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EXISTENCE AND UNIQUENESS OF DIFFUSIONS
ON FINITELY RAMIFIED SELF-SIMILAR FRACTALS

BY C. SABOT

ABSTRACT. — We give a criterion for the existence and uniqueness or the non-existence of the diffusions on a
finitely ramified self-similar fractal. In classical examples this criterion is easy to apply and in particular, it gives
the uniqueness of the diffusion on nested fractals (Lindstr0m proved the existence in [19] but the problem of
uniqueness remained unsolved) and completly solves the problem of existence and uniqueness in the case of the
Sierpinski gasket with inhomogeneous weights.

This problem also gives a solution to a non trivial problem of fixed point for a non-linear, non-expansive map
of a cone with the Hilbert's projective metric {cf. [23]).

RESUME. - Nous donnons un critere de non-existence ou d'existence et d'unicite des diffusions sur un ensemble
auto-similaire finiment ramifie. Dans les exemples classiques ce critere s'applique facilement et donne en particulier
Funicite dans Ie cas des "nested fractals" (Lindstr0m avait prouve 1'existence mais Ie probleme de 1'unicite restait
ouvert) et donne une solution complete dans Ie cas du "Sierpinski gasket" avec des poids inhomogenes.

Ce papier donne aussi un exemple de solution a un probleme non-trivial de point fixe pour une transformation
non-lineaire et contractante d'un cone muni de la metrique de Hilbert (c/ [23]).
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Introduction

The first construction of a diffusion on a fractal was given on the Sierpinski gasket
by Goldstein [9] and Kusuoka [15] and a deep study of this diffusion was later done by
Barlow-Perkins [3]. At the same time Barlow and Bass [2] constructed a diffusion on the
Sierpinski carpet. The main difference between the Sierpinski gasket and the Sierpinski
carpet is that the first one is finitely ramified and the second is not: roughly speaking,
finitely ramified means that the fractal can be disconnected by removing a finite set of
points. Kigami introduced a class of abstract fractals (i.e. not imbedded in R"), called post
criticaly finite (p.c.f.) self-similar sets which well describes the notion of finite ramification.

The method to construct a diffusion on a finitely ramified fractal is now well-known
(cf. [19], [16], [12]): one constructs a Dirichlet form on the fractal X as the limit of
Dirichlet forms defined on an approximating sequence of finite sets F^. This construction
relies on the existence of a non-degenerated eigenvector for a renormalization operator.

The problem of existence was solved by Lindstr0m for a particular class of fractals,
called nested fractals, which are highly symmetric. One of the main question raised by
Lindstr0m was whether this diffusion is unique or not. This amounts naturally to the
uniqueness of eigenvectors of the renormalization operator. This problem was only solved
by Barlow [1] in some particular cases: he proved the uniqueness for the Viscek set and
the snowflake exploiting the notion of electrical networks and the symmetries of these
fractals. Besides, Hattori-Hattori-Watanabe [10] gave an example of non-existence and
Metz [20] one of non-uniqueness. In this paper we give (Theorem 5.1) a criterion for
the non-existence or the existence and uniqueness of diffusions in the general setting of
finitely ramified self-similar fractals with a symmetry group G. This criterion is easy to
apply and in particular it gives the uniqueness in the case of nested fractals (and gives
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the existence in classical cases, but this was proved in general by Lindstr0m [19]). It also
completly solves the problem for the Sierpinski gasket with inhomogeneous weights. It is
interesting to note that a kind of critical value on the weights appears in this last example.
The statement of this result was published in [26] (a proof was given in [25], unpublished).

Let F denote the basic cell associated with the fractal (cf. Section 2). The renormalization
operator, denoted by T, maps the cone M of irreducible Dirichlet forms on the finite set
F to itself. The map T is 1-homogeneous, non-expansive for the Hibert's metric on cones
(cf. [21] ) and in general non-linear.

Since M is the set of irreducible Dirichlet forms, it is not closed. The existence of an
eigenvector of T depends on the behaviour of T near the boundary of M. To understand
this behaviour we construct a compactification of the set M, richer than the usual one (i.e.
the one of eventually reducible Dirichlet forms), to which the map T has a continuous
extension (actually, we do not construct explicitely this compactification). The Theorem
5.1 can be roughly summed-up as follows: depending on the value of the map T on the
boundary of M, two situations can occur:

• the boundary of M is repulsive for T (i.e. iterating T one goes out of any small
neigbourhood of the boundary of M). In this case we prove that T has a unique
eigenvector.

• The boundary is not repulsive and T has no eigenvector.
(N.B.: in the sequel we say fixed point for eigenvector because all eigenvectors have

the same eigenvalue (cf. Corollary 3.5) and because we are only interested in the invariant
lines for T).

Actually, Theorem 5.1 does not give such a nice dichotomy and in critical cases it fails
to give an answer. In [20] , Metz gave an example of non-uniqueness, in section 7.2 we
shall see that this example lies in the critical case.

We apply this theorem to the Sierpinski gasket with inhomogeneous weights. In this
case we find a criterion on the weights and only two situations can occur: either T has a
unique eigenvector, or it has no eigenvector.

In the case of nested fractals we prove that we always get the first case and thus, that T
has a unique eigenvector. (This answers one of the main questions raised by Linsdtr0m,
whether the diffusion he constructs is unique or not). Besides, the renormalization map T
gives a non-trivial example of a type of maps which have been intensively studied in non-
linear analysis (cf. [23]), namely, non-linear, non-expansive maps of a cone. It is possible
that the techniques developed here could be applied in other contexts. Actually, Theorem
5.1 can be viewed as a non-linear generalization of the Perron-Frobenious theorem.

Let us now describe the organization of the paper:
In Section 1 we give a quick description of Dirichlet forms on finite sets and electrical

networks.
In Section 2 we present the general framework of the paper: we give a definition of

finitely ramified self-similar sets (we adopt a definition simpler than Kigami's one [12],
althought all our results could be derived in his context) and of self-similar Dirichlet forms.
We briefly recall how self-similar Dirichlet forms are linked with Dirichlet forms invariant
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608 C. SABOT

by renormalization (which correspond to eigenvectors of T). We follow the construction
of Kusuoka [16].

In Section 3 we introduce the map T and give its first properties.
Section 4 contains some preliminaries to the proof of the main result: we describe the

boundary of M (i.e. the way a Dirichlet form can degenerate) and the behaviour of T near
this boundary. This section contains a specific introduction where we explain the underlying
ideas of our procedure. We illustrate Section 4 and Section 5 by two examples, namely the
Sierpinski gasket without symmetry (and inhomogeneous weights) and the snowflake.

In Section 5 we state and prove the main theorem and we apply it to the two examples.
We stress the fact that the main part of the proof of uniqueness is independent of the proof
of existence and of the preliminaries (it only relies on Lemma 5.7, which roughly says
that the boundary of M is repulsive for T).

In Section 6 we apply Theorem 5.1 to nested fractals and prove the uniqueness of the
diffusion in this case. We also give an example where Theorem 5.1 cannot be applied.

In [27] we explicitely computed the transformation T in some examples: in particular
we show that T can be expressed as a non-negative matrix when the fractal is a tree, i.e.
has no loop. We also use the representations of the symmetry group G to compute T'. in
that way we give an expression of T in the case of the sowflake.

1. Dirichlet forms on finite sets and electrical networks

In this section we recall some classical facts about Dirichlet forms on finite sets and
electrical networks. In [1] , Barlow first applied these technics to diffusions on fractals.
A full account on the subject can be found in [5]. Because most of these results will be
used in the sequel, we keep a well-ordered structure to present them and sometimes give
short proofs, even if they can be found somewhere else. The only original, but not very
deep, result of this section is Lemma 1.19.

1.1. Dirichlet forms on finite sets

Let F be a finite set. Denote by E the space of real functions on F and by V the
sub space of zero mean functions.

DEFINITION 1.1. - A positive quadratic form A on E is said to be a Dirichlet form on F
if A is null on the set of constant functions and if for all f G E:

A(/A1JA1)<A( / J ) .

N.B.: / A l(x) denotes the minimum value of f(x) and 1.

REMARK 1.2. - The last assumption is called the Markovian property of Dirichlet forms.

REMARK 1.3. - Usually, the first condition is not assumed. Actually, with this definition,
Dirichlet forms are supposed to be conservative.

REMARK 1.4. - Most of the time, for a quadratic form A, we write A(/) instead of
A(/J).
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DEFINITION 1.5. - A Dirichlet form A is said to be irreducible if A(/) == 0 implies that
f is a constant function.

Let fi be a strictly positive measure on F. For all Dirichlet form A there exists a unique
symmetric operator A such that:

A(/^)-y1
/A^, Vf^G^.

The operator .4 is the infinitesimal generator of a unique Markov process Xf with state
space F. Since A is null on constant functions, this Markov process is conservative (i.e.
there is no killing). We say that Xf is the Markov process associated with (A,/^). We
describe Xt in the next section.

1.2. Electrical networks

DEFINITION 1.6. - A symmetric matrix J = (jx,y)x,y^F is said to be a bond conductivity
matrix if its elements are non-negative and null on the diagonal. The set {{re , y } ^ j x , y > 0}
defines a graph on F. We say that J is irreducible if this graph is connected.

With each bond conductivity matrix J, we associate a positive bilinear form A on
E x E by:

ACf^)=| ̂  jxMW-fW)W-g(y)). vj^ei?.
x,y^F

The following result is well-known:

PROPOSITION 1.7. - The quadratic form A is a Dirichlet form on F and is irreducible if
and only if the bond conductivity matrix J is irreducible.

The map J \—> A is bijective from the set of bond conductivity matrices to the set of
Dirichlet forms.

Let fJ. be any strictly positive measure on F. The markov process Xt associated with
(A, fi) is a jump process with semi-group exp(—t^4). The associated Markov chain has
transition probabilities:

___^__
Px,y — ̂l-x,y ^ .

Z^z^x^^

and at a point x the rate of the exponential jump law is given by: p,(x) ̂ ^jx,z-

1.3. Restriction of a Dirichlet form

Let F ' be a subset of F and E' the space of real functions on F ' .

DEFINITION 1.8. - Let Abe a Dirichlet form on F, we define the restriction of A to F ' ,
denoted by A p ' , by the following formula:

AF/(/J) = inf{A(^), g € E, g^ = /}, Vf G E1.

PROPOSITION 1.9. - Ap' is a Dirichlet form.
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610 C. SABOT

If A is irreducible, then Api is irreducible and there exists a linear map HA : Ef —^ E
such that HA^) is the unique element ofE which realizes the minimum in Definition 1.8.
The function H^f) is called the harmonic continuation off with respect to A.

REMARK 1.10. - This restriction is called the trace of a Dirichlet form on a subspace
in [7], associated with the time changed process, cf. th 6.2.1 (cf. also [18] where it was
called the "forme de Dirichlet balayee").

Obviously, the following decomposition holds: A(/) = A^/(/|^/) + A(/ - HA^F'))
for all function f on F.

REMARK 1.11. - If A is an irreducible Dirichlet form then HA satisfies the maximun
principle i.e. for all / G E ' \

min/ < H A ( / ) < max/.

REMARK 1.12. - If A is not irreducible then the harmonic continuation is in general
not unique. Precisely, the set of functions which realize the minimum is an affine space
with direction: [g £ ker(A), g\p, = 0}.

REMARK 1.13. - If A is any positive quadratic form on E, one can define the restriction
of A to F ' in the same way. If A is positive definite on the subspace V (of zero mean
functions), then the minimum is reached on a unique point and HA can be uniquely
defined. The maximum principle is in general not satisfied.

One can give an expression of the harmonic continuation of a function / on F ' in terms
of the Markov chain associated with A:

PROPOSITION 1.14. - Let A be an irreducible Dirichlet form and Xn be the Markov chain
associated with A fcf. Section 1.2). Let r be the first time -when Xn meets the set F ' then
for all function f on F ' :

HA(f)=E^[f(X^].

N.B.: Ex denotes the expectation with respect to the law of the process starting from x.
This notion is also connected to electrical networks.
Let Xn be the Markov chain associated with the irreducible Dirichlet form A and X^'

be the one associated with its restriction Ap' (defined on the state space F ' ) . In [1] it
is proved that X^' is the Markov chain which describes the successive visits of F" by
Xn. It easily follows that:

PROPOSITION 1.15. - Let A be an irreducible Dirichlet on F associated with a bond
conductivity matrix (jx,y)' Let (jx,y) be the bond conductivity matrix associated with the
Dirichlet form A p ' , then for x and y in F ' , j^^y > 0 if and only if there exists a path
ZQ = x , . . . , zj, = y such that zi ^ F/ for i C { 1 . . . , k - 1} and j^ ^^ > 0 for
i e { o , . . . , f c - i}.
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1.4. Effective conductances. Distance associated with a Dirichlet form

In [13], Kigami introduced the distance associated with a Dirichlet form on F. We now
describe this notion, useful in the sequel.

Let A be an irreducible Dirichlet form on F.
Let x and y be two distinct points in F.
The Dirichlet form A^^ is associated with a unique bond conductivity that we denote

by CA{x,y\ i.e.:

^x^y}^) = ̂ (x.y^g^x) -g(y))2^

for any function g on { x ^ y } .
The real CA^x.y) is called the effective conductance between x and y .

PROPOSITION 1.16. - The following equality holds:

CA{X, y) - inf{A(/, /), / G ̂  f(x) = 0, f{y) = 1}.

The function TA '• F x F —^ IR+ defined by:

TA^X.X) = 0, x e F,

^'^c^b'^'
LS' a distance on F.

REMARK 1.17. - The real TA^X, y) will be called the effective resistance between x and y .

Proof. - The first formula comes directely from Definition 1.8.
The second assertion is proved in [13], Theorem 1.6. D
We now want to estimate a Dirichlet form thanks to its effective conductances.
It leads us to introduce a kind of reference Dirichlet form: let A° be the Dirichlet form

associated with conductivities equal to 1 on each bond, i.e.

A°U)=^UW-f(y))\ V/e^.

REMARK 1.18. - If / has zero mean on F then obviously A°(/) = ̂ f(x)2, so that
A° and the usual L2 norm are equal on V.

LEMMA 1.19. - There exists a constant K > 0 such that for all irreducible Dirichlet
form A on F and all function f G E:

-(mmcA{x^y)\A°{f) < A(/) < fmaxcA^^^A0^).
K \x^y ) \x^y )
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612 C. SABOT

Proof. - Let A be an irreducible Dirichlet form and (jx,y) its bond conductivity matrix.
If / G E is such that f(x) = 0 and /Q/) = 1 then A(J) > ja^. It follows that:

Ja^ < c^x.y), Vrr 7^ ^/.

The upper bound thus follows from the definition of A°.
Let us suppose that the left inequality is not satisfied. It means that one can find a

sequence (An) of irreducible Dirichlet forms and a sequence (/n) in E such that:

(1-1) CA,(^2/)>1, V.T/^

(1-2) A°(/,) - 1,

(1.3) lim A(/,) = 0.
n—>oo

Let U^y) be the bond conductivity matrix associated with An and set j^ = j^ A 1.
Since j^y is bounded there exists a subsequence n^ such that (j^y) converges to a bond

conductivity matrix denoted by J = (jx,y)'
Obviously, if J is irreducible then one can find a constant C > 0 such that A^ > C7A°,

but this is incompatible with (1.2) and (1.3).
If J is reducible then, by permutations of rows and columns, one can write it as a matrix

with irreducible diagonal square blocks associated with a partition { J i , . . . , J^} of F. Take
now x in A and y in 1^ We define / e E by fi, = 0 and fp\^ = 1. Obviously,

CA^(x,y) <A,J/J).

But Ay^ (/) converges to 0, as the conductivity between any point in Ji and any point out
of Ji converges to 0, This is incompatible with (1.1).

As a consequence, there exists a constant K > 0 for which the left inequality is
satisfied. D

1.5. Calculation of some effective conductances

Our goal in this section is to give simple methods to compute some effective
conductances. In fact, we give nothing more than the formula for the effective conductance
of two conductors in series or in parallel (as in [5] ).

Suppose that F is the union of two non-disjoint subsets, say jFi and F^. Let Ai and
As be two irreducible Dirichlet forms on Fi and F^ respectively. Suppose that A is given
by the following formula:

A(/)=Ai(^)+A2(/^) .

The quadratic form A is clearly an irreducible Dirichlet form on F.
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Let us denote, as in Section 1.4, by CAi, CA^ and CA the effective conductances
associated with Ai, A 2 and A.

LEMMA 1.20. - Let x and y be two distinct point in F.
(i) If {x^y} C Fi and if Fi Fl F^ has a unique element then

CA(x,y) =CAi(^).

(ii) / /FiHF, = {x,y} then:

CA(x,y) == CA^(x,y) -^-CA^x.y).

(iii) if x e Fi, ?/ e F2 <w^ Fi n F2 = {^} ̂ '̂  ^ ^ {^^} ^^•'

1 _ 1 1
CA(x,y) CA,(X,Z) CA^(z,y)'

Proof. - (i)
Let {z} = FI H Fa- Let /i be the function on Fi such that f^{x} = 0, ft(y) === 1 and

Ai(/i) = CA,(x,y). Define f on F by:

f J ^ - A
t / i^-A^)

We clearly have A(/) = Ai(/i) and it easily follows that CA^x.y) = c^(x,y).
(ii) Let /i and f'z be the functions on Fi and Fa such that fi(x) = /2(^) = 0.

fi(y) = /2(2/) = 1 and CA,(x,y) = Ai(/i), CA^(x,y) = A2(/2). Let / be the function
on F defined by f\p, = /i, f\p^ = /2. Thus, A(/) = Ai(/i) + A2(/2) and the result
is easy to derive.

(iii) Let / be the function on F such that f{x) = 0, f{y) = 1 and A(/) = CA^X, y). Set
a = f{z), /i = f\F, and f^ = f^ - a. We see that /i(rr) = 0, /i(z) = a and f^z) = 0,
/2(^/) = l - a . Moreover /i (resp. ^2) is harmonic on Fi \ {x, z} (resp. F2 \ {z, y}) with
respect to Ai (resp. A2). Thus, a^CA^x.z) = Ai(/i) and (1 - a^CA^z.y) = A^).
Thus, we have:

CA^x.y) = a2CA,(x,z)+ (1 -afcA^z,y\

Moreover, a is the value for which this expression reaches its minimum. It implies that

/ ^ CAi(^)CA2(^) r-iCA(x,y)=——-——————-——-. D
CAi(.r^) ^-CA^z.y)
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614 C. SABOT

2. Construction of self-similar Dirichlet spaces

2.1. Finitely ramified self-similar spaces

In order to describe finitely ramified fractals, Kigami introduced a class of fractals,
called p.c.f. self-similar sets (cf. [12]). For a matter of simplicity, in the sequel we restrict
ourselves to a subclass of the p.c.f. self-similar sets, in some sense to a "constructive"
subclass, in which the examples are easy to describe. All our results could be derived in
the general setting of p.c.f. self-similar sets (cf. [25]).

Let D, N be two integers such that 2 < D < N .
Let G be a finite group operating on the set { 1 , . . . , N} (we denote this operation by g.i

for g G G and i G { 1 , . . . , N}). Assume that the subset {! , . . . ,£)} is globally invariant
under the operation of G.

Let Ti be an equivalence relation on { 1 , . . . , N} x { 1 , . . . , D} such that:
• for all i e { 1 , . . . , D}, the equivalence class of (i, i) with respect to 7^ has a unique

element,
• if^.^&.z7) for f e e { ! , . . . , N } andz ,^ e { 1 , . . . ,^}, then i = i\
• for any i,i' G { 1 , . . . , N}, i / i\ there exists a sequence %i = % , . . . , %p = % ' of

{ 1 , . . . , N} such that for all k G { 1 , . . . , p - 1} there exist j and f in { ! , . . . , D}
such that (ikJWik-^-iJ'),

• the relation U is invariant under the operation of G on the product set
{!,... ,7V} x {!,..., D} (i.e. (iJWJ') implies (g.i.g.jWg.i'\g.j') for all
g in G).

We set:

F={1 , . . . , 25} ,

F^ = ( { ! , . . . , N} x F ) / H .

Thus, F can naturally be regarded as a subset of F^\ namely { ( % , %) , i G F} (indeed, by
the first assumption on U the map from F to F^ given by i -^ ( % , % ) is one-to-one).

We now construct a self-similar set over this finite structure. Set 0 = { 1 , . . . , N}^ (i.e.
the set of sequences (o;,),>i of { 1 , . . . ,N}). With the distance I defined by:

l(uj^) =0, Vo; e ̂ ,

^(^Q=2-inf^^c<^ Vc^a/en, c^o/,

the set f2 is compact.
Let us set some notations. For any s G { 1 , . . . , N} and uj e 0, we denote by < 5, ̂  >

the element of 0 given by:

< 5,Cc; >i= 5, < 5,0; >p+l= UJp, Vp > 1.

Given s G { 1 , . . . ,7V}, s e 0 denotes the infinite sequence associated with 5.
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On 0 we define the equivalence relation ~ by uj ~ uj' if and only if there exists
n C N* such that

(x;i == a/i,. . .c^_i = uJ'n-1,

c^+i,c^+i G { ! , . . . , £>} and (^,^+i)7Z(^,a;^i),

o^+p = c^+i, o;̂  = ^n+i^ ^P > 1-

We set X = f2/ ~. With the topology induced by f2, X is a compact set. Moreover, thanks
to the third assumption on %, X is connected.

Let II be the canonical surjective map from f^ to X.
For all s G { 1 , . . . , N} we define the map ^s '' X -^ X by:

^,(x) = n(< s,u >) if rr = II(^)

(we easily see that ^s is well defined, i.e. that ^s(^) does not depend on uj choosen
in 0 such that II(a;) = a;).

The function ̂  is one-to-one for all %, thanks to the second assumption on Ti.
Moreover, we remark that X is self-similar for the list of maps (^ i , . . . , ̂  N\ i'e. that

X = U^^(X).

Henceforth, F will be regarded as the following subset of X:

F = { n ( f c ) , fce{i , . . .^}} .
In the same way F^ will be regarded as a subset of X, namely

F(1) = {n(< fc, < >), (fc, 0 G { 1 , . . . , TV} x { 1 , . . . ,D}} = U^^(F).

We adopt the following notations:

F(°) = F

^(n) = U^,..,^)e{i,...,^}-^ o ... o ̂ (F).

The sequence F^ is non-decreasing and U^o^^ ls dense in X.
We call n-cells the subsets of F^ of the type:

^,.,^=^o...o^(F).

For ( % i , . . . , in) / ( % ' i , . . . , z'n) one clearly has:

^ o ... ̂ (X) n ̂  o .. • ̂ (X) = ̂  o ... ̂ (F) n ̂  o ... ̂ (F) c F^\

REMARK 2.1. - This last relation contains the property of finite ramification (the
intersections between the copies of X at level n are included in the copies of the set
F, i.e. the n-cells).
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The operation of G is naturally extented to the set X (precisely, G operates on the product
space f^, and then on the quotient space X, thanks to the G-symmetry of the relation 7^).

REMARK 2,2. - This method gives a canonical construction of a finitely ramified fractal
from a simple finite structure.

We now give some classical examples:

Example 1. - (The Sierpinski gasket).
In this case N=D=3, and the relation Ti is given by the following picture:

F

(1,2)7Z(2,1)

(2,3)7Z(3.2)

(3,1)7Z(1,3)

We can choose different symmetry groups. We shall study the following ones:

Example 1.1. - We take for G the group 03 of permutations of {1,2,3}. We call this
structure the symmetric Sierpinski gasket. It belongs, as we shall see, to the class of
nested fractals.

Example 1.2. - We take for G the trivial group. We call this structure the Sierpinski
gasket without symmetry.

Example 2. - (The Viscek set )
Here N = 5 and D = 4. The equivalence relation Ti is given by the following picture:

1 2

4 3
» 4

1 2

1
4 3

1 2

4
4 3i——————i

1 2

5
4 3

1———————<
1 2

2
4 3

1 2

3
4 3t————— j

>

(1,3)^(5,1)

(2,4)%(5,2)

(3,l)7Z(o,3)

(4,2)7Z(5,4)

i

F p(i)
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We can take different symmetry groups. We shall study the following ones:

Example 2.1. - we take for G the 4th dihedral group V^ operating on { 1 , . . . , 4} as the
group of isometries of a square and leaving the point 5 invariant.

Example 2.2. - we take for G the group 1/21 x 1/21, operating on {! , . . . ,4} as
the group generated by the orthogonal symmetries with respect to the two diagonals and
leaving the point 5 invariant.

Example 3. - (The snowflake).
Here N = 7 and D = 6. The equivalence relation U is given by the following picture:

(1,4)7Z(7,1)
(2,5)7Z(7,2)
(3,6)7Z(7,3)
(4,1)7Z(7,4)
(5,2)7Z(7,5)
(6,3)7Z(7,6)

(1,3)7Z(2,6)
(2,4)7Z(3,1)
(3,5)7Z(4,2)
(4,6)7Z(5,3)
(5,1)7Z(6,4)
(6,2)7Z(1,5)

F pW

We take for G the 6th dihedral group T^ operating on {! , . . . , 6} as the group of
isometries of the hexagon and leaving the point 7 invariant.

Example 4.— All nested fractals ([19]) can be constructed in this way (actually, nested
fractals are imbedded in R0, but are isomorphic, as self-similar sets, to a fractal constructed
in this way, cf. Section 6). In Section 6.1 we recall the definition of nested fractals.

2.2. Decimation invariant Dirichlet forms and construction
of self-similar diffusions on X .

It appears in [10], [19] and [16], that the construction of a diffusion on a finitely
ramified fractal amounts to find an eigenvector of a kind of renormalization operator. Here
we briefly review the construction of Kusuoka ([16]) and show how it is linked to the
renormalization operator.

NOTATIONS. - Notations: we denote by ^(n) the space of real functions on F^ and by
V^ the subspace of the ones with zero mean value (and simply E = ̂ (0), V = V^
for F = F^).

Let { j i A i , . . . , /^v} and { a i , . . . , o^} be two TV-uplets of ]0,1^ invariant under the
operation of G on { 1 , . . . , N}, i.e.:

a g.i = ai, fig.i = ̂  V^ € G, Vz € {1 , . . . , N}.
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Moreover, we assume that /^i + . . . + ^N = 1- The real o.i (resp. /^) must be understood
as the weight of the 1-cell Fi = ̂ i(F) for the Dirichlet form (resp. the measure) we shall
construct on X. We define the measure p, on X thanks to the following proposition:

PROPOSITION 2.3. - There exists a unique probability measure p, on X such that

f N fy fd^i=^^ \ fo^^.

We call p, the self-similar measure on X associated with the weights {^i,..., f^^}'

Proof. - this is an easy adaptation of [II], Theorem 4.4.1 and 4.4.4 (cf. [17], Theorem
2.18). D

We adopt the following definition:

DEFINITION 2.4. - An irreducible Dirichlet form A on F is said to be decimation
invariant if the Dirichlet form on F^ defined by:

A(l)(/J)=^^- lA(/o^Jo^), V/G^,

satisfies: A^ = A.
N.B.: A^ denotes the restriction of A^ to the subset F (cf. Section 1.3).
Let A be a G-symmetric decimation invariant Dirichlet form (N.B.: G-symmetric means

that A(g.f) == A(/) for all / G E and g G G). We now construct a Dirichlet form a on X
as the limit of a sequence of Dirichlet forms A^ defined on the subsets F^\

We define the Dirichlet form A^ on F^ by:

A{n\f^)= ^ (a^.-.^J-^Co^o.-.o^J, VJeE^(ai^'-aij 'A(;o-
1 l , - - - , 1 n

(thus, A^°) = A).
Since A is decimation invariant one has (cf. [16], Proposition 4.7):

PROPOSITION 2.5. - (i)Ay = A and A^ = A^ ifn > m.
(ii) For all f in ^(00), A^\f\pw, f\Fw) ^ non-decreasing.
We define the Dirichlet domain P by

P={ /GC(X) , Jim^A^(/|^)J|^))<oo}

(N.B.: C(X) denotes the space of continuous functions on X) and the bilinear form
a : V x V -^ R by

a{f^g)= lim A^(/|^)^,^)), V/,^ e V.
n-^oo ' 1
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One has the key result:

THEOREM 2.6. - The couple (a, P) is a regular Dirichlet form on {X, fi) and
• 1 G V, a(l, 1) = 0 and a is irreducible (i.e., a(/) = 0 implies that f is constant).
• (a, V) has the spectral gap property, i.e. there exists C > 0 such that f fdfi ^ Ca{f, f)

for all f in V such that f fd^i = 0.
• all the points of X have strictly positive capacity.
• (a^V) is G-symmetric, i.e.;

V/ e P, V^ G G, g.f e P,

a(g.f.g.f) = a(/J), V / G P , V ^ G G ,

• (a, P) ;5' self-similar for the weights ( o ^ i , . . . , a^), i.e.;

V / G P , V z e { l , . . . , ^ L /o^z^
N

a(/, /) = ̂ (a,)-1^/ o ̂ J o ̂ ), V/ G P.

z=l

REMARK 2.7. - In this section we supposed that the weights a, are strictly smaller
than 1 (this is called the regularity hypothesis, cf. [12]). In [14], Kumagai extended the
construction to the general case and proved that all the properties, except the third one on
the positive capacity of points, remain valid. As suggested in Remark 3.9, it is strongly
possible that in general the process avoids some points.

Proof. - This result comes from [16] Theorem 4.14, except the third property which
comes from [8], Theorem 2.3. D

DEFINITION 2.8. - A Dirichlet form on X satisfying all the properties of Theorem 2.6 is
called a G-symmetric self-similar Dirichlet form (associated with the weights (a i , . . . , a^)'

Moreover, from the property of self-similarity, we can deduce (cf. [16], Theorem 4.14):

PROPOSITION 2.9. - The Dirichlet form (a,V) is local.
Kusuoka also gives the following result (cf. [16], Remark 4.15):

PROPOSITION 2.10. - The Dirichlet form (a,V) on L^X,/^) is associated with a
G-symmetric Feller diffusion process.

The next property gives a bijective map between the set of decimation invariant Dirichlet
forms on F and the set of self-similar Dirichlet forms on X.

PROPOSITION 2.11. - The mapping which takes A to (a, T>) is bijective from the set ofG-
symmetric decimation invariant Dirichlet forms on F to the set of G-symmetric self-similar
Dirichlet forms on X (of Definition 2.8).

Proof. - Suppose that (a,D) is a G-symmetric self-similar Dirichlet form on X,
associated with the weights (a i , . . . , ajv). We define a quadratic form A on E by:

(2.1) A(/, /) = inf{a(^ g\ g G P, g\p = f}
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(N.B.: to define g\p we use the fact that g has a continuous version, since the points
of X have strictly positive capacity.)

The irreducibility of (a,'D) and the spectral gap property imply that A is an
irreducible Dirichlet form on F, and that the infimum in (2.1) is reached on a
unique function of V, called the harmonic continuation of /. (This essentialy comes
from the fact that, thanks to the spectral gap property, the space (L^(m),a) (where
L^(m) = {f € L^m), f fdm = 0}) is a Hilbert space. It is proved precisely in [27] ).
Moreover, the self-similarity of a implies that A is decimation invariant.

Let (a, f>) be the Dirichlet form on X constructed from A as described in this section.
We prove that (a,^) = (a,V).
The inclusion V C C{X) follows from the positive capacity of the points. Let / be in T>\

A^O^O^aCfJ),

so that f C V. Thus, we have proved that V C T>.
Let / be in 'D. For all n let fn € "D be the harmonic continuation of f p ( r z ) , ie. the

unique continuation of fp('n) in T) such that:

A{n\f^)=a{f^f^.

The functions fn and fm satisfy: a{fn - fm) = a(/n) - a(/m), for all n and m, thus
(fn) is a Cauchy sequence for a and, thanks to the spectral gap property, it is also a
Cauchy sequence for the norm a + |[.[|. Since (a,P) is a closed form, the sequence (fn)
admits a limit in T> for the norm a + ||.[|. This limit can only be / (because, since / is
continuous, {fn) converges to / for ||.|[, thanks to the maximum principle). So we have
proved that 2) = T>. Moreover,

a(fn) = a(fn),

Umn^^a(fn) = a(f),

limn-^ooa(fn) = a(f).

Thus a = a on their domain. D

3. Definition of the map T and first properties

3.1. Introduction

3 . 1 . 1 . Notations, conventions

We have proved in Section 2.2, Proposition 2.11, that there is a bijective map between
the set of G-symmetric self-similar Dirichlet forms on X and the set of G-symmetric
decimation invariant Dirichlet forms on F. Decimation invariant Dirichlet forms are clearly
solutions of a problem of fixed point. We now describe the map involved in this problem.
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We adopt the framework given in Section 2.1. Henceforth, we will only be interested in
the finite structure (F, F^). We briefly recall the notations relative to this finite structure.

We remind that F denotes the finite subset { 1 , . . . ,D} of {1 , . . . , N } and that the set
F^ is defined by:

F^ = { ! , . . . , N} x F / H ,

where 1i is the equivalence relation on the set { 1 , . . . , N} x F which describes the
connections between the cells. The set F is regarded as a subset of F^ namely
{ ( ? , % ) , i € F}. The maps ^i,...^jv defined by:

^ :F -^ F^
x —)• (i^x)

are injective and obviously F^ = U^L^i{F).
We call 1-cells the subsets ^,(F) of F^ and we denote F, = ̂ (F).
The symmetry group G operates on { 1 , . . . , TV}, leaving the subset F globally invariant.

This induces an operation of G on F^\
We remind that E (resp. E^) denotes the space of real functions on F (resp. F^) and

that V (resp. V^) denotes the subspace of the ones with zero mean.
Let us now set up few new notations. We denote by P : E —> R the mapping that takes

/ G E to its mean value on F (with respect to the uniform probability measure). The map
(J — P) is then a projection over V.

The set of (^-symmetric irreducible Dirichlet forms on F is denoted by M (G-symmetric
means that A{f\ f) = A(g.f,g.f) for all / G F and all g G G). The elements of M are
positive quadratic forms on E, null on the space of constant functions and positive definite
on the subspace V. They can be thus defined by their restriction to V. The set M is a cone
included in the set of positive quadratic forms and is not closed since it does not contain
the reducible Dirichlet forms. We denote by PM the projective set associated with M.

If A and A' are two positive quadratic forms with same kernel, then we denote by
sup(A'/A) and mf(A'/A) the supremum and the infimum of the ratio A' / A taken on the
set where these quadratic forms are strictly positive.

Besides, if A and A! are positive definite on a subspace W then A' can be diagonalized
on an orthogonal basis with respect to A, we write:

(3.1) A' = XoA^wa C • • • C \rA\w^

with W ==• Wo 9- • '^Wr and 0 < Ao < • • • < \r' Relation (3.1) means that A^ = \iA\w,
and that the subspaces W o , . . . , Wr are orthogonal with respect to both quadratic forms
A' and A (in particular, mf(A'/A) = Ao and sup(A'/A) = \r). The decomposition (3.1)
is unique.

For the elements of M are defined by their restriction to V, it will be understood
that the simultaneous diagonalization of two Dirichlet forms of M is implicitely done
on the subspace V.
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3.1.2. Definition of T, examples

Let T : M -^ M be the map defined as follows.
For A in M we denote by A^ the irreducible Dirichlet form on F^ given by:

N

L°
1=1

A^aj^^a^A^ov^jo^), V/c^1 ) ,

we defined TA as the restriction of A^ to F (in the meaning of Section 1.3), i.e.:

TA=A^.

Thanks to the connectivity property of the relation Ti (third assumption on U, cf. Section
2.1) it is easy to see that TA is irreducible. Moreover, as A^ is irreducible, the harmonic
continuation is uniquely defined and for / G E we denote it by H^f) i.e.:

TA(/)=A^)(^(/)), V/e^ .

The map T is clearly 1-homogeneous (i.e. T(AA) = \TA). In consequence, we shall
adopt the following definition of a fixed point:

DEFINITION 3.1. - A Dirichlet form A of M is called a fixed point ofT if there exists
a strictly positive real A such that TA •==- \A.

The Dirichlet form A is called a regular fixed point if moreover \ satisfies \0i < 1
for all i in { ! , . . . , N}.

We will say that T has a unique fixed point if there is a unique line invariant by T (i.e.
the fixed point is unique up to a multiplicative constant).

N.B.: Actually, what we call fixed points are eigenvectors of T but we prefer to adopt
this terminology since they are really fixed points for the map T on the projective space
associated with M and since all the eigenvalues are equal (cf. forthcoming Corollary 3.5).

With this definition and Definition 2.4 of Section 2.2, we remark that a fixed point for T is
a G-symmetric decimation invariant Dirichlet form on F for the weights ( A a i , . . . , Xa^).
To construct the self-similar Dirichlet form on X we just have to check the regularity of
the fixed point (we recall that the assumption that the weights are strictly smaller than 1
is essential in the construction of the Dirichlet form on the fractal space X). In Corollary
3.5 we shall show that the property of regularity depends only on the choosen weights
(a i , . . . ,0^) (i.e., with given weights, either all fixed points are regular either all are
not). In Proposition 3.8 we give a sufficient condition on the weights (o^) for the fixed
points to be regular.

Example 1.1. - Here, the symmetries only allow to take equal weights ai = 02 = 03.
The set M has dimension 1 (thanks to the symmetries), so existence and uniqueness are
trivially satisfied.

Example 1.2. - We can take for the c^'s any positive 3-tuplet. In Section 5.2 we shall
solve the problem of existence and uniqueness for all the possible values of (ai, 02,03).
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Example 2.1 and Example 3. - If o^ = 1 for all z, it is a nested fractal so the existence
follows from [19]. The uniqueness was proved in these two particular cases in [1]. In [27],
we explicitely compute T in these two examples.

Example 2.2. - We recall that this example is the Viscek set with symmetry group
G = Z/2Z x Z/2Z. Considering the symmetries, we can take ai = 03 = 71, 02 == 04 = 72
and as = /?. Metz proved that for 71 = 72 = ft there are infinitely many fixed points
(cf. [20] ).

In general, in [27] , we proved that when 71 == 72, T has infinitely many fixed points
and when 71 / 72 it has none. In fact, in this case, the map T can be expressed as a non-
negative matrix, and the problem of fixed point reduces to the Perron-Frobenius theorem
(we have proved that this situation arises each time the fractal is a tree, i.e. has no loop).

Example 4. - Lindstr0m proved the existence for the class of nested fractals (cf. [19]).
In Section 6.1, we shall prove the uniqueness (and we partly recover the existence).

3.2. First properties of the map T

PROPOSITION. - The map T is non-decreasing i.e.:

VA, A' e M, (A < A' ̂  TA < TA'),

N.B.: the order on quadratic forms is the usual one: A <, A' if and only if A' - A
is positive.

Proof. - Let / be in E and HA'U} be its harmonic continuation to F^ with respect
to (A'/1) then:

TA\f} = (A')^)(^(/)) ^ A^)(J^(/)) > TA{f). D

We introduce the Hilbert's pseudo-metric d on M by

d(A A'} - In f811^/^
"^'^""^m^A/A')^

for (A, A') in M x M.
In fact, d is not a metric on M, but on the projective space PM (as we easily see that

d(A,A') = d(\A,\'A') for all positive reals A, A').
The following property of T is important:

PROPOSITION 3.3. - Let A and A' be in M then:

TA A TA A
sup ̂ < sup ̂  mf^mf^.
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The map T is non-expansive for d, i.e.:

d(TA,TA') <d(A,A'), V(A,A /)eM2 .

Proof. - Let A and A' be in M. We have A < sup^A', thus TA < sup^TA', which
gives the first inequality. The proof of the second is similar and the non-expansiveness
property is easily derived form these two inequalities. D

REMARK 3.4. - Proposition 3.2 and 3.3 where first remarked by Metz, cf. [21]. In [23],
Hilbert's metric and non-expansive maps for this metric are studied in a general framework.
In the terminoly of [23], Proposition 3.2 means that T is order-preserving for the order
induced by the cone of positive quadratic forms (but it is not order preserving for the
order induced by the cone M). Proposition 3.3 means that T is non-expansive and we can
remark that this only comes from the fact that T is order-preserving and 1-homogenous
(as remarked in Proposition 1.15 of [23]).

From this proposition we easily deduce (cf. [10] Corollary 3.7):

COROLLARY 3.5. - Let A and A' be two fixed points of T such that TA = \A and
TA' = YA', then X = A'.

Proof. - Indeed,

TA A A
^rA^A^A^

and from Proposition 3.3 we deduce that A < A'. In the same way we obtain A' < A
and thus, A = A'. D

This explains the announced fact that the regularity of a fixed point depends only on
the weights (o^).

3.3. Sufficient conditions for the regularity of the fixed points

For A G M and x e F we set:

LA (rr) = { / e l ? , A(/, l^)=l},

(3.2) W sup{A(/), f ^ L ^ x ) } '

REMARK 3.6. - Actually, IA^X) is the distance from x to the affine space generated
by the points of F \ [x], for the distance TA associated with A (or to be more precise,
for the distance associated with the unique quadratic form defined on the affine subset
generated by the points of F that coincide with TA on these points. This quadratic form
is the dual form of A, cf. [27]).
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We first prove:

LEMMA 3.7. - Let x be in F. One has that:

ITA^X) > a^A^x}.

Proof. - We first remind that x is the fixed point of ^a. (x is a point of F C { 1 , . . . , N}).
Let / be an element of E which realizes the supremum in (3.2) for TA. Let -HA(/) be

the harmonic continuation of / to F^ with respect to A^. As F C F^, we can regard
1^} as an element of E^\ One has that:

1=TA(/,1^)

=A^A(AW
N

=^a^A(HM) o^, l^o^)
i=i

=a^A(HA(f)o^^l{.}o^^)

because x G Fi = ^(F) if and only if i = x.
The last relation proves that O^HA^/) ° ̂ x ^ LA^X) (because ^x(x) = x). Thus,

lTA{x)=TA(f^f)

N

=Va=^a.-lA(^A(/)o^)
1=1

^>a, lA(^A(/)o^)

=a,A(^ lffA(/)o^)

> Q^A^).

The third inequality is strict because HA^} is not constant out of Fa., with regard to
Proposition 1.14. D

PROPOSITION 3.8. - Let A be a fixed point ofT such that TA = \A, then for all x in
F = { ! , . . . , D}, Xa, < 1.

Proof. - This follows from Lemma 3.7 since IT A = A'^A. D

REMARK 3.9. - This proposition gives a good answer for all the examples we shall
consider, in particular it follows that if all the a^s are equal then all the fixed points are
regular. In [14], Kumagai extended the construction of the process to non-regular cases. It
could be interesting to study the capacity of points for such processes, in particular it is
likely that these processes avoid some points, maybe the ones for which lima^ • • • o^ > 1.

REMARK 3.10. - Kigami has given a very similar result in [12], Theorem 4.10.
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4. Preliminaries to Theorem 5.1. Behaviour of T near the boundary of M.

Our goal in this section is to describe the behaviour of T near the boundary of M. The
underlying idea of our procedure is to construct a suitable closure of the set M (which is
not closed, since it is the set of irreducible Dirichlet forms). The natural closure of M,
that contains the reducible Dirichlet forms is not relevant to our problem. In particular,
the map T has no continuous extension to this closure, when considered as a map on the
projective set PM (with the Hilberfs metric for example, cf. Section 3). A Dirichlet form
of M is close to a reducible Dirichlet form when it is nearly vanishing on a subspace
of V: to understand the behaviour of T near this reducible Dirichlet form we need to
know what happens on this subspace. This means that the suitable closure needs to handle
both the "leading" part of the Dirichlet form and its "vanishing" part. Let us now be
more precise. With a reducible Dirichlet form one can naturally associate the partition
of its irreducible components, say { J i , . . . , I k } and consequently the equivalence relation
J defined by F / J = { J i , . . . ,Jfc}- This means that the effective conductance is strictly
positive between two points in relation with respect to J and null between two points that
are not. We thus say that a Dirichlet form A G M is close to the reducibility associated
with J if the effective conductance between two points in relation with respect to J is
small compared with the one between two points not in relation.

When a Dirichlet form is near the reducibility associated with J we can approximate
it by a couple (Aj,Ap/j) in the following way:

• Considering that the bond conductivity between two points not in relation with respect
to J is small we replace it by 0: it leads to a Dirichlet form, denoted by Aj,
reducible on the partition F f J . Aj is then null on the space of functions constant
on the equivalence classes with respect to J .

• Considering that the bond conductivity between two points in relation with respect to
J is big, we replace it by an infinite conductivity (i.e. null resistivity): on the electrical
point of view, this is equivalent to identifying the points in relation with respect to J
and this leads to a Dirichlet form, denoted by A p / j , defined on the quotient set F / J
(and irreducible). Ap/j can also be considered as a quadratic form on the subspace
of functions constant on the equivalence classes (since we can identify the functions
on Fj J and the functions on F constant on the equivalence classes). Thus, A p / j
is defined on the kernel of Aj.

When A is close to the reducibility J we see that Ap/j is small compared with Aj,
and we shall prove (Corollary 4.17, Section 4.1.3) that A can be approximated by the
sum of Aj and A p / j . In some sense, the Dirichlet form A can be decomposed, near the
reducibility ,7, in its leading part Aj and its vanishing part A p / j .

In Section 4.3. we extend the map T to the boundary of M, i.e. we define the value
of T on Dirichlet forms of the type of Aj (called Dirichlet forms reducible on J ) and
Ap/j (i.e. irreducible Dirichlet forms on F / J ) : we still get a renormalization operator
of the same kind as T.

The results of this section are essentially used in Lemma 5.7: from the value of T on
Aj and Ap/j we can know if the reducibility J is repulsive for T or not (repulsive
means that iterating T, one goes out of the small neigbourhoods of J). The dichotomy in
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Theorem 5.1 comes from the behaviour of T near the boundary: if all the reducibilities are
repulsive then T has a unique fixed point, if one is not then T has no fixed point.

4.1. G-relations. Approximation of a Dirichlet form near a G-relation.

4.1.1. G-relations, definition, examples
DEFINITION 4.1. - An equivalence relation J on F is called a G-relation if J is invariant

under the operation of the group G, i.e. if:
\/x,y C F, V^ G G (xjy => g.xjg.y).

For a G-relation J we denote by F / J the quotient set formed by J . The group G
operates naturally on F / J .

We set up some notations: 1 will be the full relation, i.e. J = 1 if and only if xjy for
all (re, y) G F2, and 0 will be the empty relation, i.e. J = 0 if xjy implies x = y.

We say that J is non-trivial if J / 0 and J -^ 1. We order the set of G-relations by
the inclusion relation i.e. J is smaller than J ' if the graph of J on F x F is included in
the graph of J ' and we denote it by J C J ' (and thus, F / J is a sub-partition of F / J ' ) .

Exemple 1.2. - In the case of the Sierpinski gasket without symmetry, there are 5
G-relations, and 3 are non-trivial. They are represented by the following picture:

(•)
Jr. Ji:

<• -^ ®
J3--

(•)

Example 3. - In the case of the snowflake the group is G = VQ. There are 4 G-relations,
2 are non-trivial and are represented by the following picture:

Ji: J2

For A e M we set:

6{A)=
M W

11/11^1

sup A(/)
f€V

11/11=1
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and for a non-trivial G-relation J\
svipCA(x,y)

c ( A \ x^y6j{A} = -7
mfcA(x,yY
x^Ly

N.B.: We recall that CA^x.y) is the effective conductance defined in Section 1.4. and that
TA = I/CA is a distance on F.

REMARK 4.2. - If 6j(A) is small it means that the effective conductance between two
points in relation with respect to J is big compared with the effective conductance between
two points not in relation with respect to J . In some sense, 8j(A) gives the proximity
of A to the reducibility associated with J ' .

We give the following result.

PROPOSITION 4.3. - For all e > 0, there exists (3 > 0 such that for all A G M, 8(A) < f3
implies that there exists a non-trivial G-relation J such that 8j(A) < e.

Proof. - As in Section 1.4, let A° be the element of M associated with bond conductivities
equal to 1.

We recall that Lemma 1.19 gives a constant K > 0 such that for all A in M,

(4.1) ( 1 / K ) [ inf CA(^))A0 < A < ( sup CA(x,y)\A°.
V^T / ^^ )

If for e > 0 the property is not satisfied, then there exists a sequence (An) in M such
that S(An) converges to 0 and 6j(An) > e for all n and all non-trivial G-relation J .
Let An be defined by

An
A.

mf^yCA^(x,y)

Obviously, 6(An) = S(An) and r^(x,y) = I / C A (x,y) < 1 for all x ^ y . Let n^ be a
sub-sequence such that r^ (x, y) converges for all x -^ y. Let J be the relation given by
xjy if and only if r ̂  (x^ y) converges to 0. Thanks to the triangular inequality satified
by the distance T-A, J is transitive. Moreover, J is non-trivial: indeed, if J = 0 then
r^ (x,y) is bounded from below, which is incompatible with (4.1) and the fact that
S(An^) converges to 0. Besides, for all k there exist x and y such that r^ (x,y) = 1,
thus J cannot be the relation 1. Finally, J is G-symmetric as the Dirichlet forms An are
G-symmetric and then J is a non-trivial G-relation. But <^(AnJ = Sj^An^) converges
to 0, and this leads to a contradiction. D

LEMMA 4.4. - Let J and J ' be two distinct non-trivial G-relations. If J and J ' are not
ordered then for all A G M the following relation is true:

8j(A) > ———
8j'(A)

Proof. -If J and J ' are not ordered, then one can find x, y in F in relation with respect
to J but not with respect to J ' and x ' , y ' in relation with respect to J ' but not with
respect to J . The inequality follows from the definition of Sj(A) and Sj'(A). D
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4.1.2. Projection of A on the boundary ofM

a) Notations and definitions

Let J be a G-relation and denote by {Ji , - - ,^} = F / J the quotient set formed
by J . We set:

Ep^={feE^ f { x )= f { y ) i f x j y } ^

V F / J - V ^ E F / J .

REMARK 4.5. - E p / j is the set of functions constant on the equivalence classes with
respect to J . We will often consider E p / j as the set of real functions on F / J .

For all i € { ! , . . . , k} we set:

y ^ = { / G V , /=OonF\JJ,

y^y^e-ev^.
We thus have the following decomposition:

V=VF/J^VI,(B'"^VI,.

N.B.: The space V^ will often be regarded as the space of functions on li with zero mean.
Define P F / J : E —^ E p / j by the following formula:

PF/jfW=———^f(^
u ' xeiz

The map P F / J is clearly the projection over E p / j with respect to the decomposition
E = E p / j 9 Vj.

DEFINITION 4.6. - We shall say that a Dirichlet form A on F is reducible on the
G-relation J if A satisfies the following property:

W^f)=0)^{f(x)=f(y)ifxjy).

We denote by Mj the set of Dirichlet forms on F, reducible on the G-relation J
and G-symmetric and by Mp/j the set of Dirichlet forms on F / J , irreducible and
G-symmetric.

N.B.: When J = 1 we clearly have Mj = M and Mp/j = {0} (we recall that 1
denotes the full relation which connects any two points of F). In the same way, when
J = 0 one has that Mj = {0} and Mp/j = M.

REMARK 4-7. - The subspaces V^ are orthogonal with respect to any element of Mj
As we did in Section 1.4, we define some reference Dirichlet forms.
We denote by ^pu e Mp/j the Dirichlet form on F / J with bond conductivities equal

to 1 between any two points of F / J .
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For all i C { ! , . . . , & } , we denote by A^ the Dirichlet form on Z,, such that the bond
conductivity between any two points of Z, is equal to 1. We denote by A°j the element
of Mj defined by

k

^o^-E^i^ ^ f ^ E '
i=l

REMARK 4.8. - As in Remark 1.18, we clearly have if /, G Vi .: A^ (/,,/,) =
E.^(^))2-

b) Projection of an irreducible Dirichlet form

For all A in M, we denote by Ap/j the element of Mp/j defined by:

A^(/J)=A(/J), V/Gi^.

The Dirichlet form Aj7y^ is called the projection of A on Mp/j.
N.B.: To understand this definition one has to recall Remark 4.5, since on the left side

of the equality E p / j is regarded as the set of functions on F / J and on the right side
it is regarded as a subset of E.

REMARK 4.10. - If A is associated with a bond conductivity matrix (jx,y), then it is
easy to check that the bond conductivity associated with Ap/j between two points X
and V of F I J is given by:

JX,Y = E Jx,y

x€X,yeY

REMARK 4.11. - If Xn is the Markov chain associated with A and X is the image of X
by the canonical surjection over F / J , then X is not Markovian in general. In particular
X is not the Markov chain associated with A p / j .

DEFINITION 4.12. - Let A be in M, \ve denote by Aj the element of Mj defined by

k

A^(/J)=EA^J|J, v/ei?.
1=1

We call Aj the projection of A on Mj.

REMARK 4.13. - We recall that Aj^ is the restriction of A to the subset Ii (cf. Section
1.3). In probabilistic terms, the Markov chain associated with A^ describes the successive
visits of Ii by the Markov chain associated with A.

We now compare Ap/j and Aj to the reference Dirichlet forms A 0 . . and A°
introduced in previous section.
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LEMMA 4.14. - There exists K^ > 0 such that for all A G M:

— f inf CA^X, y) ] A^ < Ap/j ^ K^ sup CA^X, y) ) A^,
^\ \x^y ) \x^y )

—fmf CA{x,y}\A^ < Aj < fsupCA^^A0,.
Kl y^ ) \xjy )

REMARK 4.15. - In particular, it means that the ratio A p / j / A j is small near the
reducibility associated with J .

Proof. - The second relation is a direct application of Lemma 1.19 to the Dirichlet forms
AI^ (indeed, it is easy to check that if x,y e Iz then CA^(x,y) = CA^x.y)).

To prove the first estimate, we need to compare CA and C A p / j ' Let X and Y be
in F / J . Let / be the unique element of E p / j such that f{X) = 0, f(Y) = 1 and
CAp/j(X,Y) = Ap/j(f,f). If x,y G F are representatives of X and Y respectively,
one clearly has

AF/JU.f)=A(f^)>CA^,y)

(since /(rr) = 0 and f(y) = 1).
Thus, it follows that:

(4.2) ^ c^y )^^jn^c^(X,r).

So the left inequality comes from the last relation and Lemma 1.19 applied to the
irreducible Dirichlet form A p / j .

Let now x and y be in F, x / y , md f e E be such that f{x) = 0 and f{y) = 1, if
A G M is associated with the bond conductivity matrix (jx,y) then:

A(;J)>j^.

It implies that j^^y ^ CA^x.y).
Let us denote by ]ij the bond conductivity between Ii and Jj associated with the

Dirichlet form A p / j . From Remark 4.10 and the previous relation:

^<(#IzWj) sup CA{x,y).
xeli,yClj

By definition of A^/^r, one has that:

A F / J < fsup(#J,)(#^-)) (supCA(^))A^.\^j / \^^ 7
This concludes the proof of the lemma. D
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4.13. Estimates of A near a G-relation

We recall that E can be decomposed as follows (cf. Section 4.1.2.a):

(4.3) E = E p / j C Vj
(4.4) = E F / J ^ V I ^ - ^ V I ^

and that P p / j denotes the projection over E p / j with respect to Decomposition (4.3).
In general the sets involved in Decomposition (4.4) are not orthogonal with respect to

a quadratic form A in M. Nevertheless, we now prove that this tends to be true when
A is near the G'-relation J'.

We denote by aA(f^g) the cosinus of the angle of / and g with respect to A, i.e.:

^)=J4Lfel- f.9^.

PROPOSITION 4.16. - There exists K^ > 0 such that for all A in M:

^A(f^g) < K^6j(A)^ \/f e Vp/j, \/g e Vj,

aAUiJ,} < K^6j{A\ v/, e v^ v/, e y ,̂ z /j.

From this proposition we deduce the following important corollary:

COROLLARY 4.17. - There exist some constants K^ > 0 and €3 > 0 such that for all
A in M satisfying 6j(A) < 63:

(l - K^{A)^ < - — — A ( / ) , _ < (1 + KMA)^ V/ e V*.
^F/J^F/JU)) + Aj(J-)

Proof of Proposition 4.16: Set:

C F / J ^supCA^x.y),
x^y

Cj = inf CA(x,y).
x J y
x^y

At the beginning of the proof of Lemma 4.14 we remarked that j^,y < CA^x.y) so it
implies that:

(4.6) J^<CF,^ V^, x^y.
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Using Remark 4.8 and Lemma 4.14, we have for all p G { 1 , . , . , k} and g? € Vjp:

^(ffp(;r))2 = A^) < K,—Aj(g,} < K^A(g,).
— J - <J *JxClp

(4.6)

Let us now prove the first inequality.
Take / € E p / j , p G { 1 , . . . , k} and gp € V^. The function / can be writen as

k/=^>i,.,
1=1

for some real numbers c i , . . . , c^ (lx denotes the characteristic function of the set X).
Using that g? = 0 on F \ I p , (4.5) and the fact that / is constant on the equivalence
classes with respect to J\ one gets that:

|A(/^)| < ̂ j^y\(f(x)-f{y)){gp(x)-gp(y))\
x^y

"SS S^^l^" ^11^(^)1
j^p xelp y ^ I j

< VCF/J ̂  \9p{x}\ ^ ̂  y^y\Cp - c
\J^Py^ijx ^ I p

Now, using two times the Cauchy-Schwartz inequality:

2-1 •2

|A(/^)| < ̂ C^j ^ gp{x)2 E E E vQ^ - ^'1
-ce^p \j^p y ^ l ja-elp

< VC^j S ̂ (o:)2 ^ #(F \ Jp) E E(^ - c^3^
j ^ p y ^ I jxelp.ceJp

<{#F^^C^j E^)2 ^'E^E'E^y^-0^
i^j xeli y e l jxClp

(N.B.: #A denotes the cardinal of the set A).
And we conclude, thanks to (4,6) that:

|A(/^)| < (#F)^i^(A)^A(^)^A^(/)^.

The first inequality for g € Vj is easily deduced from this result by the Cauchy-Schwartz
inequality.
Let us now prove the second inequality.
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Let p and q be two distinct points of { 1 , . . . , k}. Let g? be in V^ and gq be in Vi . Using
(4.5) and the Cauchy-Schwartz inequality, one has that:

|A(^^)| < ̂  Y^Jx^9p(x)gq(y)\
x^zip y^Iq

^ CF|J E £ \9p^gM
xelpy^Iq

( \( '
=^/^ El^)l £k(2/)l

i.r6/p / \y€^

5 / - ^

<. C^(#I^(#I^ ^ ̂ (.r)2 ;̂ ̂ (y)2
V€/P / \ye7, ^

We now can conclude, using (4.6), that:

\A(g^g,)\^6j{A]A(g^A{g^. D

Proof of Corollary 4.17. - Let A be in M, p in { 1 , . . . , fc} and g? in V^. We know that

A(ffp) ^ A^(ffp).

Let (/p be the harmonic continuation of g? from Jp to F with respect to the Dirichlet form
A. Set (f)p = 5p — 5p. One has that:

^(ffp) = A(gp) = A(gp + (f>p)

=A(5p)+A(^)+2A(ffp,^).

But, since g? € V^ and <f)p e ®_,^pV/^, one has from Proposition 4.16 that:

Aj,((?p) > A(ffp) + A(^p) - 2A:2^(A)^/A(^)A(^)

= A(5p) (l + (J^JJ - K^A))2 - K^(A)\

> A(5p)(l - ̂ i^(A))

So, setting (7 = Kj, we have proved that:

(4.7) A^p) < A(ffy) < (1 - C^A))-^ ((?„).

Let 5 be in V. We decompose 5 on V = Vp/j © V?, ® . . . © Vj,,, as:

9 = f + 9i + • • • + 9k,
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with / G VF/J, 9i G Vj,. We have:

k k

(4.8) A(g) = Ap/j(f) + ̂  A(^) + 2A(J, ̂  ̂ ) + ̂  A(g^g,).
i==l i=l i^J

Using (4.6), Proposition 4.16, and (4.5) one obtains that:

k k
A(g)^AF/j{f)+^A^)-2K,6j(A^AF/j(f)^C^A(g^)

i=i »=i
fc fc

- KMA)C^A{g^)C^A(g^)
1=1 J==l

^ (A^(/) + A^)) (^1 - 2^(^^) 2 - ̂ ^i_^f(A)))

So, for ^(A) small enough, one can find a constant ^3 such that the left inequality is true.
The proof of the right inequality is similar and left to the reader. D

4.2. Preserved G-relations, extension of T to Mj and
Mp/j and behaviour of T near a G-relation

4.2.1. Preserved G-relations

Let J be a G-relation, and denote by {Ji, • • • , 4} = ̂ /^ the quotient set formed by J .
We recall that F^ is defined by

F^ = { ! , . . . , N} x F / H ,

where Ti is the equivalence relation which describes the connections between the 1-cells.
With J we naturally associate an equivalence relation J^ on F^ in the following way:

in the same 1-cell, two points are in relation with respect to ^(1) if they are with respect
to J . Formally ^r(l) is defined as the smallest equivalence relation on F^ such that:

V^ y G F, Vz G {1 , . . . , N}^ (xjy) ̂  (^W^^O/)).

The relation J^ is clearly G-symmetric for the operation of G on F^.
The maps ̂  can be regarded as maps from F / J to F ^ / J ^ .
The set F^/J"^ can be writen as:

F ^ / J ^ = { ! , . . . , N} x(F/J)/7Z,

where we still denote by 7Z the relation on { ! , . . . , N} x ( F / J ) , which is the image
of the relation U on { 1 , . . . , N } x F by the canonical projection (i.e. (i,X)K(j,Y) in
{ 1 , . . . , N} x ( F / J ) if and only if there exist x and y in F, which are representatives of
X and V with respect to J and such that (i,x)Ti(j,y)).
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We denote by { F / J ) i the 1-cell of F ^ / J ^ defined by ( F / J ) , = ̂ i ( F / J ) .

REMARK 4.18. - It is possible that two points of a same 1-cell Fi are in relation with
respect to J^ and are not the images by Y&, of two points in relation with respect to J .
In this case the map ^ is not one-to-one on F / J .

DEFINITION 4.19. - With J we associate the G-relation T(J) on F in the following way:

xT(J)y ̂  xj^y in F^\

The set F / T ( J ) is then naturally included in F ^ / J ^ (as F is included in F^).
We will say that the G-relation J is preserved if T{J) = J .
N.B.: The relations 1 and 0 are always preserved.

REMARK 4.20. - By definition, a function / e E admits a continuation to F^ which
is constant on the equivalence classes with respect to j"^ if and only if it is constant on
equivalence classes with respect to T^) (i.e. f e E F / T { J ) ) '

(i)Examples 1.2. - In the case of the Sierpinski gasket we draw for Ji, the relation J{

®

^(1) .J\ . <x:
•>

< 3>

This G-relation is obviously preserved, and so are the two other non-trivial G-relations.
We draw the set F ^ / J ^ by the following picture:

F W / J ^ :(i)

(Wl)3

{(3,3); (2,3) =(3,2); (2,2)}

4° SERIE - TOME 30 - 1997 - N° 5



EXISTENCE AND UNIQUENESS OF DIFFUSIONS ON FINITELY RAMIFIED SELF-SIMILAR FRACTALS 637

Example 3. - In the case of the snowflake, J^ is drawn by the following picture:

JMM.
'•XX^X-X^w5^^Jw '• ^X5X1£X^^^x^^
^Z'X^^qyT

The relation j7i is then obviously preserved.
We do not describe the set F^ /J^\ Nevertheless, it will be usefull to remark that

all the points of F are in relation with respect to J^ with a point of the central 1-cell
^(F). The set F/Ji, regarded as a subset of F^ I J^\ will be thus contained in the
central 1-cell ^(F/Ji).

The relation ^(1) is represented on the following picture:

^r(l) .
J2 •

(we only represent on this
picture the equivalence class
of the points of F : it
contains the points linked
on the picture)

One clearly has T(^) = 1. so J^ is not preserved.

4.2.2, Extension of T to Mj and Mp/j

Let J be a non-trivial preserved G-relation and {Ji, • • • , I k } = F / J be the quotient
set formed by J .

Denote by £'̂  the space of real functions on F^/,7^ (E^j^ can naturally be
considered as the subspace E^ of functions constant on the equivalence classes with
respect to J^).

We now define the extension of T to Mj.
Let A be in Mj, one defines A^ on F^ by:

N
A^/j^^-^/o^/o^), \/feE^.

i=l
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The Dirichlet form A^ is reducible on the relation J^ and then A^\ the restriction of
A^ to F (in the meaning of Section 1.3), is reducible on the G-relation T{J} (because
Ay(f) = 0 if and only if / admits a continuation in Ey,^. and, from Remark 4.20, it
does if and only if / G E F / T ( J ) ) ) ' We denote by Tj the following map:

Tj : Mj -^ MT(J)
A^TjA=Ay.

N.B: The definition of Tj is thus the same as the one of T but on the set of reducible
Dirichlet forms on J ' .
N.B.: If T(J) = 0 then TjA is null for all A in Mj. If T(J) = 1 then TjA is
irreducible for all A G Mj.

REMARK 4.21. - We recall, from Remark 1.12, that the harmonic continuation with respect
to A^ is not unique in general, but defined up to a function of ^ v ) H {/ G E, f\p == 0}
(because ker(A^) = E^^).

We now define the map on the set Mp/j.
If A e Mp/j one defines A^ on F ^ / J ^ by:

N

A^/J) = ̂ ^A{f o v^J o ̂ ), V/ e 4 .̂
1=1

The set F / T ( J ) is naturally included in F^/,7^ (because F is included in F^) and
the restriction of A^ to F / T ( J ) is irreducible on F/T^), since A( l) is irreducible on
F ^ I J ^ \ So, one defines:

T p / j : Mp/j —> MF/T{J)
A —^ T p / j A = Ap^^y

REMARK 4.22. - We easily see that Proposition 3.2 and 3.3 remain true for Tj and T p / j .
We now explicitely calculate the maps Tj and T p / j for our two examples, i.e. the

Sierpinski gasket and the snowflake.

Examples 1.2. - The Sierpinski gasket. We calculate Tj for J = j7i (the other ones
are clearly obtained by a permutation of indices). A Dirichlet form A e Mj^ can be
determinated by the bond conductivity between the two points in relation with respect
to J\. We denote it by j. The electrical network on F^ associated with A^ is drawn
by the following picture:

^3

^3 ^3
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We easily check that if j is the conductivity associated with TjA, then j = (02 ̂ -o^)"1^
(it comes from the calculation of the effective conductance between the points 2 and 3,
cf. Lemma 1.20).

A Dirichlet form A e Mp/j^ is determinated by the conductivity between the two points
of F/Ji. We denote it by j. The electrical network associated with A^ is represented
by the following picture:

We easily check that if j is the conductivity associated with T p / j ^ A then:

( , Q-2^3 V1 .
3 = [al + —Z— ^\ Q^+Q^y

(it comes from the calculation of effective conductance between the two points of Fj J\,
cf. Lemma 1.20).

Example 3. - The snowflake. We calculate Tj for J = Ji, the unique non-trivial
preserved G-relation. We remind that we have choosen ai = • • • = = 07 = 1.

In this case, using the symmetries induced by G, an element A of Mj^ is determinated
by the conductivity between two opposite points of F. We denote it by j. On a diagonal
of F^ the electrical network associated with A^ is represented on the following picture
(the other diagonals are similar by symmetry):

J 3 3

So, if j is the conductivity associated with Tj^A then j = jj.
We do not calculate Tp/j^, as we shall not need such precise information to apply

Theorem 5.1.

4.2.3 Behaviour of T near a G-relation
The following proposition is the main result of these preliminaries. Associated with

Corollary 4.17, and with forthcoming Proposition 4.26 it gives an estimate of TA in terms
of TjAj and T p / j A p / j when A is near the G-relation J . It is a key result in the proof
of Theorem 5.1 as it gives the behaviour of T near the boundary of M. (It will be used in
Lemma 5.7 to prove the repulsivity of the G-relations in case (ii) of Theorem 5.1).
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PROPOSITION 4.23. - There exist some constants K^ > 0 and 64 > 0 such that
(i) if J is a non-trivial G-relation and A an element of Mp/j, such that T{J) / 1

and 6j(A) < 64, then:

1 - KM^ , inf (Paiffl) , .,,p ({TA^} , 1.
\ - f - F / J ^ F / J ) \ I p / j A p / J )

(ii) if J is a non-trivial G-relation and A an element of M, such that T{J) -^- 0 and
8j(A) < 64, then:

1 - WA}^ M ((7-^} <. sup f^^) <. 1 + WA)..
\ 1JAJ / \ 1JAJ )

Proof. - We first construct a decomposition of the space E^ that we shall use for
both first and second estimates.

LEMMA 4.24. - There exists a complementary subspace of Ey,j in E^\ denoted by H,
such that all f G H satisfies f\p G VT^)-

N.B.: We remind that VT{J) is the set of functions with zero mean on each equivalence
class with respect to T(J).

Proof. - Set

Hf={feE^\ f\F^Vrw}.

One clearly has: E^]^ + H ' = E^.
Let H be a supplementary subspace of Ey,^ D H ' in H1. The subspace H is then a

supplementar of Ey,^- in E^\ i.e.:

E^^^H =E{1}.

Moreover, since H C H'\ if / C H then f\p e VT{J) so H satisfies the hypotheses
of the lemma. D

LEMMA 4.25. - There exists a constant C > 0 such that for all f in H:

N N

^ ̂ -1A^(P^(/ o ̂ )) < C ̂  a^A^f o ̂ ).a
i=l i=l

Proof. - It is clearly enough to prove that ̂  o^A0^/ o vp^) is positive definite on ff
and this comes from the fact that if / G H satisfies A°j(f o ̂ ,) = 0 for all z in { 1 , . . . , N}
then / 6 E^^ and thus / = 0. D

We now give some notations we will use for both (i) and (ii).
Take a non-trivial G-relation J', and denote by {Ji, • • • , 1^} = F j J its quotient set.
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For A in M, we denote by A, the quadratic form on E defined by the following formula:

A(/)=A^(P^(/))+A^(A v/e^.

The quadratic form A is positive definite on V and null on constant functions. The
subspaces E p / j , and V^ are orthogonal with respect to A. The Dirichlet form A is not
always in M as it may not satisfy the Markov property. Nevertheless, A can be defined
as usual and we define TA to be the restriction of A to F (cf. Remark 1.13). Since
A is definite positive on V, the harmonic continuation of a function / G E with respect
to A is unique, and still denoted by H-^. It is also easy to see that Proposition 3.2
and Proposition 3.3 remain true for A, even if it is not in M. Finally, we remind that A
approximates A near the (^-relation J (cf. Corollary 4.17). In the proof of this proposition
it is sometimes more convenient to use A instead of A, since the decomposition of A in
terms of Aj and Ap/j is independant of A (the subspaces E p / j and Vj^ . . . , V^ are
always orthogonal with respect to A).

For A in M we set:

Cp/j{A) = snpCA(x,y),
x^y

Cj(A) = inf CA(x,y)
x j y
x^y

(we write Cj and C p / j when no ambiguity is possible).
From Lemma 4.14, we have the following two relations:

(4.9) Ap/^f) < K,Cp^A°p^{f)^ V/ G Ep,^

(4.10) A^(/) > —CaA^j\ \/f e E.
^i

Let us now prove (i).
We suppose that T(J) / 1. Let A be in M. Let / be in E F / T { J ) and ~f in E^

be its harmonic continuation to F^ / J^ with respect to Ay,^. Considering / as an
element of E^~\ f^p = f and so

N

TA{f}<^a^A(fo^^
i=l

N
=^a^Ap^(fo^,)

i=l

= T p / j A p / j ( f ) .

So, we have proved the right inequality of (i), namely:

(TA)p/T{j) < T p / j A p / j .
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We first prove the left inequality for the quadratic form A. Let / be in E F / T { J ) and
/ == H^(f) G E^ be the harmonic continuation of / with respect to A .

Using Lemma 4.24, we write / = / + //, with / e E^^, j " e H. One has that:

N N

(4.11) TA(/) = ̂  a^A^/APF/ACf' + 7") o ̂ )) + ̂  a^A^/' o v^).
i=l i=l

(because Aj(f1 o ̂ ) = 0).
But, since / e EF/T{J^ using Lemma 4.24 we know that / = PF/T(j){f\F) =

PF/T{j)[f\p) := f\F^ so tnat / ls a continuation of /. It follows that:

N

(4.11) TA(f) < ̂  a^Ap/jO' o ̂ ),

—f ( 1 ^Moreover / is in E p ' thus:

N

(4.i3) r^A^(/) < ̂  ̂ -^^(7' o ̂ ).
1=1

From (4.11) and (4.12) we deduce that:

N N

(4.14) ^ a^A^' o ̂ ) < E ̂ ^^(y o ̂ .).
i=l i=l

From (4.11) we also deduce that:

N

(4.15) TA(/) > ̂  ̂ -1A^(P^((7/ + 7') o ̂ )))
i=l

We want to prove that the last right term is not far from the same one with only / .
It remains to prove that / is small compared to / : when 8j(A) is small then Aj is_//
big compared to Ap/j (cf. Lemma 4.14 and Remark 4.15), so (4.14) implies that / is
small compared to / .

Precisely, using (4.9), Lemma 4.25, and (4.10) we obtain that:

N N

^ a^Ap/^Pp/^T) o v^)) < K,Cp^ E ̂ ^F/j^F/ACf} o ̂ ))
z=l i=l

N

^CK.Cp/^a^A^Cf" ^z)
i=l

N

^CK^^A^a^A^T^z)^
z=l
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Then, using (4.14), one has that:

N N

(4.16) ^a^A^P^a') o ̂ )) < CK^(A) ̂ a^A^jU' o ̂ ).
i=l i=l

Using (4.15), (4.16) and (4.14):

N i ^ r N
^a^A^j{f'^^\ - E^
i=l J |j=l

N

TA(f)>[ ^O^A^/O^) - ^a^A^P^/'O^))

> (1 - 2(CK^(A)^) ̂  c^A^C' o ̂ )
z=l

> (1 - 2(C^(A))^)r^A^(/)

This proves the left inequality with A instead of A. The inequality with A follows easily
from Corollary 4.17 and Proposition 3.3 applied to A and A.

(ii) Here we use A. More precisely we first prove:

(4.17) 1<^)-<(1+C7^2^(A)).i J A J

Denote by {J^. . . ,J^} = F/T(J), the quotient set formed by T(,7). Each set I[ is
included in an equivalence classe with respect to J^ that we denote by (^/^ (because
T(J) is the restriction of ^(1) to F).

Let / be in Vr (i.e. f has zero mean on F and is null out of I[). Let / € £' be the
harmonic continuation of f\r with respect to TA. Let f^ = H-^(f) be the harmonic
continuation of / with respect to A .We define /(1) by:

.(D^^) if^e(j^1),
j [0 if^(JQ(1).

The function f^ is naturally a continuation of / (since the set I[ is included in (J^)^).
So, one has that:

(TA)^(/) = TA(/)

^^a^A^o^)
1=1
N N

^a^AC/Wov^)
1=1
N N

= ̂  ̂ -^^((P^C^) o ̂ ))) + ̂  ̂ -^^(y^1) o ̂ )
z=l i=l

N

^a^A^o^).Z ^ a ^ A ^ ^ ^ o
1=1
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But the subspaces V^ are orthogonal with respect to Aj, so for all i 6 { 1 , . . . , N } one
has Ajr(/(1) o ^f,) > A^(/(l) o ^,), and the last inequality becomes:

N

(T~A)^f)>Y^a^A^^^
i=l

> TjA^f).

Since the subspaces Vp are orthogonal for both quadratic forms (TA)j and TjAj, we
have proved that:

(TA)^ > T j A j .

REMARK 4.26. - It is not true in general that (TA}j > TjAj. Nevertheless, if we
suppose that there do not exist two points in a same 1-cell in relation with respect to J^
and not with respect to J (cf. Remark 4.18) then we can prove the above relation. Indeed,
in this case, the previous proof remains true for A instead of A since we can prove that
A^f^ o ̂ i) > Aj^f^ o ̂ i) for all i because, either /(1) o vp, is null on F, or it is null
out of an equivalence class Ip G F / J and then /(1) o ^, is a continuation of /(1) o ̂
from Ip to F. This remark will allow us to improve a little Theorem 5.1 in this case.

We now prove the right inequality of (4.17).
Let again i be in { 1 , . . . , k ' } and / in Vp.
Since Ay.^. is null on the space Ey.j, using Lemma 4.24, one can find f^ in H

such that f^ = f and TjAj(f) = A^\f^) (i.e. f^ is a harmonic continuation of /
with respect to A^\ cf. Remark 4.21).

It follows that:
N

(4.18) T^Aj(f) = ̂  a^Aj(f^ o ̂ ).

Besides, one has that:
(4.19) (TA)^(/) < TA(/)

^V1))
N N

= ̂  ar^/^pF/^1) o ̂ )) + E ̂ ^^ ° ^)-
i=l i=l

We now want to prove that the contribution of the term Ap/j is small compared to the
one of the term Aj. But (4.9), Lemma 4.25 and (4.10) imply that:

N N

^ a^Ap/APF/Af^ o ̂ )) < K,Cp^ ̂  ̂ A^P^J^ o ̂ ))
1=1 i=i

N

^CK,C^^a^A°,(fWo^,)
i=l

N

<CK^(A)^a^A^f^o^,)
i=l
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Thanks to (4.18), the previous inequality applied to (4.19) gives that:

N

(TA)j(f) < (1 + CK^(A)) ̂  a^AjU^ ° ̂ )
1=1

= (1 + CK^6j{A)}TjAj{f)

And, since the subspaces Vj/ are orthogonal with respect to both (TA)j and TjAj, the
inequality is true for any / G E. _

Finally, we apply Corollary 4.17 and Proposition 3.3 to the quadratic forms A and A
and we deduce (ii) from (4.17). D

The following corollary means that if A is close to the reducibility J then so is TA.

COROLLARY 4.27. - There exist constants K^ > 0 and 65 > 0 such that for all non-trivial
G-relations J and all A € M such that T(J) is non-trivial and 8j(A) < 65, one has that:

ST{J)(TA) < K,6j(A).

Proof. - It is an easy application of Proposition 4.23. Indeed, let J be a non-trivial
G-relation, applying Proposition 4.23 and Lemma 4.14 one obtains that for all A c M
such that 6j(A) < 64 A 1/4^:

(TA)^)(n > (1 - J)T^(n > j^fmf c^y^TjAW V/' G E,
1 \x^y )

(TA)F/T(j)(f") < T F / j A p / j { f " } <, K^ (svipCA(x,y)]TF/jA%^(f"), V/" 6 E p / j .
\^y )

Now, using that CA(x,y) < CAp/^{X,Y} for any x and y representatives of X and Y
in F / T ( J ) (cf. the beginning of the proof of Lemma 4.14) one has that for all A e M
satisfying 6j{A) <, 4^7 A €4:

sup ^TA),,./^)^^)
r irr.^ ^ X,YCF/T(J)_______________6Ttj)(TA) < ————7——————-,——\——

^C(TA^X^)
x^y

( . sup CT A» {X,Y)\
^Kl^-^f—————————— U.(A),

\ ^y^^^
\ x^y

and this concludes the proof. D
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4.3. Maximum and minimum value of the ratio TA/A

4.3.1. Notation

For A e M one defines:

T A
p(A)=inf-p

TAp(A) =sup-^-.

REMARK 4.28. - A is a fixed point of T if and only if p(A) = p(A).
For a non-trivial preserved G-relation J', and for A e My, one denotes the same values

associated with the map Tj by p (A) and ~pj(A).
For A e Mp/j, we also denote the same values associated with the map T p / j by

p^(A) and p p / j ^ A ) .
Set:

p = sup p(A),
AGM""

^L '̂
and p p^ associated with Tj and Pp/.., ~ P F / J associated with T p / j .

The following relations are simple:

PROPOSITION 4.29. - (i) For all A, A' e M, one has: p(A) < p(A').
(ii) p < p.

Proof. - (i) One has that TA ̂  p(A)A and TA < p(A)A\ thus,

TA ^ p(A) A
^TA^^^A-

Proposition 3.3 implies that p(A) < p(A').
(ii) comes from (i). D

PROPOSITION 4.30. - For all A G M:

p(rA)>p(A),

P(TA) < p(A).

REMARK 4.31. - Propositions 4.29 and 4.30 are also true for the expressions associated
with Tj and T p / j for a non-trivial preserved (5-relation J .

Proof. - By definition TA > p(A)A, so r(TA) > p(A)TA, since T is non-decreasing,
and it follows that p_(TA) > p(A). The proof of the second inequality is strictly similar. D
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4.3.2. Behaviour near a G-relation

The first proposition will be usefull in the proof of non-existence ((i) of Theorem 5.1).

PROPOSITION 4.32. - Let J be a non-trivial preserved G-relation. For all A G M one
has that:

W p(A) < P^^AF/J),
(ii) p(A) > p^.

REMARK 4.33. - The result (ii) is weaker than (i): this comes from the already mentioned
fact that the relation TjAj < (TA)j is not true in general since the subspaces Vj, are
not orthogonal with respect to A (cf. the proof of Proposition 4.23 and Remark 4.26).
Nevertheless, as we mentionned in Remark 4.26, this inequality is true if a certain condition
is satisfied and in this case it leads to a stronger result in (ii), namely that ~p(A) > ~pj(Aj).

Proof. - Let J be a non-trivial preserved G-relation and A be in M.
Let us first prove (i). We recall from Proposition 4.23 the following relation:

T p / j A p / j > {TA)p/j.

Thus we have that:

T p / j A p / j > p{A)Ap/j

and then p ^ ^ ( A p / j ) > p(A).
(ii) In the proof of (ii) some technicalities are induced by the fact that the relation

TjAj < (TA)j is not true in general. When this relation is true the proof of the stronger
result (cf. Remark 4.33) is the natural counterpart of the proof of (i).

Let P F / J be the orthogonal projection over E p / j with respect to the quadratic form A
(actually, since A is positive definite on V we can define P F / J o11 ̂  as th6 projection
over V F / J = E F / J H V, and for / G E we write / == c + g , with c G IR and g G V, and
set P p / j f = c + P F / J Q ) - In general we have P F / J / P F / J '

Let us define the quadratic form Ai by:

Ai(/)=A(/-P^(/)), f^E.

It follows that:

A(f)=AF/j(PF/jf)^A,{f), V /e^ ,

and thus,

(4.20) Ai(J)<A(/), V /G^ .

The quadratic form Ai is null on E p / j and positive definite on Vj (which is a
supplementary subspace of E p / j ) ' In general Ai ^ Mj since Ai may be non-markovian.
Nevertheless, we can define TjA^ and p ^ ( A ) as we would do if Ai was in Mj. The—u
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quadratic form TjA^ is then null on E p / j and definite on Vj (we remind that J is
preserved).

From (4.20) and the definitions of T and Tj, we easily deduce that:

TyAi < TA < p(A)A,

But, for all / G E:

r^Ai(/)=r^Ai(/-F^/)
<^p(A)A(f-P^f)
=p(A)A,(f)

This implies that:

(4.21) ^(Ai)<p(A).

If 5 is in Mj then one has that:

T^ ^(Ai)\ Ai
""T^ ^^p^yj^-B-

Thus, Proposition 3.3 adapted to Tj and applied to Ai and B (obviously. Proposition 3.3
remains true even if Ai is not markovian) gives that p (B) < p^r(Ai). This is true for
all B G Mj, thus ~pj(A^_) > p This proves the lemma with (4.21). D

The next lemma gives the behaviour of p(A) and p(A) near a non-preserved (^-relation.

PROPOSITION 4.34. - There exist some constants KQ > 0 and CQ > 0 such that for all
non-trivial G-relation J

(i) IfT(J) (Z; J , then for all A e M such that Sj(A) < CQ:

P(A) > K^6j(A))-\

(ii) IfT(J) -f) J , then for all A G M such that 8j(A) < e^:

P(A) < —^(A).
- ^6

REMARK 4.35. - In particular, it implies that 6 (A) = ~p(A)/p(A) goes to infinity near
a non-preserved G-relation.

Proof. - (i) Let J be such that T{J) ^ J . Denote by {![,... ,^/} = F / T ( J ) the
quotient set formed by T{J\

Let x and y be two points of F such that xT(J)y and xSy.
Set / = 1^ - 1^}. We can suppose that re and y are in J{, so that / e Vj/ and

/ G ^/j-. Using Proposition 4.23 and Lemma 4.14, one has that for all A e A/such
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that Sj{A) < 64 A 4^:

TAQ) ^(TA)^)(/)
p(A) > . > —,——777—

- A(/) Ap/j{f}
( l\TjAj(f)> ( 1 _ _ \—/.—-L^LL

-{ 2 } Ap/Af)

>1^-^ (A^-1(T^A^\> .^i (^(A)) ^—/7y
^ \ ^ F / J \ J ) )

This proves the lemma, as / depends only on J .
(ii) the proof is similar and left to the reader. D

5. Statement and proof of the main theorem. Application to
the Sierpinski gasket without symmetry and to the snowflake.

5.1. Statement of Theorem 5.1

Denote the following assumption by (H):
(H) There do not exist two strictly ordered non-trivial preserved G-relations (i.e. J / J '

such that J C J ' ) .
The following theorem is the main result of the paper:

THEOREM 5.1. - (i) If there exist two non-trivial preserved G-relations J and J ' such
that p < p , then T has no fixed point.

—-r /»_/ —^j

(ii) If for all non-trivial preserved G-relation J , the inequality ~pj < p is satisfied
then T has at most one fixed point (up to a multiplicative constant). If moreover (H) is
satisfied then T has exactly one fixed point (up to a multiplicative constant).

N.B.: in (i) J and J 1 can be equal.

REMARK 5.2. - Condition (H) is a simplifying condition, and there are some reasons to
think that it is not necessary. It is fullfilled in all the classical examples.

REMARK 5.3. - If the condition of Remark 4.26 is satisfied then we can replace in (i)
the inequality p < p by p < ~pj,: indeed the proof of (i) is a direct application
of Proposition 4.32 and the improvement proposed in Remark 4.33 leads to this stronger
result. It is interesting to remark that in this case. Theorem 5.1 gives a solution to the
problem of existence and uniqueness as soon as we are not in the critical case ^ == ~pj
for one preserved G-relation J .

5.2. Application to the Sierpinski gasket without symmetry and to the snowflake

We now apply this theorem to the Sierpinski gasket without symmetry and to the
snowflake (the two examples we follow since the beginning of Section 4).

Example 1.2. - The Sierpinski gasket. In this case we have calculated T^ and T p / j ^ .
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We found Tj, = (03 + a^Id (where Id is identity), thus it follows that
P_j^ = ~Pj^ = (^2 + ^s)"1. Denote by pj^ this last value.

We found Tp/^ = (a, + ̂ a-)-^, thus ̂  = p^ = (ai + ̂ )-1. Denote
by P^/^i this last value.

The expressions for J^ and J^ are deduced by a permutation of indices.
It is easy to see that p p / j , < pj, implies that a, > sup^o^.
So, if we suppose that ai is bigger than 02 and 03, then pj^ < p p / j ^ for all % is

equivalent to pj, < p p / j , , i.e. to ai < a22^^a3. Consequently:
If a! > ^t^o^3 then we are in the case (i) of Theorem 5.1.
If Q/! < oi22^^20i3 then we are in the case (ii) of Theorem 5.1.
In this example it is possible to solve the problem in the case of equality (i.e. when

Pji = P F / J ^ ) , we prove that T has no fixed point.
This is based on the fact that the inequality in (i) of Proposition 4.32 can be proved to

be a strict inequality. It implies that if pj^ = p p / j , and if A is a fixed point of T then

p(A) < pp / j , = p^ < p(A),

but this is impossible since p(A) = p(A) for a fixed point.
We now prove that (i) of Proposition 4.32 is actually a strict inequality in this example.
Let A be in M and / be a non-constant function of E p / j ^ . The function / takes two

distinct values, say a on the point 1 and b on the points 2 and 3.
Let /(1) be the harmonic continuation of / to F ^ / J ^ with respect to A^ . As

/(1) is constant on the equivalence classes with respect to J^ (cf. the picture of J^ in
Section 4.1) it takes 3 values a, b and c as on the following picture:

One has that Tp/^Ap/^f) = A^(/(1)) and Tp/^Ap/^f) > TA(/), and the
last inequality is strict if and only if f^ is not the harmonic continuation of / with
respect to A^\

But, since A is irreducible, it has at least two strictly positive bond conductivities. So,
if Xn is the random walk associated with A as in Section 1.2, then there exists a path,
with strictly positive probability, going from the circled point to the point 1 (with value
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a) without passing through the points 2 or 3. It follows from Proposition 1.15, that the
harmonic continuation of / with respect to A cannot take the value b on the circled point.

Thus, we have proved that TA(f) < T F / J ^ A F / J ^ ) = PF/j.Ap/j^f) for all
non-constant function / G E p / j ^ . It implies that p(A) < ~PF/J^ = P F / J - L •

Moreover, from Proposition 3.8, all the fixed points of T are regular, we thus can
conclude from Proposition 2.11 by the following corollary:

COROLLARY 5.4. - Suppose that ai is bigger than a^ and 03:
• If ai < a2^a3+Q!2a3 then there exists a unique (up to a multiplicative constant)

self-similar Dirichlet form on X associated with some weights proportional to
(ai, 02,03).

• Ifc^i > a2^3^.20i3 v then there does not exist any self-similar Dirichlet form associated
with some weights proportional to (ai, 02, o^).

REMARK 5.5. - When ai = 02 = 03 = 1 the unique self-similar Dirichlet form is the
symmetric one (i.e. the one initially constructed in [15], [3]).

REMARK 5.6 - When 02 = a^ = f3 and 01 = a the critical value is a = j/3. When a
is strictly smaller there exists a unique self-similar Dirichlet form and when a is bigger
there does not exist any. Roughly speaking, if the bottom cells are too attractive the
process can only run on horizontal lines (it is then degenerated) and the fractal becomes
well-balanced down a critical value.

Example 3. - The snowflake. We recall that in this case we chose c^ = 1 for all
i. J\ is the only non-trivial preserved G-relation and we obtained Tj^ = l/3Jd, thus,
Pj, = PJ. = V3'

The set FfJ\ contains 3 points (cf. Section 4.1.1) and, considered as a subset of
F^ IJ^\ it is included in the central 1-cell ̂ (F/Ji) (cf. Section 4.2.1). Actually, when
viewed as a map from F/Ji to F^ I J^\ ^7 is the identity.

Let A be in Mp/j^.

TF/j,A(f) > A(/o^Jo^) = A(/J), V/ G E^IJ^

This implies that ~pp/j^ > 1-
We can apply (ii) of Theorem 5.1, T thus has a unique fixed point, which is regular

thanks to Proposition 3.8. It follows that there exists a unique (up to a multiplicative
constant) self-similar Dirichlet form associated with equal weights.

5.3. Proof of existence

(i) If A G M is a fixed point of T then p(A) = ^(A) but it is impossible because,
from Proposition 4.32, one has that:

P(A) ^ p^ < p^ < p(A).

(ii) We recall that for A in M, 0(A) is defined by:

•^
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Thus, A is a fixed point of T if and only if (9(A) = 1. We set:

0 = inf 0(A).AGM v /

One clearly has: 0 > ~ p / p > 1.
To prove the existence we proceed in two steps:
• Step 1 : We prove that 0(A) reaches its infimum on M.
• Step 2 We prove that ( 9 = 1 . :
Step 1 and Step 2 obviously imply that T has a fixed point in M.

Step 1
We first give the following lemma. We stress the fact that this lemma is true even

without Assumption (H).

LEMMA 5.7. - There exists 7 > 0 such that for all non-trivial preserved G-relation J
and for all A G M, there exists an integer p > 0 such that 6j(TPA) > 7.

N.B.: It means that, iterating T, one cannot stay near a preserved G-relation. It is a kind
of repulsivity property of the G-relations. Unfortunately, this lemma does not prove that
one can not stay in the neighbourhood of all preserved G-relations: we use Assumption
(H) to avoid this difficulty.

Proof. - Let J be a non-trivial preserved G-relation.
As P _ p i ^ l ~ P j > 1» we choose 7 > 0 such that 7 < 64 and:

P.F/J^-K^\

pj \1+K^)
> 1.

Let us call (3 this value: /? > 1.
Suppose that A G M satisfies 6j{A) < 7 and

(^(T^A)^ V^<p,

for an integer p > 0.
As 7 < €4, Proposition 4.23 applied to TSA gives:

(r^)^(n (i+K^Y'-
^ (T^AM/) -^i-^J '

(r^A)^(n ̂  (l+K^Y^F/jA^U1)
^ (T.AM/) ^ [r^K^) T^f) ' v/ e VJ- v/ G VF/J-

It is easy to prove that there exists g G Vj, g ^ 0, such that

(5.2) T^A^g) ̂  p^A^g).

Indeed, if it does not, it means that one can find p > ~pj such that T^Aj ^ f^Aj, and
choosing A' e Mj such that ~pj(A') < p one has that:

. , T^A' , /^(AQY. A' . A '
m f — — — ^ " ^ — m f — — < m f — — ,

^j^J \ P ) ^J ^J

but this is incompatible with Proposition 3.3 adapted to Tj.
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In the same way, we can easily prove that there exists g ' € Vp/j, g ' ^- 0, such that:

(5.3) T^A^Q/) > ̂ A^Q/).

So, thanks to (5.2) and (5.3), (5.1) applied to g and g ' gives:

(T^A)^Q/) A^Q/)
(TPA)j{g) - p A^g)

Set:

b = ( sup

one has that:

(54) (^A)^(^) AO^(g-)
( / (^A)^) - p A°,(g) •

But, using Lemma 4.14, ^(T^'A) ^ 7 implies that:

. (^A)^,/) A^Q/)
( ) (^AMff) - ^ A^) •

Thus, from (5.4) and (5.5) we deduce that:

^
and /3 > 1 implies that p is bounded from above. So, there exists p > 0 such that
6j(T^A) > 7. D

We now prove Step 1.
Suppose that 0 is not reached on M. For e > 0 we denote by Z^ the following subset

of M:

Z,={AeM, 0 ( A ) < 0 + e } .

Proposition 4.30 implies that Ze is T-invariant (i.e. that T(^) C Ze).
We recall that Corollary 4.27 says that for all preserved (^-relation J and for all A in

M such that 6j(A) < 65, one has that:

6j(TA) < K,6j(A).

Set T] = 7 A ̂  A €5 A 1. As 0 is not reached on M, we know from Proposition 4.34
(or Remark 4.35) and Proposition 4.3 that 0(A) approaches 0 in the neighbourhood of the
preserved G-relations, so one can find e > 0 such that:

(A e Ze) => ( there exists a preserved G-relation J such that 6j(A) < rj).

Let A be in Z^ and J' be a preserved G-relation such that 6j(A) < rj. Let p be the first
integer such that Sj^A) > 77 (this integer exists from Lemma 5.7, since 77 < 7).
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As Sj^T^A) < rj one has that:

6j(T^A)<K^<^

Thus, using Assumption (H) and Lemma 4.4, we know that for all preserved G-relation
J ' / J , one has that Sj'^A) > 2 > T]. Moreover, since SJ^TPA) > ̂ , TPA cannot be
in Zg. This leads to a contradiction as Zg is T-invariant.

So we have proved that 0 is reached on M.
Step 2

Suppose that (9 > 1.
For all A in M, we set:

W(A)={fEV^ TA(/)=p(A)A(/)},

TV(A) = [f G V, TA(/) = p(A)A(/)}.

The subspaces E^(A) and W(A) are orthogonal with respect to both quadratic forms A
and TA. They are the eigenspaces associated with the smallest eigenvalue p(A) and the
largest eigenvalue ~p(A) for the diagonalization of TA on an orthogonal basis~with respect
to A (TA and A are simultaneously diagonalizable).

Using Step 1, we choose A in M such that:
• 0{A) = 0,
• (W(A), W(A)) is minimal in the following sense: there does not exist A in M such

that 0(A) = 6 and W_(A) c W_[A\ W(A) C W{A) with a strict inclusion between
the two.

We set Wo = W_{A) and W^ = W{A).
We recall that for / e E, Pf is the constant function equal to the mean value of /.

The map I — P is then a projection on V.
We first prove:

LEMMA 5.8. - If f is in Wo (resp. W^) then:

(I - P)(HA(f) o ̂ ) G Wo (resp. W,), Vz e { 1 , . . . , N}.

N.B.: We recall that HA^) denotes the harmonic continuation of / with respect to A^.

Proof. - We diagonalize TA on an orthogonal basis with respect to A:

(5.6) TA = p(A)A\w, C p(A)A|^ e \2A\w, C • • • C A^A|^ .

with V = Wo C W^ e W2 C • • t C Wr and p(A) < A2 < • • • < \r < p(A).
Choose t in ]0,1[. We set:

At = tA + (1 - t)TA.
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From (5.6) one has that:

At =(t + (1 - t)p(A))A^ C {t + (1 - t)p(A))A\w,
e (t + (i - t)\2)A^ e • • • e (t + (i - t)A^)A|^.

In particular, from (5.7) we deduce that:

Ai>(t+(l-t)p{A))A^

thus,
TAt> (t+(l-t)p(A))TA.

From the previous relation and (5.6) we deduce that:

(5.8) TAt > p(A)(t + (1 - t)p(A))A\wo C p(A)(t + (1 - t)p(A))A^
e \i(t + (i - ̂ P(A))A|.^ e • • •
eA^+(l-^)p(A))A|^.

But, we remark that if A > p(A) one has that:

\(t + (1 - ̂ p(A)) = \p{A) (—— + (1 - ̂ ))
VP^^ /

> Ap(A) f i + ( l - ̂ )) = p{A){t + (1 - t)A).
V^ /

So (5.7) and (5.8) give:

(5.9) TAt > p(A)At

(5.10) TA,(/) > p(A)A,(/), V/ e V \ Wo.

Proceeding in the same way we also obtain:

(5.11) TAt < ~p{A)At
(5.12) TAi(f) < p(A)A,(/), V/ e V \ W,.

From (5.9) and (5.11) we deduce that p(At) > p(A), p(At) < p(A) so, as (9(A) is
minimal, p(A^) = p(A) and ^(A^) = p(A). From (5.10) and (5.12) we deduce that
W_(At) C Wo, W(At) C Wi. Finally, using the property of minimality of (WQ,W^),
one obtains that:

(5.13) p{At) = p(A) and W{At) = W^
(5.14) p(At) = p(A) and W(At) = W^.
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Let now / be in Wo, f / 0:

«.(AW)=^)^^_\^A.a)
= ,^.\)^w)

TV
1

1 t+(l^t)p(AY^E^TTTT-rTY^^™^0^
i=l
N

l^a^A^^o^)
1=1

= TA(f)
=P{A)A(f),

and Inequality (1) is strict as soon as (I — P)(.HA(/) o ^i) is not in M^o for one i in
{ 1 , . . . , N}. Thus, it implies that (J-P)(ffA(/)o^») belongs to Wo for alH € { 1 , . . . , N}.

If now f <E Wi and f ̂  0:

p(A)At(f) = p(A)(t + (1 - t)p(A))A(f)

=(t+{l-t)p(A))TA(f)
N

= E a^(t + (1 - ̂ )XA))A(ffA(/) o ̂ )
i=l
./V

(2)
>^a^At{H^f)o^i

i=l

> TW)

=?(A)A,(f)

and Inequality (2) is strict as soon as (J - P)(.HA(/) ° ^z) is not in W^ for one % in
{ ! , . . . , N}. Thus, it implies that (J-P)(ffA(/)o^z) belongs to Wi for all i e { 1 , . . . , N}.

This concludes the proof of the lemma. D
Set W = W^ 9 • • • e Wr. The subspaces Wo, W^ and W' are orthogonal with respect

to both A and TA and moreover V = Wo 0 Wi 0 T^'. We now need the following result:

LEMMA 5.9. - If B G M satisfies:
• Wo, Wi, W ar^ orthogonal with respect to B,
• there exist (3 > 0 an^ /3' > 0 >yMC/i that /3B^o = A\Wo ana ff^\w^ = A|^, then

TB satisfies:
• Wo, W^, W' are orthogonal with respect to TB,

• 0TB\wo = TA^wa and ^TB^ = TA^

REMARK 5.10. - As this lemma will be used in the proof of uniqueness we stress the
fact that the only hypotheses we use are that Wo, W^ and W are orthogonal with respect
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to both A and TA and that for all / in Wo (resp. Wi), (I - P){HAU) o ^,) is in Wo
(resp. W^i) for all i G { 1 , . . . , N}.

Proof. - We first prove that for / in Wo or in Wi, HA^) = ̂ (V).
Let / be in Wo, f ̂  0 (the proof for / G Wi is naturally the same).
Set g = Ha{f} - H A ( / ) and g, = (I - P)(g o ^,) so that Q, e V. We decompose g,

on Wo C Wô  (with W^- = W^ C ̂ /):

^ = ^ + ^ ^

with ^ e Wo and g ' i e Wo'1- one has that:

B^\(HA - HB){f)) = B^\HA(f)^ (HA - HB)U))
N

C"
i=l

N

»
i=l

N

£°
i=l

N

=^;^-15(^Aa)o^,^+^)

=^a^B(HA(f)o^^g^
1=1

-^E^"1^^^0^5^0
=^^lA(HA{f)o^^g^g^

=^\HA(f)^HA-HB)(f))

N.B.: For the first equality (resp. the last one) we use the fact that ffa(/) (resp. HA^))
is harmonic on F^ \ F with respect to B^ (resp. A^). The other equalities come from
the last lemma and from the fact that Wo and W^- are orthogonal with respect to both
quadratic forms A and B.

It follows that HAU) = HaU). Since (J - P)(HA{f) o ^,) is in Wo (resp. Wi) for
/ £ Wo (resp. Wi), we easily deduce that:

PTB\WQ = T'^|lVo?

^TB^ := TA)^.
We now prove that Wo, Wi and W^' are orthogonal with respect to TB.

Let / be in Wo and / in Wi:

TB{f^n=B^\HBU).HB(f))
=B^\HA(f).HA(ff))

N

= ̂  a^B{HA(f) o ̂ , ffA(D o v&O = 0,
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since WQ and W^ are orthogonal with respect to B. So Wo and W^ are orthogonal with
respect to TB.

Let / be in Wo and ^ in W ' .
We set g, = (I - P)(HB(g) o ^,) so that g, € V. We decompose g, as ^ = ^/ + g^

with ^ e Wo and ^/ e W^ (we recall that W^- = W^ e W). One has that:

rB^^^B^^BO^B^))
TV

^^a^B^^o^,^)
1=1

N

=^a^B(HA{f)o^i,g[)
1=1
N 1

=^>-A(JW)o^)

~ /_^^i ^V-"AU y ^ ^z^i)
i=l

N 1
-E^71^™/^^

N 1
-E^^^A^O^,^)

=^A( l)(ffA(/),ffB(^))

= -A^ACf),^))

=^TA(/^)=0

since TVo and W are orthogonal with respect to TA. So Wo and W are orthogonal with
respect to TB, and in the same way we can prove that W^ and W' are orthogonal. This
concludes the proof. D

By a simple recurrence we deduce from the previous lemma that for all n G N, the
subspaces Wo, W^ and W are orthogonal with respect to T^^A, and that:

T'AI^ = P{AYA^ ; T'A^ =7^4)^4^.

In particular ^f^A) converges to 0 (because we supposed that 0(A) > 1). From
Proposition 4.30, one has that ^(r^A) = 0, and then, using Proposition 4.34 and Proposition
4.3, we see that T^ is near a preserved (^-relation when n goes to infinity.

More precisely, if we set as in Step 1: T] = 7 A ̂  A 65 A 1, we obtain that there exists
an integer p such that for n > p, (^(T^A) < 77 for a preserved G-relation J . But as in
Step 1, using Assumption (H) and Lemma 4.4, we prove that there is an integer k for
which Sj^T^A) > rj for all preserved G-relation J\ this is in contradiction with the
first statement. So 0 is equal to 1. We have proved Step 2.

REMARK 5.11. - / recently learnt by V. Metz. that an adaptation of Theorem 4.2 of [23]
could replace Step 2. This theorem uses some results on the structure of uj-limit sets of
non-expansive maps fcf. [4], [24]). I kept the original proof for a sake of completness and
because it is very different from the one of [23] and, although! technical, very elementary.
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5.4. Proof of uniqueness
Suppose that T has two non-proportional fixed points denoted by A and A'. In order

to simplify the notations we renormalize A' such that infA'/A == 1. One can diagonalize
A' on an orthogonal basis for A:

(5.15) A' = A\wo 0 AA|V^ C >2A\w2 0 • • • ̂  ^rA\w^

with V = Wo C Wi C • - e Wr and 1 < A2 < • • • < A^ < A (in particular A = sup(A'/A)).
We set W = W2 C . • • C W^.
For all a > 1 we define:

(^(A, A') = {B € M, W^o, Wi, and W are orthogonal with respect to B,
there exists f3 > 0 such that {SB\wo = A)^, /IB|^ = aAjv^
and A<(3B< aA.}

REMARK 5.12. - Q\A,A) = R^.A and A' is in Q^A^A') (A appears in (5.15)).
The following lemma is the key result of the proof of uniqueness.

LEMMA 5.13. - For all a > 1, Q^A^A') is T-invariant (i.e. T^^A^A')) C
<T(A,A')).

Proof. - Since A and A' satisfy TA = pA and TA' = pA' for the same real p (cf.
Corollary 3.5), we get:

TA _ A
TA ~ ~A'

Let / be in Wo, / / 0. Relation (5.15) implies that:

^ TA(f) ̂  E^A^M^o^)
TA{f) - E^AWvWo^)

^ _ / a^A(H^U)o^z) \(A\H^(f)o^z)\
h VE, ̂ A^U) o ̂ ,)) \ A(H^U) o ̂ ) y

(2)
> 1.

Inequality (1) is strict as soon as HA^) ̂  HA'U), and Inequality (2) is strict as soon as
(I-P)(HA'{f)o^i) is not in Wo for one i in { 1 , . . . , TV}. It implies that HA^) = H A ' U )
and that (J - P)(HAU) ° ^z) ^ w^ for a11 % in { 1 , . . . , A^}.

We can prove the similar result for / in Wi. So, with regard to Remark 5.10 (as
TA = pA), we can apply Lemma 5.9 to A. It implies that if B is in Q^^A.A) (for a
constant /3) then Wo, W^i, W are orthogonal with respect to TB and /3TB\wo ^ pA\wo,
f3TB\w^ = ^A[^. Moreover, since T is non-decreasing pA < f3TB < apA and then
TB is in Q^A^A'). D

Thanks to the estimate A < /3B < aA we know that the projective set associated with
Q^A^A') is compact. Moreover Q°'(A,A') is clearly convex, so if it is non-empty, then
it contains a fixed point of T (thanks to Brouwer theorem).

We set:

A ( A , A ' ) = { a > l , Q^A')^}.
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We now give the following lemma:

LEMMA 5.14. - A(A, A') is a closed subset ofR and is bounded from above.

Proof. - We first prove that A(A,A') is closed.
Let (an) be a sequence in A(A,A') such that a^ converges to a e R.
We choose c > 0 such that an < c for all n. For each n we can choose Bn in

Q^^A.A1} such that A < Bn < a^A < cA.
One can find a sub-sequence n^ and B e M such that B^ converges to B in M. It is

then easy to check that B e Q^A^A') so that a e A(A,A').
We now prove that A(A,A7) is bounded from above.
There exists C > 0 such that 8(B) < C^ for all B in ̂ (A, A'). Thus, using Proposition

4.3 and Proposition 4.34 we can show that there exists a' > 1 such that for all a > a'
and for all B e Q^^A.A') such that 0(B) = 1 one can find a preserved (^-relation such
that 8j(B) < 7, where 7 is the constant of Lemma 5.7.

So, if A(A,A') is not bounded from above, choosing a G A(A,A') such that a > a'
and a fixed point B in Q^A, A'), one has that 8j(B) < 7 for a preserved G-relation J .
But Lemma 5.7 applied to B is incompatible with the fact that B is a fixed point of T
(we stress the fact that Lemma 5.7 does not need Assumption (H)).D

As the proof of uniqueness in general is quite technical we first give it in a simple case:

SIMPLE CASE. - We suppose that T satisfies the following hypothesis:
(S) For all Dirichlet form A G M, TA is associated with a strictly positive bond

conductivity matrix (i.e. j^,y > 0 for x / y).
We first remark that (S) is satisfied for the two examples we follow from the beginning

of Section 4.
In the case of the Sierpinski gasket without symmetry if A is irreducible then it is

associated with at least two positive bond conductivities. By the following picture we draw
two sides of the triangle we suppose to have positive bond conductivity.

By the following picture we draw the positive conductivities of the electrical network
associated with A^ on F^:
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So, one can go from any point of F straight to any other (i.e. without passing through the
third one), using only positive bond conductivities.
From Proposition 1.14 of Section 1.3, we can conclude that TA is associated with a
network with strictly positive bond conductivities.
In the same way, using the symmetries of the picture, one can see on the example of
the snowflake that (S) is satisfied. More generaly, we could prove that (S) is satisfied
by all nested fractals.

0

We denote by M the interior of M.
We first remark that M is the set of Dirichlet forms with strictly positive bond conductivities
(it is easy to check it from Definition 1.6 and Proposition 1.7), (S) thus implies that
T(M) C M.
We now prove the uniqueness in this case. We suppose that there exist two non-proportional
fixed points A and A'. _
Set a = supA(A,A'). One has that a > 1 from Remark 5.12. The subset Q^A^A') is

_ 0

non-empty since A(A, A') is closed. We first prove that Q^A, A') is included in M \ M.
Indeed, take B in Q^^A^A') normalized such that inf(J3/A)= 1. We can write B as:

B = A\wo 0 ̂ A|V^ 0 A\w' •

Set B' = B - A, B ' > 0.
If we suppose that B G M then for e > 0 small enough, B + eB' is in M and then B + eB'
is in Q^+^'^A^A'), so a + c(a - 1) e A(A,A'), and this leads to a contradiction.

_ 0

Thus, the following inclusion is true: Q^A^A') C M \ M.
But (S) implies that T(M) C M, this is in contradiction with Lemma 5.13. This proves
the uniqueness of the fixed point.

0

GENERAL CASE. - We study more precisely the set M \ M.

Notation. - Let C be the set of G-symmetric, connected graphs on F (we consider a
graph as a set of subsets with 2 elements of F). Denote by L the graph which connects
any two points of F. We order £ with the inclusion relation.

For any L G C we denote by ML the subset of M of Dirichlet forms whose bond
conductivity matrix denoted by (jx,y) satisfies:

{x,y} G L ^ jx^y > 0.

We easily check:

M=Mj- , M\M=UL^ML,
L^L

ML=UL/^ML/, VLer.
L' C.L

N.B.: ML denotes the closure of ML in M.
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With any graph L in C we naturally associate the graph L^ on F^ that connects in
each 1-cell Fi = ̂ i^F) the points connected by ^i(L). Formally, we define L^ by:

L^ = U^{{^)^Q/)}, {x^y} G L}.

We then define T : C —> C in the following way: for x and y in F, x / y , {x^y} is
in T(L) if and only if there exists a path on the graph defined by Z/^ going from x to
^/ without passing trough any other point of F.

From Proposition 1.15 one has that:

T(M^)cMr(L).

We adopt the following definition:

DEFINITION 5.15. - We say that a graph L of C is preserved ifT(L) = L.
We denote by CT the set of preserved graphs.

REMARK 5.16. - If ML contains a fixed point of T then L is preserved.
We now define a kind of minimal graph: let LQ be the graph on F defined by

{x, y} G LQ if and only if there exists a path ZQ = x ^ . . . , ̂  == y on F^ such that for
all i G { 0 , . . . , k — 1}, Zi and z^+i belong to a same 1-cell and for all i G { 1 , . . . , k — 2},
they belong to a same 1-cell which does not contain any point of F.

We have the following lemma:

LEMMA 5.17. - The graph LQ is in C.
There exists an integer p such that TP(Lo) ls preserved and such that:

TP(LQ) C T^\L), VL e £.

We set Li = TP(LQ).

REMARK 5.18. - The graph £1 is the minimum of the set CT-

REMARK 5.19. - In the simple case we first studied, we had Z/i = L.

Proof. - We first prove that LQ is in C. By construction, LQ is (^-symmetric, so we only
need to show that LQ is connected. It is based on the fact that each 1-cell contains at most
one point of F. Suppose that LQ is not connected. Let us choose x and y in two different
connected components of LQ. We construct a path ZQ = x ^ . . . Zk = y on F^ such that
for j G { 0 , . . . , k — 1}, Zj and ^4-1 are both in a same 1-cell denoted by Fi . Denote by
XQ = x, a ; i , . . . , Xk' = y the sequence of successive points of F which appear in the cells
i^p , . . . , I^ fc_ i . We choose two succesive points in this sequence, say Xp and rrp+i, which
are not in the same connected component for LQ. By construction, the part of the path from
Xp to o-p+i takes its values on cells which do not contain any point of F (except for the
first and the last cell). This means that {xp.Xp^} is in LQ, and it leads to a contradiction.
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Now, we easily check that if L G C then LQ C T(L). The sequence of graphs T^Lo)
is then non-decreasing (since T is non-decreasing) and there exists an integer p such
that T^+^Lo) = T^Lo). We set Li = TP(LQ). The graph Li is then preserved and
moreover one has that £1 = T^Lo) C T^T^)) for all L in £. This concludes the
proof of the lemma. D

We now prove the uniqueness in the general case.
We first prove that ML, contains a fixed point. Let A be a fixed point of T. If A

is not in ML, then

inf d{A,B)
B€ML,

is strictly positive and is reached on ML, since the subsets of PM with finite diameter
for d are relatively compact for the projective topology (N.B.: we recall that d is the
projective distance introduced in Section 3.2 and that T is a non-expansive map for d). We
denote by di this infimum. Set ^2 = [B e ML,, d(A,B) = di}. The subset f2 is clearly
convex, compact for the projective topology and T-invariant since ML, is T-invariant and
T non-expansive. Brouwer theorem implies that 0 contains a fixed point. It implies that
ML, contains a fixed point, but, as Li is minimal in the set of preserved graph CT, any
fixed point in ML, is in ML, (thanks to Remark 5.16). Thus, ML, contains a fixed point.

We now prove that ML, contains exactly one fixed point and finally that there is not
any fixed point out of ML,.

Suppose that ML, has two non-proportionnal fixed point A and A', we set:

Qa^Af)=Qa(A^Af)nML,.

This set is clearly T-invariant since Li is preserved.
Set a = sup{a > 1, %(A,A') + 0}.
Proceeding in the same way as for the simple case, we prove that Q^A^A') is

not empty and that Q^(A,A') C ML, \ ML,. But T^+^M^J C ML, (cf. Lemma
5.17), and this is in contradiction with the fact that Q^^^A^A) is T-invariant. Suppose
that there exists a fixed point out of M^, and choose a minimal element L in the set
CT = {L € CT \ L^^ ML contains a fixed point}. The graph Z/i is stricly included in
L since Li is the minimum of CT-

Let A be a fixed point in M^ and A be one in M]^.
For all a > 1 we set Q^(A,A) = Q^A^A') H M^.
Let a = sup{a > 1, Q^(A, A') / 0}. One has that a > 1 because A is in Q^(A, A)

for a real {3 > 1 (cf. Remark 5.12).
In the same way as for the simple case, one has that Q^(A^A) is not empty and

included in M^ \ M^.
Let B be a fixed point in Q^ (A, A'). If B is not in M^^ then it is in Mu for a preserved

graph L' strictly included in L and this is in contradiction with the minimality of L. If
B is in ML^ then, since B and A cannot be proportional (because a > 1), M^ has two
fixed points and it leads us back to the previous case.

We thus conclude that T has a unique fixed point (moreover this fixed point belongs
to ML,). D
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6. Examples

6.1. Application to nested fractals. Uniqueness of the diffusion

6.7.7. Definition

Nested fractals are self-similar fractals, imbedded in R^, finitely ramified and highly
symmetric. They have been introduced by Lindstr0m (cf. [19]). One can find the definition
in [19] (or in [16]). We recall it briefly.

Let D > 2 be an integer and r > 1 a real. For x and y in (R^, we denote by \x — y\
the Euclidian distance.

DEFINITION 6.1. - A map ^ : R0 —^ RD is called a r-similitude if \^{x) - ̂ (y)\ =
r"1!^ — y\, for all x and y in K0.

Let N be an integer bigger than 2. Let (^i , . . . ,^7v) be N r-similitudes. We set
Q == { 1 , . . . , N}^. One can prove that for all uj in 0 the limit

Inn ^(i) o. . .o^^)(^)

exists for all x in R0 and does not depend on x. We denote by II(o;) the value of this
limit. II maps 0 to R0. We set

z=n(^).
One can prove that X is a compact subset of R0 and that it is the unique subset of X to
satisfy X = U^^(X). The set X is said to be self-similar with respect to the family of
r-similitudes ( < & i , . . . . , ^^v) (these results are classical and can be found in [6], or [19]).

We will say that the family (^,) satisfies the Moran open set condition (cf. [22]) if:
(A-0) there exists a non-empty open subset U of R0 such that U^L^i(U) C U and

such that ^i(U) D ^j(U) = 0 for i -^ j.
Each map ̂  has a unique fixed point and when condition (A-0) is satisfied these fixed

points are distinct (cf. Corollary IV-14 of [19]). We denote by Fo the set of fixed points
of the maps ^,. By definition, Fo is included in X.

DEFINITION 6.2. - We say that x G FO ^ an essential fixed point if there exist y in Fo
and two distinct elements i and j of { 1 , . . . , N} such that ^i(x) = ̂ j(y). We denote by
F the set of essential fixed points.

Lindstr0m introduces the following conditions:
( A - l ) (Connectivity) for all i and j in { 1 , . . . , N} there exists a sequence % i , . . . , in of

{ 1 , . . . , N} such that %i = %, ^ = j and ^, (X) n ̂ ,,^ (X) ̂  0 for all k $ n - 1.
(A-2) (finite ramification) for all distinct n-uplets ( % i , . . . , % n ) and O i , . . . , j n ) of

{!, . . . ,7V}7 1

î o • • • o ̂ .W n ̂  o • . . o ̂ -JX) = ̂  o . . . o ̂ JF) n ̂  o . . . o ̂ -JF).

It is easy to see that with the definition of Section 2.1, X is a finitely ramified fractal
with N , D = #F and, if we suppose that < & i , . • . ̂ D are the r-similitudes whose fixed
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points are essential, 7Z defined by: {iJWi^f) if and only if ^i(xj) = ^(^/), where
Xj and Xj> are the fixed points of the r-similitudes ̂  and ^ j ' .

For all x and ?/ in R0 denote by ff^ the hyperplane H^^y = {z eR0, \x-z\ = \y-z\}.
Let Ux,y denote the orthogonal reflexion with respect to Hx,y.

We call n-cell a subset of X of the type ̂  o .. • o ̂ (F) for an element ( % i , . . . , Zn)
of {l,...,N}n (N.B: F is the unique 0-cell).

(A-3) (symmetry): For any distinct points x and y of F, (7^ maps a n-cell to a n-cell
and if a n-cell has points in both open half spaces created by H^^y then it is globally
invariant by Ux,y.

Lindstr0m gives the following definition:
DEFINITION 6.3. - A nested/racial is a self-similar set X associated with a family of

r-similitudes satisfying conditions (A-0),.. .,(A-3) and such that D = #F > 2.
Let G be the group generated by all the reflexions U^^y for x and y in F. It is easy to

see that there exists an operation of G on { 1 , . . . , N} such that

g.^z(x) = ̂ g.i(g^),

for all g € G, x € R0 and i € { 1 , . . . , N}.
Linstr0m has studied these fractals for equal weights (ai , . . . , a^v) =(! , . . . , 1).
In our framework, a nested fractal will be a finitely ramified fractal constructed as in

Section 2.1 from the relation 7Z defined above, the symmetry group G, and the weights
ai = = • • • = OAT == 1.

The existence of the diffusion was proved by Linsdtr0m [19] (he used probabilistic
methods to contruct the diffusion ; Kusuoka constructed the Dirichlet form [16]). Barlow
proved the uniqueness in some particular cases (cf. [1] ). We will see that Theorem 5.1
proves the uniqueness in general (and also proves existence in all classical cases).

Examples. - The Sierpinski gasket. Here D = 2 and the similitudes ^1,^2,^3 are
homotheties with ratio j. In C these are given by:

^Or)-| ; ^)=|(.-1)+1 ;

- , If (\ . ^ ^ . l .V ' 3w--^[x-[^^~^))^2+^~^'
Here F = Fo = {0,1, j + ̂ }.

The group G is the group of isometries of the triangle F, thus the group of permutations
of F. It corresponds to Example 1.1 of Section 2.1.

The Viscek set. Here D = 2 and N = 5. The similitudes ^i , . . . , ̂ 4 are defined to be
the homotheties with ratio ^ and with centers the vertices of the square {(±1, ±1)}. The
similitude ^5 is the homothety with center (0,0) and with same ratio. F is the set of fixed
points of ^i, . . . ,^4. G is the group of isometries of the square F, i.e. G is the fourth
dihedral group ^4. This example corresponds to Example 2.1 of Section 2.1.

The snowflake. Here D = 2 and N = 7 ; ^ i , . . . , ̂ e are the homotheties with ratio |
and centers the vertices of a regular hexagon ; ^7 is the homothety with same ratio and
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with center the center of the hexagon. F is the set of fixed points of ^ i , . . . , ^g, i.e. the
set of vertices of the regular hexagon. G is the group of isometries of the regular hexagon
F, i.e. the sixth dihedral group DQ. It corresponds to Example 3 of Section 2.1.

6.7.2. Application of Theorem 5.1

We now consider a nested fractal. We first prove that:

LEMMA 6.4. - Let J be a non-trivial G-relation and x, y be two distinct points of F,
then any equivalence class I G F / J has points in both closed half-spaces created by H^^y.

Proof. - Let I be in F / J . The set I has at least two elements since G operates
transitively on F, and J -^- 0. Let x and y be two distinct points of F. Suppose that I
is contained in one open half-space delimited by B.x,y Set 1' = U^,y(I). The subset 1' is
an equivalence class for J (i.e. I ' e F / J ) and F ^ I . Let d ( z , H ) denote the distance
between a point z and an hyperplane H.

Set d = mm^^id(z,H^^y) and let t be an element of I which realises this minimum.
Let v be in J, v / t. We set f = U^^y(t) and t" = U^t'W.

One has that:

1^ - t'\ = |^(^) - U^'{t')\ = \t" - v\.

But vjt implies that t ' J t " and thus that t" e I ' . Finally

2d = |^ - ̂ | = \y - t" > d{v, H^y) + d(t^ H^y),

because v and t11 are on both sides of H ^ ^ y . Moreover d(v, H^^y) > d and d{t", ff^y) > d.
This implies that d{v,H^^y) = d ^ . H ^ ^ y ) = d and that v and t" are symmetric with
respect to H^,y, i.e. that U^,y(v) = t" .

Hence, the points v, t, t ' , t" are in the same plane and are the vertices of a rectangle:

Ux,y

It is then easy to check that the relations U^^y(v) = t" and Uy^'W = t" imply that v = t
(because as t and t" are on both sides of the diagonal {v,t'\ the relation Uy^'W = t"
implies that they are on this diagonal and then d(v, H^^y) = d(t, H^^y) leads to the equality
v = t). This concludes the lemma since we chose v / t. D

For a preserved G-relation J we recall that the maps ̂  can be viewed as maps from
F / J to F ^ / J ^ (cf. Section 4.2.1). We still call 1-cells the subsets of F ^ / J ^ of the
form ^ z ( F / J ) (a 1-cell of F ^ / J ^ is then the image of a 1-cell of F^ by the canonical
surjection from F^ over F ^ / J ^ ) . The key result is the following lemma (one can
remark that the argument used in the proof is very similar to the one of Lemma 3.5 of [19]).
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LEMMA 6.5. - Let J be a non-trivial preserved G-relation. If I and I ' are two elements
of F / J then there is a 1-cell ofF^/J^ which contains both I and F.

N.B: In this statement F / J is regarded as a subset of F ^ / J ^ .

REMARK 6.6. - In the case of the snowflake, for J == j7i, we remarked in Section 4.2.1
that the central 1-cell contains all the points of F I J\.

Proof. - Let I and I ' be two distinct elements of F / ' J ' . Let a; be in J and y be in
I ' ' . We set H = H ^ ^ y , U = Ux,y. The hyperplane H creates two open half-spaces, one
contains x the other one y.

Thanks to Lemma 6.4, there exists x ' in I such that x and x ' are on both sides of
H. Moreover x ' cannot be in H because if it was then we would have U{x'} = x ' ' ,
and x j x ' would imply yjx\ which is supposed not to be true. So x/ is in the same
open half-space as y .

Since xj^x' we can find a path ZQ = x ' ^ . . . , Zp = x in F^ such that Zk and z^i are
in a same 1-cell and such that ZkJ^z^i for k < p - 1. We set:

t = inf{fc e {1 , . . .p}^ zjc and x are in the same open half-space}

We then define Z'Q, . . . , Zp by:

4=^ v fe< t - i ,
-4=[/(^), v fc>t .

ZQ, . . . , Zp is a walk from x ' to y in F^\

x
If fc / t - 1 then ^ and 4_^ are in a same 1-cell and 4^1)4>+l•
If ^_i G H then Uzt-i = ^-i and ;^_iJ^1^, so, by transitivity x ' J^y which is

not true since x ' S^y. The points Zt-\ and Zt are thus in both open half-spaces. Now, using
Assumption (A-3), the cell which contains both z^-i and Zt is globally invariant by U, so
it implies that z^_^ and z[ are in a same 1-cell.

By construction x ' J^z[_^ and yj^z[, so ^_^ (resp. z[) is in relation with the points
of I (resp. I ' ) with respect to J^^. This concludes the proof of the lemma. D

We deduce the following proposition from the previous lemma:

PROPOSITION 6.7. - Let J be a non-trivial preserved G-relation, then ~pj < 1 and

P-F/J > L
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Proof. - Let us first prove p - p , ^ . > 1.—r I J
We recall that ^pij G Mp/j is the Dirichlet form on F / J with conductivities equal

to 1 on each bond, i.e:

A°^(/, f) = J E (/W - /(V))2, v/ e E .̂
^ye^/^

Let (A^)^ be the Dirichlet form on F ^ / J ^ associated with A^:

N

(A0^/1)^) - E^/^ ° ̂  ° ̂  v^e 41/^-1=1
N.B.: we recall that ai = 1 for all %.

Let / be in E p / j and /^^ € -E'j,1/' be its harmonic continuation with respect to the
Dirichlet form (A^)^. One has that:

Tr/jA^f)^^^/^0^^
1=1

-Ej E (/(1) ° w) -/(1) ° ̂ c^))2
i=l X,Y(EF/J, X^Y

> j E (^(x) - ̂ "(y))2

X , Y C F / J , X^Y

=A°^(f,f).

N.B.: The inequality (line 3) comes from the fact that j\pij = / and from Lemma 6.5.
Thus P^(A^) > l^so p^^ > 1.
Let us now prove that ~pj < 1.
We recall that A^r G Mj is the Dirichlet form on F, such that the bond conductivity

between two points x and y is 1 if xjy and 0 if xS[y.
Let J be in F / ' J ' , and / € £' be a zero mean function null out of J (/.^. / € Vi). Let

/^^ be the function on F^ defined by:

^(i) _ [ fW for x in F'
J ~ [ 0 for x C F(l) \ F.

We have (A0^1)^1)) > TjA^(f) by definition. Moreover:

(A^a^)-^^^0^)
xCF

N.B.: Here F' is regarded as the subset { ! , . . . , D} of { 1 , . . . , N} (i.e. any element x G F
is the fixed point of the unique similitude ^a.).
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So, as ^x(x) = x, one has that:

(AO,)W(fW)=^AO,(f(x)l^^
xeF

=^A(/(a;)l{,})
xei

=A^(/J)- ̂  f{x)f(y)A°,{l^,l^).
x , y ^ I
x^y

But, since the bond conductivity is 1 between x and y in J, one has that A°^(I^}, l{y}) ==
—1 and:

(AO,W1))=A(^)+ ̂ f(x)f(y)
x , y ( ^ I
x^y

=A°,(f)-^f\a. W
.ECJ

N.B.: The last relation comes from the fact that / has zero mean value.
Thus, we have proved that TjA°^{f) < A°^(/,/). It implies that ~pj{A^) < 1 and

thus that ~pj < 1. D
From Proposition 6.7 and (ii) of Theorem 5.1 (with Remark 5.2) we get:
• the existence of a fixed point if (H) is satisfied
• the uniqueness of the fixed point in any case.
N.B.: I do not know any nested fractal which does not satisfy (H), although there

probably exist some.
However, as Linsdtr0m proved the existence in any case, and since the fixed points are

regular thanks to Proposition 3.8, one has that:

THEOREM 6.8. - On all nested fractals there exists a unique (up to a multiplicative
constant) non-degenerate self-similar Dirichlet form associated with equal weights.

6.2. An example where Theorem 5.1 cannot be applied

We take Example 2.2 of Section 2.1, i.e. the Viscek set with the symmetry group
G = Z/2Z x Z/2Z, generated by the orthogonal reflexions with respect to the diagonals
of the square F. The symmetries allow us to choose ai == 03 = 71, o^ = 0:4 = 72
and 0:5 = /3.

When 71 = 72 = A Metz proved that T has infinitely many fixed points (cf. [20] ). In
general, in [27] , we proved that if 71 = 72 then T has infinitely many fixed points and if
7i 7^ 72 then T has no fixed point (in fact, the Viscek set is a fractal tree, i.e. has no loop,
and consequently T can be expressed as a non-negative matrix that we explicitely compute).
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In this case there are 3 non-trivial G-relations that we draw on the following picture.
We easily see that they are all preserved:

Ji Ji Jz

We first study the map Tj^. The set Mj^ has dimension 1. An element A of Mp/j^
is defined by the bond conductivity between the two points in relation with respect to
Ji. We denote it by j. The electrical network associated with A^ is drawn on the
following picture:

If j is the conductivity associated with Tj^A we easily check that j = (271 + fS)~^j
(cf. Lemma 1.20). Thus, p^ = ~pj^ = (271 + /?)-1.

The set F/Ji contains 3 points. Precisely, one has that F/Ji = {{1,3}, {2},{4}}. An
element A of Mp/j^ is determinated by 2 conductivities j and j ' as on the following
picture:

\-i

{1,3} j {2}

{4}
Denote by c and c' the effective conductances associated with A (i.e. c =

CA({2},{1,3}) = CA({4},{1,3}) and c' = CA({2}, {4})). An easy calculation gives
(cf. Lemma 1.20):

(6.1)

(6.2)

JU + 2jQ
3 + J ' '

1
c = J• + y-
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The electrical network associated with A^ is represented on the following picture:

{4}
Let j, /, c and c' be the values associated with the Dirichlet form Tp/j^A (c and c' are

obtained from ] and ] ' by (6.1) and (6.2)). Thanks to Lemma 1.20 we get:

(6-3) c=—T^TT^72C' + RC

(6.4) c /=(272+/5)- lc / .

Thanks to the symmetries we know that c' = A(/) and c' = Tp/j^A(f) for the same
function / denned by /({2}) = 0, /({4}) = 1, /({1,3}) = j. Thus,

^^(A)<^<(2^+^)-1•

We are now going to prove that p_ = (272 + /?)~1- In order to do that we let —

converge to 0. But if -L converges to 0, so does -L and (6.1) and (6.2) give:

c ~ 2j c' ~ /

c ~ 2j c' ~ /

(N.B.: it means that these values are equivalent when — converges to 0.)
Thus, from (6.3) and (6.4) we deduce:

/~(272+/?)-1^
j' ~ 72"1^

Since 72"1 > (272 + /?)~\ it implies that:

^^A>((272+/?)- l+o(l))A

(o(l) is a function converging to 0 with -L).
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Thus,
/^(A)>(272+/3)- l+o(l) .

This proves that ^ . , = (272 + /3)"1.—-tf / t-/i
We obtain the values for J^ by permuting the indices.
In conclusion, we have
• if ^ ^ 72 then either p^ > /9 or ̂  > /? so (i) of Theorem 5.1 can be

applied. T has no fixed point.
• if 7^ = 72 then we are in the critical case and we cannot apply Theorem 5.1. We

recall that in this case Metz [20] proved that T has infinitely many fixed points.
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