
ANNALES SCIENTIFIQUES DE L’É.N.S.

DAN BARBASCH

ALLEN MOY
Local character expansions

Annales scientifiques de l’É.N.S. 4e série, tome 30, no 5 (1997), p. 553-567
<http://www.numdam.org/item?id=ASENS_1997_4_30_5_553_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1997, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1997_4_30_5_553_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. scient. EC. Norm. Sup.,
4° serie, t. 30, 1997, p. 553 a 567.

LOCAL CHARACTER EXPANSIONS

BY DAN BARBASCH AND ALLEN MOY

ABSTRACT. - In this paper the authors develop a method to compute the local character expansion of a depth
zero representation of a p-adic group. The main idea is to use the generalized Gelfand-Graev characters for finite
groups as test functions to plug into the character formula. This is possible due to results of Waldspurger on the
validity of the local character expansion in a large enough neighborhood of the identity. The method leads to a
classification of the unipotent orbits in terms of parahoric subalgebras.

RESUME. - Dans cet article, les auteurs developpent une methode pour calculer Ie developpement local du
caractere d'une representation de profondeur zero. L'idee principale est d'utiliser les caracteres de Gelfand-Graev
generalises des groupes finis. On utilise les resultats de J.-L. Waldspurger qui montre que Ie developpement du
caractere a lieu sur un voisinage suffisamment grand. La methode donne une classification des orbites unipotentes
en termes des sous-algebres parahoriques.

1. Introduction

Suppose k is a nonarchimedean local field of characteristic zero and G is a reductive
group defined over k with Lie algebra Lie(G). Let G(k) be the fe-rational points of G and
©^ the character of an irreducible admissible representation TT of G(fc). Harish-Chandra
proved that 9^ can be represented as a locally constant integrable function on the regular
set. Generalizing a result of Howe for GL(n) [Ho], Harish-Chandra also showed that ©^
is a linear combination of Fourier transforms of nilpotent orbits in a sufficiently small
neighborhood of zero in Q = Lie(G)(fc), i.e. there exist constants co(7r), one for each
nilpotent orbit 0 in Q such that

e^(expX) = ̂  co^iloW
o

for X G 0, a regular element sufficiently close to 0. Much qualitative and quantitative
information on the representation TT can be gleaned from the Harish-Chandra-Howe local
character expansion. For instance, the asymptotic growth of the space of vectors of TT fixed
by parahoric filtration subgroups Vx.rk as fc -^ oo is controlled by the orbits 0 of maximal
dimension with CQ ^ 0. These same orbits also relate to the existence of various generalized
Whittaker models for TT ([MW]). Another example of the quantitative information in the
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554 D. BARBASCH AND A. MOY

local character expansion occurs when TT is a discrete series representation. Here, the
formal degree of TT equals (—l^cc^Tr) where r is the split rank of G over k and co(7r)
is the coefficient of the zero orbit [Ro].

Two natural questions to ask in regard to the Harish-Chandra-Howe local character
expansion are

(1) what can be said about the size of the neighborhood in g on which the local
character expansion is valid and

(2) what techniques are there to compute the coefficients c^?
In regard to the first question, Waldspurger [Wa] has proved a conjectured sharpening

(due to Hales [Ha]) of the results of Howe and Harish-Chandra. A representation TT is
defined to have depth zero, if there exists a parahoric P so that TT possesses non zero
vectors fixed by P+, the maximal normal pro-p-subgroup of V. Under mild conditions,
Waldspurger has shown that if G is essentially a group of classical type and TT is a depth
zero representation, then the local character expansion is valid on each neighborhood
log(Q+) (<3 a parahoric subgroup). In particular, Waldspurger's theorem gives a very
complete and satisfactory answer to the first question for representations of depth zero.

In regards to the second question, one type of answer can be found in [MW] in terms
of generalized Whittaker models.

It is the purpose of this paper to show how Waldspurger's results in [Wa] also leads to
a solution of the second question along very different lines from [MW]. We show that the
validity of the local character expansion for depth zero representations, can be used as a
trace formula from which one can completely determine the coefficients co(7r) in terms
of the depth zero K-types of TT. Our method is to inflate the characters of generalized
Gelfand-Graev representations for reductive groups over finite fields associated to parahoric
subgroups of G(k) and show that the inflations can be used as test functions in the local
character expansion. In brief, if p is sufficiently large, then the Gelfand-Graev characters
can be pulled back via the exponential map to the Lie algebra. The support of the Fourier
tranforms of the Gelfand-Graev characters on the topologically nilpotent set in the Lie
algebra is compatible with the partial order of nilpotent orbits in a finite field Lie algebra.
In section 3 (Propositions 3.5 and 3.8) we give a classification of the nilpotent orbits of
a Lie algebra Q in terms of associate classes of parahoric subalgebras px and nilpotent
orbits of -pa;/-?^. This classification highlights properties of the cosets N + p^ and their
closure relations (Propositions 3.12 and 3.16) which had been noticed independently by
Howe [Ho] for GL(n) at an earlier time. These results generalize the results in [Wb]
(rather [We] which only seems to be available in preprint form). While [We] proceeds
case by case and deals only with the classical cases, our methods are quite general and
treat all cases at the same time.

The results in section 3 lead to a recursive method for calculating the coefficients co(^)
via the partial ordering on the orbits 0's.

The first author would like to thank the University of Paris VII for their hospitality
during part of the time these results were proved. We would like to thank Magdy Assem,
Mark Gross, Gerard Laumon and Fiona Murnaghan for discussions during the period this
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paper was written. We are also thankful to Gopal Prasad for aid in the proofs of section 3,
and the referee for valuable suggestions.

The final writing of this paper occurred while both authors were members of the Institute
for Advanced Study. We thank the Institute for its hospitality and support. Both authors
were supported in part by the National Science Foundation.

2. Generalized Gelfand-Graev representations

2.1. We summarize the construction of the generalized Gelfand-Graev representations.
Let Fq be a finite field of characteristic p. Fix an algebraic closure Fq of Fq. Let G be a
simple adjoint group defined over Fq and let Q be its Lie algebra. We identify G (resp. 0)
with its Fg points. Denote the Frobenius actions on G and Q by F. In particular, the
F-fixed points G^ and ^F correspond to the F^-rational points of G and Q respectively.
We recall some basic results from chapter 5 of [Ca] on the nilpotent elements in 5. Let
T C G be a maximal torus in G and let A(G, T) (resp. ^(G, T) = {a^..., o^}) be the
roots (resp. simple roots). The height ht(a) of a root a = ̂ n^ is ht{a) = Z^z.
Set m = maxo, ht(a). The relation m = h - 1, where h is the Coxeter number, holds.
Consider the inclusion 0^0^(0).

(1) If N G 0 is nilpotent, then ad^N)2^ = °. [Ca:5.5.2]. In particular, if p > 2h - 1,
then the exponential map from 0l(0) into GL(0) is defined on the nilpotent elements
of 0.

(2) Suppose N e 0 is nilpotent, non zero and ad^N)" = 0. If p - 2 > n, then
the Jacobson-Morozov theorem is valid for TV, [Ca:5.3.2], i.e. N determines an
embedding

(f)N : 5l(2) —— 0

so that (^(e) = N , where e,h,f are the usual elements in s((2). If N lies in
0 = 0^, then this s 1(2) can be taken to be defined over Fq. Furthermore, two
embeddings (f>N and ( J ) N > are equivalent under the adjoint action of GF if and only
if N and N ' belong to the same G^ conjugacy class.

(3) In case (2), if p > 3{h - 1), then 0 is a completely reducible s 1(2) module under
the adjoint action. These modules are "the same" as over C ([Ca:5.5.5]).

Hence, following [Ca], we assume that

(2.11) p>3(h-l).

Then both the log and exp maps are defined on the unipotent and nilpotent elements of
G and 0 respectively and properties (2) and (3) are valid. Furthermore, by the theorem of
Dynkin-Kostant, there are finitely many nilpotent conjugacy classes in 0.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



556 D. BARBASCH AND A. MOY

2.2. Let TV be a nilpotent element in ^F (with associated 5[(2)-triple N = e, h, f). Let

5(%) = {X (EQ | [h,X] = i X } iel

m = 0(0)

^--©SW
t>0

^-=®^)
i<0

p = m 4- u+

and let M (resp. U, P, etc. ) be the algebraic group corresponding to m (resp. u+, p,
etc. ). Via the Killing form, identify u_ with the dual u^. Let Ojj = Ou(-f) be the
U1' coadjoint orbit of the element -/. Note that e and -/ are conjugate via SL(2)F but
that e and / need not be conjugate.

2.3. By Kirillov theory for nilpotent groups, the coadjoint orbit Ou determines a
| Ou | ̂ -dimensional representation T]N of [/F. The induced representation

FAT = Ind^ r]N

is called the generalized Gelfand-Graev representation of G^ associated to N . When N is
regular, the Gelfand-Graev representation is the finite field analogue of a space of Whittaker
vectors. Let 7^ denote the character of F^. Various properties of ^N are collected together
in the following proposition.

2.4. PROPOSITION. - (kawanaka [Ka, Kb])
(1) 7^v depends only on the Ad^G^^^-orbit of N.

1 (dim(C7)-dim(Ad(P)AQ
(2) \0u\2 = q 2
(3) dim(7^v) = \GF\q-dl^^l, dim(Ad(G)^) = dim(C/)+ dim(Ad(P)7V)
(4) T/i^ support of^N is contained in the closure of Ad(C?)(exp7V).
Let A/" denote the nilpotent cone in Q. We see that the support of 7^ is contained in

the set of unipotent elements and therefore via the exponential map, we can transfer 7^ to
an Ad(G^) -invariant function on the Lie algebra g^. The function 7^ o exp is supported
inside the closure of 0(N). For ease of notation, when the context is clear, we use 7^ to
denote the function on ^F which is equal to 7^ o exp on the nilpotent elements and zero
elsewhere. This will be done in the next section.

2.5. Fix ^ be a nonzero additive character of F^. Define the Fourier transform (with
respect to the Cartan-Killing form ( , }) of a function / on ^F by

FV(/)Or)=/Cr)= ̂  ^((^V^).
x'^

The Fourier transform of a function supported on J\fF, e.g. 7^, will in general not have
support contained in J^r'. The following two results of Lusztig give a general expression
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LOCAL CHARACTER EXPANSIONS 557

for the values of 7^ at an arbitrary element y G ^F as well as more detailed information
at a nilpotent element. Set

(2.5.1) E=- /+C,(e)

where Cg(e) is the centralizer of N = e in 0 and let

(2.5.2) r(N) = ^dimfl(l) + dim0(% > 2)z^

=J(dim0-dim(C,(AO))

2.6. PROPOSITION. - (Lusztig [L] Prop. 2.5.) For any y € 0^

^) = ̂ (N) #{^ e G^ I Ad(g){y) G S}

In particular, 7^ is integer valued.
2.7. PROPOSITION. - (Lusztig [L] Prop. 6.13.) For 7V7 € ^ F , let 0{N'} be the Ad{G}-orbit

of N ' in Q.
(1) 7/7Ar(A^) ^ 0, r/^n TV must lie in the closure ofO(Nf),
(2) i f N e 0{N') and ^ N ^ N ' ) / 0, then N ' is in the G^-orbit ofN,
(3) ^v(TV) = g^) #CG{NY.
Roughly speaking. Proposition 2.7 says that the Fourier transform inverts the support

of a generalized Gelfand-Graev representation 7iv, i.e. ^ N ^ N ' } = ,0 if N is not in the
closure of Ad(G)(7v7) in 0; furthermore, if 0(N) = ©(TV7), then 7jv(TV7) / 0 precisely
if N1 is GF conjugate to N .

3. Transition to the p-adic group

3.1. Let k be a p-adic field, with ring of integers Ok and prime ideal p^. Let Fg == o^/Pfe
be the residue field. We wish to lift generalized Gelfand-Graev characters to functions on
the p-adic group. These functions will be supported on the topologically unipotent/nilpotent
set. Let K be a fixed maximal unramfied extension of k. Let 0 = Lie(G)(K) (resp. 0 =
Lie(G)(fc)) denote the AT-rational (resp. fc-rational) points of the Lie algebra of G. Let BK
and Bk be the Bruhat-Tits building of the group G over the fields K and k respectively.
The Galois group Gsi\{K/k) acts on BK so that the building Bk can be naturally identified
as the fixed points of Gal(Ar/fe). Given a point x e BK. let P^, 0^,o. fl.r,o+. tkn, etc. be
the parahoric subgroup and various lattices associated to the point x as in [MPa]. The
quotient m^ = Qx,o/Qx,o+ is the Lie algebra of M^ = Px,o/Px,o+' If the point x lies
in Bk, then both m^ and Ma; are defined over Fg. We assume now that x e Bk. Let
^ = ̂  H ^(fc), and let 0^ = 0a^ H 0.

Let ^ ; (5 —>GL(V) be a representation of G such that the corresponding representation
Tr : 0 —> Ql(V(k)) of the fc-rational points 0 ofLie(G) is faithful. The following lemma
is elementary, e.g. see [Wa:III.3] for a proof.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



558 D. BARBASCH AND A. MOY

3.2. LEMME. - IfT-r : 0 —> Ql(V(k)) is faithful, and the characteristic p of k satisfies

(3.2,1) ^ > .«;>(,),

then the exponential map from Ql(V(k)) to GL(V(K)) is defined for any element Y G Qx o+
(x G B^.

We will mainly use this in the case when r is the adjoint representation, in which case
exp(s^,o+) = P.r,o+.

3.3. Let ^ be an additive character of the p-adic field which is trivial on p but not
on o. The character -0 induces naturally a nontrivial additive character of the residue field
Fg = o/p. We shall denote both characters by ^. The Fourier transform

FT,(/)(^) = f(x) = ( ^x^x^f^dx'
^9

is related to thermite field Fourier transform as follows. Given a function / on Qx o/Sa; o+.
we denote by / its lift to 0^0- We have

(3-3-1) FT,(/) = vol(fi^)FT^(/).

We shall need to evaluate the nilpotent orbital integrals of the inflated functions /. Suppose
N ' is a nilpotent element in Q and / is a function on Q which is supported on Q^ o and
constant on cosets of 0^o+. The orbital integral of /with respect to the orbit 0' = 0 ( N ' )
can be written as

(3-3-2) ( f(y)dy=^ [ f(Y)dy
Jo' Y Jo'nY

I

-E /(n^^nv)
y

where ̂  is the sum over the cosets Y = y + fi^o+ C g^,o and ^' is the sum over those
cosets whose image in the Lie algebra m^ = mf = Qx,o/Qx,o+ is nilpotent. Here and in
the later sections we let ^o denote a nonzero invariant measure supported on the orbit
of 0. The normalization will not be so important for us, except perhaps in the example
at the end of the paper.

3.4. We find it very useful to make a connection between nilpotent elements in Q and
those in the Lie algebras m^ attached to a point x G Bk. As mentioned in the introduction,
these results are related to results of Waldspurger in [Wb ]. Recall the Jacobson-Morozov
theorem. If TV is a nonzero nilpotent element in Q =Lie(C?)(fc), then there exists a nontrivial
homomorphism 0 :SL(2) —> G (with associated differential T^ : s 1(2) —> Q) such that
^)(e) = N.

4^^ SERIE - TOME 30 - 1997 - N° 5
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3.5. PROPOSITION. - Let (j) :SL{2) —> G be a nontrivial homomorphism defined over k,
and let J = ^(5L(2, OA.)). Then

(1) There exists a minimal parahoric subgroup Px (x G Bk) containing J.
(2) IfPx and Py (x,y G Bk) are two minimal parahoric subgroups containing J, then

the natural maps from Px Ft Py to Ma. and My are both surjective. In particular, Px
and Py are associate parahoric subgroups (in the sense of [MPa:5.1]).

Proof. - Consider the action of the compact group JK = JxGol{K/k) on the building
BK- By Bruhat-Tits theory, the fixed point set F = B^ (a subset of Bk) is nonempty.
The set F is convex, a union of facets and J C Px for any x G F. Furthermore, Vy,
is a minimal parahoric subgroup containing J precisely if the facet determined by x,
i.e. the facet of smallest dimension containing rr, is maximal, i.e. not contained in a facet
of strictly larger dimension. To proceed with the proof of part (2), we introduce some
notation and prove a lemma.

Define a linear simplex of dimension r in an Euclidean space E to be the convex closure
of r + 1 points in general position, i.e. the r + 1 points do not lie in an (r — 1)-dimensional
affine subspace. If S is an r-dimensional linear simplex, let A (5) be the smallest affine
subspace containing S. The dimension of A(5') is r.

3.6. LEMMA. - Suppose F is a convex subset of an Euclidean space E and suppose F
has a (locally finite) cellular decomposition by linear simplicies. If S is a simplex in the
cellular decomposition with the property that S is not properly contained in any larger
simplex of F, then F C A(5).

Proof of Lemma. - Suppose F ^ A(S). Choose x C F — A{S). Since F is convex, it
contains the convex closure of 5' and x. This implies S is contained in a (strictly) larger
simplex of F, a contradiction. Hence F C A(S). D

Suppose *5'i and 62 are two maximal facets of the convex set F = B^. Let A be an
apartment in BK which contains both S^ and S^ and consider the convex set FA which
is the intersection of -F with A. We note that A, see section 3.1 of [MPb], corresponds
to a maximal AT-split torus T of G which is defined over k. Let A(5i) and A(5'2) be
the smallest affine subspaces of A containing 5i and S^ respectively. By Lemma 3.6, we
conclude that i) A{S^} = A(S'z) (call this common affine subspace A'), ii) that FA C A'
and iii) 5'i and ^2 are open subsets of A ' . As in section 6.1 of [MPb], if z G A, then
M^ is generated by the image of the maximal compact subgroup T& of the K-sp\it torus
associated to A and the affine root groups Ua such that a(z) = 0. Since x and y are in
the interiors of maximal facets of A', it it follows that a{x) = 0 if and only if a(y) = 0
and therefore the natural maps from P^ H Py to Ma; and My are onto. This proves part
(2) of the proposition. D

As an important corollary of Proposition 3.5, we have

3.7. COROLLARY. - Given a nonzero nilpotent element N G Q, let N = e, h^ f be a 51(2)
triple associated to N. There exists a point x G Bk so that

(1) e, h^ f G Sa-,o» ana tne images of e^ h^ f in m-a. = Qx,o/Qx o+ generate a 5l(2) triple
in m^

(2) Among those parahoric subgroups Px' such that fla^o satisfies (1), Py, is minimal.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



560 D. BARBASCH AND A. MOY

(3) If Py is another parahoric subgroup minimal among those parahoric subgroup for
which Qy^o satisfies (1), then Py, and Py are associates.

Corollary 3.7 allows us to associate to any nilpotent orbit in Q a unique associate class
of parahoric subgroups. In the converse direction to Corollary 3.7, we have

3.8. PROPOSITION. - Given an s 1(2) triple (defined over P q ) 'e,~h,~f in m^, there is a lift
to a 5((2) triple e ^ h ^ f in Q.

Proof. - We mimic the proof of the Jacobson-Morozov theorem in [Ko]. We will use
the following variant of Nakayama's Lemma.

3.9. LEMMA. - Suppose V and W are o -lattices, i.e. free finite rank o -modules and

A : V —> W is an o—module map

such that the quotient map

A: V/pV —> W/pW is surjective.

Then, A is surjective.

We first show that e lifts to a nilpotent element e' e Qx,o' Let Gi be the 1-parameter
(multiplicative) subgroup in M^ so that ~h lies in the Lie algebra Lie(Gi). Lift Gi to a
1-parameter fe-subgroup Gi of G so that C?i(0fc) = Gi(fe) DP^, and identify the (algebraic)
characters of Gi and Gi. Let fi(%) be the %-th weight space (% G T) for Gi under Ad. Let
Qx,o(z) = Q{i) H 0^0 and ^,o+00 = Q(i) H Q^^+. Note that

Qx^o = Q) Qx,o{i)
i

and similarly for 0^o+- Choose an e' e 0.r,o(2) whose image is e. Note that e is nilpotent.
It is the desired nilpotent lift of e.

Let m be the smallest nonnegative integer so that (ade')77^1 = 0. An application of
Nakayama's lemma shows that ad(e')2 maps g^,o(-2) onto 0;z,,o(2). In particular there is
an // e ^,-2(0) such that ad^)2^) = e ' . Let h11 = [ f ' , e ' } . By the proof of Lemma
3.4 in [Ko], the ad eigenvalues of h" on Cent^ Je') are i / 2 with 0 <, i < m. If the
characteristic p is large enough^m particular ifp satisfies (2.1.1) for all the simple factors of
rria,, then we conclude that ad{h") +1 is nonsingular. By Nakayama's lemma, we conclude
that ad{h") 4-1 is onto when restricted to Cent^ Je'). This is Corollary 3.4 in [Koj. Then
the proof of Theorem 3.4 in [Ko] applies and we find the desired triple e, h, f. D

Remark. - Propositions 3.5 and 3.8 give a classification of the unipotent orbits of G in
terms of associate classes of parahoric subgroups Py, and unipotent orbits in Ma,.

3.10. For an arbitrary element Y G 0^o (= 9x,o H 3), denote by Y the image in mf.
Consider e, h, f, an sl(2) triple as in the first part of Corollary 3.7. Let g(z) be the z-th
weight space of the element h, and fl(< i) be the sum of the eigenspaces with eigenvalues
< i. Note that any ^^ is a direct sum of the spaces Qx,r,{z) = Q{i) H g^ . Since
we are assuming that p satisfies (2.1.1) for all the simple factors of m^, it follows that
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the representations of sl(2)(F^) occuring in 6x^/^Qx,o behave as in the characteristic
zero theory - an irreducible representation is multiplicity free on restriction to the Cartan
subalgebra determined by h. Also, e (resp. /) acts as a raising (resp. lowering) operator.

3.11. LEMMA. - Suppose that X = e - ^ - z + w ( z ^ fl;r,o(< 0), w € Qx,rJ- Then there
exists g C Px such that Ad(g)X = e + z ' where z ' € fla^o^ 0) ^d z ' = z mod fl^n.

Proof. - For any index r*y, the quotient L = Qx,r,/Qx,rj+^ is a s^-module. Let
L(i) = [x € L|[h,a:] = ix} be the z-th weight space of h in L. Define L(< 0) and
L{> 0) in the obvious way. A simple calculation shows that given Y e £(> 0), there
exists a U G L such that

(3.11.1) ad{e + ^)(E/) = ymodulo£(< 0).

Claim. If 7^ > 0, then any element X = e + z' + w7 with z ' e Qx,o(< 0) and
^/ e Qx,r (> 0) can be conjugated by an element g € Px,r, so that Ad(^)(X) = e+^'+w"
with z" e S.r,o(< 0) and w" e 0;r,r,-+r

Indeed, choose U C fl;c,r, so that ad(e+^)(U) = -w' modulo Qx,r,(< 0) + 0;r,r,+r It
follows that Ad(exp(l/))(X) has the required property stated in the claim. The proof of
the lemma now follows from the claim and a standard Hensel's lemma argument. D

3.1.2. PROPOSITION. - IfX = e + z ' as in Lemma 3.11 is nilpotent, then e G 0(X).

Proof. - Let \x '• Gm —^ G be a one parameter subgroup so that Ad(\x(t))X = t2X.
The element h also determines a one parameter subgroup A : Gm —^ G whose weight
spaces are the s(z)'s. Write X = e + ̂ <o zi where ^ e fl^o,^ we have

A^A^-^A^AxW)^) = Ad^t-^X)
= e+Vt2-^^E^

i<0

As t —^ 0, we conclude e lies in the closure of the adjoint orbit of X. D

3.13. COROLLARY. - Suppose X G e + fl.r,o+ ^ nilpotent. Then e G O^).
3.14. In this section we work over the field K. We identify the residue field of K

with Fg. Suppose e ^ h ^ f is an sl(2) triple as in the first part of Proposition 3.6. Then
for an arbitrary element in z G Qx,o. denote by ~z its image in m^. We denote by Sa. the
analogue of (2.5.1), namely,

S,=e+C^(7).

Because adh has only integer eigenvalues, the inverse image of Sa. is contained in

^^Qx,o^) + Qx,o+'^x,o\
i<0

3.15. LBMMA. - Consider the map

^ : M^ x ̂  —> m^, ^{g,z) = Ad{g)(z).

Then there exists a Zariski open set U containing e, -which is in the image ofi^.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE
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Proof. - The map ^ is smooth with differential T-e^ which is onto, and all the varieties
in question are nonsingular. D

3.16. PROPOSITION. - Suppose Y = y + Qx,o+ ^ a nilpotent coset and that the closure of
the adjoint orbit ofY in rria. contains e. IfX G y + Qx,o+ is nilpotent, then e G 0(X)(K)
(the closure is taken in the p-adic topology).

Proof. - This is an application of Proposition 3.5. By the assumption, the orbit 0(Y)
must meet every Zariski open set containing e. By Lemma 3.15, there is a ~g E Mf and
~z G S such that Y = ~g(e + ~z). Thus we may replace Y by a conjugate (under Pa.) such
that y = e-^-'z. By Lemma 3.11, we can find a representative ?/ G Y of the form ?/ = e + ̂ ,
where z G Sa^o^ 0). Thus Proposition 3.12 applies and we get the desired result. D

4. The main theorem

4.1 An element u G G(fc) (resp. n e 5) is called topologically unipotent
(resp. topologically nilpotent) if u is contained in some Px,o+j (resp. n is contained
in some Qx,o+)- I11 particular, lim u^ = 1 (resp. lim ad^n)^ = 0). Observe also

m—>oo m—>oo
that if T : G(k) —> GL(V{k)) is a faithful rational representation of G(k) and (3.2.1)
is satisfied, then the exponential map from Ql(V(k)) to GL(V(k)) is defined on the
topologically nilpotent elements and it (the exponential) maps the topologically nilpotent
elements to the topologically unipotent elements of G{k).

4.2. We recall now the main result in [Wa]. Let G be a group of the type F as in
[Wa:II.l] (essentially a quotient of a product of groups of classical type associated to
self-dual lattices). Attached to such a group are positive integers e(G) and d(G) [Wa:II.l],
as well as a set of primes P(G).

4.3. THEOREM. - ([Wa:1.3]) Suppose that p is a prime number satisfying

p i P(G), p > 2d(G)e(G)(2d{G) + 1) and val^p) < p^'

Let (TT, V^) be an irreducible admissible representation such that V^ "''^ / {0} for some
parahoric subgroup Px- Then, the local character expansion

e,(expX)=^(7r)Ao(X)
0

is valid for all regular topologically nilpotent elements X G 0.
4.4. We shall now assume the following conditions on the characteristic p of the field k.
(1) p satisfies the conditions of Theorem 4.3,
(2) p satisfies Lemma 3.3.2 with p the adjoint representation,
(3) p satisfies the condition of §2.1 for all M^.
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4.5. THEOREM. - Under the hypothesis that the characteristic pofk satisfies 4.4, suppose
that e,h,f G Qx,o+ ^ an s((2) triple. Let fx,o be the character of the generalized
Gelfand-Graev representation ofM^ = Px,o/'Px,o+ attached to e G m^. Then

(1) fx,o ls supported on the topologically unipotent set,
(2) jjio'{fx,o} = 0 unless 0 lies in the closure 0 ' .
(3) Suppose Oi and 0^ are two nilpotent orbits in Q which belong to the same nilpotent

orbit in Q.
i) If 0\ and 0^ are distinct in Q, then JioAfx.o^} = 0-

ii) Z/Oi = 02 = 0 in 5, then fto(fx,o) / 0.
(4) For any irreducible smooth admissible representation TT,

©7r(/.r,o) = ̂  rn^(a)(f^^o^)
<r6Mf

where m^(a) (resp. (fx,o^)) is the multiplicity of a in TT (resp. fx,o)'
In statements (2) and (3), for ease of notation, we have denoted by /^o, the function

on the Lie algebra Q obtained from fx,o via the exponential map.

Proof. - Let F-g denote the generalized Gelfand-Graev character of <Pa•,o//P:E,o+ attached
to e € mf, so that fx,o = IV Statement (1) is part (4) of Proposition 2.4. To prove part (2),
we need to show ^/(FT^/a.^)) = 0 unless 0 C 0 ' . By the calculations in section 3.3,

(4.5.1) /^(FT,(/^)) = vol(s.,o+)^ /(FT^^^(y)^/(o /ny)
y

Note that ^o^O'HV) 7^ 0 precisely when the intersection O'^Y ^ 0. Suppose y e 0'C\Y.
By Proposition 2.7 (1), (FT^^r^)(V) / 0 only if 0M,(e) is contained in the closure of
OM^(Y)- Hence, by Proposition 3.16, the product

(FT^iv)(y)/^(o'ny)

is non zero only when 0 is contained in the closure of 0 ' . This proves (2). In regards to
(3), part i) follows from Proposition 2.7 (2). To show (3ii), observe that the sum in (4.5.1)
is over the Mf conjugates of e. There are [Mf : C^F(e)} such conjugates. The value of
(FT^F^) at these elements is, by Proposition 2.7 (3), q^^C^^. Whence,

Mfx,o) = ^(FTg(^o))

= vol(0,,o+) [Mf : C^{e)} q^ \C^(e)\ /^(One+s,^)

= q^ vol(P,,o) tio{0 n e + Q^+)

Statement (4) is immediate. D
4.6. Let Oi, 02» • • • » Ora be the fc-rational nilpotent conjugacy classes in 5, and let -<

be the partial ordering 0 -< 0' if 0 is contained in the closure of 0 ' . Choose ei G Oi
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and an 5l(2) triple e^/ii,/^. By Proposition 3.5, we can select a point Xi G Bk so that
Gi, hi^ fi G Qx^o'

Let fxi,0z be as in Theorem 4.5. Let

(4.6.1) 9, = ̂ coWo
o

be the local character expansion of Q^. Each of the functions fx^d ls supported in
the topologically unipotent set. They can therefore be used as test functions in the local
character expansion (4.6.1). This leads to an invertible triangular linear system with the
GO, (^'s as the unknowns. In particular, c^ (TT) can be obtained by using the test functions
fx^o. with 0, > 0,.

4.7. COROLLARY. - The complete local character expansion of a depth 0 representation
can be computed via the fx^o^8'

5. Wave front set

5.1 Assume the characteristic p of k satisfies the conditions of section 4.4. Recall that
the Fourier transform jio of a nilpotent orbit 0 satisfies the homogeneity condition

(5.1.1) Ao(^) = M-^AoW
If a; is a point in B^, r G R and i is defined as in [MPa] (i = 1 if G is split), then
Qx,r+(, = ^Qx,r' For r > 0, we have Vx,r is the image of flo,r under the exponential
map. It will be useful to only consider r equal to some T^. Let l^.n be the characteristic
function of Px,n- When the context is clear we also let la.^ denote the characteristic
function of So,n. If (^^Tr) is an arbitrary admissible representation of G(k), the local
character expansion ©71- = ^^> co(^}^o will be valid in a small neighborhood of the
identity and thus for r^ sufficiently large

vol(P^)dimy^ =©.(low)

= ̂  Co(7r) Ao(l.c,rJ

0

Suppose m is a natural integer. By the homogeneity condition (5.1.1), we have

^0^x,2rn&) = Vol(0^2m^)Ao(l^,o).

Hence, dm v^2^ = ̂  r^^TOAoa^o)
0

In particular, the growth (as a function in m) of the dimension of the spaces y^^rr^ [^
governed by the orbits 0 of maximal dimension whose coefficients CQ are non zero. The set

WF(7T) = [j -^ 0

c.(0)^0
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is called the wave front set of TT. Thus, the dimension of the wave front set governs the
growth of the spaces y^277^.

Define a nilpotent orbit 0 to be a wave front set nilpotent for TT if 0 is an open subset
of WF(7r). In such a situation, choose e e 0 and fx,o as in 4.5. If 0' is a strictly larger
nilpotent orbit than 0, by the definition of WF(^}, we have c^(O') = 0. Hence,

©.(/.,o) = co(7^)gr^vol(P,,o)^(One+0,,o+)

This means a wave front nilpotent 0 forces TT to contain a representation a of /P;z;,o/^:?c,o+
which appears in the generalized Gelfand-Graev representation T-e.

5.2, PROPOSITION. - The "wave front set of a smooth admissible representation TV of depth
zero can be determined from the -wave front sets of the finite field representations.

6. An example

We give an example of the technique. Assume p / 2 and let E be the unramified
quadratic extension of k. Let G be the unitary group associated to the hermitian form in
three variables given by 2rr_i^r + XQXQ. Let

i) 0(Nr) be the regular nilpotent class,
ii) 0(Nu) and 0{N^) be the two subregular classes (we choose 0(Nu) so that there

exists N e 0(Nu) whose image in Lie(G)(Fg) is a subregular nilpotent),
iii) NQ the trivial class.

Normalize Haar measure on G(k) so that the measure of an Iwahori subgroup is equal
to ( -L?v~i-i-iv Normalize the invariant measure on a nilpotent orbit 0 so that if N G 0
and r^v is the associated generalized Gelfand-Graev representation, then ^o(r^v) == 1.
With these normalizations, the coefficient, Co, of a wave front set orbit 0 is an integer
equal to the dimension of generalized Whittaker functionals associated to 0 [MW]. If
TT is a square integrable representation, the coefficient of the trivial orbit in the local
character expansion of Q^ is equal to the negative of the formal degree of TT, e.g. with
these normalizations, the formal degree of the Steinberg representation is 1 and its local
character expansion is jlr — Ao-

The following table lists the nilpotent orbital integrals for the four associated generalized
Gelfand-Graev representations.

^Nr ^N^ r^ r^o
Nr 1 q 1 ^+1

N 0 1 0 ^3+1^2
ivn u 1 u (^iX^+i)

N 0 0 1 (g^1)^-1)2V^ U U 1 (q4-!)

NQ 0 0 0 1
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Given this table, it is easy to compute the local character expansion of various depth zero
representations. As two particularly interesting representation, we have

(1) Let ©10 be the character of the supercuspidal representation induced from the
irreducible cuspidal unipotent 0io representation of G(Fq) inflated to K = G(0k)'
In particular, the formal degree of ©10 is equal to the degree of 0io divided by the
measure of K. The representation @io does not have a finite field Whittaker model;
therefore, by Proposition 5.5.2, neither does ©10 and so the coefficient of ftr in the
local character expansion is 0. We see that

q{q2 - 1)
^-1

©10 — Au ~ ——4 _ -,—AO-

(2) Let QDS be the character of a non Steinberg discrete series representation TT
which possesses a nonzero Iwahori fixed vector. The representation TT has a unique
Whittaker model, i.e. CQ{N^ = 1. Let K ' be a maximal compact subgroup of G
not conjugate to K and let KQ_^_ be as in [MPb]. The space of K^ -fixed vectors
in TT is q dimensional. We have

QDS = Ar - Aw - ——4———I—AO-
q4 - 1

It is known that ©10 and QDS form an L-packet, and we have been informed by
Kottwitz that fir, Au ~~ Aw an(! Ao are a^ stable distributions.

Note. - After this manuscript was submitted, Waldspurger announced that he had
determined the stable combinations of nilpotent orbital integrals for classical groups.
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