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QUANTUM GROUPS IN HIGHER GENUS
AND DRINFELD9 S NEW

REALIZATIONS METHOD (5(2 CASE)

BY B. ENRIQUEZ AND V. N. RUBTSOV

ABSTRACT. - We define double (central and cocentral) extensions of Manin pairs attached to curves and
meromorphic differentials, introduced by Drinfeld. We define "infinite twists" of these pairs and quantize them
in the -s^ case, adapting Drinfeld's "new realizations" technique. We study finite-dimensional representations of
these algebras at level 0, and some elliptic examples.

RESUME. - Nous definissons des extensions doubles (centrales et cocentrales) des paires de Manin introduites
par Drinfeld, associees a une courbe et une differentielle meromorphe. Nous definissons des « twists infinis »
de ces paires et nous les quantifions dans Ie cas s l ' z , en adaptant la technique de Drinfeld des « nouvelles
realisations ». Nous etudions les representations de dimension finie de ces algebres en niveau 0, ainsi que certains
exemples elliptiques.

Introduction

In [5], V. Drinfeld introduced examples of Manin pairs attached to the data of a curve,
a meromorphic differential, and a finite dimensional reductive Lie algebra. He remarked
that only in the cases where the curve had genus < 1 could these Manin pairs be given
the structure of a Manin triple; in these cases, the quantization of these Manin triples gives
rise to known Hopf algebras (Yangians, quantum affine algebras and algebras connected
with Sklyanin algebras). He raised the question of quantizing these Manin pairs in the
higher genus case, in the sense of quasi-Hopf algebras.

In this paper, we first present a double (central and cocentral) extension of these Manin
pairs. The general definition of these extensions, in the case of Manin triples, is due to
M. Semenov-Tian-Shansky ([13]). This leads us to the problem of the quantization of
these extended Manin pairs.

We then remark that this quantization problem can be approached in the spirit of the "new
realizations" of Drinfeld (introduced in [4] and developed in [10], [3], [1]). This technique
enabled Drinfeld to give a quantum analogue of the passage from the Serre to the loop
presentations of an affine algebra; it can be presented as follows. The bialgebra structure
corresponding to quantum affine algebras is a double bialgebra structure. Conjugating the
corresponding Manin triple by a double group element, the bialgebra structure of the
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822 B. ENRIQUEZ AND V. N. RUBTSOV

double gets changed by a twist (in the sense of [5]). Let us conjugate by affine Weyl
group elements; when their length tends to infinity, we get a limit Manin triple which it is
simple enough to quantize. The resulting Hopf algebra is then a twist of the one obtained
by quantization of the initial Manin triple (the Drinfeld-Jimbo Hopf algebra).

In the present situation, we introduce a Lagrangean supplementary in our Manin pair,
and conjugate it as before by affine Weyl group elements. (We note that a family of
supplementaries is provided by a covering of the space of principal G-bundles over the
curve X\ we suggest a possible connection between the closedness of a 1-form, defined
in terms of twist, and a generalized classical Yang-Baxter identity which underlies the
integrability of the Hitchin system. We hope to return to this question in [6].) In the limit,
we obtain a Manin triple, whose quantization (in the 5(2 case) is the main goal of this
paper. Let us describe its contents more precisely.

Let X be a smooth compact complex curve, a; a meromorphic nonzero one-form on X,
{xi} C X the set of its zeroes and poles. Let for each z, fc;^ be the local field at Xi, 0^
the local ring at this point, R C C^ the ring of functions that are regular outside {rrj.
We choose a supplementary A to R in C^, Lagrangian for the scalar product defined
by a;. To define a quantization of our Manin triple, we need operators A : R —> 9^ and
B : A -^ 9zfc^, which serve to define the h - e and h - f relations (by h - e relations,
we understand relations between Fourier modes of the quantum analogues of fields h(z)
and e(z), etc.; with e, h, f the Chevalley generators of 5(2). These operators also provide
us with e — e and f — f relations which appear in the form

(0.1) e(z)e(w) = a{z,w)e{w)e(z), w < z.

Our aim is to put these relations in the form

(0.2) (z - w + ̂  H'a^z, w))e(z)e(w) = {z - w + ̂  ft'A(^ w))e(w)e(z),
i>l i>l

where a,,/?, are formal series in z and w, (h is the quantization parameter) similar to
the quantum affine algebra relations

(qz - w)e(z)e(w) = (z - qw)e(w)e(z).

Relations of the form (0.2) are usually called vertex relations. Fourier modes of such a
relation provide relations between the commutators [e^,e^], from which we derive (by
suitable linear combinations) the expression of any such commutator in terms of formal
series in h, with coefficients combinations of epCq, p,q larger that some integer. Such a
derivation is usually not possible by taking Fourier modes of (0.1).

It turns out that to achieve this task, essentially one possibility for the operators A and
B remains. The proof that it indeed leads to e - e and f - f relations of the desired form,
relies on a statement about derivatives of a Green function (lemma 1), which allows us to
give a universal treatment for all pairs (X, a;). The formal series a, and ^ are then obtained
from formal solutions to certain differential equations (eqs. (3.7)), where the variable is h.

The quantization we propose depends both on a choice of A and on that of a certain
element r G R (g) R. We show that the various quantizations obtained are related to each
other by twist operations (in the sense of [5]).
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QUANTUM GROUPS IN HIGHER GENUS 823

We then turn to the problem of finite-dimensional representations of our algebras at level
0; these representations are indexed by points of formal discs. We construct a family of 2-
dimensional representations. We expect that higher spin representations can be constructed
as well and that their tensor products have properties similar to those explained in [2].

We close the paper by giving some explicit examples. In a certain elliptic case, we
recover as e — e relations certain elliptic W-algebra relations discovered in [8]. We also
propose a twist of the "automorphic" Manin triples of [12], and apply the techniques of
this paper to derive a quantization in the case of 5(2. One may hope to identify it with
the Hopf algebra arising in [16].

Further problems related to the present construction could be the following: applying the
Reshetikhin-Semenov method for constructing central elements at the critical level ([11]);
construction of level 1 representations as in [9], vertex operators and the corresponding
quantum Knizhnik-Zamolodchikov (KZ) equations; generalization from s [2 to an arbitrary
semisimple Lie algebra. The resulting quantum KZ equations at the critical level might
then be considered as ^-deformations of the holonomic systems of equations occurring in
the geometric Langlands program; viewing such g-deformations in this framework has been
proposed by E. Frenkel and N. Reshetikhin. Finally, in [7], P. Etingof and D. Kazhdan
showed how to attach a quantization procedure for bialgebras to any associator. It would
be interesting to understand whether the construction presented here can be obtained from
the KZ associator, as it is the case for finite dimensional Lie algebras.

We would like to thank C. Fronsdal, B. Feigin, G. Felder, S. Majid, N. Reshetikhin,
M. Semenov-Tian-Shansky, A. Sevostyanov and E. Vasserot for discussions related to the
subject of this paper, and S. Khoroshkin for explaining to us the ideas of [4]. The work of
V.R. was supported by the CNRS and partially by grant RFFI 95-01-01101. He expresses
his thanks to the Centre de Mathematiques de FEcole Polytechnique for excellent working
conditions it offered him.

1. Manin triples

7. Generalities on Manin pairs and triples

Let us first recall general notions associated with Manin pairs and triples. A Manin pair
is the data of a complex Lie algebra p, endowed with a scalar product (, )p, and of a Lie
subalgebra 6 of p, wich is a maximal isotropic (or Lagrangean) subspace of p. The choice
of a Lagrangean supplementary L to E in p determines a Lie quasi-bialgebra structure on
6, that is the datum of a linear map 8^ : E —> A^, and of an element ̂  G A^, satisfying
certain axioms (see [5]). The map 6^ and the element ̂  are obtained by dualizing the
bracket map from A2^ to L (B £.

The notion of Lie quasi-bialgebra is the classical limit of that of quasi-bialgebra, that
is an algebra A endowed with an algebra morphism AA : A —> A^2, and an invertible
element ^ G A03, such that (AA (g) 1) o AA = $((1 0 AA) o AA)^~1.

If (-p, 6) is a Manin pair, and L is a Lagrangean supplementary of E in p; that (j^), {pi}
are dual bases of £ and L, and R = ̂ ^p1 AJ)^, then 6^ = ad(jR) and ̂  define a Lie
quasi-bialgebra structure on p.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



824 • B. ENRIQUEZ AND V. N. RUBTSOV

If p has a Lie quasi-bialgebra structure (^,^), any element / G A2? defines
a new Lie quasi-bialgebra structure on p by the formuleas Sp f = 6p - ad(/),
^J = ^ - [^J13] - I/12,/23] - [J13,/23] + l/2Alt(^ 0 I)/. In particular, if p
contains two Lagrangean Lie subalgebras 6 and I, with Lagrangean supplementaries L^
and L[, the corresponding double quasi-bialgebra structures on p are related by the twist
Aj = Ez^ A P^ with (j/1), (^) dual bases of 6 H £[ and I H L^

If (p, 6) is a Manin pair and we can choose L to be a Lie subalgebra of p, then the triple
(p, E, L) is called a Manin triple. The corresponding ̂  is then zero; the notion of a Manin
triple is the classical counterpart of that of a bialgebra (that is a quasi-bialgebra with ^ = 1).

2. Drinf eld's Manin pairs

Let X be a smooth compact complex curve, uj a meromorphic nonzero one-form on X,
{xi} C X the set of its zeroes and poles. Let for each z, fc^ be the local field at xi. Ox
the local ring at this point; let k = Cz^, and R C k be the ring formed by the Laurent
expansions of the functions on X, regular outside {xi}.

Let us show here that R is a Lagrangean supspace of k. Let C(X) be the function
field of X and A be its adeles ring. Let { , ) A be the pairing defined on A by
(f^9}A = Y^x^x^xUg^)- Then we have

LEMMA 1.2.1. - C{X) is a Lagrangean subspace of A.

Proof. - Recall first the duality theorem ([14], 11-8, thm. 2). Let D be any divisor on
X, and ^(D) be the space of all meromorphic forms uj equal to zero or such that their
divisor is > D. Let on the other hand, A>_^ be the space of adeles with divisor > -D.
Then ( , )A induces a non-degenerate pairing

^(D) x (A/(A>_^ + C(X))) -^ C.

Let us now prove the lemma. The isotropy of C(X) follows from the residue formula.
Let ^ be the space of all meromorphic forms on X, and let us now show that the pairing

(1.2.1) 0 x (A/C(X)) -. C

is also non-degenerate. Let / G A/C(X) have vanishing pairing with ^. Then for any
divisor Z), the pairing of its image in A/(A>-D + C{X)) with any element of ^(D) is
zero, which means that / belongs to A>-p/(A>_^ H C(X)) for any D, and so is zero.

The lemma now follows from the non-degeneracy of (1.2.1). •
We then have

LEMMA 1.2.2. - R is a Lagrangean subspace of k.

Proof. - We follow [5], sect. 2, example. First observe the following general fact. Let E
be a vector space with a scalar product { , }^ et let F be a Lagrangean subspace of E. Let
C be a subspace of E, such that C 3 C-L. Then (, }^ naturally defines a scalar product
(, } E ' on E1 = G/C^, and F ' = {(F n C) + C^/C^ is a Lagrangean subspace of E ' .

Apply this statement to the case E = A, (, )^ = (, )A; by Lemma 1.2.1, we may take
F = C{X). Let C = e,^ 9 ®^x-{^} °x- Then C± = e,ex-{.,}0., because the
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QUANTUM GROUPS IN HIGHER GENUS 825

orthogonal of kx, is A-^ (the adeles with ^-component equal to zero), and the orthogonal
of Ox is A^ 0 Ox for a; C X — {xi}, because uj has no zero or pole at x. Therefore
C D C-L, and C / C 1 - = k. Since F ' is then identified with R, the lemma follows. •

Let us introduce now Drinfeld's Manin pairs ([5]). Let a be a simple complex Lie
algebra, (, )a be its Killing form. For A any ring over C, we use the notation

a(A) = a(g) A.

Endow
0o = ̂ )

with the bilinear form (^1,^2)0 = Si ̂ a^ (^1^2)0^)- Then a(.R) is a Lagrangean
subalgebra of 0o; this defines Drinfeld's Manin pair

(a(fc),a(J?)).

J. Double extension

We extend this Manin pair in the following way. Let 9 be the derivation of a(fc) defined
by Of = df /cc;. We denote in the same way the derivation of fc, defined by the same
formula. Let Q be the skew product of Qo by 9; we have

0 = So CCD,

0o C 0 is a Lie algebra homomorphism, and [D^x] = 9x for a; C 0o- Since 9 preserves
a(JZ), a(.R)6CD is a Lie subalgebra of Q. Let 0 be the central extension of Q by CK using
the cocycle defined by c(x, y ) = ̂ ^ res^ (rr, dy)aK, c{x, D) = 0 for x G 0o- We have

0 = 0 C CJ^,

with the usual commutation rules. Since c vanishes on a{R) 0 CD, this algebra has a
section to 0, that we denote by QR. Identifying Q with g 0 CJ^, 0j^ is identified with

(a(R)Q)CD) x {0}.

Let D = (D^O). Let us consider now on g the symmetric bilinear form, defined by
( K ^ D ) = 2, (D^Q x {0}) = 0, {A:,0o x {0}} = 0, ((.n,0), (^,0)) = (^1^2)0 for
^1^2 € So- Then ( , ) is invariant, and Qp is a subalgebra of g, Lagrangean w.r.t. this
scalar product.

(0^)

is a double extension (central and cocentral) of the above Manin pair.

4. Lagrangean supplementaries

Consider on fc, the scalar product defined by (fi^f^k = ̂ iTesx,{flf2^)• R is a
subspace of fc, Lagrangean w.r.t. this scalar product. Fix a Lagrangean supplementary A to

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



826 B. ENRIQUEZ AND V. N. RUBTSOV

R, commensurable with 9^0^ (that is, such that their intersection has finite codimension
in each of them). Then

(d(g)A) eCK

is a Lagrangean supplementary to Qp in g. We will denote by 6p : Q -^ A2^ the double
Lie quasi-bialgebra structure on Q corresponding to this choice of a supplementary.

We note here, that a family of Lagrangean supplementaries can be defined in the
following way. Let Ao be a Lagrangean subspace of fc, containing dO.^. Let G be a Lie
group, with Lie algebra a. For g G C?(fc), let

^(Ao)=Ad(^a(Ao);

for generic g this defines a Lagrangean supplementary to QR in 5, which up to equivalence
depends only on the class of g in G(R) \ G(fc)/Stab a(Ao). All the resulting bialgebra
structures on QR are then associated by twist. The twist between two bialgebra structures
associated to nearby points defines an element of A2^!?); we thus get a 1-form
^ G ^(G^fc^A2^^)), equivariant w.r.t. left C?(.R)-translations. This 1-form is closed;
we hope that the expression of this fact can be interpreted as the generalized Yang-Baxter
identity for the dynamical r-matrices of the Hitchin system ([6]).

5. Infinite twist

Let z = (zi) be a system of local coordinates at each point Xi. Let us conjugate the
triple formed by 5, QR and the Lagrangean supplementary (a 0 A) 9 CK by the collection
(^,njz of affine Weyl group elements, where w^n, is the element of G(fca.J such that

Ad(w^)(:r+^) = ̂ n+^ Ad(w^)Cr-zr) = x.z^^

Ad^JCro^^o^^
for x± G n±,rco e f). In the limit where all n, tend to infinity, we obtain theJVlanin triple

(0,S+,5_)

with
S+ = t)(R) e n+(fc) e CD, s- = (() (g) A) e n_(fc) e C^.

Here f), n+ and n_ are the Cartan and opposite nilpotent subalgebras of a. Note that the
conjugation of a Manin triple by a double group element, is equivalent to its twist by a
certain cocycle, as it is explained in [10]. Let 6 : Q -^ A2^ be the cobracket corresponding
to the above Manin triple structure, then

^)=^(^)+ad(^)(A),

/i=^>[e,]A/[4

where

i

with (e'),(e,) dual bases of R and A.

4e SfiRIE - TOME 30 - 1997 - N° 6



QUANTUM GROUPS IN HIGHER GENUS 827

Our aim will be to give a quantization of the Lie bialgebras (fl±, 5±), where <$± = S\Q^,
in the case where a = sl'z(C).

The Lie algebras 0+ and Q- can be presented as follows. 0+ has generators D, h^~[r},
r € 7Z, and e[^], e G fc, with

(1.4.1) /^[airi + ̂ ^j = ai/^ri] + a^[r^ a, G C, r, G J?,

and

(1.4.2) e[a^e^ + o^^] = 0'ie^i] + Q/2e[£2], ^ G C,^ G fc;

0_ has generators K, h~[\}, X G A, and /[s], e G fc, with

(1.4.3) /i~[aiAi +0^2] = ai/i'IAi] +a2fa~[A2] , ^ G C,A, G A,

(1.4.4) /[Oi^i + 0262] = O-l/^l] + 02/[£2], Oii € C,£, C fc.

The relations are the following. Let us set ^ . e3 0 £j = ̂  e^ 0 e^ + e^ 0 e\ We define
the formal series

(1.4.5) e(z) = ̂  e[e^(z^ f(z) - ̂  J[^]^^),
j j

/i+(^) = ̂  ̂ [e^^^), /i-(^) = ̂  fa-ble1^);

then the Lie algebra relations for fl+ and g_ are respectively

(1.4.6) [/i+M^+Ir'^O, [h+[r},e{z)}=2r(^)e(z), r , r ' e R
[D,h+[r}}=h+[9r}, [D,e(z)} =-B^z), [e(z),e(w)] = 0

and

(1.4.7) [h~[\},h-[\'}} = 2.^res,.(AdA/)^, [h-[\},f(z)} = -2\(z)f(z},
i

[f{z),f(w)}=0, [K,h-[X}}=[K,f[\'}}=0, A, Y e A, [K, anything] = 0.

The relations between the generators of g+ and fl_ are given by

[/i+[r]J(w)] = -2r(w)/(w), [fa_[A],e(w)] == 2A(w)e(w),

[/»+[r],/i-[A]] = 2^res,,(r-dA)^, [^^[r]] = [K,f([e}} = 0,
(1.4.8) i

[D,h-[\}} = h-[8\}, [D,f{z)} = -cV(^),
[e(z), /(w)] = (/i+(z) + /i-(^))5(z, w) + K9,6(z, w),

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



828 B. ENRIQUEZ AND V. N. RUBTSOV

r ^ R ^ X ^ A ^ e ^ k . Certain of the above identities should be understood in the sense
of generating series. We have set

6{z,w) = ̂ £3(z)£j(w).
3

Let G{z^w) = ]̂  e^{z)ei{w). The product G{z^w}ujz may be viewed as an expansion,
for w near xi of the Green kernel of X. Let z = {zi) be a system of local coordinates at
each point xi\ z G fc, and let us set ro(z) = u j / { d z / z ) . Then

(1.4.9) 6{z, w) = G{z, w) +G(w, z) = ——— V>/w)1;
ro{z) ̂

the last identity can be proved viewing the l.h.s. as a kernel.
The pairing between ^+ and 5- is given by

(1.4.10) ( D ^ K ) = 2, (e(^)J(w)) = 6(z^w), {h^{z\h-{w}} = 2G(w^)

The formulae for the cobracket of ^+ and Q- are then respectively

6^e{z))=e(z)^h^(z)^ 8^[r}) = 0,

(1A11) M-O) = ^res,^res^^.7(^w)(fa+(^) A/z+(w))^^
\ ^'J

and

. 4 ̂  ^-a(^)) - ̂ (^) A f{z) + ̂  A a,/(z),
; 8,{h~{z)) =K/\9,h~{z), 8_{K)=0.

^'(1.4.11), we have set

7(^w)=(^+^)G(^w).

We have 7 G A2!?. Indeed, set Qe1 = E^^.e^ Be, = ^jcj^e3 + ^'e^ a} + c} = °
and d^ + dji = 0 because 9 is anti-self-adjoint, (c^ + 9w)G(z,w) is then equal to
— E^ d^e1 0 e^, and so belongs to R 0 R and is antisymmetric.

Note that the element 7 may serve to rewrite the h~ — h~ relations as

[h-(z^h-(w)}=^(z^w)K.

Let us describe how a change of A affects G(z^w) G ^((w)). Let A' be another
Lagrangean supplementary to R, commensurable with Oy,\ let TT' be the projection of k
onto R parallel to A'.

Let (^),(e0 be dual bases of R and A', and let G^{z,w) = Y,,e^z)e[{w), and
7A/(^, w) = —Oz + 9'w)G^'(z^ w). The projection of A on I? parallel to A' may be viwed
as the product with the first component of some antisymmetric element r-i G R 0 R, and
to any such element corresponds a Lagrangean A'. We have then

(1.4.13) GA/(^W) = G(z,w) - r i(^w), 7^^) = 7(^) + (9. + 9^(z,w).

46 SERIE - TOME 30 - 1997 - N° 6



QUANTUM GROUPS IN HIGHER GENUS 829

2. Quantization of fl+ and g_

Let ^ be a formal parameter and T be the operator s^- : k[[h]] —^ k[[h]]', since T is
symmetric for ( ,)fc[[^]] , the expression

ETp 1 (9) p — p^ (^ Tpj. i. w t.^ c \<y j. t.^
i

belongs to T?02^]] and is symmetric. Let us fix r G {R 0 -K)[[^]], such that

(2.0.1) r+r=^Te^0ei-e^^Tei,

where we denote f{z^ w) = f{w^ z). Let U be the operator from A to -R[[ft]], such that

r =^Uei (g)e';
i

U verifies

(2.0.2) ^(T + U)ei 0 e1 + e1 0 (T + U)e, = ̂  Te1 0 e, + Te, 0 e\

We will employ the following notation: for E any vector space, and $ e £' 0 fc, we
define ̂  and ^A to be the projections of $ on E 0 J? parallel to E 0 A (resp. on E 0 A
parallel to E 0 J?).

7. 77^ 77 /̂ algebra U^Q^.

Let [4fl4- be the algebra with generators /^[r], r E R, e[e], e € fc, and 7^, subject to
relations (1.4.1-2), organized in generating series (1.4.5), and subject to the relations

(2.1.1) [/i+M^V]]^, [/i+[r],e(w)]=2r(w)e(w),

(2.1.2) e(^)e(w)=e2/iE«^+c/)e.)(2)e '(w)e(w)e(z),

(2.1.3) [D,h+[r}}=h+[ar},

(2.1.4) [£>, e(z)] = -9,e(z) + h[9(T + U}h^ - (T + U)(9h+)A}(z)e{z)•,

this algebra has a Hopf structure, with coproduct A-)- defined by
(2.1.5)
A+(/i+[r]) = h+[r\ ® 1 + 1 ® h+[r}, A+(e(z)) = e(^) ®exp(?i((T+ (7)/^+(2)) +1 ® e(z),

and
(2.1.6)

A+(P)=P0l+l®Z)-^{/^+[((^+[/)ei)a]®/^+[9e^]+/^+[(9(^+E/)e,)fi]®/l+[e^]},

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



830 B. ENRIQUEZ AND V. N. RUBTSOV

counit e+ defined to be zero on all generators, and skew antipode defined by

(2.1.7) S'^h^r}) = -/^M, S'^e(z))=-exp(-h((T+U)h+(z))e(z),

(2.1.8) S'^D) =-D-^ {^[ae^h^T+^e^^+h^h^QiT+U)^)^}.
i

2. The Hopf algebra U^Q-

Let UnQ- be the algebra with generators K, h~[\], A e A, f[e\, e G fc, subject to
relations (1.4.3-4), organized in generating series (1.4.5), and subject to the relations

(2.2.1) K is central, [/T[A]J(w)] = -^{{T+U}{q-KQ\)^w)f{w),

(2.2.2) [h-(z)^h-(w)} = J(^+^) -^-^+^))^e^(^)(^+[/)e,(w),

(2.2.3) f(z)f{w) = ^(a-+a-){e27iEe^(-)((T+L7)e-)(w)}/(w)/(^);

this algebra has a Hopf structure, defined by the coproduct A_ given by

(2.2.4) A_(^)=A:01+10^ ^(h-[\})=h-[(qK2a\)^l+l(S)h-[(q-Kla\)^

(2.2.5) A_(/(z)) = (g-^2^)^) 0 exp^^^-)^)) + 1 0 (^19/)^),

where, due to the formula for A_(7^), we view A- as a system of maps from (U^Q^K^^K^
to (UHQ-)K^ 0 (^0-)^, for variable scalars Ki, where (UnQ-)k = UnQ-/(K - k) for
any scalar fc. The counit e- of U^Q- is defined to be zero on all generators, and the
skew antipode S^ is defined by

(2.2.6) S'_{K)=-K^ Sf_{h-[\])=-h-[\^ ^(/(^))=-exp(^-(^))/(^).

3. Hopf algebra pairing between UnQ-^- and U^Q-

The pairing

(2.3.1) {e^./V])^,^, {h+[r^h-[\})=^{r,\}k,

(2.3.2) (D,K} = 1, {D,h-[\}} = {DJ(z}} = 0,

(2.3.3) {e[e],h-[\}) = {e[e},K) = {^[r],^]} = {h^K} = 0,

extends to a Hopf algebra pairing between UnQ+ and U^Q_.
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4. Double algebra U^Q

The double U^Q of U^Q^, then contains both algebras U^Q^ and UnQ- as subalgebras;
we will denote the same way elements of these algebras and their images in U^Q. The
algebra U^Q may then be viewed as the algebra with generators /^[y], /^"[A], e[e\, /[e'], D
and K subject to the algebra relations above, as well as to the additional relations

(2.4.1) K is central,

(2.4.2) [/,+[^]^-[A]]^J((g^-g-^)r,A},,

(2.4.3) [/^[r], f(z)} = -2(^r)(z)/(^

(2.4.4) [fa-[A],e(w)] = 2[(T + £/)((g^A)A)](w)6(w),

(2.4.5) [6(^)J(w)] = (q^S^^))^^^ - (g-^^^w))^-^^,

(2.4.6) [D.q-^^} = -9(^~)(^)+^[(g-^-^)Ae,](^)fa+[6^]^-^
i

where A : A[[h}] -^ R[[K\} is denned by A(A) = Q(T + U)(X) - (T + C/)((9A)A), and

(2.4.7) [I?J(^)] = -9/(^) + hq^T+U)^ - (T + U)(9h^)^z)f(z).

Remarks.
1) We will show later on how to put the e — e and / — / relations in a correct form.
2) Note that the above relations have also variants defined using generating series. For

example, (2.2.46) can also be written

(2.5.1) A_/r(^) = (q-^h-^z) 01+1^ (q^h-)^).

We can also write the h~ — h~ commutator as

(2.5.2) [h-{z\h-{w)\ ̂ (^,+^J(^+aw) -q-^^G^z^w)

+ J^+cU _ q-K^a^ ̂  ̂  ̂  ̂

recall that G(z, w) = ̂  e'(z)e,(w) and that (Q^ + Q^G^z, w) G R (g) R for k ^ 1; this
shows that the r.h.s. of the formula for [h~{z\ h~(w)} belongs to A2!?, as it should be.
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3. e — e and f — f relations

As we explained in the introduction, the forms (2.1.2) and (2.2.3) of the e — e and / — /
relations do not enable us to derive quadratic relations for the e[e],/[6]. To do that, we
need to put these relations in the vertex form (0.2). This will be done by proving some
results on the kernels on the curve X.

To see what kind of kernels will be useful, observe that in the quantum affine
situation, the quantity of interest will be k{z^w) == ^—w.^ ^Ve have \nk(z^w) =
l n g + Z^>i qn^ n ( w / z ) " . Since in that situation, we have X = CP1, 9 = z-^,
and G{z^w) = j + Si>i(^/^)\ k{z^w) coincides with

^w _ /y-^w
\nq+q——q——G(z^w)

^w

(in this expression, the indices w mean that the operators act on the variable w). We are
therefore led to the study of the expression q w^9—^C?(^w), in the general situation.

For that, we first study O^G. In the case where X = CP1 and uj = dz, the Green kernel
G is equal to l / { z — w), and 9z = d / d z , so that Q^G is exactly equal to G?2. In general,
these two quantities have the same most singular terms on the diagonal, but they usually
no longer coincide. We now study their difference.

3.1. Construction of 7

Let us compute the endomorphism of R, defined by

(3.1) p(f)W = res^G2^, w)/(w)c^.

p is the restriction to R of the endomorphism p of k^, defined by

(3.2) p{f) = res,(G2 - G2)^, w)f(w)^.

Let a(z,w) = (z — w)G(z,w); we have a(z,w) = —{z — w)G(z,w) and

[z, p\{f) = Tes^a(z, w)(G + G)(z, w)f(w)^.

Now (G+G)(z,w) = 6 ( z / w ) / r o ( z ) , so

[z,p}(f)(z)=a(z,z)f{z).

But G{z,w) = (E^jv^A")1 + E,>-w ztA.(^y))/ro(-^), with A, 6 A, so that

(z-w)G(z,w)=-(w/ro(z))(z/w)-N+(z-w) ̂  z^^/r^z)
i>-N

€-z/ro(z)+(z-w)C({z,w)),

so a{z,z) == -z/ro(z); so that [ p , z ] = [Q,z]; so we have p = 3+function. Since A is
isotropic, p{l) = 0; this shows p = 9.
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Let us consider now OzG(z,w) — G(^,w)2; this expression belongs to R^kw and the
endomorphism of R it defines is zero, so it belongs to R 0 R. We have shown:

PROPOSITION 1. - There exists 7 € R 0R, such that 9zG{z^ w) = G(z^ w)2 + 7(2^ w).

3.2. 77^ J^m^ of 971, n ^ 0

In this section we will study the expressions ^9ke^ ^ ei. For k = 0, this expression
is equal to G\ for k = 1, it is equal to 9^G = G2 + 7; for fc = 2, it is equal to
^(G?2 + /y) = 2G(C?2 + 7) + &.7 = 2G3 + 2C?7 + <^7. More generally, we have:

PROPOSITION 2. - Let (P^ )fcez n^o ̂  ̂  system of polynomials in €[70,71,...] defined
by P^ = 0, P^ = 1, P^ = 0/^J P^^^ = PP^^ + (fc - 1)P^\ + 7o(fc + 1)P ,̂
for n ^ 0, vv^r^ D == S,>o7i+i^/^7r ^^

(3.3) ^ ̂ e- 0e,=^ P,(n)(7, 9.7, ...)̂
fc>0

(3.4) ^e- ̂ ^e, = (-l)^pM((-ly%7)Gfc.
fc>0

The proof is a simple induction. Then, we have S(£n>i ^n<9n-l/n!)e^ 0 e^ =

E^o(E^i 5pfc("-l)^'^' •••))G"e; ̂  "s set

(3.5) Ufc(7i, 70,71, ...)=^7L^("-l)(^o,7l, -)•
n>l

We have, with t an auxiliary variable, and with u(H,t,^i) = ̂ ji.x)^^*;' the equations

(3.6) ^ = t + Du + (t2 + 70) -^, "|ft=o = 0;

by Cauchy's principle, they determine u uniquely. Let <j), if) € ?iC[7,][[7»]] be the solutions to

(3.7) it-D^-l-^2, ai-=D(/>-^,
oh oh

then the expansions of (f) and '0 are ̂  = —?i+..., (^ = ?l27o+•.., and <^, ^ have the properties

(3.8) ^(-^(-l)S) = ̂ 7z), ^(-^(-1)^) = -^(^7z).

Moreover, (f) — ln(l + ̂ ) satisfies (3.6); this identifies this function with u.
We conclude from this the first part of

PROPOSITION 3. - With (f) and ^ the solutions of (3.7), we have

(3.9) ^ q~Q^e^ 0 6l = ̂  a:7) ~ ln(l + G^ a:7))?
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(3-10) E 1 ~J e' ® e, = -^>(-?i, 9:7) + ln(l + G^(-h, 9:7)),

(3.11) ^ e1 0 y^ = -<^, 9:,7) + ln(l - G^, 9^)),

(3.12) ^ e1 ® ̂ -^e, = -<t>{-^ 9^) + ln(l - G^(-h, 9^)).
i

The last part is proved using the last part of prop. 2.
Note that the formal series f{9,) - f(-9^) is divisible by Q, + 9^ in C [<9^] [[ft]],

and denote their ratio by -^^-^"^^
We then have:

(3.13) ^ 9:7) - ln(l + G^(ft, 9:7)) - <^(-ft, %7) + ln(l - C^(-ft, ̂ 7))
_/(^)-/(-^).

^+^ v7 7"

with /(a:) = €^-\ to see it, it suffices to add (3.9) and (3.11) and to use the following
lemma.

LEMMA 1. - We have the equality

(9, + Q^G=7-7.

Proof. - We know that G2 - G2 satisfies (G2 - G^Id 0 a)k = <9a, for any
a G fc, on the other hand, (9 (g) 1)(C7 +^7) satisfies the same identity. It follows that
G^-G2 = (<9(g)l)(G+C?), so that (90l)G = -7-G2. Hence, (1(S)9)G = -7-G2. •

In particular, we have
(3.14)

<f>{n, 9:7) - <f>(-h, 9:7) + ln(-^(-^, 9:7)/^(^, 9:7)) = f-(^—[(--M^ - 7) + ^o,
^2; I" 0'w

J^o ^ R 0 R, vanishing on the diagonal.

PROPOSITION 4. - Recall that T = q ̂  ; let us set

^o=^(^9:7)-^(-^9:7)), ^+(7z)=^(-^7z), ^-(7z)=^,7z),

then

(3.15) ^ Te- 0 e.= ^0(7, 9.7,...) + - In ̂ ^^^•i
^^ 2ft l+G^_(7,a,7,...)
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and

(3.16) ^•ar..=-^)+^ln;:^gj.

From (3.13) follows

'-) ^^•-^^^^-^•-^ai
T — T-L z -•-w / —\

=^——^(T-T).<9z+^
Remark that

(3.18) ^re^e^-e^re^ 1——^(7-7);
9,+9^

recall that r = ^ ?7e, ® e* satisfies

T — T
/Q -1 ^\ ^ z w / ~\3.19) T + T = 7 - 7).

Oz +^w

Let us precise now the e — e and f — f relations. Let

(3.20) A=^e^(S){T-^U)e„

then A = ^Te' 0 e, + e1 0 [(Te,)^ + ?7e,]; so

(3.1) A^̂ ,..,̂ ...̂ :̂::;

- / .- . ~ ^ 1 1 l-G^-(7^w7,^)= T - ̂ 0(7, ^w7. • • • ) + ̂  In -j——^ , (- ^ -——V2^ 1 - G^+(7,d^7,...)

The relations are then written

(3.22) e2^0^7"-0 [z - w + a(^ w)^+(7, ̂ 7, ...)]e(^)e(w) =
^r(.,w)^ _ ̂  ̂  ̂ ^^ w)^_(7, 9,7, ...)]e(w)e(^)

(3.23) ^az+aw){e2^'w)^-w+a(^w)^_(7,^7,...)]}/^)/M =
^+^)^2^o(7A7,...)[^ _ ̂  + ̂ (^^ w)^+(7, 9.7, ...)]}/(w)/(z);

recall that a(^,w) = (z — w)G(z^w) belongs to ((Bi^)02.
Relation (3.22) and (3.23) should be understood as follows. Expand for example e(z) as

^ke7.ekz~k' Then (3.23) gives a formula for [e^^+i] — [efc+i,^] in terms of a formal
series with positive powers in h, with coefficients of the form ̂  > a^e^. Summing up
such relations for (fc, /), (k +1,1 - 1), etc., and using either [e^, e^\ = 0 (it k - I is odd)
are [e^+i,e^] + [e^,e^+i] = 0 (if it is even), we arrive at a formula expressing [e^e^]
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as a formal series with positive powers in h, with coefficients of the form ̂  •> a^-e^-.
This means that these relations define the structure of a topological Hopf algebra on U^Q
(the topology of this algebra being defined by the basis of neighborhoods of zero defined
by the two-sided ideals generated by hN and the x[e\, x •=- e,j, A+, e e zMO).

Let us show that the e - e and f - f relations define a flat deformation of the symmetric
algebras in the e[e] and f[e}, e G k. The reason why this deformation could be non-flat is
that in the procedure described above, we could have used relation (3.22) with z and w
exchanged instead. This could lead to other formulas for [e^,e^]. To show that this is not
the case, we will prove that one can pass from one of these identities to the other (with
both sides exchanged) by multiplying it by an element $ of 1 + K\[^ . C({zi,Wj))[[h]].

Because of the identity (z - w)(G + G) = 0, it is enough for this element to satisfy both

^ • e2^! + G^+] = e2^! - G^_]

and _
€ • e2^! + C?^] = e^°[l - G^],

where ^ = ^(7,^7,«• •).
Using (3.9) and (3.11), the first identity becomes

^ = g2^-2^og0T^)-0^E^^e^^e^-e^0^-::^l^

and using (3.10) and (3.12) the second one becomes

t ^ ̂ -^r^h^o^-^-h)^^^ -e^0a^^le^+
9-1 , . .-9-

-ez0e1

Note that since ̂  ̂ -e' 0 e, - e10 ̂ -^-e, and - ̂  e, 0 ̂ -e1 + ̂ ^-ei 0 e1 both
belong to h(R^R)[[h}], the r.h.s. of both equations belong to 1+^(7?0J?)[[A]], as desired.

The fact that they coincide is a consequence of

^M-^o)^i^(^) 1 + G^-(7, 9^,...) 1 - G^_(7, ̂ 7,...) ^
1+G^(7,^7,...)1-C?^(7,^7,...) ?

which amounts to the statement (3.17) above.
To summarize, we have:

THEOREM 5. - Let r e R^R[[h]} satisfy (2.0.1). The algebra Un^rQ defined by generators
K, D, ^[r], h~[\], e[e\, f[e\ X G A, r e R, e € fe, subject to relations (1.4.1-4) organized
in generating series (1.4.5), subject to relations

[/^(^(w)]^^^^),
i

[h-(z), e(w)] = 2( ̂  q-^e1 ® (T + ̂ )e,)e(w),

[/i+(^),/(w)] = -2(^®<^^et)./•(w),
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[h-(z), f(w)} = -2( ̂  q^C ® ̂ {T + E/)e,)/H,
z

^(z), h+(w)} = 0, [ft^), h-{w)} = j E et ® (^ - (^9)e^'
i

[h-(z),h-(w)} = ̂ a ® q^ - q-^ ® g-^) ̂  e1 ® (T + C/)e.,
z

[6(^)J(W)] = (^^(^W))^^)^^ - (^^W))^"^

w/z^r^ ^^ variables z and w are attached respectively to the first and second factor of
the tensor products; K is central, (3.22), (3.23); (2.1.3), (2.1.4), (2.4.6), (2.4.7); with
coproduct defined by (2.1.5), (2.1.6), and to be opposite to (2.2.4), (2.2.5), counit defined
to be zero on all generators, and skew antipode S / defined by to coincide with S'^ given
by (2.1.7), (2.1.8), and

S\K)=-K^ S\h-[\])=-h-[\^ S\f(z))=-f(z)exp(hh-(z))^

is a Hop f algebra, quantising the Manin triple of section 1.4.

4. Dependence in r and A

1. Dependence in r

Let us study the dependence of the algebra Un^rQ defined in thm. 5, with respect to
T. Let r ' = r + v, v G A2^?^^]]. Let us denote with a prime all quantities corresponding
to the algebra Un^r'Q- Let us denote by u : A -^ R[[^}} the linear map defined by
u{\) = (v,l 0 A)fc. We have

(4.1) u = V - U, r' - r = v = ̂ (U1 - U)e, (g) e1.
i

Then:

PROPOSITION 6. - The formulae

(4.2) i(e\z)) = e^^^eO^ ^(y^)) = f^e^9^^^,

/ KQ i -KQ \
(4.3) i^\z)) = fa+(^ i(h-f{z))=h-(z)^(q———q——uh^- (^

\ z )

i{K') = K, 'i{D') = D, define an algebra isomorphism i : U^^^'Q —> U^^,rQ- Moreover,
we have

(4.4) A(z(rr)) = Adexp (^^H 0 ̂ ^{(z 0 ̂ A'^)}, Vrr G ^A,./0,
\ i I

with v = ̂  ̂  0 i;̂  5'(9 that both Hopf algebra structures are isomorphic up to a twist
operation.
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Proof. - % is well-defined, because uh^(z) is expressed as ^>o ̂  S ^+(^)y/•(^(^),
7 - 5 r(!^ G ̂  me sums Sj ̂ +(^•^))^•(^)(^) being finite. To prove e.g. that i is an algebra
morphism, we make use (while checking the e — / relations) of the following sequence
of identities:

(g-Ka^v^,w))ei^/l+)^9-/l-Met(gK9^+)(w)=

=(q-Kaw8(z^w))e^uh+^z\-h~^e^q2K9uh+^

= (g-Ka-^(^,w))e-^[((l-92Ka)^+)(2)^-(w)]g-^-(w)+^((l+g-2K9^+)^

= (9-^-^(^,w))e-^{(l-g2K9)^^(gK9-g-K9)}(Ene^0e^)9-/l-(w)+K(l+9-2K9)^+)^)

=^-K9{^(^,w)e(g2K9-l)0(g2K^-l)^;}9-/l-(w)+^((gK^+g~K9)"/l+^w)

^^-^^(^w))^-^^^^^^^^)^)^)

(the first identity follows from 6{z,w)f(z) = 6(z,w)f(w), the second from eaeb =
ebeae^a^ if [a, b] is scalar, the last one from the fact that v is antisymmetric, so that
^q^KQ _ i) 0 ̂ KQ - l)}v vanishes on the diagonal). The other identities are easily
checked. While checking the twist identity for f\z), we use also the fact that

[((^ - q-^)uh^(z)^h-(z)} = ̂ Ka - 9-a)^(^[fa+(^),fa-(^)]
i

= W - g^M î̂  - q-^Wz)
i

=0,

with v = ̂  v, ® v',, because {(q^ - q-^} ® {q^ - q-^^v € A2^!^]]. •

PROPOSITION 7. - The formulae

(4.5) i'(e'(z)) = e^e^C^M, i\f\z}) = e^^9'^^ f(z),

/ ̂ KQ i -KQ \

(4.6) i'^^z}) = h+(z), i'(h-'(z)) = h-(z) - [q——^——uh+\(z^

i\K1) = K, i'{D') = D, also define an algebra isomorphism i' : U^^r'Q —^ ^Ar^
satisfying

(4.7) A(z /(^))=Adexp^(/l+0/l+)^{(z /0z /)A /(^)}, V^ G ^,A,r/0.

It follows that i'~1 o i is a Hop f algebra automorphism of U^ A r'Q'

2. Dependence in A

Let A and A be two Lagrangean supplementaries to R. Then we have, A = (1 + r)A,
with r : A —^ R, given by

(4.8) r (A)=(ro, l0A), ro G A2^.
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Dual bases for R and A are then (e1) and (e^), with ei = (1 + r)ei. Let us set

(4.9) T = ̂  Uei 0 e' = T - ̂  Tre, 0 e1;
z i

we have then

(4.10) ^(T + [7)e, 0 e1 = ̂ (T + (7)e, 0 e1.
i i

Let us consider the Hopf algebras L^A,T^ ^,A,rS anc! ^et us denote with a bar the
quantities occurring in the second.

PROPOSITION 8. - The mapping

J '• U^rQ -^ ^,A,rS

defined by j(e(z)) = e(z\ j{f{z)) = f{z), j(A+(e1)) = h^(e^ j(h-{e^ = h-{e^
j(D) = D, j(K) = K, defines a Hopf algebras isomorphism between U^^^Q ̂ d ^,A,r0-

5. Finite dimensional representations

Let us fix A and T, and denote by C4S)^=o,noD the algebra defined in thm. 5, without
generator D and with K specialized to zero. We construct a morphism of algebras

(5.1) TT : UnQ\K=o,noD - End(C2) 0 k[[h]],

as follows: let us denote by ^ = (^) the system of coordinates (^), occurring in the
r.h.s.; we define

(5.2) 7^(h^[r])=r((;)h+p+(r){(:)ldc^7^(h-[\]) = (T + U)(\)(Qh + p-(A)Idc^

(5.3) 7r(e(z)) = F(C)<^ C^ ^(/(^)) = 6^ C)/,

where the e, /, h occurring in the r.h.s. are the matrices with nonzero coefficients
^12 = /21 = /^ll = —/^22 = I? a^

p+ : J? - WLp- : A - (W]],F(C) e fc[[7i]]

are subject to the following conditions: recall that A(^, z) = ̂  e^C^r+E^)^)^), and let

(5.4) /5(C^) = ^p+(6^)(C)(T+ [/)(e,)(^),7(C^) = ^^-(e,)(C)e1^);

then

(5.5) q^ - q-^ = F(z)S(z^ C), q-^ - q^ = -F(z)8(z^ C).
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Let

(5.6) F(^(^C)=e^(G+G)(^C),

with a G h{R 0 -R)p]], then we have for some p^^ € h~1 + (R 0 -R)[[^]],

(5.7) A=^ln^±|^=^ln^+G)^-c;)+a-

(5.8) A=^ln^±^7 = -^l11^! - G)(p2 + G) - a.

Let us determine the possible pi^ satisfying the first equations of (5.7) and (5.8) (which
we will call (5,7.a), (5.8.a)). Comparing (5.7.a) and the second line of (3.21), it is enough
to have

(5.9) ln^(pi + G) = m(l - G^_(%7)) + 2h\

(5.10) In h{p^ -G)= ln(l - G^+(%7)) + 2HX

with A, A G (R 0 -R)[[^]], X- X =r - ̂ o(%7); and comparing (5.8.a) and the first line
of (3.21), it is enough to have

(5.11) ln^(p2 + G) = ln(l + G^(9^)) + 2^

(5.12) ln^(pi - G) = ln(l + G^_(<9:7)) + 2^2

with /^, /2 G R 0 J?, and ^ — /^ = ^0(^7) — ^•
(5.10-12) are equivalent to the fact that for certain ^,;/ G JZ 0 J?, equal to 0 on the

diagonal,

(5.13) A = /I = ^ + ̂  ln(H/^(%7)), P2 = ^——^) + ̂  - e')-

and

(5.14) A = ^ = v ' + ̂  ln(-^_(%7)),^i = ———?^) + G(el/f - 1)'

with the conditions on v and v '

(5.15) i/ - v+ ̂ ln(^(%7)/ - ̂ -(%7)) = T- ^o(%7).

Let us see now, how p± can be deduced from these equalities. The conditions on them are

(5.16) \n(l-G1p_(9^))+2h\=h(l+p+)(ei)®(T+U)(e.)-ha,
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(5.17) ln(l - G^(O^)) + 2h\ = h(p+ - l)(e1) ® (T + £/)(e,) - 7w,

(5.18) ln(l + G^+(91^)) + 2h^ = ̂ {e1 ® (T + [7)(e.) - e' ® p-(e,)} - Tio-,

(5.19) ln(l + G^-(a:7)) + 2?V2 = -^{e1 ® (T + U){ei) + e1 ® p-(e,)} - Tio-.

Let T+, T_ be the endomorphisms of R, defined by

(S^O) T±(r-) = <ln(l - G^(9,7)), 1 ® r);

we have T+ = 1^-^, T_ = ̂ . Since T>p^ = ^(p+ ± 1)T, (recall that T = q^9-\

(5-21' ^+ = ̂ -
Due to (5.13) (resp. (5.14)), (5.16) and (5.17) (resp. (5.18) and (5.19)) are equivalent.
(2.0.1) and (5.15) can be solved by posing

( ^ 9 9 } 1 f{Q.}-f{-9^, ^ , „ ^(5.22) r=^ ^^——(^), ^=0,^=^

this follows directly from Lemma 1.
Let us explain the meaning of (5.22). The formal series /(^) - /(-<9^) is divisible

by Qz + <9w; we denote the corresponding quotient by f{azQ~^~aw). This is an element
of C[^,9^][[7i]]. In (5.22) the operators 0^ and 9^ the act as usual as partial derivatives
in z and w. We will indicate after Prop. 9 how to modify our result in the case of a
general solution r of (2.0.1).

(5.16) then gives us

(5-23) h(T =9^ [r^^-^ + ̂ -^ -/^)] (7 - ̂
+^,%7)-ln(-^-(%7)),

and (5.19) gives then

^e1 ® p-(e,) = ̂  e' ® ̂ "^g"'7 a)^ - ̂ [^-^^h) + ̂ (?», 9^)}

- toT^ [^(/(9W) - f{~9z)) ~ TT^(/(-<??) + /(-5Z)) + f{9z)} (7 - 7)

and so

(5.24) p-{\) ={q^ ~ l^• ̂ A - V[^(-^^7) +^(M:7)]

+^[j^w)-^2))-IT^(/(-9w)

+/(-^))+/(^)1(7-7),A®1\

for A G A. So we have:

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



842 B. ENRIQUEZ AND V. N. RUBTSOV

PROPOSITION 9. - The formulae (5.2), (5.3) define a morphism of algebras

TT : UnQ\K^noD -^ End(C2) 0 k[[h]^

provided r is chosen according to (5.22), with F and p± given by (5.6), (5.21), (5.23)
and (5.24).

Let us indicate how the formulae giving p± and a would be altered in the case of an
arbitrary r (satisfying (2.0.1)). Let us denote with an exponent (0) the quantities implied
in prop. 9. The general form of a solution of (2.0.1) is r = r^ + a, a G A2^^^]]; we
have then a = a^ - ((1 + p+) ^ l)a, p+ = p+W, p-(A) = p-^(A) - p+((A 0 1, a)).

6. Examples

7. Trigonometric case

Let X = CP1, let z be a coordinate on X, and let LJ = d z / z . The set of marked
points is {0,oo}. Let us pose

A = {(Ao, A^) e C[[^]] x C^-^lAo^) + Aoc(oo) = 0}.

Dual bases for R and A are e1 == ^ for % e Z, and e, = (^~\0) for % < 0, -(0,^~')
for z > 0, j(l, -1) for % = 0. We compute then

ETe^e-=-fln'i:lw-o)-4fo^n'w^-^l^ 2?i^ z-qw' j 2h\ ' w - q z j '

so that we can take U = 0; exp(2?i ̂  Te1 (g) e,) = (^^, ̂ ^) and the e - e relation is

(z - qw)e{z)e(w) = (qz - w)e{w)e{z),

as it appeared first in [4].

2. Elliptic case

Let X be the elliptic curve C/Z + 7-oZ; let ^ be the coordinate on C, and let a; = dz.
Let us consider the case {xi} = {0}. We choose A to be spanned by z^.z.z2^3,....

We define t = e^\ qo = e2^0 (we assume |go| < 1);

)̂ = ri(1 - ̂ ) II(1 - ̂ -1), C = ^(In^).
n>0 n>0 az

Let us compute the kernel of T. We have G(z,w) = ((z - w) - ((z) + C(w), so
that for r ^ R,

r(z) = res^=o(CO - w) - <(^) + C(^))^(^)dw,
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and

[{q8 - q-^r^z) = res^o(C(^ - w-^h) - (:(z + H) - (:(z - w - h) + C(^ - h))r(w)dw^

so

r ^ - i / a -a\ v \ i 0(z - w-{-H) 0(z - h) 0(-w - h)[0 (g -q ).](.) =res^oln^^^^^^^^r.Ww.

We have then,

E -̂.-.)e.̂ ,.̂ ^^^^ l̂l

and so

^ ̂  0 [-B-1^ - ̂  + U}e, €
.. , . 0(z-w+h)0{z-h)e(-w-h) , 2 ,„ „

. 2^7r/i+lIl^-.-n)^4-^(-.+^+(Afi)p]];

so that in the present case, the e — e relation takes the form

/ „ , , , , , , ^^0(z-w+h)e(z- h) e(-w- fi} / , / ,(6.1) e(.)e(.) = e-^^^^^^e(.)e(.);

this relation is analogous to the relation (7.3) occurring in [8].
The full set of relations is in addition to (6.1) (for more symmetry in the relations, we

replace K and f(z) by 2K and (^/)(^), and introduce K^(z) = q^w^h+^z) ̂
K-(z) = ̂ W)^)):

^^ ./ \ , C / \ 2z7r7i^(^ - w + ̂ ) ^(^ - ̂ ) ̂ (-w - ̂ ) r/ \ / . / \(6.2) AwVM = e2"'^ _ ̂  _ ̂ (^ ,; ̂  ̂  ,;/(.)/(»),

(6.3)^M - o, ̂ (^-M = ̂ r̂ ::::̂ -̂̂ ).
(6.) ^(,)eW = e-^±^^^^eM^(,),

(") -M^ = ̂ ^^^^ l̂̂ 6"^-.

(6.6) KW -, ̂ ^±^^ î̂ /M.̂ ),
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(-> -MA") = ̂ ^S /̂̂ -M,

(6.8) [e(^), /(w)] - 6(z - w)K^(z) - S{z - w 4- A')AT-(w)-1.

J. Double extensions and infinite twists of the Reyman-Semenov triples

Let as above X be an elliptic curve, and Xn be the set of its n-di vision points. We fix
an isomorphism of Xn with (Z/nZ)2, and denote by a i—> la the projective representation
of (Z/nZ)2 on dez/nzCe,, defined by ^(1,0)^ = C^z ^(0,1)^ = ^+1. C being a primitive
n-th root of 1.

The following Manin triple was introduced in [12]. Let fco, OQ be the local field and ring
at 0 G X, and let us define in Q = sln(ko) the scalar product ( x ^ y ) ^ = resQiT(xy)(z)dz.
Let 0+ = 5l^(0o) and 0- be the set of the expansions at 0, of the regular maps
a : X -Xn -^ 5[^(C), such that a (x + a) = Ad(Ia){(r(x}), fora G X^. Then (0,54-,0_)
forms a Manin triple. Its quantization was treated in [16] in the sl^ case, and is connected
with Sklyanin algebras ([15]).

We propose the following double extension for this triple. Let Q = Q 9 CK 9 CD,
and let us denote with an index 0 the Lie bracket in g. We endow Q with the bracket
[ x ^ y ] = [x^y\Q + reso iT(xdy)K, [D^x] = ^, for x ^ y G S, K is central. Let us also
define a scalar product (, )g on Q by (x, y)^ = (x, y)^ for x, y e g, (^ .r)g = (D, x)^ = 0
for x G 5, (K,D)Q = 2. Then §+ = 0+ 9 CD and 0_ = 0_ C CAT are Lagrangean
subalgebras of Q, so that (^,§+,0_) forms a Manin triple.

We also propose the following twist for this triple. Let f) and n± be the diagonal and
upper (resp. lower) triangular subalgebras of s In, and let g+ = f)(0o) €) n+(fco) 0 CD,

•>
Q_ = [a : X - X^ -^ b(C)|cr(^ + a) = Ad(J^)(a(^)), for a C X^} C n-(A;o) C CJ^.

Then (f i i ,g4- ,0_) is a twist of the previous Manin triple.

4. Quantisation for twists of Reyman-Semenov triples

Let us restrict ourselves to the case n = 2. Identify as above X with a quotient
C/C + 7-oC. To apply the techniques developed above to the quantization of (^ g+, { j_) ,
we have to take R == Oo^o. and for A the space of regular functions f on X — X^, such
that f(x + 1/2) = /(^), and f(x + r/2) = -f(x).

We find the dual bases (a^^))^^ and (w^/fel^x) of A and J?, where

^)=c(.)+cf.+I)-cf.+l))-cf.+l^oV\ z / \ z / \ z /

with the same conventions as above. Then ^^ Te^ 0 e^ is equal to —[exp((fi — w)9z) —
exp((-h - w)9^)}9^1ao(z), or

J_ 0{z - w + H) 0{z - w + j + fi) g(^ - w - ft + ̂ ) 0(z - w - h + ̂ )
2^ ^ (9(^-w+f i+^)(9(^-w+7l4- l^T : o ) <9(z-w-7i) 0(z - w + j - K) '
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We can again take for ̂  Ue, ® e1 a constant function, so that e^S.^^1^206'^ is
equal to

(qoe21^)2

0(w-z+-h) 6(w-z+n+^} Q(w-z-n} e{w-z-h+^)

9{w - z + h + ̂ ) 0(w - z + h + ̂ ) '' 6{w - z - h + ̂ ) 9{w - z - h + ̂ )'

Let K±(z),e{z) and f(z) be the generators analogous to those introduced above. We
obtain the relations

[K±(z),K±(w)}=0,

p(z - w)K+(z)K~(w) = p(z - w + K')K~{w)K+(z),
.1, / \ iHx+Tt) i n/ \ 8(2;) 0(x+1)mth P^ = ̂ y' and ̂  = ^+4)^+^)'

(goe2"^)2^ - w + tt)e(z)e(w) = ̂ (z - w - h)e(w)e(z),

(qoe21^)2^ -w+ k)f{w)f(z) = ̂ {z - w - h)f(z)f{w),

{qoe2"'1)2^ -w+ h)K+(z)e(w) =-ff(z - w - h)e(w)K+(z^

^ z - w - K - h)K-(z)e(w) = (goe2^7^'i)2l9(-^ - w - K + h)e(w)K~(z),

^ _ w - h)K+(z)f(w) = {qoe2^)2^ -w+ h)f(w)K+{z),

{qoe^Y^z -w+ h)K~(z)f(w) = -ff{z - w - h)f(w)K~(z),

[e(z), f(w)} = 6(z- w)K+(z) - 8{z - w + K)K~(w')~1;

K+(z) is subject to

K^z+^K^z), K^Z+^YK^.
V z/ V z /

We expect that the algebra presented here is isomorphic to the 5(2 version of the
Sklyanin algebra.

REFERENCES

[1] J. BECK, Braid group action and quantum affine algebras {Commun. Math. Phys., Vol. 165, 1994, pp. 555-68).
[2] V. CHARI and A. PRESSLEY, Quantum affine algebras {Commun. Math. Phys., Vol. 142, 1991, pp. 261-83).
[3] J. DING and I. B. FRENKEL, Isomorphism of two realisations of quantum affine algebras Uq{gl^) (Commun.

Math. Phys., Vol. 156, 1993, pp. 277-300).
[4] V. G. DRINFELD, A new realisation ofYangians and quantised affine algebras {Sov. Math. Dokl., Vol. 36, 1988).
[5] V. G. DRINFELD, Quasi-Hopfalgebras {Leningrad Math. J., Vol. 1:6, 1990, pp. 1419-57).
[6] B. ENRIQUEZ and G. FELDER, in preparation.
[7] P. ETINGOF and D. KAZHDAN, Quantisation of Lie bialgebras, I (Selecta Math. 2 (1996), No. 1, pp. 1-41),

q-alg/9506005.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



846 B. ENRIQUEZ AND V. N. RUBTSOV

[8] B. L. FEIGIN and E. V. FRENKEL, Quantum }V-algebras and elliptic algebras (Commun. Math. Phys., Vol. 178,
1996, pp. 653-678), q-alg/9508009.

[9] I. B. FRENKEL and N. JING, Vertex representations of quantum affine algebras (Proc. Natl. Acad. Sci. USA,
Vol. 85, 1988, pp. 9373-7).

[10] S. M. KHOROSHKIN and V. N. TOLSTOY, On Drinf eld's realization of quantum affine algebras (7. Geom. Phys.,
Vol. 11, 1993, pp. 445-52).

[11] N. Yu. RESHETIKHIN and M. A. SEMENOV-TIAN-SHANSKY, Central extensions of quantum current groups (Lett.
Math. Phys., Vol. 19, 1990, pp. 133-42).

[12] A. G. REYMAN and M. A. SEMENOV-TIAN-SHANSKY, Integrable systems H, ch. 11, (Encycl. Sov. Math., Vol. 16,
"Dynamical systems, 7", Springer-Verlag, 1993, pp. 188-225).

[13] M. A. SEMENOV-TIAN-SHANSKY, Poisson-Lie groups, quantum duality principle, and the quantum double
(Theor. Math. Phys., Vol. 93, 1992, pp. 1292-307).

[14] J.-P. SERRE, Groupes algebriques et corps de classes, Hermann, Paris, 1959.
[15] E. K. SKLYANIN, Some algebraic structures connected with the Yang-Baxter equation (Fund. An. Appl., Vol. 16,

1982, pp. 263-70).
[16] D. B. UGLOV, The quantum bialgebra associated with the eight-vertex R-matrix (Lett. Math. Phys., Vol. 28,

1993, pp. 139-42).

(Manuscript received October 28, 1996.)

B. ENRIQUEZ and V. N. RUBTSOV
Centre de Mathematiques, URA 169 du CNRS,
Ecole Polytechnique, 91128 Palaiseau, France.

V. N. RUBTSOV
ITEP, 25, Bol. Cheremushkinskaya,

117259 Moscou, Russie.

4e SERIE - TOME 30 - 1997 - N° 6


