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THE HILBERT SCHEMES OF DEGREE THREE CURVES

BY SCOTT NOLLET

ABSTRACT. - In this paper we show that the Hilbert scheme H(3,g) of locally Cohen-Macaulay curves in P3

of degree three and genus g is connected. This is achieved by giving a classification of these curves, determining
the irreducible components of H(3,g), and giving certain specializations to show connectedness. As a byproduct,
we find that there are curves which lie in the closure of each irreducible component.

RESUME. - Le but de cet article est de montrer que Jf(3, g) (Ie schema de Hilbert des courbes localement de
Cohen-Macaulay de Fespace projectif P3 de degre 3 et de genre arithmetique g) est connexe pour toutes valeurs
de g < 1. Nous arrivons a cette conclusion en donnant une classification des courbes in H(3,g), determinant
les composantes irreductibles (il existe L1!"9! composantes, de dimensions differentes), et finalement, exhibant
certaines courbes qui sont dans la cloture de chacune des composantes.

0. Introduction

In his thesis [6], Hartshorne showed that the (full) Hilbert scheme for projective
subschemes with a fixed Hilbert polynomial is connected. Often one studies certain
subsets of the Hilbert scheme which parametrize subschemes satisfying a certain property.
For example, one can consider the Hilbert scheme of smooth curves in P3. The smooth
curves of degree 9 and genus 10 afford an example for which this Hilbert scheme is not
connected (see [5], IV, ex. 6.4.3). It is not known for which properties the corresponding
Hilbert scheme is connected.

In the present paper, we are interested in the Hilbert scheme H(d, g) of locally Cohen-
Macaulay curves in P3 of degree d and arithmetic genus g . By work of several authors [7,
14, 15], it is known that H ( d , g ) is nonempty precisely when d > 0,g = |(d - l)(d - 2)
or d > l,g ^ j(d - 2)(d - 3). In a recent paper [13], Martin-Deschamps and Perrin prove
that H ( d , g ) is reduced only when d = 2 or g = j(d - l){d - 2) or g = j(d - 2)(d - 3)
or (d,g) = (3,-1). For all other (d,g) pairs for which H(d,g) is nonempty, there is a
nonreduced irreducible component corresponding to curves which are extremal in the sense
that their Rao modules have the largest possible dimension,

It can be gleaned from several sources [13, 3, 4] that H ( d , g ) is irreducible precisely in
the cases d = 2 or g > |(d - 3)(d - 4) + 1 or (^) G {(4,1), (3,1), (3,0), (3, -1)}. In
particular, H ( d , g ) is connected in these cases. In the present paper we show that H{3,g)
is connected for all g. This is the first interesting case in the sense that these Hilbert

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/97/037$ 7.00/© Gauthier-Villars



368 S. NOLLET

schemes have several irreducible components. Curiously, there are certain extremal curves
which lie in the closure of each irreducible component.

The paper is organized as follows. In the first section, we review several results of
Banica and Forster [2] on multiplicity structures on smooth curves in a smooth threefold
and classify space curves of degree two as an example. We also briefly review the extremal
curves studied by Martin-Deschamps and Pen-in. In the second section, we classify the
multiplicity three structures on a line. This is used in the third section, where we classify all
locally Cohen-Macaulay curves of degree 3 in P3. In particular, the irreducible components
of the Hilbert scheme are determined. We also produce some flat families of triple lines,
which show that the Hilbert scheme is connected.

In this paper, we work over an algebraically closed field k of arbitrary characteristic.
S = k[x^y,z^w\ denotes the homogeneous coordinate ring of P3. If V C S is a closed
subvariety, then Sy denotes the the homogeneous coordinate ring S / I y of V. We often
use the abbreviation CM to mean locally Cohen-Macaulay. H { d ^ g ) denotes the Hilbert
scheme of locally Cohen-Macaulay curves in P3 of degree d and arithmetic genus g .

I would like to thank Robin Hartshorne for useful discussions, and for various editorial
suggestions. The fact that theorem 1.7 holds when char k = p > 0 was brought to my
attention by Enrico Schlesinger. I appreciate the very careful reading of the referee, who
caught several small errors.

1. Preliminaries

In this section we review the results of Banica and Forster [2] on multiplicity structures
on smooth curves in smooth threefolds. As an example, we give the classification of
double lines in P3, which will be used in section two when we classify the triple lines
in P3. We also recall a few notions from linkage theory and summarize the results of
Martin-Deschamps and Perrin on extremal curves.

DEFINITION 1.1. - If y is a scheme, then a locally Cohen-Macaulay multiplicity structure
Z on Y is a locally Cohen-Macaulay scheme Z which contains Y and has the same support
as y. For short, we simply say that Z is a multiplicity structure on Y.

In [2], Banica and Forster consider a smooth curve Y inside a smooth threefold X.
Starting with a multiplicity structure Y C Z C X, they define a filtration on Z as follows.
Let y^ denote the subscheme of X defined by Jy\ Let Zi denote the subscheme of X
obtained from Z n Y^ by removing the embedded points. This gives the (unique) largest
Cohen-Macaulay subscheme contained in Z n Y^\ If k is the smallest integer such that
Z C Y^\ we obtain the Cohen-Macaulay filtration for Y C Z

Y = Zi C Z2 C . . . C Zj, = Z.

Letting Ii = Z^, there are sheaves Lj = Ij/Ij^ associated to this filtration. For any
i,j > 1, it turns out that lilj C 2i+j, and hence the Lj are Oy -modules. In fact, the Lj
are shown to be locally free Oy-modules. Further, there are induced multiplication maps
Li 0 Lj —^ L^j, which are generically surjective (because Tj = Tz + Ty1 on an open
set). In particular, we get generically surjective maps Lf3 —> Lj.
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THE HILBERT SCHEMES OF DEGREE THREE CURVES 369

From the above, we see that if Z is a multiplicity structure on V, then there is a filtration
{Zj} and exact sequences

O^Z^-Zz^L^O

where the Lj are vector bundles on V. If V is connected, the multiplicity of Z is defined
by ii{Z} = dimj<(0z^), where 77 is the generic point of Y and K = Oy^ is the function
field of V. The sequences above show that /^(Z) = 1 + Z^=i rankLy.

REMARK 1.2. - The above constructions can be carried out in Z (instead of X), and would
yield the same filtration as above. Thus the Cohen-Macaulay filtration is well-defined for
abstract (non-embedded) multiplicity structures.

Now we use the fact that X is a smooth threefold. In this case, the conormal sheaf
Zy/Z^ is a rank two bundle on Y. Since the surjection Zy — Li factors through the
conormal bundle, we see that L = Z/i has rank zero, one, or two. If the rank is zero,
then L = 0 and the generically surjective maps show that all the Lj = 0 for all j, hence
Z = Y. If the rank is two, then the surjection Zy/Z^ —> L becomes an isomorphism,
hence Y^ C Z and Z has generic embedding dimension three.

We are mainly interested in the case rank(L) == 1, in which case we say the extension
Y C Z is quasi-primitive. Here the generically surjective maps L^3 —^ Lj show that there
are effective divisors Dj on Y such that Lj = L^Dj) for j < k (Lj = 0 for j > k).
The multiplication maps £, (g) Lj —^ L^j show that Di + Dj <, D^j for all ij > 1 with
i 4- j < k (define Di = 0). We say that (£, D^,... Dfc-i) is the type of the extension Z.

Now we specialize to the case of multiplicity structures on a line in P3, as this is crucial
to the classification of curves of degree three. We make some elementary observations
before describing the double lines.

LEMMA 1.3. - Let Z C P3 be a quasiprimitive multiplicity structure on a line Y of type
(L, D ^ , . . . , Dd-i) and degree d. Then

(a) L ^ Oy{a) for some a >_ -1.
(b) If Z has embedding dimension two, then Di = 0 for 1 < i <: d — 1.
(c) Z is planar if and only if a = -1 and Di == 0 for each 1 < i < d - 1.

Proof. - The Picard group of Y is Z, generated by Oy(l), hence L ^ Oy(a) for some
a G Z. The surjection Oy(-l)2 ^ Zy/Z^ —^ L shows that a > -1, proving part (a).
The exact sequences

(1) 0-Z^-.Z^.->^(^)-0

show that pa{Z) = -a^—^ - d + 1 - Y^degDj. This takes on its maximum value of
j(d - l)(d - 2) when a = -1 and Dj = 0 for all j. On the other hand, [7], theorem 3.1
states that Z is planar if and only if pa(Z) = j(d - l)(d - 2), proving part (c).

For part (&), assume that Z has embedding dimension two. Fixing a point P €. Z, the
Zariski tangent space of Z at P is two dimensional. It follows that there is an open affine
neighborhood U of P and a smooth surface S C U which contains Z D U. Working on 5,
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370 S. NOLLET

the line Y is defined by a single equation t at P and hence Zj is defined by t3 for each
1 ^ J ^ ^- The maps L3 —> Lj are induced from diagrams

Ty - ^

[ [
D -^ L,.

Restricting this diagram to S shows that the top map is surjective. Since the vertical maps
are surjective, the bottom map is surjective on U. Since Z is covered by such open sets U,
the bottom map is surjective (everywhere) and Dj = 0 for 2 < j < k.

The simplest multiple curves are the double lines in P3.

PROPOSITION 1.4. - Let Y be the line {x = y -==- 0} in P3 and let a > —1 be an integer.
Let f and g be two homogeneous polynomials of degree a + 1 "which have no common zeros
along Y. Then f and g define a surjection u : Zy —^ Oy(a) by x \—^ /, y ^—> g. The kernel
ofu gives the ideal sheaf of a multiplicity two structure Z on Y. Further, -we have

(a) pa{Z) = - 1 - a
(b) H^Iz) - (5/(^J^))(a).

(<°) Iz = ^.xy.y'^.xg - yf).
(d) If f, g' define another two structure Z', then Z = Z' if and only if there exists

c G fc* such that f = cJmodJy and g' == cgmodly-
(e) Each multiplicity two structure Z on Y arises by the construction above.

Proof. - This can be found in work of Migliore [9] and also by work of Martin-
Deschamps and Perrin ([II], IV, example 6.9) in the context of linkage theory. From the
above theory of multiplicity structures, we see that giving a double structure Z on Y is
equivalent to finding a surjection u ', Zy —>• C,, where C is a line bundle on Y. Since such a
surjection must factor through Zy/Z^ ^ Oy(-l)2, we see that C ̂  Oy(a) with a > -1
and that the map is given by two polynomials f ^ g of degree a + 1.

REMARK 1.5. - If Z is a double line from proposition 1.4 above, the exact sequence

0 -^ OY^O} -> Oz -^ Oy -> 0

shows that Z has local embedding dimension two at each point. In fact, Z is contained in a
smooth (global) surface of degree a + 2. To see this, one can choose the polynomials /, g
in the variables z,w. Since / and g have no common zeros along V, the surface with
equation xg — yf is smooth along Y. When a = —1, this surface is a (smooth) plane
which contains Y. When a >_ 0, there exist surfaces of degree a + 2 which contain Z
and are smooth away from Z (take a union of planes). Intersecting these open conditions
in PH°(Iz(a +2)), we find that there are surfaces of degree a + 2 containing Z which
are smooth. The general surface of higher degree containing Z will have a finite number
of singularities along Y.

COROLLARY 1.6. - Description of H(2^g):
(a) If g > 0, then H(2,g) is empty.

46 SERIE - TOME 30 - 1997 - N° 3



THE HILBERT SCHEMES OF DEGREE THREE CURVES 371

(b) Ifg = 0, then H(2, g) is irreducible of dimension 8. All curves in H(2^ g) are planar,
and the general member is a smooth conic. The reduced reducible curves (two lines meeting
at a point) form an irreducible family of dimension 7, and the multiplicity two structures
on a line form an irreducible family of dimension 5.

(c) Ifg = —1, then H(2^g) is irreducible of dimension 8. The general curve is a union
of two skew lines. The multiplicity two structures on a line form an irreducible family of
dimension 7.

(d) Ifg < —1, then H(2^g) is irreducible of dimension 5-2g. All curves are multiplicity
two structures on a line with a = — 1 — g .

Proof. - (a) is known, since j(d — l)(d — 2) is an upper bound on the genus of locally
Cohen-Macaulay curves (see [7] or [14]). The descriptions of the families of reduced
curves is standard. To describe the moduli for the double lines of genus g <^ 0, we
use Proposition 1.4. The choice of the line Y is given by a 4-dimensional (irreducible)
Grassman variety. Given the line V, the multiplicity structure Z is uniquely determined by
the open set of ( f ^ g ) € ^f°((9y(a + l))2/^* where f and g have no common multiple.
This is an irreducible choice of dimension 2a + 3 = 1 — 2g. Adding the choice of the line
y gives an irreducible family of dimension 5 — 2g.

In their excellent book [II], Martin-Deschamps and Pen-in build a strong foundation for
linkage theory of locally Cohen-Macaulay curves in P3. Perhaps the most important result
there is the structure theorem for even linkage classes (see [II], IV, Theorem 5.1). It states
that if C is an even linkage class of curves which are not arithmetically Cohen-Macaulay,
then there exists a curve CQ G C such that any other curve C € C is obtained from Co by
a sequence of ascending elementary double links (see [II], III, Definition 2.1) followed by
a deformation with constant cohomology through curves in £. In particular, CQ achieves
the smallest degree and genus among curves in C. CQ is called a minimal curve for C.

A practical aspect of [11] (see chapter IV) is an algorithm for finding a minimal curve
associated to a finite length graded 5-module. If M is such a module, there exists a
minimal graded free resolution

Q^L^L^L^L^LQ-^M ̂ 0

which sheafifies to an exact sequence of direct sums of line bundles. Let A/o == keroa and
£o = keras. The algorithm of Martin-Deschamps and Perrin gives a way to split £2 into
P 0 <3, where P and Q are also direct sums of lines bundles. If CQ is a minimal curve,
then there exists an integer ho and exact sequences

o^p-^^^icM-^o
o-^o^Q ^icM-^Q.

One consequence of this is that if

0-^L^Ls-.Q^Ic,-0

is a minimal graded 5-resolution for the total ideal of the minimal curve Co, then
/iV

L^ —^ L^ begins a minimal resolution for M*.
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In a later paper [12], Martin-Deschamps and Pen-in tackled the problem of bounding
the dimensions of the Rao module of a curve in terms of the degree and genus. For a
curve (7, define the Rao function pc by pcW = ̂ (IcW)' If C is not an arithmetically
Cohen-Macaulay curve, then ra (resp. To) denotes the smallest (resp. largest) value n for
which pc(n) / 0. The bound can be stated as follows:

PROPOSITION 1.7. - Let C C P3 be a curve of degree d and genus g which is not
arithmetically Cohen-Macaulay. Set

I = d - 2, a=l{d- 2)(d - 3) - g.
Zi

Then a > 1 , 1 > 0, and the Rao function is bounded by
(1) ra > -a + 1.
(2) pc(n} < a for 0 < n < I .
(3) r\, < a + I - 1.

Proof. - Suppose that C is not arithmetically Cohen-Macaulay, hence not planar. If
d = 2, then the bound follows easily from Proposition 1.4, so we may assume d >_ 3. If
char k = 0, then the result is given in [12] Theorem 2.5 and Corollary 2.6, so we may
assume char k = p > 0. In this case, the proof given in [12] applies to C if the general
plane section Cr\H is not contained in a line. On the other hand, if the general plane section
C D H is contained in a line, then Hartshome's restriction theorem ([7], Theorem 2.1)
shows that C is supported on a line and has embedding dimension two. Thus it suffices to
prove the proposition for multiple lines of embedding dimension two.

Let y be the supporting line of C, and let (L, D ^ ^ . . . , Dd-i) be the type of the extension
V C C. By Lemma 1.3 (b\ Dj = 0 for 1 < j < d-1. Writing L = Oy(a) with a > -1 as
in 1.3 (a), we have that a >_ 0 by 1.3 (c). Now we prove the result by induction on d. Since
the case d = 2 follows from Proposition 1.4, we precede to the induction step. Letting
{Cj} be the Cohen-Macaulay filtration of (7, we may assume that the proposition holds for
Cd-i. By [12], Proposition 2.3, it suffices to prove that /^(ZcQz)) < j(d - 2)(d - 3) - g
for 0 < n < d — 2. From the exact sequence

0 -. Ic -^ Ic^ - Oy{{d - l)a) ̂  0

we find that ^(IcW) < ^(Icd-i (n)) + (d - l)a + n + 1 for n > 0. The exact sequence
also shows that g(Cd-i) = g{C) + (d — l)a + 1. Applying the induction hypothesis to
Cd-i, we find that

h\IcW) < \{d - 3)(d - 4) - g(C) + n

for n >: 0. For n < d — 3, this proves the bound claimed. For n = d — 2, [12],
Proposition 2.3 shows that /^(Icd-i^— 2)) is strictly smaller than the bound used above,
and we conclude similarly.

The question of sharpness for Proposition 1.7 has a nice answer: equalities in (1),
(2) and (3) can be realized by a single curve. Martin-Deschamps and Perrin call such
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THE HILBERT SCHEMES OF DEGREE THREE CURVES 373

a curve extremal. These curves are characterized in Theorem 1.8 below. Notationally, a
finite length graded S'-module M is said to be a Koszul module parametrised by a > 1
and I > 0 if M is isomorphic to a complete intersection module 5/(/i, /2? f^i f^) with
degji = deg/2 = 1, deg/s = a and deg/4 = a + ;.

THEOREM 1.8. - Characterisation of extremal curves:
(a) Fix a > 1,1 > 0, a^ /^ M be a Koszul module parametrised by a and I. Then any

minimal curve for the even linkage class C(M) is an extremal curve of degree d = I + 2
and genus g = —a + ^{d — 2)(d — 3).

(b) Conversely, let C C P3 be an extremal curve of degree d > 2 and genus
g < j(^ - 2)(d - 3). I f l = d - 2 and a = |(d - 2)(d - 3) - ̂ , r/i^n C ̂  a minimal curve
for a Koszul module parametrized by a and I.

Proof. - Part (a) can be calculated from the minimal curve algorithm above (see [13],
Proposition 0.5 for details). Part (b) is proven when char k = 0 in [13], Theorem 1.1,
however their proof applies to any curve C whose general plane section C D H is not
contained in a line. If char k = p > 0, C is not planar, and C H H is contained in a line for
general H, then C is a multiplicity structure on a line Y of embedding dimension two as
in the proof of Proposition 1.7 above. In particular, if C is of type (L, D ^ ^ . . . , -D^-i), then
2^ = 0 for each j and L ^ Oy(a) with a > 0. In this case the exact sequences (1) show
that Ta = -a(d - 1) > j(d - 2)(d - 3) - g(C) = j(d - 2)(d - 3) - d + 1 - jd(d - l)a,
hence (7 is not extremal, and the proof is complete.

THEOREM 1.9.- Let d > 3 an^f g < j ( d — 2 ) ( d — 3) an^f assume that char k = 0. TTz^n ̂
family of extremal curves forms an irreducible component of the Hilbert scheme H(d^ g) of
dimension |d(d - 3) + 9 - 2g. This component is nonreduced except when (d, g) = (3, -1).

This is proved in [13], Theorem 4.2 and Theorem 4.3.1 can find no use of the hypothesis
char k = 0, so probably this statement holds in finite characteristic as well. We will see
later that the extremal curves always give an irreducible component of dimension 9 — 2g
when d = 3 (see Propositions 3.1, 3.4 and 3.5).

2. Triple Lines in P3

In this section we classify the multiplicity three structures on a fixed line Y C P3.
If W is a quasiprimitive multiplicity three structure of type (L,D^\ then we have two
exact sequences

(2) O^Zz->Zy^Oy(a)^0

(3) 0->Iw -^z -^(9r(2a+6) ^0

where Z is one of the multiplicity two structures on Y described in Proposition 1.4,
L = Oy(a),a > -l,deg2^2 = b > 0. We loosely say that W is of type (a, b).
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374 S. NOLLET

In classifying the triple lines of type (a, 6), we will handle the case a = —1 separately.
This is because the corresponding double line Z is a complete intersection when a = —1,
while this is not the case for a > 0.

PROPOSITION 2.1. - Let Y C P3 be the line [x = y = 0} and let Z be the multiplicity two
structure {x = y2 = 0} on Y. Let p^ q be two homogeneous polynomials of degrees b — 1, b
which have no common z.eros along Y. Then p and q define a surjection u : Tz —^ Oy(h— 2)
by x i—^ p^y2 i—> q. The kernel ofu is the ideal sheaf of a multiplicity three structure W
on Y. Further, we have

(a) pa(W) = 1 - 6
(b) H^Iw) = ( S / { x ^ y ^ ^ q ) ) ( b - 2 )
(c) Iw = {x^.xy.y^.xq - y2?)
(d) If p^q' define another three structure W, then W = W if and only if there exists

c € fc* such that p ' ==- cpmodJy and q' = c^modJy.
(e) W is quasiprimitive with second CM filtrant Z, unless 6 = 1 and q = 0, in which

case W = V^.

Proof. - Since Z is a global complete intersection with total ideal ( x ^y 2 ) , I z 0 Sy =
I z / I z l y = Sy(—l) ^ 5y(—2) is freely generated by the images of x and y2. The map
x \—> p, y2 i—> q defines a graded homomorphism (f) : Iz -^ I z l ^ z l y —^ Sy(b — 2). Since
(p, ~q) form a regular sequence in 5y, the kernel of the map I z / I z l y —^ 5y(6 — 2) is given
by the Koszul relation xq — y2?, hence ker<^ = (J^Jy, xq — y2?) = (x2^ xy^ y3^ xq — y2?).
The cokernel coker^ = 5y(6 — 2)/(p,g) = ( S / ( x , y ^ p ^ q))(b — 2) has finite length, hence
<f) sheafifies to a surjection u : Iz —^ Ov(b — 2).

Letting W be the subscheme defined by Xw = kern, we have an exact sequence

0 -^ Iw -^ ^z -^ Oy{h - 2) -^ 0.

Since H^(u) = (^ and H^(Iz) = 0. we immediately deduce properties (b) and (c). The
snake lemma provides a second exact sequence

0^0y(6-2)^0^^0z^0,

which shows that W is supported on Y and that depthOyi/ > 1, hence W is a CM
multiplicity three structure on Y with pa(W) = 1 — &. If the polynomials p ' ^ q ' also
define W by the construction above, then (q,p) and (</,j/) generate the same principal
5'y-submodule of 6y(—l) (B Sy(—2), hence property (d) holds.

If q = 0, then p must be a unit, as otherwise p and g will have common zeros along Y.
In this case, we see that b — 1 = degp = 0 and that Iw = ̂  whence IV = V^. If g / 0,
we use part (c) to see that Iw +1^ = {x2^ xy^ y2,xq) = (J-j^ xq). At the points on Y where
q ̂  0, this ideal is simply (y2^), so the cokernel of the inclusion {I^^xq) C (y2^) has
finite support. Since the latter ideal defines the multiplicity two structure Z on V, we see
that Z is the second CM filtrant for W, proving part (e).

COROLLARY 2.2. - Triple lines of type a = — 1 , 6 > 0: L^ W be a quasiprimitive
multiplicity three structure on a line Y of type (—1,6) or the second infinitesimal
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THE HILBERT SCHEMES OF DEGREE THREE CURVES 375

neighborhood Y^\ Then, after a suitable change of coordinates, W is constructed by
Proposition 2.1. The family of such multiplicity three structures is irreducible of dimension
5+ 26.

Proof. - W = Y^ is given by the construction in taking b = 1, q = 0,p = 1. If W is
quasiprimitive, then we have the exact sequence 3, and the construction above gives all
surjections u : Tz —^ Oy(b — 2). To parametrize this family, we first choose the double
line Z (an irreducible choice of dimension 5 by Corollary 1.6), and then we must choose
(p, q) € H°(OY(b - 1)) x ff°(0y(b))/fc*, which is an irreducible choice of dimension 2b.
Thus the family is irreducible of dimension 5 + 2b.

PROPOSITION 2.3. - Let Z C P3 be the double line with total ideal Iz == (I^.xg - yf),
where Y is the line {x = y = 0} and f^g are homogeneous polynomials of degree a + 1
having no common zeros along Y, as in Proposition 1.4. Let p and q be homogeneous
polynomials of degrees b, 3a + b 4- 2 having no common zeros along Y. Then p and q define
a surjection u : Iz —^ Oy(2a + b) by x2 i—^ pf2^ xy ^-> pfg^ y2 \—^ pg2 and xg — yf \—^ q.
The kernel of u is the ideal sheaf of a quasiprimitive multiplicity three structure on Y with
second Cohen-Macaulay filtrant Z. Further, "we have

(a) pa(W) = -2 - 3a - b.
(b) Iw = {I^,x(xg - yf),y{xg - yf),p(xg - yf) - rx2 - sxy - ty2), where r,s,t

are chosen so that q = rf2 4- sfg + tg^modly.
(c) Ifp'^ q' define the multiplicity three structure W, then W == W if and only if there

exists d G fc* such that j/ = dpmodly and q1 = dqmodly-

Proof. - The ideal Iz = ( x 2 ^ x y ^ y 2 ^ x g — yf) has ^-presentation

S(-3)2 C S(-a - 3)2 ̂  5(-2)3 C S(-a - 2) -^ Iz -> 0

given by the matrix

ip =

y 0 -g 0 \
-x y f -g
0 -x 0 /
0 0 x y j

Tensoring with 5y, we see that I z / I z l y = cokery? 0 5y is isomorphic to 5y(—a — 2) 9
(J2, fg^g2)(2a), where x2 ̂ ' x y ^ y 2 are identified with /2, f g ^ g 2 . Making this identification,
we have an inclusion I z / I z l y C 5y(—a — 2) (B Sy(2a) whose cokemel has finite length.
It follows that the sheafification of I z / I z l y is isomorphic to Oy(-a - 2) ® Oy(2a),
freely generated by xg — yf and an element e such that ef2 = x2^ efg = ~xy and eg2 = y2.

The polynomials p and q give a graded homomorphism

<t>: Iz -^ I z / I z l y C 5y(-a - 2) C 5y(2a)(9^ Sy(2a + b).

The kernel of the map (q,p) is given by the Koszul relation qe — p(xg — yf). Since
/ and g are relatively prime of degree a + 1, the map 5y(-2a - 2)3 -^ Sy given
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^ (/2?/^2) is surjective in degrees ^ 3(a + 1) - 1, and hence there exist (r,s,t)
such that q = rf2 + ̂  + ^modJy (because deg^ > 3a + 2). We can now write
{rx2 + sxy + ^/2 - p[xg - yf)) = I z / l z l v H ker(g,^), and hence

ker^) = (x3, x^y, xy2, ̂ 3, a;(^ - T//), T/(^ - yf), rx2 + 5^ + ty2 - p(xg - yf)).

The cokernel of (j) is of finite length, so (f) sheafifies to a surjection u : Iz —> Oy(2a + b).
Letting W be the subscheme whose ideal sheaf is the kernel of u, we get an exact

sequence
0 -> Oy(2a + b) -^ Ow -^ Oz -> 0

which shows that SuppW = Y and depthOw ^ 1, hence TV is a multiplicity three
structure on Y. Since pa(Z) = -1-a, the exact sequence shows that pa (W) = -2-3a-6.
The exact sequence

0 -> Iw -^ Iz -^ Oy(2a + b) -> 0

shows that Iw = ker<^. l ip ' and g' define W by the above construction and W = W, then
eq' - (xg - y f ) p ' generates the same 5y-submodule of I z / I z l y C Sy(-a - 2) C 5'y(2a)
as eq - (xg - yf)p. Since e and xg - yf are free generators, it follows that there exists
d G fc* such that p ' = dpmodly and g' = dqmodly. This proves (a),(Z?) and (c).

From part (Z?), we find that Iw + ̂  = (^, /^(^^ - ̂ //)). The cokernel of the inclusion
(J^, h{xg - yf)) C Iz is supported on the zeros of h along V. Since Z has no embedded
points, the second CM filtrant of W is Z and the extension Y C W is quasi-primitive.

REMARK 2.4. - Note that if u : Iz -> Oy(2a + b) is the surjection above, then H^(u)
is the zero map. Indeed, H ^ ( I z ) is generated in degree -a by Proposition 1.4 while
^((^(a + b)) = 0. In particular, we have an exact sequence

0 -^ coker^) -^ M^y —» M^ -^ 0

which shows that the Rao module Mw is 2-generated. Since all curves of degree < 2
have Rao modules which are zero or principal, W is a minimal curve. Further, the exact
sequences 2 and 3 now give that

h^IwW) = h\OY(l)) + h\0y(a + 1)) + h\0y^a +&+/ ) )

for all ; <E Z.
From the total ideal Iw given in part (Z?), one can compute a minimal graded ^-resolution

for Iw, which has the form

5'(-a-6-4)e5'(-a-5)2

r
5(-a - b - 3)2 C S(-a - 4)4 C 5(-4)3

I
S(-a- b - 2) C 5'(-a - 3)2 0 5'(-3)4

This resolution determines h°{Iw(l)) for all / G Z. Combining with the dimensions
^(IwW) found above, all the h^IwW) can be computed.
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The machinery for minimal curves of Martin-Deschamps and Perrin shows that 0^
begins a minimal resolution for M^. Completing this resolution and dualizing the last
map gives a presentation for Mw Carrying this out (we suppress the calculation here),
one finds that H^(Iw) ^ coker^, where

^ : 5(2a + b - I)2 C S(a - I)2 C 5(-1)2 -^ S(2a + b) C 5(a)

is the map given by the matrix

(x y fp gp -gt -fr-gs\
YO 0 x y f g )

Here r, s and t are chosen as in part (b) of the proposition.

REMARK 2.5. - In the case when b=0,p must be a unit. It follows that the generators
^g _ yf) and ?/(^ - ?//) are not needed for the total ideal Iw (see also [I], p. 24). In
this case it is clear that W is the unique triple line supported on Y and contained in the
surface defined by rx2 + sxy + ty2 - p(xg - yf).

COROLLARY 2.6. - Triple lines of type a,b > 0; Let W be a quasi-primitive multiplicity
three structure on a line Y C P3 of type (a, b) with a, b > 0. Then W arises from the
construction of Proposition 2.3 after a suitable change of coordinates. The family of these
triple lines is irreducible of dimension 10 + 5a + 26.

Proof. - Since W is of type (a, b) with a > 0, there is an exact sequence

0 -^ Tw -^ 2-z -"> Oy(2a + b) -^ 0

where Z is a double line of type a > 0. By Proposition 1.4, we may change
coordinates so that I z = (x^.xy^.xj - y g ) where f,g are homogeneous polynomials
of degree a + 1 with no common zeros along Y. As in the proof of 2.3 above,
TZ^OY ^ Oy(2a} C Oy{-a - 2) is freely generated by e and the image of xg - y f ,
where ef2 = x2, efg = xy and eg2 = y2. From this it is clear that such a map u is given
by homogeneous polynomials p, q of degrees b, 3a + b + 2 which have no common zero
along V, and hence W arises by the construction of Proposition 2.3.

3. The Hilbert Scheme

In this section we describe the Hilbert scheme ff(3, g) of locally Cohen-Macaulay curves
of degree 3 and arithmetic genus g < 1. In particular, we classify all CM curves of degree
3 and describe the irreducible components of H(3,g). We also show that certain extremal
curves lie in the closure of each irreducible component, hence that ff(3, g) is connected.
We begin with the curves of genus -1 ̂  g <: 1, which have been described elsewhere.

PROPOSITION 3.1. - For -1 < g < 1, the Hilbert scheme H(3, g) is smooth and irreducible
of dimension 12.
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Proof. - H(3,l) parametrizes plane cubic curves, and is a P9 bundle over (P3)*,
hence is irreducible of dimension 12. That ff(3,0) and H(3,-l) are smooth and
irreducible of dimension 12 is part of [13], Theorem 4.1. H(3,0) consists of arithmetically
Cohen-Macaulay curves and H{3,-1) consists of extremal curves.

For g ^ -2, the Hilbert scheme is not irreducible, and more work is required to show
connectedness. Our first task is to describe how the unions of double lines and reduced
lines fit in with the irreducible families of triple lines.

PROPOSITION 3.2. - Fix g < -2. Then
(a) The family of curves W == Z U^p L formed by taking the union of a double line Z

with pa(Z) = g — 1 and a line L which meets Z in a double point form an irreducible
family of dimension 9 — 2g.

(b) The family of curves W •= Z Up L formed by taking the union of a double line Z
with pa(Z) = g and a line L which meets Z in a reduced point form an irreducible family
of dimension 8 — 2g.

(c) The family of curves W which are triple lines of type (-1,1- g) form an irreducible
family of dimension 7 — 2g.

Each curve above is an extremal curve, hence is a minimal curve for a Koszul module
parametrized by a == -g and I = 1. The families (b) and ( c ) lie in the closure of the
family (a).

Proof. - Let W = Z U2p £ be a curve from family (a) above. After a change of
coordinates we may write IL = ( x , z ) and Iz = { x ^ . x y . y ' ^ . x g - yf). We have an exact
sequence

o -^ Tw -^ ^z e IL ̂  ̂ 2 p -^ o
where 2P = Z D L denotes the double point. Noting that IL + Iz = ( x . z . y 2 ^ / ) and
that JSP = ( x , z , y 2 ) (2P is a complete intersection), we see that H^(7r) is surjective.
Since H^(I^p) vanishes in positive degrees, we conclude that To(W) = ̂ (Z) = -g and
that pwW = - g ' The complete intersection Z(x2,y2z) links W to W = Z ' U^Q L,
which is also from family (a). Applying the argument above and using the isomorphism
M^r, ^ MwW shows that ra(W) = 1 + g and pwW = -g. Thus W is extremal.

To parametrize this family of curves, one first chooses the double line Z (an irreducible
choice of dimension 7 - 2g by Corollary 1.6, since pa(Z) = g - 1), then a point P G Z
(1 parameter), and finally a line L through P lying in the tangent plane to Z at P
(1 parameter). This shows that this family is irreducible of dimension 9 - 2g.

The argument for W = Z Up L is similar. We choose suitable coordinates and write
IL = ( x , z ) , I z = ( x 2 , x y , y 2 , x g - yf). We have an exact sequence

0-^Iw -^IzOlL-^Ip-^O

where P = Z H L. Writing I p = ( x , y , z ) and IL 4- Iz = ( x . z . y 2 ^ / ) we see
that dim coker^°(7r(0) = 1 for 1 < ; < -g = degyf - 1. It follows again that
Ta(W) = To(Z) - 1 == -g and pwW = Pz(l) - 1 = -g. The complete intersection
Z^.y^z} links W to a curve W from family (&), so we find that W is extremal.
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To parametrize these curves, we first choose a double line Z (an irreducible choice of
dimension 5 — 2^, since pa(Z) = g), and then choose a general line L which meets Z
(3 parameters). This shows that (b) is an irreducible family of dimension 8 - 2g.

If W is a triple line of type (-1,1 - g\ then from Corollary 2.2 we have
Mw = (S/(x,y,p,q)){-l - g) where degp = 1 - g and degq = 2 - g . It follows
that W is extremal. The family of such triple lines W is irreducible of dimension 7 - 2g
by Corollary 2.2.

Let W be a curve in family (Z?) or (c). Since VF is extremal, W is a minimal curve
for a Koszul module M parametrized by a = —g and I = 1 by Theorem 1.8 (fc).
By [13], Proposition 0.6, we may change variables to write Mw == S / ( x , y , F , G ) and
Iw = (x2,xy,hy'2,xG-^hyF) for some h G k[y,z,w] (here we have degF = a,degG =
a + l,degfa = 1). There exists ho G k[y,z,w] such that Y does not divide fao and ho
does not divide G. With this choice, the ideal

Iw, = (x2, xy, h^.xG + hoyF) = {x, ho) H (x2, xy, y2,xG + ho^F)

gives a curve Wo from family (a) (note that the sum of the ideals intersected is (rr, ho, y2),
which defines a double point of the intersection). In P(fe[^^w]i) we can find a straight
line P1 which goes through h and ho. An open subset U C P1 parametrizes a family
of curves in H^^M whose special member is W and whose general member is a curve
from family (a) (because the conditions that Y not divide ho and ho not divide G are
open in P(fc[^,w]i).).

PROPOSITION 3.3. - Fix g < -2. Then
(a) The family of curves W = Z U L formed by taking the union of a double line Z with

pa(Z) = g -+- 1 and a disjoint line L form an irreducible family of dimension 7 — 2g.
(b) The family of curves W which are triple lines of type (0, —2 — g) form an irreducible

family of dimension 6 — 2g.
The curves above are all minimal, and each curve in family (b) is obtained from curves

in family (a) by a deformation which preserves cohomology.

proof. - Let W = Z U L be a curve from family (a) above. We begin by
computing the total ideal and cohomology for W. In suitable coordinates, we may write
IL = {z,w),Iz = (x2,xy,y2,xg - yf) with g , f e k[z,w}. In particular, xg - yf G IL
and hence J = {{x,y)2{z,w),xg - yf) C IL H I z . One can compute that the minimal
graded S'-resolution of J is of the form

S(g - 2) C 5(-5)2 -> S{g - I)2 9 5(-4)7 -^ S(g) C 5(-3)6

and hence J is the total ideal for W. Comparing with the resolution of Remark 2.4
(with a = 0 , 6 = — 2 — g) shows that W has the same Hilbert function as a curve in
family (fc). Moreover, the exact sequence

O^Iw-^IzOlL-^O^O
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shows that h^IwW) = h^I^l)) +^(^(0) = h\OL(l))^h\OY{l}}^h\Oy{-g-
2+Z)) . This agrees with the second cohomology dimensions found in Remark 2.4 for triple
lines of type (0, —2 — g), hence the dimensions of the cohomology groups for families (a)
and (b) are the same. This same exact sequence also shows that Mw is 2-generated.

The family (a) is parametrized by first choosing Z (an irreducible choice of dimension
3 — 2g by Corollary 1.6) and then choosing a general line L (4 parameters), hence the
family (a) is irreducible of dimension 7 —2g. Family (b) is irreducible of dimension 6 — 2 ^
by Corollary 2.6. These curves are minimal because they are of degree three and their
Rao modules are 2-generated.

Let W be a triple line from family (b). By Corollary 2.6, we can change coordinates
and write Iw = ((^5 y)3^ xq^ yq^ hq — ax2 — bxy — q/2), where q = xg — yf is a quadric
surface containing the underlying second CM filtrant Z. By Remark 1.5, q may be chosen
to be the equation of a smooth quadric Q. We may choose z and w so that q = xz — yw.

On the smooth quadric Q the family of lines Lt = Z(x + wt^ y + zt) give a flat
family over A1 with LQ = Y. Dt = Lt U Y forms a flat family such that jDo = Z
is the double line Z on Q supported on V, the second Cohen-Macaulay filtrant of W.
Writing this family as D C P3 x A1 -^ A1, we see by Grauert's theorem, 7r>,(Zp(—p)) is
locally free on A1, hence globally free. In particular, if 5i C Z^(—^) is the equation of
a smooth surface containing Di = Li U V, we can find a section St extending 5i such
that SQ = hq — ax2 — bxy — q/2.

Now consider the family Ci = Sf H (Y^ U Lt). Let U C A1 be the open set where
Cf is locally Cohen-Macaulay. For t / 0, Cf is the disjoint union of a double line on
y and the line Lt. The ideal of Ci is given by If = ((x^y)2^ + wt^y + zt^Si). Note
that x2^ + zt} — xy{x + wt) = xqt G It and similarly yqt G It. Flattening over <7, we
must add xq and yq to It. In particular, the limit ideal Jo contains ((a;,?/)3, x q ^ y q ^ s o ) ,
and hence gives W.

PROPOSITION 3.4. - The Hilbert scheme ff(3, —2) consists of the following two irreducible
components:

(a) The irreducible family ff-i of dimension 13 from Proposition 3.2.
(b) The closure HQ of the irreducible family of sets of three disjoint lines. This closure is

12-dimensional and contains the curves from Proposition 3.3.

Proof. - Clearly both of these families are irreducible of the dimensions claimed. It
suffices that these two families give all of ff(3, —2) and are irreducible components. Let
W G JJ(3, —2). Since g(W) < 0, W is not integral, hence is reducible or nonreduced.
If W is reduced, then W is the union of 3 disjoint lines (any union of a conic and line
has g >_ —1), hence lies in family (b).

If W is not reduced, then deg SuppVF < 3. If deg SuppW = 2, then W is a union of
a double line Z and a reduced line L (the support of W cannot be irreducible, since a
multiple conic has degree > 4). If Z misses £, then pa(Z) = —1 and hence Z is a limit
of pairs of skew lines by Corollary 1.6. It follows that Z is in the closure of family (b).
If Z meets £ in a scheme of length 1 or 2, then Z is in family (a) by Proposition 3.2. If
deg SuppW = 1, then W is a triple structure on a line Y of arithmetic genus —2, which
must be quasiprimitive (otherwise W = V^\ when g(W) = 0). The only possible types
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are (—1,3) or (0,0), which are limits of unions Z U L described above by Propositions 3.2
and 3.3, hence these lie in families (a) and (b) respectively. Family (a) cannot lie in the
closure of family (b) by reason of dimension. Family {b) cannot lie in the closure of family
(a) by reason of semicontinuity; the curves in family (a) are extremal, while the curves in
family (b) are not (If C is in family (&), one checks that /^(Zc^-l)) = 0).

PROPOSITION 3.5. - Let g <, —3. Then the Hilbert scheme H(3^ g) consists of the following
irreducible components:

(a) The irreducible family of dimension 9 — 2g from Proposition 3.2, which we now
denote Jf_i.

(b) The closure of the irreducible family of dimension 7 — 2 g from Proposition 3.3, which
we now denote Ho.

(c) For each 0 < a < ( — 2 — ^ ) / 3 , the closure of the irreducible family Ha of dimension
6 — 2g — a consisting of triple lines of type (a, —2 — 3a — g).

Proof. - Let C G H(3,g). Then C is not integral because g <, -3. If C were reduced,
it would be a union of 3 lines (these have genus > —2, hence are ruled out) or the union
of a conic and a line (which has genus > —1, hence is ruled out). Thus C is not reduced
and dimSuppG < 3. If C has support of degree 2, the support cannot be irreducible,
since a multiplicity structure on a conic has degree at least 4. Hence the support of C
consists of two lines, and all possible configurations are covered in families (a) and (Z?)
above. If C has support of degree 1, then C is a triple line and Corollaries 2.2 and 2.6
show that C is among the families listed above.

Now we show that the Hi are irreducible components. Let — 1 < ? < J ^ ( — 2 — ^ ) / 3 .
Hi is not contained in the closure of Hj because dim Hi > dimHj. On the other
hand, semicontinuity shows that Hj is not contained in the closure of Hi. Indeed, from
Corollaries 2.2 and 2.6, we see that the Rao module for a triple line of type (a, b) has a
generator of minimal degree —2a — 6, and hence a minimal degree generator for the Rao
module of a curve in Ha occurs in degree g + 2 + a. This shows that for C G Hi we have
h°(0c(g + 2 + %)) / 0 while for C G Hj we have h°(0c(g + 2 + %)) = 0. Hence there
can be no specialization from a family of curves in Hi to a curve in Hj.

PROPOSITION 3.6. - For each a > 0 and b >_ 0, there exists a flat family W C P3 x A1

whose general member Wi is a triple line of type (a, b)for t / 0 and whose special member
WQ is a triple line of type (-l,3a + b + 3).

Proof. - Consider the family defined by the ideal It with generators

x^x^^xy^y^x^xz^-tyw^^y^xz^-tyw^1)^

zh\xz^1 - tyw^1) - x^w^.

We flatten this family over t by adding to the ideal those elements p such that pt G It. Let
A, B, C denote the last three generators given for the ideal. Then we must add

D = (w^A + z^C^/t = -xyw2^^ + ^a+6+4(^a+l - tyw^1)
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to the ideal. We must also add

E = (w^+^B + z^D^/i = -y^w3^^2 + z2a^w(xza+l - tyw^1)

to the ideal. Setting t = 0, we find that the limit ideal Jo contains the generators

x3,x2y^xy2^y3^yza+\x2wa^\xyw2a^\xz3a^3 - yW^2.

It follows that the saturation of Jo contains the ideal

{x^xy^y^xz^^-y^^}^

but this is the total ideal of a triple structure of type (-l,3a + b + 3) by Corollary 2.2.
On the other hand. Corollary 2.6 shows that the ideal It for t ^ 0 is the total ideal of a
triple line of type (a, b). This gives the flat family W.

REMARK 3.7. - The commutative algebra in the proof above was inspired by a geometric
example of Robin Hartshome. He gave an example of a deformation of three disjoint lines
to a triple line of type (—1,3) by deforming the unique quadric containing the three lines
to a double plane while at the same time bringing the lines together.

THEOREM 3.8. - The Hilbert scheme JJ(3,^) is connected if it is nonempty.

Proof. - By Proposition 3.1, it suffices to consider the case g < -2. In this case JJ(3, g)
has irreducible components {JJa}a>-i by Propositions 3.4 and 3.5. Let JJa be one of these
components with a >_ 0. Choosing b = —2 — 3a — g. Proposition 3.6 gives a family of
triple lines whose general member lies in Ha and whose special member lies in JJ_i.

REMARK 3.9. - The Proof of Proposition 3.6 shows that a triple line W with total ideal
( x 2 ^ x y ^ y 3 ^ x z l ~ 9 — y2w~g) lies in the closure of each irreducible component of JJ(3,^).

EXAMPLE 3.10. - Hartshome has shown that the Hilbert scheme JJ(4,0) is also connected.
Here we give an independent proof using the methods of this paper. JJ(4,0) has two
irreducible components ([13], §4): JJi = the extremal curves (these have Rao module of
Koszul type parametrized by a = 1 and I = 2) and H-z = the curves with Rao module k in
degree 1. We will give a specialization from quadruple lines in JJs to quadruple lines in JJi.

Let Y be the line {x = y = 0 } and W be the planar triple line with total ideal
J^ = (re, y3). As in Proposition 2.2, a pair (/i, k) of homogeneous polynomials of degrees
1 and 3 with no common zeros along Y determines a map Iw ~^ Sy by x ^—> /i, y ^—> k
which sheafifies to a surjection u. kevu = XT defines a multiplicity four line Zi such
that j^(Zi) = 0, I z , = {x^.xy.y^.xk - ^fa), and JJ^ZzJ ^ S / ( x , y , h, k). It follows
that Zi G JJi.

Letting V be a quasiprimitive multiplicity three structure of type (—1,1) on V,
Proposition 2.2 shows that we may write ly = (x2, xy, xq — y2), with q ^ Jy (p is unit in
this case). As in the proof of Proposition 2.6, a pair (/, g) of forms with no common zeros
along Y determines a map Jy —> 5'y(—l) by x2 ̂  0, xy i-̂  /, xq—y2 \—^g which sheafifies
to a surjection w. kerw == Z^ defines a multiplicity four line Z^ such that pa{Z'z) = 0,
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1^ = (x^xy^xyq - y^gxy - f{xq - y2)) and H^z.) ̂  S/(x,y,f,g))(-l), hence
Z'2 ^ -l22 •

Now consider the ideal
It = (x2, xy2, ty3 - xyz, xyw - tz^t - xz))

in the ring k[t}[x,y,z,w}. For t ^ 0, this gives the total ideal of a curve in H^ (see Z^
above). Flattening over t, we add to this ideal the polynomials p such that pt G It. Letting
A,J3,C7 denote the last three generators listed, we add

D = (wB + z C ) / t = y^w + xz3 - ty2z
E = (zA + y B ) / t = y4

to Jf. Setting t = 0, it follows that
(a;2, xy2, xyz, xyw, y^w + xz3, y4') C IQ

and hence (x2,xy,y4,y3w + xz3) C I Q . This ideal gives a multiplicity four line in H^
(see Zi above). This shows that ff(4,0) is connected.

REMARK 3.11. - The results in this paper raise several questions:
(1) Does each irreducible component of H ( d , g ) contain quasiprimitive multiple lines?
(2) Can each quasiprimitive multiplicity structure on a line be deformed to an extremal

multiplicity structure on the same line?
(3) Is H ( d , g ) connected for all {d,g)7
The answers are yes when d = 2 and d = 3. Positive answers to (1) and (2) would

give a positive answer to (3).
REMARK 3.12. - One consequence of our classification is that every curve of degree three

can be deformed with constant cohomology to a quasiprimitive multiplicity structure on
a line. A recent result from the PhD thesis of Rich Liebling ([8], Corollary 4.1.5) shows
that if C is a curve whose Rao module is annihilated by the total ideal of a line, then
C deforms with constant cohomology and Rao module to a quasiprimitive multiplicity
structure on a line. This generalizes an observation of Juan Migliore on Buchsbaum
curves ([10], remark 3.3.1 (a)\ The following example shows that there are not such
deformations in general.

EXAMPLE 3.13. - Let C be a disjoint union of a line L and a triple line W of type
(-1,2). The genus of W is -1, so g{C) = -2. Using the standard exact sequence

o -^ Tc -^ iw e IL -^ Op3 -^ o
one can compute that the Rao module has type {2,3,1} starting in degree 0. On the
other hand, it is not difficult to see that there are just four possible Rao functions for
the multiple lines in ff(4, -2). There are quasiprimitive multiple lines of type (-1,0,5)
(resp. (-1,1,4), (-1,2,3)) which whose Rao module has type {1,2,3,3,3,2,1} (resp.
{1,2,3,2,1}, {2,3,2}) starting in degree -2 (resp. -1,0). There are also two Rao functions
arising from multiplicity four lines which are not quasiprimitive. If Y is the underlying line
of support, the ideals for these multiple lines occur as the kernels of maps lyw —^ Oy(l).
These yield Rao modules of types {1, 2,3,2,1}, {1,2,3,1} starting in degree -1. Thus C
cannot specialize with constant cohomology and Rao module to a multiple line.
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