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ALGEBRAIC COVERS:
FIELD OF MODULI VERSUS FIELD OF DEFINITION (*)

BY PlERRE DEBES AND JEAN-CLAUDE DOUAI

ABSTRACT. - The field of moduli of a finite cover / : X —> B a priori defined over the separable closure Kg of
a field K, with B defined over K, need not be a field of definition. This paper provides a cohomological measure
of the obstruction. The case of G-covers, i.e., Galois covers given together with their automorphisms, was fairly
well-known. But no such cohomological measure was available for mere covers. In that situation, the problem
is shown to be controlled not by one, as for G-covers, but by several characteristic classes in H2(KrmZ(G)),
where Km is the field of moduli and Z(G) is the center of the group of the cover. Furthermore our approach
reveals a more hidden obstruction coming on top of the main one, called the first obstruction and which does
not exist for G-covers. In contrast with previous works, our approach is not based on Well's descent criterion but
rather on some elementary techniques in Galois cohomology. Furthermore the base space B can be an algebraic
variety of any dimension and the ground field K a field of any characteristic. Our main result yields concrete
criteria for the field of moduli to be a field of definition. Our main result also leads to some local-global type
results. For example we prove this local-to-global principle: a G-cover / : X —> B is defined over <Q if and only
if it is defined over Qp for all primes p.

RESUME. - Le corps des modules K d'un revetement / : X —> -B, defini a priori sur la cloture separable de K,
avec B defini sur K, n'est pas forcement un corps de definition. Cet article donne une mesure cohomologique de
F obstruction. Le cas des G-revetements, i.e., des revetements galoisiens donnes avec leurs automorphismes, etait
assez bien connu. Mais pour les revetements seuls, on n'avait pas de tels resultats. On montre dans ce cas que le
probleme est controle par plusieurs classes caracteristiques dans H2^ K^Z^G)) (a valeurs dans le centre Z{G) du
groupe du revetement), et non pas par une seule comme pour les G-revetements. On deduit de nouveaux criteres (res
concrets pour que le corps des modules soit un corps de definition. Une autre application est le principe local-global
suivant, conjecture par E. Dew : un G-revetement est defini sur Q si et seulement si il est defini sur chaque Qp.

1. Introduction

Let B be an algebraic variety defined over a field K and / : X —^ B be a finite cover
a priori defined over the separable closure Kg of K. Assume that this cover is isomorphic
to each of its conjugates under G { K g / K ) . The field K is said to be the field of moduli
of the cover. Does it follow that the given cover can be defined over AT? The answer is
"No" in general. The field of moduli is not necessarily a field of definition: an example
was recently given by Couveignes and Granboulan [CouGr]. Still, in many circumstances,

(*) 1991 Mathematics Subject Classification. Primary 12 F 12, 14 H 30; Secondary 14 G 20, 11 G xx.
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304 P. DEBES AND J.-C. DOUAI

the field of moduli is a field of definition, in which case it is the smallest field of definition
containing K. Studying the obstruction for the field of moduli to be a field of definition
is the main topic of this paper.

The case of covers of the projective line P1 in characteristic 0 has been much studied
due to the connection with the regular form of the inverse Galois problem -does each
finite group occur as the Galois group of a regular Galois extension of Q(r)? The general
question classically covers two situations: the first one is concerned with covers -we use
the phrase "mere covers" in the sequel- whereas the second one considers G-covers, i.e.,
Galois covers given with their automorphisms. The notion of field of moduli goes back to
Well and has been investigated then in particular by Belyi, Fried, Harbater and the first
author. The main known results are the following ones. For mere covers of P1, the field of
moduli is a field of definition if the cover / has no automorphisms (Well [We], Fried [Fr]),
or, if the cover is Galois (Coombes-Harbater [CoHa]). For a G-cover of automorphism
group G, the field of moduli is a field of definition if the center Z{G) is a direct summand
of G (e.g. if Z(G) = {1} or G is abelian). Furthermore, for G-covers, the obstruction to
the field of moduli being a field of definition can be measured by a specific characteristic
class in the second cohomological group ff2^, Z(G)) of K with values in the center
Z{G) and with trivial action (Belyi [Be], Debes [Dbl], [Db2]).

No such cohomological characterization of the obstruction was known for mere covers.
Filling up this gap was one motivation of this paper. We present here a general approach
that shows that the problem is indeed entirely of a cohomological nature. A simplified
form of our Main Theorem is this.

MAIN THEOREM. - Let f : X —^ B be a mere cover defined over Kg with K as field of
moduli. Let G denote the automorphism group of the Galois closure of the cover f. Then
there exists an action L of G ( K s / K ) on the center Z{G} ofG and a family (O^GA of
characteristic classes

^^H\K^Z(G)^L)

indexed by a certain set A and with the property that the field of moduli K is a field of
definition if and only if at least one out of the Q,gs is trivial in H^[K^ Z(G}^ L).

In contrast with the G-cover case, the problem is controlled not by one but by several
characteristic classes in H^^K, Z{G), L). In addition, the action L need not be the trivial
action, as it is for G-covers. Basically, the difference between mere covers and G-covers
is this. By definition of "G-cover", all ^-models of a G-cover are regular and Galois
over K: the extension of constants is trivial. Unlikewise, a mere cover may have several
models over K with different non trivial extensions of constants in the Galois closure
over K. In fact, the various characteristic classes 0<$ 6 H^^K^ Z(G)^ L) correspond to the
"possible" extensions of constants in the Galois closure over K of a K-model of / (Main
Theorem (II)). In a next paper [DbDo2], we will show that the problem can be even more
highly structured by using the theory of gerbes of Giraud.

On the other hand, in the mere cover case, the index set A of the Main Theorem may be
empty, that is, there may be a priori no possible extension of constants (in Galois closure)
for a K-model. In that case of course, the cover cannot be defined over K. This is an
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FIELD OF MODULI VERSUS FIELD OF DEFINITION 305

additional obstruction, which does not exist for G-covers. It will be shown to correspond
to the solvability of a certain embedding problem, a condition that is denoted by (A/Lift)
and plays a central role in the rest of the paper. We will give some practical criteria for
(A/Lift) to hold, i.e., for A to be nonempty (Prop. 3.1). We will also give an (^criterion
in terms of the vanishing of certain cohomological data (Thm. 4.7).

Contrary to most previous works, we do not need such assumptions as the existence
of unramified AT-rational points on the base space B, which can be a quite restrictive
condition, even for B = P1 (e.g. K is a finite field and P^X) consists only of branch
points of the cover). Classically, such conditions imply that the exact sequence of arithmetic
fundamental groups

(1) 1 -^ n^(B*) -^ 1MB*) ̂  G { K , / K ) -. 1

is split. Here, given a field F over which B and the ramification locus are defined, B*
denotes the space B with the ramification locus removed and 11̂  (B*) the F-arithmetic
fundamental group of B*. That splitting condition is denoted by (Seq/Split) in the sequel.
We do not assume in the Main Theorem that condition (Seq/Split) holds. Thus the base
space B can be a curve with no -fC-rational points. The base space B can actually be an
algebraic variety of any dimension and the ground field K a field of any characteristic.

This has this other application. The covers were so far assumed to be defined a priori
over a separably closed field Kg. The question was that of the descent from Kg to the
field of moduli K. There is a more general form of the problem for which the covers are
assumed to be a priori defined over an arbitrary Galois extension F of K. A more general
notion of field of moduli relative to the extension F / K can be defined and the question
is that of the descent from F to this relative field of moduli. The Main Theorem will be
established in this more general context. The exact sequence of concern then is obtained by
replacing Kg by -F in (1). It is not split in general even in the case B has T^-rational points.
Our approach allows to handle this more general form of the problem. To our knowledge it
was only investigated by E. Dew in some special cases [Dew]. We will refer to the initial
form of the problem as the absolute one and to the more general one as the relative one.

Another innovation is that we handle simultaneously both mere covers and G-covers. The
specific objects we will be dealing with are the following ones. Given three groups II, G,
N such that G is normal in TV, they are the surjective homomorphisms (f): 11 —^ G regarded
modulo the equivalence that identifies two such homomorphisms that are conjugate by an
element of N. Both mere covers and G-covers of a base space B correspond to the special
case that 11 is the algebraic fundamental group of B with the ramification locus removed,
G is the automorphism group of the Galois closure of the cover. The difference between
mere covers and G-covers is this: for G-covers, N = G whereas for mere covers, the
group N should be taken to be the normalizer Nors^G of G in the representation G ̂  Sd
given by the action of G on an unramified fiber of the cover.

Our Main Theorem leads to quite concrete criteria for the field of moduli to be a field
of definition. For example, we obtain the following one for mere covers, which, to our
knowledge, is new: under condition (A/Lift), a mere cover is defined over its field of
moduli if Z{G) == {1} (Cor. 3.2). Our criteria contain all classical results as special cases.
The conclusion of Coombes-Harbater theorem -a mere cover that is Galois is defined over
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306 P. DEBES AND J.-C. DOUAI

its field of moduli- is shown to hold under the only condition (Seq/Split). An example in
[DbEm] shows that the same conclusion does not hold if condition (Seq/Split) is removed.
Under (Seq/Split), we also obtain, for G-covers and mere covers, some upper bounds for
the degree [Kd : K\ of some field of definition over the field of moduli K.

As first shown in [Db2], there is a connection between the problem "field of moduli
vs field of definition" and some local-global type properties of the field of definition of
covers. Our Main Theorem allows to prove this local-to-global principle for G-covers.

THEOREM (Thm. 3.8). - Let f : X —^ B be a G-cover defined over Q. Then f : X -^ B
is defined over Q if and only if it is defined over ^pfor all primes p (including p = oo/

In particular, finding a regular Galois extension of Q(T) of given group G -the regular
inverse Galois problem- is tantamount to finding a G-cover of P1 of group G that has
a model over each Qp. Thm. 3.8 was conjectured by E. Dew and proved in [Db2] for
G-covers of P1. Here we extend this result to G-covers of a variety of arbitrary dimension,
The main difficulty was to handle the case where condition (Seq/Split) does not necessarily
holds. The Main Theorem is the main tool.

Questions of interest remain open. More generally, Thm. 3.8 holds with an arbitrary
number field K replacing Q except possibly in a special case coming from GrunwakTs
theorem (see §3.5). It is unknown whether the local-to-global principle holds in this special
case; no counter-example has yet been found. It is also unknown whether the local-to-
global principle holds for mere covers in place of G-covers. We devote a forthcoming
paper to these questions [DbDol]. We will establish the local-to-global principle for mere
covers under additional assumptions on the group G and the embedding G C 5^. We
think however that the local-to-global principle is very unlikely to hold in general for mere
covers. We suggest why in §3.5.

The paper is organized as follows. In §2, we give the basic definitions and recall the
dictionary between covers and representations of (arithmetic) fundamental groups. This
is very much classical for covers of curves in characteristic 0. In §3 we state the main
results and give the applications. The Main Theorem divides into three parts. Part I is
concerned with the first obstruction, i.e., condition (A/Lift). When this condition holds,
there is a second obstruction, the main obstruction. It is described in Part II. Finally,
Part III reformulates the whole result under the additional assumption (Seq/Split). Concrete
criteria for the field of moduli to be a field of definition are derived in §3.4. §3 ends with
the proof of the local-to-global principle for G-covers over Q. §4 is devoted to the proof
of the Main Theorem: the problem is entirely rephrased in algebraic terms; we can then
handle it with cohomological techniques. The same techniques allow to investigate the
basic condition (A/Lift): an iff cohomological criterion is given in §4.3.

We end this introduction by indicating how this paper applies to more general situations.
Firstly, because they are the most classical situations, we are in this paper mostly concerned
with G-covers and mere covers. In a final note we explain that our paper actually applies
to any kind of covers f : X —^ B given with some "extra structure". Secondly, the notion
of field of moduli can be defined for other kinds of structure than covers, e.g. an algebraic
variety X. [DbEm] shows that, under suitable conditions, the obstruction that the field of
moduli is a field of definition is the same as for the cover X —^ X/Aut{X). Consequently
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FIELD OF MODULI VERSUS FIELD OF DEFINITION 307

results of the current paper yield results about fields of moduli of curves in particular.
Finally we consider here covers a priori defined over an algebraic extension of the base
field K. Various notions of field of moduli can also be defined for objects a priori defined
over a transcendental extension of K. A subsequent paper will show how to unify these
various notions and will explain that the essential problem is the one considered here, i.e.,
the algebraic descent from Kg to the field of moduli.

We wish to thank D. Harbater, M. Emsalem, M. Fried, H. Lenstra, P. Satge and J. Wolfart
for their interest in our paper and many valuable suggestions.

2. Preliminaries on mere covers and G-covers

NOTATION 2.1. - Given a Galois extension E / k , its Galois group is denoted by G ( E / k ) .
We let elements r of Galois groups act to the right (x —^ x7'). Given a field fc, we denote
by ks a separable closure of k and by G{k) the absolute Galois group G{ks/k) of k. As
usual in Galois cohomology, we write ^(fc,-,-) for jr^G^fc), -, -). In a group G,
conjugation by an element g G G is the homomorphism x —> x9 = gxg~1 (x G G). As
for Galois actions, our notation has the group act to the right.

2.1. Mere covers and G-covers over a field K

Let K be a field and B be a regular projective geometrically irreducible J^-variety.
By mere cover of B over K, we mean a finite and generically unramified morphism
f : X -^ B defined over K with X a normal and geometrically irreducible AT-variety. The
term "mere" is meant to distinguish mere covers from G-covers defined below.

The associated field extension K { X ) / K { B ) is a finite separable field extension that is
regular over K (i.e., K(X) D Ks = K (in a common separable closure of K(B))). The
degree of a cover is d = [K(X) : K(B)} = [Ks(X) : Ks(B)}. The cover is said to be
Galois over K if the field extension K ( X ) / K ( B ) is Galois.

Mere covers f : X —> B over K and finite separable regular field extensions
K ( X ) / K ( B ) actually correspond to one another through the function field functor.

[Indeed, let E / K ( B ) be a finite separable extension regular over K. For each affine open subset U = Spec{R)
of B, let R be the integral closure of R in E. The associated morphisms Spec(R) —> Spec(R) can be patched
together to give a finite and generically unramified morphism f : X -^ B over K with X a normal and irreducible
variety.

Furthermore, if D is the (reduced) ramification divisor (see definition just below) of the extension E K s / K s (B),
then the morphism is etale above B* = B—D. This follows from the Purity of Branch Locus ([Mi], [SGA1;
Exp. 10]).

Finally, if in addition D is a divisor with normal crossings, then the morphism is also flat. For certain authors,
flatness is part of the definition of covers. We will not need it. So we have not included it so not to restrict
the generality of our results.]

A cover f : X —^ B over a separably closed field Ks has two basic geometric invariants,
which only depend on the isomorphism class of the cover. First the group G of the cover,
i.e., the automorphism group of the Galois closure f : X —^ B of /, or, equivalently, the
Galois group G(Ks{X)/Ks(B)). Second, the ramification divisor D of the cover, which is
defined as follows. Since B is normal, the local ring at each hypersurface of B is a discrete
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308 P. DEBES AND J.-C. DOUAI

valuation ring. Say that an hypersurface of B is ramified if the associated discrete valuation
ramifies in the extension E / K { B ) . Then define the ramification divisor as the formal sum
of all ramified hypersurfaces. By invariants of a cover over a non separably closed field K,
we always mean the invariants of the cover over Kg obtained by extension of scalars. The
ramification divisor D of a cover over K is invariant under the action of G{K).

By G-cover of B of group G over K, we mean a Galois cover f : X —^ B over K
given together with an isomorphism h : G -^ G(K(X)/K(B)). The capital letter "G" in
"G-cover" indicates that the Galois group is part of the data; the "G" (italicized) is here
the name of the group. G-covers of B of group G over K correspond to regular Galois
extensions K { X ) / K ( B ) given with an isomorphism of the Galois group G(K(X)/K(B))
with G.

2.2. Isomorphisms of mere covers and G-covers

An isomorphism between two mere covers f : X —^ B and f : X' —> B over a field
K is an algebraic morphism ^ : X -^ X' that induces a ^(B)-isomorphism between the
function field extensions K { X ) / K ( B ) and K ( X f ) / K ( B ) . In a common algebraic closure
of K(B), this condition amounts to this: the extensions K ( X ) / K ( B ) and K { X ' ) I K { B )
should be conjugate by \. Equivalently, an isomorphism ^ : X —^ X' of mere covers is
an algebraic isomorphism X —> X ' , defined over K, such that \ o j ' = f.

Isomorphisms of mere covers of B over K and ^(^-isomorphisms of extensions
of K(B) correspond to one another: just extend the argument of §2.1 for "objects" to
"morphisms". More precisely, the function field functor is an equivalence of categories.

An isomorphism between two G-covers f : X —> B and /' : X' —> B of group G over
K is a map ^ : X -^ X' with the following properties:
- \ is an isomorphism of mere covers over K.
- \ commutes with the given actions of G.
In a common algebraic closure ofK(B), the extensions K ( X ) / K { B ) and K ( X ' } I K { B )

are necessarily equal and ^ induces an element of G{K(X)/K(B)). Isomorphisms of
G-covers of B over K correspond to ^(B)-automorphisms of regular Galois extensions
of X(B).

If F / K is a field extension and / is a mere cover (resp. G-cover) over K, the mere cover
(resp. G-cover) over F obtained from / by extension of scalars is denoted by / (g)j^ F
(that / ^K F is indeed a mere cover (resp. G-cover) over F follows from our definition,
in particular from the regularity condition). Assume the base space B is defined over K.
A mere cover (resp. a G-cover) f : X ^ B over F is said to be defined over K if
there exists a mere cover (resp. a G-cover) f^ : X —» B over K such that JK ^K F
is isomorphic to / over F.

2.3. AT-arithmetic fundamental group

Assume that the base variety B is defined over K and fix a G(I^)-invariant divisor
D of B with only simple components. Set 5* = B-D. The K-arithmetic fundamental
group of B* is denoted by IIj<(B*) or simply by UK when the context is clear. In the
notation of [SGA1], II^(B*) is 7i-i(B*^), where ^ is the geometric generic point of
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FIELD OF MODULI VERSUS FIELD OF DEFINITION 309

B corresponding to Spec(K(B),) -^ Spec(K(B)) -^ B\ The group 11^(5*) can be
defined in the following way.

Fix a separable closure (K(B))s of K(B). Take then for Kg the separable closure of
K inside (K(B))s. Let f^ C (K(B))s be the maximal algebraic separable extension
of Ks(B) unramified above B*. Then IIj<(B*) is the Galois group of the extension
Q.D/K(B). The ^-fundamental group IIj^ (B*) is also called the geometric fundamental
group. From Galois theory, for each Galois extension F / K , we have the following exact
sequence of fundamental groups

1 ̂  n^(B*) -. 1MB*) -^ G(F/^) ̂  1

REMARK 2.2. - Assume K is of characteristic 0. From Grauert-Remmerfs theorem and
the GAGA theorems, covers of B that are unramified outside D correspond to analytic
unramified finite covers of B \ D, which, in turn correspond to topological covers of B \ D
(for the complex topology). This implies that 11^(5*) is the profinite completion of the
topological fundamental group of B.

2.4. Dictionary "covers/homomorphisms"

2.4.1. Mere covers. - Degree d mere covers of B over a field K with ramification
divisor in D correspond to transitive representations

^ : 1MB*) -^ Sd

such that the restriction to IIj^(B*) is transitive. Here Sd denotes the symmetric group
in d letters.

[Correspondences. A degree d mere cover / : X —> B over K with ramification divisor in D corresponds,
via the functor "function fields", to a finite regular separable subextension E / K ( B ) of ^ I D / K { B ) . Its Galois
closure E / K ( B ) corresponds to a quotient of II j< = !IK (£?*), or, equivalently, to a surjective homomorphism
^ : IIj<(B*) -^ G where G = G(E/K(B)). Via Galois theory, the extension E / K ( B ) corresponds to a specific
subgroup H of G. Label the left cosets of G modulo H by the integers 1,.. . , d in such a way that H corresponds
to 1. The action of G by left multiplication on the left cosets of G modulo H provides a representation i : G ̂  Sd.
The composed homomorphism ^ = i o ̂  : II j< —^ Sd is the desired representation. The representation ^ is only
defined up to conjugation by an element of Sd. But the image group G = ^(nj<) is well-defined.

Conversely, given a representation ^ : IIj<(B*) —>• Sd as above, denote the stabilizer of 1 by IIj<(l). Consider
the fixed field E = ̂ K(l) of nj<(l) in Qr>. Then the extension E / K ( B ) is the function field extension
associated to a degree d mere cover f : X —^ B over K.]

Two covers over K are isomorphic if and only if the corresponding representations ^
and ^/ are conjugate by an element y? in the normalizer Nor^ G in Sd of the image group
G = ^(n^) = ^'(n^), i.e.,

^\x) = (p^(x)y~1 for all x e II^(B*)

2.4.2. G-covers. - G-covers of B of group G over K correspond to surjective
homomorphisms

^:n^(B*)-.G

such that $(n^(B*)) = G.
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310 P. DEBES AND J.-C. DOUAI

[Correspondences. A G-cover / : X -^ B over K of group G and with ramification divisor in D corresponds,
via the functor "function fields" to a specific finite regular Galois subextension of ^ I D / K ( B ) , i.e., via Galois
theory, to a specific normal subgroup H of IIj<(B*). The group H K / H is canonically identified with the
Galois group G(K(X)/K(B)). Composing the natural surjection II j< -^ H K / H with the given isomorphism
G(K(X)/K(B) —^ G provides a surjective homomorphism <S> : IIj<(£?*) -^ G as above.

Conversely, given such an homomorphism, consider the fixed field E = ̂ er^ of Ker(^>) in j^o. Then
the extension E / K ( B ) is the function field extension associated to a Galois cover / : X —^ B over K of group
UK/Ker(^). The isomorphism II j< /Ker{^) -> G endows f with a structure of G-cover over K.]

Two G-covers over K are isomorphic if and only if the corresponding homomorphisms
$ and <t>' are conjugate by an element of (p e G, i.e.,

<^\x) = ̂ (x)y~1 for all x G 11^(5*)

2.4.3. Mere cover induced by a G-cover. - If a G-cover corresponds to an homomorphism
$ : II^(B*) —^ G as above, then the associated mere cover corresponds to the
homomorphism ^ : n^(B*) —^ Sd obtained by composing <I> with the regular
representation G c-^ Sd of G (where d == |G|).

2.4.4. G-cmw attached to a mere cover. - Conversely let ^ : IIj<(B*) —^ Sd be the
representation of UK associated to a degree d mere cover / : X -^ B. Set G = ^(IIj<).
The induced map ^ : 11^(5*) -^ G corresponds to the Galois closure K ( X ) / K ( B ) over
J? of the function field extension K ( X ) / K ( B ) . It does not necessarily correspond to a
G-cover over K. It does if and only if ^(Ilp) = ̂ (IIj^J = G, which amounts to saying
that the extension K ( X ) / K ( B ) is a regular extension.

2,5. (G-)covers

We frequently use the word "(G-)cover" for the phrase "mere cover (resp. G-cover)" in
statements holding for both mere covers and G-covers. We will consider descent problems
for the field of definition of (G-)covers from a Galois extension F of a field K down to
the field K. In the mere cover situation, we will always assume that the Galois closure
over F of the mere cover is, as G-cover, defined over F. This insures that the group of
the cover is the same over F as over Fs. This is of course not restrictive in the absolute
situation, i.e., when F is separably closed.

Both mere covers and G-covers can be handled simultaneously. Namely mere covers
correspond to transitive representations ( f ) : Up (B*) -» Sd whereas G-covers f : X -^ B
correspond to surjective homomorphisms (f> : Up (B*) -^ G. In both cases let G denote
the group of the cover. Then set

f G in the G-cover case
N = ^

{Nors^G in the mere cover case

f Z(G) in the G-cover case
C = CenjyG = <.

[Cens^G in the mere cover case

where Z{G) is the center of G and Nors^G and Cens^G are respectively the normalizer
and the centralizer of G in S^ Thus, both mere covers and G-covers over F correspond
to homomorphisms (or representations) (f) : Up (B*) —» G C N.
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Suppose given a Galois extension F / K and a (G-)cover f : X -^ B such that the
base B is defined over K and the ramification divisor D is G(J^)-4nvariant. Then the
mere cover / (resp. G-cover f) can be defined over K if and only if the representation
(j) : IIp(B*) -^ G C N can be extended to a representation IIj<(B*) -^ N.

Finally we always regard N as a subgroup of Sd where d is the degree of /: in the mere
cover case, an embedding N <—^ Sd is given by definition; in the G-cover case, embed
N = G in Sd by the regular representation of G.

2.6. Galois action

The Galois group G ( F / K ) has a natural action on ^-varieties; in particular, G ( F / K )
acts on (G-)covers of B over F. Let / : X -> B be a (G-)cover and r G G ( F / K ) .
The corresponding conjugate (G-)cover will be denoted by jr : Xr —> Br. The group
of the cover fr is the same as the group of /; if D is the ramification divisor of /,
then Dr is the ramification divisor of /r. Assume now that B is defined over K and
that D is G^^invariant. Let (f> : HF(B^) — ^ G b e the homomorphism corresponding
to /. Pick an element f € IIj<(B*) above r € G { F / K ) and consider the homomorphism
<y : 11^(5*) -^ G defined by

^(x)^^'1) for all a; € Ilp(B*)

where xr = rx(r)~1. Then the homomorphism <y corresponds to a (G-)cover that
is isomorphic over F to the (G-)cover f 7 ' . Note that because our notation has the
groups G ( F / K ) and II^(B*) act to the right, we have /uv = (f^ and ^m) = (^)n,
(̂  e G(F/^)).

2.7. Field of moduli

Fix a Galois extension F / K . Let / : X —> B be a mere cover (resp., G-cover) a priori
defined over F. Consider the subgroup M{f) (resp. Mo{f)) of G ( F / K ) consisting of
all the elements r € G ( F / K ) such that the covers (resp., the G-covers) f and f7' are
isomorphic over F. Then the field of moduli of the cover / (resp., the G-cover /) relative
to the extension F / K is defined to be the fixed field

F^ (resp. F^W)

of M(f) (resp. Mo(f)) in F. The field of moduli relative to the extension K s / K is
called the absolute field of moduli (relative to K). The field of moduli of a (G-)cover is
easily seen to be contained in each field of definition containing K (in particular, it is
a finite extension of K). So it is the smallest field of definition containing K provided
that it is a field of definition. The ramification divisor D of f is automatically invariant
under M(/) (resp. MoU)).

Let Km be the field of moduli of f relative to the extension F / K . Then the field of
moduli of / relative to the extension F / K m is Km (this essentially follows from the fact
that M{f) (resp. Mc(/)) is a closed subgroup of G ( F / K ) for the Krull topology (e.g.
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[DbEm]). That observation generally allows to reduce to the situation where the base field
K is the field of moduli of the given (G-)cover /.

Assume (j) : Up —> G C N is the homomorphism corresponding to the (G-)cover
f : X —^ B over F. Then K is the field of moduli of the (G-)cover / relative to
the extension F / K if and only if the ramification divisor D is (^(J^-invariant and the
following condition -called the field of moduli condition-, holds.
(FMod) For each u G IIj<(5*), there exists (p\j ^ N such that

^u) = ^x)^ (for all x G IL.(B*))

For each u G iIj^(B*), y?u is well-defined modulo Cen^G = C. Denote the map
II^(B*) —^ N / C that sends each u G 11^(2?*) to the coset of (p\j modulo C by ^. It follows
immediately from the definition that Tp : II^(J3*) —> JV/C is a group homomorphism. Also
if <j) is changed to (f)01 with a € A", tli^n ^ should be replaced by ^a, where a is the
coset of a modulo (7.

The map ^ : 11 (̂5*) -^ TV/C7 is a key data of the problem. If K is the field of
moduli, i.e., if condition (FMod) holds, then the map Tp is uniquely attached to the original
representation ( j ) : Up — ^ G c N . l n the sequel, the homomorphism Tp : 11^(5*) —> N / C
is called the representation of UK modulo C given by the field of moduli condition.

2.8. Extension of constants in the Galois closure

Let F / K be a Galois extension and / : X —^ B be a (G-)cover defined over F. Let
(f)p : II^(B*) —> G C N be the associated homomorphism. Assume that the (G-)cover f
can be defined over K, i.e., that the (G-)cover / has a model JK '• XK —> B over K.
Let (f)K '• Ti-K^B*) —^ TV be the associated extension of (j)p to IIj<(5*). Consider the
function field extensions F { X ) / F ( B ) and K ( X K ) / K ( B ) respectively associated to /
and J K - Denote the Galois closure of the extension F ( X ) / F ( B ) (resp. K(XK)/K{B))
by F ( X ) / F { B ) (resp. K(XK)/K{B)). The field F(X) (resp. ^(X^)) is the fixed field
in ^ID (defined in §2.3) of the kernel of

(f)p : 11^(5*) -> G

(resp. ̂  : n^(B*) -. TV)

Consider then the field K = I^(^C^) D F (inside Op). The extension K / K is called
the extension of constants in the Galois closure of the model JK of /. The phrase "in the
Galois closure" should be stressed: the function field extension K ( X K ) / K { B ) itself is a
regular extension, i.e., the field K(XK) H F of constants in K(XK) is equal to AT.

Denote by A the unique homomorphism G ( F / K ) —^ N / G that makes the following
diagram commute. Existence of A follows from <^(II^) = ^)^(n^) C G and uniqueness
from the surjectivity of UK —^ G ( F / K ) .

n^(5*) —— G ( F / K )

<f>K\ A
4' 4'-

^ ——^ TV/G
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PROPOSITION 2.3. - The homomorphism A : G { F / K ) -^ N / G induced by (J)K on G { F / K )
corresponds to the extension of constants K / K in the Galois closure of the model JK
of fp- 1^ other words, we have

G ( F / K ) = Ker(A)

Consequently, G{K / K ) identifies with a subgroup of N / G .
The homomorphism A : G ( F / K ) -^ N / G is called the constant extension map (in

Galois closure) of the K-mode\ JK of /. For G-covers, N / G = {1}, the map A is trivial
and K = K. By definition, G-covers over K are required to be Galois over K with
the same Galois group as over Ks. Thus they do not have any extension of constants
in their Galois closure.

Proof. - The restriction G(F(X)/F(B)) -^ G{K{XK)/K(B)) is an isomorphism.
Consequently so is the restriction r : G{F(X)/K{XK)) -^ G ( F / K ) . Now the first group
G{F{X)/K^XK)) is equal to the quotient group Ker^^/Ker^p). The second group
G { F / K ) , via the isomorphism r, corresponds then to Ker(A). D

2.9. Arithmetic action of G(F/K) on a fiber

In this paragraph we fix a Galois extension F / K and we assume that the exact sequence
of fundamental groups

1 ̂  1MB*) -. 1MB*) -. G { F / K ) -> 1

splits. We will call this condition (Seq/Split) for short. We let s : G ( F / K ) -^ 11^(5*)
denote a section to the map IIj<(13*) -^ G { F / K ) .

For F = Ks (i.e., for the absolute form of the problem), then condition (Seq/Split)
classically holds if the base space B has X-rational points off the branch point set D.
Indeed each such J^-rational point provides a section s : G(K) —» IIj<(B*). On the other
hand, condition (Seq/Split) does not always hold: an example in which it does not is
given in [DbEm].

Let / : X -^ B be a (G-)cover defined over the small field K. Let ̂  : n^(B*) -^ N
be the associated homomorphism. Under condition (Seq/Split), the homomorphism
(f)K is determined by its restriction ^p to 11^(5*) and by the homomorphism
(I)K o s : G { F / K ) -^ N . That is, the model fp of / over K is determined by the (G-)cover
f <S>K F and the homomorphism (J)K ° s.

This homomorphism (/)K os : G ( F / K ) -^ N can be interpreted as the action of G ( F / K )
on an unramified fiber of the cover. Consider first the special case for which F = Kg,
B is a curve and s = Sf, is the section given by an unramified ^-rational point to on B.
Recall that N comes equipped with an embedding G ̂  5^. Then Prop. 2.1 of [Db2]
shows that, for each r G G{K), the element (J)K o s^(r) is conjugate in Sd to the action
of r on the fiber /j^^o)-

Return to the general case. Each element of IIj<(B*) induces a permutation of the
different embeddings of the function field K(XK) in a separable closure (K(B))s of
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K(B). This set of embeddings K(XK) ̂  (K(B))s can be viewed as the geometric
generic fiber of the cover. By analogy with the case s = s^, for each r G G ( F / K ) , the
element (J)K ° s(r) will be called the arithmetic action of r on the generic fiber associated
"with the section s. Such actions will be called actions of G { F / K ) on an unramified fiber.
The most important case is the case s = s^: the generic fiber associated with s^ is
the special fiber above to. Another important special case is for K == Fp: the absolute
Galois group G(K) is the profinite group Z generated by the Frobenius, the corresponding
action of G(K) on the generic fiber is given by the action of (a lifting of) the Frobenius.

Actions of G ( F / K ) on unramified fibers are more precise invariants of the K -models
of the cover than the extension of constants (in Galois closure). Indeed, if s : G { F / K ) —^
IIj<(J3*) is a section, the constant extension map A : G ( F / K ) —^ N / G is equal to
cf)K o s : G ( F / K ) -^ N composed with N -^ N / G .

3. Main results

Let F / K be a Galois extension. The absolute situation (as considered in the introduction)
corresponds to the special case F = Kg. Here we consider more generally a relative
situation: F / K is an arbitrary Galois extension. In a rough way, descending the field of
definition of a (G-)cover from F to K consists in enriching the given model of / over F
with some extra arithmetical data relative to K. There may not exist such arithmetical data
which are compatible with the model over F. But we will see that the fact that K is the
field of moduli insures that such arithmetical data exist at least modulo the group C (defined
in §2.5). So the whole problem can be regarded as a lifting problem: one wishes to lift
some arithmetical data given in a quotient group N / C up to the group N. More precisely,
this arithmetical data consists of the representation of UK modulo C given by the field of
moduli condition (defined in §2.7). In practice, this data can be reached in two ways:

- through the extension of constants in the Galois closure (§2.8): §3.1/3.2 use this
to classify the various K-models of a cover. This viewpoint divides the problem into two
steps. The first one is to find all the possible extensions of constants in Galois closure and
leads to a first obstruction: there must be at least one. This obstruction, which does not exist
in the case of G-covers, is called the first obstruction (§3.1). When this first obstruction
vanishes, i.e., when there is a possible extension of constants, there remains the main
obstruction, namely, the obstruction for the existence of a K-mode[ with this extension
of constants. The Main Theorem (Parts I and II) gives a cohomological description of
these obstructions.

- through the arithmetic action of G ( F / K ) on an unramified fibei (§2.9): such
actions are more precise arithmetic invariants than the extension of constants. But they
are defined under the extra condition (Seq/Split). This condition, however, is a quite
natural condition. Part III of the Main Theorem corresponds to the special case for which
condition (Seq/Split) holds.

The Main Theorem is proved in §4. The last two paragraphs of §3 are devoted to
applications of the Main Theorem. In §3.4 we give some practical criteria for the field of
moduli to be a field of definition. In §3.5 we prove the local-to-global principle.
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We fix a Galois extension F / K and a (G-)cover / : X -» B defined over F and with
K as field of moduli. More precisely, we fix a representation (f)p : II^(B*) — ^ G c N
associated with the (G-)cover / (cf. §2.5). We will explain how our results depend on the
chosen model. The base B is assumed to be defined over K. Notation is that of §2.

3.1. The first obstruction
The (G-)cover f : X —> B may have several models over K (and may have none).

Attached to each of these models is a constant extension K / K . This data is actually a
significant arithmetic invariant of the K-model. It is in fact one of the few data that can
possibly distinguish the different models over K. For example, a Galois cover may have
a model over K that is Galois over K (i.e., may be defined over K as G-cover) and
another model that is not; both models are isomorphic over F; the extension of constants
(in Galois closure) is trivial in the former case and not in the latter. It seems natural that
this data arises when trying to find all the K-models of a (G-)cover /. Thus a first problem
is to determine all the possible constant extensions K / K , or, equivalently, all the possible
constant extension maps (in Galois closure) A : G ( F / K ) -^ N / G (§2.8). On the other
hand there may be none, but in that case of course, the cover cannot be defined over K.
We will see that the fact that K is the field of moduli insures that the map A exists and is
uniquely determined modulo the group C. More specifically, we have this first obstruction.

MAIN THEOREM (I) (First obstruction). - Assume that K is the field of moduli of the
(G-)cover f relative to the extension F / K . Let y : II^(B*) -^ N / C be the representation
of UK modulo C given by the field of moduli condition (§2.7).

(a) There exists a unique homomorphism X : G { F / K ) -^ N/CG that makes the following
diagram commute

HK(B*) —— G(F/K)

^1 [ x
4' 4-

N / C ——> N/CG
(b) The constant extension map (in Galois closure) A : G ( F / K ) -^ N / G of each

K-model of the (G-)cover is a lift of A.
(c) In particular, the following condition

(A/Lift) There exists at least one lifting A : G ( F / K ) -^ N / G of A : G ( F / K ) -^ N/CG.
is a necessary condition for the field of moduli K to be afield of definition of the (G-)cover.

The map A : II^(B*) —> N / C is uniquely determined by the representation
(I)F : 11 (̂5*) -^ G C N associated with the (G-)cover / : X -^ B. If (f)p is changed
to <^ with a G N, then A should be replaced by A0', where a is the coset of a modulo
CG. The homomorphism A : G { F / K ) —^ N/CG is called the constant extension map (in
Galois closure) modulo C given by the field of moduli condition.

The case of G-covers. In this case we have N/CG = N / G = {1}. Consequently the
constant extension map A modulo C is the trivial one and the trivial map 1 : F -^ N / C is
the only possible constant extension map lifting A. Thus condition (A/Lift) holds trivially.

The case of mere covers is different. The map A may have no liftings A, (i.e., condition
(A/Lift) may not hold), and may have several ones. In §4.3 we give an iff cohomological
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criterion for (A/Lift) to hold. However we prefer to keep it as a basic condition because it
is necessary, natural and is likely to hold in practice. Here are some practical criteria.

PROPOSITION 3.1. - Condition (X/Lift) holds in each of the following situations (the third
one anticipates §4.3).

(a) The Galois group G(F/K) is a projective profinite group.

(b) The group CG/G has a complement in the group N/G, (in other words, the natural
map N/G —» N/CG splits). This holds in particular/or mere covers that are Galois of
group G such that Inn(G) has a complement in Aut(G\

(c) The group C/Z{G) is a centerless group and the "band" of the problem is
representable. The latter holds for example if Jnn(G/Z(G)) has a complement in
Aut(C/Z(G)) (e.g. C = Z(G)).

Proof. - (a) is immediate, (c) is proved in §4.3 (where "band" is defined). In (b), only
the part relative to the application to Galois covers needs more details. For Galois covers,
the group G acts freely and transitively on each unramified fiber of the cover. Thus the
embedding G ̂  Sd can be taken to be the left regular representation 7 : G ^-> Sd of G
(i.e., ^{g){x) = g.x ( g ^ x G G)). The following facts (*) and (**), which we will use in
a couple of occasions, are more or less classical. The desired result follows immediately
from (**). Identify G with 7(6).

(*) The group N = Nor^(G) is the semi-direct product C Xs Aut(G) of C = Cen^G
and Aut{G).

(**) N / G ^ Aut{G) and N/CG ^ Aut(G)/Inn(G).
[Proof of (*). The group C = Cens^ G is the image of the right regular representation 6 '. G '—> Sd (given by

6(g)(x) = x.g ( g ^ x £ G)). For each cr e Sd, there exists a unique Co- € C such that Ccrcr(l) = 1. It is easily
checked that a G N = Nors^ (G) if and only if Co-cr G Aut(G). The rest of the proof of (*) isstraightforward. D

Proof of (**). For each v = 6(g).x G N = Cx8 Aut(G) (with^ e G, ̂  e Aut(G)\ weh3.ve^(g)~1 .(6(g).)(_) G
Aut(G): indeed, ^/{g)~1 • 6(g) is the conjugation by g~1. This shows that N / G = GAut(G)/G ^ Aut(G). The
rest of the proof readily follows. D]

3.2. The main obstruction

Assume that condition (A/Lift) holds, i.e., that there is a possible extension of constants
for a K-model of the (G-)cover /. The main question remains: does there actually exist a
K-model with this extension of constants? Part II of the Main Theorem is concerned this
second part of the problem, which we call the main obstruction. More notation is needed.

The actions L, L^ L\ and the operator 61. Since elements of CG commute with those
of Z(G), the action of N by conjugation on Z(G) factors through the map N —» N/CG
to yield an action of N/CG on Z(G). Similarly, the action of TV by conjugation on G
factors through the map N —» N / G to yield an action of N / G on G. We call these actions
"actions by conjugation (via N)" of N/CG on Z(G) and of N / G on G.

The action L of G { F / K ) on Z(G) is the action obtained by composing the map
A : G ( F / K ) -^ N/CG with the action by conjugation of N/CG on Z(G). Given a
lifting A : G ( F / K ) -^ N / G of A, the action LA of G { F / K ) on G is the action obtained
by composing A : G ( F / K ) —^ N / G with the action by conjugation of N / G on G. It
is readily checked that the action LA, restricted to Z(G\ coincides with the action L.
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Finally, we denote by L^ the action obtained by composing A : G ( F / K ) —> N / G with
the action by conjugation of N / G on CG/G.

Fix a lifting A : G ( F / K ) —^ N / G of A. Consider the exact sequence

1 -^ Z(G) -^ C -^ CG/G -> 1

Its kernel Z(G} is abelian and central (i.e., Z{G) C Z{C)). Thus the coboundary operator

H\G(FIK^CG/G,L\) -. H\G(F/K)^Z(G)^L)

is well-defined. It will be denoted by 61.
The main obstruction to the field of moduli being a field of definition can be described

as follows. Conclusion (e) is the key part. The 2-cocycle f^A involved is defined in (b).

MAIN THEOREM (II) (Main obstruction). - Assume that K is the field of moduli of the
(G-)cover f relative to the extension F / K and that condition (X/Lift) holds. Fix a lifting
A : G ( F / K ) -^ N / G of X.

(a) Let s : G { F / K ) —^ IIj<(B*) be an arbitrary set-theoretic section to the map
n^(B*) -^ G ( F / K ) and ^ : n^(B*) -^ N / C be the representation of UK modulo
C given by the field of moduli condition (^2.7). For each u G G ( F / K ) , there exists an
element (pu ^ N, unique modulo Z{G), such that

( ^ = A(n) modulo G
\(f)^ =7p o s{u) modulo C

(b) Consider the 2-cochain {^u,v)u,v(=:r defined by:

^ = (0u ̂  ̂ ) {^FWs{v)s{uv)-1) -1 (^ v G F)

The 2-cochain (^tu,v)u,ver induces a 2-cocycle OA ^ H^(G{F f K\Z(G), L\ which is
independent of the choice of (f)u e N modulo Z(G) (u G G ( F / K ) ) in ( a ) above and of
the set-theoretic section s.

(c) The set of all liftings A' : G ( F / K ) —^ N / G of the constant extension map
\: G { F / K ) -^ N/CG modulo C exactly consists of those maps A' of the form A' = 6 • A
where 6 is any 1-cochain in Z1{G{F|K),CG|G,L\) (]).

(d) IfO is any 1-cochain in Z 1 { G ( F / K ) , CG/G, L^)) and 6 is the induced 1-cocycle in
^(G^F/K), CG/G^L^), then the following conditions are equivalent:

(i)^1 = 6\e)
(ii) There exists a K-model of the (G-)cover f with constant extension map (in Galois

closure) equal to the map 6 ' A : G { F / K ) -^ N / G (2).

(1) In particular, from the Main Theorem (I), the constant extension map of each X-model of / is of the
form 9 • A.

(2) In particular, condition (ii) actually depends only on 0 in H1(G(F/K)^ CG/G^L\) and not on the
particular cochain representative 0 in Z1(G(F/K),CG/G,L^).
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(e) In particular the following conditions are equivalent:

(i)^1 G 6\H\G{FIK\CGIG^L\))

(ii) The field of moduli K is a field of definition of the (G-)cover f (3).

In other words, the field of moduli K is a field of definition if and only if at least one
out of the 2-cocycles 61(0) ' »A, where 0 ranges over H^G^F/K), CG/G, L^), is trivial
in J?2(G(£/-ff), Z{G), L). We said in the introduction that the whole problem of whether
the field of moduli K is a field of definition was controlled by several characteristic
classes in H^^G^L/K), Z(G),L). These several characteristic classes are the 2-cocycles
6\e) • ^A (0 G H^G^F/^.CG/G.L^)). under condition (A/Lift), the index set A of
our simplified form of the Main Theorem given in the Introduction can be taken to be
A = 6\H\G{FIK^CGIG^L^.

In the case of G-covers, we have CG/G = {1}. Thus there is only one characteristic
class in H2(G(L/K)^ Z(G)^ L). Furthermore, in that case, the action L is the trivial action.
The case of mere covers is different. There may be several possible constant extension maps
A and to each of them corresponds a chance to descend the field of definition; the actual
test is the vanishing of a well-defined 2-cocycle in ^(G^F/JT), Z(G\ L) attached to A.

3.3. Special case for which (Seq/Split) holds

In this paragraph we assume that condition (Seq/Split) holds (§2.9) and reformulate the
Main Theorem in that situation. We let s : G ( F / K ) -^ II^(B*) denote a group-theoretic
section to the map IIj<(B*) —» G ( F / K ) . Under condition (Seq/Split), there is a more
precise invariant of the .Ff-models of the cover than the extension of constants (in Galois
closure), namely, the action of G ( F / K ) on the generic fiber associated with the section s
(§2.9). In a rough way, descending the field of definition from F to K consists then in
finding an action G ( F / K ) —^ N C Sd that is compatible with the given F-model of the
(G-)cover /, i.e., the given representation ^p : II^(B*) —^ G C N. "Compatible" means
that the action should respect the semi-direct product structure UK ^ lip X s G ( F / K )
given by the section s. More precisely we have the following result.

MAIN THEOREM (III) (under (Seq/Split)). - Assume that K is the field of moduli of
the (G-)cover f relative to the extension F / K and that condition (Seq/Split) holds. Fix a
section s : G ( F / K ) -^ II^(B*). Let ^ : n^(B*) -> N / C be the representation of UK
modulo C given by the field of moduli condition (§2.7).

(a) For each lifting A : G ( F / K ) -^ N / G of X : G { F / K ) -^ N/CG, the
2-cocycle ^A ^ H2(G(F/K), Z(G),L) of Part II is trivial if and only if there exists
an homomorphism ip : G ( F / K ) —> N that lifts the homomorphism Tp o s and that induces
A modulo G.

(b) In particular, the field of moduli K is afield of definition of the (G-)cover if and only if
the homomorphism^ os : G ( F / K ) -> N / C has at least one lifting (p : G ( F / K ) —^ N (4).

(3) In particular, condition (i) does not depend on the fixed lift A of A.
(4) In particular, the latter condition does not depend on the choice of the section s.
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(c) More precisely, to each lifting (p : G ( F / K ) —> N of the map I p o s corresponds a model
over K of the (G-)cover f, which has the property that the action (p : G ( F / K ) —> N C Sd
is the arithmetic action of G ( F / K ) on the generic fiber associated with the section s.
Namely, this K-model is the one associated with the extension of (f)p : Up (-S*) — ^ G c N
to n^(B*) = 11 (̂13*) X s G ( F / K ) that is equal to ^ on G ( F / K ) .

3.4. Concrete criteria

In this paragraph, we present some practical criteria for the field of moduli of a
(G-)cover to be a field of definition. We recover all classical criteria as special cases. The
main improvements are that our results are concerned with both G-covers and mere covers,
of a base space B of arbitrary dimension, over a ground field of arbitrary characteristic
and for F / K an arbitrary Galois extension. Furthermore, results of §3.4.1 do not assume
that condition (Seq/Split) holds.

3.4.1. Consequences of Main Theorem (Part I I ) . - It follows immediately from the Main
Theorem (II) that, under condition (A/Lift), the field of moduli K is a field of definition if
the cohomological group ^(G^F/K), Z(G),L) is trivial. Recall that condition (A/Lift)
is automatically satisfied in the situation of G-covers.

COROLLARY 3.2, - Under condition (X/Lift), the field of moduli K is afield of definition
if the center Z(G} ofG is trivial.

This was well-known for G-covers of P1 but seems to be new for mere covers for
which previous results involved so far the centralizer C = Cen^G. Combined with
Prop. 3.1, Cor. 3.2 yields this criterion: a mere Galois cover with centerless group G
such that Inn(G) has a complement in Aut(G) is automatically defined over its field
of moduli.

COROLLARY 3.3. - The field of moduli K is afield of definition ifG(F/K) is a projective
profinite group.

Indeed, if G ( F / K ) is projective, then condition (A/Lift) holds (Prop. 3.1 (a)) and the
group H2(G(F/K),Z(G),L) is trivial.

Take F = Ks, that is, consider the absolute form of the problem. Cor. 3.3 requires then
that G(K) be projective. This holds if K is of cohomological dimension < 1. Finite fields,
fc(T), fc((T)) (formal power series) with k any field, Q^ (maximal unramified algebraic
extension of Qp), Q"6, PAC fields are some classical examples of fields of cohomological
dimension < 1. Over these fields, the absolute field of moduli of a (G-)cover is a field
of definition. Another consequence of Cor. 3.3 is that the field of moduli of a (G-)cover
defined over Q is the intersection of its fields of definition: indeed, from Artin-Scheier's
theorem, each number field is the intersection of fields of cohomological dimension < 1
(see Prop, 2.7 of [CoHa] which proves this for G-covers).

3.4.2. Consequences of Main Theorem (Part I I I ) . - In this paragraph we assume that
condition (Seq/Split) holds. The three corollaries below use conclusion (b) of the Main
Theorem (III): the field of moduli K is a field of definition of the (G-)cover if and only if
the homomorphism ^ o s : G ( F / K ) —^ N / C has at least one lifting (p : G { F / K ) —^ N .
The first one is an immediate consequence.
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COROLLARY 3.4. - Under condition (Seq/Split), the field of moduli K is afield of definition
if C = CeiiTvG has a complement in N. This holds in particular in each of the following
situations:
- G'-covers for which Z{G) is a direct summand of G (e.g. G abelian).
- Mere covers that are Galois (use statement (*) in proof of Prop. 3.1).
The last situation is a generalization of Coombes-Harbater's theorem, which was

established for covers of P1.

COROLLARY 3.5 (generalizes [Db2]). - Under condition (Seq/Split), there exists afield of
definition Kd with degree [Kd : K} over the field of moduli bounded as follows.

{for G-covers) : [Kd : K} < {G{
w —————————.• L — — — — — — — j _ ̂ ^

(for mere covers) : [Kd : K] < ———d—-
\CensdG\

Proof. - Let Kd be the fixed field in F of Ker(jp o s). Apply conclusion (b) of the
Main Theorem (III) with K taken to be Kd. The restriction of (^ o s) to (G(F/Kd)) is
the trivial map and so can be lifted to an homomorphism G ( F / K d ) —> N. Conclude that
Kd is a field of definition of the (G-)cover. The desired estimates follow from

[Kd : K] = \G(F/K)/Ker(lp,)\ = \(^)(G(F/K))\ < \N/C\

and the definitions of N and C. D

COROLLARY 3.6 (generalizes [Dew]). - Under condition (Seq/Split), the field of moduli K
is a field of definition if G ( F / K ) is a finite cyclic group of order divisible by the exponent
exp(N) of the group N.

Proof. - Let ^ be a generator of G ( F / K ) and n = [F : K}. It is easy to lift the
homomorphism Tp o s : G ( F / K ) —^ N / C to some homomorphism G ( F / K ) —^ N. Indeed
it suffices to lift 1p o s{Q up to an element g e N such that gn = 1. Now because of the
assumption on exp(N), all elements g G N satisfy g71 = 1. D

REMARK 3.7. - The main idea in Cor.3.6 about the use of cyclic extensions is due to
E. Dew. He also notes that the hypotheses only have to be satisfied for an extension F '
of F. Namely we have this more general result.

(1) Let fp : X —> B be a (G-)cover over F -with K as field of moduli. Assume that
there exists afield F ' such that the extension F ' / K is cyclic of order a multiple ofexp(N)
and (Seq/Split) holds with F ' replacing F. Then K is afield of definition of the (G-)cover
fp ®F F ' (but not necessarily of the original (G-)cover fp).

This may be used to give an alternate proof of the fact that over a field K with pro-cyclic
absolute Galois group G(K), the absolute field of moduli is a field of definition.
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3.5. The local-to-global principle

The Main Theorem has the following application which we call the local-to-global
principle for G-covers over Q. The base variety B is a regular projective irreducible
variety defined over Q.

THEOREM 3.8. - A G-cover f : X —^ B over Q is defined over Q if and only if it
is defined over each completion Qp of Q (including p = oo). More generally, the same
conclusion holds with Q replaced by any number field K such that the following special
case does not hold,

SPECIAL CASE. - The special case comes from the special case of Grunwald's theorem
[ArTa]. For each integer r > 0, Cr is a primitive 2rth root of 1 and r]r = Cr + Cr~1' Then
denote by s the smallest integer such that rjs G K and rjs-\-i ^ K. The special case is
defined by these three simultaneous conditions:

1. —1, 2 + ?7s, —(2 + r]s} are non-squares in K.
2. For each prime p of K dividing 2, at least one out of the elements —1, 2 + rjs,

—(2 + rjs) is a square in Kp.
3. The abelian group Z(G) contains an element of order a multiple of2t with t > s.
If K = Q, then 5 = 2 and rjs = 0. Since -1,2 and -2 are non-squares in Qs, condition 2

cannot be satisfied. Therefore the special case does not occur if K = Q. Similarly the
special case does not occur if K contains A/^T or if K contains ^/:Z2 (5) or if Z(G) is of
odd order. Examples for which the special case holds are actually quite rare (see [ArTa]).

The local-to-global principle for G-covers between curves over an arbitrary number field
was conjectured by E. Dew [Dew]. The special case B = P1 was first proved in [Db2]
(except in the special case of Grunwald's theorem). The proof took advantage of the
cohomological nature of the obstruction to the field of moduli being a field of definition.
Thm. 3.8 extends this result to G-covers of more general base spaces B. In particular,
B does not need to have a K -rational point.

It is unknown whether the local-to-global principle holds in the special case of
Grunwald's theorem; no counter-example has yet been found. It is also unknown whether
the local-to-global principle holds for mere covers in place of G-covers. We will devote
a forthcoming paper to this question [DbDol] (see also Remark 3.9). We will establish
the local-to-global principle for mere covers under additional assumptions on the group G
and the embedding G C 5^. We think however that the local-to-global principle is very
unlikely to hold in general for mere covers. There is indeed for mere covers an extra
obstruction, which is as before related to the fact that, unlike G-covers, mere covers may
have several models with essentially distinct extensions of constants in Galois closure.

More precisely, if a given mere cover f '. X —> B over Q has a model JK '- XK —> B
over some number field K, then the local covers JK ^K Ky obtained by extension of
scalars from K to each completion Ky of K have this property: the extensions of constants

(5) Case "y^^ 6 K": In that case, either y^^T € K and then condition 1 is not satisfied, or y^T ^ K, but
then v^ ^ K, which yields s = 2, rjs = 0 and — ( 2 + 7 7 s ) = — 2 i s a square in K, i.e., condition 1 not satisfied
either.
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in Galois closure K v / K v all come by extension of scalars from a same extension K / K .
Now, if instead it is only assumed that the mere cover / has a local model fv over each Ky,
one can hardly expect that the same be true for the associated constant extensions K y / K y .
On the contrary one can imagine that they come from the constant extensions K i / K i of
several models over several fields Ki but that no J^-model exists.

Proof of Thm. 3.8. - Let / : X —^ B be a G-cover defined over each completion Ky
of a number field K. Since the (absolute) field of moduli is contained in each field of
definition, it can be embedded in each completion Ky, where v runs over the set MK
of all places of K. It is a classical consequence of Cebotarev's theorem that this forces
the field of moduli to be K. Consequently the ramification divisor is G(Ar)-invariant.
From the Main Theorem then, the obstruction to K being a field of definition of / is
measured by a certain 2-cocycle 0 C ff2^, Z(G)) (with trivial action). By hypothesis,
this 2-cocycle vanishes in ff^A^, Z(G)) for each place v G MK- Therefore the element
Q lies in the kernel of the map

(2) H^K^Z^G))-^ n H\K^Z{G}}
V^MK

The rest of the proof consists in showing that this map is injective except possibly in
the special case. By writing Z(G) as a product of cyclic groups, one may reduce to the
case Z(G) = Z/nZ. Then from the Tate-Poitou theorem [Se; II-§6.3], the kernel of the
map (3) is in duality with the kernel of the map

H\K^^-. ]̂ [ H\K^^)
V€MK

where p.n = Hom(J./n1^Grn) is the group of nth roots of 1 in K. Classically we
have H1^, ̂ ) ^ K X / ( K X ) n . The result then follows from GrunwakTs theorem [ArTa;
Ch. 10]: for a global field, the natural map

^wr- n ^A^)'
V^MK

is injective except possibly in the special case described above (which corresponds to the
special case of Grunwald's theorem in [ArTa] p. 96 with the extra condition S = 0). D

REMARK 3.9. - The proof extends to the case of mere covers for which the
obstruction "field of moduli vs field of definition" can be measured by a single 2-cocycle
^ G ^(K^Z^G}') with trivial action. In general the question is controlled by a family
(^A)AEA of elements of H2^^ Z(G)^L). The parametrizing set A, either is empty, or
can be taken to be 81(H1{K^CG/G^L^)). Therefore the local-global principle holds for
mere covers for which

(1) Condition (A/Lift) holds (which insures A ^ 0).
(2) Z(G) is a direct summand of C = Cen^(G) (which insures that the set

61(H1{K,CG|G,L^) is trivial).
(3) Elements of Z{G) commute with those of N = Nor^G (i.e., Z{G) C Z{N))

(which insures that the action L is the trivial one).
We will elaborate on this in [DbDol].
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4. Proofs of the main results

This section contains the proof of the Main Theorem. We start with a pure group
theoretical problem in §4.1. This paragraph is the technical core of the paper. We then
prove the Main Theorem in §4.2: appropriately formulated, it appears as a special case of
§4.1. A basic assumption of the Main Theorem is condition (A/Lift). In §4.3 we prove, under
a minimal condition denoted (Band/Rep), an ;y cohomological criterion for (A/Lift) to hold.

4.1. A pure group theoretical problem

The problem below is about the possibility of extending a given group homomorphism
with some extra constraints. We will give a cohomological solution (Thm. 4.3): more
precisely we will produce a characteristic class Q, in a certain cohomological group with
the property that the vanishing of it is equivalent to the possibility of extending the given
homomorphism.

4.1.1. Basic problem.

DATA. - A commutative diagram

- where all arrows are group homomorphisms,
- where (—^ means that the group homomorphism in question is injective (we may then

regard these maps as inclusions),
- where 1-^ means that the group homomorphism in,question is surjective,
- where all sequences in which arrows are lined up are exact.

HYPOTHESIS. - We assume that H C Cen^D.

QUESTION. — Does there exist a group homomorphism F : B —^ E such that the enlarged
diagram commutes, that is, such that:

(i) F extends F : A —^ D, i.e., the restriction of F to A equals F, and
(ii) F induces F \ B —> E modulo H or, equivalently, F is a lifting ofF : B -» E, and
(iii) F induces f :T —^ R over F, i.e., F composed with the map E —^ R coincides with

the map B —» F composed with the map f?
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4.1.2. Notation
(a) Cosets modulo H. Given any element n G E, the corresponding element in E via

the map E —^ E will be denoted by n. For simplicity, we use the same notation, i.e.,
we also use "bars", for images of elements of D via the map D —^ D and for images
of elements of R via the map R —» R. Finally, given any map g with values in D or E
or R, we denote by ~g the map denned by ~g(x) = g(x).

(b) The abelian group Z = D H H. Under the assumption H c Cen^.D, the group
D n H is an abelian group, which we denote by Z. The group D H H is actually equal to
the intersection Z(D) n Z ( H ) of the respective centers of D and H.

(c) Actions by conjugation
- Action of R on Z: The kernel of the map E —» R obtained by composing the maps

E —^ E and E —^ R is the group DH. Since from (b) above, elements of DH commute
with those of Z, the action of E by conjugation on Z factors through the map E —» R
to yield an action of R on Z.

- Action of R on H: it follows from H C Cen^D that the action of E by conjugation
on H factors through the map E —» R to yield an action of R on H.

- Action of E on D: it follows from H C Cen^jP that the action of E by conjugation
on D factors through the map E —» E to yield an action of E on D.

For simplicity, we call these actions actions by conjugation via E.
(d) Actions of F
- The action L of F on Z is denned to be the action obtained by composing / : F —> R

with the action by conjugation of R on Z (via E). This action plays a quite important role.
It can be denned equivalently as follows: for each d G Z and each c G F,

d^ = d6

where e G E is any preimage of /(c) via the map E —» R.
- The action Lf of F on H is the action obtained by composing f : T —^ R with

the action by conjugation of R on H (via E). It is readily checked that the action Lf,
restricted to Z, coincides with the action L.

- The action L\ of F on H D / D is the action obtained by composing f :F —^ R with
the action by conjugation of R on the kernel of R -^ R, which identifies to H D / D . It
is readily checked that the action Lf of F on H induces an action of r on H D / D and
that that action is the action L*c just defined.

4.1.3. Conditions (FMod) and (rest/mod)
The following conditions are important:

(FMod) For each a C A and for each b e B we have

F^) = ̂ (af^

(rest/mod) The map F : A—^ D induced by F modulo H coincides with the restriction
~F : A -^ D of ~F to A.
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Condition (FMod) is the "Field of moduli" condition. This condition exactly corresponds
to condition (FMod) of §2.7 in the context of (G-)covers. Condition (rest/mod) is concerned
with the corner A -^ ~D in diagram 4.1.1. Maps F and F are two natural maps A —>D.
Condition (rest/mod) insures that both maps are equal. The name (rest/mod) is meant to
suggest that "restriction" commutes with "modding out by H'\

PROPOSITION 4.1. - Assume that Basic Problem 4.1.1 has an affirmative answer, i.e., that
there is an homomorphism F extending F and inducing F and f. Then both conditions
(FMod) and (rest/mod) hold true.

Proof. - Assume that F exists. Let a G A and b <E B. We have:

F(a6) = F(a6) = F(a)^ = F(a)^ = F(af^

thus proving condition (FMod). Next we have F(a) = F(a). So F(a) = F(a). This proves
that F coincides with the restriction of F to A, i.e., that condition (rest/mod) holds. D

In addition to condition (FMod) and (rest/mod), what else is needed for Basic Problem
4.1.1 to have an affirmative answer? The answer is Thm. 4.3 below.

4.1.4. Solution to Basic Problem 4.1.1
We respectively denote the maps E —» R and E —^ R by r and r.

LEMMA 4.2. - Let s '.Y —> B be an arbitrary set-theoretic section to the map B —» T.
For each u C r, there exists an element (f)u G E, unique modulo Z, such that

(r(^)=f(u)

\^u = Fos(-u)

Proof. - Pick <% G E such that r(<%) = f(u). Then we have

(1)

r(^) = rW

=JW
=7W_

=roF(s(u))

Consequently ^ = F(s(u)). du for some du C D. Set

^u = ̂ •(^n)~

Then <^ satisfies (1). Uniqueness of <^ modulo Z = D H H is clear. D
For each choice of a set-theoretic section s and a family (^n)ner as in Lemma 4.2, we

now define elements $^ G F, 7^ G A and ^^ G F (u, v G F), in the following way.
f^u,v = ̂ u 4>v ̂

(2) ^ 7u^ = s(^) s(^) s(uv)~1

[^=^ (F(7^))-1

THEOREM 4.3. - Assume that both conditions (FMod) and (rest/mod) hold.
(a) The 2-cochain (^u,v)u,v^r defines a 2-cocycle ofT with values in the abelian group

Z = D D H and for the action L on Z.
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(b) Modulo the coboundaries, the 2-cocycle (^lu,v)u,v^r is independent
- of the set-theoretic section s : Y —^ B, and
- of the family (^)uer satisfying ( 1 ) in Lemma 4.2.
(c) Basic^ Problem 4.1.1 has an affirmative answer, i.e., there is an homomorphism F

extending F and inducing F and f, if and only the 2-cocycle ^ is trivial in H2^, Z, L).

Proof of Thm. 4.3 (a).

Step 1: ^l has value in Z == D D H: Let n, v G F. Classically 7^ is in A. Consequently
F(^u,v) is defined and lies in D. A priori ^>u,v is in E but using (1) we obtain

r^u^v) = r((/)^r((/)^)r((/)^)~1

= f(u)f{v)f(uv)-1

= 1

which proves that ^u,v is in D. Thus ^lu,v ^ D. It remains to prove that ^u,v =
(^u,v'(F(^u,v))~l is in H. This follows from

^u,v = (t>u ^v (f>uv

= F o s(u) ~F o s(v) (F o s{uv))~1 (from (1))
=^(7^) .

= F(^u,v) (from (rest/mod))

= F^)

Step 2: Co cycle condition. The following formulas are straightforward:

te ^h,k^9 ^,hk ̂  = 1

[^h (^k)^ 7ff,fcfc ^,k = 1
(3)

7,,^ (Xfe)8^ 7ff,fcfc Tg^ = 1

Apply -F to the second one and use that

F^kf^) = (i7^^))^*7" (from (FMod))

= (^(T/.,*;))'^ (from Lemma 4.2)

to obtain this formula

(4) F(^)-1 F^Y9 F(^k) F{^r1 = 1

Combine it with the first formula of (3) to obtain that ^lu,v = ^u,v(F('^u,v))~1 satisfies

(5) ^h (^h,kY9 ^,hk ̂ k = 1

[Hint: prove the equivalent formula (^fc^^g^fc = ^g,h^gh,k- Note that the ^tu,vS commute with elements
of both D and H.]
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Note eventually that, since 0^ € ^, we have

rA — O^^ — 0-^ — O1'^
^/i,fc — ^h^k ~~ ""/i,fc — ""^fc

Conclude that condition (5) is indeed the cocycle condition in H2^, Z, L). D

ProofofThm. 4.3 (b). - Let s7 : F —> B be another set-theoretic section of B -^ F. From
Lemma 4.2, for each u G F, we may choose an element <^ ^ N , uniquely determined
modulo Z, such that

f ^(^) = fW
[^^Fos^u)

As above define a 2-cocycle ^/ = (^^v)u,v€r by

^-^(a"1

7 .̂ = ^(^ s^) (U^(^))-1

^^-^(^J)"1

We need to show that the 2-cocycles (fin^)^er and (B^ J^^er differ by a coboundary.
L^ ^ : r -> B be the set-theoretic map defined by 8{u) = s(u)-ls'(n). We have

8(T) C A. Let u G F. Using the uniqueness modulo Z in Lemma 4.2, one obtains

^ = ̂  ^(^(n)) Cn for some Cn e Z

Then set

(6) c, = F(<?(u)) Cu = Cu ^(^M)

The following formulas are straightforward:
f^, = Q,,, i^Xc^c, c^l)^(F(7^))-l

"^,1; —— ""^,'U x ^ ]U,V)\^u ^V ^UV >
(7)

^ =^(^)S(.)-1^) 5(^)-1)^)

Apply F to the second one to obtain

F(^) = F(^)(F(^(n))^lF(<5(^)) F(<5(m;))-Y-

Substituting back in the first one yields

^ = ̂ [(^-1^ ^1)^[(F^(^))^1F(5M) F^M)-1)^]-1]^'^

Now (6) gives

cf^c. c^ = (C^1^ Cn^Wu^Wv)) F(6(uv))-1)

Whence
Q' -Q \ (C ( i > v l C ^-1^]F^^""^,1; — ""it^LvSn Sv Suv / J

Finally set ^ = <^ = ^(u) for each u € F to obtain

o' — Q r/' .^L(n)^-l1 ^(7^,^)
""n,^ '— ""n,^ [snSv Su-u J
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The 2-cochain ([^u^v Cm1] ^^'^u^er is as desired a coboundary of F with values in
the abelian group Z and for the action L on Z. D

Pw<9/ o/ Thm. 4.3 ( c ) .

Step 1: Necessary form ofF. Denote the map B -^ F by p and fix a set-theoretic section
s : r —> B of p. Then each element u 6 B can be written in a unique way

u = a s{u) where a € A and u = p(u)

If ^ : B —>• E is any homomorphism extending F : A —> D and inducing F : B —^ E and
/ : r —> R, then we have, on one hand F{a) = .F(a), and, on the other hand,

f r(F(s(^)) = /(^)

[F(s(zQ) =Fos{u)

Lemma 4.2 then provides

F(s(n)) = ^c^ for some Cu ^ Z

Conclude that F(v) is necessarily of the form

(8) F(u) = F(a) ^c^ for some Cu e Z

Step 2: Iff condition for F to be a group homomorphism. Consider a set-theoretic map
F : B —^ E defined as in (8). By construction, F extends F and induces F and /. It
remains to find out whether F is a group homomorphism. Let

{ u = x s(u) x G A and u = p{\j)
with

v = y s(v) y G A and v = p(v)

be two arbitrary elements of B. We have

uv = x s{u) y s(v)

= x y8^ s(u)s(v)s{uv)~1 s(uv)

= x y^ 7^ s(uv)

whence _
F(uv)=F(^^7^) ^c^

= F{x) F{y)^ F{^) ̂ c^
On the other hand we have

F(u)F(v) = F{x) ̂  F{y) ̂

= F{x) F^y)^ 0,c, ̂ c,

= F{x) F^ ̂  ̂
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Therefore F is a group homomorphism if and only if for all u^ v e F we have

F^u^v) ^uvCuv = (J>uCu ^vCy

Multiplying both terms to the right by the inverse of the left hand side term leads to
the equivalent formula

(r^1 r ^-l^(^(^ 0 — 1{^u c^ Sw 7 ^"u,v — L

Finally set du = {c'ul}4)u = (^u1)1^ (u e r) to conclude that F is a group homomorphism
if and only if for all u^v G F we have

(Q\ Q — cl d^^ d~1
\,J) ^^u,v — ^u ^y ^uv

Step 3: Conclusion. Assume Basic Problem 4.1.1 has an affirmative answer, i.e., that
there is an homomorphism F extending F and inducing F and /. Then F{\J) (u G B) is of
the form (8) (Step 1) and (9) holds (Step 2). So the 2-cocycle ^ is trivial in H2^, Z, L).
Conversely, if ^ is trivial in ^(F^L), then (9) holds for some family (du)uer of
elements of Z. Set Cu = {d^1)^1 (u G F) and define F as in (8). From Step 2, F is an
homomorphism extending F and inducing F and /. D

4.1.5. Dependence in f

In the diagram of Basic Problem 4.1.1, the map / : F —^ R is a lifting of f : F —^ R.
In this section we study how the 2-cocycle ^ = f^ is changed when J is changed to
another lifting // of /.

PROPOSITION 4.4. - (a) The set of all liftings off exactly consists of those maps f \T —> R
of the form f = 0 • f where 6 is any 1-cocycle in Z 1 ( ^ , H D / D , L ^ ) .

(b) Let (9i ,6>2 € Z l ( r , H D / D , L ^ ) . Let j[ = 0, • f be the corresponding liftings of
f, i = 1,2. If the 1-cocycles Q\^6^ are cohomologous, then the 2-cocycles ^If^f G
^(F^L) are equal.

Proof. - (a) follows straightforwardly from the definition of Z l ( ^ ^ H D / D ^ L * c ) , which
is the set of all maps 0 : F —^ H D / D satisfying the cocycle condition

e(uv) = e(u) e^y^
(b) Assume that Q\ and 0'z are cohomologous, i.e., there exists h G H D / D such that

O^u) = /T^i^)^ for all u e F

For each u G F, denote by <^ ^ the unique element modulo Z satisfying the conclusion
of Lemma 4.2 with j[ replacing /. Lift each element Oi(u} G H D / D to an element
6i(u) G H and lift the element h G H D / D to an element h G H. Then it is readily
checked that one can take, for each u € F

Ku = (^.ĵ
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It follows that

(f^)^ = ̂  ̂  (̂ .,J-1 (F(7u,.))-1

= (^J^"1 ( l̂,.) '̂1 ((^n.)^"1)-1 W7n,.))-1

= ("/'r^V ^l/U.V

= (f^/) (since /i e ff C CeriED) D

From Prop. 4.4, the set of characteristic classes f^/, when // ranges over the lifts of /,
can be parametrized by ^ { T ^ H D / D ^ L ^ } . Prop. 4.5 below is more precise. The kernel
Z = D D H of the exact sequence

1 ̂  z -> H -> ^J?/^ -> 1

is abelian and central in H. Consequently, the correspondence that maps each 1-cocycle
0 e Z ^ y . H D I D . L } ) to the 2-cochain ^(^(^^^(m;)-1, where, for each h G F,
0(/i) G JT is a lift of 0(K) G H D / D , induces a map -the coboundary operator

61 : H^F, H D / D , L}) -. ff2^, Z, £)

For each 6 € Z l ( ^ , H D / D , L f ) , ^l((9) is the obstruction to the possibility of lifting 0
up to a 1-cocycle 0 e Z^{V,H,L}}.

PROPOSITION 4.5. - Let 0 € Z l { ^ , H D / D , L f ) and f = 0 • f be the corresponding
lifting of f. Then we have

^=6\e)^f

Proof. - For each u G r, denote by (^ Ae unique element modulo Z satisfying the
conclusion of Lemma 4.2 with // replacing /. It is readily checked that one can take
^ = 0{u) (f)u. It follows that

(̂ ),,, = ̂  ̂  (^J-1 (F(7^))-1

= 0(^)^ 0(?;)^ (0(^)^.)-1 (F(7n,.))~1

= ̂ )^ 0^)^ ((^^)-1 (nj).,. F(7n,.)) ̂ )-1 (^(7u,.))~1

= 0(^ 6^ (^)^, 0(^)-1

= ̂ ) 0^^ 0(uv)-1 (flf)^

=(61(e)^)^ D
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4.2. Proof of the Main Theorem

Notation is that of §2 and §3. We fix a Galois extension F / K and a (G-)cover
/ : X —^ B defined over F. The base space B is assumed to be defined over K. Let
(f)p : Ilp^B*) —» G C N be the homomorphism associated to the (G-)cover /. Assume
that K is the field of moduli of the (G-)cover /. Then the ramification divisor D is
G^^invariant and condition (FMod) holds, that is,
(FMod) For each u E IIj<(B*), there exists (p\j E N such that

^(^u) = (f)F(x)^ (for all x G 1MB*))

As in §2.7, denote by ^ : II^(J3*) —^ A/7C7 the representation of UK modulo C given by
the field of moduli condition. Recall the definition of Tp. Given any element n G N , the
corresponding coset modulo C will be denoted by n. Then for each u € IIj<(J3*), ^(u) is
defined to be the coset ^u of any element ^p\j E N satisfying the formula above in the
(FMod) condition. The right-hand side term then rewrites

(M^ = M^f^

PROPOSITION 4.6 (Condition (rest/mod)). - For each u G Up ( B * ) , we have

(f)F{u) = Tp(u)

That is, the restriction of the map Tp to Up (B*) coincides with the map (J)F '' 11^ (B*) —^
N/C induced by ^p : n^(B*) -^ N modulo C.

Proof. - For u <E 11^(5*), we have <M^) = M^^ ̂  all x e 11^(5*). That
is, one can take (pu = <i^(^) m condition (FMod). D

4.2.1. Proof of Main Theorem ( I ) . - From Prop. 4.6, (̂11̂  (B*)) C G/C n G ̂  CG/C.
Thus there exists an homomorphism A : G { F / K ) -^ N/CG such that the following
diagram commutes

IMfi*) —— G { F / K )

^ [x•^ 4,

N / C ——> N/CG

Furthermore, since the map UK —^ G ( F / K ) is onto, such an homomorphism A is unique.
This proves (a).

Let JK be a AT-model of the (G-)cover /. Let (/)K '' ^IK —^ N be the associated extension
of (j)p : Tip —^ N. As in Prop. 4.6 above, it is shown that, for each u e II^(B*),

<^(u) =1p(v)
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That is, (J)K '• n^ -^ N is a lifting of ^ : IIj<(B*) -^ A^/C (6). Consider the constant
extension map (in Galois closure) A : G ( F / K ) -^ N / G of the ^C-model of the (G-)cover /.
From §2.8, it is the map induced by (J)K on G ( F / K ) modulo G. Therefore the map
A : G ( F / K ) -> N / G should necessarily be a lifting of A : G ( F / K ) -^ N/CG. This
proves (b). Finally (c) follows immediately from (b\ D

4.2.2. Proof of Main Theorem ( I I ) . - We assume here that condition (A/Lift) holds. We
fix a lifting A : G { F / K ) -^ N / G of A : G ( F / K ) -^ N/CG. The situation corresponds
to the following diagram,

TIrW

G { F / K }

N / C G

C

which is a diagram as in Basic Problem 4.1.1. The hypothesis of Basic Problem 4.1.1, here
"C C Cen^yG" follows from the definition of C = Cen^C?. Both conditions (FMod) and
(rest/mod) have been checked above. The existence of a solution (/)K : r[j<(B*) —^ N to
Basic Problem 4.1.1 in that situation exactly corresponds to the possibility of descending
the field of definition of the (G-)cover / from F to its field of moduli K with the
extra property that the constant extension in Galois closure of the K-mode\ be given by
the map A. Part II of the Main Theorem corresponds to the conclusions of §4.1 in the
specific context of (G-)covers. More precisely, conclusion (a) corresponds to Lemma 4.2,
conclusion (Z?) to Thm. 4.3 (a) and (b), conclusion (c) to Prop. 4.4 (a), conclusion (d) to
Thm. 4.3 (c) combined with Prop. 4.4 (b) and Prop. 4.5.

(6) The converse is not true: an arbitrary lifting (f>K '• n/< —> N of ^ : IIj<(5*) —>• N / C need not extend
^ : n^ ^ G.
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Finally conclusion (e) is a straightforward consequence of conclusions (c) and (d) (along
with the Main Theorem (I)). Namely, assume that the field of moduli K is a field of
definition of the (G-)cover /. Then from the Main Theorem (I), the constant extension
map A' of a K-mode[ of / is a lifting of A. Therefore, from the Main Theorem (II) (c),
A' is of the form A' = 0 • A for some 6 G Z\G(F/K), CG/G,L^). Denote by 6 the
element of H\G{F/K), CG/G,L^) induced by 0. From the Main Theorem (II) (d\
we have ̂  = 6\0) G S^H^G^F/K), CG/G,L^)). The converse follows even more
immediately from (i) => (ii) in conclusion (d). D

4.2.3. Proof of Main Theorem ( I I I ) . - We assume condition (Seq/Split) holds. We fix
a group-theoretic section s : IIj<(B*) —> G ( F / K ) .

Proof of (a). - Fix a lifting A of A. The set-theoretic section F -^ B of §4.1 can be taken
to be here the group-theoretic section s. The 2-cocycle ^ = fl^ gets simpler since, with
notation of §4.1, we have then ^u,v = 1 and so ^u,v = ̂ u ^v ^u^' ^ follows immediately
from that and the definition of (pu that the vanishing of f^ corresponds to the existence of
a lifting y : G { F / K ) -^ N of Tp o s that induces A modulo G.

Proof of (b). - If the field of moduli K is a field of definition, then the map A has at least
one lifting A and the associated 2-cocycle f^A is trivial. From (a) above, the homomorphism
y o s has some lifting ^p. Conversely, assume that ^os has some lifting y? : G ( F / K ) -^ N.
Then this homomorphism ^ induces an homomorphism A : G { F / K ) —>• N / G modulo G.
This map A is a lift of A. From (a) above, the associated 2-cocycle fl\ is trivial. Therefore,
from the Main Theorem (II), the field of moduli K is a field of definition.

Proof of ( c ) . - (c) follows immediately from the definition of the arithmetic action of
G ( F / K ) on the generic fiber associated with the section s (§2.9). D

4.3. Condition (A/Lift)

The following condition.
(A/Lift) There exists at least one lifting A : G ( F / K ) —^ N / G of the constant extension
map (in Galois closure) A : G ( F / K ) —> N/CG given by the field of moduli condition.
is a basic assumption of the Main Theorem (II). Recall also that it is anyhow a necessary
condition for the field of moduli to be a field of definition. In this paragraph, we give, under
a minimal assumption denoted (Band/Rep), an iff cohomological criterion for condition
(A/Lift) to hold.

Condition (A/Lift) corresponds to the weak solvability of the following embedding
problem (by "weak" we mean that the solution A need not be surjective).

G ( F / K )
^/^

(EPo) A' A

/
^ -

CG/G c———— N / G —p— N/CG
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This problem is trivial for G-covers since for G-covers, we have N = G and so
N / C G = N / G = {1}. The question is also quite classical in the case that the kernel
CG/G is abelian and contained in the center of N / G . Namely the question is equivalent
to the vanishing of a characteristic class in H2^, CG/G) (with trivial action).

The question is a little more delicate when the kernel CG/G is an arbitrary group. First,
there is no natural action of N/CG on the kernel CG/G, but only an outer action, i.e., an
homomorphism ^ : N/CG -^ Out(CG/G) from N/CG to the outer automorphism group

Out(CG/G) = Aut(CG/G)/Inn(CG/G)

of CG/G. Here Aut(CG/G) (resp. Inn{CG/G)) denotes the automorphism group (resp.
inner automorphism group) of CG/G. In a general way, given a normal subgroup H of
a group E, denote the subgroup of Aut(H) consisting of all the automorphisms of H
obtained by conjugation by an element of E by AutcE^H). Similarly denote the quotient
group AutcE(H)/Inn(H) by OutcaW.

A necessary condition for the embedding problem (EPo) to have a solution is that the
following one does.

G { F / K )
^

^

(EPi) ^ ^ ^ox

^ "
Inn{CG/G) <———— Autc^/cCG/G -^ Outc^/cCG/G

Giraud [Gi] calls the homomorphism ~R, o A : G ( F / K ) -^ Outc{CG/G)) the band of
the original embedding problem (EPo) and says that the band is representable when
(Band/Rep) The homomorphism ~R, o \ : G ( F / K ) —> OutcN/G^CG/G)) can be lifted up
to a real action G ( F / K ) -^ AutcN/G^CG/G), (i.e., the embedding problem ( E P ^ ) has
a solution).

Condition (Band/Rep) is a necessary condition for (A/Lift). Conversely we have

THEOREM 4.7. - Assume that condition (Band/Rep) holds. Fix a solution i: G ( F / K ) —>
AutcN/cCG/G to the embedding problem (EPi). Then there exists
- an action i of G ( F / K ) on CG/G with restriction \ on Z{CG/G) independent of

the choice of I,
- a 2-cocycle ^ C ff^G^F/JQ, Z{CG/G),x).

which are explicitly described in the proof below and which have the property that condition
(X/Lift) is equivalent to the condition

ĉ -1 e 8\H\G{FIK)^{CGIG)^))

where V is the action of G ( F / K ) on Inn{CG/G) naturally induced by i and 61 is the
coboundary operator

H\G{FIK)MCGIG}^) -. H\G{FlK}^Z{CGIG\x)
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associated with the exact sequence

1 -^ Z{CG/G) -^ CG/G -^ Inn{CG/G) -^ 1

For example, condition (A/Lift) holds if condition (Band/Rep) holds and CG/G is a
centerless group. Of course Thm. 4.7 leaves us with condition (Band/Rep). This condition
can be regarded as the very first condition for the field of moduli to be a field of definition.
It holds for example if Inn(CG/G) has a complement in Aut(CG/G).

REMARK 4.8. - The procedure that was applied above to the embedding problem (EPo)
can actually be in turn applied to the embedding problem (EPi), which gives rise to a
new embedding problem (EPs), etc. This inductive procedure stops after a finite number
of stages. Indeed, at each stage, the kernel H of the embedding problem is replaced
by Inn{H) which is of order \Inn(H)\ < \H\. Thus the sequence of the orders of the
kernels of the successive embedding problems is a decreasing sequence of positive integers.
Therefore, at some stage, we will have \Inn{H)\ == \H\, i.e., H is a centerless group.

Proof of Thm. 4.7. - Under condition (Band/Rep), the embedding problem (EPi) can be
viewed as a Basic Problem 4.1.1. Denote by K the natural map N / G —> AutcN/cCG/G.
We have the following diagram

G ( F / K )

TEoA

Outc^/cCG/G

CG/G

The action i : G { F / K ) -^ Aut(CG/G) being fixed, the problem is to find an
homomorphism A : G ( F / K ) -^ N / G that lifts A, that induces i (and that extends
the trivial map). The hypothesis of Basic Problem 4.1.1, here CGJG C Cen^/cKer^)
follows from the definition of K. Both conditions (FMod) and (rest/mod) hold here trivially
since the upper corner map is the trivial map 1 —^ Ker(j^).

Thus we can use the general results of §4.1. Here Z is the abelian group
CG/G H Ker{^) = Z(CG/G). The action I of G { F / K ) on CG/G is the action Lf
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of F on H D / D of §4.1. The restricted action ^ of G { F / K ) on Z(GG/G) is the
action L of F on Z. The 2-cocycle ^ G ^^(F/JT), Z(GG/G),;c) is the 2-cocycle
^ G H^F.Z.L) of §4.1. The action i* of G ( F / K ) on Inn{CG/G) is the action L} of
r on H D / D of §4.1. The main conclusion of Thm. 4.3 is the existence of a 2-cocycle
uo = ̂  € H2(G(F/K),Z(CG/G)^) which vanishes if and only A has a lift A that
induces L

It remains to make t vary among the solutions of the embedding problem (EPi). From
Prop. 4.5, a solution I being fixed, the existence of a solution t' for which the 2-cocycle
uji> vanishes in H ^ ^ G ^ F / K ) , Z(CG/G),-^) is equivalent to the condition:

ĉ -1 G 81(Hl{G{F/K),Inn(CG/G),r)) D

Final Note

The goal of this final note is to explain that our paper applies not only to G-covers and
mere covers but to any kind of covers f : X —^ B given with some "extra structure".
By extra structure, we mean for example: an action of some given finite group on X
trivial on B\ or, an unramified point on X\ or, if X is an abelian variety, some level
structure on X, etc.

Thanks to the generality of §4, our paper applies to any objects that can be viewed as
surjective homomorphisms ( f ) : UK, (-B*) -^ G regarded modulo conjugation by elements of
a group N normalizing G. The main results of §4 are Thm. 4.3, Prop. 4.4 and 4.5. Our main
examples are G-covers (N = G) and mere covers (G is then given as a subgroup of Sd and
N is the normalizer of G in Sd). The Main Theorem corresponds to a translation of these
results in those situations. But the main results of §4 can be immediately used for covers
given with some other kind of extra structure. The only problem is to identify the group N.

Consider for example the situation of covers / : X —> B defined over Ks given with
the action of a group F on X trivial on B. The action of T can be specified in two ways:

(1) elements of F are given as acting on points of X: the action of T corresponds to an
homomorphism F ̂  Aut(X/B) of F in the automorphism group Aut(X/B) of the cover.

(2) elements of F are given as acting on functions of X: the action of T corresponds
to an homomorphism F ^ Aut(Ks(X)/Ks(B)) of F in the automorphism group
Aut(Ks(X)/K,(B)) of the function field extension K s ( X ) / K s ( B ) .

Let / : X -^ B be a degree d cover over Ks. Denote the Galois group of the Galois
closure of the function field extension K s ( X ) / K s ( B ) by G and the action of G on
conjugates of a primitive element of K s ( X ) / K s { B ) by G C Sd. Then we have:

'AnWX)/K.W) . Nor^
( j [ i )

Aut(X/B)^Cens,(G)

and the anti-isomorphism Aut(Ks(X)/Ks(B)) ̂  Aut(X/B) corresponds to the classical
anti-isomorphism

, NorcC^l)
• c(l) ^ censdG
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Thus giving an action of a group F on X trivial on B is equivalent to giving a subgroup
Yfct of NorGG(l)/G(l), or, to giving a subgroup Tpt of Cen^(G).

With this notation, isomorphism classes of covers f : X —^ B with action of T
correspond to surjective homomorphisms (p : II j^ (B*) —^ G regarded modulo conjugation
by elements of the following group N

(1) N = Nors.G H Cens,(Tpt) = Nors.G H Cen^((r^)*)

Namely two "covers / and // with action of P5 and with corresponding representations
<j) and (f)' are isomorphic if

(a) they are isomorphic as mere covers, i.e., if there exists an element u} G Nors^G
such that (f)' = u}(f)uj~1, and

(b) the isomorphism is compatible with the actions of F, i.e., if the element uo can be
picked in such a way that it commutes with the elements of Ypt.

For G-covers of group G, we have G = T/ct and G C Sd is the regular
representation of G. So NorGG{l)/G(l) = G and (T^t)* = C^n^G. Whence
N = Cens^Cens^G) == G as expected. For mere covers, F^ = 1, so the formula
yields N = Nors^^G) as expected.

Applying the results of §4 for E equal to the group N above and H equal to C = Cen^G,
one obtains that, for a cover f : X —^ B with the action of a group F, the obstruction to
the field of moduli being a field of definition "lies in" the group H^^K^ Z, L) with values
in the abelian group Z = C H G (for a certain action of G(K) on Z).

Formula (1) generalizes to any given "extra structure": take for N the subgroup of
Norsd{G) consisting of those elements a; 6 Nors^G which "respect the extra structure".
For example, for covers f : X —> B given with a base point on X, the group N is

N=Nors,GnSd(l)

where 5^(1) is the stabilizer of 1 in S d ' But since G acts transitively on { 1 , . . . , d}, the
group C = Cen^G is trivial. This leads to this classical conclusion: the field of moduli a
cover f : X —> B with an unramified marked point on X is a field of definition.
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