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TOPOLOGICAL SUPERRIGIDITY AND
ANOSOV ACTIONS OF LATTICES

BY R. FERES (*) AND F. LABOURIE

ABSTRACT. - The main result proved here is a topological version of Zimmer's cocycle superrigidity theorem.
Several applications are also given which concern lattice actions, rigid geometric structures, and the cohomology
of actions semisimple groups of higher rank with coefficients in vector-bundles. © Elsevier, Paris

0. Introduction

The main result obtained here is Theorem 1.2, which corresponds to a topological,
and more generally C^, version of Zimmer's Cocycle Superrigidity Theorem. Zimmer's
theorem is concerned with cocycles over actions of a semisimple Lie group G of real
rank at least 2 and its lattices by automorphisms of a finite measure space, while here
we consider actions of G by automorphisms of principal bundles such that the actions
of certain subgroups of G on the base are topologically transitive. Our results, in fact,
extend the main theorem of [18].

The proof given here is not just an adaptation of the classical proofs. We shall sketch in
the appendix how to obtain Margulis-Zimmer superrigidity using the ideas of our proof. We
would like to point out, however, that there are no essentially new ideas in the approach
given here. Its main advantages are that it is perhaps a shorter and in some sense more
axiomatic way of presenting old and beautiful ideas.

In its general form, the main theorem gives information about the action only on an
open dense (^-invariant subset of the manifold. Using an idea due to Zimmer ([18]), which
is explained in Section 6, Theorem 1.2 can be specialized so as to yield a conclusion that
holds everywhere on the manifold. (Theorem 1.6.)

Part of the content of the main theorem can be rephrased in cohomological terms, which
is done in Section 7. The main result in that direction. Theorem 7.1, gives conditions for the
vanishing of certain cohomology classes associated to actions of G on vector bundles. One
useful consequence of Theorem 7.1 is Corollary 7.4, which gives conditions for smooth
G'-actions on vector bundles to preserve a connection.

The main applications of Theorem 1.2 obtained here are Theorems 1.7 and 1.8. The
former, discussed in Section 8, solves in a very special case a general problem posed by
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600 R. FERES AND F. LABOURIE

Zimmer of the classification of smooth actions of lattices in G on compact or finite volume
manifolds. The latter theorem, discussed in section 9, is concerned with the notion of rigid
geometric A-structures, introduced by Gromov in [4]. We show that if a subgroup K of G
preserves a rigid geometric A-structure and if G and K satisfy the dynamical assumptions
of the main theorem, then G itself must also leave invariant some rigid geometric structure,
although it may only be defined on an open dense G-invariant set.

We would like to thank Y. Benoist, P. Pansu and D. Witte for their helpful suggestions
during the preparation of the manuscript.

1. Statements of the main results

The general setting for the theorems discussed here will be a C8 (s > 0) right principal
H -bundle TT : P —> M over a manifold M, where H is a real algebraic group. Suppose,
moreover, that a Lie group G acts on P by left principal bundle automorphisms, the
action being C8.

For a given subgroup L C H and an open subset U C M, we refer to a C8 .L-subbundle
Q of P | u as a C8 L-reduction of P over U. The L-reduction is said to be G-invariant if
U is a G-invariant set and G acts by automorphisms of Q, that is, if Q is a G-invariant
subset of P.

An important definition is the following.

DEFINITION 1.1. - (Cf. [17 9.2.2].) Let L C H be a real algebraic subgroup and suppose
that P admits a G-invariant C8 Li-reduction over some G-invariant open dense subset
U C M. The conjugacy class of L in H will be called a C8 -algebraic hull of the G-
action on P if L is minimal in the following sense: there is no proper real algebraic
subgroup Li C L such that P admits a G-invariant C8 L^-reduction over some open dense
G-invariant subset of M.

Let G denote the connected component of a semisimple real algebraic group. Recall that
the real rank of G, rankeG,, is the dimension of a maximal split torus in G. A 1-parameter
subgroup T of G is said to be R-semisimple if, for each linear representation p of G, p(a)
is diagonalizable with real eigenvalues for all a e T.

Our main goal is to prove the following theorem.

THEOREM 1.2 (Topological superrigidity). - Let G have real rank at least 2 and act by
H-bundle automorphisms on some C8 principal H-bundle P over a manifold M such that
the action is also C8. Assume that

(i) H is the C8 algebraic hull of the G-action;
(ii) every R-semisimple 1-parameter subgroup of G acts topologically transitively on M

and admits a dense set of recurrent points, i.e., points that are contained in their
own uj-limit sets.

Assume furthermore that there is a subgroup K C G with the following properties:
(iii) K acts topologically transitively on M,
(iv) K commutes with some R-semisimple 1-parameter subgroup of G,
(v) the C8 algebraic hull of the K-action does not contain a nontrivial normal subgroup

of H.
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TOPOLOGICAL SUPERRIGIDITY AND ANOSOV ACTIONS OF LATTICES 601

Then, there exists a continuous surjective homomorphism p \ G —> H and a C8 section a of
P\u^ for some open dense G-invariant subset U of M, such that for all g G G and x 6 U,

ga(x) = a(gx)p(g).

The theorem can also be stated as follows. Given a homomorphism p of G into H and
a G-action on M, we can build a G-action on the trivial bundle M x H, which we call
a p-action, such that g(x, h) = ( g x , p(g)h), g G G, (x, h) G M x H. Then the conclusion
of the theorem is that, at least on some open dense G-invariant subset of M, the original
G-action on P is C8 conjugate to a p-action. (The conjugacy is given by <I>(rr, h) = a(x)h.)

The theorem above is different from the topological superrigidity theorem of [18] in that
we do not assume the existence of invariant measures or of a parabolic invariant structure.
The latter is replaced with the much weaker hypothesis (v) on the hull of a smaller group,
which can actually be just a 1-parameter subgroup.

In the G° case of the theorem M need only be a Baire topological space. If M is
actually a finite dimensional topological manifold (or, more generally, a second countable,
locally compact metrizable space), then the recurrence condition (ii) on 1-parameter groups
follows from topological transitivity, as a simple argument shows. Moreover, if the G-
action on M preserves an ergodic probability measure whose support is M, an application
of Moore's ergodicity theorem and Poincare recurrence gives the following corollary, in
which topological transitivity and recurrence are replaced by ergodicity of G.

THEOREM 1.3. - Suppose that a connected semisimple group G of real rank at least 2
acts by H-bundle automorphisms on some C8 principal H-bundle P over a manifold M
such that the action is also C8.. Assume that the action preserves an ergodic probability
measure -whose support is M and that H is the C8 algebraic hull of the G-action. Assume
moreover that there is a noncompact subgroup K C G such that K commutes with some !R-
semisimple 1-parameter subgroup ofG and that the C8 algebraic hull of the K-action does
not contain a nontrivial normal subgroup of H. Then, there exists a continuous surjective
homomorphism p : G —> H and a C8 section a of P\u, for some open dense G-invariant
subset U of M, such that for all g e G and x G U,

ga{x) =a(gx)p{g).

The next result uses an observation due to Zimmer [18] that will be explained in
section 6. Zimmer's result complements our main theorem by giving conditions for the
section a to be defined on the entire manifold. We first give two definitions.

Let V be a smooth real algebraic variety equipped with a real algebraic left action of
H. By a C8 geometric structure of type V on P we mean a C8 section of the associated
V bundle Py.

DEFINITION 1.4. - [18] Suppose that G is the identity component of a real algebraic
semisimple group. A geometric structure ip on P is called a parabolic invariant if it is
invariant by some parabolic subgroup of G.

DEFINITION 1.5. - [18] The G-action on the H-bundle P is said to be effective relative to
the geometric structure a : M --> Py if, for some x e M, the group of automorphisms of
Px fixing {g^o')(x) for all g G G is trivial, where E is associated to (p as indicated earlier.
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602 R. FERES AND F. LABOURIE

THEOREM 1.6. - In addition to the assumptions of the main theorem, suppose there exists
a C8 parabolic invariant relative to which the G-action is effective. Then the C8 section a
obtained in the main theorem is defined over the whole manifold.

We state now an application of the main theorem to smooth actions of a lattice group r
in G. The main new point is that no invariant volume form or measure will be assumed.
Even though our primary concern here is the action of F on some compact manifold M,
it will be necessary to refer to an induced action by G, defined by a standard suspension
construction. We recall that an action on M by a lattice F in a Lie group G induces in a
canonical way an action of G on the manifold N := (G x M)/r, which is the quotient
of G x M by the action of F, given by

(g,x) -7 := (g^.a^^x).

G acts locally freely on N, so that the foliation of N by fibers M[^] := P"1^^]) is
preserved by the action and is everywhere transverse to the G-orbits. We denote the
transversal foliation by M.. Also remark that each fiber of M. is diffeomorphic to M.

Since N may fail to be compact (when the lattice is not uniform), it will be necessary
to assume the existence of a Riemannian metric on N with norm || • || for which \\g^\\ is
uniformly close to 1 for all g sufficiently close to e. In particular, as G is connected, \\g^\\
is uniformly bounded for each g 6 G. (This is clearly satisfied for the model actions, for
example, the suspension of the affine action of SL{n^ Z) on the n-torus.)

Also with respect to || • |[, we say that k G G is an Anosov element if TA4 decomposes
as a continuous direct sum of subbundles

TM = E~ C E^

such that k (resp., k~1) is uniformly contracting on E~ (resp., E^\ i.e., there is A,
0 < A < 1, such that \\k^\E-\\ ^ A (resp., IKfe-1)^]! ^ A). We call E- (resp., E^)
the stable (resp., unstable) subbundle of k.

THEOREM 1.7. - We assume that a lattice F of G = SL(n, R), n >_ 3, acts smoothly on
a compact manifold M of dimension n. Suppose^ moreover, that for the induced G-action
on N = (G x M)/r, ( i ) every R-semisimple 1-parameter subgroup ofG acts topologically
transitively on N and ( i i ) some regular element k of G is Anosov. Then M is aflat torus for
some smooth Riemannian metric and the T-action is a standard affine action "with respect
to that metric.

We point out that the standard actions on tori satisfy the conditions of the theorem.
We do not know, however, how to restate condition (ii) in terms of Anosov elements in
r, rather than in G.

Theorems concerning the rigidity of actions of lattices on tori have been obtained by
several authors. We mention [5, 10, 8, 9, 14, 3] among others. To our knowledge Theorem
1.7 is the first global result of this kind which makes no reference to invariant measures,
or to assumptions on the topology of the original manifold. We also point out that the
Franks-Newhouse theorem, which implies that codimension-1 Anosov diffeomorphisms
can only exist on tori, is not used here.

The result below is an application of the main theorem to rigid geometric structures.
The notion of a rigid geometric A-structure was introduced in [4] and it generalizes the
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classical geometric structures of finite type of Cartan. We show in section 9 that under the
dynamical assumptions of the main theorem, if a subgroup K C G preserves a smooth
rigid geometric structure, then G must also preserve a (possibly different) rigid geometric
structure on a G-invariant open dense set. More precisely, we have the following theorem.

THEOREM 1.8. - Let G be a connected semisimple Lie group of real rank at least 2
that acts on a smooth manifold M so that every R- semisimple 1-parameter subgroup of
G acts topologically transitively on M. Let K be a subgroup of G that commutes -with
some R-semisimple 1-parameter subgroup of G and acts topologically transitively on M.
Suppose moreover that K preserves a smooth rigid A-structure on M. Then G preserves a
smooth rigid A-structure on some open dense G-invariant set U C M.

An important example of rigid structure is an affine connection. We prove in section 7
that under the same conditions as in the above theorem, if the ^-action preserves a
connection on some open dense subset of M, then so does G. This will be consequence
of a general cohomology vanishing result for G-actions on vector bundles over M.

2. The topological Furstenberg lemma

Let P be, as before, an H -principal bundle over M and T a group that acts on P by
bundle automorphisms. Let V be a smooth real algebraic variety and suppose that both T
and H act on V algebraically, and that the actions commute. Let $ be a T x ff-equivariant
map from P\jj into V, where U is an open dense set in M. The proposition below, which
will be referred to as the Topological Furstenberg Lemma, gives conditions for $ to take
values in a single H -orbit in V. It will be of basic importance throughout the paper.

The usual set up of a C8 principal H -bundle P over a manifold M is now in place. V
is a smooth real algebraic variety equipped with an algebraic action of H.

PROPOSITION 2.1. - Let T be a 1-parameter group of homeomorphisms ofP commuting
with the right H-action and let S be a real algebraic group isomorphic to either the additive
group H or the multiplicative group R — {0}. We suppose that S acts algebraically on V,
commuting -with the action of H. Let <I> be an H x R-equivariant continuous map from
P\u into V, where U is an open dense T-invariant subset of M. (More precisely, there is
a homomorphism p from T into S such that

^(IpK) = h-^pd^p} = p^h-1^?]

for all I G T, h G H and p G P\u-) Then, after possibly having to restrict $ to P\u'
for some open dense subset U ' of U, $ takes values into a single H-orbit in each of the
following two cases:

1. T acts on M topologically transitively and S acts trivially on V.
2. T acts on M topologically transitively with a dense set of recurrent points, and S

acts possibly nontrivially on V.

Proof. - We recall the following stratification theorem for algebraic actions due to
Rosenlicht ([4]). If a real algebraic group B acts regularly on a smooth real algebraic
variety V, then V decomposes as a disjoint union V = Vi U ... U Vm of B-invariant
smooth subvarieties Vi such that the union Fi :== Vi U .. . U Vm is Zariski closed in V for
each i < m, Vi is open and dense in Fi and the B-orbit of a point of Vi is closed in Vi.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



604 R. FERES AND F. LABOURIE

Furthermore, the quotient V i / B has a natural structure of smooth real algebraic variety for
each i and the quotient map Vi -^ Vi/B is a smooth fibration for each i. In particular,
each B-orbit is embedded into V.

Now we let Vi, i = 1, . . . , m, be the smooth varieties given by the Rosenlicht stratification
for the action of H x S on V. We first observe that <I>, restricted to some open and dense
subset of the form P\u', V C V, must take values into a single stratum Vi. In fact, for any
x G U with dense T-orbit in M and any p e P in the fiber above x, the image under <I> of
the T x H -orbit ofp is entirely contained in some V,, since these strata are T x H -invariant.
But Vi is open in its closure so, by continuity, ^"^y,) is open, T x H -in variant, and
contains a dense subset of P\u. Therefore, ^'^V,) is of the form P\u' as claimed.

Consequently, the restriction of $ to P\u' factors through the bundle projection to
define a continuous T-equivariant map $ from V into a smooth real algebraic variety,
Wi = V i / H . In case (1), this map is T-invariant, hence constant by topological transitivity,
and the claim follows.

In order to consider case (2), we first remark that every recurrent point under the action
of S on Wi is a fixed point. In fact, by the recurrence assumption and the fact that orbits
of S are locally closed, the stabilizer subgroup of S for that point must be a nontrivial
Zariski closed subgroup of S, and hence it must be all of S since S is 1-dimensional; that
is, every recurrent point must be a fixed point for S. The set of 5'-fixed points of Wi is
closed, and by the assumption (2), a dense set of points in x is taken under $ to that set.
Therefore, $ is ^-invariant and the argument of part (1) applies, concluding the proof. D

COROLLARY 2.2. - Let V be a smooth real algebraic variety equipped with a regular action
of a real algebraic group S isomorphic to R or R - {0} (as real algebraic groups). Let T
be a 1-parameter group of homeomorphisms of a topological space M acting topologically
transitively and having a dense set of recurrent points. Suppose that (f) : U —> V is a
continuous map defined on an open dense T-invariant subset U C M and is T-equivariant,
i.e., there is a continuous homomorphism p : T —^ S such that

^lx)=p(l)^x)

for each I 6 T and each x G U. Then, <I> is constant and its value is a fixed point under S.

Proof. - Set H = S and P == M x S. T acts on P on the left as l(x, s ' ) = (Ix, s ' ) and
S acts on the right as {x, s^s = {x, s ' s ) . Define <I> : U x S —^ V as <^{x, s) := s'^-^x).
Then, since S is abelian, the equi variance condition of the proposition is satisfied and
the claim follows. D

It will be helpful to keep in mind the following trivial remark. Suppose that manifolds
TVi and N^ are equipped with C8 actions of groups Bi and B-^, resp., and let p : B^ —> B^
be a homomorphism. Let F ' : W —^ N^ be a C8 map from an open subset W of TVi
that satisfies the following equivariance condition: For each b e B^ and x G W such
that bx G W, we have F(bx) = p{g)F{x). Then there is a unique C8 map F from the
B^ -saturation of W into N^ that restricts to F on W and such that, for all x e B^W and
all b G Bi, F(bx) = p{b)F(x). In other words, in such a situation we may assume without
loss of generality that W is Bi-invariant. F is, of course, given by F(bx) = p(b)F(x),
for b G BI and x G W, and it is immediate to check that it is well-defined.
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TOPOLOGICAL SUPERRIGIDITY AND ANOSOV ACTIONS OF LATTICES 605

3. ff-pairs

We denote by f^P^Y) the space of all geometric stmctures of type V and class
C8, defined over an open subset U C M. Recall that these are simply the ff-equivariant
C8 maps from P\u into V. A group B of C8 automorphisms of P leaving U invariant
defines a left-action on £s(P\u^ V) by g • y := (p o g~1, for g G B and (p G ^(Pic/, V).
Given j? G P|[/, we denote by e? the evaluation map which associates to ip G f^P]^, V)
its value y?(p). Remark that e? o g = ^g-1?-

DEFINITION 3.1 (ff-pair for B). - Let W be a subset ofS8^^^ V), where U is an open
dense B-invariant subset ofM and W is assumed to be B-invariant, i.e. b ' (p G W for all
(p G W. We say that (W, V) defines a C8 ff-pair for B if the following conditions hold:

1. For each p G P|^, the evaluation map Cp : W —» V is injective and Wp := e?(W)
is a real subvariety of V.

2. For each p ^ p ' G P\uv
Tp^ :=ep0 e~^ : Wp, -^ Wp

is an H -translation, that is, one finds h G H such that Tp^{v) = hv for all v G Wp'.
3. H acts transitively and effectively on V.
Heuristically, an £T-pair can be thought of as follows. Starting with a principal H -bundle

and an algebraic H -space V, one forms the associated bundle whose typical fiber is V.
Then an ff-pair is an algebraic subset of sections of this associated bundle. The reader is
advised to think of the corresponding situation when one replaces the word 'algebraic' by
'linear,' and studies vector spaces of sections of a vector bundle as in [12].

It should be remarked that condition 3 implies that V is a homogeneous space of the
form H / H Q , where HQ does not contain a nontrivial normal subgroup of H.

The collection of all H -translations from Wp into V is naturally identified with H / F p ,
where Fp is the group Fp := {h G H \ hv = v for all v G Wp}. Moreover, it follows from
property 2 that for each p G P\u and & G B, there is h G H such that e?(b' (p) = hep((p),
for all y? G W. (The ^-translation corresponding to h is n-ip^p.) Therefore, one associates
to each p G P\u a C8 homomorphism

p p : B - ^ N p / F p ^ pp(b)=epoboe;\

where Np := {h G H \ hv G Wp for all v G Wp}. In other words,

e p { b ' y ) = pp{b)ep(y),

for y? G W and b G B.
The ff-translations Tp^q : Wp —^ Wq satisfy the following elementary properties, which

we are going to use freely in the sequel and to which the reader refered to when checking
formal computations.

^~bp,q = '^~p,b~lq

PpWTp^ = Tp,qpq(b)

Pph{b) = h^ppWh
'Tph.qh' = h~ Tp^qh'

Up^'q = PpW^Tp^qpq^)

where p,q G P\u, b,b' G B and h,h' G H.
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606 R. FERES AND F. LABOURIE

We say that an ff-pair (W^,V) is contained in another If-pair (W^,V) if TVi c
fs(pl^l^y). ̂  C f^PI^,^) are defined over open and dense sets (7i and E/2, and if
for every y?i e Wi one finds y?2 € tV2 such that the two maps agree over (7i D U^.

It will be convenient in v/hat follows to identify pairs (W^, V) and (W^, V) if each one
is contained in the other. This indeed defines an equivalence relation and we write [W, V]
for the class represented by (W, V). We say that [W^ V] is contained in [W^, V], and write
[Wi, V] < \W^, V], if a representative of the former is contained in a representative of the
latter. Due to the fact that we consider open dense sets, < defines a partial ordering.

We say that the ff-pair [W, V} for B is maximal if it is equal to any other ff-pair
in which it is contained.

DEFINITION 3.2 (Invariant and hyperbolic pairs). - A C 8 H-pair (W, V) for B defined
over a dense B-invariant open set U C M will be called invariant if b ' (p = </? for all
(p G W and b G B. It is A-hyperbolic, for a subgroup A of B, if pp(a) is a R-semisimple
element of the real algebraic group N p / F p (defined earlier) for every p G P\u and a G A.

LEMMA 3.3. - Every C8 H-pair for B is contained in a maximal C8 H-pair for B.
Similarly, every invariant (resp., hyperbolic) C8 H-pair for B is contained in a maximal
invariant (resp., maximal hyperbolic) C8 H-pair for B.

Proof. - We will construct for any given increasing sequence of C8 ff-pairs for B,

[W1, V] < [W2, V] < . . . < [W1, V] < . . . ,

a C8 ff-pair for B, [W°°, V], which contains each one in the sequence. The claim will
then follow from Zom's lemma.

We choose a representative (W\ V) for each pair, where W1 is a subset of £s(P\Ui, V),
and Ui is an open dense B-invariant subset of M. By the Baire property, the intersection
of all Ui is nonempty (in fact, dense) so that we can fix a po e P that projects to a point
in that intersection. For each p e P\u,, we denote W^ := ep(W1} and define

^p:=epOe^:W;^W^

which is an H -translation, by definition of an ff-pair. Therefore, we may regard ^ as
an element of H / F ^ where F^ is the (real algebraic) subgroup of H that fixes W^
pointwise. Thus, we obtain a C8 ff-equivariant map

^ : P\u^ -. H / KPo

defined by ^(p) := ^p. Remark that for any given w G W^ we recover (p e Wi by
the equation y?(p) = ^i(p)w.

The sequence of subvarieties W^ of V is increasing, so the sequence of real algebraic
subgroups F^ is decreasing. By the descending chain condition for algebraic groups there
must be a finite index %o such that F^ = F^ =: F^ for all % > %o. Consequently, for
all ij > io, the maps ^, ̂  agree on P|^n^. (Remark that if, say, j > i, then the
H -translation ̂  is the restriction of ^ to W^ and is of the form w ^ hw for some
h G H and all w <E W3^ so that ̂  = ̂  if F^ = F^.)

The above observations show that a map ̂  can be defined on P|u,>, u, extending
all ^,, for i > io and is, in particular, a C8 map. Moreover, if Wp°° denotes the Zariski
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TOPOLOGICAL SUPE;RRIGIDITY AND ANOSOV ACTIONS OF LATTICES 607

closure of the union of all W^, i ̂  io, we have that F°^ must fix W°^ pointwise; hence
F^ is the full subgroup of H that does so.

We now define on the B-invariant dense open set E/oo := Ui>i ^ an H-psm (W°° ^ V)
for B as follows. Set W°° C ̂ (P^.V) to be the collection of C8 maps ̂ , w e T^,
defined by

^w(^) ̂  ^oo (^)^.

It is now routine to check that properties 1, 2, and 3 in the definition of an ff-pair are
satisfied. In fact, property 1 results from ^-translations being injective; for property 2,
remark that Tp^ : W°° —^ W00 is the H -translation that corresponds to ^oo^^ooO^)"1;
and property 3 holds since V and the ff-action on it have not changed.

The homomorphisms p°° associated to the I^-pair just constructed can be described
as follows. For each i and p G P\u^ there is a C8 (hence C°°) homomorphism
^ : B -^ 7V;/F; such that ep(g • (^) = P^g)e^) for all (^ G VP and cy G B. It
follows that for the same i ^ p ^ g ,

^i^p) = p^Wz(pY
Since ̂  and ^ agree on P\u,r\u^ f01' ^J > ^o? we must have, for p in that set, that
p3 (g) = pp{g) for all ^ G B. We thus obtain a family of homomorphisms p^ from B into
N p ° / F p ° extending p ̂  p^ over P|^ such that ^oo(^~1^) = p^°(p)^oo(p). Remark
that the homomorphisms depend C8 on p. Here, 7Vp50 denotes the algebraic subgroup of H
that fixes Wp° as a set (not necessarily pointwise). It contains Fp° as a normal subgroup.
It now follows from the definition of (^ G W°° that ep(^ • (/^) = P^W^p^w)' (The
action of B on IV00 is canonically defined by restricting the natural action on the space
of geometric structures over U.)

If each AT-pair (W\ V) is invariant, the same property is clearly inherited by (W°°, V). If
they are hyperbolic, let g G B,p e P\u^. and consider the decomposition p^(g) = lulelh
into unipotent, elliptic and R-semisimple parts. Then for all p e Uoo, the union of Wp,
i >, io, has each of its points fixed by lu and Zg. Since W°° is the Zariski closure of that
union, lu and Ie must be the unit element in N p ° / F p ° . D

4. ff-pairs for centralizers

The set up of section 3 is still valid. Furthermore, we assume that a Lie group G acts
C8 on P by principal bundle automorphisms and that B is a subgroup of G. If Z is a
subgroup of the centralizer Zc(B) of B in G, we would like to know when an H-psiir
for B can be shown to be an ff-pair for Z as well. The next lemma gives sufficient
conditions for that to happen.

LEMMA 4.1. - Suppose that (W, V) is a maximal invariant C8 H-pair for B, and that B
acts topologically transitively on M. Then (W^ V) is an H-pair for Z. More precisely, ifW
is defined over an open dense B-invariant set U C M, its elements can be extended above
the saturation U ' = Z ' U so that (W, V), now defined above U ' , is a C8 H-pair for Z.
The same conclusion holds if(W^ V) is a maximal T-hyperbolic C8 H-pair for B for some
T C B such that T acts on M topologically transitively with a dense set of recurrent points.
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Proof. - Fix z G Z and define ^ • W to be the set of all maps z ' ^ := y? o ̂ -1, (^ G TV.
One easily checks that {z • W, V) is a (7s ff-pair for B defined over ^((7).

Set W2 := z • IV U W and W; := e^) = W,-^ U Wp. . We claim that (W\ V)
is a (7s ff-pair for B, defined over (P := z{U) n (7. To show that, we first check that
the evaluation maps e? : TV2 —^ V are injective, for p in some open dense ^-invariant
H -in variant subset of P.

For any p,qo G P\u^ we recall that the H -translation Tp^ on TV^ may be regarded
as an element of H/Fq^ where Fq^ is the subgroup of H that leaves Wq^ pointwise
fixed. Define now a map

^ : P\u. - H / F q , X H / F q , ^{p) = (T^T,-^).

Notice that H x B act on ff/^o x HIFqQ diagonally, H acting on the left and B acting
on the right via the homomorphism p^ : B -^ NqjFq^. The map is H x B-equivariant:

^((M) -p) := ̂ (bph-1) = h^{p)pq,{b)-1 =: (M) • ^o(p)

where p € P\u. and (/i,b) G H x B.
Applying the topological Furstenberg lemma, it follows that ^^, restricted to P\u' for

some open dense 5-invariant subset U ' C U " , takes values into a single ff-orbit. We can
now conclude that the evaluation map eq\WZ —> Wq is injective for all q e P\U' in the
following way. If q G P\u'^ ^i € W, and ^ • y?2 e ^ • TV, then

(^.(^•^(g)) = (^,90(^1(^0)), ̂ -1^^(^2(90)))

= (^^(^I^O)),^-!^^^^)))

= (^l(p),^2(^-lP))

= ^(^1(P)^'^2(P)).

Therefore, if (^i(g) = 2; • ̂ {q), we conclude ^1(75) '= z ' ^(p) for all p G P|c7/.
It also follows from the equality (r^^-i^) = {hrp^, hr,-ip^) that r^p : W^ ->

W^ is an H -translation given by Tg^(w) = hw. Such an h is uniquely defined up to a
right translation by elements in the group

F^ = F^-ip n Fp = {h e ff I /^w = w for all w <E W^}.

The third property of an ff-pair is trivially satisfied since V and the 17-action on it have
not changed.

The previous discussion shows that (WZ, V) is an i^-pair for B defined over z{U) n U
and that by construction, it contains (W,V). We can now use the maximality of (W,V)
to conclude that

[W,V]=[z'W,V}=[W\V].

In particular, each (p G W extends above a {z) -invariant open dense subset of M, which is
also 5-invariant and we may assume that W is {z) -invariant. Since z is an arbitrary element
of Z, we conclude that W is Z-invariant. In particular, (IV, V) is an ff-pair for Z. D
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LEMMA 4.2. - Let Z be a group of H-bundle automorphisms commuting with the B-
action. Assume that the action of B on M is topologically transitive and there exists a C8

H-pair (W, H / H o ) for B. Then, there exists a C8 H-pair ( W ' , H / F ) for Z such that F is
a subgroup of Ho. Moreover, denoting by TT the natural projection from H / F onto H / H Q ,
there is (p G W such that TT o ip e W.

Proof. - The ff-pair {W, H / H o ) for B is defined over some open dense B-invariant
subset U C M and we recall that HQ does not contain a nontrivial normal subgroup of
H. Fix a point qo G P\u' By translating qo in its fiber by some appropriate element in
ff, we may assume without loss of generality that Wq^ (the image of W in H / H o under
the map e^) contains the coset Ho, i.e. there is (po G W such that y?o(<7o) = Ho. Notice
that if p G P\u, then

^o(p) = rp^Ho.

The group F := Fq^ of elements of H that fix Wq^ pointwise is a subgroup of Ho
(since it fixes, in particular, the coset Ho), and therefore, it does not contain a nontrivial
normal subgroup of H.

Let N := Nq^ be, as before, the subgroup of H that stabilizes Wgp, which contains F
as a normal subgroup, and set A := N / F .

We regard Pi := P\u x A as a principal bundle with group H^ = H x A and right-action
given by the product action. We define on H / F a right ffi-action given by

r • {h^a} = h~lra^

for r G ff/F and (/^, a) G JFfi and introduce the map

-0 : P], -^ H / F , ^{p, a) := Tp^a.

Notice that 7r(^(j),e)) = (^o(p)» for p G P|[/. A simple calculation also shows that -0
is ffi-equi variant, i.e. ^{ph.aa') = h~l^{p,a)af, for (p,a) G Pi and {h,a'} E H^.
Moreover, with respect to the left B-action on Pi given by

b ' { p , a ) := (bp,pq^(b)a\

^ is B-invariant. In fact,

^(&(p,a)) = ̂ (bp, pgo(6)a)
=rbp^Pqo{b)a

^^-WgoW61

^^QO0^

='0(p,a).

Therefore, ( { ^ } , H / F ) defines an invariant C^ I^i-pair for B. By Lemma 3.3, there
exists a maximal 0s invariant Jfi-pair for B containing { { ^ } , H / F ) , which we denote
( W ^ H / F ) .
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Define a left Z-action on Pi by

z - { p , a ] := Op, a).

It is immediate to check that the Z-action commutes with both the B-action and the
ffi-action on Pi. Therefore, by Lemma 4.1, (W^, H / F ) is an ffi-pair for Z. Let now W
be the space of maps (p : P -^ H / F of the form y(p) := (^i(p,e) for some ̂  G Wi,
where e is the identity element in A. It also follows that ( W ^ H / F ) defines a (7s ff-pair
for Z. Finally, as we already noted above, (po is the image of some element of W under
the map from W to W defined by post-composition with TT. D

5. Proof of the main theorem

Before beginning the proof of the main theorem, we collect a few facts concerning
semisimple algebraic groups of real rank at least 2. The reader may refer to [2] or [12]
for the facts stated here.

Let G denote a semisimple real algebraic group and T a maximal real split torus. It
will now be assumed that G has real rank at least 2. Let R = R{T, G) denote the set of
roots of the adjoint action of T on the Lie algebra Q of G and let T^ denote the torus
of codimension one defined as the identity component of the kernel of a in T. Then the
centralizer ZG^T^) of Ta is a reductive R-group whose semisimple part S^ is isomorphic
to either SL{2,R) or P57L(2,R). Moreover, S^ intersects T in a one dimensional torus
To, such that T^ and f^ together generate T. The centralizer of ta in G also is a reductive
group whose semisimple part contains T^.

Essentially the same argument as in [12, 1.2.2, p. 39] proves the following claim.

PROPOSITION 5.1. - Each g e G can be written as a product g = g^... gi, where, for
each i, 1 < i < I , g^ G Zo(Ta) for some a G R.

With these facts, we can now begin the proof of the main theorem. The C8 algebraic hull
HO of K determines a C8 IT-invariant geometric structure <^o '• P\Uo -^ H / H Q , where Uo
is some open dense J^-invariant subset of M. It is immediate to check that ({^o}, H / H o )
is a C8 ff-pair for K defined over Uo.

We can now apply Lemma 4.2 to obtain a C8 ff-pair for {ho), where ho is some
R-semisimple element of G commuting with K, which exists by assumption. That R-
semisimple element is contained in some real split torus T, and the same lemma implies
the existence of a C8 ff-pair for T, which is clearly also an ff-pair for any of the T^ or T^.

Lemma 4.2 once again, applied now to T^ for any fixed a, gives a C8 H-pair for the
centralizer of T^. The result is a C8 ff-pair which is hyperbolic for T^, since the latter
group is contained in the semisimple part of that centralizer. Using Lemma 3.3 we obtain
a maximal hyperbolic C8 ^f-pair (W,V) for T^.

We claim the existence of a T-hyperbolic H-psiiv for T. To obtain such a pair, fix
a G R and a maximal f^ -hyperbolic C8 ff-pair for T^, which we denote (W,H/L).
We may assume that a and (W, H / L ) have been chosen so that L is minimal, that is, if
(3 G R and ( W ' . H / L ^ is a maximal T^-hyperbolic C8 H-pair for fp such that L' C L,
then L' = L. By the descending chain condition for algebraic groups, such an a and
{W,H/L) exist indeed.
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Lemma 4.1 implies that ( W ^ H / L ) is also an ^f-pair for any element of T, since T
centralizes T^. Let now II be a hyperplane in T* (the dual space of T) spanned by roots and
complementary to a, and let u G T be a nonzero vector orthogonal to 11 with respect to the
Killing form. We apply Lemma 4.2 to obtain a C8 ff-pair ( W ^ H / F ) for the centralizer
of u in G, where F C L. Notice, in particular, that ( W ^ H / F ) is an AT-pair for T. On
the other hand, for any root /3 e II, 5^ centralizes u, and since T^ C S p , we conclude
that ( W ^ H / F ) is T^-hyperbolic. Using the minimality of L we conclude that F = L.
Moreover, by the second part of Lemma 4.2 and the fact that F = L, the intersection
Wo := W H W is not empty. Since both {W,H/L) and ( W ^ H / L ) are Impairs for T,
the intersection ( W Q ^ H / L ) also defines an ff-pair for T.

We claim that (Wo^/^) is the desired T-hyperbolic .Ff-pair for T. First notice that
since ( W , H / L ) is T,,-hyperbolic and ( W ^ H / L ) is f^-hyperbolic, (IVo,^/^) is both
To-hyperbolic and T^-hyperbolic for all roots (3 G II. But To, and the groups T^ for
/3 C ^ n II together span T. Therefore, as T is abelian, (Wo, H / L ) is T-hyperbolic.

Let (W, V) be a maximal C8 T-hyperbolic ff-pair for T. We wish to prove that it
is an ff-pair for the centralizer ^c(Ta) for each root a. To that end, let a be a root
and let 11 C T* be now a hyperplane containing a and spanned by roots. Let u G T
be a nonzero element annihilated by all the elements of 11 (in particular, u G T^ for all
f3 G R H II) and consider a maximal (u) -hyperbolic H-psiiv for T, (W^V), containing
(VF,y). By Lemma 4.1, (W^V) is an I:f-pair for Zo{u}, hence it is T^-hyperbolic for
all f3 e n H R, since f^ C 5^ C ZG(T^ C Zc(u). But H together with the groups T^
generate T, so that (W^V) is T-hyperbolic. By maximality, we obtain that W = W,
so that (W,V) is an ff-pair for Zc(u). But u G T(,, so that ^(^a) C Zo(u), hence
(H^V) is an ff-pair for Zo(Ta), as claimed.

We claim, now, that the H-pim (W, V) obtained above is, in fact, an ff-pair for the
whole group G, defined over some G-invariant open dense set U C M. For that, all that is
needed to show is that W is G-invariant, but this is now a consequence of Proposition 5.1.

The section of P\u asserted in the main theorem is obtained as follows. Fix po G P\u
and let W p , , N p ^ F p ^ p p , : G -. N p J F p , be as before. Denote by ̂  the map

p G P\u ̂  ^p^p) '= rp^p, G H / F p ,

and by ^po the postcomposition of ^po with the projection from H / F p ^ onto H / N p ^ .
Notice that ^po satisfies

^p,(gp)=^p,(p)pp,(g)~1

for all g G G and p G P\u. so that <&po is G-invariant. Therefore, we obtain a G-invariant
NpQ -reduction of P over some G-invariant open dense subset of M. But H already is the
C8 algebraic hull of G, so H =-- A^, and since H is transitive on V, we conclude that
WpQ = V. Since, furthermore, H acts on V effectively, Fp^ must be trivial. Therefore, ^
is an ff-equivariant map from P\u onto H (i.e., ^f(ph) = /i"1^^)) and is, in particular,
a bijection from each fiber P^., x G U.

We can now define a C8 section a- of P\u by setting ^{a(x)) = e, where e is the
identity element in H and a; is any element in U. The equation ga(x) = (r{gx)pp^g) can
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be checked as follows, using the injectivity of ^ on fibers:

^(ga(x))=^{a(x))p^g)-1

=Pp.(9)~1

= PpoW^^W)

=9(a{gx)p^{g)).

6. Parabolic invariants

A C8 geometric structure (p : P -> V can also be described as a C8 section of the
bundle P XH V := (P x V)/ ~ over M, where ~ is the equivalence relation on the
product such that {p,v) ~ (ph.h^v). If we represent by pv an equivalence class, the
section associated to (p is written as

x e M \-> E(x) := p(p{p)

for any p in the fiber P^ of P above x. (This is well-defined due to the ff-equivariance
of </?.) The action of g e G on 15 is denoted

{g.E^^gE^x)^?^-1?).

Suppose that F —> M is a smooth (G°°) vector bundle with n-dimensional fibers and let
P be an H -reduction of the bundle of frames of F, so that H is a subgroup of GL{n, R).
An element p G P is a linear isomorphism from R^ into the fiber Fc above x = 7r(p)
(G£(n,R) operates on the right by postcomposition with TI-). The reduction may arise
due to the existence of some further geometric structure on F, such as a volume form,
when H = SL(n,R).

Let V be the Grassmannian of fc-planes in R71 equipped with the natural action of
GL(n,R). A continuous ff-equivariant map y? : P —> V defines a continuous subbundle
of F of fiber dimension k. If E(x) C F^ denotes the subspace at x e M, then for any
p G P above x, E{x) = p^(p), i.e., the image of (p{p) under the linear map p. Supposing
now that F is a subbundle of TM, then any diffeomorphism g of M operates on F by
the induced derivative map dg^ on Ta.M. The action on F becomes

(g.E){x) := {dg)g-^E(g-lx)=p^g-lp)^

for any p G Pa;. If F is preserved by a subgroup B of G, one has for each re G M a map

^B G G/B ̂  {g^E)(x) = p^(p){gB) e {fc-dimensional subspaces of T^M},

where ^(7?), for each p G F, is the map from G / B into the Grassmannian variety defined
by W(gB) = ^(g^p).

We give now an example of a parabolic invariant. Let / G G be contained in a split
R-torus T C G. Let U be the maximal unipotent subgroup contracted by /, so that for
any g e U one has fgf'71 -^ e as n tends to +00, and denote by Zc(T) the centralizer
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group of T in G. Then B = Zo(T)U is a parabolic subgroup and each g G B has the
property that the set

{r^-'l n ̂  N}

is relatively compact in G. For ^ € R, and x e M, where M is now a compact smooth
manifold and G operates on M smoothly, we define a subspace E(x) of Fx by the
following property ([7, S.2.6]): A nonzero vector v belongs to E(x) if and only if

Urn sup - log 11(^)^11 < X-
n—>oo f^

It is immediate to check that E is preserved by B. If E arises due to a gap in the Mather
spectrum of / (cf. [15, 2.8, p. 121]), then E is a Holder continuous parabolic invariant.

The next theorem is due to Zimmer [18]. We provide below a proof adapted to our
notations.

THEOREM 6.1. - Let P be a C8 ( s > 0) principal H-bundle defined over a manifold M
and let G be a semisimple Lie group acting on P by principal bundle automorphisms all
of whose R-semisimple 1-parameter subgroups act topologically transitively on M, with a
dense set of recurrent points. We suppose that H is real algebraic and is a C8 algebraic
hull of the action. We also suppose that on some open dense G-invariant set U C M, P\u
admits a C8 section a such that gcr{x) = cr{gx)p{g) for all g C G and x G U, where
p : G —> H is a continuous surjective homomorphism. If ^p : P —> V is a C8 parabolic
invariant, then there exists w G V whose H-orbit W is a compact real subvariety ofV and
for each p 6 P there exists hp G H such that

^{g^p) = hpp{g)w

for all g G G. Consequently, ifF denotes the normal subgroup ofH that fixes W pointwise,
and if P / F denotes the principal H/F-bundle obtained from P in a natural way, then the
section a of{P/F)\u induced from a extends to a C8 section on P / F .

We now proceed to the proof of Theorem 6.1. Let P be as before a principal H -bundle
over a manifold M and suppose that a Lie group G acts on P by bundle automorphisms.
We suppose that there is a C8 section a of P\u, for an open dense (^-invariant subset
U C M, and a continuous homomorphism p \ G —> H such that ga(x) = a{gx)p{g) for
all g C G and x e U. Also suppose there exists a C8 ff-equivariant function y? : P —> V,
where V is a real algebraic variety equipped with a real algebraic H -action, such that (p is
invariant under a parabolic subgroup B of G. Recall that G / B is compact.

Denoting by C{G/B,V) the space of continuous maps from G / B into V with the
topology of uniform convergence, we obtain a continuous map

< S > : P ^ C { G / B , V ) ,

such that ^(p)([g}) := y^"1?). Then we have the following lemma.

LEMMA 6.2. - There is an element w C V such that

W([^) = hpp{g)w,
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for all g G G and p <E P|^/, where hp is the unique h € H such that p = a{x)hp1, with
x is the base point of p.

Proof. - Define the map ^ := (p o a : U -> V and remark that for any g e B and
x G U, we have

$(te) = (^(a(te))

= ^(6a(^(6)-1)

=^M^))

= p(bMa(x))

=P{b)^(x).

If T is a real algebraic 1-parameter subgroup of B associated to an R-split group, we can
apply the corollary of the Topological Furstenberg Lemma to conclude that ^ is constant,
equal to some w e V. Therefore, given any g e G and p G P\u, we write p = a(x)h~1

for some hp, so that

W(bD = ̂ -1^)^-1)
= (^-^(^-V)

= hpp{g)w

which is the claim. D

LEMMA 6.3. - We suppose now that the variety V is of the form H / H Q and that
p is a surjective homomorphism from G to H. Let f : G / B —> V be defined by
f(gB) := p(g)w and suppose that a sequence hjf converges uniformly to a continuous
function Q : G / B -^ V, for hj G H. Then, there is h C H such Q = hf.

Proof. - This is a consequence of [17, 3.1.4] and the next lemma. D

LEMMA 6.4 [18]. - Let W C P1^ be a quasiprojective irreducible variety that is not
contained in a proper projective irreducible subspace. Let X be a projective irreducible
variety and f : X —^ W a regular surjection. Suppose that hj is a sequence in C?£(7V+1, R),
such that hj(W} C W and hjf converges uniformly to a continuous function 0 : X —^ W.
Then {hj} is bounded in PGL(N + 1,R).

Proof. - Fix a metric on jP^ and choose e > 0 such that d(W, Y) >_ e for every proper
projective subspace Y C P^. Choose j^ large enough so that j ^ j^ implies

snpd{h,f(x)^{x))^6

3 z

Let Tj == /^7||ftj||. Then if hj is not bounded in PGL(N + 1,R), by passing to a
subsequence we can assume that Tj converges in the space of N + 1 by N + 1 real
matrices to a matrix T with ||T|| = 1 and detT = 0. Let Xi = /^(P^ - [kerT]). Then
X^ c X is (Zariski) open and dense. Observe that if y G P^ - [kerT], then hjy = Tjy
converges to Ty, in the image V of T in P^. Therefore, if x (E Zi, hjf{x) converges to
Tf(x) G V. Since hif{x) converges to 0(x\ we-have 9{X^) c V. Therefore 0{X) C V.
However, this contradicts the fact that 0 must be surjective. (Namely, if y G W, choose
Xj G X such that f(xj) = h^^y). By passing to a subsequence, we can assume that Xj
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, converges to some x G X. Then hjf{xj) converges to 0{x) since X is compact and hjf
converges uniformly to 0. Thus y = 0{x). D

Notice now that the existence of the parabolic invariant defined over the whole of M
translates in the fact that $ extends from P\u to P, and therefore the hypothesis of Lemma
6.3 are fulfilled for a sequence hp, built out (thanks to Lemma 6.2) from any sequence
pi of points of P\u converging to some point p. Thus reinterpreting the conclusion of
Lemma 6.3, we actually obtain that the set U of Lemma 6.2 can be taken to be the
entire manifold M. Theorem 6.1 now follows easily. Notice that the section claimed in
the conclusion of Theorem 6.1 is deduced from (p in the same way that a was obtained
from ^ at the end of section 5'.

Theorem 1.6 is a consequence of the calculation given below, which shows that the group
F that arises in Theorem 6.1 must be trivial if the action is effective relative to (p. We use
the description of ^ as a section x i—^ E{x) = py(p) of P XH V. For any given x G M and
Po ^ Px, we can define for each ho in F an automorphism A of Pa. by A{poh) := pohoh.
Then, A induces a transformation on (P XH V)^, still denoted A, and we have

A{g^E)(x) = Ap^{g~1?} for some p = poh G P
= pohoh^g'1?)
= ph'(p{g~1?) for some h' G F
= w^'Y)
= {g.E}{x^

for all g C G. Therefore A, and hence ho, is the identity.

7. Cohomology vanishing

Let E be a C8 vector bundle over a C8 manifold M. Suppose that E is equipped with
a C8 action by bundle automorphisms of a Lie group G. We denote by P'(I^) the space
of all C8 sections of E\u, where U is some open subset of M. If U is G-invariant, G acts
on P^l^/) by defining g^a for a G ̂ {E^} and g G G so that (g^a)(x) := ga^g^^x)),
for all x e U.

We now define a cohomology group H^{G, E) associated to a C8 action of G' on £ as
follows. A C8 o.d. 1-cocycle (for open and dense) is a map 6 from G into r^E'l^/), for
some open dense G-invariant U C M, such that 0 is C8 as a map from G xU into £ and

^1^2) = 0(gi) + <7i*^2)
for all ^1,^2 e G. We call U the domain of 0. A G5 o.d. 1-cocyle 0 is an o.rf. coboundary
if there is an a G P^ly), for some open dense G-invariant V C M, such that over Ur\V

6{g) = a- g^a
for all g G G.

The C8 o.d. first cohomology group Hj{G,E) is now defined as the quotient of the
space of o.d. cocycles by the space of o.d. coboundaries. It is clear that for any given
subgroup B of G there is a linear map

H^G^E)^H^B^E)
obtained through restricting of the cocycles from G to B.
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THEOREM 7.1. - Let G be a connected semisimple Lie group of real rank at least 2 that
acts on a C8 vector bundle E over M by automorphisms, the action being C8. We assume
that every R-semisimple 1-parameter subgroup of G acts topologically transitively on M
and admits a dense set of recurrent points. Let K be a subgroup of G that acts on M
topologically transitively and commutes with some R-semisimple 1-parameter subgroup of
G. Then, the restriction map

H ^ G ^ E ) ^ H ^ K ^ E )

is injective.

It will be convenient to have E as an associated vector bundle to a principal bundle
P, which may be taken to be the bundle of frames of £'. Thus, let P be a C8 principal
H -bundle over M, where H is a real algebraic group, and write E = (P x V ) / H . Here
V is a finite dimensional vector space upon which H operates via a linear representation
77 : H —^ GL(V) and the right ff-action on the product is given by

{p,v)h := (ph.^h^v)

for p e P, v G V, h G H. We may also suppose that G acts on P by bundle automorphisms
and that the induced G-action on E, by operating on the first factor of the product, is
the one of the theorem.

We denote by TT? and TTE the base point projections from P and E onto M, respectively,
and define the bundle

TT : P XM E = {(p,a) € P x E | 7rp(p) = 7TE(a)} -^ M.

P XM E is a principal bundle over M with group given by the semidirect product
A := H tx^ V, where rj is the linear representation of H into GL(V) that appears in the
definition of E. A has its multiplication defined by

(h, u}{h', u') = (hh\ r]{h)u' + u)

for (fa, u), {h', u') G H x V. The right action of A on P XM E is defined as

(p, a)(h, u) = (ph, a-pu),

where an element p in the fiber of P above x G M is being regarded as a linear isomorphism
from V onto the fiber E^ of E at x, so that pu is an element of E^ for each u e V.

Starting with an action '»f G by automorphisms of P, we can define for each C8 o.d.
1-cocycle 0 an action of C on (P XM E)\u, where U is the domain of 0, as follows. For
each g G G and each {p,a) G (P XM E)\u, we set

g(p,a) = (gp.ga + e(g){7Tp(gp))).

It is a consequence of the cocycle identity satisfied by 0 that the definition above yields
indeed an action.

4e SERIE - TOME 31 - 1998 - N° 5



TOPOLOGICAL SUPERRIGIDITY AND ANOSOV ACTIONS OF LATTICES 617

We identify H with the subgroup of A consisting of elements of the form (h, 0), where
h G H and 0 is the zero element of V.

LEMMA 7.2. - Let 0 be an o. d. 1-cocycle -with domain U representing a class in H^(G^ E).
The bundle (P x M E) \ u ^ith the G-action derived from 0 admits a C8 G-invariant reduction
Q with structure group H over some open dense G-invariant set V C M if and only if 0
represents the 0 class in H^(G^E).

Proof. - We first assume that 0 is a coboundary of the form 0(g) = f3 - g^f3, for some
C8 section (3 of E\y. A G-invariant H -reduction is obtained by setting

Q := {(^/3(7rp(j))) |7Tp(j))ey}.

Conversely, assume that a C8 G-invariant H -reduction Q exists and that it is defined
on an open and dense subset U of M. The projection map (p, a) i-> p from Q into P\u
is a C8 isomorphism of principal ff-bundles and we denote its inverse by p \—^ (j),7(p)).
From the equality

(ph^(ph)) = (^7(^))(M) = (j^7(?))

we conclude that ^(ph) = ̂ (p) for all p e Q and h e H, so that 7 is of the form f3 o TT?
for some C8 section (3 of E\u' A simple calculation now shows that 0 = /3 - g^f3. D

We remark that if L is a subgroup of H K^ V, then L fixes a point in V if and only
it is conjugate to a subgroup of H, as a simple calculation shows.

LEMMA 7.3. - Let L be a subgroup ofH Ky, V and let N be a closed normal subgroup
ofL such that L/N is a semisimple group "with finitely many connected components and N
fixes a point in V. Then L also fixes a point in V.

Proof. - The set W C V of fixed points by TV is a nonempty affine subspace of V.
Since N is 21 normal subgroup of L, W is stabilized by £, so we have an affine action of
L = L / N on W. If L fixes a point of W, then the same is true for L. Moreover, if LQ is
the connected component of the identity of L and LQ fixes a point in W, then L also fixes
a point, as one easily sees by averaging over the finite group L/LQ. Therefore, to show
that L fixes a point in V it suffices to show that a connected semisimple Lie group acting
on a linear space V by affine transformations must have a fixed point.

Thus, we have reduced the problem to showing that a connected semisimple subgroup
S of H ix V, where H is any closed subgroup of GL(V), is conjugate in H K V to a
subgroup of H. This, in turn, is a consequence of the similar claim for the Lie algebra
of S. By a standard argument one shows that the assertion for the Lie algebra of S is
a consequence of Whitehead's lemma concerning the vanishing of the first cohomology
group for semisimple Lie algebras. ([16, p. 220].) D

The theorem can now be proved as follows. Let 0 be a 1-cocycle for G with domain U
whose restriction to K is a coboundary. From the discussion above we can assume that
the algebraic hull HK for the ^-action on (P XM E)\u associated to 0 is contained in
H. Denote by HG a representative of the algebraic hull for the G-action on (P XM E)\u.
We may assume that HK is a subgroup of HG and we denote by N the maximal normal
subgroup of HG that is contained in H K ' According to the main theorem, HG/N is a
homomorphic image of G, hence it is semisimple, and the lemmas above complete the
proof.
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COROLLARY 7.4. - We assume the same conditions as in the above theorem and consider
the natural action ofG on E that comes from a C°° G-action on a C°° principal bundle P.
IfK preserves a C8 connection on E over some K-invariant open dense subset ofM, then
G also preserves a C8 connection on E over some G-invariant open and dense subset ofM.

Proof. - If V denotes an arbitrary C8 connection on E and g G G, we denote by g ' V
the natural push-forward of V under g, which is also a connection on E. The difference

^^V-^ .V

defines a 1-cocycle with coefficients in the vector bundle £'* 0 £'* 0 E, where i?* denotes
the dual bundle to E. It is immediate that a G-invariant C8 connection exists exactly when
6 defines a trivial element in H^{G, £* 0 ̂ * 0 E). Therefore, the claim is a consequence
of the previous theorem. D

COROLLARY 7.5. - We assume the same conditions as in the above theorem. Let E be a
vector bundle associated to P and suppose that K preserves a C8 volume form on E. Then
G also preserves the same volume form.

Proof. - We first remark that if 0 is a volume form on E\y preserved by K, for an
open dense AT-invariant set V C M, and if G preserves some volume form ^/ on E\u for
some open dense G-invariant set U C M, then 0 = ffl' for some continuous AT-invariant
function on U D V. In particular, / must be constant since the action of K is topologically
transitive. It follows that 0 is itself G-invariant. We can now prove the existence of 0' by
applying the theorem to the cocycle 0(g) defined by the equation

(6/-1)*^ = e^O

Then 6 gives an element in H^{G, £), where L is the trivial bundle with fiber R, so that
the C8 sections of L are the C8 functions on M. D

8. Lattice actions

We give here the proof of Theorem 1.7. The notations used in that theorem are now in
force. Observe that if k e G is Anosov, then the same is true for any conjugate gkg~1.
Moreover, if I centralizes k and lies in a compact subgroup, then (some power of) kl is
also Anosov. In particular, the Anosov regular element k referred to in the theorem can be
assumed without loss of generality to lie in some Cartan subgroup A and, therefore, to be
part of an R-semisimple 1-parameter subgroup. It is also important to remark that, after
conjugation by some element in G, the Cartan subgroup A containing k may be assumed
without loss of generality to intersect F in a cocompact lattice in A ([13]). Therefore, the
A-orbit of [e] in G/F is compact.

Prior to beginning the proof of the theorem, we make a general remark about smooth
cohomology. Let N be, for the moment, a topological space equipped with an n-dimensional
lamination T. I.e., N . admits an open cover {U^ : a e 1} such that each Ua is
homeomorphic to R71 x T^ via a homeomorphism ^ : U^ —^ R" x T^, where T^ is
a topological space, such that the changes of coordinates (pa o ^ p g 1 have the following
form on their domain of definition:

{x,t) e R71 x Tf, ̂  (Fi(^),F2W) C R" x T^
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where F^ is a homeomorphism and F^,t) is, for each t, a smooth diffeomorphism all of
whose derivatives depend continuously on t. We call a foliation or lamination with such
continuously varying smooth structure on leaves an HP-lamination (for Hirsch and Pugh).
One can also define a (7^ HP-lamination in an obvious way.

An object such as a map, connection, tensor field, etc., defined on N will be called
J^-regular for an HP-lamination T if it is smooth along the leaves of T and its derivatives
along the leaves vary continuously on the transversal direction. A homeomorphism
(f) : N —^ N is ^-regular if, by definition, it sends leaves homeomorphically onto leaves
and the restrictions of (f) and (f)~1 to leaves are smooth maps. In a similar way one defines
an ^-regular flow ^ : N -^ N, t C R.

An example of an .F-regular vector bundle is the tangent bundle TT to the lamination
T. The prime situation to keep in mind is that in which (f) is Anosov on TM. and T
is the stable Anosov foliation.

Denote by V the Levi-Civita connection for a Riemannian metric on N (not yet assumed
to be as in the theorem). We define, for each g G G?, a (2,1)-tensor field Bg on TM,
such that

B,(X^ Y) := g^^^xg.Y) - VxV

for vector fields X, Y tangent to .M. We also introduce for an HP-lamination T and g G G
preserving T a tensor B^, which is defined as above except that V is now the Levi-Civita
connectionfor the Riemannian metric induced on the leaves of T-'.

For the next lemma, let T be an HP-lamination in a manifold N equipped with
an ^"-regular Riemannian metricon the leaves and let V be its Levi-Civita connection,
which is also ^-regular. Let E be an .F-regular vector bundle on N equipped with an
^"-regular metric and a compatible connection V that is also ^-regular. The vector bundles
E 0 (T*^)0771 are then ^"-regular and are automatically equipped with an ^-regular
metric and compatible .^-regular connection, which we also call V. Let ( / ) be an ^-regular
homeomorphism of N and <I> be an ^-regular automorphism of E above <f) such that the
following properties are satisfied:

1. (f) is uniformly contracting, i.e., there is A, 0 < A < 1, such that ||(^|| < A;
2. each derivative of B^ is bounded;
3. <1>~1 is uniformly contracting, i.e., there is A, 0 < A < 1, such that for each 77 G E,

\\^w\\ <. A|H|;
4. each derivative of B is bounded, where B is the section of T*^ (g) £'* 0 E defined

by B(X^rj) := <i>V^i^-1^) - V^ry.
We observe that $ acts on the right on sections of
(T*^)0771 0 E in the following way: if T : N -^ (r*^)0771 0 E is a section, ^*T

is the section defined by

(^*T),(Xi,..., X^) = ̂ -\T^{^X^ . . . . (/.A)).

Due to 1 and 3, this action is also contracting.

LEMMA 8.1. - Let E be, as above, an F-regular vector bundle over N and let us denote by
£ the space of F-regular sections ofE. Let $ be an T-regular automorphism ofE satisfying
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the conditions enumerated above. Then, the first cohomology group for the ̂ -action induced
by $ on £ is trivial. More precisely, ifT : 1 —^ £ is a 1-cocycle, there exists S G £ such that

T{1)=S-^S.

The same holds, mutatis mutandis, for an R-action.

Proof. - The proof is standard. To find S, we define
k-l

Qk ._ V/W\*^^ := ̂ (<^)*ri

where Ti := T(l), and remark that 5^ converges uniformly to a continuous section S of
E that solves the cohomological equation.

To prove that S is .^-regular it suffices to show that for each positive integer k the
sequence {\/kSrn : m G N} of sections of E 0 (T^)^ converges uniformly as m
approaches oo. Remark that it is enough to prove the claim for k == 1 since the general
case follows by induction, by replacing \7k~lSrn for S^.

Using that

(^~l)*(v^-lx(^*^l))=Vx^l+B(x,^l)
we can write

m—l r

Vx^'" = ̂  ̂ -^-^-.^(^-^(^-TTi)
r==0 i=l

yn—1

+^$-r(v^x^l)<^).
r==0

Taking norms, we obtain

ll̂ - '̂ll ̂  (l-^'l-A)^"1'-^^"71'-"

which shows indeed that Vfi'771 converges. D
The previous lemma will be used later in the following situation.

LEMMA 8.2. - Let T be an HP-foliation of a manifold N , invariant under an ^-regular
flow (f)t, t G R, that satisfies the boundedness condition in .property 2 and uniformly
contracting on T according to the definition in 1. Suppose that E and Ep are T-regular
^-invariant vector bundles such that E^ is a subbundle of E. Suppose, moreover, that the
action o/((^_i)>, on E := (.B/£^)* (g) E^ is uniformly contracting, in the sense of 3. Then,
there exists a ^-invariant F-regular subbundle E^ ofE such that E = Ea 9 E^. If the
R-action on N has a dense set of recurrent points, the subbundle Ea is unique.

Proof. - Finding E^ is a cohomological problem for which the previous lemma applies.
We have to show that the exact sequence of (^-invariant ^-regular vector bundles

0 -^ Eft —^ E ̂  Ef Eft -^ 0

splits in an ^"-regular and (^-invariant way.
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Let T : E / E p —^ E be an ^'-regular splitting, not necessarily invariant, and define
T(t) := r - {(f>t)^r. Then T takes values in E^ and is a cocycle for the R-action on
the bundle E = ( E / E ^ y 0 E^ of endomorphisms from E / E ^ into E^. We can now
apply the previous lemma to get a section S of E which is a coboundary of T. Then
set Ea = r — S. Uniqueness is a consequence of the property that the only (^-invariant
continuous section of E is 0. D

We proceed now with the proof of the theorem. Writing E = TM, we let F{E)
denote the GL(n, R)-bundle of frames associated to E and PF{E) the PGL(n, R)-bundle
obtained as the quotient of the bundle of frames by the center of GL{n^ R). Equivalently,
we could first consider the frame bundle associated to /^(E*) (g) E and then pass to
the (^-invariant SL(n^ R)-reduction P consisting of frames uj 0 a for which o;(a) = 1.
We can then think of PF{E) as the PSL(n, R)-bundle defined as P modulo the center
of SL(n,R).

LEMMA 8.3. - We assume the hypothesis and notations of Theorem 1.7. Then the C°
algebraic hull for the SL{n^W)-action on PF(E) is PGL(n^ R) and the action is effective
relative to the parabolic invariant corresponding to the stable subbundle of k.

Proof. - As indicated before, we may assume that k is in an R-semisimple 1-parameter
group, which we call £, and the action of L is Anosov on TM,.

We first remark that the L-invariant stable and unstable subbundles in TM. cannot be
G-invariant. In fact, let Q be the Lie algebra of G and let X G Q be a nonzero vector
in the Lie algebra of L. We also denote by X the vector field on N that generates the
L-action. If G preserves, say, the stable bundle of L, then any conjugate Ad(p)X, g E G,
will generate a flow that is Anosov on TM. and is contracting on the stable subbundle
of X. Denoting by a the Cartan subalgebra containing X, then for any element s in the
Weyl group W{Q^ a) the flow of sX is also contracting on the stable bundle of L since
sX is of the form Ad{g)X for some g € G. On the other hand, any element of a is a
positive linear combination of elements in the orbit of X under W{Q^ a). Consequently,
for each Y G a, including 0, the flow of Y is contracting on the stable bundle of L. But
this is clearly a contradiction.

Therefore, the C° algebraic hull HL for the L-action must be a proper subgroup of the
C° algebraic hull for the G-action. According to the main theorem, there must be a normal
subgroup N of HG contained in HL such that HG/N is a nontrivial homomorphic image
of G. Since G is SL{n^ R), HG C PGL{n^ R), and HG/N is nontrivial, we conclude that
HG = PGL{n, R) and N is trivial. D

As a consequence of the lemma and of Theorem 1.6, there is a C° section a of PF{E)
and a homomorphism p : G —> PGL{n^R} such that g^a = ap{g) for all g G G. The
homomorphism p must be equivalent to either the standard representation of SL{n^ R)
or its inverse-transpose.

LEMMA 8.4. - The section a obtained above is smooth. Moreover, the Anosov element k
may be assumed to have smooth stable and unstable foliations.

Proof. - If we show that a is smooth on M[e], then it must be smooth on any other fiber
of M.. Notice, in fact, that for each g G G and y G M[^], we have o-y = (g*o')yp{g)~1. (In
reality, we are only interested in smoothness over M[e], which yields smoothness for the
corresponding F-equivariant section over M.) Moreover, as we remarked earlier, the Cartan
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subgroup A that contains k may be assumed to be such that the A-orbit of [e] in G/T
is compact. Therefore, we may restrict the Anosov element k to a compact A-invariant
submanifold of N containing M[e] so that the standard theory of (transversally) hyperbolic
actions applies. In particular, the stable and unstable subbundles of k are integrable and
produce HP-laminations and the boundedness assumptions needed for Lemma 8.2 are
satisfied for those laminations. The same is true for any conjugate of k that still lies in A.
In what follows, TM will denote the restriction of the bundle to that compact set.

Let R be the set of weights for the representation p and let X be an infinitesimal
generator for the 1-parameter subgroup of A that contains k. After a small perturbation
of X in A, we may assume that a(X) / /3(X) for all distinct a,f3 G R and that the
corresponding flow is still Anosov. Let Ea be the continuous subbundle of TM that
corresponds to the weight a, and let E~ be the stable bundle for the flow ̂  of X.

Let n1 := | A^CT*^)! denote the line bundle of 1-densities for TM and ^l/n the line
bundle of 1/n-densities, so that (W/")071 = 01. Remark that, for each a, we can find a
continuous norm on E^ 0 Q1/71 which expands under <^ with exact rate given by e^W*.

We now claim that E~ (resp., £+) is the sum of E^ for a(X) < 0 (resp.,
a(X) > 0). First notice that any continuous ^-invariant subbundle, such as Ec^ decomposes
continuously as a direct sum

E^ = {E~ n E^) e (^+ n E^)
and we wish to show that E^ n E^ = 0 (resp., E~ n E^ = 0). For this end, it will
be enough to show that we can find sequences Xk G N and tk —^ oo, such that for any
nonzero elements Uk € E^(xk)

lim^log^^^^XO.
k-^oo tk H ^ f c H

This is now a consequence of the fact that the flow takes place on a set of finite volume. In
fact, if a; is a nonvanishing volume density on our compact A-invariant submanifold given
as the product of a continuous volume density on TM and an A-invariant volume density
along the A-orbits, and if j\ is the function on the manifold defined by <y[uj == ffuj, then
for any t, f^ has average 1 over N. Fixing a sequence tk —^ oo, we can then choose for
each k a point Xk such that ftk(xk) = 1, and the claim will be satisfied for this sequence
since elements in E^{x) grow with rate /t^e^W.

For each pair (a,/3) of distinct weights of p, define E^^ := £^ C E^. We claim that
EQ, and Ec,^ are integrable and their respective foliations are HP. To show this fact, we
use again the Weyl group W(Q, a) and recall that for each s in it, sX commutes with X
and is conjugate to X by some element of G. Therefore, the flow of sX has the form
g(]>t9~~1 and is also Anosov and commutes with the flow of X. Let 0 denote the orbit of
X under the Weyl group. Using now the fact that the Weyl group for SL(n, R) consists
of all permutations of the v/eights, one can find subsets U^ and U^ of 0 for which

(i) the set of weights 7 such that 7(V) < 0 for all Y G U^ is {a};
(ii) the set of weights 7 such that ^(Y) < 0 for all Y e U^ is {a, {3} and there is

Yo C U^ such that a(Yo) < /3(Vo) < 0.
Denoting by Ey (resp., Ef) the stable (resp., unstable) bundle for V, we have

E^= (̂ 1 E^ and E^ = fj E^.
YeUi Y^U2
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Therefore, as each E^ is the tangent bundle to an HP-lamination, the same is true for E^
and £^. We denote by £^ and £^ the laminations that integrate Ea and E^^.

The final claim is that for each pair a,/3, Ea is f^-regular. Once this is shown, we
can apply a theorem of J.-L. Journe ([6]) to conclude that E^ is smooth. Notice that, as a
consequence, the stable bundle of X will also be smooth. Therefore, the same argument
that concluded the existence of a continuous a now gives a smooth a.

The bundles Ep and E^^ are ^-regular since they are both tangent bundles to
HP-laminations that contain £p. It follows that the bundle

E := {E^/E^Y 0 Eft

is also Eft -regular. Now, elements of E grow under the flow of Y with the exact
exponent /3(V) - a(Y) > 0. It is, then, possible to apply Lemma 8.3 to conclude that the
decomposition E^ 9 Ep is ^-regular, which is what we wanted to show. D

LEMMA 8.5. - Under the hypothesis of the theorem, any G-invariant continuous tensor
field on TA4 of type (r, s), r -^ s, defined on an open dense set, must vanish identically.

Proof. - Denote by T the linear space of tensors of type (r, s) on R71 and let R be a
G-invariant tensor field of type (r, s). Then R defines a continuous, G-invariant, GL(n, R)-
equivariant map from the frame bundle F(E) into T (over some open dense subset of
N). Since the G-action is topologically transitive, R actually maps into an orbit H ' TQ
of H = GL(n, R) in T. If Ho denotes the isotropy group of TO in H, we obtain in this
way a continuous, G-invariant, ffo-reduction of F(E) over some open dense subset of TV.
But we have already shown above that the C° algebraic hull of the G-action projects onto
PSL(n, R), so that H must contain SL(n, R). Therefore, TO is fixed by all of SL{n, R).
It is now immediate that TO = 0. D

LEMMA 8.6. - Under the hypothesis of the theorem, M. admits a unique tangential G-
invariant smooth connection V. The connection is torsion-free and its curvature tensor
vanishes identically.

Proof. - Once we have proved the existence of V, the vanishing of its torsion and
curvature will follow from the previous lemma. Also remark that the vector bundle
E := /^{T^M) 0 TM is equipped with a smooth G-invariant connection. In fact, if P
denotes the frame bundle of E and a is the smooth section of P / { ± I } obtained in Lemma
8.4, then there exists a unique connection on E with respect to which a is parallel, and
it can be easily shown to be smooth and G-invariant. Therefore, in order to obtain V, it
suffices to obtain a smooth invariant connection on /\n(^*.A/().

Let k be the Anosov element assumed in the statement of the theorem and E± its stable
and unstable bundles. According; to Lemma 8.4, E± are smooth. Also recall that k lies
in an Anosov 1-parameter group generated by X in a Cartan subalgebra a. We denote
by £± the smooth foliations of E±.

We first claim that the line bundle of top forms on £16, e = +, -, admits a continuous
X-invariant connection, V6. In fact, observe that we can define a smooth partial connection
of J56 along E~^ (a Bott connection) as follows:

D^Y=Tl€[X^Y}
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where IP is the natural projection onto E\ X is a vector field tangent toE-6 and Y
is a vector field tangent to E6. D6 induces a smooth JC-invariant covariant derivative on
the bundle of top forms on E6 along E~e. To obtain a covariant derivative on the same
line bundle in the direction E6, we appeal to Lemma 8.2 and to the characterization of
invariant connections in cohomological terms discussed in section 7. We obtain in this way
a continuous X -invariant connection V on /^(T^M).

Fixing a smooth (not necessarily invariant) connection V° on ^(T^M), we define a
continuous 1-form uj on TA4 by

V^-V^-c^;)^

where v is any element of T^M, x C N, and ^ is a smooth section of /^(T^M). Then, by
the way in which V has been constructed, UJ\E^ is a ̂ -regular 1-form on 2?6, for e = +, -.

Due to Corollary 7,4, G preserves a connection V on the bundle of top forms on TM
over some open and dense G-invariant subset of N. But the difference V - V is (up to
sign) a 1-form on TM invariant under the flow of the Anosov element X, so that it must
vanish. Therefore, V also is G-invariant.

It remains to show that V is smooth or, equivalently, that a; is smooth. Remark that its
restriction to f6, e = +, -, is already known to be smooth (along f6).

We employ now the notations from Lemma 8.4. Let Y be an image of X under some
element of the Weyl group W(a, Q). Then Y is also Anosov and its stable (resp., unstable)
foliation, denoted £y (resp,, £f\ is smooth. Just as for X, the restriction of a; to these
foliations must be tangentially smooth, so that the restriction of uj to any S^^, for any
pair (a,/3) of distinct weights of p (as in the proof of Lemma 8.4) is also tangentially
smooth. Therefore, since

E^= F| ̂
y<E^2

we conclude that uj{Za) is smooth along £^^ for each a and /3. Moreover, the argument
in Lemma 8.4 that uses a theorem of Joume, implies that c^(Za) is smooth for each a,
so that uj is smooth. D

We now conclude the proof of the theorem by appealing to a result of Y. Benoist and the
second author [1] that classifies affine Anosov diffeomorphisms. First, remark that some
7 C r is an Anosov diffeomorphism of M. To see that, recall that the vector field X can be
taken to lie in a Cartan subgroup A whose orbit through [e] is compact, i.e. A/ (A D F) is
a torus. Since a small perturbation of X inside the Lie algebra a of A is also the generator
of an Anosov flow, we can choose Y e a such that [e] is a periodic point for the flow
of V on G/F and the flow of Y on TM\o is Anosov, where 0 is here the preimage
in N of the orbit of [e]. In particular, the 1-parameter group generated by Y contains a
7o ^ r different from e. The element 70 is therefore Anosov on M and it preserves the
flat connection V on M, obtained from the identification of M and M[ej. Therefore 70
is an affine Anosov diffeomorphism with smooth Anosov foliations preserving a smooth,
flat, torsion-free connection V. It now follows from [1] that with respect to the invariant
affine structure given by V, M is a flat torus.
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9. Rigid geometric structures

Let G^r^R) be the real algebraic group of fc-jets at 0 e R71 of smooth local
diffeomorphisms of R71 fixing the origin. Let M be a smooth manifold and let F^M)
denote the bundle of fc-frames, whose fiber above x e M consists of fc-jets at 0 of smooth
local diffeomorphism from W into M sending 0 to x. F^M) is a G^n, R)-principal
bundle over M and we denote the base point projection by 7^k. Given a G F^M) and
g € G^(n, R) , we denote the natural right-action of g on a by erg. The natural projection
from Gk(n,R) to G^(n,R) as well as that from Fk(M) to F\M} will be denoted by
TT^, for k > I .

Let V be a smooth m-dimensional real algebraic variety and let Jk(V) := ^(R^V)
be the space of all fc-jets at 0 e R71 of germs of smooth maps from R" into V. J^V) has
the structure of a smooth real algebraic variety. If a G ^(V), then a = jV(0), the fc-jet
at 0 of a smooth map / from a neighborhood of 0 G R^ into V.

Let V(M) denote the associated V-bundle over M for a given real algebraic left-action
of G^(n,R) on V. A geometric A-structure on M of order k and type V is defined
in [4] as a smooth section s of Y(M). Equivalently, it can be defined as a smooth
G^n, R)-equi variant map Q : Fk{M) -^ V.

Starting with a real algebraic action p of Gk{n, R) on V, it is possible to define on J\V)
a real algebraic action pi of G^^n, R) in a canonical way, so that if Q : Fk(M) —^ V is a
Gk(n^ R)-equi variant smooth function, one can construct its prolongation, also canonically
defined, which is a smooth geometric structure ^ : F^+^M) —^ ^(^) of order k + Z
and type pi. (See [11, IV-14].)

Let r]m € J^V) be a sequence such that 77^ maps onto r]m-i under the natural
projection and denote by H^ the isotropy group of r]m in G^+^n, R). Taking now
somewhat of a shortcut to the main definition of [4], we state

DEFINITION. - A geometric structure Q of type V and order k is rigid if there exists NQ
big enough, depending only on p, for which the following holds: for each sequence rjm in
the image ofGm in ^(V) such that rjm-^i maps onto r)m under the natural projection, the
isotropy group .H'77^1 is isomorphic to H171 for each m > No.

Suppose now that G acts smoothly on a smooth n-dimensional manifold M so that the
action is topologically transitive. Therefore, over some open dense (^-invariant set in M,
the image of Gm lies in a single orbit (^"^(n, R)^.

Let Pk{Uk) denote a G-invariant Hk -reduction of F^M)]^, where Uk C M is open
dense and G-invariant and Hk C G^n^R") is a representative of the smooth algebraic
hull of the induced action of G by automorphisms of Fk{M). By the general properties
of algebraic hulls, we can choose the reduction P^L^) (after possibly having to translate
on the right by some element of Gk(n, R), and conjugating Hk by the same element) so
that the natural projection from P^1^ H £4+1) into F^M^n^+i actually maps onto
Pk(Uk n E4+i) and fffc+i maps onto Hjc.

DEFINITION. - We say that the G-action is hull-rigid if the Hk, defined above, eventually
stabilize. More precisely, for some ko and for all positive integers r, s such that ko < s < r,
the projections TT^ : Hr —^ Hs are isomorphisms.

LEMMA 9.3. - Under the conditions of Theorem 1.8, the G-action is hull-rigid.
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Proof. - We denote by Pk a G-invariant ^-reduction of F^M) such that Hk is the
smooth algebraic hull for the G-action. For simplicity, we omit reference to the open
dense subset Uj, where the reduction is defined. Similarly, we define A^-invariant smooth
reductions Qk of Pk with group Lk C Hk. (Also defined on some open dense K-m variant
subset of M.) After conjugating by appropriate elements of G^n, R) we may assume that
Tif maps Pk onto Pi and Qk onto Qi, for k > I and I big enough.

Denote by Nk the maximal normal real algebraic subgroup of Hk contained in Lk and
remark that TT^ maps Nk onto Ni. By the topological superrigidity theorem, H k / N k is a
homomorphic image of G, which we denote pk(G).

If the ^f-action preserves a smooth rigid geometric structure, then by the next lemma Lk
stabilizes, so that Nk must have bounded dimension. Therefore, as pk{G) also has bounded
dimension, we conclude that the same holds for Hk. On the other hand, ̂  : Hr —> Hs
is surjective for s < r, and its kernel is either trivial or infinite. (Remark that the kernel
is contained in the nilpotent radical of G^n^R).) Therefore, for sufficiently big r,s,
^ : Hr —> Hs are isomorphisms. D

LEMMA 9.4. - Suppose that a group G acts smoothly and topologically transitively on
a smooth manifold M. Then the action is hull-rigid if and only if it preserves some rigid
A-structure on some open dense G-invariant subset of M.

Proof. - If the action preserves a rigid A-structure, the sequence Hk of algebraic hulls
must be contained in subgroups of Gk{n, R) that eventually stabilize. Hence the Hk also
eventually stabilize.

For the converse, suppose that the G-action is hull-rigid and consider a sequence
pk Q F^M), k >_ 1, of smooth G-invariant reductions defined over open dense G-
invariant subsets of M with group Hk. We may suppose that TT^ projects Pk onto P1. Then,
by the definition of a hull-rigid action, we have for big enough k that Tr^1 : P^1 —^ Pk

is an isomomorphism. We simplify the notation by writing TT := Tr^, P := P^1 and
Q := P^

Each a e P determines a horizontal n-plane in T^)Q, where n is the dimension of
M, and such a plane determines a frame for T^Q. Therefore, TT defines a G-invariant,
smoothly varying frame at each point of Q. More precisely, over some open dense G-
invariant subset U C M there is a smooth section a of the frame bundle F1^)^ such
that each g € G maps a{q) onto a(g^q), q C Q\u.

We claim that a defines a G-invariant rigid structure. This amounts to the following
elementary fact: If a manifold is equipped with a smooth full frame field and a
diffeomorphism / fixes a point in the manifold and preserves the frame at the fixed
point up to order I , then / has the same ^-jet as the identity map. D

10. Appendix

We sketch below a mostly self-contained proof of Margulis-Zimmer superrigidity in
the following case.

THEOREM 10.1. - Suppose G is a simple real Lie group of rank at least 2 that acts
ergodically by measure preserving transformations on a standard Borel space M with finite
measure. Assume furthermore that this action can be lifted to a left action on a measurable
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H-bundle P by bundle automorphisms such that H is a simple noncompact real Lie group
and is the measurable hull of the action of G. Then there exists a representation p of G
into H and a measurable section a of P such that

g ' a { x ) = a{gx)p{g).

In the statement above we have preferred the geometric language of action and principal
bundle to the equivalent language of cocycles, though of course measurable bundle is just
a somewhat unconventional way of talking about the trivial bundle.

We want to use the following dictionary:

mesurable <-> continuous ergodic ̂  topologically transitive

Everything essentially translates easily except the topological Furstenberg Lemma, which
requires a little care. For that, we need a classical fact that is used in the proof of various
versions of the Borel density theorem, namely, that if L is a 1-dimensional noncompact
algebraic group, then every L-invariant measure on an algebraic variety V on which L
acts algebraically is supported on the set fixed points. A nice proof of this fact is contained
in [4], and relies on the following consequence of Rosenlicht's stratification theorem: the
action becomes proper on a Zariski open dense subset of the product of a sufficiently
large number of copies of V.

Using this dictionary, and adding the hypothesis that T (as in section 2) preserves
a measure /^, our topological Furstenberg Lemma translates now into an avatar of the
classical Furstenberg Lemma. Let us see how this is done using the notations of our proof.
The map <& will also take its values in the set of fixed points of T but for a somewhat
different reason: it will take its values in the support of the T-invariant measure <1> .̂ The
rest of the proof works mutatis mutandis.

With this point settled, we can carry out a translation of our main theorem (plus the
assumption that G preserves a finite ergodic measure) into a mesurable statement by using
the dictionary. This yields the conclusion of the measurable superrigidity theorem, but
with more restrictive hypothesis.

To improve it and get rid of the two extra hypotheses, namely that every R-semisimple
element acts ergodically, and that the hull of an R-semisimple element is smaller than
ff, we need two observations.

The first is a theorem of which we do not know a topological analogue: Moore's
ergodicity theorem, which exactly states that if a noncompact simple algebraic group acts
ergodically preserving a finite measure, then every noncompact closed subgroup of G (in
particular any R-semisimple element) is ergodic. This is classically the first use of ergodic
theory in the proof of Margulis superrigidity.

To eliminate the second hypothesis which correspond to the use of Oseledec's theorem
in [12] and of amenable cocycles in [17], we just need the following lemma, of which a
topological analogue is certainly wrong.

LEMMA 10.2. - Let P be a principal H-bundle over a standard Borel space M, such that
H is simple noncompact. Let T be a 1-parameter group acting ergodically on M preserving
a finite measure m. Then the hull of T is smaller than H.

Proof. - Let V == H / Q be a compact algebraic variety on which H acts transitively,
and which is not a point. Of course we can take Q to be a parabolic in H, or we can
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take a minimal algebraic variety invariant by H in the projective space of an irreducible
representation; indeed, using the Rosenlicht stratification theorem, the action of H is
transitive on such a minimal variety.

Now the classical Kakutani-Markov theorem yields a T-invariant probability measure ^
on the total space Py of the associated V-bundle that projects onto the G-invariant measure
on M. Let /^ be the measure supported on the fiber of Py above the point x, obtained
by the desintegration of p,. By ergodicity, the Zariski closure Jx in H of the stabilizer of
^ is, for almost every x, conjugate to a certain group J which will contain the hull for
the action of T. H itself does not preserve a measure on V. This follows from the fact
that such a measure should be supported on the set of fixed points F{h) of an arbitrary
R-semisimple element and that the intersection of all the F(h) is empty since it is globally
invariant under H. Therefore, J is strictly smaller than H and the proof is complete. D

The lemma above is to be compared with Zimmer's result stating that the hull of an
amenable group is amenable. The point we wish to emphasize is that we do not prove it
for a parabolic in G as in [17], but only for a single 1-parameter group, in which case the
result follows at once from the Kakutani-Markov fixed point theorem.

Ultimately, since H is simple, every normal subgroup of H contained in the hull of
T will be the identity.

To summarize, the proof sketched above is self-contained apart from the use of Moore's
ergodicity theorem, the Kakutani-Markov theorem, Rosenlicht stratification theorem and
the fundamental fact alluded to above concerning invariant measures by algebraic groups.
We have used nothing about the structure theory of H, and the structure theory we have
used of G is summarised in Proposition 5.1 and the following page. By the use of H -pairs,
a fancy name for "algebraic sets of sections of algebraic bundles," we have avoided the
need for parabolic invariants as in the proof in [17], and we have adapted the ideas using
vector spaces of sections of vector bundles of [12], avoiding use of proximal maps. For
our topological superrigidity theorem, we added hypotheses when no topological analogue
of a mesurable result was available, namely Moore's theorem and the Kakutani-Markov
theorem.

Although we have not checked, we expect the same proof to work when H is a j?-adic
group.

Finally, from the point of view of Zimmer's program, the fundamental question is
whether or not an element satisfying our hypotheses (iii), (iv) and (v) exists for general,
not hyperbolic, dynamical systems, at least for the lifted actions on the jet bundles.
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