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RIGIDITY IN NON-NEGATIVE CURVATURE

BY LUIS GUIJARRO AND PETER PETERSEN

ABSTRACT. - In this paper we will show that any complete manifold of non-negative curvature has a flat soul
provided it has curvature going to zero at infinity. We also show some similar results about manifolds with bounded
curvature at infinity. To establish these theorems we will prove some rigidity results for Riemannian submersions,
eg., any Riemannian submersion with complete flat total space and compact base in fact must have a flat base space.

RfisuMfi. - Dans cet article nous montrons que toute variete complete de courbure non-negative a une ame plate,
lorsque sa courbure tend vers zero a I'infini. Pour ces theoremes nous demontrons quelques resultats de rigidite
pour des submersions riemanniennes; par exemple, chaque submersion riemannienne ayant un espace total complet
et plat et ayant une base compacte doit avoir une base plate.

1. Introduction

In this paper we establish some rigidity theorems for souls of complete non-compact
manifolds with non-negative curvature. More precisely we show that the soul is flat
provided that there are some constraints on the geometry at infinity of the manifold. Our
first result is:

THEOREM 1.1. - Let M be a complete Riemannian manifold of non-negative curvature. If
the curvature goes to zero at infinity then the soul is flat.

This result was first mentioned by Marenich in [12]. The proof there has been
acknowledged to be incorrect (see also [11]). It was also independently considered in
[4], where the authors proved it when the soul has codimension <; 3. Our method for
proving the above theorem uses completely different ideas from those used in [12] and [4].
It furthermore yields some new and interesting perturbation results. Our proof also rests on
some rigidity theorems of independent interest, one of which goes back to an unpublished
paper by the second author (see [17].) These results, which can be found in section 3,
are concerned with Riemannian submersions from a complete space to a compact base
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596 L. GUIJARRO AND P. PETERSEN

space. The idea is to find conditions that make the base space a flat manifold. The simplest
such condition is to assume that the total space is flat (see [17].) This is the rigidity
phenomenon behind the above theorem. Our other rigidity results imply the following two
extensions of the above theorem:

THEOREM 1.2. - Let M be a complete Riemannian n-manifold of non-negative curvature.
Given D > 0 there is an e(n^ D) > 0 such that ifM has an end of diameter growth <^ D
and curvature < e at infinity then the soul is flat.

THEOREM 1.3. - Let M be a complete Riemannian n-manifold of non-negative curvature.
Given i,D > 0 there is an e(n^i^D) > 0 such that if the soul ofM has diameter < D
and injectivity radius > i and furthermore the curvature of M is < e at infinity then the
soul is flat.

It is possible that the last theorem is true without an assumption on the injectivity radius.
The idea of the proof of all of the above results is to choose an appropriate sequence

{pi} of points on M, which goes to infinity. We then use convergence techniques to get
a limit space (X^p) from the sequence {M^pi}. If S is a soul of M then we have a
Riemannian submersion sh : M -^ S (see [19], [14]). This gives rise to a map sh : X — S
which is a Riemannian submersion provided X is sufficiently smooth (see [1]). It is now
clear that whenever we have a result for Riemannian submersions which says that the base
must be flat, then we can hope to apply it to the above situation and get a result which
claims that the soul should be flat.

2. Preliminaries

2.1. Non-negative Curvature

Let M be a complete non-compact manifold of non-negative sectional curvature. The
soul S of M is a compact totally convex submanifold which contains all the topology of
M in the sense that M is diffeomorphic to the normal bundle of S (see [3] and [18]). In
[19] Sharafutdinov constructed a distance non-increasing map sh : M -^ S. In a rather
amazing development PereFman showed in [14] that this is a C71'1 Riemannian submersion
(see also [I], [9]), whose fiber at s e S consists exactly of the geodesies that emanate
from s and are normal to S'.

We also need some well known rigidity results:

THEOREM 2.1. - Let M be a compact Riemannian manifold of non-negative sectional
curvature. Then the universal cover ofM is isometric to R^" x C, where C is compact. In
particular if the universal cover is contractible then M is flat.

This result is established in [3] and only depends on the splitting theorem. It can
therefore also be generalized to compact manifolds with non-negative Ricci curvature, and
to Alexandrov spaces which have non-negative curvature and no boundary.

THEOREM 2.2 (See [6]). - Let M be a compact n-manifold with sec(M)| < 1 and
diam(M) < e(n), then M is an infra-nil manifold and in particular has contractible
universal cover.
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RIGIDITY IN NON-NEGATIVE CURVATURE 597

COROLLARY 2.3. - Let M be a compact n-manifold with 0 < sec(M) < l,diam(M) <
e(n). Then M is flat.

The construction of the Sharafutdinov map was also used to get the following bound
for the injectivity radius:

THEOREM 2.4. - Suppose M has curvature bounded by K. Then:

inj(M) > min ^ inj(5'), —— I

We get in particular from this result that M must have a lower bound for the injectivity
radius as long as no sectional curvatures become large at infinity. We can therefore apply
the standard techniques of convergence theory to sequences of the form (M,j^) where M
is complete, has non-negative curvature and bounded curvature, and pi is any sequence
of points on M (see [2], [5], [15], [16].)

2.2. Submetries

Let X and Y be metric spaces. An isometry between these spaces is by definition a
map which preserves distances. Berestovskii has found a very natural generalization of
this concept. Namely he considers so called submetries which by definition are maps that
send metric balls to metric balls of the same radius. More precisely / : X —^ Y is called
a submetry if for all x G X and r € [0,r(a;)] we have that f(B(x,r)) = B(f(x),r),
where B(p^r) denotes the open metric ball centered at p of radius r and r(x) is some
positive continuous function.

It is by now classical that a map between Riemannian manifolds is an isometry iff it
is a Riemannian isometry, i.e., it is smooth and preserves the metric tensor. In [1] this
was generalized to submetries. It is of course obvious that Riemannian submersions are
submetries, the converse is contained in:

THEOREM 2.5. - A submetry f : X —^ Y between smooth Riemannian manifolds is a
C1 Riemannian submersion.

Outline of Proof. - Any distance function g ( ' ) = d(p, •) is C1 on B(p,i) - {p} (where
i is the injectivity radius at p) and a Riemannian submersion onto (0 ,%). To prove the
result, it suffices to check it forgof where g varies over a suitable number of distance
functions in Y. Since these are also submetries, we can just consider the case where Y
is 1-dimensional. Let x G X. By passing to a small convex neighborhood of x, we can
assume that the fibers of / are closed and that any two points in the domain are joined by
a unique geodesic. We now wish to show that f has a continuous unit gradient field V/.
We know that the integral curves for V/ should be exactly the unit speed geodesies which
are mapped to unit speed geodesies by /. Since / is distance non-increasing it is clear that
any piecewise smooth unit speed curve which is mapped to a unit speed geodesic must be
a smooth unit speed geodesic. Thus these integral curves are unique and vary continuously
to the extent that they exist. To establish the existence of these curves we use the submetry
property. First fix p E X and let c(t} be the unit speed segment in Y with c(0) = f(p).
Denote by Ft the fiber of / above c(t). Now let ^(t) : [0, a] -^ X be a unit speed segment
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598 L. GUIJARRO AND P. PETERSEN

with 7(0) = p and 7(0) G Fa, this is possible since f(B(p,a)) = B(c(0),a). It is now
easy to check, again using the submetry property, that c(t) = f o 7^), as desired. •

For the proof we clearly only used that one has C1 distance functions on Y and that
geodesies in X are locally unique and vary continuously. These conditions are certainly
satisfied if e.g., X has bounded curvature in the sense of Alexandrov, and Y has a
lower bound for the injectivity radius and a lower bound for the curvature in the sense
of Alexandrov.

The optimum smoothness one would expect for a submetry is C71'1. Berestovski has
been able to prove this, but we only need the weaker result for our purposes.

For our applications we are concerned with the stability of submetries under pointed
Gromov-Hausdorff convergence. Consider sequences {Xi.Xi} and {Y^yi} of complete
pointed separable metric spaces and assume that {Xi.Xi} —^ (X,x) and {Y^yi} —^ (Y,y)
in the pointed Gromov-Hausdorff topology. If we have distance non-increasing maps
fi : (Xi.Xi) -^ (Yi.yi) (or more generally equi-continuous maps) then an immediate
generalization of the classical Arzela-Ascoli Theorem [7] tells us that there must
be a subsequence of spaces and maps converging to a distance non-increasing map
/ : (X,x) -^ (Y,y)' If we know that the maps /, are in fact isometries then is easy to
check that the limit map must also be an isometry. Similarly one can also show:

LEMMA 2.6. - Let spaces and maps be as above. Then any limit map of a sequence of
submetries is again a submetry.

Proof. - First observe that any submetry is distance non-increasing. So we can always
find a limit map. Now suppose that / : {X,x) -^ (Y,y) is the limit of a sequence
of submetries /, : (Xi.xi) -^ (Y^yi). Fix p E X and r > 0. Since the limit map is
again distance non-increasing it must certainly satisfy: f{B(p,r)) C B(f(p),r). For the
reverse inclusion choose some point q G B(f{p),r). Then choose a sequence of points
qi G Yi converging to q and pi e Xi converging to p. Now choose e > 0 such that
q C B(f{p),r - e). For sufficiently large i we must have that qi G B(fi(pi),r - e).
Consequently we can find Xi e B(pi,r - e) such that fi(xi) = q,. Using completeness
we can now assume that xi (sub)converges to a point x which must lie in the closure of
B(p, r - e) which is clearly contained in B(p, r). Now from the convergence of the maps
we get that fi(xi) -^ qi and hence f(x) = q. Whence we get the other inclusion. •

We will also need the following result:

THEOREM 2.7 (See [10]). - Let f : M —^ N be a ^Riemannian submersion between
complete Riemannian manifolds, then f : M —> N is a fibration.

3. Rigidity of Riemannian submersions

We will consider certain Riemannian submersions f '. M —> N , where M, is complete
and N is compact. Our first result was initially proved in [17] using topological arguments.
A more geometric approach was soon after found by Walschap in [20]. We shall here use
the topological approach as it seems to lead more easily to the kind of generalizations
we are interested in.
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RIGIDITY IN NON-NEGATIVE CURVATURE 599

THEOREM 3.1. - Let f : M -^ N be as above. IfM is flat then N is also flat and hence
the Riemannian submersion is locally a product.

Proof. - We will prove that under considerably weaker conditions the universal covering
of N is contractible. Thus N must be flat if it has non-negative Ricci curvature.

Suppose / : V —>• W is a submersion and a fibration between manifolds. We claim that
if V has contractible universal cover and W has finitely generated homotopy groups, then
W also has contractible universal cover.

We can immediately construct another submersion/fibration / : V —^ W between the
universal covers. Let F be the homotopy fiber of f : V —>• W . Since / is a submersion
we know that F is a finite dimensional manifold. Since the homotopy groups of W (and
V ) are finitely generated their homology groups must also be finitely generated. We can
then conclude that the same must be true of F. Now let p < dim F be the largest number
such that Hp(F, Z) / 0 and q < dim W the largest number so that Hq(W, Z) ^ 0. Then
the spectral sequence for the homology of the fibration can be applied and says that:

Hp^(V,L) = H,(W,Hp(F,L)) = Hq(W,L) (S)L Hp{F,L), where L is any field

However, Hp^.q(V, L) = 0, unless p = q = 0. So we have arrived at a contradiction unless
p = q = 0. Whence W is contractible.

To see how this implies the original statement of the theorem observe that flat manifolds
have contractible universal coverings and that Riemannian submersions are curvature
increasing so that N must have non-negative sectional curvature. Whence N must be
flat. •

We need to extend this theorem to a slightly more general situation where N is merely
a C7051 Riemannian manifold with curvature > 0 in the sense of Alexandrov and f is a
submetry from the flat manifold M. In this case it still follows from Berestovskii's work
that / is a C1 Riemannian submersion. Furthermore Theorem 2.1. is also valid for such
N (see [8].) Thus the universal covering must be flat.

THEOREM 3.2. - Given an integer n > 2, and numbers D > 0 ,% > 0 there is an
e(n^D^i) > 0, such that any Riemannian submersion as above, where n = dimM,
inj(7V) > i, diam(TV) < D, and —e< 8 < sec(M) < e, must have the property that N is
diffeomorphic to a flat manifold, and therefore N is flat if 8 = 0.

Proof. - We argue by contradiction. So suppose we have a sequence fk : Mk —» Nk
of Riemannian submersions where Nk has inj(7Vfc) > % and diam(7Vfc) < D, while
|sec(Mfc)| < 1 / k . Fix pk C Mk and consider the exponential map g^ = exp : B(0, ̂ /k\ C

Tp^Mk —^ Mk. If we use the pull-back metric on B(0, Vk) then we get a Riemannian

submersion fk o g^ : B(0, \/k\ — ^ A ^ . A s f e — ^ o o t h e curvatures on B(0, Vk) converge
to zero and there is no collapse so the limit space will be IR71, while the limit N of Nk
will be a space with a compact Riemannian space of type C7°'1 and inj > i. Thus the
results from the preceding section yields a Riemannian submersion R72 -^ N. This implies
from above that TV is a flat manifold and hence Nk is diffeomorphic to a flat manifold for
large k. This contradicts our assumptions. •

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



600 L. GUIJARRO AND P. PETERSEN

It is possible that this theorem is true without any assumptions on the injectivity radius.
Another variant of the above result is:

THEOREM 3.3. - Given an integer n > 2, and a number D > 0 there is an e(n, D) > 0,
such that any Riemannian submersion as above, where n = dim M, diam(M) < D, and
-£ < 6 < sec(M) ^ e, must have the property that N has contractible universal cover,
and therefore N is flat if 8 = 0.

Proof. - Simply observe that [6] implies M has contractible universal covering if e
is sufficiently small. •

4. Coming in from Infinity

For this section we will consider a fixed complete Riemannian n-manifold M of non-
negative sectional curvature. For this manifold we also select a soul S c M and with it
the canonical Riemannian submersion sh : M —> N . The upper bound for the curvature
at infinity for M is defined as K^, = limsup^_^{sec(7r^) : TVq c TqM,d(q,S) > r}. If
Koo < oo then we say that M has bounded curvature at infinity, while if K^ = 0 then
we say that the curvature goes to zero at infinity. Such manifolds have a particularly nice
structure at infinity which relates to the soul via a Riemannian submersion:

THEOREM 4.1. - Suppose M satisfies 0 < K^, < oo, then for any sequence of points
qi —^ oo we have that the pointed sequence (M,g,) (sub converges in the pointed G1'0'
topology to a C1^ Riemannian manifold (X, g) whose sectional curvatures in the sense
ofAlexandrov lie in [0, K^o}. And with this limit space we have a Riemannian submersion
sh : X -^ S. In fact by choosing the sequence judiciously one can ensure that the limit
space satisfies: X = N x IR^, where N is compact.

Proof. - Since M has bounded curvature and therefore also a lower bound for the
injectivity radius we can suppose that the sequence (M, qi} converges in the pointed C1^
topology to a C1^ Riemannian manifold (X, q) (see [6], for instance). For each i we can
now select r, such that TI —> oo, and the curvatures on B(g,,r,) are < K^ + 1/i. Then
the pointed metric balls (B{q^ r,), g,) will also converge to (X, q). Since the upper bounds
on curvature converge to K^o the limit space will inherit this upper curvature bound even
if it is zero. This is easily seen using exponential coordinates and using that the sequence
already converges in the C1^ topology.

The Riemannian submersions sh: (M,g,) -^ S will obviously converge to a submetry
sh : X -^ S which will also be a Riemannian submersion by Berestovskifs result.

To prove the last statement of the theorem first observe that the limit space can always
be written N x R1 where N does not contain any lines. If N is compact then we are
done, otherwise N must contain a ray. Now choose a sequence of points {qi} going to
infinity along this ray. Then the sequence (N x R1, qi) will (sub)converge to a space which
looks like N^ x R^+1. Now for each q, e X = N x R1 choose pi e M close to q,.
Then (M,p,) will also have TVi x IR^+1 as a limit space. A simple induction argument
now finishes the proof. •
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It might be helpful to have some examples illustrating this theorem.

Example. - Consider a rotationally symmetric surface M of the type: dr2 + (^(r)^2,
where y?(r) == r for r near 0 and <^(r) = a for all large r. In this case the soul is a point,
and the limit space is always a cylinder where the soul is a circle of length 27ra.

Example. - We will consider 3-dimensional orientable flat manifolds where the soul is a
circle of length 27r. These spaces are all gotten by first taking [0,27r] x R2 and then gluing
the two spaces {0} x R2, {27r} x R2 together via a rotation. If the angle of the rotation is
27T0, then we denote the resulting space as Me. If we choose the points {pi} to lie on a ray,
then the limit space will clearly split X = F x R, where F is a 2 dimensional flat manifold.
We can immediately eliminate the possibility that F is compact or non-orientable. Thus
F == S x R, where S is either a circle or the real line. We claim that S must be a line if 0
is irrational. In case S is a circle it will be a homotopically non-trivial closed geodesic. For
large i we can then find loops 7^ based at pi which converge to S. Since S is homotopically
non-trivial we can shorten the 7^s to become non-trivial geodesic loops ci based at pi.
These geodesic loops will converge to a geodesic loop in X, but since geodesies there are
either closed or infinite, we can actually assume that the c^s converge to S. It is however
a feature of the geometry of Me that one can have geodesic loops of a given bounded
length arbitrarily far away from the soul only when 0 is a rational number.

These two examples show that the soul at infinity can be either larger or smaller in
dimension and diameter than the original soul. In particular the map sh: X —> S does not
necessarily factor through the soul of X. It is therefore important that our rigidity results
for Riemannian submersions allow us to have non-compact total space.

We can now prove the theorems mentioned in the introduction.

Proof of Theorem 1.1. -In case Koo = 0 we have that the limit space X is flat. Hence
we have a Riemannian submersion sh: X —^ S. Which shows that S has to be flat. •

Proof of Theorem 1.2. - The diameter growth with respect to some point o of a
manifold M is defined as follows: diam(r) = sup{d(j?, q) : p, q lie in the same
component of the distance sphere S(o^r)}. Thus the diameter growth is less that D
if limsupy,_^diam(r) < D. If M has non-negative curvature the splitting theorem implies
that either the distance spheres S'(o, r) are all connected as r —» oo or the manifold splits as
a product M = R x H. So if M has bounded diameter growth either the distance spheres
5'(o, r) have bounded diameter as r —^ oo or the manifold splits as a product M == R x H^
where H is compact and therefore also the soul of M. In the latter situation dmm(H)
is obviously the appropriate bound for the diameter function. So if Koo ' diam(ff)2 is
sufficiently small the soul must be flat. In the former case we have that the distance
spheres from some fixed point all have uniformly bounded diameter at infinity. Thus the
limit space must split as a product: X = R x V, where Y is a compact C1^ manifold with
diam(V) < D and the curvatures in the sense of Alexandrov lie in the interval [0,Jifoo]-
We are therefore done if we can show that Y is flat provided Koo ' D2 is small. This would
definitely be true if Y were a smooth Riemannian manifold, but as the metric is only C1^
we need an extra little argument. The results in [13] show that the metric on Y can be
perturbed to a smooth metric which satisfies that diam < D + e and the curvatures lie in
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602 L. GUIJARRO AND P. PETERSEN

[—£ — KOQ^ Koo + e], here e can be chosen arbitrarily. If therefore e and Koo ' D2 are small
we see that Y is indeed an infra-nilmanifold and in particular has contractible universal
cover. Since the original metric on Y had non-negative curvature and the splitting theorem
holds for this metric (see [8] ) we can conclude that Y must be flat. •

Proof of Theorem 1.3. - We shall proceed as in Theorem 3.2. So suppose we have a
sequence of Mk with curvature at infinity < 1/k and with souls Sk having diam <, D
and inj > i. We can then select a sequence of points pk G Mk such that the curvatures
on the metric balls B {pk, ^/~k) are less than 2/fc. We can then again precompose with the
exponetial map to get Riemannian submersions B (pk, v^) —^ Sk where as before we use
the pull back metric on B (pk, v^). In the limit we then get a Riemannian submersion
R71 —» S = lim(5A.). Hence N is flat and so Sk is diffeomorphic to a flat manifold for large
k. Since Sk has non-negative curvature we can then conclude that it is in fact flat. •
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