - Suppose Adg.X^ = X^ where X, e ^1-^33(0) and X, = a (mod ^2-0
for % = 1,2. Then Ad^.ai = ai for some ai G a + i2-^.

Pwq/1 - Fix a uniformiser w G F. Replacing aby w^^-a and JQ by w^-1^, we may
assume a G to and X, e ^o H 3^(0) with X, = a (mod ^i) (% = 1, 2).

We have Q = ^ e 3. Let {/J be any basis of 3. Then X^ (a <E $), ̂  ((3 G II), Z,
is a basis of ^ which we fix for the rest of the proof. Consider the adjoint representation
ad : fl -^ End^(0). Then adt ^ V embeds in the diagonal subalgebra 0 of End^(g) with
respect to our fixed basis of Q. The trace form Tr on Endp^) is non-degenerate. Since
charF = 0 its restriction to ad 5 ^ Q' (the Killing form of ^/) is again non-degenerate.
Hence

End^(0) = Q' e 0^

where each summand is Ad (^-invariant. Also Tr | 0 x 0 is non-degenerate with
non-degenerate restriction to adt ^ i' so that

0 = t'ei^.

Equation 2.1 and the equation

ad.X,.̂  = -{^^}X^ (a, /? e <T)

imply that the matrix of adXo, with respect to our fixed basis of Q has zeros on the
diagonal. Hence Tr(dadX^) = 0 for d e 0 and a e ^. It follows that i^ (J- in 0) is
contained in ^ I A - (± in End^(0)).

Write a = ao + z where ao G to and ^ G 3. Note that ad a = ad ao viewed as an element
of D may have distinct diagonal entries (eigenvalues) which are equal (modPp). Let do be
an element of 0 obtained by lifting such equalities (modP^) to equalities.

Fix an algebraic closure F of F. Write ~0 for the ring of integers of ~F and P for the
unique prime ideal in 0. Let ~Q =_F ^p S._ThenEnd^({() embeds canonically in End-^fl).
Since each ad ̂ preserves the 0-lattice j?o = 0 ̂ op ^o in 5, their eigenvalues belong
to 0. Let A € 0 be an eigenvalue of adX, and let

^(adX,) = {v E S : (adX, - A)" v = 0 for some n e N}

be the corresponding generalised eigenspace. Since adX, == ad a + adV, where V, e Xi,
we see A ^ /^o(mod P) for some eigenvalue p^o of adao. Hence A = ^(mod P) for the
unique eigenvalue ^ of do such that ^ = /^o(mod P).

We claim ^(adX,) C ^(do) - the /^-eigenspace of do. Write v e 0^(adX,) as
-y = ^ + . . . + ^ where ^ e fl^.(do) with ^i = ^ and ^ / ^^ if j / fc. Since
x^ € 3fl(a) == 3fl(ao), each eigenspace of ado = adao is ad Xi -stable. Further since
each eigenspace of do is a sum of eigenspaces of adao, we see adJ^, also stabilises
these _eigenspaces. Hence (adX, - A)71^ = 0 for each j. If vj / 0 we may assume
Vj G ^o \ ^i. Then (do - A)" Vj e ^i and thus ^ = A(mod P). Hence vj ^ 0 implies
j = 1, i.e. ^(adJQ) C $^(do).

Since 5 is the sum of both the generalised eigenspaces of ad X, and the eigenspaces
of do. we must have

^ SA'(adX,)=^(do).
A^/A(mod P)
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The relation AdgAdX^Adg~1 = adX^ then implies Adp"g^(adXi) = ^(adXs) for
all A. Hence Adg preserves the eigenspaces of do ^d thus AdgdoAdg~1 == do. Write
do = ada'i + a'/ where a[ G i7 and a'/ e i71- C Q ' ^ . Then

do = Ad^ada^Ad^"1 -{- Adga^ Adg~1. -

Since Q1 and 0/-L are both ad ̂ -stable, we have

Adgsida[ Adg~1 = ad 04.

This gives ad(Adga[) = ada^ and hence Adga[ = a[. Letting a\ = a[ + z, we have
Adga^ = ai.

Finally we show ai G a + ti by proving x{a^ — a) = x(a[ — ao) G Pp for all x G X.
Let j? : 0 — i' be the projection map corresponding to the decomposition 0 = V 9 V^.
Suppose d G 0 satisfies d(Xa) = d^X^ for a G II. Then it is easy to check that p(d)
is the unique element t of t' such that a(t) = da for a e II. It follows that the element
p(do) = a[ satisfies

a{a[) ^ a(ao) (mod Pp)

for all a G 11 and hence also for all a G $. Further if x e Xo where

X o = { x ^ X : (x^a^) = 0 (V^ G ^v)}

then ^(a'l) = x(ao) = 0. Hence x(a[ - ao) e P^ for any x G Q + ^o. Note that Q + Xo
has finite index in X and the quotient embeds in P/Q where P is the weight lattice
(exactly as in as in 4.4). Thus char kp does not divide the index [X : Q + XQ\ and hence
x(a[ - ao) G Pr for all x e X . D

We can now compute the G-intertwining of p L.

PROPOSITION 4.11. - With notation as above:

IG{P\L) = LCG(a)L.

Proof. - Let g G IG^P \ L). By Lemma 4.6, there exist elements X and X' in a + -C"1

such that Adg X = X7. By Corollary 4.8, we can find x and x ' in L such that Xi = Adx X
and ^2 = Adxf X' belong to 3g(a) H ^i_^. Further X, ^ a (mod ^-i) for % = 1,2 (since
L acts as the identity via ad on ^i-^/^-O- From Ad ( x ' g x ~ 1 ) X\ = X^ and Lemma 4.10,
we see g e LCo^x} L. Since LCc^i) L is trivially contained in Tc{p \ L), we obtain

I G ( P \ L ) = LCG(a,)L.

The group Cc^i) is the group of F-rational points of the reductive subgroup Ce^i)
of G. Since char^ = 0, CG^) is connected. Hence

^(ai)=(T,^ : a ( a i ) = 0 ( a e $ ) ) .

Note that a(ai) = 0 for a G ^ implies a(a) = 0(mod Pj^) since a G ai + ti. From
Lemma 4.4, we see a(a) = 0. Hence Cc^i) is contained in CG^CL) and thus Tc{p \ L)

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPERIEURE



378 A. ROCHE

is contained in LCo^L. Since the opposite containment also holds, we conclude
Ia(p | L) = LCc(a)L. D

Remark 4.12. - Our method of calculating IG^P) is adapted from Howe and Moy [19]
(using adjoint representations in place of the natural action of GLn{F) and its Lie algebra
on F"). The Proposition is valid in a wider context. See Adier [1] and Adier and Roche [2].

Remark 4.13. - We have restricted the residual characteristic p of F in several ways.
More precisely, we assume

• p is prime to any integers which occur as ratios of squares of root lengths for any
pair of roots in the same irreducible factor of $

• p is not a bad prime for <I>
• p does not divide 2[P^ : Q^] = 2[P : Q}.

Thus if $ is irreducible, the excluded primes are

• for type An divisors of 2(n + 1)
• for types Bn, Cn, Dn 2
• for types EQ, £7, F^ G^ 2, 3
• for type Es 2, 3, 5.

If $ is not irreducible, we exclude primes attached to its irreducible factors.

Remark 4.14. - Clearly, our restrictions are most severe in the case of groups of type An.
However (using the trace form on the Lie algebra in place of the form B) our intertwining
results are easily seen to hold for GL^ without restriction on the characteristic or the
residual characteristic. Our determination of the structure of U(G, p ) (see section 6) is then
valid for G = GL^ (without restriction on F or kp). Further, by embedding a part of the
GLN Hecke algebra in the corresponding SL^ Hecke algebra (and using some additional
arguments), our description of U(G, p ) may also be seen to hold also for G = SL^
(without restriction on F or kp) though we do not pursue this here.

In theorem 4.15 below we use Proposition 4.11 and an inductive argument to determine
the G-intertwining of p. In the inductive step, we need to know that the statement of
Proposition 4.11 is valid not only for G but also for Levi subgroups of G. The following
argument shows that this holds given restrictions on residual characteristic only slightly
stronger than those in Remark 4.13.

Suppose 0 : C?i -^ C?2 is a central isogeny defined over Op (more precisely the restriction
to C?i of such an isogeny 0 : Gi —^ G^). Then 0 induces an isomorphism 51 ̂  ^2 (since
p does not divide [P : Q]). Write (9(ai + fi^) = 02 + £^- (in the obvious notation).
Then Z^(ai + £^) = £iC^(ai)£i if and only if Z^2 + £^-) = L^CG^L^
(The 'if direction isjmmediate. To obtain the 'only if direction, use the surjective map
C?iCi(F) -. G^CF) where Q is the centre of G,).

We apply this observation to the map Z° x G^er —^ G (given by multiplication) where
C?der is the group of F-rational points of the derived group of G and Z° is the group
of F-rational points of the identity component of the centre of G. Thus the statement of
Proposition 4.11 applies to G and its Levi subgroups if and only if it applies to G^er and
its Levi subgroups. Moreover, it applies to G^r and its Levi subgroups if and only if it
applies to each of its almost simple factors and their Levi subgroups.
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If G is symplectic (resp. special orthogonal) then each Levi subgroup of G is isomorphic
to a product of general linear groups and a symplectic (resp. special orthogonal) group
of lower rank. Hence (using Remark 4.14) Proposition 4.11 applies to all symplectic and
special orthogonal groups and all their Levi subgroups provided p ^ 2. Thus the same
conclusion holds for groups each of whose irreducible factors has type B, C or D.

We list explicit restrictions on p = charfc^ under which the proof of Theorem 4.15 is
valid. If $ is irreducible, we restrict p as follows

• for type An p > n + 1
• for types Bn, Cn, Dn p / 2
• for type F^ p / 2, 3
• for types G^ EG p / 2, 3, 5
• for types £7, Es p / 2, 3, 5, 7.

If <I> is not irreducible, we exclude primes attached to each of its irreducible factors. (Of
course, the restriction on groups of type An is far too stringent and can be significantly
relaxed.)

THEOREM 4.15. - The G-intertwining ofp is given by:

I^p) = JW^J

where W^ = {w G W \ w\ = \}.

Proof. - If x has level zem. the result follows from Prop. 4.1 (see Remark 4.2). Thus,
without loss of generality, \ ha5 positive level. Since To^p} is then contained in Zc(p I .L),
Prop. 4.11 implies To{p) C J C o ^ J . We first show we may assume a ^ 3 so that
CoW ^ G.

Let T ' be the group of F-rational points of the subtorus T = T D G' of T. There exists
a subtorus S of T such that T = S x T' (see e.g. Digne and Michel [16], Prop. 0.5).
Further, this splitting is defined over Op so that T = S x T ' and Tq = Sq x Tq for all
q G N (in the obvious notation). Suppose now 0 6 3 . This implies \ \ T{_^ is trivial. Fix
a smooth character ^i : T -^ Cx such that ^i | T ' = 1 and ^i | S^_i == ^-1 | 5^_i.
Since ^i o o^ .= ^ o o^ for a G ^, we see J^ = J^. Noting that ^i extends to a
character of G (which we again denote by ^i), we see p^ = p^ 0 ̂ i. Write pi for p^.
Then Tc^Pi} = IG^P)' By construction pi | AT^-i is trivial. Repeating this argument if
necessary with ^i, we may assume 0 ^ 3 .

As already observed (in the proof of Proposition 4.11) Co{a) is (the group of F-rational
points of) a connected reductive subgroup of G containing T. It follows that Co(a) is
a semistandard Levi subgroup of G, i.e. a Levi subgroup of G containing T. Indeed
CoW = CG(TO) where To is the group of F-rational points of the subtorus Ja of T
corresponding to the co-torsion-free submodule Xa of X where

Xa = {x G X | rr(a) = 0}.

In particular, Cc(a) is a connected reductive subgroup of G containing T of strictly smaller
semisimple rank. Further J H Cc(a) is J for (7c(a) with respect to the positive system
for ^{CoW.T) induced by ^+. Also the filtration subgroups Kq {q G N) (resp. filtration
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lattices ̂  (r 6 Z)) intersect with Co{a) (resp. ^(a), the Lie algebra of Co{a)) to give
the corresponding objects in CG (a) (resp. 3g (a)),

Since the theorem is clear if G has semisimple rank zero (i.e. G = T) we conclude (by
induction on the semisimple rank) that Ic(p) is given by JW^ J . D

5. An isomorphism of Hecke algebras

In this section, we prove a slight modification of a result of Bushnell and Kutzko. We
need this modification to show that certain Hecke algebra isomorphisms preserve canonical
involutions and inner products.

Let P = MN and P = MN be oppposite parabolic subgroups of G having Levi factor
M (and unipotent radicals N and N). Let (K, r) be a pair consisting of a compact open
subgroup K of G_and a smooth character r of K. Write KM = K H M, KN == K D TV
and A^ = J^ Ft TV. We assume {K, r) satisfies the following conditions:

i) K = K-^-KMK^
ii) K-^- and KN are contained in the kernel of r.
Let TM = r | J^M. We write IG^) for the G-intertwining of r (as before) and assume

the pair (K,r) satisfies the further condition:
iii) ^(r) is contained in J M J .
From i) this is equivalent to IcO") = KTM^M^K (using the obvious notation). Under

these hypotheses, it is a special case of a result of Bushnell and Kutzko ([13] 7.2 (ii))
that there exists an algebra isomorphism

(5.1) t:H(M^M)^H{G,T)

which is support-preserving in the sense that supp(^(0)) = Ksupp((/))K for (f) e
^(M,TM).

The algebras T^(M,TM) and 7^(G,r) each carry a canonical involution * defined by
f^W = /(lr-l) (J ^ U(M,TM) or 1-L{G,r}). However the isomorphism t is not *-
preserving. We show in this section that t may be modified (by twisting by the square-root
of the modulus character of P) to obtain a ^-preserving isomorphism tu (which is clearly
still support-preserving). More precisely, if Sp(m) = deHAdy^LieJV)! for m G M,
the map

f >-. f.sy: H(M^M) -^ ^(M,TM)
defines an algebra isomorphism where f.S^^m) = /(m^^m) (m C M and
/ G U{M, TM)). The isomorphism tu : U(M, TM) ̂  ̂ (G, r) is obtained by precomposing
with t, i.e. tn{f) = t^f^2) for / G ^(M,TM).

The existence of a support-preserving, ^-preserving isomorphism between 'H(M^TM)
and ^(C?, r) will be used repeatedly in later sections. The results of this section may also
be extended (without difficulty) to the case where r is a smooth irreducible representation
of K (not necessarily one-dimensional).

We first recall briefly the construction of the isomorphism 5.1. See section 6 of Bushnell
and Kutzko [13] for full details. Write Z+ for the set of elements a; in M such that

4° SERIE - TOME 31 - 1998 - N° 3



TYPES AND HECKE ALGEBRAS FOR SPLIT REDUCTIVE p-ADIC GROUPS 381

xK^ x~1 c KN and x~1 Kj^-x c K-^. Such elements are called positive. The collection
of functions in H{M^ TM) with support contained in KM ̂ + KM forms a subalgebra which
we denote by ^(M.TM). Suppose ^ e U{M,rM is supported on KM^KM (x e J^).
Write $ for the unique element of H{G,r) supported on KxK such that </)(x) = ̂ (x).
The assignment (/) ̂  <S> extends to an algebra embedding t : T-(,^(M,TM) -> H(G,r).

Now fix a strongly (P, K) positive element < in the center of M (see Bushnell and
Kutzko [13] 6.16). In particular, ^ is positive and for each x € IM^TM) there exists a
positive integer n such that C^x is positive. For m E Z, write (j)m for the unique element
of T^(M,TM) supported on ^MC7'1 such that ^(C771) == 1. Clearly

^m <^n = ̂ m+n (^ H € Z).

For m G Z, we write $yn for the unique element of H(G,r) supported on K^K
such that ^(C^ = 1. Thus t((f)m) = ^rn for m e N. Our hypotheses on Io(r)
imply that $1 (and hence each $^ for m G N) is invertible in K^G^r). Then the map
t : T^+(M,TM) ̂  U{G,r} extends to a (well-defined) algebra embedding of H(M,TM)
as follows. (It is independent of the choice of strongly (P,K) positive element ( in
the center of M.) Let ( / ) G H{M,TM)' There exists a positive integer m such that
(^m0 ^ T-T^M^TM). By definition,

^)=^4(^^).

Our hypotheses on TcM imply that t is a support-preserving isomorphism of C-algebras.
The isomorphism tu : H(M,TM) ̂ l-t^G.r) is ^-preserving if and only if it is

unitary with respect to the standard inner products ( , )^ and ( , )c on H{M,TM) and
H(G,r) (equivalently if and only if \\(J)\\M = \\tnW\\G for ^ € H(M,TM^ Here
(^i,02) = J^^i(m)(^2(m)dm and ||̂ ||̂  = (<^,0)M for <^0i,02 € U{M,TM) where
the Haar measure dm on M gives ^M measure one (and similarly for the corresponding
objects on G). To see this, first use the relation ((^^M = (e^^i^^M for (?!>i,^2
in U{M,TM) where e^ is the identity element of H{M,TM\. Combining this with the
corresponding relation on G shows that tu is unitary implies tu is ^-preserving. The
converse follows easily from the relation

^l<^(1) = (01^2)M

for ^>i,02 € T-C(M^TM) (and similarly on G') combined with the fact that tu is
support-preserving.

PROPOSITION 5.1. - Suppose (K,r) and t : U^M^TM) —^ U{G,r} are as above. Then
tn : U(M,TM} -^ ^(G,r) defined by

t^^t^p2) (^e^(M,rM))

is a ^-preserving, support-preserving isomorphism of C-algebras.

Proof. - It is clear that t is a support-preserving isomorphism of C-algebras. By the
discussion preceding the statement of the proposition, it is ^-preserving if and only if

\\tuW\\G = \W\M (^G^(M,TM)).
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We first show this for (/) G T~C~^{M^TM)' It is enough to consider the case where (f) is
supported on a single double coset KM^KM (x G ^+). Then tu{(f>) == S ^ ^ x ) ^ where $
has support KxK and ^(x) = (f)(x). Thus ||tu(^)||G = I I ^ H M if and only if

VOI(^M^M) = 5p(a:)vol(^a;A:).

To see this, note

vol ( K x K ) = [KxK : K]
= [K : xKx~1 H K]
= [KN : xK^x~1 n KN\[KM '• xKMx~1 n KM\[KN- '' xKN-x~1 n KN-]
= [KN : XKNX-^KM : xKMx~1 n ^TM] (^ e z^
= 5p(a:)~1 vol (KMXKM)-

Now suppose (^ € I-L^M^TM) is arbitrary. There exists a positive integer m such that
(f)m(t> ^ ^(A^TM). Clearly ||^m^||M = I I ^ H M . To prove the proposition it is therefore
sufficient to show

\\tM^\\G=\mG ($G^(C?,T)).

Since \\tn{^)\\G = 1 and H ^ I ^ H G < ||^i||G||^2||G (for $i,$2 e ^(G,r) ), this holds
provided we can show

ll̂ i)-1!!^!.

However
tnW1 = t^-l)

= C^_1

for some constant c (since tu is support-preserving). Further, tn(<^i (f>-i) equals the identity
element of T-i(G,r) and hence c^i ^-i(l) = 1. It follows that cvol^C"1^) = 1 which
implies ||^n(^-i)||G = 1 as required. D

Remark 5.2. - Suppose (j) e T-C(M,TM) is supported on KM^KM for some x ^ M.
As above, we denote by ^ the unique element of 'H(G^ r) supported on KxK such that
$(rc) = (f)(x). From the proof of 7.2 ii) in [13], we have

t((j)) = [KN- : X^KN-X n KN-} ̂ .

In particular, t((f)) = c$ where c is a positive constant. Hence tu{(/)) is also a positive
constant times <I>. Using ||tn(^)||G = | |^HM» we now see

^^ . ... voK^M^M)^2.
(5>2) tuw= ^{KxK)^ ^

We use this observation in the proof of Lemma 9.3.
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6. The structure of U{G, p)

We can now describe the structure of the Hecke algebra U{G, p). First we recall some
standard notation. Let V = Y (g)j R. For each a € $, s^ G Aut(V) is defined by

Sa(y)=y-(y,a)a'/ (y G V)

where ( , ) is the canonical perfect pairing ( , ) : X x Y —^ Z and o^ e ^v is the coroot
associated to a e $. Since there is a canonical injection from Aut(V) into Aut(V)
(== AutR (V)), we may also view Sa as an element of Aut(V). Again we have

Sa(v) = v — (v^ a) Q/v (v G V)

where ( , ) now denotes the extension of ( , ) : X x Y —^ Z to a (non-degenerate, R-bilinear)
pairing between X 0z R and V. Let <l>af be the set of affine roots associated to ^>. Thus

$^ = {a + fc : a G $, fc G Z}

viewed as a set of affine functionals on V. If a G ^af, we write Sa for the corresponding
affine reflection. Thus i f a = a + f c ( a e $ , f c G Z )

5^(z?) = y — a(v) Q/v

= v — (v^ a} Q;v — fco^

for z; e V. We have 5a € Aff(V) (the set of affine-linear transformations of V). We now
define some of the objects that will appear in our description of 7<(G, p) (cf. Goldstein [17]
Definition 3.5).

DEFINITION 6.1.

^ = { a e ^ : x ^ ^ |0^=1}
^x^f = {a ^ ^^f : a= a-}-k (a G $^ fc € Z)}

^°=<^:aG<i>^) < Aj^(y)

1 V ^ = ( s ^ : a G ^ ) < A^(Y)

It is immediate that <1>^ = {(^v G ^v | ̂  o (^v | O^p = 1} is a closed sub-root system of
^v. It follows that <i>^ is a sub-root system of <I> with Weyl group TV^. Let ^+ == ^+ H <I>^
so that <&^ is a positive system in $^. Define

C^ = {v € V I 0 < a(v) < 1 (a G $^)}.

Then C^ is a chamber in the decomposition of V induced by ^af. i.e. C^ is a connected
component of V - IJae^ af ^a where ̂  = [v G V | a('L') = 0}. Note that C^ defines
an ordering on <I>^af via a > 0 if and only if a{v) > 0 for all v G C^ (a G ^^,af). Let
n^af = {a G $^,af : a is a minimal positive element }. The walls of the chamber C^ are
then the various H a ' s as a ranges through II^af- Let

^ = {sa | a e n^af}, ^ = {w e w^ I wC^ = c^}.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



384 A. ROCHE

LEMMA 6.2. - (W^ S^) is a Coxeter system and W^ decomposes as:

W^ = W°, x 0,.

The group f^ preserves the set of generators S°

Proof. - It follows from Bourbaki [NB] (V, section 3) that (W^, 5^) is a Coxeter system.
Hence W^ acts simply transitively on the the chambers of V (with respect to TV0) and
thus W^ = W^ ̂  and W^ n 0^ = 1. Since f^ fixes C^, each element of 0^ permutes
the walls of C^. This implies that f^ preserves the set of generators 5'° In particular,
W^ is a normal subgroup of W^. D

The Hecke algebra H(W^S^) of the Coxeter system {W^S^) is the associative
C-algebra with C-basis {e.w | w G W^} and multiplication given by:

(6.1) e^e^i = e^i if l{ww') = l(w) + l(w/),
(6.2) e^ = qe^ + (9 - l)e, for s € 5^.

In (6.1) Z is the length function of the Coxeter system (W^ 5^). It is well-known that such
an algebra exists and is unique (e.g. see Humphreys [22], chap. 7).

The group f^ acts by C-algebra automorphisms on 1-i(W^ S^) via uj.e^ = e^^) where
u}[w) = ̂ wu}~1. This action clearly extends to an injective homomorphism of C-algebras
C[^] c-^ End^_^^g7^(W^,5r^). Via this homomorphism, we obtain a C-algebra structure
on the C-vector space T-i{W!^,S^) (g)c C[Q^]. Explicitly, the multiplication is determined
by the formula:

(°w 0 e^ . e^i 0 e^i = e^e^/) 0 e^ (w, w' G W^ and €<;, uj' e 0^).

We denote this algebra by U{W^S^) §C[^]. We sometimes abbreviate to 7^. We
frequently write the basis elements e^ 0 e^ as e^^; where w G W^ and uj e f^^. Thus
ewo; = e^e^; and e^e^e^-i = e^) (w G W^, a; € ^).

Define a function * : Hy —> T~i^ by extending C-antilinearly the assignment e^ = Cw-1-
Thus (ae^)* = ae^ for w € W-^ and a E C where 'bar' denotes complex conjugation.
The function * defines an involution of 7^. Define an involution * on 7i{G^p) by
f*(x) = f(x~1) for / 6 T~((G^ p) and x E G. We now state the main result of this section.

THEOREM 6.3. - i) With notation as above, there exists a family of-^-preserving C-algebra
isomorphisms:

^::^(w^^)0C[oj ^ W,p).
ii) These isomorphisms are support-preserving in the sense that the function ^(e^) has

support Jw J for w G W^.
Hi) The restriction ^ \ H^W^ 5^) is uniquely determined.

Proof. - When \ has level zero, i) and ii) follow easily from Morris [27] (or
Goldstein [17]). For completeness we include details. From [27], we obtain a set of
basis elements of EndG(Indp) which multiply in a specified manner ([27] 7.12). It is
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well-known that there is an isomorphism of C-algebras t : T-i(G, p) ̂  End^Indp"1) (see
equation 7,2).

By Hewlett and Lehrer [18] 6.11, ^ extends to a character ^ of °A^. (This can also be
proved by a more direct argument.) Note that N^ = °N^Y (a semi-direct product) where
V is embedded in N^ by y ^ y(w) : Y —^ N^ (here w is a fixed uniformiser). Setting
^{y) = 1 yields an extension of \ to N^. For w e W^ let B^ = \{n) 6n for any n € N^
projecting to w (see [27] 5.4). With this choice of B^ the cocycle A in [27] 6.1 is trivial.
It is easy to see that in our situation we have e^ = 1 for all w G W^ (see [27] 7.10). It
follows that the cocycle fi in the final description of the algebra End^Indp) ([27] 7.12) is
also trivial. It is clear from this description that there exists an isomorphism of C-algebras

^i : U^ -^EndG(Indp).

(In the notation of [27] R{^) = W^ C{^) = ̂  T = <^af and pa = q for all
a G A = II^af)- Thus there exists an isomorphism of C-algebras

^:7^-^(G,p)

satisfying ii) (since T~i^ and ^-i coincide).
It remains to show that ^ is ^-preserving. To see this, define * on EndG'(Indp) to be the

unique C-antilinear extension of the assignment T^ = T^-i for w G W^ (see [27] 7.9).
(Thus * on EndG(Indp) corresponds to * on ^.) It suffices to show that t o * = * o t
where t : T~i(G^p~1) ^EndG(Indp) is the isomorphism in equation 7.2.

For n G N^ let ^n be the unique element of ?Y(G,p~1) supported on JnJ such that
$^(n) = l. A straightforward calculation shows that

^ _ ^(w) n
"^n — Y "n

where n 6 N^ maps to w € W^. Hence \{n) t<s>^ = q1^ Bw For w C W° or f^, we have

T^=q^wWW^B^
^K^)-^))^)^.

This clearly implies t o * = * o t and thus completes the proof of i) and ii) in the
level-zero case.

When \ has positive level, we recall from the proof of Theorem 4.15 that either 2c(p)
has J — J double coset representatives contained in a proper Levi subgroup of G containing
T or there exists a character ^i of G such that ̂ i (viewed as a character of °T) has level
zero. In this latter case, put pi = p^^ == p^>Xi' The map / ̂  /^i : ̂ (G, p) —> 7^(G, pi)
is then a support-preserving, ^preserving isomorphism. Hence we may assume, without
loss of generality, that IG^P) li68 m J M J where M is a proper Levi subgroup of G
(containing T).

We are thus in exactly the situation treated in section 5. By proposition 5.1, there
exists a ^preserving, support-preserving isomorphism from 7-i(G,p) to 1-i(M,pM) where
PM = P | ̂ nM. Since JnM is J for M and the semisimple rank of M is strictly smaller
than that of G, we may complete our proof of the existence of a family of ^preserving,
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support-preserving isomorphisms provided we do so in the case of semisimple rank zero,
i.e. when G == T.

We assume therefore that G = T. Then J = °T and p = ^. Also W° = 1 and
W^ = f^ = y. We are thus reduced to showing there exists a ^preserving, support-
preserving isomorphism of C-algebras

^:c[y]^^(r,x).

This is obvious.
Finally we show ^ | H{W^S^) is uniquely determined. Suppose ^ and ^/ are two

support-preserving isomorphisms from 7^ to U(G,p). Then Q = ̂ -1 o ̂ / | 7Y(W^,5^)
is a C -algebra automorphism of T-L(W^ S^) such that 0(e^) = A^e^ where A^ e Cx for
each w € W^. Now (6.1) implies A(W) = A^ X^ iH(W) = 7(w)+^(w') (w, w' € W^)
and (6.2) implies \s = 1 for s e 6^. Hence A^ = 1 for all w e W° as required. D

Remark 6.4. - The algebra U^ = 'H(W^ S^) 0C[^] carries an inner product ( , )
defined by:

/p „ \ _ K JW f i ^ pr^ — T^O „ Q \
\^w-!^w'] — ^WyW' V. y 1 ^ ' ) UJ ^ r r ^ — r r ^ /N ""^^

where Z(w) is defined to equal <(wi) if w = wio; (wi G IV^, ci; C 0^). We also use ( , )
to denote the standard inner product on 1~C{G^p):

{^1^2) = f^(x)^(x)dx (^ G ̂ (G^))

Note ((^1,^2) = <^i^(l) = {^i^^p) where * is the canonical involution on H{G^ p). It
is easy to check that the corresponding relation holds on 7^, i.e.

(e^,,e^) = (e^.e^,ei) for all wi, w^ G W^.

Thus ewi^ = {e^^e^)ei + / where / C span{e^ : w -^ 1}. It follows that any
support-preserving, *- preserving isomorphism ^ : 7^^ ^ T-i{G^p) is an isometry with
respect to these inner products (assuming Haar measure on G is normalised so that J
has measure one).

7. Principal series types

We show in this section that (J,p) is a type for the component of the Bernstein
decomposition determined by ^. We begin by recalling the Bernstein decomposition of
91(0?) (the category of smooth complex representations of G). We then recall the definition
of type and some consequences. Much of our presentation and notation is taken from
Bushnell and Kutzko [13].

A pair (M, a), consisting of a Levi subgroup M of G and an irreducible supercuspidal
representation a of M, is called a cuspidal pair. Two such pairs, (M^cr^) (i = 1,2), are
said to be equivalent if there exists a g G G such that M^ = gM-^_ and a^ ^ ^o-i. If we

4® SERIE - TOME 31 - 1998 - N° 3



TYPES AND HECKE ALGEBRAS FOR SPLIT REDUCTIVE p-ADIC GROUPS 387

denote by Irr(C?) the set of equivalence classes of smooth irreducible representations of C7,
then the following map is well-defined (Bernstein and Zeievinsky [5]):

Irr (C?) —^ { equivalence classes of cuspidal pairs}
TT i—^ class of (M, a) if TT ^ a G-subquotient of%^ a

where P is any parabolic subgroup of G with Levi factor M and %^ is the normalised
parabolic induction functor. The image of TT under this map is called the supercuspidal
support of TT. We say two cuspidal pairs, (M^cr^) (i = 1,2), are inertially equivalent if
there exists a g C G and an unramified character v of M^ such that:

Ma = ^Mi and ^ai ^ a^^v.

We write [M,a] for the inertial equivalence class of (M,cr) and 25 (G) for the set of all
inertial equivalence classes. If (TT,V) is an irreducible smooth representation of G, we
denote by J(7r) the inertial equivalence class of its supercuspidal support.

Now fix a class s e ^(G). We denote by SRs(G) the full subcategory of SH(G) defined
as follows:

DEFINITION 7.1. - Let (TT,V) G 9t(C?). TT^n (TT,V) G ^(G) if and only if every
irreducible G-subquotient 71-0 ofTT satisfies 3 (71-0) = 5.

The subcategories ^(GQ (5 e 23(0;)) split the category ^(G) (Bernstein and
Deligne [4]). This is the Bernstein decomposition of 9l(C?). Precisely:

THEOREM 7.2. - ;) The category 9t(G) is the direct product

^(G)= n ^^
SG%(G)

of the subcategories W.s(G) as s ranges through 23(6').
;/ Concretely, if (TT, V) ^ a smooth representation of G, then, for each s 6 23 (G), V /i<zy

<2 unique maximal G-subspace Vs G ^(G^) an^

V = V^ Vs (direct sum).
sC(B(G)

y5, s' G 25(0?) anJ s / s\ then HomG^s(G), 9ls/(G')) = 0 (in the obvious notation).

We can now say what we mean by an s-type in G.

DEFINITION 7.3. - An s-type in G is a pair (K^ p), where K is a compact open subgroup
of G and p, is an irreducible smooth representation of K, with the following property: an
irreducible smooth representation TT ofG contains p if and only ifJ^Tr) G s.

Remark 7.4. - Clearly there is also a notion of s-type in G where s is a subset of
33 (C?) which is not necessarily a singleton. It follows from [4](section 3) that such an
s is necessarily finite.

Suppose now that (p, W) is a smooth irreducible representation of a compact open
subgroup K of G. If (TT, V) is a smooth representation of G, we write V p for the p-isotypic
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subspace of V, i.e. the sum of all K-subspaces of V isomorphic to p. We have V p == ep V
where e? is the idempotent element of H(G) defined by

e,{x) = ̂ {K)-1 dim (p) tr^ (p(rc-1)) (x e K)
=0 ( x ^ K ) .

We write V[p] for the G-subspace of V generated by V9 (i.e. V[p] = 71(0) VP) and W.p(G)
for the full subcategory of 9l(G) consisting of all (TT, V) G 9l(G) such that V = V[p] (i.e.
V is generated by its p-isotypic vectors).

The process V ̂  VP defines a functor from 9l(G) to epH(G)ep - QJtoO (the category
of left epH(G) ep-mod\i\es). It is well-known that this induces a bijection between smooth
irreducible representations of G containing p and simple ep^(G)(°p-modules (e.g. see
Bushnell and Kutzko [10] 4.2.3). However

V^VP : 9VG) ̂  e^(G)ep - %ZoO

is not in general an equivalence of categories. Suppose however that (K, p) is an s-type
in G (for some s E ^(G)). In this case we show (in the next few paragraphs) that the
categories 9ls(G) and ^p(G) are equal (as subcategories of 9l(G)) and that the functor
V ^ V p : W.s {G) —^ epH{G)ep — 9JtoO is an equivalence of categories. In particular
the category W.p(G) is closed under subquotients. Conversely, Bushnell and Kutzko prove
in [13] (using an argument due to Bernstein) that if 9^(G) is closed under subquotients,
then ( K , p ) is an s-type in G where s is a (necessarily) finite subset of 23 (G).

Let ind p be the smooth representation of G compactly induced by p. There is a natural
isomorphism of C-vector spaces:

(7,1) Home-(ind p,7r) ^ Hom^Tr) (TT e 9^(G)).

If we realise indp in the usual way as the space of compactly supported functions
/ : G -^ W such that f{kg) = p(k)f(g) (k e K\g € G) with G acting by right
translations, then the maps are given by

11—^1 : Home (ind p,7r) —^ Hom^(p,7r)
11—^ t : Hom^(p, 71-) —^ Home (indp, 7r)

where
t^w)=t(ey,) (we W),

t{f)= l^gW^-^dg ( /e indp) .
JGJG

Here e^ e indp is defined by e^(fc) = p(fc)w for k € K, e^(g) = 0 for g ^ K (and Haar
measure on G is normalised so that K has measure one).

In particular Home (ind p,7r) -^ 0 if and only if Hom^(p,7r) / 0. Fix s G ^(G) and
suppose (TT,V) e ^(GQ. Since every irreducible subquotient of (TT,V) is also in 9ls(G)
and smooth representations of K are completely reducible, we see (J^p) is an s-type
implies Home (ind p,7r) -^ 0. Further, {K,p) is an 5-type implies indp € 9ls(G). Indeed
if indp ^ 9ls(G) there exists a G-surjection from indp to a smooth representation a
where a G SHt(G) for some t e 33 (G) with 1^5. Further, a is finitely generated (since
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indp is). Thus a has an irreducible quotient r. By 7.1, r contains p which means ( K ^ p )
cannot be an s-type in G.

Conversely, suppose indp G 9ls(G) and HomG'(indp,7r) ^ 0 for each non-zero
TT G ^(G). It is then easy to see that { K ^ p ) is an 5-type in G. Hence ( K ^ p ) is
an s-type in G if and only if indp is a generator of 9ls(G), i.e. indp G W.s (G) and
Home (indp, TT-) •^ 0 for non-zero TT G 9^s(G) (equivalently, every object in SHs(G) is a
quotient of a direct sum of copies of indp).

The isomorphism (7.1) implies that indp is a finitely generated, projective object in
9^(G). Thus if ( K , p ) is an s-type in G, indp is a finitely generated, projective generator
of 9ls(G). By a well-known result (see e.g. Bass [3], chap 2 Theorem 1.5), the functor

SHs(G) -^ EndG(indp)°PP - 9JtoD
TT i—^ Home (ind p, 7r)

is an equivalence of categories (where Home (indp, 71-) is given the EndG(indp)°PP-module
structure defined by t.f == / ot ( t G EndG(indp), / G Home (indp, 71-))). Thus the functor

^(G) -^ EndG(indp)°PP 0c Endc(W) - 9JtoD
TT i—^ HomG!(indp,7r) 0c ^

is also an equivalence of categories.
We write ^(G,?^ (where (p^W^) is the contragredient of (p,W)) for the

convolution algebra of compactly supported functions $ : G —^ Endc(W) such that
$(^1^2) = p(fci)$(a;)p(fc2), for fci, fc2 G A:, x G G. Define maps between ^(G,?^
and EndG'(indp) as follows:

(7.2) 0^4 : ̂ (G, pv) ̂  EndG(indp)
t ̂  ̂  : EndG(indp) -^ ^(G, p^")

where
4(/)(^) = / ^W^g)) dx (f G Indp, g G G)

JG
^(^)(w) = t(e^)(^) (^ G G, w G IV)

(Here (as above) Haar measure on G is normalised so that K has measure one.) It is
well-known and easy to check that these maps are inverse isomorphisms of C-algebras.
It is also easy to verify that the map <I> i-̂  ^ where ^{g) = ^E^"1^ is an anti-
isomorphism from ^(G,?^ to ^(G,p) (where <^-l)v G End^V^) is the transpose
of ^{g~1) G Endc(W).) Thus we have an isomorphism of C-algebras:

t ̂  ̂  : EndGOndp)01^ ^ ^(G, p).

Via this isomorphism and the isomorphism Home (Ind p,7r) ^ Hom^(p,7r), we can
transport the left Endc? (ind p)°PP-module structure on HomG!(indp,7r) to a left 7^(G,p)-
module structure on Hom^(p,7r) (TT G 9l(G)). A short calculation shows that this is
given by:

$'.t(w) = f ̂ t^g-^w) dg ($ G 7^(G, p"), t G Hom^(p, 7r), w G W).
JG
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It is clear that the evaluation map

ev : Hom^(yo, 7r) (^c W-rVf)

ev(t 0 w) = t(w) (t € Hom^(^Tr), w G TV)

is an isomorphism of C-vector spaces. The space Hom^(p,7r) (g)c W is naturally a left
U{G,p) 0c End<c(tV)-module. Recall ([10], chap. 4) that there is a canonical C-algebra
isomorphism:

^ : U{G, p) 0c Endc(W) ^ e^((7)e,

$ 0 (w 0 ̂ v) ̂  (^ ̂  dimp(w, ̂ (^u^)) (w € TV, ̂ v G W^).

Here ( , ) denotes the canonical (evaluation) pairing and w^w^ G End<c(W) is defined by
w (g) wv(wl) = (w-i,w^)w for wi e IV. Via the isomorphisms ^ and ev, V^ becomes a
left ^^(G^-module. We now show that this module structure coincides with the natural
left ^^(G^-module structure on V p (induced by the left 7^(C?)-module structure on V).
This is equivalent to the commutativity of the diagram

^{G, p) 0c Endc(W) x Hom^, 7r) 0c W —> Hom^(p, 7r) (g)c W
^Xev I ev |

e,H(G)ep xVP —— V p

where the horizontal arrows come from the given module structures. Let

($ 0 (w 0 ̂ v), 10 wi) G H(G, p) 0c Endc x Hom^(p, 7r) (g)c W.

A short calculation shows that the clockwise image in V p of this element is given by

(7.3) <wi, w^} ( ^(^(^w)) dg C V^.
JG

Another short calculation shows that the counter-clockwise image is given by

(7.4) dim? ( 7r(g)(t(w, 0 wv($^)vw))) dg.
JG

In showing (7.3) and (7.4) are equal, we may assume the support of <I> lies in a single
double coset KxK for some x G G. Write KxK = |j^i kixK where kixK / fc^AT
for i / jf. Then (7.3) becomes

r r
(wl,wv)^ / ^k^x^W^k-^xyp^^w^dk

i=l VK

r

=^7r(fc,)7r(a;)^[(wl,wv)$(a;)vp(^-l)w])
i=l

Equation (7.4) becomes
r

dim/?Y" / 7^(ki)7^{x)7^{k)(t(w^(w,p^{ki)<S>(x)p'/(k)w'/)dk
^JK

r / r \
=^7r{ki)7r{x) [t[dimp / <w,pv(^)$(a:)pv(fc)wv)p(fc)wl dk] ).

1=1 \ JK )
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Comparing these last two equations, we are reduced to showing

(w^w^^xYp^k^w^dimp ( (w^v(fc,)^(a;)pv(fc)wv)p(fc)wl dk.
JK

This is equivalent to showing

/ {^(xyp(k^)w^ ^(fc)^) {p(k)w^w^) dk =
J K

^(^^)^rp(k^)w^)
for all wi G W^ which holds by a direct application of Schur orthogonality.

Summing up, we have shown that the functor

V^VP : y\^G) -^ epH(G)e? - mtoO

is an equivalence of categories when {K^ p) is an 5-type in G.
We now show the categories ^s(G) and 9lp(G) are equal (when ( K , p ) is an s-type).

Let (TT,V) G SHs(G). We have (V IV[p}Y = 0. This implies V/V[p] = 0 (since every
non-zero object in W.s{G) contains p). Thus V = V[p] for all (TT,V) G ^(G). To see
that V = V[p] for (TT,V) G SH(G) implies (TT,V) G SHs(G), we observe that V = V[p\
implies TT is a quotient of a direct sum of copies of indp and indp G ^s(G) (since by
hypothesis { K ^ p ) is an s-type in G).

We have proved parts i) and iii) of the following theorem which records some of the
main properties of types (see Theorem 4.3 in [13]).

THEOREM 7.5. - Let s C ^(G) and let ( K , p ) be an s-type. Then:
i) The categories ^p(G) and ^s(G) are equal as subcategories ofW.(G). In particular,

y\p{G} is closed under subquotients.
ii) Let (7r,V) be a smooth representation of G. Then there exists a uniquely determined

G-subspace U of V such that

V=V[p](S)U.

iii) The functor

V^VP : ̂ p(G) -^ CpH(GYp - Wot)

is an equivalence of categories.

Suppose now that \ : °T —^ Cx is a smooth character. Let \ be any character of T
extending \. The inertial equivalence class [T, ̂  depends only on ^. We denote it by s^.
Let 9^(G?) be the resulting (principal series) component of the Bernstein decomposition,
i.e. 9^(0?) = y\s^ {G). We sometimes refer to it as the component of the Bernstein
decomposition corresponding to ^.

LEMMA 7.6. - For t G T, let ^ be a non-zero element ofH^G^p} supported on J t J .
Then (f)f is invertible in T-^G, p).
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Proof. - Suppose t G T corresponds to w under 7V/°r ^ W. Then w e W^ (in fact w e
V). By Lemma 6.2, we may write w = 5 i . . . ̂ o; where 5 i , . . . , Sr G 5^, l(s^_ . . . S r ) = r
and cc; G 0^. Fix a support-preserving isomorphism ^ : T-i^ ^ T-i^G.p}. Then ^I^"1^)
is a non-zero scalar times e^ .. .e^e^. Since each e^ is invertible and e^ is invertible,
^~l((^)t) is also invertible. Hence ^ is invertible. D

THEOREM 7.7. - 77^ pair { J ^ p ^ ) is an s^-type in G.

Proof. - We apply Theorem 8.3 of Bushnell and Kutzko [13], It is clear that the
pair (°r,^) is a type for 9^(T) (the component of the Bernstein decomposition of T
determined by ^). Thus it is sufficient to verify that (J, p ) is a G-cover of (°r, ̂ ) in the
language of [13] (see Definition 8.1). From Proposition 3.6, we see that (J,p) satisfies
conditions i) and ii) in the definition of G-cover. That condition iii) is also satisfied follows
immediately from Lemma 7.6. D

Remark 7.8. - Let B = TU be a Borel subgroup containing T with unipotent radical
U. Let (TT, V) be a smooth representation of G. The key point in proving Theorem 7.7
(which remains implicit in our proof since we invoke Thm. 8.3 of [13]) is to show that the
Jacquet module functor V ̂  Vu induces an isomorphism of C-vector spaces:

V^V^.

This is a consequence of Lemma 7.6. An easy argument (using Frobenius reciprocity) then
shows that ( J y p ) is an 5^-type.

COROLLARY 7.9. - i) The categories 9^(0;) and ^p{G) are equal as subcategories of
y\(G}. In particular, if{^,V) G 9^o(C?) then every G-subquotient of IT is also in W,p(G).

ii) Let (TT,V) be any smooth representation of G. There exists a uniquely determined
G-subspace U of V such that

V = V[p\ C U.

iii) The functor V ̂ Vf): ̂ p(G) —^ 'H{G, p) - QTtoD is an equivalence of categories.

Proof. - This is Theorem 7.5 for the type ( J , p ) . D

8. A dual group interpretation of T~C(G, p)

We begin by rephrasing Theorem 6.3 on the structure of the Hecke algebra 'H{G, p). We
define a reductive Op -group H in terms of \ (in general disconnected) with group of F-
rational points H and show that there exists a ^-preserving, support-preserving isomorphism
from T~L(H^ Ij) to 7^(0?, p) where I is a certain Iwahori subgroup of H (the group of
F-rational points of the identity component of H). The groups H and H have natural
interpretations in terms of Langlands parameters for T. (The key idea here was suggested
to me by Neil Chriss and Alien Moy.) We discuss this next and give two examples. We
then show the quotient H / H is always abelian and is trivial when G has connected centre.
Finally we observe that H is an endoscopic group of G.

First, we define the groups H and H. The quadruple ̂  = (X,$^,Y,^^) is a root
datum. Hence there exists a connected reductive Op -group H with Op-split maximal torus
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TH (unique up to Op -isomorphism) such that the root datum ^(H^n) equals ^^. We
may (and will) assume that TH = T. As usual we denote by H and T the corresponding
groups of F-rational points. Note that W^ = W{H) (the ordinary Weyl group of H). Let
$+ = <i>^ n ̂ . Then ^+ is a positive system in <I>^. Put C^ = {w e W^ \ w^ = <^}.
Write BH for the Borel subgroup of H corresponding to <i>^ with group of ^-rational points
B H ' It is clear that C^ acts on the based root datum ^o(IHl) = (X,IL^y,II^) where
11̂  is the unique simple system contained in <&^. Fix Op -isomorphisms Xa '' G'a —^ Uo;
(a e $^). Put Ua = ̂ a(l) (^ ^ n^). The short exact sequence:

1 -^ IntH -> AutH -> Aut^o(H) -^ 1.

is split by an isomorphism:

Aut^o(H) ^ Aut(H,BH,T,(H^eiL,).

Via this splitting, C^ embeds in AutH. By definition, H = H x C^. Then H = H xi <7^.
As before, let <&^af = {a € ^af I gr(^) ^ ^x} ^ere gr(a) denotes the linear part of

a. Note that <l>^,af is the set of affine roots of H with respect to T. Let W(ff) be the
extended affine Weyl group of H with respect to T. Thus W(H) = Y xi TF^. As above

C^ = {^ e V : 0 < a(v) < 1 (a G ̂ )}

is a chamber with respect to the decomposition of V induced by the affine functionals
in ^af. Let

fl(H) = {w € W(H) | wC^ = C^}.

LEMMA 8.1. - i) W^ = W^ x C7^.
n) ̂  = »(ff) x C^.

Proof. - i) The normality of W^ in W^ follows directly from the definition of W^. Let
w eW . Then w<i>4: C ̂  is a positive system for <I>^. Hence there exists a wi e W^
(the Weyl group of $^) such that w ̂  = wi ^^, i.e. w^w G C^. Hence W^ = ^^^x-
It is clear that W^ H C7^ = 1. This proves i).

ii) From W(H) = Y x IV^, we see H(H) = {(y,w) e 0, : w € ^}. Since an
element ^ G V lies in C^ if and only if 0 < a{v) < 1 for all a e ̂  and w $^ = $^
for all w € C^, we see wC^ = C^, i.e. <7^ is a subgroup of f^. Suppose c e C7^ and
(^/,w) G ^{H). Then c(^/,w)c-1 = (c(?/),cwc-1) and cwc~1 G ̂  (by i)). Hence C^
normalizes 0(ff).

Suppose now that {y^w) € f^. By i) we may write w € W^ as w = wi^s where
wi € W7^ and w^ e C^. Then (^w) = (?/ ,wi)w2 is an element of ^{H)C^ as
required. D

The decomposition f^ = ^(H) x C^ implies C[^^] = C[n{H)} 0C[CJ where the
twisted tensor product is defined by the conjugation action of C^ on 0(ff). Hence:

(8.1) ^(w^)§qaj ^ ^(^°,^)0(c[n(ff)]^c[Gj)
- (^(iv^^^c^wD^qcj.
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The positive system <1>^ uniquely determines an Iwahori subgroup of H which we
denote by Z. Thus

i= n ^i07^ n ^o
0'e^^ Q;(::<^

As in Iwahori and Matsumoto [23], there is a ^preserving, support-preserving isomorphism:

(8.2) ^(ff,lz) ^ ^(^^)0C[0(ff)].

It is easy to see that there is a ^-preserving, support-preserving isomorphism:

(8.3) 7^(ff,lz) ^ W,lz)§C[OJ.

Combining (8.1), (8.2), (8.3) and Theorem 6.3 we obtain the following theorem.

THEOREM 8.2. - The algebras U{H, l^) and U(G, p) are isomorphic via a family of
^-preserving, support-preserving (and hence inner-product preserving) isomorphisms.

Suppose now that \ is a character of T extending \. We write T for the complex torus
dual to T in the sense of Langlands (thus X*(T) = X^T) and X,(f) = X*(T)). Let
WF be the (absolute) Well group of F. The Langlands parameter of \ : T —^ Cx is the
homomorphism r- : Wp —^ T defined byx

(8.4) a(^(a)) = x(aMa)))

for all a <E X*(f) = X,(T) and all a G ^. Here rp : Wp -> F^ induces the
isomorphism W/^b:^FX of local class field theory. Since ^(O^) = I p (the inertia
group of F\ the restriction T~ | I p depends only on ^. We denote it by T^.

The centraliser in G (the Langlands dual group of G) of the image of r^ is the reductive
subgroup of G generated by f and those root groups U^ for which a \ imr^ is trivial
together with those Weyl group representatives riw for which w{t) = t for all t G imr^.
The identity component is then generated by T and those Ua for which a | imr^ is
trivial (see e.g_[33] 4.1). Write TF(im^) for the stabiliser in W = W(T, G) = W(T, G)
of imr^ and W(imr^)° for the normal subgroup generated by those reflections s^ for
which a \ imr^ = 1. Then

Cg(imTj/C7g(im^)° ^ T(im^)/'r(im^)0.

Using 8.4, the condition a | imr^ = 1 is easily seen to be equivalent to \ o a \ 0'p = 1,
i.e. a G ̂  (viewing a as an element of ^(T^G^ = (S>(T,G)). Again from 8.4, we see
w(r^{a)) = T^(cr) for all a G J^ if and only if w\ = ^, i.e. w e T^^. Thus

vP(C^(im^)°,r) = (X*(T),$^X,(f),^)

=(r,^,^^)
=^(N,1)^

Hence C^(imT^)0 may be viewed as the Langlands dual group H of H. The component
group 7ro(Cg(imT^)) is given by W^/W^ and so is isomorphic to C^ = 7To(H). Fix
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non-trivial elements Ua 6 Ua where Ua is the a root group for (^,T) = (Cg(imr^)°^T)
(a e lip. We have

C^ ̂  Aut(^)/Inn(^) ^ Aut(^ T, (na)aen^).

Thus we obtain an action of C^ on ^(H, T)^ It is clear that this action coincides (under
transpose inverse) with the action of C^ on ̂  = ^(H,T). In rough terms Cg(imr;J
might be considered 'the dual group' of H.

Example 8.3 (cf. Sanje-Mpacko [31].). - Let G = SL(n,F). Then

°T ^ { ( A i , . . . , A n ) G ( W : A i . . . A n = l } .

Let ^i : 0^ -^ Cx be a character of order n (e.g. suppose n \ (q - 1) where g = |fc^|).
Define ^ : °T ^ C" by

X(AI, . . . , A,) = X i (Ai )x? (A2) . . . xF^An-i) (A. € C^).

The root datum ̂  = (X, 0, V, 0) where X ^ Z^Z^,... , 1) and

y ^ {(;!,. . .^^GZ^^^^O}.

In particular, W = {1}. An easy calculation shows that W^ ^ Z/nZ (with generator
( A i , . . . , A,) ̂  (A,, A i , . . . , A,_i)). Thus W^ ^ Yx\l/nl and the Hecke algebra U(G, p )
is isomorphic to C[W^\ (the group algebra of W^). Finally, H = T and H = H ^ Z/nZ
(where e.g. T C Z/nZ acts by ( A i , . . . , \n) ̂  (An, A i , . . . , \n-i) (A, G Fx)).

Example 8.4. - Let G = Sp2n{F) (n > 2). Then °T ^ (O^)71 and thus a character
^ : °r —^ Cx is given by an n-tuple of characters of 0'p. Let x = (Xi? Xi? • • • ? Xi) where
^ = 1, ^i ^ 1. The root datum ̂  then equals (Z", {±e, ± ej}, I71, {±e, =L Cj}) using
standard notation. Thus $^ = ̂  has type £^n for n > 3 and type Ai x Ai for n = 2.
Clearly, TF^ = W7 and W is the subgroup of index two consisting of signed permutations
with an even number of sign changes. The group H = SO^n{F) and H = O'zn(F). In
particular, T-C(G,p} is isomorphic to the Iwahori Hecke algebra of O'zn(F)'

We now show

• the group C^ is always abelian,
• G has connected centre implies C^ = {1} and hence H = H.

Tensoring the split exact sequence

1 — 1 + PF —— 0^ —— ̂  —— 1.

with y yields the split exact sequence

i — y 0 (i + pp) — Y 0 o^ — y 0 ̂  — i.
Hence the sequence

1 —> Ti —> °T —> J ( k p ) —> 1
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is again split exact and thus ^ : °T ̂  Cx factors as ^ = ^i^ where ^i = ^ | Ti (by
abuse of notation) and /^ is trivial on Ti. Therefore T^ = r^r^ and imr^ = imr^ imr^.
Note imr^ is cyclic (since k^ is cyclic) and mir^ consists of elements ofp-power order
(where p = charfcp).

Suppose now that G has connected centre. Then X/l<^ is torsion free so that Z<1> is
a direct summand of X (where X = X*(T) =^(T)). Thus the coroot lattice of G is
a direct summand of the cocharacter lattice of T. This is equivalent to G having simply
connected derived group. We use the following results of Steinberg:

• Let G be a connected reductive group (over an algebraically closed field) with simply
connected derived group. Let t be a semisimple element of <?. Then Cg(t) (the
centraliser of t in G) is connected. (This is Steinberg's connectedness theorem (see
Steinberg [34]).)

• Suppose moreover that f G Z(Q) for some n divisible by no torsion prime for the
root system of Q. Then the derived group of (the connected group) Cg{t) is again
simply connected (see Steinberg [35]).

A prime / is a torsion prime for the root system ^ if Zv^/Z^ has ^-torsion for some
closed subsystem ^i of ^. (See Springer and Steinberg [33] pp. 178-179 for a listing
of the possible torsion primes.) Our restrictions on p = charfc^ imply that p is not a
torsion prime for ^v.

Applying these results, we see C?i = C^(imr^) is connected with simply connected
derived group. The connectedness theorem then implies

GG^^ = W^x)

is connected (since imr^ is cyclic). Hence C^ = {1} and H = H.
If G does not have connected centre then X/l^ (the group of rational characters

of the centre) has non-trivial torsion. In this case we fix a surjective homomorphism
q : L —» X/Z$ where L is free abelian of finite rank. Consider the pullback diagram
(cf. [25] pages 119-120):

X^. L

"i r
X^X/l^

Thus X = {(x^l) G X x L | p(x) = q{l)} where p is the obvious surjection and pi, p^
are the canonical projections. Let

$={(a,0) G ^ x L : a e $ } .

Note that <| is ^contained in X and that pi induces an isomorphism X/I<S> ̂  L. In
particular, X/Z<S> is torsion free.

Let T be the F-split F-torus such that X*(T) = X . Let T = T(F). Then

f := Horn (X, i^) D Horn (X, ̂ x) = T.
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By standard^arguments (e_g. using root data) the inclusion T c T extends to an inclusion
G c G ^ 6(F) where G is a^connected reductive F-group with maximal torus T and
$ = $((&, T), By construction G has connected centre (since X/J.^ is torsion free).

Let \ be any extension of \ to °T. Since G has connected centre, we have C- == {1}
or W- = W^. Note also that W^ = W ̂  (since the image of any coroot of G with respect
to T is contained in T). Thus for c G (7^, we have c\ = ̂ c where p.c is trivial on °T,
i.e. ^ belongs to the Pontryagin dual (°f/°T)^ of °f/°T. Further, /^ = 1 if and only
if c e C^ D W == {1}. It is easy to verify that the map

c ̂  ̂ : ̂  -. (o^/o^)A

is a homomorphism (e.g. by showing that w(t)t~1 e T for all t e T and all w G W).
Thus C^ embeds in (°T/°T)^. In particular, C^ is abelian.

Finally we observe that H is an endoscopic group of G. Since H is F-split, we only
have to show that (7g(imT^)° == Cg(x)0 for some x G T. We prove the following:

• Let 0 be a connected reductive group over an algebraically closed field. Suppose 5i
and 52 are finite subgroups of a fixed maximal torus T of Q where S^ is cyclic
and the orders of 5i and 52 are relatively prime. Finally, suppose the order of 5i
is not divisible by a bad prime for $ = ^(^T). Then C^(5)° = Cg(x)° for some
x e T where 5 = 5i52.

This clearly implies that H is endoscopic for G (taking (Q^T} = (C?,T), 5i == imr^
and 5'2 = imr^).

We first show Cg(S^° = ^^(t)0 for some t € T. Let

<^i = {a G $ : a(5i) = 1 V^i G 5^}.

Clearly $1 is a closed subsystem of <&. Since (by definition) Z^/Z$i can only have
^-torsion for a prime ^ when Z is a bad prime for $ and since 5i H^ s[ is an automorphism
of 5'i, we see Z$/Z<l>i is torsion free. Hence Z^i is a direct summand of Z$. It follows
that there exists an element t G T such that a(t) = 1 for a G Z<I> if and only if a G Z$i
(see e.g. Humphreys [21] 16.2, Lemma C). Then Cg(Si)° = Cc?(t)°.

Note (7g(5')° is the identity component of the centraliser of s in Cg(t)° where s
generates 52. This is the group generated by T and those root groups Ua for which
a{t) = 1 and a(s) === 1. We show this is equivalent to a{st) = 1 by proving a(st) = 1
implies a(t) = 1. It follows that (7^(5)° ^ Cg(,st)°. Thus suppose a{st) = 1. Then
0(1)^ = 1 where m is the order of s and so ma E Z$i. Since Z$/Z$i is torsion free,
this implies a 6 Z^i n ^ = $1. Hence a(t) = 1 (and 0(5) = 1).

9. Jacquet and induction functors via Hecke algebra homomorphisms

Let B == TV be a Borel subgroup containing T with unipotent radical (7. Write
Ind^ : 91(7") —^ 91(0?) for the unnormalised (parabolic) induction functor and Rjj :
9l(G) —> 9l(T) for the Jacquet restriction functor. As above, we write 9^(T) for the
component of the Bernstein decomposition of T determined by \. Thus 9^(T) is the

ANNALES SCIENTIFIQUES DE L'ECQLE NORMALE SUPERIEURE



398 A. ROCHE

full subcategory of ^(T) consisting of all smooth representations (a, W) of T such that
each irreducible T-subquotient of a is given by a character ^ : T —^ Cx extending ^
(equivalently, a on restriction to °r is a multiple of ^).

The functor IndJ restricts to SH^(T) to yield a functor Ind^ : Sn^(r) -^ 9^(G). If
(TT,V) G 9^(G), we have

Ru{V) e n ^(T).
wew"

Composing J?^ | 9^(G) with the projection functor p^ : nweTF9^^71) -^ ^xW' we

obtain a functor p^o Rjj : 9^(G) -^ ^xW- It is clear that this functor is left adjoint to
Ind^ : 9^(r) -^ 9^(G) (since Homr(9^(T),9^(T)) = 0 if w^ ^). By abuse of
notation, we often drop the p^ and simply write Ru : 9^(G) -^ ^x(^)-

We write ̂  : SK(T) -^ 9l(G) and r^/ : SH(G) -^ SH(T) for the normalised induction and
Jacquet restriction functors. Thus if (a, W) is a smooth representation of T and SB is the
modulus character for the action of T on U by conjugation (i.e. d{tut~1) = SpW du for
t G T where du is any Haar measure on [/), then ^(cr) = Ind^(a 0 ̂ /2). If (TT, V) is a
smooth representation of G, ru(V) == J%£/(V) 0 ̂ a172' since ^B is an unramified character
of T, we obtain (as above) functors ^ : 9^(T) ^ ^(G) and ru : SH^(G) -. 9^(T)
(more properly p^ o ru). It is clear that ru is left adjoint to %^.

From Corollary 7.9, the functor V ̂ VP : 91̂  (G) -^ 7^(G, /)) - 9JtoO is an equivalence
of categories. The functor W ̂  W^ : 9^(T) ̂  T~i(T,^) - SJloO is also an equivalence
of categories ((°T,^) is a type for 9^(r)). Our first aim in this section is to show that,
under these equivalences, the induction and Jacquet restriction functors between 91̂  (T)
and 9^ (G) (unnormalised and normalised) correspond to induction and restriction functors
between T-C(T, ̂ ) - 9JtoO and 7<(G, p) - 9Jtot) induced by appropriate twists of a C-algebra
embedding ia : ̂ (T, ̂ ) —> 7<(G, ^). Given our knowledge of the structure of the Hecke
algebra T~i(G^ p\ these results are special cases of (or immediate consequences of) a general
result of Bushnell and Kutzko (see [13] 7.12, 8.4).

We now describe the algebra embedding t = ia : U(T,\) —. T-C(G,p). This is done in
a much more general context in sections 6 and 7 of [13]. Fix a uniformiser w in F. The
short exact sequence (see equation 4.1)

1 —>°T—^T-^Y —.0

is then split by the homomorphism y \—> y(w) : Y —^ T. For each y e V, let (f)y be the
unique element of T-i(T,^) with support °Ty such that (f)y(y{w)) = 1. It is clear that
the elements (f)y for y e Y form a vector space basis of H(T, ̂ ) (and that the C-linear
extension of the assignment y ̂  (f)y defines an isomorphism of C-algebras between C [V]
and T~C(T, ̂ )). For each y G V, let ^y be the unique element of T-i(G, p) with support J y J
such that ^y(y(w)) == 1. The Borel subgroup B corresponds to a system of simple roots
HB in $(G,T). Define a subsemigroup Y^~ of Y as follows:

y + = 0 / e y | ( ^ a ) > o (aen^)}.
Given ^/ e V we may write y = y^ - y^ where ?/i, 7/2 G V^ By definition

t(^)=^^.
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(Note ^>y^ is indeed invertible in H(G, p) by Lemma 7.6.) The following lemma shows that
tp {^y) is well-defined (i.e. independent of the choice of ^1,^/2 ^ ^+ such that yi—y^ = y)
and extends to a C-algebra embedding tp '' T~L(T,\) -^ T-t(G,p).

LEMMA 9.1. - For y ^ y ' 2 G Y+, ^^2 = ^^s-
Proof. - This is straightforward (using Iwahori decompositions). D
It is easy to check that the homorphism t : T~i(T, \} —> H(G, p) is independent of the

choice of uniformiser w (as the notation indicates).
Suppose now that j : T-L(T,\) —^ 1-L{G,p) is an algebra homomorphism. Then j

induces restriction and induction functors j* : U^G.p) - 9JtoO —> 1-i(T^) - 9JtoD and
^ : H(T,x) - ̂ ^ -^ T~i{G,p) - 9JtoD as follows.

If M G U{G, p) - 9JtoD, then j*(M) = M with U{T, ̂ )-action given by 0.m = j'(^)m
for </) G ^(T, ̂ ) and m € M. If TV G ^(T, ̂ ) - QJloO, j,(^V) = Hom^(T^)(^(G, p), TV).
Here T-(.(G, p) is viewed as an H(T, ̂ )-module via j and T-L{G, p} acts by right translations.
Thus ^.a(^) = a(<^) for a G Hom^T^O^G,/)),^) and $, $' e 'H{G,p). It is easy
to verify that (j*,j*) is an adjoint pair, i.e. there exist natural isomorphisms (of C-vector
spaces)

(9.1) Hom^T^jW^) ^ Hom^,,)(Mj,(AO)

for M e ^(G,p) - 9JloO and N e ^(T^) - 9JtoZ).
If T is an unramified character of T, we write tr : ̂ (T, ̂ ) -> 7^(G, p) for the algebra

embedding given by t^) = t^.r) for ^ G ^(T,x) where ^.r(t) = ^(t)r(t) (t G T).
For ease of notation, we write tu for the algebra embedding ^1/2.

THEOREM 9.2. - Let B = TU be a Borel subgroup containing T -with unipotent radical
U. Let t : T~L(T, \) —^ 1-L(G, p) be the associated embedding of C-algebras (as described
above). Then the following diagrams commute (up to natural equivalence).

^(G)^Zi(G,p)-yjlo^
(9.2) Ru^ ^

9^(T) ̂  ̂ (T^) - 9JtoO.

(9.3)

(9.4)

(9.5)

^(G)-^^(G^)-9JtoO
Indg-t ^(^a)*

^(r)^^(r,x)-^oo

^(G)^^(G,p)-9JtoD

-i ^
^(T)^^(r,x)-9JtoD.

^(G)-^^(G?,/9)-aJroD
zg^ ^)*

^(T)-^^(r^)-9JtoO
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In each case the rows are given by the equivalences of categories

V^VP: 9^(G) ̂  n{G, p) - QJtoD

and
W ̂  H^ : 9^(T) -^ ̂ (T, x) - a^oD.

Pwo/. - The first two diagrams are commutative by Bushnell and Kutzko [13] 8.4. In
fact, if (TT, V) e 9^(G) then it follows from [13] 7.12 that the isomorphism V p ̂  Ru{V)x

(see Remark 7.8) satisfies

(9.6) Ru(t^{cf>).v)^(t).Ru(v)

for v C VP,^ € U{T,\). The hypotheses of [13] hold in our situation by Lemma 7.6.
This gives 9.2 (and also 9.3 by uniqueness of adjoints).

To prove 9.4 it is enough to show

ru(tu^y)-v) = (t)y.ru(v)

for v € VP, y € Y. We may rewrite this as

^-(W^Q/))^) = ̂ (^^M
for v € V^ 2/ G V. Equivalently

RuWy6B{y)).v) - ̂ .^(^)

for -y G V^ and ^/ € Y which we know from 9.6.
The commutativity of 9.5 follows (again by uniqueness of adjoints). D

Thus, under the equivalences of categories V ̂  V p : 91̂  (G) —> K{G,p) - QJtoD and
W ^ W^ : 9^(r) -^ H(T,x) - 9^0 ̂ . the adjoint pair (T^Ind^) corresponds to
(^(^a)*) and the pair (r^zj) corresponds to (r^(t^),) = %,(^)*).

Suppose now that the Borel subgroup B containing T corresponds to the positive system
^ of $ (as in the definition of the subgroup J). Let B(H) be the Borel subgroup of H
(with unipotent radical U(H)) corresponding to the positive system ^+ == $^ H ̂ +. In the
remainder of this section we prove a simple relation between the induction and restriction
functors ̂  : 9^(T) -> W^{G) and ru : ̂ (G?) -^ ^xW and corresponding functors
for H. A precise statement is given in Theorem 9.4.

First we claim that the functor V ^ V11 : Vi^H) -^ U{H,\r} - ffltoO is an
equivalence of categories. This holds provided the category W,^{H) is closed under
subquotients (see [12] 3.9 (i)). Thus suppose V E ̂ (H). Write^rg(V) for the smooth
representation of H obtained by (ordinary) restriction. Since H = H x C^ and C^
normalises Z, r^(V) € W^{H). Moreover since (Z, lj) is a type in H, each subquotient
of rj|(V) is again in 9ti^(Jf) and thus each subquotient of V is (a fortiori) in yt^(H).

It is clear that the restriction functor rj| : Vi^{H) —> W.^{H) fits into the following
commutative diagram:

^(^)^^(ff,lz)-9KoO
(9.7) ^ ^

9^(£T) -^U{H, lz) - 9JtoD

4^ S6RIE - TOME 31 - 1998 - N° 3



TYPES AND HECKE ALGEBRAS FOR SPLIT REDUCTIVE p-ADIC GROUPS 401

where %* is induced by the inclusion homomorphism i : T-i(H, Ij) —> U(H, Ij) and the
rows are given by the equivalences of categories V i—^ V11.

The functor r^ : ̂ (H) -^ ^(H) has alright adjoint i^ : ̂ {H) -^ ^(H)
(ordinary induction from H to H). Also z*j H{H, 1^) - 9JtoO -^ U{H, lz) - 9JtoO has a
right adjoint %* : ̂ (i?, lz) - QJtoO ̂  ̂ (^, lz) - OJtoO (exactly as in 9.1). By uniqueness
of adjoints, we obtain the commutative diagram:

^(ff)^^(ff,lz)-9JtoO

(9.8) ^t ^

^ (H) ̂  n(H, lz) - 9JtoD.

Since (I, li) is a type for SHi(lT), we have ̂ i(H) = 9ti^(ff). Applying Theorem 9.2 iii)
and iv) (in this context) and writing tu H for t . i /2, we obtain further commutative diagrams:

BH

^(H) -^H{H,li)-m^
(9.9) ^ ^

9li^(r)^^(T,lor)-9Jto(5

and

9ti^(ff) -^^(ff,lz)-9Jlot)
(9.10) ^(H)^ ^^'^^

SHio/r(T) -^ 7^(7, lor) - arto^.

Combining 9.7 and 9.9 and also 9.8 and 9.10 (and using the obvious notation) yields
the commutativity of

^(H) -^^(^lz)-9KoO
(9.H) ^ ^

^ (T)^ U(T, lor) -»to0

and

SHi^(^) ^^(ff,lz)-CTot)

(9.12) ^(^)t ^(t.,H)*

^lo.W^^^l^-^OO.

As above, let (j)y for y € V denote the unique element of ^(T, ̂ ) supported on °Ty
such that (/)y{y(w)) === 1. Write ^y for the characteristic function of °Ty. It is clear that
there is a unique isomorphism of C-algebras

^ = ̂  : U(T^ -^ W lor)

satisfying ^(^y) = Xy The key step in our argument is contained in the following lemma.
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LEMMA 9.3. - Let ^{= ^) : H(T,x) -^ U(T, lo/r) ^ the C-algebra isomorphism
described above. Then there exists a^support- preserving, ^-preserving C-algebra
isomorphism ̂  (= ̂ ) : U(G, p) -^ U{H, 1^) such that the following diagram commutes:

^(C?^)-^(ff^)
tu T -t-tu,H

W^-^Wlo^).

Proof. - Clearly it is sufficient to show there exists an algebra isomorphism as in the
statement of the lemma such that

^(tnW)=t^HWy)) Q/eV+).

If J+ = Jn U, then 6B(y) = [J+ : yJ^y-1}-1. Using the Iwahori decomposition of
J with respect to B, we have Sa{y) = vol(J^J)-1. Similarly Sp^y) =vo\{IyI)~1.
Thus we need to show

(9.13) ^(vol (J^/J)-1/2 $,) = vol (W1/2 xz,z (?/ G V^

where ^iyi is the characteristic function of lyl.
Let M be minimal among Levi subgroups of G containing T such that 2c(p) C JMJ.

From Proposition 5.1 and Remark 5.2, there exists a *- preserving, support-preserving
Hecke algebra isomorphism

^M : ̂ (G,p)-^(M^M)

such that

^(vol W)-1/2 ̂ ) = vol (JM^/^M)-172 < (y C y+)

where PM = P \ JM (JM = J H M) and <E>^ is the unique function in 1-t(M,pM) with
support JMVJM such that $^(?/(w)) = 1. Moreover from the proof of theorem 4.15,
there exists a character ^i of M such that ^^i viewed as a character of °r has level zero.
We may also assume that the character ^i satisfies \^{y{w)} = 1. Using the isomorphism
/ 1-̂  fXi : ̂ (M,pM) -^ H(M,pMXi). we are thus reduced to the proving 9.13 in the
level-zero case.

We assume therefore that \ is a level zero character of °r. We use Morris [27] to show
there exists a (^-preserving, support-preserving) C-algebra isomorphism satisfying 9.13.

As in the proof of Theorem 6.3, we fix an extension \ of ^ to N^ satisfying \{y{w)) == 1
for all y e Y. We then have a basis B^ for x G W^ = W^-i of End^Indp-1) given by

B^W^n

for any n e N^ projecting to x <E W^ (see [27] 5.4, 5.5). Write y = wuj where w e H^
and uj (E 0^. In the notation of [27], C(^) = C7(^-1) = f^^. Further the cocycle A
(in [27] 6.2) is trivial (by our choice of By, for x e W^). Applying [27] Propn. 7.6 a),

f914) B B - ( lndwuj V7 2?v / 1J^1J^ ~ ~r~.—T""!— ^w^\Indw Indo;/
= q^l(y)-lW-l^) Q ^
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Since e^ = 1 for all x C W^ and pw = q1^^, we have

(9.15) T^ = ̂ (w)+^(w))^
T, = ̂ (a;)^

(see [27] 7.9, 7.10). A straightforward calculation shows that the isomorphism

t : ZC(G,p) -^EndG(Indp-1)

of equation 7.2 satisfies t<^ = (^(a;) 0n for any n e N^ projecting to x e W^. Here <I>n is
the unique element of 'H(G,p) supported on JnJ satisfying $n(n) = 1. Thus

q-^v^^q-^t^
- n^1^ fi f ^— Q ^(w)

= q^ By (since x{y^)) = 1)
=q^B^q^B^ (by 9.14)

=^x(-)^7L (by 9.15).

Applying the composition of the isomorphisms between Endc^Indp"1) and 7^ and
between H^ and 7^(ff, lz), this last element is sent to

^-^(^v-r -T-y-r T — n^^^^T Ty A.TwT \.TujT — y /U-y-L •

This proves 9.13 in the level-zero case and thus completes the proof of the lemma. D

We now fix a C-algebra isomorphism ^ : U(G, p) ̂  ̂ {H, lz) as in the Lemma. We
immediately obtain the following commutative diagrams on module categories (where the
top (resp. bottom) rows are induced by ^ (resp. '0)):

U(G, p} - QJtoD ̂  U(H, lz) - 9JtoD

(9.16) ^[ [^H

U{T, x) - 9JtoO ̂  'H(T, lor) - 9JtoD

and

U(G, p) - ajtoD ̂  n(H, iz) - mtoo
(9.17) ^] ^^^

n(T, x) - artoo ̂  ̂ (r, ior) - 9Jtoo.
The isomorphism ^ induces an equivalence of categories between 9^ (G^ and 9li^(^f)

(by composing the inverse of the equivalence W ̂  W12^: 9ti^(ff) -^ ̂ (^, lz) - 9^0^
with the composition of ^ : 1-L{G,p) - SJtoO ^U^H, Ij) - 9JtoO and V ^ V^ :
9^(G?)-^^((^p) - SJtoD). Similarly '0 induces an equivalence of categories between
9^(T) and SHio (T). These are compatible with induction and restriction as described
in the following theorem.
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THEOREM 9.4. - The equivalences of categories 9^(G) ̂  SHi^(ff) (induced by ^ ) and
9^(T1) -^ 9^io^(r) (induced by ^ ) fit into the following commutative diagrams:

^G)-^^(H)
(9-18) ^1 i'̂

^(r)-^^(r).

^G)^^(H)
(9.19) ^T T^w

^(r)^9^(r).

In particular, if v is an unramified character of T, then the representation i^x'^}
corresponds to i%(n\(^)'

Proof. - Combining 9.4, 9.16 and 9.11, we immediately obtain (the commutativity
of) 9.18. Similarly, (the commutativity of) 9.19 follows immediately from (the
commutativity of) 9.5, 9.17 and 9.12. D

10. Square-integrability and formal degrees

Throughout this section we fix a ^preserving, support-preserving (and hence inner-
product preserving) isomorphism of C-algebras ^ : T~i(H^ 1^) ^T-^G^p). This induces
an equivalence of categories between H[H,li) - QJtoO and K{G,p} - 9JtoD. Via
the equivalences W ^ }V11 : ^{H) ̂ H(H, lz) - ajtoO and V ^ VP :
^(C?) ^H^G^p) — 3DToO, we also obtain an equivalence of categories between
yii^(ff) and 9l^(G) = SH^(G). Hence there is a bijection between smooth irreducible
representations of H containing 1 -̂ and smooth irreducible representations of G containing
p. In this section we show that this correspondence preserves square-integrability provided
Z H / Z I G is compact. (Here ZH denotes the centre of H and ZG the centre of G.) This
condition is equivalent to the endoscopic group H of G being elliptic. When Z H / Z G
is non-compact, it is a trivial consequence of our calculations that there exist no (non-
zero) square-integrable representations of G containing p. (Following a standard abuse of
terminology we use the terms square-integrable and square-integrability in place of the
more accurate (but cumbersome) square-integrable-mod-centre and square-integrability-
mod-centre.) We also observe that (when square-integrability is preserved) the formal
degrees of corresponding square-integrable representations are equal (given certain natural
choices of Haar measures). It is well-known that Hecke algebra isomorphisms may be
used to make observations of this sort. This first appeared in the p-adic setting in Howe
and Moy [19]. In section 7.7 of [10] Bushnell and Kutzko obtain analagous results for a
simple type in GL^^F) (in place of p). Their treatment however is general and we have
merely transposed it to our context (often almost word for word).

Remark 10.1. - It would not be difficult to recast the arguments of this section without
explicit mention of the groups H or H. Instead one would work with the 'abstract'
Hecke algebra H^ or appropriate quotients (if G is not semisimple) and directly define
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square-integrability and formal degrees for modules over such algebras via their canonical
inner products (see 6.4).

Let (TT, V) be a smooth irreducible representation of G with unitary central character
c<;̂ . = uj (thus \^{z)\ = 1 for z G Z = ZG\ We say (7r,V) is square-integrable (by abuse
of terminology) if

/ KTr^^^oo ( v e V ^ v E V ) .
JG/Z

Clearly we may replace Z by any cocompact subgroup Z\ of Z.
Whenever Z\ is such a subgroup we fix Haar measures on Z\ and G/Zi as follows.

Let dz be the Haar measure on Z\ such that °Zi = Z\ H °T has measure one. Let dg be
the Haar measure on G giving J measure one. We then choose the induced Haar measure
dg on G/Zi (i.e. d z d g = dg).

Let T~C(G^ u) be the convolution algebra (with respect to dg) of smooth functions
(f) : G —> C which are compactly supported modulo Z\ and satisfy (f)(zg) = ̂ (z)'1^^)
(z G Z\,g G G'). Further, let ^(G,^) be the space of (left and right) smooth functions
( f ) : G —^ C which satisfy (f){zg) = u;{z)~l(/)(g) and are also square-integrable modulo Z^.
We view ^(G,^) as a smooth G-representation by left translations (or equivalently as a
left 7^(G, o^-module). We write * for the usual involution on T~i(G^ w} (i.e. (f)*(g) = <f>(g~1)
for g e C?, 0 G T~i(G^ u))). This is related to the canonical inner product ( , ) on T~i(G^ a;)
by the standard formula

(<^)= / WMdg
JG/ZI

=^*(l) ^^eH(G^)).

It is clear that * and ( , ) extend to ^(G^o;).
Suppose now that (TT^V) contains p. Then a ; | Z i n J = / 9 | Z i n J and thus puj is a

well-defined representation of Z\J. The subalgebra 7^(G, ^o;) of ^(G, u;) is defined in the
obvious way. We have 7^(G,po;) = ep^T~i(G^)ep^ where

e^(rr) = ̂ JZ^/Z^)p^(x)-\x e JZi)

=0 { x ^ J Z ^ ) .

The volume factor /^(JZi/Zi) is in fact one (given our choice of Haar measure on G / Z ] _ ) .
The completion of ^(G, puj) with respect to the (restriction of the) inner product ( , ) is
^(G^) = e^H\G^}e^.

From [10] 7.7.4 (or 7.7.5) we have the following Proposition.

PROPOSITION 10.2. — Let (TT, V) be a smooth irreducible representation of G containing
p with central character u;. Then (TT,V) is square-integrable if and only ifVP = V^ is
isomorphic to a left 1~i(G\ puj)-submodule ^/^(G^o;).

For a fixed uniformiser w in F, the exact sequence (see 4.1)

1 —. °T —. T H^ Y —> 0
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is split by the homomorphism y \-^ y(w) \Y —>T. The resulting isomorphism T ^ °T x Y
restricts to Z to give Z ^ °Z x L where °Z = Z D °T and

L = { y ^ Y \ ( y ^ a ) = 0 ( a e ^ ) } .

We also write L for its image in Z under the embedding / ^ l{w) : L —> Z. Thus we
may view £ as a cocompact subgroup of Z. As above, puj defines a representation of
J L = J Z . There is a canonical surjective algebra isomorphism

given by

P^'.U(G,p]—H(G^pu)

w)w = I ^zm^)dz
Jz

=^>(Wp)
ICL

for (f) e H(G,p), x G G. For I e L, define ^ e U(G,p) by supp^ = J7 and
W = ^(O-1.

LEMMA 10.3. - The kernel of P^ is the two-sided ideal of 7^(G, p) generated by the
elements (f)i — e? ( I G L).

Proof. - Fix a Z-basis / i , . . . , lr of L. Write <^i = < ^ ^ , . . . , ̂  = ̂ . A simple inductive
argument using the relation

(/)W - Cp = {<pi - ep){(j)u - ep) + ((f>i - Cp) + {4>i> - ep) (I, I' € L)

shows that the two-sided ideal of 7^(G?, p) generated by <^i — e ^ , , . . . , ̂  — e? equals the
two-sided ideal generated by <^ - e? (I e L). It suffices therefore to show that KerP^
is generated by ^ - e p , . . . , ̂  - ep.

A straightforward calculation shows ̂  — e? C KerP^; (1 < z < r). Suppose P^(4>) = 0
for ^ G ^(G, /?). We may assume supp (f) C Z J x J for some x G G. Since ^ has compact
support, there exist integers mi < rii (1 < i < r) such that

supp^C |j 41...^JrrJ.
rn! ̂ ^1 ^'^1
m^^ZT.<n^

Note we may assume ^1=1^ ~ m^} > 0- Indeed if n, = m^ (1 < % ^ r), then
supp<^ is contained in a single J-double coset and so P^((f>) = 0 implies (f) = 0. Suppose
mi ^ %i < ni and ^>(^1 . . . l^x) = a / 0. There exists a (unique) function '0 G 'H{G, p)
such that ^(Z^1 . . . l^x) := a and supp-^ = Z^1 . . . l ^ J x J . Consider 0 + -^i - ep).
The support of this function is contained in

|j l\1 . . . l ^JxJ .
yni <ii <ni
m^<Zr<yir-
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Further,
î(^ ... M = / W ... l^xy-^^dy

JG

= /iw^l...^mr^^lrl)^l?)dJj j
=^(^^ l-1^2...^mr.^)a;(^l)- l

=0.

Therefore (^ + ^(^i - ep}}{l^ . . . l^x) = 0 and hence

supp ̂  + Wi - ep)) C |j l[1 . . . l ^ J x J .
mi+Kii <ni
'W^^^^7^
m^^Cr^:71^

Continuing in this way we eventually obtain a function in Ker P^ supported on the single
double coset J x J . Since such a function must be the zero function, this proves the
lemma. D

We also have the embedding I ̂  l(w) : L —> Z^ (where Z-, denotes the centre of H).
Note that L (viewed as a subgroup of Z- via this embedding) is discrete but not necessarily
cocompact. We assume the convolution algebra U{H, l-i} is defined with respect to the
Haar measure on H giving 1 measure one. Then

^-\^)=aai ( l ^ L )

where \i is the characteristic function of II and \ai\ = 1. We define a homomorphism
a/ : L -^ Cx by

cJf(l)=a]-l (;e£).

Then \^uj' is a representation of TL. Using the obvious notation, we form the convolution
algebra 'H(H, Ijcc/) (with respect to the Haar measure dh on H / L such that dl dh = dh
where dh is our fixed Haar measure on H (giving T measure one) and dl is the counting
measure on L). Again we have a surjective algebra homomorphism

P,/ : H{H, lz) —— U(H, W)

given by

P^'W{x) = ̂ a;'(0^)(te) ^ G U(U, li),x G ff).
ICL

Arguing exactly as in the proof of Lemma 10.3, we obtain the following lemma.

LEMMA 10.4. - The kernel of P^' is the two-sided ideal ofT-i(H, lz) generated by the
elements a^i — e (I G L) where e denotes the identity element ofH{H^ 1^).

COROLLARY 10.5. - There exists a unique (^-preserving, support-preserving) isomorphism
of C-algebras

^^'.^(H^i^^n^G.pLj)
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such that the following diagram commutes:

H(H,1^ -^ -H(G,p)

^[ f"
'H(H,liuj')^n(G,pu}).

Proof. - This is clear from Lemma 10.3 and Lemma 10.4. D

"We now verify that ^ is unitary with respect to the standard inner products on
•H(H,lim') and H{G,pw).

LEMMA 10.6. - The canonical inner products ( , ) on H{H, Ira/) and H{G, pa;) satisfy

(^,^0)=(<^) (<MeW,W)).

Proof. - Fix ^i,6>i € n(H,lj). Then

O^P^I,^^!) = ^P^(<Mi*)(i).
Write P^(<f>\6^} = ae + T] where a £ C, e is the unit element of 'H{H, liu>') and
supp?7 nZ-L = 0. Then

^Pc.-(<^i0i*)(l) = ae^ + ̂ (T?)

and supp^^(77) n J L = 0. Therefore

(10.1) ^P^(<MD(l)=^W^r1

where p , { J L / L ) denotes the measure of J L / L with respect to our fixed Haar measure
on G/L.

We also have

(10.2) (Po^i,p^i)=p.'(<Mr)(i)
= ae(l)

= ajjk{ILlL)~1

where J J . ( I L / L ) now denotes the measure of I L / L with respect to our fixed Haar measure
on H / L .

Comparing 10.1 and 10.2 gives

(F î,Pa,'0i) = ̂ -^^^p^^^e,).

Since P^i is surjective, we have

(<M)=cOI^,^0) {<f>,0e-H(H,l^'))
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where c = ^^^. However, by our choices of Haar measures, we have ^ ( J L / L ) =
fi{IL/L) ="1. Indeed, if / € L\G)

( f(g)dg= [ Tf{lg)dg.
JG JG/L ,~rfG JGJL^

Taking / to be the characteristic function of J gives ^ J L J U ) = 1. Similarly fi(IL/L) = 1
and hence c == 1 as required. D

Since ^ preserves the canonical inner products on H{H, Izo/) and T-i(G,puj), it
extends to an isomorphism

^:^2(ff,lza; /)^^2(G,pa;)

on completions and therefore induces a bijection between simple T~L(G^ ^ci;)-submodules of
1-^{G,p^) and simple H(H, lja/)-submodules of U^(H, W).

It is convenient to temporarily use the following terminology. We say a smooth irreducible
representation (a, W) of H is L-square-integrable if its central character 0:0- is unitary on
L (i.e. |^(0| = 1 (I G D) and

{ \{a{h)w,w)\2h<oo (weW.wCW).
J H / L

(If L is not cocompact in Z{H), this notion is vacuous in that only the zero representation is
J^-square integrable. Otherwise, L-square-integrability is equivalent to square-integrability.)
From the analogue of Proposition 10.2, the process W ̂  W12"^' establishes a bijection
between smooth irreducible Z/-square-integrable representations of H containing lz and
simple T-C{H, l2:a;')-submodules of 7Y2(ff, lz^'). Using Proposition 10,2 again, we obtain
a bijection between (smooth, irreducible) square-integrable representations of G containing
p and (smooth irreducible) L-square-integrable representations of H containing Ij.

Exactly as on G, we may write ZH == ^ZuLu where °ZH = ZH H °T and

^={2 /ey | ( ^a ) -o (ae^ ) } .

Let Lff ^ 1°^ == {I € LH | cl = ; (c e ^)}. Note that L^ embeds in Zg (recall
H = H >\ C^) and Z r r / L ^ is compact. Note also that we have the chain of inclusions

Z H ^ Z ^ ^ Z G

(viewing each group as a subgroup of T).
It is clear that if L ^ / L is infinite (equivalently if Z ^ / Z G is noncompact) there exist no

(non-zero) ^-square-integrable representations of H. Therefore, in this case, there exist no
(non-zero) square-integrable representations of G containing p.

Suppose however that L r r / L is finite. Then Z - ^ / L is compact and hence L-square-
integrability on H is equivalent to square-integrability. Further, it is easy to see (e.g. by
using Clifford theory) that there exist (non-zero) square-integrable representations of H
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if and only if L H / L ^ is finite (equivalently if and only if Z H / Z ^ is compact). From
the exact sequence

0 —— L ^ I L —— L H / L —— L H / L ^ —— 0

we see L ^ / L and L H / L ^ are both finite if and only if L H / L is finite (equivalently if
and only if Z H / Z G is compact).

Putting these observations together, we obtain the following theorem. Before we state it
we note (for later use) that L H / L ^ is finite if and only if LH = L^. Indeed, L- = L^
and C^ is a group of automorphisms of LH. Thus it is sufficient to observe that if L is a
Z-lattice and a e Autz (£) then [L : L0'} < oo if and only if L = L0'.

THEOREM 10.7. -;) I f Z H / Z G is non-compact, there exist no (non-zero) square-integrable
representations of G containing p.

ii) If Z H / Z G is compact, there exist square-integrable representations ofG containing p.
Further, a smooth irreducible representation ofG containing p is square-integrable if and
only if it corresponds to a square-integrable representation of H under the equivalence of
categories between W.p(G) and Vi^{H\

Remark 10.8. - For £1 C V, let L^ = {x e X : (x,h) = 0, V/i C £1}. Then Z H / Z G
is compact if and only if L H / L is finite which holds if and only if L±/L^ is finite, i.e.
if and only if Z<1>/Z<I\ is finite. This in turn is equivalent to the statement that H is not
contained in a proper Levi subgroup of G (see Digne and Michel [16] 14.11), i.e. that
the endoscopic group H of G is elliptic.

Remark 10.9. - If Z<I>/Z<t>^ is finite, our restrictions on residual characteristic (in
particular, the fact that p = char kp is not a bad prime for <I>) imply that \ is essentially
tamely ramified, i.e. some twist of \ by a character of G is trivial on Ti. Thus if ^
is not essentially tamely ramified, the category 9^ (G) = 9^(C?) contains no (non-zero)
square-integrable representations. The following example of Tadic [36] (Section 10) shows
that the restriction on residual characterisic (implicit in theorem 10.7) is not always
necessary. (I am grateful to the referee for pointing this out.) Let v{x) = \x\p for x e F^
where F is now any non-archimedean field of characteristic not equal to two. Suppose
^i,. . . ,^n are n non-trivial quadratic characters of Fx linearly independent over Z/2Z.
Consider the character of the standard maximal torus of 5j)(4n, F) corresponding to the
2n-tuple of characters (^'i,'0i,... ,^n,^n). The resulting induced representation of
Sj?(4n, F) (obtained by normalised induction from the standard Borel) has exactly 2n

square-integrable subquotients. When n == 2, one may recover Tadic9 s computation of the
subquotients of this induced representation by straightforward Hecke algebra computations
- the relevant Hecke algebras are the Iwahori Hecke algebras of 5p(4, F) x Sp{^ F) and
Sp(4:,F) x 0(4, F). When n > 2, the methods of this paper do not apply (since the
existence of n quadratic characters ^ as above forces p = 2).

We assume for the remainder of this section that the quotient Z H / Z G is compact. Let
(TT,V) be a (smooth, irreducible) square-integrable representation of G containing p and
(a, W) be the corresponding (smooth, irreducible) square-integrable representation of H
containing l^-.
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The formal degree d(7r) of TT with respect to the Haar measure dg on G / Z is defined by

(10.3) / (7r(^i,wi)(7r(^2^2)^ = d^^^.v^w^w^
J G / Z

for Vi, Wi G V where ( , ) is a G-invariant inner product on V. It is clear (given our choices
of Haar measures on G / Z and G / L ) that we may also integrate over G / L . Since there is an
embedding of V^ into ̂ (G, puj\ we can regard V as a subspace of ̂ (G, a;). Rewriting
10.3 using functions <^,6^ G ^(G^a;) D V and noting (7r(^)<^(9) = (^9*(^~1), we obtain

(10.4) (<ML <M2*) = dM-^^i,^)^^)
where ( , ) now denotes the canonical inner product on T-^C?,^).

Let dz be the Haar measure on Z^ giving °Z^ == Z^ H °T measure one. We then
obtain quotient measures dz = ̂  on ^g/^ and dfa = ^ on H / Z ^ . (Here d/i is the
Haar measure on H giving Z measure one and dl is the counting measure on L.) There
is a positive constant c such that

(10.5) L ^-=-1 I ^tS (^^W^-
JJ^/L az JH/Z- JZ-/L dl dz

Taking / to be the characteristic function of I L / L , an easy calculation yields

I=C^/^°Z^LH/L)

(using the obvious notation). Here we have used Z^ = QZ^LH (which holds since
L- = LH\ By our choice of Haar measure on Z ^ / L , ^z-/L( Z - ^ L / L ) = 1 and hence
^/L{°Z^LH/L) = [LH : L} so that c = [LH : L}-1. H

Returning to 10.4, we assume ̂  61 G ̂ (G, paj)r\V. Write ^jK^z) = ̂ . ̂ J^) = Cz.
Since ^^ preserves inner products, we have

(10.6) (^iCi*^2C2*) = W'^i^XCi^)
where ( , ) is now the canonical inner product on ^(H, Izo/). We also have ^i,0i G
^2(ff,lz^) where ̂  is the central character of (cr,>V) (^|i/ = ^/). Furthermore, if
fi j2 e ^2(ff,lz^) then 10.5 gives

L hWW^ = [LH : LY^^/L^IL} i fi(h)Mh)f
J H / L dl H JH/Z- az

= L ww^J H / Z - az

using ^ Z ^ / L ^ Z ^ I L ) = ^ Z ^ / L ( ° Z ^ L H / L ) = [LH : L}. Therefore 10.6 also holds when
H H ^^

( , ) is the canonical inner product on ^(ff, Iz^a). We alsojiave that the formal degree
d{a) of (a, W) (with respect to our fixed Haar measure on H / Z ^ ) satisfies

(^icr,6C2*) = ̂ r^i^xc^)
where ( , ) is still the canonical inner product on ̂ (H.l^a)' Hence d(7r) = d(a). Thus
the equivalence of categories between 9 ,̂ (G) and ^^{H) preserves formal degrees (with
respect to our choices of Haar measures on G / Z and H / Z ^ ) .
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