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CAPELLI IDENTITIES FOR LIE SUPERALGEBRAS

BY MAXIM NAZAROV

ABSTRACT. — We study a distinguished basis in the centre of the enveloping algebra of the Lie superalgebra C^]\T .
The irreducible polynomial representations of qjv are labelled by decreasing sequences of positive integers A =
(AI , . . . , A^) with i < N. The elements of our basis are labelled by the same sequences. The basic element C\
of the centre vanishes in the irreducible representation corresponding to a sequence p. if and only if \z > /^ for
some i. We obtain an explicit formula for the element C\.

RESUME. - Nous etudions une base distinguee du centre de 1'algebre enveloppante de la super-algebre de
Lie qAr. Les representations polynomiales irreductibles de q^ sont indexees par des suites decroissantes d'entiers
positifs A = (AI , . . . , A^) ou i < N. Les elements de notre base sont indexes par les memes suites. L'element C\
de cette base s'annule dans la representation correspondante a une suite fi si et seulement si \i > pz pour
quelque i. Nous obtenons une formule explicite pour 1'element C\.

1. Introduction

The Capelli identity [1] is one of the best exploited results of the classical invariant
theory. It provides a set of distinguished generators C\,..., CN for the centre of the
enveloping algebra U(0(^y) of the general linear Lie algebra. For any non-negative integer
M consider the natural action of the Lie algebra ^^y in the vector space CN 0 CM .
Extend it to the action of the algebra U(0^y) in the space of polynomial functions on
C^ 0 CM . The resulting representation of U(0l^) by differential operators on CN (g) CM

with polynomial coefficients is faithful when M ^ TV.
The image of the centre Z(5^y) of the algebra U(^^y) under this representation

coincides with the ring J of Ql^ x Q\^ -invariant differential operators on ̂  ^)CM with
polynomial coefficients. The latter ring has a distinguished set of generators f ^ i , . . . ̂ L
with L = min (M, N) which are called the Cayley operators [2]. If x^ with i = 1,... ,7V
and b = 1,... ,M are the standard coordinates on C7V0CM and 9^ are the corresponding
partial derivations, then f^ equals

(Ll) £ £ £ sgn ̂  ' xi^ • • • xi^ ^(l)6! • • • ̂ (^ •

9 € Sn il,...,in &l,...,&ri

Here sgn (g) stands for the sign of the element g of the symmetric group Sn . The Capelli
identity gives explicit formula for a preimage in Z(0l^) of the operator In . Let Eij be the
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848 M. NAZAROV

standard generators of the enveloping algebra U(gl^) so that in the above representation

E^ ^ ̂  x^ 93b •
b

The Cayley operator ^n is then the image of the element Cn G Z(Ql^) equal to

(1.2) ^ ^ sgn^.n^^+^-l)-^))
j? € Sn i l , - - - , in s

where the index s runs through 1, . . . , n and factors in the ordered product are arranged
from the left to right while s increases. Here 8ij is the Kronecker delta.

Let ^ be the irreducible character of the symmetric group Sn corresponding to any
partition of n into not more than M,N parts. Let us normalize \ so that ^(1) = 1.
When we replace the character sgn in (1.1) by \ we obtain an element of a distinguished
basis in the vector space J ; see [3]. Explicit formula for a preimage in Z(0^y) of
this basic element was given in [4, 5]. This result generalizes classical formula (1.2)
and may be called the higher Capelli identity [4]. In the present article we extend this
result to the queer Lie superalgebra q^v [6]. In particular, we obtain an analogue for
q^v of the classical Capelli identity. Such an analogue has been so far unknown. See,
however [7, 8] for related results.

The symmetric group Sn appears in the formulas (1.1) and (1.2) because its
permutational action in the tensor product ^CN)0n generates the commutant of the
action of the Lie algebra Q l^ . For the n -th tensor power of the defining representation of
the Lie superalgebra q^v the role of Sn is played [9] by the semidirect product Sn tx An
where An is the Clifford algebra with anticommuting generators a i , . . . , 0 n . We will
denote this product by Hn and call it the Sergeev algebra. Note that to obtain the higher
Capelli identity one replaces sgn in (1.2) by a diagonal matrix element relative to the
Young orthogonal basis in the irreducible representation with character ^. In Section 2 we
give an analogue of this matrix element for any irreducible representation of Hn.

The irreducible Hn -modules are parametrized by the strict partitions A of n. Note
that the algebra Hn has a natural 1^ -gradation, and we use the notion of a Zs -graded
irreducibility. Let t\ be the number of parts in A . For each A we construct a certain
element ^\ G Hn such that under the left regular action of Hn the space Hn • ̂ \ splits
into a direct sum of 2^x/^ copies of the irreducible module corresponding to A ; see
Theorem 3.4 and the subsequent remark. Moreover, ^\ is invariant with respect to the
natural involutive antiautomorphism of the algebra Hn ; see Lemma 2.3. If A = (n) then

(i.3) ^ = n f n fi-^^^!-)-^))' / -L-L \ -L-L \ i/ _ ni ni _L q i I )
l<^r<n ̂  r<s^n ^ ur us ur ' us ^ ^

where Us = ^/s{s — 1) while {rs) G Sn is the transposition of r and s . To give
an explicit formula for ^ with a general A we use the fusion procedure [10]; see
Theorem 2.2 here. More detailed exposition of this construction appeared in [11].
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In Section 3 we introduce our main technical tool - the Jucys-Murphy elements of the
algebra Hn . These are the pairwise commuting elements r r i , . . . ,Xn defined by (3.1); see
also Lemma 3.2. With respect to the left regular action of Hn the element ^\ is a joint
eigenvector of x ^ ^ . . . ^ X n and the corresponding eigenvalues are easy to describe; see
Proposition 3.3. Our proof of the Capelli identity for q^y will be based on Proposition 3.6;
cf. [12,13]. Namely, we will use Corollary 3.7.

Section 4 contains the main result of this article. We define actions of the Lie
superalgebras q^r and C\M in the free supercommutative algebra P with the even
generators x^ and odd generators x-i^ where i = 1 , . . . , 7 V and b = 1, . . . ,M; see
Proposition 4.1. Let W be the algebra generated by the operators of left multiplication
in V by x^i^ and by the corresponding left derivations 9±^&. So we get a representation
7 '' U(q7v) -^ W for the enveloping algebra of q^v . The image of the centre
Z(q^y) C U(q^) with respect to 7 coincides with the ring 1 of C\N x ^M -invariants in
PV. We introduce a distinguished basis in the vector space Z; see Proposition 4.3. The
elements of this basis are parametrized by the strict partitions A o f n = 0 , l , 2 , . . . with
i\ ̂  M,N and are determined by (4.7). Our main result is the explicit formula (4.6) for
a preimage C\ G Z(q^v) of the basic element I\ G T corresponding to A ; see also (4.5).
The equality I\ = ̂ (C\) with A = (n) may be regarded as an analogue for q^ of
the classical Capelli identity.

I am very grateful to I. Cherednik for many illuminating conversations. I am also
grateful to M. Duflo and I. Penkov for their interest in this work. I am especially indebted
to G. Olshanski. Discussion with him of the results [4] has inspired the present work.

2. Fusion procedure for the Sergeev algebra

We start with recalling several known facts about irreducible modules over the Sergeev
algebra Hn. By definition, Hn is the semidirect product of the symmetric group Sn and
the Clifford algebra An with n generators over the complex field C. These generators
are denoted by a i , . . . ,a^ and subjected to the relations

a2 = -1; di dj = -dj di, i -^ j .

The symmetric group Sn acts on the algebra An by permutations of these n generators.
Denote by the superscript * the involutive antiautomorphism of the algebra Hn defined
by the assignments a, ^ a,"1 and g ^ g~1 for any g G Sn •

For any 1^ -graded algebra A a representation A —> End^^^) will be called
irreducible if the even part of its supercommutant equals C. If the supercommutant
coincides with C this representation is called absolutely irreducible. We will equip the
algebra Hn with a 12 -gradation so that dega, = 1 and degg = 0 for any element
g G Sn . The irreducible modules over the Zs -graded algebra Hn are parametrized by
partitions A of n with pairwise distinct parts. Such a partition is called strict. The Hn -
module U\ corresponding to A is absolutely irreducible if and only if the number i\ of
non-zero parts in A is even [9, Lemma 6].

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



850 M. NAZAROV

Consider the left regular representation of the algebra Hn. In this section for any
strict partition A we will construct a certain element ^A ^ Hn such that the left ideal
Hn • ^A is a direct sum of 2^A/2] copies of the irreducible 1^-module corresponding
to A . Moreover, we will have the equality ^ = ^A • Our construction is motivated by
the results of [10]; see [11, Section 3] for more detail.

Strict partitions are usually depicted as shifted Young diagrams. For instance, here is the
diagram corresponding to the partition A = (4,3,1):

We will denote by A the shifted column tableau of the shape A . It is obtained by filling the
boxes of A with the numbers 1,... ,n by columns from the left to the right, downwards
in every column. For each i = 1, . . . ,n we put a = p - q if the number i appears in
the p -th column and q -th row of the tableau A. The difference p - q is then called the
content of the box of the diagram A occupied by the number i. For example, here on the
left we show the shifted column tableau of the shape A = (4,3,1):

1 2
3

4
5
6

7
8

0 1
0

9

1

0

3
2

On the right we indicated the contents of the boxes of the shifted Young diagram.
For any distinct % , j = l , . . . , n l e t (ij) be the transposition in the symmetric group Sn.

Consider the rational function of two complex variables n, v valued in the algebra Hn

(u) . ( '̂) 'caaj(pij(u,v) =1- +
u — v u + v

As a direct calculation shows, this rational function satisfies the equations

(2.1) ^-(n, v) ^pik{u, w) ̂ jk(v, w) = (pjk(v, w) (pik(u, w) (pij(u, v)

for all pairwise distinct i,j,k. Evidently, for all pairwise distinct i,j,k,l we have

(2.2) ^Pij{u, V) (pkl(^, W) = (^(^, ̂ ) ^Pij(u, V)

We will also make use of the relations for all distinct i,j

1 1
(pij(u,v)ipji(v,u) = 1 -(2.3)

(u - v)2 (u+ v)2 '
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(2.4) ai(pij(u,v)a^ =^-(-n^),

(2.5) dj ^ij(u, v) aj'1 = (pij{u, - v).

Note that due to (2.3) the element ^pij(u,v) G Hn is not invertible if and only if

(2.6) T———^ + 7——^2 = L
v / (u - v)2 (u-{-v)2

Observe also that in the latter case the element ^ij(u,v)/2 e Hn is an idempotent.
Consider the rational function of u,v,w appearing at either side of (2.1). Denote by

(pijk(u,v,w) this function. The factor ^{u.w) in (2.1) has a pole at u = ±w. Still we
have the following lemma. It will be the basis for constructing ^\ G Hn.

LEMMA 2.1. - Restriction of ^pijk{u, v, w) to the set of (u, v, w) such that the pair {u, v)
satisfies the condition (2.6), is continuous at u = ±w.

Proof. - Assume that the the condition (2.6) is satisfied. Then due to (2.3) and (2.5)

(pij{u, v) ̂ ji(v, u) = 0 , ^Pij(u, v) a,i ̂ ji{v, -u) = 0 .

Hence the product yijk(u,'u,w) can be rewritten as

dk}
(pij{u,v)(pjk(v,w) - ^pij(u,v) —_— ((^-fc(^w) - (pjk{v,u)) +

(ik)aidk , / x f \\^pij(u,v)-—-—— [^jk{v,w)-ipjk(v,-u)).
<jL ~[~ Uu

Under the condition (2.6) the latter function is continuous at u = ±w D
For any two real non-negative variables s,t let us substitute in the equation (2.6)

u = ̂ (5+1), v = v/t(t+l).

Observe that (2.6) will be then satisfied if s -1 = ±1. We will denote for short

^•(5^)=^•(V /5(5+1),V /^+1)).

^(^^^ l )=^•fc(v /^^+l) ,V /^+ l ) .V / r ( r+ l ) )<

Now introduce a real non-negative parameter ti for each i = 1,... ,n. Equip the set
of all pairs (%, j ) where 1 ̂  i < j ^ n with the lexicographical ordering. Introduce the
ordered product over this set

(2.7) n ^(cz+^+t,).
(^•)

Consider this product as a function of the parameters ^ i , . . . ,^ valued in the
algebra Hn. Let us denote by ^(^•••^n) this function. It may have singularities

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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when Ci-\-ti = cj + tj for some i / j . Consider the set T of all tuples ( ^ i , . . . ,^n) such
that ti == ^ whenever the numbers i and j appear in the same row of the tableau A. So
T = R^o- Next theorem goes back to [10] and [11, Theorem 5.6].

THEOREM 2.2. - Restriction of ^(^i,... ,tn) ^ T is continuous at ti = . . . = tn.

Proof. - We shall provide an expression for the restriction of the function (2.7) to T
which is manifestly continuous at i\ = . . . = ^. Let us reorder the pairs (z , j ) in the
product (2.7) as follows. This reordering will not affect the value of the product due to
the relations (2.1) and (2.2). Let C be the sequence of numbers obtained by reading the
tableau A in the usual way, that is by rows from the top to the bottom, eastwards in every
row. For each j = 1,... ,n denote by Aj and Bj the subsequences of C consisting of
all numbers i < j which appear respectively after and before j in that sequence. Now
set (z , j ) -< { k ^ l ) if one of the following conditions is satisfied:
- the number i appears in Bj while k appears in Ai;
- the numbers i and k appear respectively in Bj and Bi where j < I ;
- the numbers i and k appear respectively in Aj and Ai where j > I ;
- we have the equality j = I and i appears before k in Bj or Aj.
From now on we assume that the factors in (2.7) corresponding to the'pairs ( % , j )

are arranged with respect to this new ordering. The factor ^ij{ci + ti^cj + tj) has a
singularity at ti = tj if and only if i and j stand on the same diagonal of the tableau
A. We will then call the pair ( % , j ) singular. Observe that the number i occurs in the
subsequence Aj exactly when i stands to the left and below of j in the tableau A. In
this case cj — ci > 1 and the pair (z , j ) cannot be singular.

Let a singular pair (z, j) be fixed. Suppose that the number i appears in the p-th
column and the g-th row of the tableau A. In our new ordering the next pair after
(z, j) is {h^j) where the number h appears in the (p + l)-th column and the q-th row
of A. In particular, we have ci = Cj; = c^ — 1. Moreover, {i^h) -< ( i ^ j ) . Due to the
relations (2.1), (2.2) the product

JJ ^kl(Ck +tk,Ci +ti)

(fc,0-<(z,j)

is divisible on the right by ^/, (c^ + ti, c^ +1^} ; cf. [ 11 ,p. 222]. Note that each value of
the restriction of ̂  (c^ + ti, c^ + ^)/2 to ^ == t^ is an idempotent in Hn .

Now for each singular pair {i,j) let us replace the two adjacent factors in (2.7)

^ij {Ci + ti , Cj + t j ) ̂ hj [C-h + th , Cj + t j )

by

(2.8) ^ih (ci + ti, en + t^ ^ij (ci + ti, Cj + t j ) ̂ hj (en + th, Cj 4- t j ) /2

= ^ihj {^ + ti , Ch + th , Ch + 4)/2 .

4 e SERIE - TOME 30 - 1997 - N ° 6
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This replacement does not affect the value of restriction to T of the function (2.7). But
the restriction to ti = th of (2.8) is continuous at ti = tj by Lemma 2.1 D

The process of continuation of the function ^(ti,... ,tn) along the set T is called
the fusion procedure. In the proof of Theorem 2.2 we established the decomposition

^1, . . . .tn} - TA^I, . . . ,tn) . 6^1, . . . ̂ tn) ,

where TA^I, . . . ,tn) and Q\(t^,... ,tn) are products of the factors in (2.7) which
correspond to the pairs {i^j) with i appearing in Bj and Aj respectively. The function
©A^I, • • • ^n) is continuous at t^ = . . . = tn. Moreover, any value of this function at
t^ = . . . = tn is invertible. Let us denote by Q\ the value 0^(0 , . . . ,0 ) . Restriction to
T of the function T^i,... ,^n) is continuous at ti = . . . = tn as well as the restriction
of the function ^(^i? • • • ^n) • Denote respectively by TA and ^A the values of these
restrictions at t^ = ... = tn = 0. Then ^A = T\ ©A • Let a be the linear map Hn -^ An
identical on An such that a(ga) = 0 for g -^- 1 in Sn and any element a G A^.

LEMMA 2.3. - ̂  have ^ = ^A <^ O^A) = 1.

Proof. - By the definition of the antiautomorphism * we have (pij^u^v)* = (pij(u^v) for
any distinct indices i and j. Therefore due to the relations (2.1) and (2.2) the product (2.7)
is invariant with respect to this antiautomorphism. So is the value ^/\ of its restriction
to T. Further, we have the equality Q^A^I, . • . ,^n)) = 1 by the definition (2.7). Hence
a(^x) = 1 D _____

Throughout this article we will denote zi = ^/Ci(ci + 1) for i = 1,... ,n.

PROPOSITION 2.4. - Let the numbers k < I stand next to each other in one row of the
tableau A. Then the element T\ G H~n is divisible on the right by ( p k i ( ^ k ^ i ) '

Proof. - Due to the relations (2.1) and (2.2) the restriction of T^^i , . . . ,tn) to
T is divisible on the right by ^(c^ + 4 , ^ 4 - ^ ) . Here 4 = ti and the element
^ki{ck +tk,ci + t i ) / 2 G Hn is an idempotent. Restriction of TA^I, . . . ,tn) to T is
continuous at i\ = . . . = tn = 0. So T\ is divisible on right by ^ki(ck^ci)/2 D

COROLLARY 2.5. - Let the numbers k < I stand next to each other in the first row of the
tableau A. Then the element ^\ G Hn is divisible on the right by

(2-9) ^kl(^k^l) ' JJ ^Pml^m^l)'

k<m<l

The element ^/\ is then also divisible on the left by

(^O) JJ ^ml^m^l) • ^Pkl^k^l)-

k<m<l

Proof. - By Proposition 2.4 the element TA is divisible on the right by ^ki{ck,ci).
But due to the relations (2.1) and (2.2) the product ^ki(ck,ci) • Q\ is divisible on the
right by (2.9). Since ̂  = T\Q\ we obtain the first statement of Corollary 2.5. Note that
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the image of (2.9) with respect to the antiautomorphism * is (2.10). Since by Lemma 2.3
the element ^\ is invariant with respect to this antiautomorphism we get the second
statement of Corollary 2.5 D

Consider again the rational function (^^(z^ v, w) appearing at either side of (2.1). The
values at u =w of its restriction to (u, v) subjected to (2.6) need not be divisible on the
right by (pjk(v,u) = ( p j k ( v ^ w ) . Yet we have the following lemma.

LEMMA 2.6. - Restriction of the function (pijk(u^v^w) (pkj(w,v) to those (u,v) which
satisfy (2.6), takes at u = w the value

2 2
{ik)(pkj(w,v) '

{v + w)3 (v — w)3/

Proof. - It consists of a direct calculation. Namely, by our definition

(pijk(u,v,w)ipkj(w,v) = ̂ pij{u,v)ipik(u,w) ' ipjk(v,w)^kj{'w,v)'

Under the condition (2.6) we have by (2.3) the equality

(2.11) ^jk(v, w) ̂ kj{w, V) = -————_- + -———-r. - 7————r. - 7————^." ^ r J ^ ^_^y (^_j_^2 ^_y^y ^_^_^Y

Dividing the right hand side of (2.11) by u2 - w2 and then setting u = w we get

- l .f—1—-——^.
w \ (v + w)3 (v — w)3 /

On the other hand, by setting u = w in the product

(pij(u, v) (pik(u, w) • {u2 - w2) =

^pij(u, v) ' ((n2 - w2) - (%fc) {u + w) + (%fc) aidk (u - w))

we obtain

— 2w • (pij(u^v) (ik) = — 2w • (ik) (^-(w,^) D

COROLLARY 2.7. - Restriction of the function (pijk(u^v,w) (pkj(^^) to those (u^v)
which satisfy (2.6), vanishes at u = w == 0.

The next proposition makes the central part of the present section; cf. [14].

PROPOSITION 2.8. - Let the numbers k and k +1 stand in the same column of the tableau
A. Then the element T\ G Hn is divisible on the left by ^,^+1(^^+1).

Proof. - Observe first that Proposition 2.8 follows from its particular case k + 1 = n.
Indeed, let v be the shape of the tableau obtained from A by removing each of the
numbers k + 2 , . . . ,n. Then

TA(tl,...,tn) = T^i,...,tfc+l) • IJ ^ij{Ci +ti,Cj +tj)

(^•)

4° SERIE - TOME 30 - 1997 - N ° 6
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where j = k + 2 , . . . ,n and i runs through the sequence Bj. Consider the value T^ at
^ = .. . = tfc+i = 0 of the restriction of T^i,... ,^+i) to T. According to our proof
of Theorem 2.2 then YA = T^T for a certain element T G Hn •

From now on we will assume that fc + 1 = n. Since the element ©A is invertible,
it suffices to prove that TA©A = ̂ \ is divisible by -0n-i,n(cn-i,(^) on the left. But
^ = ̂ ^ by Lemma 2.3. So we will prove that ^ is divisible by '0n-i,n(cn-i,c^) on
the right. Since '0n-i,n(cn-i/Cn) + ^n,n-i (en, Cn-i) = 2, that is to prove

(2.12) ^A^n,n- l (c^^_i)=0.

Suppose that the number n appears in the p-th column and the q-\h row of the
tableau A. Then by our assumption the number n — 1 appears in the same column and
(g — l)-th row of A. Let %i < . . . < ir be all the numbers in the q-\h row. So we
have ir = n. Then due to the relations (2.1) and (2.2) we have for a certain element
© € Hn the equality

©A • '0n ,n- l (Cn,C^_i) = JJ ^,n-l(c^ ,C^_i) •'0n ,n-l (^n , C^-i) • ©.

s<r

Therefore to get (2.12) we have to prove that

(2-!3) TA • JJ ^,n-l(Ci, ,Cn-l) • '0n,n-l(Cn,Cn-l) = 0.
s<r

We will now prove (2.13) by induction on r. Suppose that r = 1. Let m be the
number appearing in the (p — 1) -th column and (q — 1) -th row of A. Then according to
our proof of Theorem 2.2 the function T^i,... ,^) has the form

T(^i, . . . ,tn) • ^mr^Cm + t^, C^ + tn) ̂ n-l,n(Cn-l + tn-l, Cy, + ̂ )

where the restriction of Y( t i , . . . ,^) to T is continuous at t^ == . . . = tn = 0. Moreover,
this restriction is divisible on the right by '0m,n-i(cm+^m5 c^-i+^n-i) where ̂  = tn-i.
Since c^ = c^ = 0 and Cn-i = 1, restriction to tm = ^n-i of

'0m,n-l,n(Cm + im^n-\ + ̂ n-1, C-n + ̂ n) • '0n,n-l(Cn + ̂ n , Cn_i +^_i)

vanishes at ^ = tn = 0 by Corollary 2.7. This proves (2.13) for r = 1.
Now suppose that r > 1. We have to prove that the restriction to T of

(2.14) T^i,... ,^) . J] ̂ ,n-i (c^ + ̂  , c,_i + t^-i)
s<^r

vanishes at i\ = . . . = tn = 0. Now denote ir-i = m. The number m — 1 appears in
the (p - 1) -th column and the (q - 1) -th row of A. So we have Cm-i = Cn. Let ^ be
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the shape of the tableau obtained from A by removing each of the numbers m + 1,... ̂ n.
Then the function T A ( t i , . . . , ^ n ) has the form

Y^l, . . . ,tm) ' ^(tl, . . . ,tn-l) • ^m-l,n-l (c^-l + t^-l , C^-l + ^n-l) X

<l>(^i , . , .^) •^m-l ,n(Cm-l + tm-1; CH + ^n) '0n-l, n (Cn-1 + t^-1 , C^ + ^n) X

JJ ̂ n(<^ +^,C^ +tJ.
s<r

Here we have denoted by ^(t i , . . . ,^n-i) the product

(2.15) ]̂ [ ̂  {ci + ̂ , c, + tj); j = m + 1,... ,n - 1
(^j)

where % runs through ffj but (%, j ) / (m - l ,n - 1). Further, we have denoted

(2.16) $(^,...^)= JJ ^n(c,+^c,+^)
(z,n)

where % runs through the sequence Bn but i ̂  m — l , n — l , . . . , m . I n particular, any
factor in the product (2.16) commutes with

^rn-l,n-l (Cm-1 + tm-1; Cn-1 + ̂ n-l)

due to (2.2). Therefore the product (2.14) takes the form

(2.17) T^ti,... ,^) • ̂ i,... ,^-i) • ^(^ i , . . . ^n) x

'0m-l,n-l,n (Cm-l + ̂ m-1 ? CH-I + ̂ n-l; ̂  + ̂ n) X

J~[ ^^n (Ci, + ̂  , C^ + tn) • JJ '0i,,n-l (^, + t^ , Cn-1 + ^n-l) X

s<r s<r

^n,n-l(Cn +^5^-1 + ^n-l) =

T^(tl, . . . ,tm) ' ^{t^ . . . ,^_l) • $(tl, . . . ,^) X

^m-l,n-l,n{Crn-l -{-tm-1, Cn-1 -\-tn-l,Cn + tn) '0n,n-l(Cn + ̂  , Cn-1 + ^n-l)

JJ ^>i^n-l (Cis + ̂ . ^ ̂ -1 + tn-l) • JJ '0i,n (c^ + t^ , Cn + ̂ ).
s<r s<r

To get the latter equality we used the relations (2.1) and (2.2). Restriction to T of the
product of factors in the first line of (2.17) is continuous at i\ = . . . = tn = 0 according
to our proof of Theorem 2.2. Each of the factors in the last line is also continuous at
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^ = . . . = tn = 0. Therefore by Lemma 2.6 the restriction of (2.17) to T has at
i\ = . . . = tn = 0 the same value as restriction to T of the product

(2.18) T^i,... , t m ) ' ^(ti , . . . ,tn-i) • ̂ i,... ,tn) x

(m - l,n) • ^n,n-l(c^ +^n,C^-i + tn-l) • f X

U (pi^n-l(Ci^ +ti^Cn-l +tn-l) • JJ ̂ i,,n(^ + ̂ , , C^ + ̂ ) =

s<r s<r

T^tl, . . . ,tm} • ̂ (tl, . . . ,tn-l) . ̂ (ti, . . . ,tn) X

JJ ̂ i^m-1 (Ci, + ̂  , Cn + ̂ ) • ]'J ̂ z,,n-l (^ + ̂ , , C^_i + ̂ _i) X

s<r s<r

(m - 1 , n) • ̂ n,n-l (C^ + ̂  , C^_i + tn-l) • /

for a certain number / € 1R . Here each of the factors ^i^rn-i (ci, +t^ , Cn+tn) commutes
with $(^i , . . . ,tn) by the relations (2.2). In each of these factors we can replace Cn + tn
by Cm-i + tm-i without affecting the value at i\ = ... = tn = 0 of the restriction
to T of (2.18). Denote

1^1, . . . ,tm} = JJ ̂ i^rn-1 (c^ + t^ , Cm-1 + tm-l}-

s<r

According to our proof of Theorem 2.2 it now suffices to demonstrate vanishing at
t\ = ... = tn-i of the restriction to T of the product

(2.19) T^ti,... ,tm) • ̂ i,... ̂ n-i) • r(ti , . . . ,tm).

Consider the product (2.15). Here the factors corresponding to the pairs (z,j) are
arranged with respect to ordering chosen in the proof of Theorem 2.2. Let us now reorder
the pairs (z, j) in (2.15) as follows. For each number j > m appearing in the (p — 1) -th
column of A change the sequence

(m- l j) , (%ij) , . . . , (^_ij)

to
( i ^ j ) , . . . , ( i r - i j ) , (m- l j ) .

Denote by ^ ' (^ i , . . . ̂ n-i) the resulting ordered product. Then by (2.1) and (2.2)

(2.20) ^(ti , . . . ,^-i) • r^i,... ,tm) = r^i,... ,^) • ̂ \t^... ,t,_i).
Now let (z , j ) be any singular pair in (2.15). Let (h^j) be the pair following (i^j)

in the ordering from our proof of Theorem 2.2. Then (h^j) follows ( % , j » ) in our new
ordering as well. Furthermore, by the relations (2.1) and (2.2) the product

(2.21) T^i,...^).r(^...^)
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is divisible on the right by 'fo(c^ + iz, Ck + th). Therefore

(2.22) T^i,... ,^) • r(t i , . . . ,^) . ̂ ' ( t i , . . . ,^_i) =
Y^i,... ,^) • r(ti , . . . ,^). ̂ i,... ,^_i)

where restriction of ^ " ( t ^ , . . . ̂ n-i) to T is continuous at ^i = . . . = tn-i = 0.
But by the inductive assumption the restriction of the product (2.21) to T vanishes at
ti = . . . = tm = 0. Thus due to (2.20) and (2.22) the restriction of (2.19) to T vanishes
at ^i = . . . = tn-i == 0 as well D

We have shown that the element ^\ = YA ©A of Hn is non-zero and * -invariant.

COROLLARY 2.9. - Let the numbers k and fc+1 stand in the same column of the tableau A
Then the element ^\ G Hn is divisible on both sides by (pk,k+i(^k^k-\-i) •

The proof of the next lemma is similar to that of Lemma 2.1 and will be omitted.

LEMMA 2.10. - Restriction of ^pzjk(u^ v, w) to the set of (u^ v, w) such that

1 1 _
(̂  — w)2 {v + w)2

is continuous at u == ±w.
We conclude this section with two brief remarks. First, notice that the proofs of

Lemma 2.1 and Theorem 2.2 yield explicit formulas for both elements ^\,T\ e Hn;
cf. [11, Example 9.7]. The element T\ G Hn should be regarded as an analogue of the
classical Young symmetrizer [15] in the group ring C • Sn; see [11, Section 9].

3. Jucys-Murphy elements of the Sergeev algebra

For each k = 1 ,2 , . . . we can regard the algebra Hk as a subalgebra in ff^+i • Here
the symmetric group S^ C 5fc+i acts on 1,... ,k + 1 preserving the number k + 1. So
we get a chain of subalgebras

ffi C ^2 C . . . C Hn C ffn+i C . . . .

For each k = 1 ,2, . . . introduce the element of the algebra Hk

(3.1) Xk = ̂  (ik) + (%fc)a,0fc.
l<^i<k

In particular, x\ = 0. The following proposition will be used in the next section.

PROPOSITION 3.1. - We have equality of rational functions of u valued in I^n+i

(3.2) n ^+i ,K^)^A=(i-^)-^.
l^i^n

Proof. - Denote by X{u) the rational function at the left hand side of (3.2). The value
of this function at u = oo is ^\. Moreover, the residue of X(n) at u = 0 is - Xn+i^x.
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It remains to prove that X(n) has a pole only at u = 0 and this pole is simple. Let an
index i e { 2 , . . . ,n} be fixed. The factor (/?n+i,i (^ ^i) in (3.2) has a pole at ^ = =L^ .
We shall prove that when estimating from above the order of the pole at u = ±^ of
X('u), this factor does not count.

Suppose that the number i does not appear in the first row of the tableau A. Then
the number i — 1 appears in A straight above i. In particular, c^-i = Ci + 1. By
Corollary 2.8 the element ^/\ is divisible on the left by

^-1,^(^-1 , Ci) = ̂ _i^(^_i , Zi).,̂

But the product

(^^+l^_l(H,^_l) ipn-^l,i(u,Zi) ̂ -i^(^_i,^) = (^^+i^_i^(^ ,^_i ,^)

is regular at u = Ci due to Lemma 2.10.
Now suppose that the number i appears in the first row of A. Let k be the number

k adjacent to i on the left in the first row of A. Then Ck = ci — 1. By Corollary 2.5
the element ^\ is divisible on the left by

(3.3) JJ ^ p j i ( z j , Z i ) ' ( p k i ^ k ^ i ) '
k<j<i

Consider the product of factors in (3.2)

(3.4) ^^l,k(u,Zk)' JJ ^n+lj(u,Zj) ' ipn-^-l,i(u,Zi).

k<j<i

Multiplying the product (3.4) on the right by (3.3) and using (2.1), (2.2) we get

]~J ( p j i ( Z j . Z i ) - i p ^ l , k , i ( u , Z k , Z i ) • JJ ^ij+i(^,Cj).

k<j<i k<j<i

The latter product is regular at u = Zi by Lemma 2.10. The proof is complete D
The elements r c i , . . . ^Xn of the algebra Hn will play an important role in this article.

They will be called the Jucys-Murphy elements of the algebra Hn; cf. [16].

LEMMA 3.2. - a) The elements a; i , . . . ^Xn of the algebra Hn pairwise commute, b) For
any r = 1,2, . . . the element x^ + . . . + x^ belongs to the centre of Hn.

Proof. - The first statement of this lemma can be verified by direct calculation. One can
also check directly the relations in the algebra Hn

(3.5) dk Xk = — Xk Ofc; a k X i = x i d k ^ k ^- I ;

(3.6) (k, k + 1) Xk-^-i - Xk (k,k + 1) = 1 + a^+i;

(3.7) rcfc+i {k, k + 1) - (fc, k + 1) Xk = 1 - a^fc+i-
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By making use of (3.6) and (3.7) one can verify

(3.8) [(fc,fc+l) , : r^+i] =0; [ ( f c , f c+ l )^ |+^+i ] = 0

where the square brackets stand for the commutator. By the definition (3.1) the transposition
(k^k + 1) G Sn also commutes with xi if I -^- fc, k + 1. So the commutation
relations (3.5), (3.8) imply the second statement of Lemma 3.2 D

According to the following theorem, the element ^/\ G Hn is a joint eigenvector of
r c i , . . . ^Xn with respect to the left regular action of the algebra Hn.

PROPOSITION 3.3. - For each k = 1,... ,n we have x^ ' ̂ \ = Zi ' ^\.

Proof. - Note that x^ = 0 and ^i = 0 by definition. So we will assume that k / 1. For
any k = 2 , . . . ,n an argument similar to that already used in the proof of Proposition 3.1
shows the equality of rational functions of u valued in Hn

(3.9) ' u Tl ^(^z)'^A = (H-^ ) -^A.

l^i<k

Denote by ^fc(^) the rational function appearing at the left hand side of (3.9). We shall
prove that ^>k(^k) = 0-

Consider any factor (^(^^i) at the left hand side of (3.9) with zi = ^. Then this
factor has a pole at u = Z k . However, according to the proof of Proposition 3.1 this factor
does not count when estimating from above the order of the pole at u = Zk of ^k{u)^
provided ,% 7^ 1. But u • ^1(^5^i) has no pole at u = 0.

Suppose the number k does not appear in the first row of the tableau A. Then the
number k — 1 appears in A straight above k . So c^-i == c^ + 1. Consider the factor
^k^k-i^u.Zk-i) m (3.9). By Corollary 2.8 the element ^\ is divisible on the left by

^k-l,k(Ck-l,Ck) = ̂ k-l,k{^k-l^k)-

But the product

^k,k-l{u,Zk-l) • ̂ k-l,k{Zk-\,Zk)

vanishes at u = Zk due to (2.3). So the function ^kW vanishes at u = Zk as well.
Now suppose that the number k appears in the first row of A. Note that k / 1 by our

assumption. Let i be the number adjacent to k on the left in the first row of A. Then
d -= Ck — 1. Consider the product of the factors in (3.9)

(3.10) ( p k i { u , Z i ) - ]"J ^ p k j { u , Z j }
i<j<k

None of them has a pole at u == Z k . By Corollary 2.5 the element ^f\ is divisible on
the left by

]̂  ^ j k { Z j , Z k ) ^ i k { Z i , Z k } '

i<j<k
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Due to (2.3) when we multiply the latter product on the left by (3.10) and set u = Zk we get

,n, \ ~ (^ - ̂ )2 - (^•+^)2J
which is equal to zero because the factor corresponding to j = i vanishes D

Let [i run through the set T>\ of all strict partitions of n — 1 which can be obtained by
decreasing one of the parts of A . Put m\^ = 1 if the number t^ is odd while t\ is even;
otherwise put m\^ = 2. Restriction of the Hn -module U\ to Hn-i splits into a direct
sum of the modules U^ where each U^ appears m\^ times; see [9, Lemma 6]. This
branching property determines the irreducible module U\ over J,^ -graded algebra Hn
uniquely. We set Ho = C.

THEOREM 3.4. - Under the left regular action of Hn the space Hn ' ^\ splits into a
direct sum of copies of the irreducible module U\.

Proof. - Let us prove by induction on n the following statement: for any r = 1, 2 , . . .
the central element x^ + . . . + x2^ G Hn acts as

(3.11) z^ + . . . + z^ = c[{c, + ! ) -+ . . .+ c^cn + 1)'

in the irreducible module U\. Due to Proposition 3.3 the latter statement implies
Theorem 3.4. Indeed, the collection of the eigenvalues (3.11) determines the shifted Young
diagram A uniquely. Therefore if an irreducible Hn -module U contains an eigenvector
of x^... ,x^ with the respective eigenvalues z^... ̂  then U = U\.

If n == 1 then rci = 0 and Ci = 0 so the statement to prove is trivial.
Now assume that n > 1. Suppose there exist two distinct diagrams ^,-u G V\. Each

of them can be obtained by adding a box to the same shifted diagram. Let c and d be
the contents of these two boxes. Here c 7^ d. Consider the irreducible components U^
and Uy in the restriction of U\ to Hn-i. The element Xn G Hn commutes with the
subalgebra Hn-i and acts in U^.Uy by certain numbers z ^ w G C respectively. By
comparing the actions of the central element x]7' + . . .+ x2^ G Hn in U^, U^ and by
applying the inductive assumption to these Hn-i -modules we get the equality

c^c + 1)" + z^ = d^d + 1)" + w2".

These equalities for r == 1,2 imply that z2 == d(d + 1) and w2 = c(c + 1). So we
obtain the required statement.

Assume that T)\ = { ^ } - Take a joint eigenvector ^ G U\ of x^x^-i G Hn. Let
H, v € C be the respective eigenvalues. Observe that u / ± v . If u == v then by applying
(3.6), (3.7) with k = n - 1 to the vector ^ we obtain that {xn -Xn-i) ' (n - 1, n) ̂  = 2 $
while (xn — Xn-i) • $ = 0. This contradicts the property (xn — ^n-i)* = Xn — Xn-\.
Thus u -^ v . Similarly, by taking the vector dn-i • $ instead of ^ we prove that u 1=- — v .
Now consider the element

hn = (n- l,n) • (^_i - X2,) + (^n-i +rr^) - a^_i a^ (^-i - ̂ n) G ffn.
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One can derive that Xn hn == hnXn-i from (3.7). So Xn • hnS, == v • hn^. But
XnCn = —CnXn while c?^ ^ 2. So any eigenvalue of rc^ in U\ is either H or
— u. Hence hn ' £, = 0, that is

(3.12) (n-l,n)^=(^—+a^—a^}^.
\u — v u-\- v /

In particular, the pair (u^v) satisfies the condition (2.6) since (n — l,n)2 • ^ = ^.
Let us now take any Hn-i -irreducible component U^ C U\. We can choose ^ € (7^.

We will show that u2 = z^. Then we will get the required statement by the inductive
assumption. If A = (2) then v = 0, so u2 = 2 = zj by (2.6). We will assume that
n > 2. Let us choose ^ G U^ so that x i ' ^ = zi - ^ for z = n — 1, n — 2. Here we use
Proposition 3.3 and the inductive assumption. So we have v = Zn-i. We will also write
w = Zn-2' Consider the following five cases.

(i) Suppose that i\ = 2 while both parts of A are greater than 1. Then the number
n — 1 stands straight above n in A while n — 2 stands next to the left of n. Now

Xn-l • hn-l $ = hn-1 X^-2 ' ^ = W • h^-l ̂

r „ / 2 2\ ( ( o i\ ^ ^-2 O'n-1 \ ^ y ^h^-i $ = (w- - v') (n - 2, n - 1) - ——— - —————— « $ 7^ O.
V V — W V + W /

So the pair (u^ w) satisfies the condition (2.6) as well the pair (n, v). Note that here
w2 = (cn - 1) Cn and v2 = {en + l)(cy, + 2). Therefore u2 = Cn {en + 1) = ̂ .

In the remaining four cases the number n — 1 will stand next to n — 2 in the tableau
A. Due to Corollaries 2.5 and 2.9 we can now assume that

/ o i o \ ( o 1 \ <- ( i ^-2 ̂ -n-l \ f(3.13) (n - 2, n - 1) • $ = ——— + —————— • ^.
\v - w v + w /

(ii) Suppose that i\ > 2. Then the numbers n — l,n — 2 stand straight above n in
the tableau A. So v2 = (en + l)(cn + 2) and w2 = (c^ + 2)(c^ + 3). In particular,
here we have w / 0. The condition (2.6) implies that either u2 = Cn (en + 1) or
u2 = (cn + 2)(cn + 3) = w2. But if u = ± w then by substituting (3.12), (3.13) in

(n — 1 , n) (n — 2, n — 1) (n — 1 , n) • ^ = (n — 2, n — 1) (n — 1, n) (n — 2, n — 1) • ^

we obtain that w = 0. This contradiction demonstrates that u2 = Cn (en + 1) = Z2,.
(iii) If A = (2,1) then m\^ = 1, so u = - u. Thus n2 = 0 = zj. Note that here

(3.14) (12) . ̂ = — (0102 + 1) ̂  (23) . $= — (^ 03 - 1) •$.

(iv) Suppose that i\ = 1 and n > 3. Then n — 1, n — 2 stand straight to the left of n
in the tableau A. So v2 = (en - 1) Cn and w2 = (en - 2)(c^ - 1). Now (2.6) implies
that either u2 = Cn (en + 1) or u2 = (en - 2)(cn - 1) = w2. But w / 0. As in (ii) one
proves that only the case u2 = Cn (en + 1) = z2, is possible.
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(v) Finally, suppose that A = (3). Here v2 ^=- 2 and (2.6) implies that either u2 = 6
or u2 = 0. But in the latter case the transpositions (12),(23) G H^ would act in the
irreducible module U^ by the same formulas (3.14) as in the module ^(2,1) • Since the
H^ -modules U^ and ^(2,1) are non-equivalent, we get u2 = 6 == ^j D

More detailed analysis shows that the left ideal Hn ' ^\ splits into a direct sum of
2^A/2] copies of the irreducible module U\ [11, Theorem 8.3]. However, we will not use
the latter fact in the present article. We will need the following corollary to Theorem 3.4.
Let h run through the set of basic elements of Hn

(3.15) ga[l...alnn^ g^Sn, l^... ̂  = 0,1.

We denote by \\(h) the trace of the element h € Hn in the module U\ normalized so
that ^A(I) = 1- Consider the corresponding central element of Hn

(3.16) ^="E XxW^h-1.
h

COROLLARY 3.5. - We have the equality

X^'2nn\ =^ h ̂ xh~1.-n\ = ̂  n ^x
h

Now fix any non-negative integer m and consider Hn as a subalgebra in Hn-^-m • We
will write J = j^ + n for every j = 1, . . . , m. For each k = 1 , . . . , n denote

(3.i7) y fc= E (fcJ) - ( fcJ)^a j .
l^j'^m

The next auxiliary statement easily follows from Proposition 3.3; cf. [12, 13].

PROPOSITION 3.6. - The product ^ \ ' {y\ — z\) . . . {yn — z-n} ^=- Hn-^-m ^ equal to

(3.18) ^. ^ (l j i ) . . . (nj j . ( l -aiaj j . . . ( l -a ,aj j^ A • / , ^ - • - J l ^ " - V ^ J r t ) • {^ - "-l^Ji.

Jl- . -^Tl

w/z^r^ all the indices j i , . . . jn ^ { I ? • •«5 '^ '} ^^ pairwise distinct.

Proof. - We will use the induction on n. Note that z\ = 0 so for n = 1 we get the
required statement by the definition (3.17). Let us now suppose that n > 1. Then by the
inductive assumption and by the definition (3.17) we have the equality

(3.19) ^ A < 0 / l - ^ l ) . • . Q / n - ^ ) = =

^A • Y^ ( l j i ) . . . ( n - l j n - i ) ( l - a i a j j . . . ( l - a^_ ia^_ j x
J l - ' j n - l

X ^(^J) (l -^nOj) -x ^A^Jn-1- - 0^7
j

^\• ̂  ^n(lji)...(n- IJn-i) (l-aiajj ... (l-a^_ia^_J
Jl.-.Jn-l

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



864 M. NAZARQV

where j i , . . . ̂ jn-i^j C= { ! , . . . ̂ m} and the indices j i , . . . ,jn-i are pairwaise distinct.
Due to Lemma 2.3 and Proposition 3.3 by the definition (3.1) the sum in the last line of
this equality can be replaced by the sum

^ ^ (n%) (l -a^a,)' (lji)...(n- IJn-i) (l - ai0jj ... (l - ̂ _io^_J
I Jl.-.J 'TZ-l

where the index i runs through 1,. . . ,n — 1. The latter sum can be rewritten as

^ ^ ( I J i ) - - - ( ^ - Un-i) -OJ) ( l -Onaj) • ( l-aiajj . . . (l-a^-ia^_J
Jl.--Jr.-l J

where j runs through j i , . . . jn-i' Now Proposition 3.6 follows from (3.19) D
Let IJL be any strict partition of m. We will identify the partitions A and [L with their

shifted Young diagrams. Take the embedding of the algebra Hm into ^n+m such that
the symmetric group Sm C 5n+m acts by permutations of the numbers n + l , . . . , n + m .
Denote by ^ the image of the element ^ G Hm with respect to this embedding.

COROLLARY 3.7. - We have the equality ^ \ • (^/i — z\)... {y^ — z-n) ' ^/l = 0 (/" ̂
diagram X is not contained in fi.

Proof. -If m < n there is no summand in (3.18) and ^\ • (?/i - ̂ i ) . . . (?/n - Zn) = 0.
Suppose that m ̂  n but the diagram A is not contained in fi. Consider Hn as a subalgebra
in 1̂  with respect to the standard embedding. The restriction of the H^n -module U^ to
Hn does not contain any irreducible component isomorphic to U\. So by Lemma 2.3 and
Theorem 3.4 we get ^\ • ̂  = 0 in ff^. Moreover, ^A • ^i . . . a^ • ^^ = 0 for any
Ji? • • • - i j s G { 1 , . . . ,m} . Now the required equality follows from Proposition 3.6 D

In the next section we interpret Corollary 3.7 in terms of classical invariant theory.

4. Capelli identity for the queer Lie superalgebra

In this section we will let the indices i,j run through ± 1 , . . . , d= N . We will write
z = 0 if i > 0 and z = 1 if i < 0. Consider the Zs -graded vector space C^l^. Let
e^ G C^l^ be an element of the standard basis. The Zs -gradation on C^^ is defined
so that dege, = z . Let £^ e Endf^^^) be the standard matrix units. The algebra
End^'^) is Z2-graded so that deg£^- = z + J .

We will also regard £^ as generators of the complex Lie superalgebra 0^|7v.
The queer Lie superalgebra q^y is the subalgebra in S^j^v spanned by the elements
Fij = Eij + E-i^-j. Thus F^i^j = F^ by definition. Note that the image of the defining
representation q^y —^ End(CA^IA^) coincides with the supercommutant of the element

J = ̂  E,,-, . {-l)3 € E^d(CNIN).

In this section we will use the following convention. Let A and B be any two associative
complex Z2 -graded algebras. Their tensor product A 0 B will be a 1^ -graded algebra
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such that for any homogeneous elements X, X' G A and V, Y ' G B

(X 0 V) (X' 0 V) = XX7 0 Y Y ' • (-1) degx/ degy,
deg (X 0 V) = degX + degV.

If the algebra A is unital denote by is its embedding into the tensor product A^ as
the 5-th tensor factor:

^(X) = i^(5-1) 0^-0 i^-^ i ^ s ^ n.

We will also use various embeddings of the algebra A0772 into A^71 for any m ̂  n. For
any choice of pairwise distinct indices ^ i , . . . ^Sm ^ { I ? • • • ̂ } and an element X E A^
of the form X = X^ 0 . . . 0 X^ we will denote

X,,.,,=^(X^)... ^(X^)GA^.

Denote
P = ̂  ̂ . 0 E,, . (-1)^ G End^l^)02.

^j

For any positive integer n a representation J^ -^ End^^l^)^ of the Sergeev algebra
can be determined by the assignments

(4.1) dk ̂  Jk and ( k l ) ^ P u .

Let us now consider the enveloping algebra U(q^) of the Lie superalgebra q^. The
algebra U(q^) is a Hopf superalgebra: the comultiplication, counit and the antipodal map
are defined for F G c\^ respectively by

A(F) -F 01+10 F, e(F) =Q, S ( F ) = - F .

Take the n-th tensor power of the defining representation U(q^) -^ End(CN I N) . Its
image coincides [9, Theorem 3] with supercommutant of the image of Sergeev algebra Hn
relative to (4.1). Let A be any strict partition of n. Take the irreducible module U\ over
the Z2-graded algebra Hn. Denote by Vx the subspace in Horn (Ux, End (C^)0")
consisting of all the elements which supercommute with the action of Hn. We have an
irreducible representation of the ^2 -graded algebra U(q^v) in the space V\. We denote
it by TI-A. Here V\ / {0} if and only if i\ ^ N [9, Theorem 4]. From now on we
will assume that this is the case.

Now let two positive integers N and M be fixed. Let the indices a,b run through
± 1, . . . , =L M while the indices i^j keep running through =L 1 , . . . , d= N . We will also
write a = 0 if a > 0 and a = 1 if a < 0. We will use the generators Fij G q^v
and Fab G q M .

Introduce a supercommutative algebra P with the free generators xia where a > 0
and the 1^ -gradation is defined by degXia •== % . It will be convenient to set

X^-a = V^'^-^a ; 0 > 0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



866 M. NAZAROV

Let 9ia be the left derivations in the supercommutative algebra P corresponding to the
generators xia • Here we allow both indices i and a to be negative, so that

<9z,-a = - v^T • 9-i^a ; a > 0.

The algebra generated by all the left derivatives 9ia in P along with the operators of
left multiplication by x^ will be denoted by PV. Note that for the arbitrary indices
i = ±1 , . . . , ± N and a = ± 1 , . . . , ± M we have degxia = % + a in P .

PROPOSITION 4.1. - The assignments/or ij = ±1,..., =L TV and a,b = ±1,. . . , ± M

(4.2) F,, ̂  ̂  x,b9,b and F^ ̂  ̂  ̂ A • (-l)^6)- a 6

& J

J^/zn^ representations in PT> of the Lie superalgebras q^y and C\M • The images of U(q^)
an^ U(qM) ^ ̂ ^ representations are the supercommutants of each other.

Proof. - Let e, G C^ and e^ G CM'M be elements of the standard bases. Identify the
tensor product Enc^C^) (^End^^) with the algebra End(CNIN(g) CMIM) so that

E,j 0 E^ • CA. 0 ec = ei 0 e, . ^-fc ̂  (-l)^^6).

Now the standard embeddings X \-^ X 0 1 and y ^ l ( g ) Y of End(CA^IN) and
EndfX^^ into End(CN '7v) 0 End(CM 'M) respectively define actions of the Lie
superalgebras q^y and q^ in the space CN}N 0 CM I M . These actions preserve the
subspace W in C^l^ 0 C^^ with the basis consisting of the vectors

^ 0 Ca — V^T • e_,, 0 e-a ; a > 0.

The supersymmetric algebra S{W) coincides with P, the above basic vector of W being
identified with the generator Xia . The action of q^ and C^M in the S(W) is then
given by (4.2). So the images of the enveloping algebras U(q^) and U(qM) in PV
supercommute. Moreover, due to [9,Theorem 3] the spectrum of the U(q7v) 0 U(qM)-
module S(W) is simple. Hence the images of U(q7v) and U(qM) in PV are the
supercommutants of each other D

Thus we have defined representations U(q^) —> VD and U(qM) —> W, we will
denote them by 7 and 7' respectively. In this section we will consider the subspace

^^(Hq^f-^'^qM)) CPV.

Next corollary to Proposition 4.1 gives another description of the subspace I C W.

COROLLARY 4.2. - The subspace T C W consists of those operators which
supercommute with the images of 7 and 7'.

Let us also equip the algebra P with the Z -gradation such that deg Xia = 1. Denote by
Pn the subspace in P consisting of the elements of degree n. According to'[9, Theorem 3]
the irreducible components of the U(q^v) 0 U(qM) -module Pn are parametrized by the
strict partitions A of n with not more than M, N parts. Denote by W\ the irreducible
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component of Pn corresponding to A . If the number i\ is even then W\ = V\ 0 V^
where the second tensor factor is the irreducible U(qM)-module corresponding to the
partition A . If i\ is odd then the tensor product V\ 0 V/ splits into direct sum of two
copies of the irreducible module W\.

Let 11 run through the set of strict partitions of m = 0 ,1 ,2 , . . . with not more than
M, N parts. The next proposition gives a distinguished decomposition of the vector space
Z into a direct sum of one-dimensional subspaces; cf. [3, Theorem 1]. Consider the
1 -filtration on the algebra PV by degree of the differential operator.

PROPOSITION 4.3. - There is a unique one-dimensional subspace T\ G T of degree n
such that I\ • W^ = {0} when m < n or m = n but fi / A. We have a decomposition

(4.3) I=elx

where A runs through the set of all strict partitions with not more than M, N parts.

Proof. - Consider the actions ado7 and ado7/ in the space PV of the Lie superalgebras
q^v and C\M respectively. By Corollary 4.2 the subspace I C PT> consists of all the
invariants of both actions. Denote by V the subalgebra in PV generated by all the left
derivatives 9ia • The actions of q^v and C{M in PV preserve the subspace V. Obviously,
we have PT> = P ' V. Moreover, as a U(q7v) 0 U(qM)-module the space PV now
decomposes into the tensor product P 0 T>.

Let us equip the algebra V with the ~S- -gradation such that deg Qia = 1 • Denote
by "Dn the subspace in V consisting of the elements of degree n. As a module over
U(q7v) ^U(qM) the subspace Vn splits into direct sum of irreducible modules W^ such
that the tensor product W\ (g) W* contains an invariant subspace if and only if A = fi.
Let I\ be the invariant subspace in W\ (g) W^ C PV, it is one-dimensional.

Choose any non-zero element I\ G T\. Since W^ C Pm we have I\ - W^ = 0 for
m < n. Suppose that m = n. Consider the linear map Pn -^ Pn '• X —^ I\ ' X . It
commutes with the actions of q^v and HM m Pn . But the image of this map is contained
in W\ by the definition of the space I\. So the restriction of this map to W^ C Pn with
[i / A is zero. Thus we obtain the decomposition (4.3). It is unique since the spectrum of
the U(q^v) 0 U(qM)-module P is simple D

Let Z(q7v) be the centre of the enveloping algebra U(q^) . By definition, an element of
U(q^) is central if it supercommutes with any element of U(q^) . However, the centre
Z(qAr) consists of even elements only [17, Theorem 1]. Note that the representation
7 : U(q^v) -> PV is faithful when M ^ N . Then we get the equality I = 7 (Z(q7v))
by Proposition 4.1; cf. [18, Section 3]. In this section for any M,N we will give an
explicit formula for a non-zero element in T\. We will also construct a non-zero element
in 7-1(ZA) H Z(q^) • An element of (7 /)-1(ZA) H Z(qM) can be constructed in a similar
way. Thus for any M, N we will get an evidential proof of the equality

Z=7(Z(q7v) )=7 / (Z (qM) ) .

Now let A be any strict partition of n with ^ ^ N . Let Rx G End^'^)^
correspond to ^\ E Hn with respect to (4.1). Let L\ C (C^)^ be the image of the
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endomorphism R), . The representation of U(q^) in the space L\ is a direct sum of
2 ̂ /2^ copies of the irreducible representation in V\; see Theorem 3.4. Denote by CC;A the
respective homomorphism U(q^) -^ End (LA ) . We will identify the algebra End (LA )
with the subalgebra in End^^)071 consisting of all the elements which have the form
XR^ = R^Y for some X,Y G End^l^)^.

Denote
F = ̂  ̂  0 ̂  . (-1)^ e EndCC^) 0 U(q^).

^j
Note that for any element X G q^v we have the equality

(4.4) ' [ JC01+10X, F] = 0

where the square brackets stand for the supercommutator. For s = 1,... ,n we will write

F, = L, 0 id (F) G End^l^)0n 0 U(q^).

As well as in the previous section put Zs = ^/Cs(cs + 1) where Cs is the content of the
box with number s in the shifted column tableau A. Consider the element

(4.5) FA = ̂ A 0 1 • (Fi - ̂ i)... (Fn - Zn) G End^l^)0n 0 U(q^).

Now let IJL by any strict partition of m with not more than N parts. The next proposition
makes the central part of this section; cf. [19, Section 1.2].

PROPOSITION 4.4. - We have id 0 TT^{F\) = 0 if the diagram X is not contained in I J L .

Proof. - We can replace in Proposition 4.4 the representation TT^ by the direct sum ̂
of its copies. With respect to the defining representation U(qAr) —> End(CAq7v)

End(C^I^) 0 U(q^) -. End^'^)02 : F ^ P (l - Ji^).

So the element id0^(F\) of End^f^^End^) C End^'^)0^^ equals

J R A 0 1 ' II ( £ P.,n+r(l-^n+r) - ̂ ) • 1 0 ̂ .
l^s^n l^r^m

This product is the image in End^l^)0 (n+m^ of the element from the Sergeev algebra
Hn-^m

^• (^ l - ^ l ) . . . ( ^n -^ ) -^ ;

see the end of the previous section. By Corollary 3.7 the latter product vanishes if the
shifted diagram A is not contained in the shifted diagram ^ D

Consider the linear functional str : End^^)^ -> C called the supertrace. By
definition, we have

str : E^, 0 . . . 0 E^ ̂  8^ .. . S,^ . (_i).-i +-+^.
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This functional is invariant with respect to the adjoint action ad of the Lie superalgebra
S^vj^v in ElK^C^^)^. Let us now introduce the Capelli element

(4.6) C\=str0id(F;OeU(q,v),

see (4.5). This definition of the element C\ is motivated by the results of [4,5].

LEMMA 4.5. - We have C\ G Z(q^) .

Proof. - By the equality (4.4) and by the definition of F\ we have for any X G cj^y

[X, s t r0 id(FA)] = - (stro adX) 0 id (F^) = 0 D

Note that 7 (Z(q^v)) C Z. So we get the following corollary to Propositions 4.3, 4.4.

COROLLARY 4.6. - We have 7(C\) e T\.
In the remainder of this section we will give an explicit formula for the differential

operator 7(C\) e PP. In particular, we will see that ^(C\) -^ 0 for ^ ^ M,N .
Consider the collection (3.15) of the basic elements h = ga1^ .. .a^ of the Sergeev

algebra Hn. Here g runs through the symmetric group Sn while each of the indices
Z i , . . . , ^ runs through 0,1. Let the indices ? i , . . . , % y , and & i , . . . , & ^ run through
± 1, . . . , =L N and =L 1 , . . . , ± M respectively. Put

(4.7) ^ = E E E E XxW^^...x^9^...9^^{-l)e

g li.-.ln i i - ' - i n b-i...bn

where we write js = ig{s) ' (—1)^ ^ov eacn s = 1,.. . ,n and denote

e = ̂  (Zrbs -\-Jrbs +JrJs + Jr ^s) + ^ ^ ^ + ^(js+l)^.

r<s r<s s
g - l ( r ) < g - l ( s )

THEOREM 4.7. - We have 7 (CA) = I\. Here Ix ^ 0 if l\ ^ M,N.

Proof. - Consider the Z -gradation on the vector space PV = P ' T> by the degree of the
differential operator. By definition any element of the subspace I\ C PV is homogeneous
of the degree n. Therefore by (4.6) due to Corollary 4.6 the element 7(C\) coincides
with the leading term of the element

(4.8) str (g) 7 (^ ̂  1 • FI • . • ̂ n) e PP.

Let QA ^ End^l^)071 be the image of the element XA G Hn under (4.1); see
(3.16). First let us show that the leading term of (4.8) coincides with that of

(4.9) str 0 7 (QA ^ 1 • ^i... Fn) e PP.

Observe that by the definition of the element F e ElK^C^I^) 0 U(q7v) we have

J01 - F - J~1 0 1 = -F.
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Therefore for any s = 1,... ,n we get the equalities in PT>

str 0 7 (J, PA J,~1 0 1 • Pi... Pn) =
- str 0 7 (J, PA 0 1 • Pi. . . Fn • J,-1 0 1) = str 0 7 (PA 0 1 • Pi . . . Pn).

Furthermore, for any s = 1 , . . . , n — 1 we have

(4.10) str 0 7 (P^+i PA P.^+i 0 1 • Pi... P. P.+i... Pn) =
str 0 7 (P^+i PA 0 1 • ̂ i... Fs^i F s . . . F^ • P^+i 01)=
str 0 7 (PA 0 1 • Pi... ̂ s+i F , . . .F^ .

But the elements (4.8) and (4.10) of PT> have the same leading terms. So the equlaity of
the leading terms in (4.8) and (4.9) follows from Corollary 3.5.

But the leading term of (4.9) is easy to write down. Under (4.1) for any g G Sn

where

9~1 ̂  E E^0..^E^^(-lY
ii.-.in

k = ̂  Zr [Zs + Zg(s)) + E ^ r Z s -

r<s r<s
g - l ( r ) > g - ^ ( s )

Further,
( a^ . . . a^ )~ 1 ^ ^ ^,,,„0...0^,^.^.(-l)^

Jl.-.Jr.

where each of the indices j i , . . . ,jn runs through ± 1, . . . , ± N ; we write £5 = (—1)^
for each s = l , . . . , n and denote

I = E I r i s + E l s { j s + 1 ) .
r<s s

Now the definitions (3.16) and (4.2) imply that the leading term of (4.9) equals I\.
In particular, we have I\ G T\ by Corollary 4.6. Suppose that ^ ^ M^ N . Let us

show that I\ 7^ 0. Consider the element

^^ E E ̂ 6, . . . ^ 1 6 1 ^ 1 6 1 ...(9^6, G PP
zi...i^, b-i...bn

This element is U(q^v) 0 U(qM)-invariant. Due to [9, Theorem 3] the element
I\ - dim [/A / (2nn!) is the projection of I € Z to the direct summand T\ in (4.3).
This projection cannot be zero since the elements xi^ .. .a^^ G V span Py, D

Consider the canonical Z-filtration on the algebra U(q^) . It is defined by assigning
the degree 1 to every generator Fij G q^. The corresponding Z-graded algebra is
the supersymmetric algebra S (q7v) . The subalgebra I (q^) C S(q7v) of invariants with
respect to the adjoint action of q^ corresponds to the centre Z(q7v) C U(q^v) .
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Take the quotient of the algebra S (q^v) by the ideal generated by all the elements Fij
with i -^ j . For each i = 1,... ,N denote by ^ the image in the quotient of the element
Fu G S ( q ^ v ) . Then the quotient algebra is C [ t i , . . . , t ^ v ] . Due to [17, Theorem 1]
the image in C [ t i , . . . ,^v ] of the subalgebra I (q^v) C S (q^v) is generated by all the
power sums of odd degree ^2r+l + . . . + ̂ r+l , r ^ 0. We will desribe the image
T\ C C [ t i , . . . ,^v ] of the element from I (q^v) C S (q^) corresponding to the central
element C\ € U(q^v) . In particular, we will see that C\ -^ 0. For description of the
eigenvalue of C\ € U(q^v) in the irreducible module V^ where the diagram ^ does
contain A , see [7, Section 1].

A shifted Young tableau of shape A is any bijective filling of the boxes of diagram A
with the numbers 1,... ,n such that in every row and column the numbers increase from
the left to the right and from the top to the bottom respectively. Let n\ stand for the total
number of shifted Young tableaux of the shape A . Let Q\{ ^ i , . . . ̂ t^ ; — 1) be the Schur
Q -polynomial symmetric in ^ i , . . . ,^ ; see [20].

PROPOSITION 4.8. - We have 7\(t i , . . . ,^y ) = Q\(ti, • • • ,^v ; - 1) • n\/n\ .

Proof. - Regard t i , . . . ,^y as complex variables. Put t-i = ti for each % = 1,... ,7V.
Denote

T = ̂  t,E^ . (-1)1 G End^l^)
i

where the index i runs through ±1,. . . , =L N . Then by the definition (4.6) we have
T\ = str(Q^ • 7^^ ; see also the proof of Theorem 4.7. Now Proposition 4.8 can be
obtained from [9, Section 2.2] and [20, Example III.7.8] D

Due to Proposition 4.8 the elements C\ where the diagram A has only one row, generate
the centre of enveloping algebra U(q7v) . So the equality 7 (C\) = I\ for A = (n) may
be regarded as an analogue for q^v of the classical Capelli identity [1]. Note that for
A = (n) the element ^\ G Hn is determined by the formula (1.3).
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