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SYMPLECTIC RIGIDITY OF GEODESIC
FLOWS ON TWO-STEP NILMANIFOLDS

By CaroLYN S. GORDON, YirING MAO anp DoroTHEE SCHUETH

ABSTRACT. — We show that if two 2-step Riemannian nilmanifolds have symplectically conjugate geodesic flows,
then they must be isometric. By 2-step Riemannian nilmanifold, we mean a Riemannian manifold of the form
(T\N, g), where N is a 2-step nilpotent Lie group, I' is a cocompact discrete subgroup of N, and g is a metric
whose pullback to N is left invariant.

RESUME. — On montre que si les flots géodésiques de deux nilvariétés riemanniennes de rang deux sont conjugués
par un symplectomorphisme, alors les deux variétés sont nécessairement isométriques. Une nilvariété riemannienne
de rang deux est une variété riemannienne de la forme (I'\V,g) ol N est un groupe de Lie nilpotent de rang
deux, I' est un sous-groupe discret et cocompact de N, et g est une métrique induite par une métrique invariante
a gauche sur N,

Introduction

Two compact Riemannian manifolds M; and M, are said to have symplectically
conjugate geodesic flows if there exists a symplectomorphism F : T*M;\{0} —
T*M,\{0} which intertwines the geodesic flows G! and G% of M; and M, i.e., such
that F o G} = G% o F for all ¢.

In this article, we consider compact 2-step Riemannian nilmanifolds. A Riemannian
nilmanifold is a quotient I'\ N of a simply-connected nilpotent Lie group N by a discrete
subgroup I' together with a Riemannian metric whose lift to N is left-invariant. We say
T\N is a k-step nilmanifold if N is k-step nilpotent.

THEOREM. — If M; and M, are compact 2-step Riemannian nilmanifolds with
symplectically conjugate geodesic flows, then My and M, are isometric.

Our interest in this question is motivated in part by a consideration of the relationship
between the geodesic flow of a Riemannian manifold (the classical dynamics) and the
Laplacian of the manifold (the quantum dynamics). Two compact Riemannian manifolds
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418 C. S. GORDON, Y. MAO AND D. SCHUETH

are said to be isospectral if the associated Laplacians have the same eigenvalue spectrum.
Many compact Riemannian nilmanifolds (including many 2-step nilmanifolds) admit
continuous families of isospectral, non-isometric Riemannian metrics ((GW]). The Main
Theorem implies that in the 2-step case, these metrics never have symplectically conjugate
geodesic flows. On the other hand, R. Kuwabara [Ku] showed that the geodesic flows
of these isospectral nilmanifolds, when restricted to suitable open dense subsets of
the cotangent bundles, are symplectically conjugate. F. Marhuenda [Ma] studied these
isospectral deformations microlocally, examining the operators intertwining the Laplacians.
We briefly describe his results here. Given a pair of Riemannian manifolds M; and M, and
the associated symplectic structures w;, w» on their cotangent bundles, define a symplectic
structure on 7* M7\ {0} x T* M5\{0} by w = w; —ws. A canonical relation is a Lagrangian
submanifold C of T*M;\{0} x T* M>\{0}. Note that if C' is actually the graph of a function
F : T*M;\{0} — T*M,\{0}, then F must be a symplectomorphism. Hérmander’s theory
associates canonical relations with Fourier integral operators. Marhuenda showed for some
of the above deformations {M,}; that the Laplacians of the isospectral manifolds M,
and M, are intertwined by a type of singular Fourier integral operator for each ¢. These
operators are associated with canonical relations on T*M,\{0} x T*M,\{0} which, off a
hypersurface in each cotangent bundle, are graphs of symplectic maps. These maps must
again intertwine the geodesic flows.

The Main Theorem is not true for arbitrary Riemannian manifolds. A. Weinstein [We]
exhibited Zoll surfaces of non-constant curvature whose geodesic flows are symplectically
conjugate to that of the round sphere.

One can also consider weaker notions of geodesic conjugacy by requiring that the
geodesic conjugacy F be only a C*-diffeomorphism as opposed to a symplectomorphism.
For example, any closed surface whose geodesic flow is C°-conjugate to that of a negatively
curved surface must be isometric to that surface ([CFF]).

This article is a companion to the paper [GM2] in which it is shown that for some
large classes of 2-step compact Riemannian nilmanifolds M, any Riemannian nilmanifold
whose geodesic flow is C2%-conjugate to that of M must be isometric to M. We expect
that this actually holds for arbitrary 2-step compact Riemannian nilmanifolds. However,
the proof in [GM2] is quite technical and involves a careful analysis of the behavior of the
geodesics. By assuming symplectic conjugacy, we not only remove the extra hypotheses
but also obtain a more elegant proof.

We note that the 1-step nilmanifolds are precisely the flat tori. In this case it is well-
known that the analog of the Main Theorem holds even if the geodesic flows are only
assumed to be C°-conjugate.

This paper is organized as follows: In §1 (Background), we describe a family of
automorphisms, called almost inner automorphisms, of nilpotent Lie groups which were
first used in [GW] to construct isospectral nilmanifolds. We then recall a theorem of P.
Eberlein [Eb] stating that if a pair of 2-step nilmanifolds have the same marked length
spectrum (this will always be the case if their geodesic flows are conjugate), then they
must be of the form (I"'\V, g) and (®(I")\ N, g) for some almost inner automorphism &
of N. The manifolds will be isometric if the automorphism is actually inner. Finally we
review a result of [GM2] concerning geodesic conjugacies between 2-step nilmanifolds.
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SYMPLECTIC RIGIDITY OF GEODESIC FLOWS 419

In §2, we begin our study of 2-step nilmanifolds with symplectically conjugate flows and
show that the associated almost inner automorphism ® must satisfy a certain additional
condition. Thus the Main Theorem is reduced to an algebraic problem: to show that the
only almost inner automorphisms satisfying this additonal condition are inner.

In §3 we resolve this question by a Lie algebra cohomology argument.

1. Background

A Riemannian nilmanifold is a quotient M = I'\N of a nilpotent Lie group N by a
discrete subgroup I', together with a Riemannian metric g whose lift to N, also denoted
by g, is left invariant. We say that T\ N is a k-step nilmanifold if N is k-step nilpotent.

1.1. NOTATION AND REMARKS.

(i) Let N be a simply-connected 2-step nilpotent Lie group with a left invariant
metric g. The metric g defines an inner product (.,.) on the Lie algebra N of N. We
will denote by Z the derived algebra Z = [N, N] and denote by V the orthogonal
complement of Z in N relative to (.,.). Since N is nilpotent, the Lie group exponential
map exp : N — N is a diffeomorphism; its inverse is denoted by log.

(ii) For left-invariant vector fields X,Y, U the Levi-Civita connection satisfies

(The remaining three terms in the usual expression for V vanish since the metric is left
invariant.) In particular, (Vx X, U) = ([U, X], X), so the integral curves nexp(tX) of X
are geodesics if and only if [X, N] L X. Observe that this condition always holds when
X eVo X € Z

1.2. COCOMPACT DISCRETE SUBGROUPS. — A nilpotent Lie group N admits a cocompact
discrete subgroup I' if and only if the Lie algebra A/ admits a basis relative to which
the constants of structure are rational. If I" is a cocompact discrete subgroup, then one
can choose such a basis which consists of elements of logT'. Let Nq = spang(logT).
Elements of ./\/Q are said to be rational elements of A/, and a Lie subalgebra H of N
is called rational if it is spanned by rational elements. Note that the notion of rationality
depends on I'. If H = exp H is a connected Lie subgroup of N with rational Lie algebra
‘H, then I' N H is a cocompact discrete subgroup of H. The derived algebra Z is always
rational. Moreover, the image of logI" under the projection from N to N'/Z generates a
lattice of full rank in A//Z; in the 2-step case, this image is actually a lattice itself.

1.3. DEFINITION.

(i) Let I" be a uniform discrete subgroup of a simply-connected nilpotent Lie group V.
An automorphism ® of N is said to be T'-almost inner if ®() is conjugate to v for all
7 € I'. The automorphism is said to be almost inner if ®(z) is conjugate to z for all z € N.

(ii) A derivation ¢ of the Lie algebra N is said to be I'-almost inner, respectively almost
inner, if o(X) € [N, X] for all X € logT, respectively, for all X € N.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



420 C. S. GORDON, Y. MAO AND D. SCHUETH

1.4. Remark (See [GW], [Gol.)

(1) The I'-almost inner automorphisms and the almost inner automorphisms form
connected Lie subgroups of Aut(/V). In many cases, these groups properly contain the
group Inn(NV) of inner automorphisms. The spaces of I'-almost inner (respectively, almost
inner) derivations of N are the Lie algebras of these groups of automorphisms. In particular,
if ¢ is a (I'-)almost inner derivation, then there exists a one-parameter family ®; of (I'-)
almost inner automorphisms of N such that ®;, = ¢'?. Conversely, if ® is a (I'-)almost
inner automorphism of N, then ®, = e¥ for some (I'-)almost inner derivation of A/

(ii) Note that a I'-almost inner derivation ¢ satisfies p(N) C [N, N] and ¢(Z) = 0 if
Z is central. In particular, if N is 2-step nilpotent, then (letting Z = [N, ] as before),
we have (N) C Z and p(Z) = {0}, so ¢? = 0. Thus e'¥ = Id + tp.

The notion of almost inner automorphisms first arose in the construction of continuous
families of isospectral nilmanifolds [GW]. If (I'\ V, g) is a compact Riemannian nilmanifold
and @ is a I'-almost inner automorphism of N, then (®(I")\ N, g) is isospectral to (I'\ NV, g).
Conversely (see [OP]), if N is 2-step nilpotent and if {I';};>¢ is a continuous family of
discrete subgroups of N such that the family of manifolds (I';\ NV, g) are all isospectral,
then there exists a family {®,};>¢ of I'p-almost inner automorphisms of N such that
Iy = &,(I) for all ¢.

1.5. REMARK. — If @ is an inner automorphism of N, say ® is conjugation by a € N,
then (®(T')\N,g) is isometric to (I'\N, g). The isometry is induced from the isometry
L, of (N,g) given by left translation.

We now consider compact Riemannian nilmanifolds with conjugate geodesic flows.

1.6. NOTATION AND REMARKS.
(i) The left invariant vector fields on N induce global vector fields on I'\/N. Thus

the tangent bundles of both N and I'\N are completely parallelizable, and we will make
the identifications

TN =N x N,
T(T\N) =T\N x N.

(ii) For convenience, we are viewing the geodesic flows on the tangent bundles rather
than the cotangent bundles as in the introduction. Suppose that (I'\ IV, g) and (I"\N’, ¢)
are two compact 2-step Riemannian nilmanifolds and that there is a homeomorphism
F : T(P\N)\{0} — T(I"\N')\{0} which intertwines their geodesic flows. By (i), we
can write

F 2 TAN > (M\{0}) — I'AN x (N"\{0}).

Consider the universal coverings 7 : N x (M\{0}) — T\N x (M\{0}), =’

N’ x (N'\{0}) — I"\N’ x (N"\{0}). Choose an arbitrary lift F : N x (M\{0}) —
N’ x (N'\{0}) of F, i.e., a map which satisfies 7' o F' = F o 7. Note that the group of
deck transformations of « consists of the left translations dL., : (n,U) — (yn,U) with
~v € I', and similarly for #’. Thus to every v € I' belongs a unique " € T” such that
FodL,=dLy,oF, and v — 4 is an isomorphism which we denote by F, : I' — I".
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SYMPLECTIC RIGIDITY OF GEODESIC FLOWS 421

Note that F intertwines the geodesic flows of (N, g) and (N'. g') since F' does so on the
quotients. This, together with F' o dL., = dLp_(y) o F', implies that the isomorphism F,
induces a marking of the length spectra of (I'\ IV, g) and (I""\ \", ¢’), that is, the collection
of lengths of closed geodesics in (I'\V, g) which belong to the free homotopy class [v]r
is the same as the collection of lengths of closed geodesics in (IY\NN’, g’) belonging to

[F* (7)]F’ .

1.7. ProposiTioN ([Eb]). — Suppose (I'\N,g) and (I'\N',g') are compact 2-step
Riemannian nilmanifolds, and F, : T' — I" is an isomorphism which induces a marking
between their length spectra. Then there exists a 1'-almost inner automorphism ® of N
and an isometric isomorphism VU : (N,g) — (N',g") with U(®(T")) = I' such that
F, = \Illq)(l'\) [} (I)ll—“

1.8. NOTATION AND REMARKS.

(i) Let F" and F, be as in 1.6(ii), and let ® and ¥ be as in 1.7 with F, = ‘I'|<I>(I‘) oQp.
Then ¥ induces an isometry, also denoted ¥, from (®(I')\V, g) to (F’ \N',¢’), so we may
replace (I"\N', ¢') by (®(I")\ N, g) Moreover, we replace F by W 1oF : T(T'\N)\{0} —

T(®(T)\N)\{0} and F by ¥;' o F : TN\{0} — TN\{0}. The new F is a geodesic
conjugacy from (T'\N,g) to (@( )\, g), and the new

F : TN\{0} — TN\{0}
is a lift of F which satisfies
(1) FodL,=dLy.yoF
for all v € T'. Also, denoting by G* the geodesic flow of (N, g), we have
(2) FoGt=G!oF.

(ii) By Remark 1.4, there exists a I'-almost inner derivation of A/, which we denote by ¢,
such that the differential ®, : N' — N is given by ®, = Id + . We have ¢(Z) = {0}
and (V) C Z.

1.9. ProposiTioN ([GM2]). — Let (I'\N, g) be a compact 2-step Riemannian nilmanifold,
and let ® be a T'-almost inner automorphism of N. Suppose F' : TN\{0} — TN\{0}
satisfies equations (1) and (2) from 1.8 (i) Then, using the notation from 1.6 (i):

F(N x {U}) =N x {U}

for all U € V\{0} or U € Z\{0}.

We do not repeat the proof here but roughly sketch the main idea. For U € Z or
U € V, the integral curves of the left invariant vector field U on N are geodesics (see
1.1(i1)); equivalently, for n € N, the curves (nexp(tU),U) are orbits of the geodesic
flow of (N,g). If U € Z and U is rational (see 1.2), then these orbits are closed in I'\ IV
and are exactly the longest closed orbits in their free homotopy class. Note that ®, being
I'-almost inner, fixes central homotopy classes, hence by (1) and (2), the aforementioned
orbits are carried to orbits of the same form. Since the rational elements are dense in Z,
the proposition follows for all U € Z\{0}. A similar, though more complicated, argument
is used for the case U € V.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



422 C. S. GORDON, Y. MAO AND D. SCHUETH
2. Symplectic conjugacies and reduction of the problem

2.1. SYMPLECTIC STRUCTURE. — For every manifold there is a canonical symplectic structure
on the cotangent bundle. A Riemannian metric allows us to view this as a symplectic
structure on the tangent bundle. As in 1.6(i), we identify TN with N x N. Thus for (n,U)
in TN, the tangent space T(,,u)(T'N) is identified with A" x NV. The canonical symplectic
structure w on TN associated with the Riemannian metric g is then given by

@), 7)((X, 8), (¥, T)) = (8,Y) = (T, X) = (U, [X, Y]).

2.2. PROPOSITION. — We assume F is as in 1.8(1), and write
F(n,U) = (exp(A(n,U) + B(n,U))n, C(n,U))

with A(n,U) € Z, B(n,U) € V, and C(n,U) € N foralln € N, U € N\{0}. (See the
notation 1.1.) Suppose F' is a symplectomorphism. Then:
(i) B(n,V) is independent of n for each V € V\{0}.

(ii) Writing B(V)) = B(n,V) for V. € V\{0}, the differential dB|y : V — V is
symmetric for all V € V\{0}.

(iil) In the notation of 1.8(ii), we have o(V') = [B(V),V] for all V € V\{0}.

(Note that, in particular, ¢ is almost inner, not only I'-almost inner.

2.3. REMARK. — In reading the proof below, it is helpful to keep in mind that we
are identifying the tangent space at every point of N with the Lie algebra N of left
invariant vector fields on N as in 1.6(i). In particular, for a,b € N, the left translation
dL, : T,N — TN is identified with the identity map of N .

Proof of Proposition 2.2. — We first compute the differential dﬁ’|(n’ V)(X ,S) when
X eN,S eV, and V € V\{0}. By Proposition 1.9, we have

(3) F(n,V) = (f(n,V),V)
where f(n,V) = exp(A(n,V) + B(n,V))n. Thus we only need to find df|(n’ V)(X, S).
Recall (see [Eb], Lemma 1.3) that the differential of the exponential map is given by
dexp |Y(W) = (dLexpy)|e(W — LY, W]) for Y,W € N ie., with the identifications
described in Remark 2.3,
1

4 d = — = .
(4) exp |y (W) = W = 5[, W]
Next, letting R,, denote right translation by n € N, we have

d
(5)  df|(p, vy(X: 8) = |y = gexP(A(m, V) + B(n, V))nexp(tX)

The first term in (5) is just dLsn vy(X) = X by Remark 2.3. The second term is
more complicated. However, in what follows, we will need only the component of
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df|(n,v)(X, S) in V. Now, for any W € N, we have dR,, (W) = dL,(W) modulo Z,
and thus, modulo Z, dR,,(W) = W by Remark 2.3. Thus by equation (4) and Remark 2.3,
the V-component of the second term in (5) is dB|(n, V)(X ,S). Thus we have

(6) df|(y, 1)(X,8) = X +dB](, y)(X, §) mod Z.

(i) We now prove that B(n, V') does not depend on n for V' € V\{0}. Let X € N and

S € V. Since F' and hence also F' is a symplectomorphism we have by 2.1 that
(7 . .

By (3) and (6), dﬁ’|(n’ V)(X,0) = (W,0) where W = (X + dB|(,, 1/)(X, 0)) modulo £,
and dFI(n,V)(Ov S) = (U, S) for some U € N. Since V is orthogonal to the derived
algebra Z, we thus have

wlﬁ‘(n’V)(dpl(n,V)(Xa 0)7dF|(n7V)(O7S)) = _<W1 S) = _<X+dB|(’n,,V)(X’ 0),5).

Comparing this with equation (7), we see that dB|(n, V)(X ,0) =0 for all X € V. Thus
B(n,V) is independent of n and we can define B(V) := B(n, V).

(ii) To see that (dB|y)|y : V — V is symmetric for every V € V\{0}, let S,T € V.
By (3) and (6), dF‘(n’V)((),S) = (dB|y(S) + Z,S) for some Z € Z and similarly for
dF I(n, V)(O, T). Again using the fact that V' is orthogonal to the derived algebra, we have

0=w)(, 1)((0,5), (0., 7) = w|fs(y,. V)(dF|(n, (O, S),dﬁum 10, 7))
= (dBy/(T), S) — (dB|y/(S),T).

This completes the proof of (ii).

(iii) This is a special case of Proposition 2.10 in [GM2]; we give a condensed version
of the proof here. Equation (1) from 1.8(i) implies f(yn,V) = ®(v) - f(n,V) for f as
above and v € T, n € N. A short computation using the the fact that ¢(logvy) € Z and
the expression of f in terms of A, B shows that this implies

(8) A(yn, V) = A(n, V) = p(logy) — [B(V), log7].

It follows from 1.2 that the image of log I" under the orthogonal projection from A to V
is a lattice £ of full rank in V. Thus vectors V such that sV € L for some 0 # s € R
are dense in V. By smoothness of ¢ and B it suffices to prove (iii) for such V. Fix V of
this form. There exists s € R and z € exp Z such that

9) v:=zexp(sV) €.
For this ~, equation (8) becomes:

(10) A(yn, V) = A(n, V) = ¢(sV) = [B(V), sV]

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



424 C. S. GORDON, Y. MAO AND D. SCHUETH

since both ¢ and adB(V') vanish on Z. Since the right hand side of (10) is independent
of n, so is the left hand side. Thus H;(n) := A(n,V) and Hy(n) := A(yn,V) differ by
a constant. If we can show this constant difference to be zero, then (10) will imply (iii)
by linearity. By (8), Hy and /1, are (I' N exp Z)-periodic. Since I" N exp Z is cocompact
in exp Z, the two maps, restricted to exp Z, have well-defined average values H; and
H,, and it suffices to show that H; = H,.

By 1.1(Gi1), G*(n,U) = (nexp(sU),U) for U € V. Proposition 1.9 and (2) thus
imply f(nexp(sV),V) = f(n,V)exp(sV); in particular A(nexp(sV),V) = A(n,V).
Therefore, for z as in (9) and for all n € exp Z, we have Ha(n) = A(znexp(sV),V) =
H;i(zn). Hence, taking averages over exp Z, we obtain H; = H,. O

We have now reduced the Main Theorem to the following (recall Remark 1.5):

2.4. THEOREM. — Let N be a 2-step nilpotent Lie algebra with metric (.,.). Let
Z := [N,N], and denote by V the orthogonal complement of Z in N. Let ¢ be an
almost inner derivation of N. Suppose there exists a differentiable map B : V\{0} — V
such that the differentials dB|y, are symmetric with respect to (., .), and p(V) = [B(V), V]
for all V€ V\{0}. Then ¢ is an inner derivation.

This theorem will be proved in §3.

3. Proof of the Lie algebraic result

We first need some preparations.

3.1 DerINiTION. — Let (V,(.,.)) be a Euclidean vector space, and let B : V\{0} — V
be a differentiable map such that the differentials dB|y, are symmetric for every V € V.
An element J € so(V) is called B-admissible if the map

W0} 5V = (B(V),JV) €R

is linear in V (more precisely, if this map can be extended to a linear functional on V
by letting 0 — 0). In this case denote by L(J) € V the unique vector which satisfies
(B(V),JV) = (L(J),V) for all V € V\{0}.

A linear subspace J of so(V) is called B-admissible if every J € J is B-admissible.
Note that in this case the corresponding map L : J — V is linear.

3.2 LemMA. — Let J,J' € so(V) be B-admissible. Then for every V. € V\{0} the
following holds:

() dBly - JV = J - B(V) + L(J),

() (B(V),[J,J]- V)Y =(J-L(J) = J - L(J),V).

Proof.

(i) Differentiating the equation (B(V'), JV) = (L(J), V) with respect to V we get

(%) (dB)y -U,JV) +(B(V), JU) = (L(J),U)

for all V. € V\{0}, U € V. By the symmetry of dB|y and the skew-symmetry of J,
statement (i) follows.
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(ii) Letting U := J'V in equation (x) we get (dB|V ~J'V VY +(B(V),JJ'V) =
(L(J),J'V) for all V € V\{0}. Applying (i) to J' gives (J'- B(V) + L(J'),JV) +
(B(V),JJ'V) = (L(J),J'V). Statement (ii) now follows from the skew-symmetry of .J
and J'. O

3.3 COROLLARY. — Let J be a B-admissible linear subspage of so(V), and let J be
the Lie subalgebra of so(V) which is generated by J. Then J is B-admissible, too. The
corresponding linear map L : J — V satisfies

(@) L[, J']) = J - L(J") = J"- L(J)

for all J,J € J.

3.4. ProposITION. — If J is a B-admissible linear subspace of so(V) then there exists
a By € V such that

(E) L(Jy=J-By forallJe J.

Proof. — First suppose that there is an element V, € V\{0} such that JV, = 0 for all
J € J. In this case, Lemma 3.2(i) tells us that equation (E) holds for By := —B(Vj).
Hence we can assume that no nonzero element of ) is annihilated by 7.

Let J be the Lie algebra generated by 7. By Corollary 3.3, J is B-admissible, and
L:J — V satisfies equation (C). Note that in the language of Lie algebra cohomology of
the Lie algebra J with coefficients in the representation space V, this equation just says
that L is a 1-cocycle. On the other hand, the existence of a By € V such that equation (E)
holds for every J € J is equivalent to L being exact. But that L is indeed exact follows
from the well-known Lemma 3.5 below. Thus we know that there is a By € V which
satisfies (E) for every J € J, in particular for every J € J. O

3.5. LeMMA — For every subalgebra G of so()) which does not annihilate any nontrivial
subspace of V, the first cohomology group of G with coefficients in the representation
space V vanishes: H*(G;V) = 0.

We do not know an explicit reference for the statement in this specific form. However,
the proof of Whitehead’s Lemma in [Ja], p° 77ff., can easily be imitated here. Compare
also [OV], p° 16, Theorem 3.1. For the convenience of the reader we give an elementary
sketch of the proof at the end of this section.

Proof of Theorem 2.4. — For Z € Z, define Jz € so(V) by (JzX,Y) = (Z,[X,Y])
for all X,Y € V. Consider J := {Jz | Z € Z}. We know that (B(V),J;V) =
—([B(V),V],Z) = —(¢(V), Z) for every V € V\{0} and Z € Z. The last expression
is obviously linear in V, hence J is B-admissible. By Proposition 3.4 there is a
By € V such that (B(V),JzV) = (JzBo,V) for all V. e V\{0}, Z € Z. Thus
—(e(V),Z) = ([Bo,V],Z) for all V € V, Z € Z, which implies that ¢ = —adB
is an inner derivation. [

Proof of Lemma 3.5. — Consider the standard scalar product (J,J') := —tr(JJ’) on
so(V), and let {E,..., E,} be an orthonormal basis of G with respect to (.,.). Define
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the “Casimir operator”

C:=Y_ E} € End(V).

i=1

Using the facts that the E; form an orthonormal basis of G and that the maps adJ : 7 — J
are skew-symmetric with respect to (., .), one easily checks that C' commutes with every
J € G. Suppose the kernel V, of C' were nontrivial. Then 1, would be invariant under
every J € G. Note that 0 = tr(C|y,) = 3.2, tr((Eil),)?)- But the (E;|),)? are negative
semidefinite symmetric endomorphisms, hence by this equation their traces must all be zero,
and therefore Eih/o = 0 for all <. This implies that V, is annihilated by G, in contradiction
to our assumptions. Hence we know that C is nonsingular. Now let L : G — V be a
cocycle, i.e., L satisfies L([J,J']) = J - L(J") — J' - L(J) for all J,J’ € G. Define

By:=C™'-) E;- L(E;).
i=1

Using the linearity and the cocycle property of L and the facts that the F; form an
orthonormal basis, that the maps adJ : J — J are skew-symmetric, and that C' (and
therefore C~!) commutes with every J € G, it is easy to check that J - By = L(J) for
every J € G. Thus L is indeed exact. [
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