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GEODESIC LAMINATIONS WITH
TRANSVERSE HOLDER DISTRIBUTIONS

BY FRANCIS BONAHON

ABSTRACT. - To interpolate between isotopy classes of simple closed curves on a surface S, Thurston introduced
the space M.C(S) of geodesic laminations with transverse measures on S. The main purpose of this paper is to
develop a differential calculus on MC(S). This space is a piecewise linear manifold, but does not admit any
natural differentiable structure. We give an analytic interpretation of the combinatorial tangent vectors to MC(S),
as geodesic laminations with a certain type of transverse distributions. As an illustration, we apply this technique
to determine the derivative of the length function associated to a hyperbolic 3-manifold.

Consider a compact connected surface S of negative Euler characteristic, possibly
with boundary. To interpolate between isotopy classes of simple closed curves on 5,
W.P. Thurston introduced the notion of geodesic lamination with transverse invariant
measure on S (see [Thi], [PeH] and §1; see also [Th3], [FLP] for the closely related
notion of measured foliation, and [Le] for a 'dictionary' between measured foliations and
measured laminations). He used these measured geodesic laminations as a tool to attack
various geometric problems, notably the analysis of hyperbolic structures on surfaces and
on 3-manifolds. The main motivation of this paper is to develop a differential calculus on
the space A4C{S) of measured geodesic laminations of S, so as to compute the variations
of various quantities defined on this space. As a side benefit, this leads us to the discovery
of certain transverse structures for geodesic laminations, which are not transverse measures
and have interesting geometric applications.

The space MC(S) does not possess a natural differentiable structure, but Thurston
exhibited a natural structure of piecewise linear manifold on MC{S\ This leads to the
abstract definition of tangent vectors of this space (although the tangent vectors at a given
point of A4C{S) do not necessarily form a vector space). However, these combinatorial
tangent vectors are not always very easy to work with in practice. The main result of this
paper is a geometric interpretation of tangent vectors to MC{S) as geodesic laminations
with certain transverse distributions. This process, converting combinatorial data to analytic
data, makes these tangent vectors easier to handle for geometric applications.

Mathematics subject Classification. 57 N 02, 53 C 22.
Key words and phrases, geodesic laminations, measured laminations.
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206 F. BONAHON

Given a combinatorial vector tangent to A4jC(S) at ao, we compute the associated
geodesic lamination with transverse distribution in §§2-4. This geodesic lamination contains
the geodesic lamination underlying ao, but may be strictly larger. In particular, in
Theorem 15, we give a formula which explicitly describes the transverse distribution
in terms of the combinatorial data. This formula involves the sum of a series over the gaps
of the geodesic lamination, and even its restriction to the case of a transverse measure
seems to be new (Corollary 17).

There is a problem, however, namely that the notion of transverse distribution for a
lamination or a foliation usually requires that we are given a transverse differentiable
structure for this lamination or foliation. More precisely, our computations define a
distribution on each arc transverse to the geodesic lamination, but we want to be able to say
that this distribution is invariant under homotopy respecting the lamination. Unfortunately,
there is in general no transverse differentiable structure for a geodesic lamination. If we fix
a negatively curved metric on the surface, a geodesic lamination admits only a transverse
Lipschitz structure, and even this structure depends on the choice of the metric. On the other
hand, a geodesic lamination does admit a metric independent transverse Holder structure.
It luckily turns out that the distributions on transverse arcs provided by our computations
are regular enough to extend to continuous linear forms on the space of Holder continuous
functions on this arc. In this way, we can interpret the analytic objects provided by our
computations as transverse Holder distributions, an object which is well defined because
of the transverse Holder structure of a geodesic lamination.

Having associated a transverse Holder distribution for a certain geodesic lamination to
each combinatorial tangent vector to MC(S), we push the analysis further in the companion
paper [Bo4], where we analyze the vector space 7^(A) of all transverse Holder distributions
with which a given geodesic lamination A can be endowed. A geodesic lamination admits
many more transverse Holder distributions than transverse measures, but we show in [Bo4]
that the dimension of 7^(A) is finite and can be explicitly determined.

It turns out that the notion of transverse Holder distribution is precisely adapted to
our original goal, in the sense that 'most' geodesic laminations with transverse Holder
distributions come from tangent vectors to MC(S). Indeed, the main result of [Bo4] is
that an element of T~t(\) is characterized by certain combinatorial data, which can be
seen as a partial converse to the results of §§3-4. In §5, we prove the complete converse
result. We show that a transverse Holder distribution for a geodesic lamination A is
associated to a tangent vector at ao G MC(S) if and only if it satisfies a certain positivity
condition, namely if and only if it belongs to a certain convex cone bounded by finitely
many faces in the vector space 7^(A). In particular, under the generic assumption that
the geodesic lamination A^o underlying ao is maximal, in the sense that it cannot be
enlarged to a larger geodesic lamination, the positivity condition is empty and there is a
one-to-one correspondence between the combinatorial tangent vectors of AdC(S) at OQ
and the transverse Holder distributions for \ao'

Finally, we conclude the paper with two examples of the applications we had in mind
when starting this program.

In §6, we consider the length function lm '' MC(S) —^ R^ associated to a negatively
curved metric m on the surface S. After the hard work done in §3, the simple observation
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that the definition of lm makes sense for geodesic laminations with transverse Holder
distributions provides an expression for the differential of /^, and proves that this
differential is linear on the faces of the piecewise linear structure of MC{S) (Theorem 24
and Corollary 25). This last property had independently (although much earlier) been
obtained by Thurston [Th4, §7], by different methods.

In §7, we generalize this to higher dimensions. If M is a hyperbolic manifold of any
dimension and if / : S —> M is a map inducing an injective homomorphism between
the fundamental groups, there is a function IM : MC{S) —^ R^ associating to each
measured geodesic lamination the length of its realization in M; see [Thi], [CEG]. We
use the same formalism of transverse Holder distributions to determine the differential of
IM (Theorem 29). A consequence is that, if a e MC(S) is realized by a pleated surface
and if m is the hyperbolic metric induced on S by this pleated surface, then the two
functions IM and lm have the same differential at a (Proposition 32). As a consequence,
the differential of IM depends only on the pull back metric m, and not on the bending
of the pleated surface. A similar analysis for the rotation number of the realization of a
measured lamination is developed in [Bo5].

Other applications of the theory developed in this paper appear in [Bo5], [Bo6] and
[Bo7]. In [Bo5], we show that transverse Holder distributions can be used to describe the
shearing of shear maps between hyperbolic surfaces, as well as the bending of pleated
surfaces in hyperbolic 3-manifolds. This generalizes the cases of earthquake maps [Ke],
[Th2], [EpM] and of locally convex pleated surfaces [Thi], [EpM], where the shearing and
bending always occur in the same direction and are described by measured laminations. In
[Bo6], [Bo7], we consider the variation of the geometry of the convex core of a hyperbolic
3-manifold under deformation of the metric. In particular, we obtain a Schlafli-type formula
which expresses the variation of the volume of the convex core in terms of the length
of the transverse Holder distribution describing the variation of the pleating locus of this
convex hull. See also [Bo3] for some related material.

A large part of this work was done while the author was visiting the University of
California at Davis, and we would like to thank this institution for its beneficial hospitality.
We would also like to thank the referee for carefully reading the manuscript, and Yair
Minsky for pointing out to us the overlap between §6 and [Th4, §7].

1. Measured geodesic laminations

In this section, we review some properties of geodesic laminations. The proofs and
details can be found in [Thi], [CaB], [PeH], for instance.

To define measured geodesic laminations, one starts by endowing the surface S with an
auxiliary Riemannian metric m of negative curvature, for which the boundary 9S is totally
geodesic; such a metric exists because of our assumption that the Euler characteristic of S
is negative. Then, a geodesic lamination of S is a partial foliation of S by m-geodesics,
namely a closed subset A C S decomposed as a union of disjoint geodesies which are
simple and do not transversely hit the boundary. Recall that a geodesic is simple if it
does not cross itself; it may be closed or infinite. Also, note that components of OS are
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208 F. BONAHON

allowed as part of a geodesic lamination. A geodesic lamination A C S covers only a small
part of S, in the sense that it has Lebesgue measure 0, and even Hausdorff dimension 1
[Thi, §8], [BiS], [Th4, §10]. In particular, the decomposition of the subset A as a union
of disjoint simple geodesies is unique; these geodesies are the leaves of A.

A transverse (invariant) measure for a geodesic lamination A is a measure defined on
each arc k transverse to A, such that every homotopy sending k to another arc k' while
respecting A sends the measure defined on k to the measure defined on k ' . Throughout the
paper, a measure will be a positive Radon measure, namely one which is defined on the
cr-algebra of Borel sets and which assigns non-negative finite mass to each compact set;
via the Riesz Representation Theorem, such a Radon measure is equivalent to a positive
linear form on the space of continuous functions with compact support. Also, we adopt the
convention that the end points of an arc transverse to a geodesic lamination A are disjoint
from A. Observe that the invariance property implies that the support of the measure
deposited on the transverse arc k is contained in k D A; a transverse measure for A is said
to have full support if the support of the measure it induces on each transverse arc k is
exactly k D A. A measured geodesic lamination a consists of a geodesic lamination Aa
together with a full support transverse measure for Ao;.

An example of measured geodesic lamination is provided by a closed geodesic A
endowed with the transverse measure which, on each arc k transverse to A, is the Dirac
measure of weight a > 0 based at k D A (for which the mass of A C k is a times the
cardinal of A D A); but 'generic' examples are more complex.

The space A4C(S) of measured geodesic laminations can be topologized as follows. For
simplicity, say that an arc k C S is generic if it is transverse to all geodesic laminations
of S. By [BiS], almost all geodesic arcs are generic, so that every arc can be arbitrarily
approximated by a generic arc. Then, by definition, a sequence of measured geodesic
laminations On converges to a G MC(S) if and only if, for every generic arc fc, the mass
a.n(k) of the measure deposited by On on k converges to a(fc).

These a{k) also define the piecewise linear structure of MC(S). Indeed, Thurston
showed that it is possible to find finitely many generic arcs fci, k^,..., kp such that the
map a »-» (^(fci), 0(^2) , . . . , a{kp)) defines an embedding of MC(S) in R^, whose image
is a piecewise linear submanifold of R^ of dimension -3^(5), where \(S) is the Euler
characteristic of S. In addition, for every generic arc fc, the mass a{k) is a piecewise
linear function of these a(ki), which shows that the structure of piecewise linear manifold
so defined on A4C{S) does not depend on the choice of the parametrizing arcs ki. As a
piecewise linear manifold, MC(S) is isomorphic to IR""3^^; see [PeH], [FLP].

As usual, this piecewise linear structure on MC(S) defines a space of tangent vectors
at each ao C MC(S). Namely, such a tangent vector is associated to each path
t ^ Of G MC{S\ with t G [0,to], whose image in R71 under a coordinate chart has
a right derivative at t = 0. And two such paths define the same tangent vector when their
images under a coordinate chart have the same right derivatives at t = 0. The fact that the
changes of chart are piecewise linear guarantees that these properties do not depend on the
coordinate charts considered. This space of tangent vectors at ao G M.C(S} is endowed
with a natural law of multiplication by real numbers, but does not necessarily possess any
natural structure of a vector space.
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The piecewise linear structure also enables us to define the differential of a function
/ : A4C(S) —> R, if it exists. This differential associates to each vector tangent to a path
t \—^ at the derivative of t ̂  /(o^), if it exists. For instance, every piecewise linear
function on A4C(S) has such a well defined differential.

A priori, the above notion of measured geodesic lamination depends on the choice of
a negatively curved metric on the surface S. However, there are various ways to make
this definition independent of the choice of metric. Here is one, based on a more intrinsic
description of measured geodesic laminations, which we will use extensively (see [Bol],
[Bo2] for details).

The universal covering S has a natural compactification by its boundary at infinity Soo-
One way to define this compactification is to choose a base point XQ in the interior of 5,
and to abstractly add an end point to each infinite geodesic ray issued from XQ. It can be
shown that the space S U Soo so obtained is topologically independent of the choice of
the base point XQ and of the choice of the negatively curved metric on S\ see for instance
[Mo], [Fl], [Gr] for descriptions of this compactification using only the algebraic structure
of the fundamental group 71-1(5). Let G[S) be the space of bi-infinite geodesies of S,
namely of those unoriented geodesies of S which do not transversely hit the boundary 9S.
Each geodesic of G ( S ) is asymptotic to two distinct points in the boundary at infinity Soo
and, conversely, any two distinct points in Soo are joined by a unique such geodesic^ It
follows that G(S) can be identified to the set of unoriented pairs of distinct points in Soo,
namely G(S) ^ (Soo x Soo — A)/Z2 where A denotes the diagonal and where 1^ acts
by exchanging the two factors. For instance, when S has empty boundary, the boundary
at infinity is topologically a circle (every geodesic ray issued from the base point of S
is infinite) and the space G(S) is homeomorphic to an open Mobius strip. When S has
non-empty boundary, the spaces Soo and G(S) both are Cantor sets.

Given a measured geodesic lamination a, the preimage \a C S of_ its underlying
geodesic lamination \a C S is decomposed as a union of geodesies of S, and therefore
defines a closed subset of G(S') which we will also denote by A^. Given a geodesic
g G \a C G(5'), choose a small arc k C S cutting transversely g in its interior. Because
the geodesies of \a are pairwise disjoint, the elements of a neighborhood of g in Ac,
are parametrized by their intersection points with fc. The measure deposited by a on the
projection k C S of k then pulls back to a measure defined on this neighborhood of g .
From the invariance of the transverse measure under homotopies respecting \a, it follows
that this measure is independent of the choice of the arc fc, and that these measures defined
on neighborhoods of elements of \a fit together to define a measure over all of \a.
Pushing forward this measure by the inclusion map \a —^ G(S), we have associated to
a a measure on G(S); note that this measure is invariant under the action of 7Ti(5') on
(7(5'), and that its support is contained in \a.

In this way, we have defined an embedding of the space A4C(S) of measured laminations
on S into the space C(S) of 71-1 (^-invariant measures on G(S) ^ (Soo x Soo - A)/Z2.
The elements of C(S) are called geodesic (measure) currents. It is not hard to see that
the image of M.C(S} in C(S) consists exactly of those geodesic currents whose support
forms a geodesic lamination of 5, namely such that no two geodesies of this support cross
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210 F. BONAHON

each other in S (see [Bol], [Bo2], [Bo4]). Note that this description depends only on the
space S U 5oo, and not on a choice of metric or base point.

The space C(S) is endowed with the weak* topology, for which a sequence of geodesic
currents On converges to a G C(S) if and only if the integrals On(y) = ^ dan converge

to 7(y?) for every continuous function (p : G(S) —>- R with compact support. Then, the
embedding MC(S) —^ C(S) is a homeomorphism onto its image (see [Bo2]).

In a similar vein, we can give a metric independent definition of geodesic laminations
of 5'. Indeed, the preimage in S of a geodesic lamination A of S defines a 7Ti(5)-invariant
geodesic lamination A of 5, whose leaves form a closed subset of G(5). This establishes a
one-to-one correspondence between geodesic laminations of S and 71-1 (5)-invariant closed
subsets of G ( S ) ^ (5oo x 5oo — A)/Z2 consisting of pairwise disjoint geodesies. The
property of whether or not two geodesies of G(5) intersect depends only on a linking
property of their end points in 5oo. Therefore, this description of geodesic laminations
depends only on the action of 7i-i(5) on S U 5oo, and is metric independent.

In the paper, we will usually identify a measured geodesic lamination a with its image
in C(5).

While we are discussing the space C?(5), we should mention that, even when G(5)
is homeomorphic to a Mobius strip, it does not admit an intrinsic differentiable structure.
Indeed, if we fix a negatively curved metric on S and a base point XQ G S, the boundary
at infinity 5oo is in this case identified to the metric circle of directions at XQ, and
therefore inherits a differentiable structure. However, if we change our choice of metric
or of base point, this differentiable structure on 5oo will be modified, as well as the
induced differentiable structure on G(S) ^ (5oo x 5oo - A)/Z2 (see [Gh] and references
mentioned there).

Nevertheless, 5oo and G(5) have a well-defined Holder structure, namely a preferred
metric defined up to the Holder equivalence relation which identifies two metrics di and
^2 when there are constants v > 0 and K > 0 such that K ~ l d ^ ( x , y ) l ' ^ d^(x,y) ^
Kdi(x,yY for every x, y. Indeed, the choice of a negatively curved metric with totally
geodesic boundary on 5 and of a base point XQ G 5 identifies 5oo to a subset of the circle
of directions at XQ. This induces a metric on 5oo by restriction of the angle metric of this
circle of directions. It can be shown that, if we vary the metric or the base point, the
Holder equivalence class of this metric is unchanged (see [Fl], [Gr, §7^2.M]).^Therefpre, this
defines a natural Holder structure on 5oo, and consequently on (7(5) C (5oo x 5oo) 1~S-2 •
In particular, it makes sense to talk of Holder continuous functions y? : G(5) —^ R,
namely functions for which there exists two constants A ^ 0 and v > 0 such that
\^(g) - ip(h)\ ^ Ad(g, hY for every g , h G G(5), where d( , ) is any metric compatible
with the Holder structure of G?(5); if the metric d( , ) is fixed, the number v is the
Holder exponent of y?, and the Holder norm of exponent v of y? is

11^11^ = sup \^p(g)\ + sup \(p(g) - ip(h)\d(g, h^ .
9 g^h

Throughout the paper, we will assume that G(5) is endowed with a metric compatible
with this Holder structure.
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To analyze the local piecewise linear geometry of MC{S), a very convenient tool is
provided by train tracks (see [Thi], [PeH]).

Fig. 1

A train track r on the surface S consists of a finite family of 'long' rectangles e^ in S,
each foliated by arcs parallel to the 'short' sides, and meeting as illustrated in Figure 1.
Namely, two rectangles meet only along their short sides, and every point of the short side
of a rectangle is contained in another short side of rectangle; note that this allows the two
short sides of a same rectangle to meet along an arc. If a component of the boundary 9S
meets r, then this whole component is contained in T. In addition, we require a condition
on the complement of r: Observe that each component of S — T has a certain number of
spikes, corresponding to points belonging to three rectangles; we require that no component
of S — r is a disc with 0, 1 or 2 spikes or an annulus with no spike.

The rectangles ei are the edges of the train track T. The leaves of the foliation of r
induced by the foliation of the e^ by arcs parallel to the short sides are the ties of T.
The (finitely many) ties where several edges meet are the switches of T. A tie which is
not a switch is said to be generic.

An m-geodesic lamination A is said to be carried by the train track r if it is contained
in the interior of r and if each leaf of A is transverse to the ties of T. Note that this
depends on the negatively curved metric m.

When a measured geodesic lamination a is carried by a train track T, the mass of the
measure deposited by a on a tie of r depends only on the edge e containing this tie, by
invariance under homotopy respecting the geodesic lamination underlying a. Consequently,
a associates a number a(e) ^ 0 to each edge e of r.

Given a train track T and a negatively curved metric m, the set A4Crn(^~) consisting
of those measured m-geodesic laminations which are carried by r is a piecewise linear
submanifold of M.C(S). In addition, the map which associates the edge weights a(e) to
the measured geodesic lamination a € M.C(S) is piecewise linear. A remarkable fact is
that it is also injective.

Thurston proved that, for every a e M.C(S\ there is a negatively curved metric m and
a train track r carrying a such that A4Cjn(r) is a neighborhood of a in A4C(S). Thus,
the interiors of such M.C^{r}, parametrized by the corresponding edge weight maps, form
a piecewise linear atlas for A4C(S).

Since this paper is about tangent vectors, namely right derivatives of paths, we will often
have to take the right derivative of a quantity a^ depending on a real parameter t, usually at
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212 F- BONAHON

t = 0. To alleviate some otherwise cumbersome expressions, we will write ao for the right
derivative ^-a^o of a^ at 0. For instance, given a path t •-> o^ G .M£(5) C 0(5), the
right derivative of the edge weight o;t(e) is Ao(e) = ^+-Q/t(e)|^o and the right derivative
of the Ot-integral a^) of the function (p : G(S) -^ R for Of is ao(^) = a^-^t(^)|t=o-

2. The essential support of a family of measured geodesic laminations

Consider a 1-parameter family of measured geodesic laminations o^ G .M£(5') C C(5),
depending continuously on t e [0, to}. Let A^ C G(S) denote the support of 0-1, considered
as a measure on G(S). Define the essential support of at as t tends to O"^ as the subset
Ao+ of G{S) defined as follows: A geodesic g is in Ao+ if and only if it admits arbitrary
small neighborhoods U such that the infimum limit liminff^o+ ^t(U) is different from 0
(possibly infinite). In Lemma 3, we will relate this essential support to the tangent vector
Ao of MC{S) defined by the path t ̂  a^ if it exists. We first investigate some elementary
properties of this essential support. _

Clearly, Ao+ is a closed subset of G(S). Also, no two geodesies of Ao+ can cross each
other since no two geodesies of the support of o^ cross each other. It follows thcO Ao+
defines a geodesic lamination of S. By invariance under the action of TT^(S) on 5', this
geodesic lamination is the preimage of a geodesic lamination Ao+ of S.

Observe that the geodesic lamination Ao underlying ao is contained in Ao+. Also, if tn is
a sequence converging to O"^ such that A^ has a limit A^+ for the Hausdorff topology on the
space of closed subsets of 5, this limit clearly contains Ao+. The inclusions Ao C Ao+ C \Q+
can all be strict, for instance in the case where o^ consists of three fixed disjoint simple
closed geodesies with Dirac transverse measures of respective weights 1, t and t2.

The following elementary test will often be useful to search for geodesies of Ao+.

LEMMA 1 (Tracking Lemma). - Let K be a compact subset of G(S) such that
limmft-^o+ ^ t ( K ) / t > 0. Then K contains at least one geodesic of Ao+.

Proof. - By compactness, K can be written as the union of finitely many compact
subsets of diameter less than j. For at least one of these, say Xi, we must have
limmf^o+ o^t{K^)/t > 0. Reapplying the same process to K^ we can construct a
sequence of nested compact subsets K D K^ D . . . D Kn D . . . such that the diameter of
Kn is less than 2-71 and such that limmf^o+ (^t(Kn)/t > 0 for every n. The intersection
of the Kn consists of a point g G G[S) which, by construction, must be in A()+. D

Although easy to state, the above definition of Ao+ is not very easy to handle in practice.
We want to give a more convenient description of Ao+ in terms of train tracks.

As indicated in §1, there is always a train track r which carries the (\f for t sufficiently
close to 0, for an appropriate choice of the negatively curved metric m. Consider the
preimage T of T in the universal covering S. A compact oriented curve c carried by T
traverses some oriented edges c^ f '9, . . . , ( ' n of T, in this order, where an orientation
of an edge amounts to a coherent transverse orientation of its ties. Let an edge path
be any ordered finite sequence 7 = (^i,^, • • • ^n) associated in this way to a compact
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oriented curve carried by r. In this situation, we will say that the curve c follows the
edge path 7. A curve c (possibly infinite) realizes the edge path 7 if there is a compact
subinterval c' of c which is carried by r and which follows 7. The length of the edge path
7 = (<° i^2 , . . . , en) is the number n of edges in the sequence.

Given an edge path 7 in r and a measured geodesic lamination a carried by T, let 0(7)
denote the a-mass of the subset G^ of G^S") consisting of those geodesies which realize 7.

LEMMA 2. - For a fixed edge path 7 of the train track r, ̂  number 0(7) ^ a piecewise
linear function of the weights a(e) assigned to the edges e ofr by a G MC{S) carried
by T. In addition, the norm of the differential of this piecewise linear map is bounded by
a constant times the length of 7.

Proof. - We will argue by induction on the length n of the edge path 7^ =
(ei, 6 2 , . . . , Cn). assuming that it starts at a fixed edge ei.

Select a 'right9 and a 'left5 side for ei. Then, this distinguishes a right and a left
side for 7^.

Consider those geodesies g ^ G(S) which are carried by r and which cross the edge e^.
For such a g , either ^ realizes 7n, or it realizes some edge path (e[, e ^ + i , . . . , en) where
1 < i < n and where e\ / e^. Let C?^ C ^(5) consist of those geodesies which realize
such an edge path {e^ e ^ + i , . . . , e ^ ) where e\ branches in on the left of 7n. Similarly, let
G\ consist of those geodesies which branch in on the right of 7n.

We will prove by induction on n that 0(7^), a[G^) and a(G^) are piecewise linear
functions of the weights a(e), and that the norms of their differentials are bounded by
a constant times n.

The property is trivially true when n = 1. Assume as induction hypothesis that it holds
for n — 1. We want to prove it for n.

Consider the switch s where e^-i meets e^. Let aL (resp. aL, a\, a^.) denote the sum
of the weights of the edges entering s on the same side as Cn-i (resp. Cn_i, Cn, e^) and on
the left (resp. right, left, right) side of (ei, 6 2 , . . . , Cn). Then, analyzing what can happen
to the geodesies which are carried by r and pass through the switch 5, we find that

^(^n) = min {^(cn) , max {a(G^_i) + aL -a^O}}
a(G^) = min [a(e.n), max {a(G^) + aL -a^O}}
^(7n)=^n)-^(G,;J-a(C?,),

which clearly concludes the proof by induction. D
Assume that the path // h-> ( Y / in MC(S) has a tangent vector at OQ for the piecewise

linear structure of MC(S), namely that the derivative ^-^(^L^o exlsts f01" every edge
e of T. Then, Lemma 2 shows that there is a well defined right derivative do(7) for every
edge path 7 of r. Note that it is always possible to enlarge T a little bit so that the geodesic
laminations \t underlying the ( Y I are contained in a compact subset of the interior of r.

LEMMA 3. - Consider a path L i—> ^/ G MC{S) which has a tangent vector at OQ, and
let A()+ be its essential support as t tends to 04". Assume that the Of are carried by a train
track T, ofpreimage r in S, and that their underlying geodesic laminations are contained
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in a compact subset of the interior ofr. Then, the geodesic g G G(5) is in the essential
support Ao+ if and only if it is carried by r and if 00(7) > 0 or 00(7) > 0 for every edge
path 7 of r that is realized by g. In particular, Ao+ depends only on ao and on the tangent
vector OQ, and not on the specific family Of tangent to ao at ao.

Proof. - The hypothesis that the geodesic laminations underlying the o^ are contained
in a compact subset of the interior of r guarantees that Ao+ is carried by T.

As before, let G^ denote the open subset of G ( S ) consisting of those geodesies which
realize the edge path 7. Because of the negative curvature, two geodesies of S which stay
at bounded distance from each other for a long time are actually close to each other. It
follows that, if g G G(S} is carried by T, the G^ where 7 ranges over all edge paths
realized by^g form a basis of neighborhoods of g . As a consequence, a geodesic g carried
by T is in Ao+ if and only if limmft_^o+ ̂ t^) > 0 fof every edge path 7 realized by g .
Since 00(7) exists, the condition that limmft^o+ i^^) > 0 is equivalent to the property
that 00(7) > 0 or 00(7) > 0, which concludes the proof. D

PROPOSITION 4. - If the path t \—^ o^ G A4C(S) is piecewise linear, the essential
support Ao+ is equal to the Hausdorff limit as t tends to 04' of the geodesic laminations
\t underlying the o^.

Proof. - Let T be a train track such that the Ai are carried by T and contained in a
compact subset of the interior of T. It clearly suffices to prove that Ao+ C G(S) is the
Hausdorff limit of the supports Af of the o^. Actually, it even suffices to prove that, for
every generic tie ko of the preimage r C S, the set of those geodesies of \t crossing ko
converges to the set of those geodesies of Ao+ crossing ko.

For r ^ 0, let Fr denote the set of edge paths 7 == (e-r^ e-r+i^ • • • ? Cr-i^r) in r such
that Co is the edge containing ko. If G(S) is endowed with a metric compatible with
its Holder structure, an easy geometric estimate provides two constants A > 0, B > 1,
depending only on ko and on the lengths and widths of the edges of T, such that the
diameter of the set G^ of geodesies realizing 7 G Fy. is bounded by AB~r\ indeed, it
suffices to check this when G(S) = (5oo x Soo — Aj /Zs is endowed with the product

metric coming from the angle metric on Soo based at some point of ko, in which case it
follows from the negativity of the curvature of the metric of S.

By Lemma 3, Ao+ consists of those geodesies g carried by r such that 00(7) > 0 or
^o^) > 0 f01' every edge path 7 realized by g . By Lemma 2, the map t i—^ 01(7) is
piecewise linear. It follows that the above condition is equivalent to the condition that
0^(7) > 0 for every t sufficiently close to 0.

Since Fr is finite, this proves that, for t sufficiently close to 0, the 7 G Tr for which
G^ meets Ao+ are exactly those for which G^ meets \t. As a consequence, the Hausdorff
distance between the set of geodesies of Ao+ crossing ko and the set of geodesies of A(
crossing ko is at most AB~r for t sufficiently close to 0.

Letting r tend to oo then proves the result we wanted. D
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3. Computing derivatives

Consider a 1-parameter family o^, t C [0,toL °f measured geodesic laminations carried
by the train track r. We assume that this path in M£(S) has a tangent vector at 0:0 for
the piecewise linear structure of MC{S), namely that the derivative —at(e),^o exists
for every edge e of r. Given a function (p : G[S) —^ R, we want to evaluate the right
derivative do(^) = ̂ -o^)^.

Since all geodesies of the support of the c^ are carried by T, we can restrict attention,
using a suitable partition of unity, to the case where there is a generic tie ko of r which
transversely meets every geodesic of the support of (p. Arbitrarily choose an orientation
for ko.

Enlarging r a little bit if necessary, we can assume that the essential support Ao+ is
carried by r.

Let d be a component of ko - Ao+, and choose a base point Xd G d. For every t, let
hf(xd) denote the 'o^-height' of x^ namely the o^-mass of the component of ko — Xd
consisting of those points of ko which are below Xd for the orientation of ko.

Clearly, ht{xd) may depend on the choice of the base point Xd. However:

LEMMA 5. - The right derivative ho(xd) exists and is independent of the choice of the
base point Xd in the component d of ko — Ao+ -

Proof. - First consider the case where d is not one of the two components of ko — Ao+
that are adjacent to the ends of ko. Then, there are two geodesies g^[ and g^ of Ao+ which
pass through the end points of d, where ko H g~^ is below ko H g~^ for the orientation of ko.

Since g^ and g\ are distinct, they cannot realize the same bi-infinite edge path in
T. Therefore, g^ and g^ respectively realize some edge paths (eo.ei,. . . ,er,er+-i) and
(eo, e i , . . . , Or, e^-i) with e^+i 7^ e^p where eo is the edge of r containing the tie ko.

Let us consider what can happen to the geodesies of the support \t of o^ which hit
ko below Xd, for the orientation of ko.

First of all, observe that, for t sufficiently close to 0, there is a geodesic g^~ G A^ which
is close to ^^in particular, g^~ realizes (eo, e i , . . . , er, Cr+i) and hits ko above Xd. Any
geodesic g 6 \t which hits ko below Xd must be disjoint from g^~. As a consequence, g
must realize either (eo, e i , . . . , e^ e^+i), or an edge path (eo, e i , . . . , e^, /) with 0 ^ i ̂  r
where / is different from e^+i and branches out on the negative side of {eo, e i , . . . , e^, e^+i)
for the transverse orientation of this edge path determined by the orientation of ko. Let
fi. /2. • • • , fp be the collection of these edges f which branch out on the negative side
of (eo,ei , . . . ,e^e^4.i) , including /i = e^.

Conversely, note that, for t sufficiently small, there is also a geodesic g^ G \t which is
close to ̂ , and in particular which realizes ( e o ? e i , . . . , e^, e^i) and which hits ko below
Xd. Therefore, for every geodesic gf G \t which realizes (fj) with 1 ̂  j ^ p, the fact
that this geodesic g ' is disjoint from g^ implies that it must, either hit ko below Xd, or
realize an edge path (/, e ^ , . . . , e^-i, efc, fj} where / is different from e^-i and branches
in on the negative side of (eo, e i , . . . , Cr, e^i). Let /p+i, fp^, ..., fq be the collection
of these edges / which branch in on the negative side of (eo, e i , . . . , Cr, e^i).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



216 F.BONAHON

In addition, the existence of the geodesic g^ G \t shows that, for t sufficiently small,
every geodesic g " 6 At which realizes {fk} with p + 1 ̂  k ^ q must exit through one
of the fj with 1 ̂  j ^ p.

As a consequence,

ht{xd)=at(X)-^^at(f,)- ^ a^-a^X')
j=i fc=p+i

where X denotes the set of those oriented geodesies of G'(T) which realize
(eo,ei , . . . ,6^5^+1) and which hit ko below x^ and where Xf denotes the set of
those oriented geodesies of G(r) which realize (eo,ei , . . . ,e^e^i) and which hit ko
at or above Xd.

We claim that ^ai(X) tends to 0 as t tends to O"^. Indeed, the Tracking Lemma 1 would
otherwise provide a geodesic of g in the closure of X which is in Ao+. This g € Ao+,
hitting ko at or below Xd, must actually hit it at or below ko H g^ by definition of g ^ .
Therefore, it cannot be on the same side of g^ as g^. But this contradicts the fact that g
realizes the edge path (eo? e i , . . . , Or, e^+i).

A similar argument shows that ^a^X') tends to 0 as t tends to 04".
Passing to the derivatives, we conclude that ho{xd) = Z^=i ^oUj) ~ S^=p+i ̂ (A).

Since this expression depends only on d, and not on the choice of the base point Xd € d,
this concludes the proof of Lemma 5 in the case which we were considering, namely when
d is not one of the two components of ko — \o+ that are adjacent to the ends of ko.

The proof is very similar for the remaining two cases, and gives that ho{d) = 0 if d is
adjacent to the negative end of ko, and ho{d) = ao{eo) if d is adjacent to the positive end
of ko. D

In view of Lemma 5, we will henceforth write ho{d) for ho(xd).
Note that we proved a little more:

LEMMA 6. - With the data of Lemma 5 and of its proof, if the component d ofko — AQ"
is not adjacent to one of the two ends of ko, then

hoW=^e{f)ao{f)
f

where the sum is over all edges f that branch in or out on the negative side of the edge
path (eo, e i , . . . , e^, e^+i), and where e{f) = —1 or e{f) = +1 according to whether the
edge f branches in or out. Ifd is adjacent to one of the ends of ko, then ho{d) is equal to
Ao(^o) for the positive end, and to Ofor the negative end. D

We can now state our main theorem. At this point, it may be useful to summarize what
we have defined so far. Given the family Of of measured geodesic laminations carried by
T, we consider the essential limit Ao+ of their supports as t tends to 0"'". If ko is an oriented
tie of r and if d is a component of ko - Ao+, g^ and g^ are the geodesies of Ao+ passing
through the end points of d, where ko H g^ is below ko H g^ for the orientation of ko.
Only one of g^ and g^ is defined when d is adjacent to an end of ko, and we arbitrarily
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decide that, for a function (p : G(S) —^ R, y?(^) = 0 when g^ is not defined. Finally, we
also associated to d a number ho{d) which is defined by Lemmas 5 and 6.

THEOREM 7. — Consider a 1-parameter family of measured geodesic laminations a^
t G [0,^oL carried by the train track r such that, for every edge e of r, the weight Ot(e)
has a right derivative at t = 0. Assume that r also carries the essential support Ao+ of Of
as t tends to O"^. Then, if ip : G^S) —> R is a Holder continuous function such that every
geodesic of the support of (p transversely meets the generic tie ko of r,

^o(^) =^hoW((P{9d) - ̂ (^))
d

where d ranges over all components of ko — XQ+, and where ho{d), ^p(g^). ^(^) are

defined as above.
It is not too difficult to obtain the formula of Theorem 7 by formal computations,

using for instance Corollary 17 (compare [Bo4, §4]). The justification of these formal
computations however requires much more care. Our proof will be based on an analysis of
the interplay between components of ko - XQ+ and edge paths realized by leaves of Ao+.

First, let us show that this formula makes sense.
For the tangent vector do, let |[o'o||^ denote the maximum of the absolute values

of the weights ao(e), where e ranges over all edges of T. Similarly, if the measured
geodesic laminations a and (3 are carried by T, let ||a - /3||^ denote the maximum of
the Ke)-/3(e)|.

PROPOSITION 8. - Under the hypotheses of Theorem 7, the series

Do^W = EMri)M^) - ̂ ))
d

is (absolutely) convergent. In addition, the linear functional DQ+ ((p) is a continuous function
of(p and Q.Q in the sense that, if(p has Holder exponent y, there is a constant C independent
ofy and ao such that |2?o+(^)| ^ Cll^ollJML.

Proof. - First consider the two exceptional components of ko — Ao+ that are adjacent to
the end points of ko. The one which is adjacent to the negative end point of ko does not
contribute anything to the above sum, since the corresponding coefficient ho(d) is equal
to 0. For the one adjacent to the positive end point, ho(d) == do(eo) where eo is the edge
containing ko, and its contribution is therefore bounded by ||do||JMIi,-

For our analysis, we can therefore restrict the above series to those components d of
ko — Ao+ which are not adjacent to an end of fco. For such a d, let r(d) be the maximal r ^ 0
for which g^ and g^ both realize a common edge path 7 = (e-r,e-r+i?. • • ̂ r-i^r)
in T with ko in eo. As in the proof of Proposition 4, a geometric estimate shows
that d ( g ^ , g ^ ) ^ AB'^ for some constants A > 0, B > 1, and therefore that
K^")-^)! ^ A|H|,B-^).

Also, it follows from Lemma 6 that |/^o(^)| is bounded by a constant times
(r(c?) + l)[|do||^.. Therefore, the series Sj^o(rf)||^(^) ~ ^(^J")| ls bounded by a
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constant times H^ollJHI^ ]Cd ̂ W + l)^'"^60. We therefore only have to prove that
the series Y,dl^WB~vr{d) is convergent.

Identify ko to the tie of^ r it projects to, and let Ao+ be the geodesic lamination of
S obtained by projecting Ao+. We can then identify components of ko - Ao+ in S and
components of ko — Ao+ in S.

If d is a component of ko — Ao+ which is not adjacent to an end of fco. the two leaves of
Ao+ passing through the end points of d realize a common edge path 7 = (eo , . . . , e^))
in T with ko in eo, and diverge at the end switch s of the edge ey.(d). Observe that each of
these two leaves of Ao+ is closest in s to the end point of a spike of S — r, namely can be
connected to this end point by an arc contained in s and with interior disjoint from Ao+.
In particular, these two leaves of Ao+ are uniquely determined by the corresponding pair
of spikes ending at s (possibly equal, and actually equal if Ao+ crosses every edge of r).
We can then go backwards, starting from s and following these two leaves so as to retrace
the edge path 7 backwards, until we eventually hit the tie ko at d after crossing r(d) edges
of T. Consequently, d is uniquely determined by 5, the two spikes ending at 5, and r(d).

From this observation, we conclude that the series ^^ ̂ (d) + l)!?"^^ is bounded
by the sum of finitely many series ^^li (r + l)!?" '̂, one for each pair of (possibly
equal) spikes of S — r ending on the same side of a switch s. Since these series are
convergent, this proves the convergence of ̂  (r(d) + l)^"^^, and concludes the
proof of Proposition 8. D

Note that the proof of Proposition 8 says something on the convergence of the series
Do+ (y?). Namely, if r(d) is defined as in that proof when the component d of ko — Ao+ is not
adjacent to an end of ko, and if r(d) = 0 by convention when d is adjacent to such an end:

COMPLEMENT 9. - With the data of Proposition 8 and of its proof,

A)+(^)= ;̂ ^(d)(^(^)-^(^))+||Ao||J|^||,0(rB—)
r(d)<r

for every r > 0. D
Here, we used the classical notation where 0{X) represents any quantity for which the

absolute value of 0(X)/X is bounded.
Given r ^ 1, let Tr denote the set of edge paths 7 = (e-y^e-r+i? • • • ,ey,-i,er) of ^

which are realized by some geodesic g^, where eo is the edge containing ko and where
we identify two edge paths when they differ by reversal of orientation. For every 7 G IV,
pick a geodesic g^ realizing 7.

By the geometric estimate which we already used in the proof of Propositions 4 and
8, there are constants A > 0, B > 1 such that, for every two geodesies g and h which
realize the same 7 G IV, the distance from g to h is bounded by AB~r. Since the G^ with
7 G r^ are pairwise disjoint, and have diameter at most AB^ by the above estimate, we
can use them to approximate by Riemann sums the integral of y? for the signed measure
{o.t — ao) / t . This gives

at{(p) - ao(^) . ^ ^(7) - ̂ 0(7)
lim ̂  u w ) . ^ ^ )

r—i-oo *-^ tt r-.oc ̂  t
7erv

for every t > 0.
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We want to estimate the speed of convergence of this limit. For this, we first show that
the number of terms contributing to the above sum has polynomial growth in r.

LEMMA 10. - If the measured geodesic lamination a is carried by the train track r,
the number of edge paths 7 € IV for which 0(7) > 0 is an O^^2), where n is the
number of edges of r.

Proof. - The main point is that such a 7 is followed by an arc carried by r whose
projection to r is a simple curve. Up to isotopy, a simple arc carried by r is uniquely
determined by the number of times it crosses each edge of r together with some information
about where its end points are. In particular, such an arc of length r is determined by the
number of times it crosses each edge up to an ambiguity of at most 4r2 times the square
of the number of switches of r (for each arc end, we have to specify on which switch it
sits, in which direction it arrives, and where it sits with respect to the other pieces of the
arc that cross that switch). It follows that the number of simple arcs carried by r is an
Q^n+2^ Since an arc carried by r admits at most one lift to S for which its central edge
is CQ, this completes the proof. D

The exponent for the growth rate given by Lemma 10 is far from optimal, but we will
only need to know that this growth is polynomial.

For 7 e IV, let 0(7) e IV_i be the edge path obtained from 7 by removing
its two end edges. Note that, if a is a measured geodesic lamination carried by
T, then 0(7') = Z^(.y)=y ^(7) for every 7' e IV_i. Also, since y? is Holder
continuous of exponent v, (p(g^) - ̂ (^(7)) = IHI^.B-^). In addition, by Lemma 2,
Ot (7) - o;o(7) = \\0t - oio\\^.0(r) if 7 e IV. Combining these facts and regrouping terms,
it follows that the difference

^o.M ..„(,) ̂ _ ^ «.(.-)-«.(-/) ̂
7erv yer.-i b

is equal to

£ atw^^ - »>(,.(„)) = !lal--!!.|M|.,o(̂ B-).
7er, L

Summing these differences from r + 1 to infinity, we conclude that
atw -aow = urn y ^L-^z) ( )

t .-.00^ t

= E at(7) " ao(7)^^) + ̂ -̂ IÎ II.O^B-).
7€r. t L

We can then let t tend to O'^. By finiteness of Tr, we conclude:

LEMMA 1 1 . - For every r > 1, the supremum limit and the infimum limit of
(at(y') - ao(tp))/t as t tends to O'1' are both of the form

E "0(7)^) + llaollJhtO^B-'-). D
•cer,.
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Let us connect this estimate to the series of Proposition 8.

LEMMA 12.

E^M^)- E ̂ (d)^^-)-^^))^-!!^!!,^!!^^—).
7€IV r(d)<r

Pwo/. - If 00(7) ^ 0 note that, by the Tracking Lemma 1, 7 Is realized by a geodesic
of Ao+. Therefore, if 1̂  consists of those 7 G IV which are realized by geodesies of Ao+,

E o^M^y) = E ̂ M^)-
7€iv 7er^

For every 7 € 1 ,̂ the intersection points of fco with the^geodesics of Ao+ realizing 7
form a closed interval in fco H Ao+, for the ordering of fco H Ao+ induced by the orientation
of fco. It follows that there are two components d^ and d^ of fco - Ao+ such that the
geodesies of Ao+ realizing 7 are exactly those which hit fco above d^ and below AJ-.

Note that, for d = A{", the geodesic g^ realizes 7 and g~^ does not; it follows that
r(d^) < r. Similarly, r(d~) < r. Conversely, every component d of fco - Ao+ with
r(d) < r is equal to d = d~+ = d^_ where 7J" and 7^ are the edge paths in Tr
respectively realized by the geodesies g~^ and g^ (if defined).

Choose base points x^ € d^ and x^ € c^. Then, /it(a^) - /^(^) is the o^-mass of
those geodesies which hit fco below x^ and at or above x^. For every 7' € IV different
from 7, the Tracking Lemma 1 shows that the contribution to ht(x^) - ht{x^) of those
geodesies which realize 7' has right derivative 0 at 0; otherwise, there would be a geodesic
of Ao+ which realizes 7' and hits fco between x^ and x^. For the same reason, the
Ot-mass of those geodesies which realize 7 and do not contribute to ht(x^) - ht(x^)
has right derivative 0 at 0, since no geodesic of Ao+ realizing 7 hits fco above x^ or
below x~ It follows that

ho(d^) - ho{d^} = fao«) - ho(x^) = 00(7).

As a consequence,

E Ao(7M^) = E M<M )̂ - E ̂ M^)
7€IV 7€IV 7eIV

- = ̂  /io(^)y(^-) - E ̂ (^y^)
r(d)<r r(d)<r

= E ^(d)(^(^-)-^(^))
r(d)<r

= E /.o(d)(^(^-)-^(^))+||^||,o(B— E |Mrf)l)
r(d)<r r(d)<r

since ̂  realizes the same path 7^" G F^ as g^ and is therefore at distance at most AB'^
from g -, and since the same property holds for pj" and ^+. (And using the convention
that ^p(g) = 0 when the geodesic g is not defined.)
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To complete the proof of Lemma 12, it now suffices to show that Y,r(d}<r\^oW\ =

||ao||^0(r3). In the proof of Proposition 8, we showed that the number of components d
with r{d) = r is an 0(r), and therefore that the number of d with r(d) < r is an 0(r2).
Also, the formula for ho(d) given by Lemma 6 shows that ho(d) = ||ao||^0(r(d)). It
follows that ^r(d)<r\^oW\ = ll^oll.rO^3). This completes the proof of Lemma 12. D

Combining Lemmas 11, 12 and Complement 9, we conclude that the supremum limit
and the infimum limit of {a^) - ao((p))/t as t tends to O"^ are both of the form

^Md)(^(^-)-^(^))+||ao||J|^||,0(rn+3B--).
d

Since this is true for every r ^ 1, it follows by letting r tend to oo that these supremum
limit and infimum limit are both equal to the sum of the above series, namely that

ao(^) - ̂  a^-^ = ̂ >W(^-) - ̂ +)),
d

which concludes the proof of Theorem 7. D
From Theorem 7, we can draw a more global conclusion.

COROLLARY 13. - Consider a 1-parameter family of measured geodesic laminations a^
t G [0, to\, which admits a tangent vector OQ at t = Ofor the piecewise linear structure of
AdC(S). Then, for every compact subset K C G(S) and every y > 0, there is a constant
C > 0 such that, for every Holder continuous function (p : G^S) —> R of Holder exponent
v whose support is contained in K, the derivative ao(y?) exists and is bounded by C\\(p\\^
In addition, Q;o(y?) depends only on y? and on the combinatorial tangent vector OQ, and not
on the particular family Of tangent to OQ.

Proof. - For t sufficiently small, the o^ are all carried by a certain train track T. Enlarging
T a little, we can assume that Ao+ and the supports A( of o^ are contained in a compact
subset N of the interior of r. Then, their essential support Ao+ as t tends to 0"^ is also
carried by r. Let r and N be the preimages of r and N in S, and let G(N) consist of
those geodesies g G G^S) which are contained in N.

By compactness of K D G^N), it is possible to cover this subset by finitely many open
subsets i7i, . . . , Un of G[S) such that every geodesic of Ui crosses some generic tie ki of
T. Choose a partition of unity by Holder continuous functions ̂  : G^S) —>• R with support
contained in Ui such that the sum SF=i ̂  ls ̂ ^l to 1 on J^ H G(N).

Consider a Holder continuous function y? : G^S) —> R with Holder exponent v and
support contained in K. Then, for t sufficiently close to 0, a^} = ]L^=i ̂ te^)- Note
that H^^ll^ ^ 3|[^||J|y? ||^. In particular, ̂  is Holder continuous and every geodesic of its
support meets the tie ki. We can therefore apply Theorem 7 and Proposition 8, which show
that ao(^) exists and is an 0(||^|U = 0(|MU. Therefore, ao((^) = Ez^i ̂ o(^)
exists and is an 0(|H^).

The second statement comes from the fact that, by Lemmas 3 and 6, the formula
provided by Theorem 7 for the ao(^y?) does not depend on the particular family of
geodesic laminations 0.1 tangent to ao. D
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In Corollary 13, the fact that |ao(^)| ^ C1ML i111?!1^ that the functional (p i-> a(y)
defines a geodesic Holder current, in the sense that we now define.

If X is a metric space, let H(X) denote the space of Holder continuous functions
(/? : X —> R with compact support. For every v > 0 and every compact subset K of X,
let H^X\ K} denote the space of (p e H{X) which have Holder exponent v and whose
support is contained in K, endowed with the topology defined by the norm || ||^. Note
that there is a continuous inclusion map H^{X; K) —^ H^'{X\ K) for every v ' ^ ZA Then,
H{X) is the union of all the H^{X\ K) as K and v range over all compact subsets of X
and all positive numbers. By definition, a Holder distribution on X is a linear functional
H{X) —^ R whose restriction to each Hv{X'^K) is continuous. Note that, when X is a
differentiable manifold, a Holder distribution is a distribution in the usual sense with some
additional regularity properties.

The space H{X) clearly depends only on the Holder equivalence class of the metric of
X, and therefore so does the notion of Holder distribution. In particular, we can talk of
Holder distributions on G[S), for the natural Holder structure on this space.

Let a geodesic Holder current on S be a Holder distribution on G[S) which is invariant
under the action of 71-1(5). We will denote by "H(S) the space of geodesic Holder currents
on S.

The functional ^ \-> d{y) defined by Corollary 13 has the required regularity property,
by the inequality l^o^)! ^ ^IML' ^d is clearly invariant under the action of 7Ti(5').
Therefore, to each tangent vector do of MC{S), Corollary 13 associates a geodesic Holder
current which we will also denote by ao.

4. Geodesic laminations with transverse Holder distributions

The point of view of geodesic currents is technically powerful, as we will see in §§6-7.
However, for measured laminations, it is perhaps less intuitive than the idea of a geodesic
lamination with a transverse structure. In this section, we reorganize the analysis of §3 to
associate to each tangent vector to MC(S) a geodesic lamination with some transverse
structure.

For this, given a 1-parameter family o^ of measured geodesic laminations, we want to
compute the derivative of the measures deposited by the o^ on an arbitrary transverse arc fc.

When k is a tie of a train track carrying the o^, the corresponding formula for this
derivative is basically provided by Theorem 7. Extending this formula to the general case
turns out to be more cumbersome than one could have expected. This stems from the fact
that the formula of Theorem 7 strongly depends on the tie ko considered, and that two ties
located on either side of the same switch give two apparently different formulas.

To overcome this difficulty (and explain the irrelevance of the discrepancy between
formulas associated to different ties) we will use the following lemma. This lemma also
plays a fundamental role in our classification theorem of [Bo4]. It expresses the fact that
the restriction of a Holder continuous function to a Hausdorff dimension 0 subset of an
interval is completely determined by its jumps on the components of the complement of
this subset, namely by its jumps over the gaps determined by this set.
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LEMMA 14 (Gap Lemma). - Let A. be a subset of Hausdorff dimension 0 of the interior of
an interval [a, b] C R . For every component d of [a, b] — A , let x^ and x^ be the infimum
and supremum ofd . Then, for every Holder continuous function ^ : A U [a, b] —)• R,

^(4)=^)+^(^(^/)-^(4))
d'>d

where the sum ranges over all components d' of [a, b] — A which are above dfor the ordering
of these components induced by the order of [a, 6].

Proof. - The proof is elementary, and is given in detail in [Bo4]. The main idea is that,
since A has Hausdorff dimension 0, its image under the Holder continuous map ^ has
Lebesgue measure 0 in R. D

Note that the conclusion of the Gap Lemma 14 does not hold if we do not require the
function if) to be Holder continuous

THEOREM 15. - Consider a 1-parameter family of measured geodesic laminations a^
t € [0, to], which admits a tangent vector ao at t = 0 for the piecewise linear structure of
M.C(S). Let k be a compact oriented arc in S which is transverse to the support of all Of
as well as to the essential support Ao+ of Of as t tends to O4'. For every component d of
k — AQ+ , let x^ and x~^ G k be the infimum and supremum of d for the orientation of k.
Also, given a choice of base point Xd G d, let ht(xd) denote the at-integral of the subarc of
k consisting of those points which are below x~^. Then, the right derivative ho{xd) = ho(d)
exists and is independent of the choice of Xd for every d. In addition, for every Holder
continuous function ^ : k —^ R,

AoW = aoW«) + ̂ o(W(^) - ̂ ))
d

where d ranges over all components ofk— Ao+ and where x^ is the positive end point ofk.

Proof. - Decreasing to if necessary without loss of generality, we can assume that the
at are all carried by a train track r. Enlarging r a little bit, we can also require that the
supports \t and the essential support Ao+ are contained in the interior of r.

First consider the case where k is contained in a generic tie ko of r.
Lift ko to an arcjn S which we will also denote by fco, and let r be the train track

preimage of r in S.
For every d, let h^{xd) be the o^-measure of the subarc consisting of those points of

ko which are below the base point Xd. Then, ht{xd) = h^(xd) - /^(^) wnere ̂  is the
negative end point of k. It follows that ho(xd) = h^(xd) - /^(^), which is independent
of the choice of Xd by Lemma 5.

Thejeaves of Ao+ cutting k form a compact subset in the open set of those geodesies
of G(S) which transversely cut k in one point. Therefore, we can fix a Holder continuous
function ̂  : G[S) —^ [0,1] with compact support which is identically 1 on a neighborhood
of those leaves of Ao+ that cut fc, and is identically 0 on those geodesies of G ( S ) that
do not cut k in one point.
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For every Holder continuous function ^ : k —^ R, we can now consider the function
^ p : G { S } ~^R defined by the property that y{g) = ̂ k{g)^{g H k) if g transversely cuts k
in one point, and (p(g) == 0 otherwise. We can choose n large enough so that, for every
geodesic g that realizes the same length n edge path originating at ko as a leaf of Ao+.
then $fc(^) = 1- Considering all length n edge paths originating at ko, this decomposes
OfW as the sum of o^y?) and of a term a^ ^ 0 such that lim^o+ ^ / t = 0. by Lemma 3.
In particular, o:o('0) = AO^)-

Applying Theorem 7 to this function y?, we get that

aoW = aoW = E/W^-) - ̂ ))
d

where d ranges over all components of ko - Ao+, and where h^{d) is the right derivative
of t ^ h^Xd) at t = 0.

If d is contained in fc, it is also a component of k - \o+ and ^{g^) = '0(^)' If

d is disjoint from fc, then y{g^) = 0. If d contains the positive end point x^ of fc,
then y^J") = 0 by definition, so that y?(^) - ̂ J") = (^(^j) - ̂ (^)) + ^C^)-
Similarly, (^-) - (^J-) = (^(^j) - ̂ (4)) - V^fc) when d contains the negative
end point x^. It follows that

W) = ̂ K)^(^) - ̂ o(^)^(^) + E ̂ W "̂) - ̂ (^))
d

= /io(^)^(4) + E/l"(d)^(a;<') - ̂ ))
d

+ ̂ (^) f^(^) - ̂ (^) + E ̂ (^) - ̂ )))
Y d 7

= ̂ o(^)^(4) + E ̂ w^(^) - ̂ (^))
d

by the Gap Lemma 14, where the sums are over all components d of k - Ao+, this time.
Noting that h^x^) == ^(fc), this concludes the proof of Theorem 15 in the special case
where k is contained in a tie fco.

The next case we want to consider is that where k can be homotoped respecting Ao+ to
an arc fc' that is contained in a tie of the train track. This homotopy associates a component
d' of k1 - Ao+ to each component d of k - Ao+, and transports the map ̂  : k -^ R to a map
^i ; V —, K. By the Tracking Lemma 1, the admeasures o^^) and a^) differ only by
a quantity a^ such that limt_o+ ^t/^ = °; and similarly for ht(xd) and /^(^/). It follows
that ho{d) = fao(d) and aoW = a^'\ The result then follows from the previous case.

We now consider the general case. We can decompose the arc k into subarcs fci, ....
kn with disjoint interiors such that each fc, can be homotoped respecting Ao+ to an arc
contained in a tie, and where the indexing follows the orientation of k. If x e ki - Ao+,
let h^^x) be the o^-mass of the set of those points of fc, which are below x. Clearly,
ht(x) = h^\x) + E^1!0^^)' Combined with the previous case, this shows that the
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derivative h^d) -= h^{d) + S^ ^o^j) exists for every component d of k — \o+
meeting ki. Also,

n

^oW = ̂ ^(^IfcJ
t=l

= E^MO + EE^W "̂.) - ̂ (4J)
1=1 i=l (̂

=f;ao(A;^(<)+^^(M^)-Ea^•))^(^.)-^(<))
i=l i=l (̂  v J==l /

where c^ ranges over all components of ki — \Q+. In general, a component d of
k — \o+ corresponds to a unique component di of some ki — \o+. However, finitely
many components d of k — XQ+ are the union of a component di of ki — \o+ and
of a component d^ of fc^+i - Ao+; in this case, the terms /io(di)('^(^) -^(x^))
and /io(^+i)(^(rc^J - ̂ (^J) add up to fao(d)(-0(^) -^(^)) since /io(dz) =
/io(di+i) = ho(d) and rr^ = rrj . Also, the coefficient of each term ao(kj) is

^«) - E E (^(^.) - ̂ (^X)) = ̂ )
Z=J'+1 ^

by the Gap Lemma 14. The theorem easily follows. D

COMPLEMENT 16. - Under the hypotheses of Theorem 15 and given v > 0, there is a
constant C such that ao(^) ^ (7||'0||^/or every Holder continuous function ̂  : k —> R of
Holder exponent v. In addition, ao('0) depends only on ^ and on the tangent vector do.

Proof. - This immediately follows from the proof of Theorem 15 and from Proposition 8.
D

We can apply Theorem 15 to the particular case of measured laminations o^ = (1 + t)a
for a fixed measured lamination a. We then get the following formula for the a-measure
deposited by a on each transverse arc.

COROLLARY 17. - Let k be an oriented arc transverse to the support \a of a measured
lamination a. Then, for every Holder continuous function ^ : k —> R,

aW = a(fc)^) + ̂  h{d)(^(x,) - ̂ J-))
d

where d ranges over all components ofk— \a, where x^ and rcj are the positive and
negative end points ofd, where h{d) is the a-mass of the set of points ofk which are below
d, and where x~^ is the positive end point of k. D

The formula of Corollary 17 can also be deduced from the Gap Lemma 14, and from
the estimates used in the proof of Proposition 8. See also [Bo4] for a generalization to
geodesic laminations with transverse Holder distributions. Note that, in the generic case
where k D \a is a Cantor set, the hypothesis that ^ is Holder continuous is absolutely
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necessary for the formula to hold, as shown by the numerous examples of non-constant
continuous functions on k which are locally constant on k — A^.

Theorem 15 and Complement 16 associate to each tangent vector of A4C(S) a Holder
distribution on each arc k transverse to the essential support Ao+. We would like to say
that these data define a transverse invariant Holder distribution for the geodesic lamination
AO+- The invariance property under homotopy respecting the lamination requires a little
care in the definition because of the Holder condition.

To specify this property, consider a geodesic lamination A on S, for a given negatively
curved metric m with totally geodesic boundary on S. Let k and A/ be two differentiable
arcs transverse to A which can be homotoped from one to the other by a continuous
homotopy respecting A. In general, we cannot assume that this homotopy is differentiable.
However, this homotopy establishes a one-to-one correspondence between fen A and fc 'nA,
as well as between the components of k — A and the components of k' — A. An easy
geometric estimate shows that the length of a component of k — A is bounded above
and below by constants times the length of the corresponding component of k ' — A. (The
constants depend on the curvature of the metric m, on the diameter of k U A/, and on
the minimum angle between fc, fc', and A). Since k D A has Hausdorff dimension 0, the
distance in k between two of its points is equal to the length of the components of k ' — A
separating them. It follows that the correspondence k D A —» A/ D A is Lipschitz (= Holder
continuous of Holder exponent 1), as well as its inverse. Therefore, we can choose the
homotopy so that the homeomorphism 0 : k —> k ' it provides is Holder continuous, as well
as its inverse; in this case, we will say that 0 is Holder bicontinuous. If this holds, note
that 0 enables us to identify Holder distributions on k and Holder distributions on k ' .

Given a geodesic lamination A, a transverse (invariant) Holder distribution for A is
a Holder distribution defined on each differentiable arc k transverse to A, and such that
every Holder bicontinuous homotopy sending k to another arc A/ while respecting A sends
the Holder distribution defined on k to the Holder distribution defined on A/.

With these definitions, it is immediate that Theorem 15 and Complement 16 associate to
each tangent vector to A4C(S) a geodesic lamination endowed with a transverse Holder
distribution.

Corollary 13 and Theorem 15 suggest a relationship between, geodesic laminations with
transverse Holder distributions in S on one hand, and geodesic Holder currents whose
support in G(S) is a geodesic lamination of S on the other hand. And indeed, these two
notions are shown to be equivalent in [Bo4].

5. Transverse Holder distributions and tangent vectors
to the space of measured geodesic laminations

We showed that every tangent vector to M.C{S) can be interpreted as a geodesic
lamination with a transverse Holder distribution. In this section, we characterize which
geodesic laminations with transverse Holder distributions are associated in this way to
tangent vectors of MC{S) at a e MC{S}.

First, we state the following classification theorem, proved in [Bo4]. If a is a transverse
Holder distribution for the geodesic lamination A and if k is an arc transverse to A, we
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define a{k) to be the a-integral of the constant function 1 on k. In particular, for every
edge e of a train track carrying A, we can define a{e) to be a (fee) for any tie fee of e.

THEOREM 18 [Bo4]. - If the geodesic lamination X is carried by the train track r,
a transverse Holder distribution a for A is uniquely determined by the numbers a(e) it
associates to the edges ofr. In particular, the space ^(A) of transverse Holder distributions
for X is a finite dimensional vector space. In addition, the dimension ofT~L(\) is equal to
—^(A) + rio{\), "where ^(A) ^ 0 is the Euler characteristic ofX and "where Uo(A) is the
number of orientable components of A. D

The Euler characteristic ^(A) can be defined as the alternating sum of the Cech
cohomology groups of A, considered as a subset of 5'. A more practical definition, if A is
m-geodesic for some negatively curved metric m, is that ^(A) is the Euler characteristic of
the ^--neighborhood of A for e sufficiently small. In the 'generic5 case where A is maximal,
namely when the complement S — A consists of finitely many triangles with all vertices at
infinity, a counting argument easily shows that the dimension of T~i(\) is equal to —3^(5').

THEOREM 19. - Let OQ C M.C{S) and let A be a geodesic lamination "which contains
the geodesic lamination Ao underlying OQ. Then, a transverse Holder distribution a for
A represents a tangent vector of A4C(S) at OQ if and only if a(k) ^ 0 for every arc k
transverse to A and disjoint from Ao.

Proof. - The condition is clearly necessary. Indeed, for such an arc k and if a is tangent
to a path t \—> o.t € A4£(S) starting at ao, then a{k) is the derivative of Ot(k) ^ 0
and ao(k) == 0.

Conversely, assume that a{k) ^ 0 for every arc k transverse to A and disjoint from Ao.
Let T be a train track carrying A. The general theory of train tracks (see for instance

[Thl][PeH]) provides, for t sufficiently small, a measured geodesic lamination o^ carried
by T such that Ot(e) = ao(e) + ta{e) for every edge e of r. In addition, the geodesic
laminations underlying these o.t are contained in a compact subset of the interior of r.

This path t »—^ Of in A4C(S) is piecewise linear, and we want to show that its tangent
vector OQ is represented by a. The core of the proof is contained in the following lemma.

As usual, we lift the situation to the universal covering 5, and we let tildes ~ denote
preimages in S. If 7 is an edge path in T, there is an arc k^ contained in a tie of r such
that the leaves of A that realize 7 are exactly those that cut fcy. Since this number is clearly
independent on the choice of fc^, we set 0(7) = a(fc-y).

Note that the condition that a(k) ^ 0 for every arc disjoint from Ao implies that
^Cr) ^ 0 f01" every edge path 7 such that 00(7) = 0.

LEMMA 20. - For every edge path 7 ofr, 01(7) == ^0(7) + ta{^} for t sufficient small.

Proof. - Note that this property cannot hold without the hypothesis that a(K) ^ 0 for
every arc k disjoint from Ao, since 0^(7) has to be non-negative.

We will prove the lemma by induction on the length n of the edge path 7n = { e i , . . . , en)
of T.

The property holds for n = 1 by definition of o^. Assume as induction hypothesis that
it holds for every edge path of length at most n - 1.
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As in the proof of Lemma 2, select a 'left' side and a 'right' side for 7n. Let G\ C G{S)
consist of those geodesies which realize some path (e',, e ^ + i , . . . , en) with e'^ei branching
in on the left side of 7n. Similarly define G\ consisting of geodesies branching in on the
right side of 7n. Also, if s is the switch separating Cn-i from e^, let Al (resp. AL, Alp
A!p consist of those geodesies of G(S) which realize an edge path consisting of one of the
edges entering s on the same side as e^-i (resp. Cn-i, en, ej and on the left (resp. right,
left, right) side of 7n. Finally, let H\ = G^ U Al - A^ and ̂  = G,_i U AL - A\\ for
instance, ff^ consists of those geodesies which cross s after branching in on the left side of
7n and whidi do not branch out on the left side of e^. Then, as in the proof of Lemma 2,

ai{H\} = max{a,(GLi) + ̂ (Al) - ̂ (A^O}

a,TO = max{a,(G^_0 + ̂ (AL) - ̂ (A^O}

at(G^) =mm{at(en),at(J^)}

at(G'^) = mm{o!t(en),Q;t(^)}

a,(7n) = ̂ {en) - at(G\) - a,(G^).

Note that H\ is a disjoint union of G^ associated to edge paths 7. Therefore, we can
talk of oi.(H\Y defined as the union of the corresponding 0(7). The same applies to H^,
G^ G^ A171, AL, A1,, A^.

Our first goal is to prove that at[H\} = ao(H^) + ta{H^) for t sufficiently small. For
this, note that G^_i, AL. and A\ are disjoint unions of G^ associated to edge paths 7 of
length at most n - 1. By induction hypothesis, is follows that

ai{H\) ^max^o^.O+c^AL) - ̂ (A^+^a^.O+^AL) -a(A\))^}.

The intersection points of geodesies of A H (G^_i U Al) form an interval of s HA adjacent
to the left end of the tie s. The same property holds for the geodesies of A n A\. It
follows that, either A n (G^_i U Al) is contained in A H A^, or A H A\ is contained in
A n (G^_i UAL) . We now distinguish cases.

If A n (G^_i UAL) is contained in A H A^ then oo(^) = a{H\} = 0. Also,
ao(A^) -ao(GLi) -^o(AL) ^ 0. In addition, AnA^ -An (G^_i u Al-) is the ̂ mt

union of finitely many A D G^. It follows that, if (^(A^) - ao^-i) - Q/o(Al_) = 0,
then a{A\} - a(G^} - a(Al) ^ 0 since 0(7) ^ 0 for every 7 with 0-0(7) = 0.
As a consequence,
a,(^)=max{ao(GLi)+^o(AL)-ao(A^+^(a(G^_0+o(AL)-o(A!,)),0}

=0
=ao(^)+ta(^)

for t sufficiently small.
The other case is when A H A\ is contained in A H (G^_i U AL). Then,

ao(^i) = ̂ o(GLi) 4-ao(AL) -ao(A1,)
a(^)=a(GLO+a(A l_)-a(A l,).
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In addition, An(G^_i U AL) -\r\A\_ is the disjoint union of finitely many AnG^y. It follows
that, if ao(G^_i) + ao(AL) - ao(A^) = 0, then a(G^) + a(AL) - a{A\) ^ 0 by
hypothesis on a. As a consequence,

a,(^) =max{ao(G^i)+ao(AL) -ao(Al,)+^a(GLl)+a(Al_) -a(A!,)),0}

^(GLO+^AL) -ao(A!,)+^(G^)+a(A1.) -a(A!,))
=ao(^)+to(^)

for ^ sufficiently small.
This proves that, in all cases, at(H\) = ao(H^) + ta[H\) for ^ sufficiently small.
Similarly, if En C G(5') consists of those geodesies which realize the edge path {e^},

either A H En is contained in A D ̂ , or A H ̂  is contained in A ft En. In both cases,
the same kind of argument as above, using the fact that 0(7) ^ 0 for every 7 with
0/0(7) = 0, shows that

Ot(G\} = min{ao(ej +to(eJ,ao(^) -^ta{H\}} = ao(G^) +to(G^)

for ^ sufficiently small.
Replacing 'left' by 'right' everywhere also shows that Ot(G^) = ao(G^) + ta{G^)

for t sufficiently small.
Finally, for every geodesic lamination Jl carried by T, Jl D En is the disjoint union of

Jl H G^, JS n G\ and /7 H G^. We conclude that,

^(7n)=a,(e,)-a,(G^)-a,(G^)

= ao(e,) + to(e,) - ao(G^) - ta(G^) - ao(G^) - to(G^)

= (^o(7n) + ̂ (7n)

for t sufficiently small.
This concludes the proof of Lemma 20. D
We can now determine the essential support Ao+ °f Ae o^ as t tends to O"*". By Lemma 3,

a geodesic g G G(5') belongs to Ao+ if and only if it is carried by r and if 00(7) > 0
or ao(7) > 0 for every edge path 7 realized by g. Lemma 20 implies that o;o(7) = 0(7)
for every edge path 7. Therefore, for every edge path 7 realized by a geodesic g G Ao+,
G^ meets the support of ao or the support of a. In particular, since these G/y form a
basis of neighborhoods for g C Ao+ and since A is closed, every g C Ao+ belongs to A.
As a consequence, the essential support Ao+ is contained in A, and the tangent vector OQ
determines a transverse Holder distribution for A.

By Theorem 18, a transverse Holder distribution for A is determined by the weights
it defines on the edges of r. By construction of the o^, Ao(e) = a{e) for every edge
of T. Therefore, a is exactly the transverse Holder distribution associated to the tangent
vector ao of MC{S) at ao.

This concludes the proof of Theorem 19. D
The criterion provided by Theorem 19 can be made a little more practical as follows.

A geodesic lamination can be uniquely decomposed as the union of finitely many (closed
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disjoint) minimal sublaminations, in which all leaves are dense, and of finitely many
infinite isolated leaves g for which each end is asymptotic to one of these minimal
sublaminations (see [Thi], [CEG, §4.2]). If g is an isolated leaf of A and if a is a
transverse Holder distribution for A, let the a-mass a(g) ofg be the number a{kg) where
kg is any arc transverse to A such that kg D A = kg H g consists of exactly one point.

The support of a measured lamination has no infinite isolated leaves, and therefore is
the union of finitely many minimal sublaminations.

THEOREM 21. - Let the geodesic lamination A contain the geodesic lamination underlying
ao G A4C(S). Then, the transverse Holder distribution a for A corresponds to a tangent
vector of M.C(S) at ao if and only if the following three conditions hold:

(i) every infinite isolated geodesic of A has non-negative a-mass;

(ii) every infinite isolated leaf of A which is asymptotic to a minimal sublamination of A
that is not contained in the support of ao has a-mass 0;

(iii) the restriction of a to each minimal sublamination of A that is not contained in the
support ofaQ is a transverse measure (this restriction makes sense because of Condition (ii)).

Proof. - First, let us show that Conditions (i), (ii) and (iii) are necessary for a to
correspond to a tangent vector of A4C(S) at ao.

Condition (i) immediately follows from Theorem 19 and the definitions.
Now, consider an infinite isolated geodesic g which is asymptotic to a minimal

sublamination Ai of A which is not in the support of ao. Let k be an arc transverse
to A which meets Ai and no other minimal sublamination of A. Then, g hits k in infinitely
many isolated points. Choose small arcs around n points of g D k. The complement of
these small arcs consists of n + 1 arcs fc' such that ao(A/) = 0, and therefore such that
a(k') ^ 0 by Theorem 19. In particular, a(k) is the sum of na(g) ^ 0 and of a non-
negative number. Since this is true for every n, we conclude that a(g) = 0. This proves
that Condition (ii) is necessary.

Finally, let Ai be a minimal sublamination of A which is not in the support of ao.
In [Bo4, Proposition 181, we show that a transverse Holder distribution (3 for Ai is a
transverse measure if and only if /3(k) ^ 0 for every transverse arc k (this is relatively
elementary). By Theorem 19, the restriction of a to Ai satisfies this condition, and is
therefore a transverse measure. This proves that Condition (iii) is necessary.

Conversely, assume that Conditions (i), (ii) and (iii) are satisfied. If k is an arc transverse
to A and disjoint from the support of ao, we can split it into finitely many arcs k^ such
that, either ki intersects A in finitely many points located on infinite isolated leaves, or
ki meets exactly one minimal sublamination \i and possibly some infinite isolated leaves
asymptotic to \i. In the first case, a(fc^) ^ 0 by Condition (i). In the second case, a(ki) ^ 0
by Conditions (ii) and (iii). We conclude that a(k) ^ 0 for every arc k transverse to A
and disjoint from the support of ao. By Theorem 19, this proves that a corresponds to a
tangent vector of A4jC(S) at ao. D

THEOREM 22. - Let the geodesic lamination A contain the geodesic lamination underlying
ao €: A4C(S). Then, the transverse Holder distributions a for A corresponding to tangent
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vectors ofMC(S) at aoform a closed convex cone in the vector space ^(A) of all transverse
Holder distributions for A, and this cone is bounded by finitely many hyperplanes.

Proof. - Let r be a train track carrying A. By cutting r open along some arcs carried by
r, originating from switch points and disjoint from A, we can arrange that the following
two conditions are met:

(a) if a tie k of r meets a minimal sublamination Ai, every other leaf of A that meets
k is an isolated leaf that is asymptotic to Ai;

(b) for every infinite isolated leaf g , there is a tie k of r such that k D A = k D g
consists of exactly one point.

By Theorem 18, the transverse Holder distributions for A are determined by the numbers
a(e) they associate to the edges e of T.

By (b\ Conditions (i) and (ii) of Theorem 21 are equivalent to the property that some of
these a(e) are non-negative or are equal to 0. For a minimal sublamination Ai that is not
in the support of o/o, a result of A. Katok [Ka] (see also [Pal], [PeH], [Bo4, §4]) asserts
that there are finitely many transverse measures for Ai such that any other transverse
measure can be uniquely written as a linear combination of these transverse measures with
non-negative coefficients; this also follows from Theorem 18. Therefore, Condition (iii) of
Theorem 21 for Ai can be expressed by the property that the set of those a{e) with e
meeting Ai is contained in a certain linear simplex. This clearly concludes the proof. D

The representation of tangent vectors to MC{S) by geodesic laminations with transverse
Holder distributions also provides a nice interpretation of the faces of the piecewise linear
structure of MC(S). Recall that two tangent vectors at the same point of a piecewise
linear n-manifold belong to the same face if, when we consider the two tangent vectors
of R71 associated to these two vectors by a local chart, the differential of every change of
chart is linear on the positive cone generated by these two vectors. In the case of MC{S),
recall that the piecewise linear structure is defined by the maps fk : MC{S) —^ H^~ where
k ranges over all generic arcs of S and where fk(oio) is the total mass of the measure
deposited by ao on k. Therefore, two tangent vectors a and /3 at o;o G MC(S) belong
to the same face if and only if, for every a, b ^ 0, there is a third tangent vector 7 such
that dfk(^) = adfk(a) + bdfk{l3) for every generic arc k. Note that, if we interpret the
tangent vector a as a geodesic lamination with transverse Holder distribution, the image
dfk(a) of a under the differential of fk is just the integral a{k) of the constant function
1 under the Holder distribution deposited by a on k.

PROPOSITION 23. - Let a and /3 be two tangent vectors at OQ e MC(S), considered as
geodesic laminations with transverse Holder distributions. Then, a and (3 belong to the
same face of the piecewise linear structure of MC(S) if and only if their supports \a and
\f3 are sublaminations of a same geodesic lamination, namely if and only if no geodesic of
AQ, transversely crosses a geodesic of A^ and conversely.

Proof. - If Ac, and A^ are sublaminations of a geodesic lamination A, then a and
/? are transverse Holder distributions for A. If a and b are non-negative numbers, then
7 == aa + b(3 is also a transverse Holder distribution for A which, by Theorem 22, is
associated to a tangent vector at ao. Since ^{k) = aa(k) + b/3(k) for every generic arc k,
this proves that a and /3 belong to the same face.
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Conversely, assume that there is a geodesic of \a which crosses a geodesic of A^.
Suppose that a and /3 belong to the same face. Then, for a, b > 0, there is a tangent
vector 7 such that ^{k) == aa(fc) + b(3(k) for every generic arc k. The support of 7 in
(7(6') contains at least the symmetric difference of the supports \a and A^. In particular,
by assumption on \a and A^, there are two geodesies of the support of 7 which cross each
other, contradicting the fact that this support is a geodesic lamination of S. Therefore, a
and (3 cannot belong to the same face. D

To each face in the tangent space of ^iC(S) at ao, Proposition 23 associates a geodesic
lamination A. This A contains the geodesic lamination underlying ao, and is the essential
support associated by Lemma 3 to a tangent vector in the interior of this face. It is
consequently important to know which geodesic laminations can be obtained in this way.
By Proposition 4, this is equivalent to asking which geodesic laminations are the Hausdorff
limit as t tends to O"^ of the geodesic laminations underlying the elements of a piecewise
linear path t \-> at starting at ao.

An easy necessary condition is that each connected component Ai of a geodesic
lamination A obtained in this way must be chain recurrent. This means that, for every
e > 0, any two points of Ai can be connected by a chain of arcs contained in A and small
jumps such that the tangent vector of each arc at its terminal point is within e of the tangent
vector of the next arc at its initial point. In practice, it is easy to express this condition in
terms of how the infinite isolated leaves of A connect its minimal sublaminations, taking
into account the orientations of those minimal sublaminations which are orientable.

Using train track approximations, it is not very difficult to prove that this chain recurrent
condition is actually sufficient (see [Th4], [PeH]). Namely, for every geodesic lamination
A containing the geodesic lamination underlying ao and whose connected components are
all chain recurrent, we can construct a piecewise linear path t ̂  o^ starting at ao and
whose Hausdorff limit as t tends to O"1' is equal to A. In other words, a geodesic lamination
is associated to a face of M.C{S} at OQ if and only if it contains the geodesic lamination
underlying o;o and its connected components are all transversely chain recurrent.

It is also probably worth mentioning the following corollary of Theorem 21 and
Proposition 23: There are tangent vectors to M.C{S) which are contained in no face of
maximal dimension 3[^(5')|. This is another indication of the complexity of the piecewise
linear structure of M.C{S).

6. Length of Holder geodesic currents

Consider a metric m of negative curvature on the surface S for which the boundary OS
is totally geodesic. For a free homotopy class of closed curves 7 on 5, the length 0/7 with
respect to m is the length <m(7) of the (unique) multiple of closed m-geodesic contained
in 7 (with the convention that ^1(7) = 0 if the curves of 7 are homotopic to 0). It turns
out that this length function extends to a linear continuous function l^ : C(S) —^ R4'. In
particular, there is a unique continuous function lm '' MC(S) —^ R"^ such that, when a
is a closed geodesic Ao; endowed with the transverse Dirac transverse measure of weight
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a > 0, Ay^(a) is equal to a times the length of the closed m-geodesic homotopic to \a
(see [Thi, §9.3], [Bol, §4.2], and below).

Given a path t ^-> o^ in A4C(S) which admits a tangent vector Ao at t = 0, we
would like to compute the right derivative -^lm(^t)\t=o' Our interpretation of do as a
geodesic lamination with transverse Holder distribution provides an immediate solution
to this problem.

Indeed, let us recall how the length ImW of a geodesic current a G C{S) is defined:
Consider the project! ve tangent bundle PT{S) of S, consisting of pairs (re, d) where x € S
and d is a line passing through the origin in the tangent plane of S at x. If we endow S with
the metric m, every m-geodesic can be lifted to PT{S) by considering the tangent line at
each of its points. Let PTo(S) C PT(S) be the union of the lifts of those geodesies of S
which do not transversely hit the boundary (Flo (5) = PT(S) when OS = 0). These lifts
of geodesies foliate PTo(«S'), in the sense that every point of PTo(S) has a neighborhood
homeomorphic to some space D x [0,1] where each arc * x [0,1] is contained in a lift
of geodesic. This foliation T is the geodesic foliation of PTo(6'). Locally, a point of
PTo(S) is characterized by the leaf of T containing it, and by where it sits on that leaf.
Consequently, given a e C(S), we can consider on PTo[S) the measure which is locally
the product of a and of the length measure deposited by m on the leaves of T-'. Then,
ImW is defined as the total mass of this measure.

More precisely, choose a continuous partition of unity ^ : PTo(S) —> R, % = 1,..., n,
such that ^^Li ̂  = 1 and such that the support of each ^ is contained in the interior
of a flow box Bi for 7 in PTo(5'); namely, there is for each i a homeomorphism
ai : Di x [0,1] —» Bi for some space Di, such that each ai{g x [0,1]) is contained in a
leaf of y. Lifting the situation to the universal covering S and assuming the Bi sufficiently
small, we can identify Di to a subset of G(S), well-defined modulo the action of 7Ti(5)
on G(S). Since a e C(S) is invariant under the action of 7Ti(5'), it follows that a induces
a measure a on Di. Then,

u^>= E / / ^(a^ ̂ dm^da^) = Ea^)
i^JDjQ ^

where (pi : G^S) — ^ R i s the continuous map with compact support defined by

^(^) = / ^i{^i(9^))dm(t) when g e A C G(S} and ^pi(g) = 0 otherwise.
Jo

It turns out that the last term of this formula makes sense when a is only a Holder
distribution, provided that we choose the a-i and ^ Holder continuous (which we can
always assume). Indeed, under this regularity hypothesis, it follows from the definition of
the Holder structure of G(S) that the maps (pi are Holder continuous. Therefore, given
a G T~i{S\ we can define

n

U )̂ = ̂ ^(y^)-
i=l

By linearity of the formula and by invariance of a under the action of 7ri(5'), this is clearly
independent of the choice of the ^, a, and lifts of Bi to PT(S). Also, this ^(a) is a
continuous function of a by definition of the topology of T-C{S). This proves:
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THEOREM 24. - Given a metric m of negative curvature and with totally geodesic
boundary on S, there is a continuous linear function lm '' T~i(S) —> R such that, when
a G C{S) C ̂ (S) corresponds to a closed geodesic X endowed with a weight a, ^n(^) is
equal to a times the length of this m-geodesic. D

In particular, by continuity and linearity of lm''

COROLLARY 25. - Ift ^—f o.t is a 1-parameter family of measured geodesic laminations
which admits a right derivative ao C T~C(S) at t = 0, then

r\

îrU î̂ o = U^o).

In particular, the length function lm '' MC(S) —^ R^~ has a differential at each point of
MC(S), and this differential is linear on each face of the piecewise linear structure of
MC{S). D

In [Bo5], we give an explicit formula, based on the Thurston symplectic form on ^(A),
which expresses this variation <m(<^o) in terms of the shear coordinates associated to m
and to any maximal geodesic lamination A containing the support of ao.

7. Lengths of realizations of measured geodesic laminations

In this section, we consider an extension of §6 to higher dimensions (in practice,
dimension 3 for applications). This also extends §6 to metrics with cusps on surfaces. For
simplicity, we will restrict attention to hyperbolic metrics, namely complete Riemannian
metrics of constant curvature —1.

Consider a hyperbolic manifold M endowed with an isomorphism 71-1 (M) ^ Tri(S').
Note that M will not be compact if its dimension is higher than 2. Let fo : S —^ M
realize the isomorphism 71-1 (M) ^ 7Ti(5'). Then, for every closed curve 7 in S which
is not homotopic to 0, let IM^) be the infimum of the lengths of those curves in M
which are homotopic to /o(7)- Thurston proved that there is a (unique) continuous map
IM : MC{S) —^ R4' such that IM^) = ^(Aa) when a is a closed geodesic \a endowed
with the Dirac transverse measure of weight a > 0; see [Thi], [Bol, §5], and compare
Proposition 28 below. This map IM '' MC{S} —^ R"1" played an important role in his
analysis of the structure of open hyperbolic 3-manifolds [Thi] (see also [Bol]). We want
to compute the differential of this map.

To do so, we will follow Thurston and use the notion of realization of a geodesic
lamination. The geodesic lamination A on S is realised by the map / : S —> M if / is
homotopic to /o and if / sends each leaf of A to a geodesic of M. The geodesic lamination
A is realizable if it can be realized by some map / : S —^ M. When A is the geodesic
lamination underlying some a G AdC(S), it can be shown that A is realizable if and only
if IM^I) > 0 to every connected component a\ of a; see [Thi, §8], [CEG], [Bol, §5].

As usual, let tildes ^ represent lifts and/or preimages to universal coverings. In particular,
G(M) ^ (Moo x Moo — A)/Z2 will denote the set of geodesies of the universal covering
M of M. Choosing a base point in M identifies the sphere at infinity to the sphere of
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unit tangent vectors at this base point, and therefore endows Moo with an 'angle' metric.
By an easy estimate of hyperbolic geometry, the Holder equivalence class of this metric
is independent of the choice of base point. This defines a natural Holder structure on
G(M) ^ (Moo x Moo - A)/Z2. Beware that, unlike in the case of 5, the dynamics of
the action of 71-1 (M) on G(M) for this Holder structure depend on the hyperbolic metric
of M, if we do not have any further hypothesis on this metric.

If A is a subset of G(S), we will say that a geodesic g e G(S) is e-tracked by A if,
for every x € g C S, there is a geodesic h G A and a point y G h such that the direction
of g at x and the direction of h at y are within e from each other in the projective tangent
bundle of 6', for the metric induced on this bundle by the base metric m on 5'. The set of
those geodesies of S which are ^-tracked by A will be denoted by G?(5'; A,e).

LEMMA 26. - Let f : S —^ M realize the geodesic lamination A, and let f : S —> M lift
f. Then, there is an E >^0 such that, for every geodesic g which is e-tracked by A, there is a
unique geodesic ^* ofM which stays at bounded distance from f{g\ In addition, the map
r : C? (5; A, ^) —>• G (M) defined by r{g) == g * is proper and, for every compact subset K of
G(S), the restriction ofr is Holder bicontinuous from Kr\G(S^ A, e) to its image in G(M).

Proof. - Choose an e > 0, which we will later adapt to our needs.
Since / is proper and commutes with the actions of 71-1(6'), there is a constant C such

that the images of two points which are at least C apart in S are at least 1 apart in M.
Let g € G(S) be ^-tracked by A. It is possible to decompose g as a union of intervals

In, n G Z, of length 3(7 such that each In overlaps with In-^-i over a length of (7, and
such that each In is at Hausdorff distance at most £1 from an interval 1^ contained in a
geodesic of A, where e\ depends on e and tends to 0 as e tends to 0.

By uniform continuity of /, f{In) is at Hausdorff distance at most e^ from J{In) in M,
where £3 is a constant which tends to 0 as e tends to 0. Since In overlaps with Jn+i, there
are intervals 1^ C In and 1^ C I'n^ whose images under f are at Hausdorff distance
at most 2^2 from each other. In addition, by choice of the constant C, the length of the
arcs /(4-), /(J^) and f(I^ - (J, U 1^)) is at least 1 - ̂ .

Since / realizes A, the f{I'n) are geodesic in M. We can therefore connect the central
parts f{I^ - {1^ UJ^)) by geodesic arcs to form a piecewise geodesic curve g ' in M
which is at Hausdorff distance at most 2^2 from f(g), and which is made up of geodesic
arcs of length at least 1 - 2e^ meeting at angles at least TT - 6, where 8 is a constant
tending to 0 as e tends to 0. A major property of negatively curved manifolds is that, for
S sufficiently small, such a curve g ' stays at uniformly bounded distance from a geodesic
g * of M (see for instance [CEG, Theorem 4.2.10]); in addition, this geodesic is unique
since no two distinct geodesies of M stay at bounded distance from each other. Therefore,
for e sufficiently small, the image f(g) of any geodesic g which is ^-tracked by A stays
at uniformly bounded distance from a unique geodesic g * of M.

By construction, the Hausdorff distance between g * = r(g) and f{g) is uniformly
bounded. It follows that r : G[S\ A, e) —^ G(M) is proper.
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Given^a constant D, the angle between two geodesic rays of M issued from a base point
XQ e M is bounded above and below by two functions of type AB~d, where d is the
distance after which these two geodesic rays stay at least D apart, and where A > 0 and
B > 1 are constants depending only on D. It follows that, if h and h' are two geodesic
rays originatingjrom points at distance at most D / 2 from XQ, the angles under which their
end points in Moo are seen from XQ are also bounded above and below by two functions
of this type. Since a similar estimate holds in S and since the Hausdorff distance between
g * == r{g) and f{g) is uniformly bounded, it immediately follows that the map r : g ̂  g *
is Holder bicontinuous on every K D G(S'; A, e) with K compact in G(5). D

We will say that the geodesic Holder current a e T~i{S) is e-tracked by the geodesic
lamination A if every geodesic of the support of a in G(5) is ^-tracked by A. Let ̂ (5; A, e)
denote the set of a e "H(S) which are ^-tracked by A.

Let T-^(M) denote the set of 7Ti(M)-invariant Holder distributions on G(M).
Consider the geodesic current a G C(S) C T~i(S) associated to a closed geodesic 7

of S and to a weight a > 0. Namely, a is the Dirac measure of weight a defined by
the discrete closed subset of G(S) consisting of all possible lifts of 7. Then, a defines
an element a* of T~i(M) as follows: If ^(7) is homotopic to a closed geodesic 7* of
M, a* is the Dirac measure of weight a defined by the discrete closed subset of G(M)
consisting of all possible lifts of 7*; otherwise, /(7) can be homotoped to arbitrarily short
curves, and a* = 0.

LEMMA 27. - Under the hypotheses and conclusions of Lemma 26, there is a continuous
map p : 'H{S\ A, e) —> 7~i(M) such that, when a is defined by a weighted closed geodesic
which is e-tracked by A, p(a) is the element a* associated to a as above. In addition, there
is a compact subset MQ of M such that every geodesic of the support of some p{oi) with
a € 7^(5;A,£) is contained in the preimage of MQ in M.

Proof. - Let r : G(5;A,e) —> G(M) be the map g ^ g * defined by Lemma 26.
Consider a G 'H{S\ A, e\ If y? : G(M) — ^ R i s Holder continuous with compact support,
the composition y? o r is also Holder continuous with compact support on G(5; A,s), by
Lemma 26. We can then define p(a)((p) = a{(p o r) since the support of a is contained
in G(-S';A,£). The Holder distribution p(a) so defined is 7Ti(M)-invariant, and clearly
depends continuously on a.

The fact that p{a) = a* when a is associated to a weighted closed geodesic ^-tracked
by A is immediate from the definitions.

For every g G G(6';A,e), the geodesic r(g) € G(M) stays at uniformly bounded
distance from f{g). Its projection to M therefore stays in a compact neighborhood MQ
of f(S). Since the support of each p(a) is contained in r(G(S'; A ,^ ) ) , this concludes the
proof. D

Given a compact subset Mo of M, let H{Mo) denote the set of those 7Ti(M)-invariant
Holder distributions a on G(M) such that every geodesic of the support of a is contained
in the preimage of Mo. Then, we can define a length function IM on 7^(Mo) by a formula
analogous to the one used in §6.
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Namely, consider the projective tangent bundle PT(M), endowed with its geodesic
foliation T. Cover a neighborhood of the preimage of Mo in PT(M) by finitely many flow
boxes Bi, i = 1, . . . , n; namely, there is for each i a Holder bicontinuous homeomorphism
o-i : Di x [0,1] —> Bi for some space Di, such that each ai(g x [0,1]) is contained in a
leaf of T. For each z, choose a Holder continuous function ^ : PT(M) —^ R with support
contained in the interior of B,, in such a way that ̂ ^i ̂  = 1 on the preimage of Mo in
PT(M). Lift each flow box B^ to the universal covering M so that, assuming these flow
boxes small enough, Di becomes identified to a subset of G(M).

Then, for a G 7^(Mo), define

n „ ^ n

IM{O) = Y. / / ^(^ ̂ )) dm(^) da(^) = V a(^)
i^i JD^ Jo i^i

where m is the metric of M and where y^ : C?(M) — ^ R i s the Holder continuous map

with compact support defined by (pi(g) = \ ^(^z(^)) dm(t) when g C Di C G(M)
Jo

and ^pi(g) = 0 otherwise.
The map IM : 7<(Mo) —> R so defined is clearly continuous.
If 7 isji closed geodesic of M which is contained in Mo, the set of all possible lifts

of 7 to M forms a discrete closed subset of G(M). Then, the Dirac measure of weight
1 defined by this discrete closed subset provides an element a of 7^(Mo). For this a, it
is immediate that IM^} is exactly the length of 7.

Combining this with Lemmas 26 and 27, we get:

PROPOSITION 28. - Let the geodesic lamination \ be realized by some map f : S —> M.
Then, there is an e > 0 and a continuous linear function IM '' ^(5';A,£) —^ R such that
IM^OL} = a/M(Aa) ^hen a G C{S) H T~L{S\ \,e) is a closed geodesic \a endowed with the
Dirac transverse measure of weight a > 0. D

The measured geodesic laminations corresponding to simple closed geodesies endowed
with Dirac transverse measures of positive weights are dense in the space MC{S) (see [Thi,
§8]). It follows that the function IM of Proposition 28 coincides with Thurston's function
IM : MC(S) -^ R+ on MC(S) H H(S',\,e).

A geodesic lamination A in S is realizable in M if it can be realized by some map
f : S —^ M homotopic to the given map /o '' S —» M. It can be shown that A is
realizable if and only if each of its minimal sublaminations is realizable; see [Thi, §8],
[CEG, §4.2]. When M has dimension at most 3, the analysis of [Thi] (see also [Bol])
shows that there are only finitely many non-realizable minimal geodesic laminations; the
non-realizable closed geodesies of S are exactly those whose image under /o is homotopic
to a cusp of M; the other non-realizable minimal laminations are the ending laminations
of geometrically infinite ends of M.

We will say that a path t «-̂  o^ G MC(S\ t e [0,^o], has a strong tangent vector at
04' if it has a tangent vector ao for the piecewise linear structure of MC(S) and if, as
t tends to O"^, the essential support Ao+ of the o^ is equal to the Hausdorff limit of the
geodesic laminations Ai underlying the o^. As seen in §2, the essential support is always
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contained in this Hausdorff limit, if it exists, but is not necessarily equal to it. However,
by Proposition 4, any piecewise linear path t \—> at has a strong tangent vector at O'1".

THEOREM 29. - Let 11—^ at G M.C(S), t C [0,^o]» be a 1-parameter family of measured
laminations admitting a strong tangent vector ao at t = 0. Assume that the geodesic
lamination Ao underlying ao is realizable in M, and decompose Ao+ as ^e union of its
realizable components A^+ and of its non-realizable components \^\. Then, the function
t \—> lu^t) admits a right derivative at 0 and, if a^ is the restriction of the Holder
distributional to X^, this derivative is equal to the length I M^o) defined by Proposition 28.

Proof. - As indicated above, a geodesic lamination is realizable if and only if each of
its minimal sublaminations is realizable [Thi, §8][CEG, §4.2]. By Theorem 21, Ao+ is
the union of Ao, of some infinite isolated leaves, and of minimal sublaminations which
are not in the closure of any isolated infinite leaf. Since Ao is realizable, it follows that
A^. consists only of minimal sublaminations which are connected components of Ao+,
and that Ao is contained in A^+.

By hypothesis, the geodesic lamination Ai underlying o^ converges to Ao+ for the
Hausdorff metric. Therefore, for e > 0 sufficiently small. Of naturally splits as the sum of
two measured geodesic laminations a\ and a^ which are respectively ^-tracked by A^+
and A^, for t sufficiently close to 0 (depending on e).

Applying Proposition 28 to the realizable geodesic lamination Ag+, we get for e > 0 small
enough a linear continuous map IM '' ^(5';A^+,£) —^ R such that IM^) coincides with
Thurston's length for every measured geodesic lamination a G M.C(S) D 7^(5'; A ^ + , ^ ) .
Then, by linearity and continuity of IM for the topology of H(S^ A ^ + , ^ ) ,

9 IM^-IM^Q) Y , fa^_ao\
g^lM{a^ = ̂  ———————^——————— = ̂  IM [-^-)

= l „ ( ^ a t a o - } = l M W .
\.t—^0' 7/ y

Since the components A^ are not realizable, the shortening process of [Bol, §5] proves
the following: For every 77 > 0, there is a map / : S —> M homotopic to /o and a train
track T carrying A^ such that, for every measured geodesic lamination a carried by T,
the length of jf(a) (suitably defined) is less than r]lm{a) where m is any fixed metric of
negative curvature on S\ in particular, IM^) ^ 'nlm(^)' Note that a^ is carried by this
T for t sufficiently close to 0. Also, if TO is a fixed train track carrying A^ and disjoint
from A^+, the length l^a^) is bounded by a constant (depending on the m-length of
the edges of To) times Ho^H^. Since Ao is disjoint from A^, HQ^II^ = 0(t) and it
follows that U^O = °W- This proves that, for every T] > 0, <M«1') ^ r]0(t) for t
sufficiently close to 0, where the constant hidden in the symbol 0( ) is independent of T ] .
As a consequence, the right derivative of t ̂  IM(^) at t = 0 is equal to 0.

Since IM^) = IM^O^) + IM^T)^ ^[ns concludes the proof that the right derivative of
t ̂  IM^) at t = 0 is equal to IM^)' Q

Since every tangent vector of M.C{S) is tangent to a piecewise linear path, and since
every piecewise linear path has a strong tangent vector everywhere, this proves:
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COROLLARY 30. - The length function IM : MC{S) -^ R+ has a differential at each
point of MC(S) whose underlying geodesic lamination is realizable, and this differential
is linear on each face of the piecewise linear structure ofMC(S). D

With a little more work the hypothesis that the path 11-> o^ has a strong tangent vector
at t = 0 can be removed from Theorem 29. However, this stronger version does not seem
to be of sufficient interest to justify giving the proof here.

On the other hand, simple examples show that the conclusions of Theorem 29 and
Corollary 30 fail at measured geodesic laminations whose geodesic laminations are
non-realizable.

The results of Proposition 28 and Theorem 29 are particularly interesting if we realize
geodesic laminations by pleated surfaces. A pleated surface is a map f : S —^ M which
realizes some geodesic lamination A and which is totally geodesic on the complement
S - A; see [Thi], [CEG] for details. It turns out that the path metric m obtained by pulling
back the metric of M by such an / is hyperbolic. If we compare the definitions of the
functions lm and IM in §6 and Proposition 28, then we immediately see:

LEMMA 31. - Let f : S —^ M be a pleated surface realizing the geodesic lamination A,
and let m be the metric obtained by pulling back the metric of M by f. Then, for every
transverse Holder distribution a for A, IM^) = ̂ m(^). D

As a corollary:

PROPOSITION 32. - Under the hypotheses of Theorem 29, let f : S -^ M be a pleated
surface realizing the geodesic lamination Ao+, and let m be the metric obtained by pulling
back the metric ofM by f. Then, the two functions t ̂  IM^) and t ̂  Im(c^t) have the
same value and the same derivative at 0. D

In particular, up to first order, the length IM^) depends only on the pull back metric
m, and not on the bending between the totally geodesic pieces of the pleated surface.
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