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ASYMPTOTICALLY HOLOMORPHIC FUNCTIONS AND
TRANSLATION INVARIANT SUBSPACES OF WEIGHTED

HILBERT SPACES OF SEQUENCES

BY JEAN ESTERLEAND ALEXANDER VOLBERG 1

ABSTRACT. – Let ω be a weight onZ and assume that the spectrum of the usual shift operator on the
weighted space�2ω(Z) equals the unit circle. We show that if

∑
n<0

log ω(n)

n2 = +∞, and if the sequence
(ω(−n))n�0 satisfies suitable growth and regularity conditions, then all nontrivial translation invariant
subspaces of�2ω(Z) are generated by their intersection with

�2ω(Z+) =
{
u = (un)n∈Z ∈ �2ω(Z) | un = 0 (n < 0)

}
.

When ω(n) = 1 for n � 0 and ω(n) = e|n|/ log(|n|+1) for n < 0, this shows that every nontrivial
translation invariant subspace of�2ω(Z) is generated by the translates of the Fourier sequence of some
singular inner function.

The proofs are based on a priori estimates on the growth of the solutions of some convolution equations,
obtained by using the theory of asymptotically holomorphic functions in the disc.

 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Soitω un poids surZ tel que le spectre de l’opérateur de décalage sur l’espace pondéré�2ω(Z)

soit égal au cercle unité. On montre que si
∑

n<0

log ω(n)

n2 = +∞, et si la suite(ω(−n))n�0 satisfait des
conditions de croissance et de régularité convenables, alors tous les sous-espaces invariants par translation
non triviaux de�2ω(Z) sont engendrés par leur intersection avec

�2ω(Z+) = {u = (un)n∈Z ∈ �2ω(Z) | un = 0 (n < 0)}.

Quandω(n) = 1 pour n � 0 et ω(n) = e|n|/ log(|n|+1) pour n < 0, ceci montre que tout sous-espace
invariant par translation non trivial de�2ω(Z) est engendré par les translatés de la suite des coefficients de
Fourier d’une fonction intérieure singulière.

Les démonstrations sont basées sur des estimations a priori de la croissance des solutions de certaines
équations de convolution, obtenues en utilisant la théorie des fonctions asymptotiquement holomorphes
dans le disque.

 2002 Éditions scientifiques et médicales Elsevier SAS

1 The work of the first named author is part of the research program of the European network ‘Analysis and operators’,
contract HPRN-CT-00116-2000, supported by the European Commission. The second named author was supported by
NSF Grant DMS 9622936 and by Grant BSF 00030 from the United States–Israel Binational Science Foundation.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

0012-9593/02/02/ 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved



186 J. ESTERLE AND A. VOLBERG

1. Introduction

Let ω be a weight onZ, and assume that the usual shift operatorS : (un)n∈Z → (un−1)n∈Z is
well-defined, bounded and invertible on

�2ω(Z) =
{
u= (un)n∈Z

∣∣∣∣∑
n∈Z

|un|2ω2(n)<+∞
}

(we refer to [44] and [48] for general properties of the shift operator). A closed subspace
M of �2ω(Z) is said to be translation-invariant (resp. left-invariant, resp. right-invariant) when
S(M) =M (resp.S−1(M)⊂M , resp.S(M)⊂M ).

In this paper, we are interested in the case where the spectrumσ(S) of S equals the
unit circleT. In this situation, the Laurent expansionsũ(z) =

∑
n∈Z

unz
n “live” on the unit

circle for u = (un)n∈Z ∈ �2ω(Z) (these formal Laurent series expansions can be interpreted as
hyperfunctions onT, see Section 3), and the Taylor expansionsũ(z) =

∑∞
n=0 unz

n are analytic
on the open unitdiscD for

u= (un)n�0 ∈ �2ω(Z+) =

{
(un)n�0

∣∣∣∣ ∞∑
n=0

|un|2ω2(n)<+∞
}
.

Notice that in both cases, we havẽSu(z) = zũ(z).
We can identify�2ω(Z+) with the space{u = (un)n∈Z ∈ �2ω(Z) | un = 0 (n < 0)}. Clearly,

if M is a translation invariant subspace of�2ω(Z), thenM+ =M ∩ �2ω(Z+) has the “division
property”: if u ∈M+ and if ũ(z0) = 0, wherez0 ∈ D, then the functionũ(z)

z−z0
is in M̃+ (or,

equivalently,(S− z0I)−1u ∈M+). Now letN be a right-invariant subspace of�2ω(Z+). It is not
difficult to check, and well-known, thatN has the division property if and only ifσ(SN ) ⊂ T
whereSN :f +N → Sf +N is the map induced byS on the quotient space�2ω(Z+)/N .

The issue at hand is the following

Problem 1. – Given a right-invariant subspaceN of �2ω(Z+) having the division property,
does there exist a translation invariant subspaceM of �2ω(Z

+) such thatM ∩ �2ω(Z+) =N?

Problem 2. – Given a translation invariant subspaceM of �2ω(Z), is it generated by its
intersection with�2ω(Z

+) (which constitutes a right-invariant subspace of�2ω(Z
+) having the

division property)?

It follows from Wiener’s characterization of translation invariant subspaces of�2(Z) [51] that∨
n∈Z

Snu= �2(Z) for everyu ∈ �2(Z+)\{0}, and so the answer to both problems is of course
negative in general.

On the other hand, it was shown in [25, Theorem 3.7] that the answer to Problem 1 is positive if
ω(n) = 1 for n� 0 and if limn→∞

logω(−n)√
n =+∞. A general discussion of Problem 1 is given

by the authors in [31]: there exists a sequence(ω(p)
+ )p�1 of weights onZ+, which depends only

onω+ := ω|Z+ such that the answer to Problem 1 is positive whenever
∑

n�0

ω
(p)
+ (n)2

ω(−n)2 =+∞ for

everyp � 1, andω(p)
+ (n)1/n →n→∞ 1 for everyp � 1 (the precise definition of these weights

ω
(p)
+ is given in Section 5). The proof of this result relies on elementary operator theoretical

arguments, but the estimation of the weightsω
(p)
+ in concrete cases relies on sharp estimates of

the growth of a quotient of two analytic functions in the disc [42].
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WEIGHTED HILBERT SPACES OF SEQUENCES 187

Before discussing Problem 2, which is much harder, it seems worth mentioning that analogous
problems have been studied for a large class of Banach spaces of functions analytic on a multiply
connected domainΩ by Abkar and Hedenmalm [1] (see [35] for a previous discussion of these
problems for Banach algebras).

Assume, for example, thatΩ is the annulus{z ∈ C | ρ < |z| < 1}, and setΩ1 = D,
Ω2 = C\ρD, and letB be a Banach space of functions analytic onΩ which contains all
rational functions with poles inC∞\Ω. Assume also that evaluation atλ is continuous onB for
λ∈Ω and that the functionz→ f(z)

z−λ belongs toB if f ∈B, λ ∈Ω, f(λ) = 0.
Denote byM(B) the algebra of multipliers onB, i.e. the algebra of functionsϕ analytic on

Ω such thatϕB ⊂ B. A closed subspaceJ of B is said to beM(B)-invariant if ϕJ ⊂ J for
everyJ ∈ B. Also, denote byB1 (resp.B2) the closed subspace ofB consisting of allf ∈ B
which can be analytically extended toΩ1 (resp.Ω2) and defineM(B1) andM(B1)-invariant
subspaces ofB1 as above.

For f ∈ B set Mz(f)(ξ) = ξf(ξ) (ξ ∈ Ω) and if J is M(B)-invariant denote by
Mz,J :B/J → B/J the mapf + J →Mz(f) + J . Define in the same wayMz,I if I is a
M(B1)-invariant subspace ofB1.

Now, denote byU the lattice ofM(B)-invariant subspacesJ of B such thatσ(Mz,J) ⊂ Ω2

and denote byU+ the lattice ofM(B1)-invariant subspacesI of B1 such thatσ(Mz,I) ⊂ Ω2.
ForA ⊂ B denote byM(B). A the set of all elements of the formRa,R ∈M(B), a ∈ A. It
is shown in [1] that ifB satisfies suitable regularity conditions with respect toΩ1 andΩ2, then
I = [M(B) · I]− ∩B1 for everyI ∈ U+ andJ = [M(B) · (J ∩B1)]− for everyJ ∈ U . In other
terms, in this context the natural version of Problem 1 has a positive answer forI ∈ U+, the
natural version of Problem 2 has a positive answer forJ ∈ U , and the mapJ → J ∩B1 is then
a bijection fromU ontoU+. These results are based on a factorization theorem [1, Lemma 3.7]:
if f ∈ B then there existsf1 ∈B1 andf2 ∈B2 such thatf = f1 · f2, with some control on the
zero sets off1 andf2.

We now go back to Problem 2 for�2ω(Z), whereω is a weight for which the spectrum
of the shift operatorS equals the unit circle. The commutantMω of S can be as well
known identified to the space of elementsh = (hn)n∈Z of �2ω(Z) such thath ∗ u ∈ �2ω(Z)
for every u ∈ �2ω(Z), where (h ∗ u)n is the limit in the sense of Cesaro of the sequence
(
∑

|m|�p hmun−m)p�0, see Section 5, and the translation invariant subspaces of�2ω(Z) are
exactly theMω-invariant subspaces. The open setΩ1 of the above discussion is now the unit
disc,B1 becomes�2ω(Z

+) and theM(B1)-invariant subspaces ofB1 become the right-invariant
subspaces of�2ω(Z+). Unfortunately, the open setΩ2 = C\ρD becomesC\D, andσ(SM )⊂ T,
so thatσ(SM ) ∩ (C\D) = φ for every nontrivial translation invariant subspaceM of �2ω(Z). We
thus see that Problem 2 in this context is not a limit case of the results obtained in [1] for spaces
of holomorphic functions.

Let (ω(p)
+ )p�1 be the sequence of weights onZ+ mentioned above, and assume that

(ω(−n))n�0 satisfies the growth condition

∞∑
n=0

ω
(p)
+ (n)2

ω(−n)2 =+∞ (p� 1).(∗)

In this situation we know from [31] that the answer to Problem 1 is positive, and in fact we
know more precisely thatN = [

∨
n�0 S

n(N)]∩ �2ω(Z+) and[
∨

n�0 S
n(N)] + �2ω(Z+) = �2ω(Z)

for every right-invariant subspaceN of �2ω(Z+) having the division property. It is then easy
to see that ifM is a translation invariant subspace of�2ω(Z), thenM =

∨
n�0 S

n(M+) if
M+ :=M ∩ �2ω(Z+) does not reduce to{0}. So, for weights satisfying(∗), Problem 2 will
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188 J. ESTERLE AND A. VOLBERG

have a positive answer ifM ∩ �2ω(Z+) �= {0} for every nonzero translation invariant subspace of
�2ω(Z).

The starting point of our strategy is a factorization theorem due to Borichev [14]. Set
ω̄+(n) = supp�0

ω(n)
ω(n+p) for n� 0, and fors > 0 setω(s)(n) = ω(n) for n� 0,ω(s)(n) = ωs(n)

for n < 0. Using essentially the same method as in [14] and [17], we give in Theorem B.5 of
Appendix B a quantitative version of [18, Theorem 6.1]. Assume thatω satisfies the six following
conditions:

(1) σ(S)⊂ T;
(2)
∑

n<0
logω(n)

n2 =+∞;

(3) ( logω(−n)
n (logn)A)n�1 is eventually increasing for someA> 0;

(4) (ω(−n))n�1 is eventuallylog-concave;

(5) limsupn→∞
log ω̄+(n)
logω(−n) < 1/4;

(6) limsupn→∞
log+ ω−1(n)
logω(−n) < 1/64.

Then, for everyu ∈ �2ω(Z) and everys < 1/4, there existw ∈ �2ω(Z+), k � 0 andh ∈Mω(s) ,
with hn = 0 for n � 0, such thatw = e−h ∗ Sku, where eh is computed with respect to
convolution inMω(s) .

Conditions (3), (4) and (5) imply thatω satisfies(∗), and if it were possible to arrange
that h ∈Mω in this factorization, then we would have

∨
n∈Z

Snu =
∨

n∈Z
Sn−kw for every

u∈ �2ω(Z), and so the answer to Problem 2 would be positive. But, as observed by the first author
in [27], there are no weights onZ for which such a nice factorization in�2ω(Z) is available.

Now, introduce the following conditions:
(4′) (ω(−n)/nα)n�1 is eventuallylog-concave for someα> 3/2;
(5′) limsupn→∞

log ω̄+(n)
logω(−n) < 1/200.

The main result of the paper is Theorem 5.8, which shows that ifω satisfies (1), (2), (3), (4′)
and (5′), we have

∨
n�0 S

nu =
∨

n�−k S
nw in the factorization above, despite the fact that in

generalh /∈Mω. So for these weights both problems (1) and (2) have a positive answer, and
the mapM →M ∩ �2ω(Z+) is a bijection from the lattice of translation invariant subspaces of
�2ω(Z) onto the lattice of right-invariant subspaces of�2ω(Z

+) having the division property (and
the inverse map is the mapN →

∨
n�0 S

n(N)). More generally, every left-invariant subspace
of �2ω(Z) has the formM =

∨
n�−k S

n(N), wherek � 0, and whereN is a closed subspace of
�2ω(Z+) having the division property.

We now outline the strategy of the proof of Theorem 5.8, which is based on the theory of
almost analytic functions in the disc developed in [17,50]. Setω∗(n) = ω(−n− 1)−1 for n ∈ Z.
Using the formula〈u, v〉 =

∑
n∈Z

unv−n−1 for u = (un)n∈Z ∈ �2ω(Z), v = (vn)n∈Z ∈ �2ω∗(Z),
we can identify the dual of�2ω(Z) with �2ω∗(Z). In order to circumvent the fact thath ∈Mω(s)

in the factorizationSku = eh ∗ w, it suffices to show that ifM is a nontrivial left-invariant
subspace of�2ω(Z) and if v ∈ �2ω∗(Z) is orthogonal toM , thenv ∈ �2ω∗

(s)
(Z) for somes < 1/4

(see the proof of Theorem 5.8). In order to do this, we will use the fact thatu ∗ v|Z+ = 0 for some
nonzerou ∈ �2ω(Z). Foru ∈ �2ω(Z), setu+(z) =

∑∞
n=0 unz

n for |z|< 1, u−(z) =
∑

n<0 unz
n

for |z| > 1, and define in a similar wayv+ andv− for v ∈ �2ω∗(Z). The first step consists in
constructing a suitable “Dynkin extension” [23] ofu−.

Let µ be a complex measure onD, and letC(µ)(z) = 1
π

∫∫
D

dµ(ξ)
z−ξ be the planar Cauchy

transform ofµ, which is defined a.e. onD and holomorphic onC\D. Denote byHo(C\D) the
space of holomorphic functions onC\D vanishing at infinity. In the most general sense a Dynkin
extension ofϕ ∈ Ho(C\D) is a functionψ ∈ L1(D) such thatψ = C(µ)|D, ϕ = C(µ)|

C\D
for
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WEIGHTED HILBERT SPACES OF SEQUENCES 189

some complex measureµ onD (such a functionψ exists if and only if there existsf ∈ L1(T)
such thatϕ(z) = 1

2iπ

∫
T

f(ξ)
ξ−z dξ for |z|> 1, see [32]).

The first step, performed in Section 2, consists in using condition (2) to construct a Dynkin
extensionD(u−) of u− for u ∈ �2ω(Z) which has the two following properties:

∂̄D(u−) ∈L1(D);(1.1)

v+ · ∂̄D(u−) ∈ L1(D) for everyv ∈ �2ω(Z).(1.2)

It seems that Dynkin extensions of this type can be found in an unpublished part of Dynkin’s
thesis, which was not accessible to the authors. The construction in Section 2, which is based on
the two natural realizations of the dual of a weighted Bergman space onD, is anyway a discrete
analogue of the “extraction process” of Borichev–Hedenmalm [16] for the half-line.

Now setU = u+ +D(u−) and letv ∈ �2ω∗(Z). SetP+(u+v−)(z) =
∑∞

p=n+1 upvn−pz
n for

z ∈D.
We show in Theorem 3.1 thatv⊥Snu for n < 0 if and only if we have

v+.U =C(v+.∂̄U)|D − P+
(
u+.v−

)
.(1.3)

In fact, formula (1.3) is essentially a version of the classical Cauchy–Pompeiu formula, see
Remark 3.1.

In order to use formula (1.3) to obtain estimates on the growth ofv+ whenv is orthogonal
to some nontrivial left-invariant subspace of�2ω(Z) some control on the rate of decrease of
∂̄U(z) = ∂̄D(u−)(z) as|z| → 1− is needed. Such a control is given by Proposition 2.5, assuming
that condition (4′) holds. Proposition 2.5 is a discrete version of some results of [16, Appendix
B], but we prove it in Appendix A by a simple and direct method based on the inversion formula
for Laplace transforms.

We now get to the crucial part of the proof. The growth ofP+(u+ · v−) can be controlled, and
C(v+ · ∂̄U)|D ∈ L1(D) whenv andu satisfy (1.3). Whenω satisfies conditions (1), (2), (3), (4′),
(5′), the functionU is asymptotically holomorphic in the disc, and Lemma 4.2 of [17] (stated in
the paper as Lemma 5.2) provides lower bounds for|u(z)| on a large class of circles centered
at the origin. Using an averaging process involving these estimates it is possible to show that
v+ · ∂̄U is in fact bounded onD. It is then possible to show that

limsup
|z|→1−

L−1
(ω∗)+

(
|z|t
)∣∣v+(z)

∣∣<+∞
for somet > 4, where we denote byL(ω∗)+ the Legendre transform of the weight(ω∗)+ = ω∗

|Z+ .

This shows thatv ∈ �ω∗
(s)

for somes < 1/4 if v ∈ �2ω∗(Z) is orthogonal to some nontrivial left-

invariant subspace fo�2ω(Z), and the result follows. Notice that these estimates onv+ were only
a step in the proof of Theorem 5.8: it follows a posteriori from Theorem 5.8 that ifv is as
above, thenlimsupn→∞ |vn|/ω

(p)
+ (n)<+∞ for somep� 1, where(ω(p)

+ )p�1 is the sequence
of weights introducted in the discussion of Problem 1.

The situation is simpler whenω(n) = 1 for n� 1. In this case assume also thatω satisfies (1),
(2), (4′) and

(5′) ( logω(−n)√
n )n�1 is eventually increasing.

Using a corrected version of Lemma 4.7 of [18] (with the notations of [18], the hypothesis that
x logω−1(x) increases asx decreases to0 is used in the proof, but omitted in the statement of
this lemma), it is possible to show directly thatv+ belongs to the Nevanlinna class of the disc for
everyv ∈ �2ω∗(Z) which is orthogonal to a nontrivial left-invariant subspaces of�2ω(Z).
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This special case is developed in Section 4, and the proofs are somewhat simpler than in the
general case, since in this situation�2ω(Z) is the space of Fourier sequences of a Hilbert space
of functions in the circle. The results of Section 4 are closely related to the theorem of the
summability of the logarithm, due to the second author [49,51].

The existence of nontrivial translation invariant subspaces of�2ω(Z) is an old-standing
problem, and there were so far very few cases of concrete weightsω for which translation
invariant subspaces of�2ω(Z) have been classified. It follows from Wiener’s theorem [52] that the
translation invariant subspaces of�2(Z) have the formX̂E ∗�2(Z), whereXE is the characteristic
function of some Borel subsetE of T. Also, for r ∈ (0,1), setΩr = {z ∈ C | r < |z|< 1}, and
for f ∈ H(Ωr) denote byf̂(n) thenth Laurent coefficient off . SinceH2(Ωr) = �̂2ω(Z) when
ω(n) = 1 for n� 0, ω(n) = rn for n < 0, it follows from Sarason’s theorem [46] on the Hardy
spaceH2(Ωr) that the translation invariant subspaces of�2ω(Z) have the formÛ ∗ �2ω(Z), where
U is an “inner” function on the annulusΩr (see Section 4).

The results of Sections 4 and 5 provide a new class of concrete weightsω for which the
translation invariant subspaces of�2ω(Z) can be classified. If, say,ω(n) = 1 for n � 0 and
ω(n) = e|n|/(1+log |n|) for n < 0, then all nonzero translation invariant subspaces of�2ω(Z) have
the formÛ ∗ �2ω(Z), whereU is a singular inner function in the disc (see Theorem 4.6).

If ω(n) = (1+n)−1/2 for n� 0, ω(n) = e|n|/(1+log |n|) for n < 0, then all nonzero translation
invariant subspaces of�2ω(Z) have the formÛ ∗ �2ω(Z) whereU is a “singular inner function” of
the Bergman space of the disc (Corollary 5.10).

More generally, ifω satisfies conditions (1), (2), (3), (4′), (5′) then all nontrivial translation
invariant subspaces of�2ω(Z) have the form

∨
n�0S

n(N), whereN is a nontrivial right-invariant
subspace of�2ω(Z

+) having the division property.
Theorem 5.8 has also some strategic interest for the question of existence of nontrivial

translation invariant subspaces of�2ω(Z). Denote byS+ the class of weightsσ onZ+ for which
the spectrum of the shift and the spectrum of the backward shift on�2ω(Z

+) equal the closed unit
disc. It is not difficult to check (see Section 6) that for everyσ ∈ S+, there exists a weightω on
Z+ satisfying conditions (1), (2), (3), (4′), (5′) such thatω|Z+ = σ. The existence of nontrivial
right-invariant subspaces of�2ω(Z

+) having the division property (or, equivalently, the existence
of nontrivial, zero-free,z-invariant subspaces of index1) in the weighted Hardy spaceH2

σ(D) is
an open problem (Problem 3 in Section 6). A recent work of Atzmon [8,9] based on the theory
of entire functions of zero exponential type, shows that such subspaces do exist whenσ is log-
convex and satisfies a suitable regularity condition. Also, Borichev [15] showed thatH2

σ(D)
does have nontrivial zero-freez-invariant subspaces of index at least2 if infn�0 σ(n) = 0, and
Borichev, Hedenmalm and the second author constructed recently in [17] zero-freez-invariant
subspaces of arbitrary index for all “large” Bergman spaces. We refer to the last section of [31]
for a discussion of this problem (as mentioned above, it follows from Theorem 5.8 that a negative
answer to Problem 3 would provide a counterexample to the hyperinvariant subspace problem
for Hilbert spaces).

We give in Section 6 new examples of operators on Fréchet spaces without nontrivial
hyperinvariant subspaces. Of course there are counterexamples to the invariant subspace problem
for Fréchet spaces [5], but what is new here is that the spectrum of the operators given in Section 6
is the unit circle (the spectrum was empty for all previous counterexamples).

Notice that the existence of a nontrivial translation invariant subspace of�2ω(Z) is equivalent to
the existence ofu∈ �2ω(Z)\{0} andv ∈ �2ω∗(Z)\{0} such thatu ∗ v = 0. The results of Section 4
give a complete description of these pairs(u, v) when, for example,ω(n) = 1 for n � 0 and
ω(n) = e|n|/(1+log |n|) for n < 0. In this case,v+ belongs to the Nevanlinna class, the sum of
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the radial limits ofv+ andv− vanishes a.e. onT, andu ∈
∨

n∈Z
SnV̂ where the singular inner

functionV is the “denominator” ofv+ (Corollary 4.7).
We refer to [8–11,22,25,28] for recent contributions to the translation subspace problem for

�2ω(Z). A positive answer was just obtained by Atzmon [10], using ideas related to Lomonosov’s
lemma for compact operators, for all symmetric weights.

The problem is still open even in the special case where the interior of the spectrum ofS
is nonempty, despite partial results by Apostol [4] (see also [28]). It is also open whenω(n)
ω(−n) = 1, despite recent progress obtained by Domar using entire functions of exponential
type [22] (see also the related paper [29]).

Notice that the “continuous” analogue of the translation invariant subspace problem for�2ω(Z),
i.e., the question of existence of nontrivial translation invariant subspaces forL2(R, ω), has
been answered positively by Domar [21] (his simple and elegant argument also works for
Lp(R, ω), 1� p <+∞). Domar’s argument cannot be transferred to the discrete case (see [34]
for a discussion of some links between the discrete and continuous cases). On the other hand,
Domar’s construction shows that there is no analogue of Theorem 5.8 for weights onR.
Domar’s construction shows that there always exist nontrivial translation invariant subspaces
J of L2(R, ω) such thatf(x) �= 0 a.e. for everyf ∈ J\{0}, while Theorem 5.8 gives weights
ω on Z such thatM∩ �2ω(Z

+) �= {0} for every nontrivial translation invariant subspaceM of
�2ω(Z).

The methods of this paper can be adapted, with minor modifications, to the spaces�pω(Z),
1 < p < +∞. The casep = 1, which is significantly more complicated, has been considered
by Harlouchet [33]. The authors wish to thank A. Atzmon, A. Borichev and N. Nikolskii for
valuable discussions and exchange of informations when this work was completed. They also
wish to thank the referee for bringing references [1] and [36] to their attention.

2. Weighted Hardy and Bergman spaces, Dynkin extensions

Denote byS+ the set of weightsσ :Z+→ (0,∞) satisfying the following conditions

0< inf
n�0

σ(n+1)
σ(n)

� sup
n�0

σ(n+ 1)
σ(n)

<+∞,(2.1)

lim
n→∞

σ̄(n)1/n = lim
n→∞

σ̃(n)1/n = 1,(2.2)

whereσ̄(n) = supp�0
σ(p)

σ(n+p) , σ̃(n) = supp�0
σ(n+p)
σ(p) (n� 0).

Denote byH(U) the space of holomorphic functions on an open subsetU of C, and set

H0(C\D) =
{
g ∈H(C\D) | |g(λ)| →

|λ|→∞
0
}
.

For f ∈ H(D), n � 0 denote byf̂(n) the Taylor coefficient of ordern of f . Similarly for
g ∈ H0(C\D), n < 0 denote bŷg(n) the Laurent coefficient of ordern of g. Now let σ ∈ S+.
Set

σ∗(n) = σ−1(−n− 1) (n < 0),(2.3)

Hσ :=H2
σ(D) =

{
f ∈H(D)

∣∣∣ ‖f‖σ := [ ∞∑
n=0

∣∣f̂(n)∣∣2σ2(n)

]1/2
<+∞

}
,(2.4)

H−
σ∗ :=

{
g ∈H0(C\D)

∣∣∣ ‖g‖σ∗ :=
[∑
n<0

∣∣ĝ(n)∣∣2σ∗(n)2
]1/2

<+∞
}
.(2.5)
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We can identifyH−
σ∗ to the dual ofHσ , the duality being implemented by the formula

〈f, g〉=
∞∑
n=0

f̂(n)ĝ(−n− 1) (f ∈Hσ, g ∈H−
σ∗).(2.6)

We will denote byz the identity map onC. As usual, we will say that a closed subspaceM of
Hσ is z-invariant whenzM ⊂M . Now if f ∈Hσ , λ ∈D set

fλ(ξ) =
f(λ)− f(ξ)

λ− ξ (ξ ∈D\{λ}), fλ(λ) = f ′(λ).(2.7)

As mentioned in the introduction the classS+ is the class of weights onZ+ for which the
spectrum of the shiftf → zf and the spectrum of the backward shiftf → f o is the closed unit
disc.

We will use later the following notion.

DEFINITION 2.1. – Letσ ∈ S+. A closed subspaceM of Hσ has the division property if
fλ ∈M for everyf ∈M and everyλ ∈D such thatf(λ) = 0.

We refer to [31] for a discussion of subspaces ofHσ having the division property. Letf ∈Hσ ,
g ∈H−

σ∗. An immediate computation shows that we have∣∣(f̂ ∗ ĝ)(n)∣∣� ‖f‖σ.‖g‖σ∗.σ̃(−n− 1) (n < 0),(2.8) ∣∣(f̂ ∗ ĝ)(n)∣∣� ‖f‖σ.‖g‖σ∗.σ̄(n+ 1) (n� 0).(2.9)

Let r ∈ (0,1). Set, forf ∈H(D), g ∈H0(C\D)

fr(ξ) = f(rξ)
(
|ξ|< 1

r

)
, gr(ξ) = g

(
r−1ξ
)
(|ξ|> r).(2.10)

Clearly,‖fr − f‖σ→r→1− 0,‖gr − g‖σ∗→r→1− 0, and we obtain, forf ∈Hσ, g ∈H−
σ∗,

〈f, g〉= lim
r→1−

s→1−

1
2iπ

∫
T

fr(ξ)gs(ξ)dξ.(2.11)

Let λ ∈D. It follows from (2.9) that

∞∑
n=0

(f̂ ∗ ĝ)(n)λn = lim
r→1−

s→1−

∞∑
n=0

f̂rgs(n)λn.

Also 1
2iπ

∫
T

F (ξ)
ξ−λ dξ =

∑∞
n=0 F̂ (n)λ

n for F ∈ L1(T), and so

∞∑
n=0

(f̂ ∗ ĝ)(n)λn = lim
r→1−

s→1−

1
2iπ

∫
T

fr(ξ)gs(ξ)
ξ − λ dξ.
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Since
∫

T

gs(ξ)dξ
ξ−λ = 0, 1

2iπ

∫
T

fr(ξ)gs(ξ)
ξ−λ dξ = 〈(fr)λ, gs〉. Since the mapf → fλ is continuous

onHσ , we obtain, forλ ∈D, f ∈Hσ , g ∈Hσ∗

〈fλ, g〉= lim
r→1−

s→1−

1
2iπ

∫
T

fr(ξ)gs(ξ)
ξ − λ dξ =

∞∑
n=0

(f̂ ∗ ĝ)(n)λn.(2.12)

We will say as usual that a sequence(un)n�p of strictly positive real numbers is log-convex
whenu2

n+1 � unun+2 for n� p. We will say thatσ :Z+ → (0,∞) is log-convex if(σ(n))n�0

is log-convex, and we will say thatσ is eventually log-convex if(σ(n))n�p is log-convex for
somep � 0. In this case,σ ∈ S+ if and only if σ(n+1)/σ(n)→n→∞ 1, which implies that
σ(n+1)� σ(n) for n� p. SetL2

+(0,1) = {ϕ ∈ L2(0,1) | ϕ(t)> 0 a.e.}. Denote bydm(ξ) the
planar Lebesgue measure onC and letϕ ∈ L2

+(0,1). Set

Bϕ =B2
ϕ(D) =

{
f ∈H(D) | ‖f‖ϕ :=

[
1
π

∫ ∫
D

|f(ξ)|2ϕ2(|ξ|)dm(ξ)
]1/2

<+∞
}
,(2.13)

σϕ(n) =

[
2

1∫
0

ϕ2(t)t2n+1 dt

]1/2
(n� 0).(2.14)

Clearly,σϕ ∈ S+ is log-convex, andσϕ(n)→n→∞ 0. Conversely, ifσ ∈ S+ is eventually
log-convex, and ifσ(n)→n→∞ 0 then there exists a functionϕ ∈ L2

+(0,1), continuous on[0,1)
such that

0< lim inf
n→∞

σ(n)
σϕ(n)

� limsup
n→∞

σ(n)
σϕ(n)

<+∞.

This follows from [14, Appendix A], see [23, Lemma 5.2]. Using polar coordinates, we obtain
immediately, forϕ ∈L2

+(0,1)

Bϕ =Hσϕ , ‖f‖ϕ = ‖f‖σϕ (f ∈Bϕ).(2.15)

In order to give two interpretations of the dual ofBϕ, we need to introduce the (planar) Cauchy
transform, defined forh ∈L1(D) by the formula

C(h)(λ) = 1
π

∫ ∫
D

h(ξ)
λ− ξ dm(ξ).(2.16)

Then C(h) ∈ Lp
loc(C) for p ∈ [1,2) (and C(h) is bounded and continuous onC if

h ∈
⋃

q>2L
q(D)). SetC+(h) = C(h)|D, C−(h) = C(h)|

C\D
.

We have∂̄C(h)(λ) = h(λ) a.e. onD, and∂̄C(h)(λ) = 0 onC\D, the partial derivatives being
taken in the sense of distribution theory, so obviouslyC−(h) ∈H0(C\D).

Now letϕ ∈ L2
+(0,1), and setϕ(λ) = ϕ(|λ|) for λ ∈D.

Notice thatϕ2Bϕ ⊂ ϕ2BϕBϕ ⊂ L1(D). Set

[f,G] =
1
π

∫ ∫
D

f(ξ)G(ξ)dm(ξ) (f ∈Bϕ,G ∈ ϕ2Bϕ).(2.17)

Clearly, there exists for everyg ∈H−
σ∗

ϕ
a uniqueG ∈ ϕ2Bϕ such that[f,G] = 〈f, g〉 for every

f ∈Bϕ. This suggests the following definition.
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DEFINITION 2.2. – Letσ ∈ S+be an eventually log-convex weight such thatσ(n)→n→∞ 0.
Set

W (σ) =
{
ϕ ∈ L2

+(0,1)
∣∣∣ 0< lim inf

n→∞

σ(n)
σϕ(n)

� limsup
n→∞

σ(n)
σϕ(n)

<+∞
}
.

Forg ∈H−
σ∗, ϕ ∈W (σ) we define theϕ-Dynkin extension ofg toD by the formula

Dϕ(g) = C+
(
∆ϕ(g)

)
,

where∆ϕ(g) ∈ ϕ2Bϕ is given by the relation

[f,∆ϕ(g)] = 〈f, g〉 (f ∈Hσ).

From now on we will assume in this section thatσ ∈ S+ is eventually log-convex, and that
σ(n)→n→∞ 0.

PROPOSITION 2.3. – Let g ∈H−
σ∗, ϕ ∈W (σ) and setG=∆ϕ(g), g̃ =Dϕ(g). We have, for

λ∈D:
(i) g = C−(G),
(ii) G(λ) = ϕ2(|λ|)

∑∞
n=0 ĝ(−n− 1)σ−2

ϕ (n)λ̄n,
(iii) g̃ is continuous onD, and

g̃(λ) = 2
∞∑
n=0

ĝ(−n− 1)σ−2
ϕ (n)λ

−n−1

|λ|∫
0

r2n+1ϕ2(r)dr,

(iv) f(λ)g̃(λ) = 1
π

∫∫
D

f(ξ)∂̄g̃(ξ)
λ−ξ dm(ξ) + 〈fλ, g〉 (f ∈Hσ).

Proof. –Denote again byz the identity map onD. It follows from (2.6) that we have
ĝ(n) = 〈z−n−1, g〉 for n < 0.

Setθλ(ξ) = 1
λ−ξ for ξ ∈ D, |λ|> 1. We haveθλ =

∑∞
n=0 λ

−n−1zn, the series being conver-
gent inHσ , and so

g(λ) = 〈θλ, g〉 (|λ|> 1).(2.18)

Hence

g(λ) = [θλ,G] =
1
π

∫ ∫
D

G(ξ)
λ− ξ dm(ξ) for |λ|> 1,

which proves (i).
SetF (λ) = ϕ−2(|λ|).G(λ) for λ ∈D, so thatF ∈Bϕ =Hσ . We have, forn� 0

ĝ(−n− 1) =
[
zn,G

]
=
1
π

∫ ∫
D

ξn.ϕ2(|ξ|).F (ξ)dm(ξ)

=
1
π

1∫
0

r2n+1.ϕ2(r)

[ 2π∫
0

eint.F
(
r eit
)
dt

]
dr = F̂ (n).σ2

ϕ(n).

Hence

G(λ) = ϕ2(|λ|).
∞∑
n=0

F̂ (n).λ̄n = ϕ2(|λ|).
∞∑
n=0

ĝ(−n− 1)σ−2
ϕ (n)λ̄

n for λ ∈D,
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wich proves (ii).
Set

kn(λ) = ϕ2(|λ|)λ̄n, �n(λ) = 2λ−n−1

|λ|∫
0

r2n+1ϕ2(r)dr

for λ ∈D, n� 0, so that|�n(λ)|� 2|λ|n.‖ϕ‖22.
The series

∑∞
n=0 ĝ(−n− 1).σ−2

ϕ (n)�n converges uniformly on compact subsets ofD.
Forh ∈ L1

loc(D) we have, in the sense of distribution theory,

∂̄h(r eit) =
eit

2

[
∂h

∂r

(
r eit
)
+
i
r

∂h

∂t

(
r eit
)]
.

Hence∂̄�n(λ) = λ−n−1. λ
|λ| |λ|2n+1.ϕ2(|λ|) = kn(λ) a.e. onD. Since�n extends continuously

toD we have, by the usual Cauchy–Pompeiu formula, forλ∈D

�n(λ) =
1
π

∫ ∫
D

kn(ξ)
λ− ξ dm(ξ) +

1
2iπ

∫
T

�n(ξ)
ξ − λ dξ.

But ∫
T

�n(ξ)
ξ − λ dξ = 2σ

2
ϕ(n)
∫
T

ξ−n−1

ξ − λ dξ = 0,

and so�n = C+(kn). Since the mapf → ϕ2.f̄ is continuous fromBϕ intoL1(D), we have∥∥∥∥∥g̃−
p∑

n=0

ĝ(−n− 1)σ−2
ϕ (n)�n

∥∥∥∥∥
L1(D)

→
p→∞

0.

Henceg̃ is continuous onD, and

g̃(λ) = 2
∞∑
n=0

ĝ(−n− 1)σ−2
ϕ (n)λ

−n−1

|λ|∫
0

r2n+1ϕ2(r)dr

for λ ∈D, which proves (iii).
Now letf ∈Hσ, λ∈D. We have

〈fλ, g〉= [fλ,G] =
1
π

∫ ∫
D

f(λ)− f(ξ)
λ− ξ G(ξ)dm(ξ)

= f(λ)g̃(λ)− 1
π

∫ ∫
D

f(ξ)∂̄g̃(ξ)
λ− ξ dm(ξ)

which proves (iv). ✷
Remark2.1. – It follows from (2.12) that

〈fλ, g〉=
∞∑
n=0

(f̂ ∗ ĝ)(n)λn for f ∈Hσ, g ∈H−
σ∗, λ∈D,
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and formula (iv) is essentially the Cauchy–Pompeiu formula: iff ∈ C1(D)∩H(D), and ifC(∂̄g̃)
is continuous onC, then

∞∑
n=0

(f̂ ∗ ĝ)(n)λn = 1
2iπ

∫
T

f(ξ)g̃(ξ)
ξ − λ dξ,

and formula (iv) gives

f(λ)g̃(λ) =
1
π

∫ ∫
D

f(ξ)∂̄g̃(ξ)
λ− ξ dm(ξ) +

1
2iπ

∫
T

f(ξ)g̃(ξ)
ξ − λ dξ.

Despite its simplicity, formula (iv) will play an important role in the paper.
We know that ifσ ∈ S+ is eventually log-convex, and ifσ(n)→n→∞ 0, then the set

W (σ) =
{
φ∈ L2

+(0,1)
∣∣∣ 0< lim inf

n→∞

σ(n)
σϕ(n)

� limsup
n→∞

σ(n)
σϕ(n)

<+∞
}

contains a functionφ which is continuous on[0,1). We now give a simple condition onσ which
guarantees the existence of someφ ∈W (σ) for which there is a good control on the rate of
decrease of̄∂Dϕ(g)(λ) as|λ| → 1− for everyg ∈Hσ∗.

We will need the discrete form of the Legendre transform.

DEFINITION 2.4. – Letσ ∈ S+. The Legendre transform ofσ is the function defined by the
formula

Lσ(r) = sup
n�0

rn

σ(n)
(r ∈ [0,1)).

Clearly,Lσ(r)→r→1− ∞ if σ(n)→n→∞ 0.
Now assume thatσ is log-convex. Setr0 = 0, rn =

σ(n)
σ(n−1) for n� 1. We have the following

standard properties

1
σ(n)

= inf
0<r<1

Lσ(r)r−n (n� 0);(2.19)

Lσ(r) =
rn

σ(n)
(rn � r � rn+1, n� 0);(2.20)

rnn � σ(n)
σ(0)

(n� 1).(2.21)

The following result is a discrete version of some results of [16, Appendix B]. We will give a
direct proof in Appendix A.

PROPOSITION 2.5. – Let σ ∈ S+. If the sequence((n + 1)ασ(n))n�0 is eventually log-
convex for someα> 3/2, thenW (σ) contains a functionφ satisfying the following conditions:

(i) φ is strictly decreasing and continuously differentiable on[0,1).
(ii) For everyδ ∈ (0,1− 3/2α), there existskδ > 0 such that∣∣∂̄Dϕ(g)(λ)

∣∣� kδ.‖g‖σ∗.L−δ
σ (|λ|) (g ∈Hσ∗, λ∈D).

Remark2.2. – Setσα(n) = (n + 1)ασ(n) for n � 0. If σ ∈ S+, and if σα is eventually
log-convex for someα > 1/2, thenH−

σ∗ is a Banach algebra. This a discrete version of [16,
Corollary 8.9], and the details can be found in [25, Proposition 2.16].
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3. Translation invariant subspaces of �2ω(Z), convolution equations on Z, and a
Cauchy–Pompeiu type formula

We will denote byS the set of weightsω :Z→ (0,∞) satisfying the two following conditions

0< inf
n∈Z

ω(n+ 1)
ω(n)

� sup
n∈Z

ω(n+ 1)
ω(n)

<+∞,(3.1)

ω̃(n)1/|n| →
|n|→∞

1, whereω̃(n) := sup
p∈Z

ω(n+ p)
ω(p)

(n ∈ Z).(3.2)

Forω ∈ S, set

�ω := �2ω(Z) =
{
u= (un)n∈Z | ‖u‖ω =

[∑
n∈Z

|un|2ω2(n)
]1/2

<+∞
}
,(3.3)

ω∗(n) = ω−1(−n− 1) (n ∈ Z), ω+ = ω|Z+ , ω− = ω|Z− ,(3.4)

where we denote byZ+ the set of nonnegative integers andZ− the set of negative integers.
Clearly,S+ = {ω+}ω∈S , whereS+ is the set introduced in Section 2.

The usual bilateral shift operatorS on �ω is defined by the formula

Su= (un−1)n∈Z (u= (un)n∈Z ∈ �ω).(3.5)

The operatorS is bounded and invertible on�ω , and we have

‖Sn‖= ω̃(n) (n ∈ Z)(3.6)

so thatSpec(S) =T.
The dual of�ω can be identified to�ω∗, the duality being implemented by the formula

〈u, v〉=
∑
p∈Z

upv−p−1 (u= (un)n∈Z ∈ �ω, v = (vn)n∈Z ∈ �ω∗).(3.7)

Now set

E =
{
u= (un)n∈Z | lim

|n|→∞
|un|1/|n| � 1

}
.(3.8)

We have foru= (un)n∈Z ∈ �ω, v = (vn)n∈Z ∈ �w∗∣∣∣∣∑
p∈Z

upvn−p

∣∣∣∣� ‖u‖ω.‖vn‖ω∗ω̃(−n− 1) (n ∈ Z)(3.9)

and sou ∗ v := (
∑

p∈Z
upvn−p)n∈Z ∈ E .

Denote byHF (T) the set of hyperfunctions on the unit circleT, i.e. the set of all pairs
F = (f, g) where f ∈ H(D), g ∈ H0(C\D). Denote byP+ :HF (T) → H(D) the map
(f, g)→ f and denote byP− :HF (T)→H0(C\D) the map(f, g)→ g. The notations being
as in Section 2, set, forF ∈HF (T)

F̂ (n) = P̂+(F )(n) (n� 0), F̂ (n) = P̂−(F )(n) (n < 0).(3.10)

Also for u∈ E set

ũ= (u+, u−),(3.11)
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whereu+ andu− are defined by the formula

u+(λ) =
∞∑
n=0

λnun (|λ|< 1),(3.12)

u−(λ) =
∑
n<0

λnun (|λ|> 1).(3.13)

The Fourier transformF :F → F̂ := (F̂ (n))n∈Z is a bijection fromHF (T) onto E , and
F−1(u) = ũ for u ∈ E (the hyperfunctioñu is often called the Carleman transform ofu).

We will often identify a functionF ∈ L1(T) to the hyperfunction having the same Fourier
coefficients. We obtain, forF ∈L1(T)

P+(F )(λ) =
1
2iπ

∫
T

F (ξ)
ξ − λ dξ (|λ|< 1),(3.14)

P−(F )(λ) =− 1
2iπ

∫
T

F (ξ)
ξ − λ dξ (|λ|> 1),(3.15)

and so, by the Plemelj–Privalov formula

F (ξ) = lim
r→1−

P+(F )(rξ) + lim
r→1−

P−(F )
(
r−1ξ
)

a.e. onT.(3.16)

Now letω ∈ S. Foru ∈ �ω, v ∈ �ω∗ we define the “product”̃uṽ by the formula

ũṽ = ũ ∗ v.(3.17)

Identifying u+ to the hyperfunction(u+,0), u− to the hyperfunction(0, u−), etc. we can
use formula (3.17) to define the productsu+v− andv+u− for u ∈ �ω, v ∈ �ω∗. Notice that if
ω(n) = 1 for n� 0 thenu+ ∈H2(D), v− ∈H2(C\D), and sou+v− can be considered as an
element ofL1(T). We obtain in this case, foru ∈ �ω∗

P+(u+v−)(λ) =
1
2iπ

∫
T

u+(ξ)v−(ξ)
ξ − λ dξ (|λ|< 1).(3.18)

Forω ∈ S, set

�+ω =
{
u= (un)n∈Z ∈ �ω | un = 0(n < 0)

}
,(3.19)

�−ω =
{
u= (un)n∈Z ∈ �ω | un = 0(n� 0)

}
.(3.20)

We can identify�+ω to

�ω+(Z
+) =

{
u= (un)n�0

∣∣∣ ∞∑
n=0

|un|2ω2(n)<+∞
}
.

The Fourier transform is then an isometry from the weighted Hardy spaceHω+ onto �+ω ,
which defines a unitary equivalence between the operator of multiplication byz on Hω+ and
S+ := S|&+ω .

Recall that a closed subspaceM of �ω is said to be translation invariant (resp. right-invariant,
resp. left-invariant) whenS(M) =M (resp.S(M)⊂M , resp.S−1(M)⊂M ). Such a subspace
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is said to be nontrivial whenM �= {0},M �= �ω . We will use the standard notationV A to denote
the closed linear span ofA ⊂ �ω . Let u ∈ �ω , v ∈ �ω∗. Clearly,v⊥

∨
n�0 S

nu if and only if
u∗v|Z− = 0, v⊥

∨
n<0 S

nu if and only ifu∗v|Z+ = 0, andv⊥
∨

n∈Z
Snu if and only ifu∗v = 0,

and the existence of a nontrivial translation invariant subspace of�ω is equivalent to the existence
of u ∈ �ω\{0} andv ∈ �ω∗\{0} such thatu ∗ v = 0.

Recall that a sequence(an)n�p of positive real numbers is said to be log-concave if
the sequence(a−1

n )n�p is log-convex. In particular, ifω ∈ S, the fact that the sequence
(ω(−n))n�1 is eventually log-concave means thatω∗

+ is eventually log-convex. In this situation,
the space{v+}v∈&ω∗ is the weighted Hardy spaceHω∗

+
and the space{u−}u∈&ω is the space

H−
(ω∗

+)∗ = H−
ω− . Hence we can construct the Dynkin extensionDϕ(u−) for everyu ∈ �ω if

ϕ ∈W (ω∗
+).

As in Section 2 we denote byC+(F ) the restriction to the disc of the planar Cauchy transform
of F ∈L1(D). The following simple result will play a basic role in the next sections.

THEOREM 3.1. – Let ω ∈ S, and assume that the sequence(ω(−n))n�1 is eventually log-
concave. Letϕ ∈W (ω∗

+), u ∈ �ω, v ∈ �ω∗. Then the two following conditions imply each other
(i) v ⊥

∨
n<0 S

nu,
(ii) v+(u+ +Dϕ(u−)) = C+(v+∂̄Dϕ(u−))− P+(u+v−).

Proof. –It follows from formula (2.12) and Proposition 2.3 that we have, forλ ∈D,

v+(λ)Dϕ(u−)(λ) =
1
π

∫ ∫
D

v+(ξ)∂̄Dϕ(u−)(ξ)
λ− ξ dm(ξ) +

∞∑
n=0

(
û− ∗ v̂+

)
(n)λn.

SetF = v+(u+ +Dϕ(u−)) + P+(u+v−)− C(v+∂̄Dϕ(u−)). ThenF ∈H(D) and we have

F̂ = û+ ∗ v̂+|Z+ + û+ ∗ v̂−|Z+ + û− ∗ v̂+|Z+ .

But u ∗ v = (û+ + û−) ∗ (̂v+ + v̂−), andû− ∗ v̂−|Z+ = {0}. HenceF̂ = u ∗ v|Z+ , and the
result follows. ✷

Remark3.1. – (i) Heuristically,−P+(u+v−) represents the Cauchy integral of the “boundary
value” of v+(u+ +Dϕ(u−)) onT, and condition (ii) of Theorem 3.1 is again a version of the
classical Cauchy–Pompeiu formula.

(ii) If ω(n) = 1 for n� 0 we can use formula (3.18) and condition (ii) of Theorem 3.1 gives,
for λ ∈D

v+(λ)
[
u+(λ) +Dϕ(u−)(λ)

]
=
1
π

∫ ∫
D

v+(ξ)∂̄Dϕ(u−)(ξ)
λ− ξ dm(ξ) +

1
2iπ

∫
T

u+(ξ)v−(ξ)
λ− ξ dξ.(3.21)

In the next two sections we shall show that if the sequence(ω(−n))n�0 grows “sufficiently
fast and regularly” then all left-invariant subspaces of�ω have the form

∨
n�−k S

nM̂ for some
k � 0, whereM is a closed subspace ofHω+ having the “division property” introduced in

Section 2. In particular all translation invariant subspaces of�ω have the form
∨

n�0 S
nM̂ for

somez-invariant subspaceM of Hω+ having the division property.
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4. The case ω(n) = 1 for n� 0

In this section we restrict attention to the case whereω(n) = 1 for n � 0 and where
ω(−n)→n→∞∞. In this situation, set

L2
ω(T) =

{
f ∈L2(T)

∣∣∣ ‖f‖ω := [∑
n∈Z

∣∣f̂(n)∣∣2ω2(n)
]1/2

<+∞
}
.(4.1)

ThenL2
ω(T) = H2 ⊕H−

ω− , where we denote byH2 = H2(D) the usual Hardy space, and

�ω = L̂2
ω(T). Hence the shiftS on �ω is unitarily equivalent to the multiplication operatorT

defined by the formula

T (f)
(
eit
)
= eitf

(
eit
)

a.e. onT
(
f ∈ L2

ω(T)
)
.(4.2)

We will say that a closed subspaceM of L2
ω(T) is z-invariant (resp.

z−1-invariant, resp.z-biinvariant) if T (M) ⊂ M (resp.T−1(M) ⊂ M , resp.T (M) = M)
and we will use the notationT n(M) = zn.M for M ⊂ L2

ω(T), n ∈ Z. The existence of non-
trivial z-biinvariant subspaces ofL2

ω(T) was pointed out only recently [25, Theorem 5-7]: if
ω(n) = 1 for n � 0, and ifω(n)→n→∞∞ then there exists a singular inner functionU such
that
∨

n∈Z
znU � L2

ω(T). If, further, logω(−n)√
n

→n→∞ ∞ then
∨

n∈Z
znU � L2

ω(T) for every
singular inner functionU [25, Theorem 3-8]. These facts are related to a trivial convolution
equation. If

U = Uµ : z→ exp
[
− 1
2π

π∫
−π

eit + z
eit − z dµ(t)

]
is the singular inner function associated to a positive singular measureµ onT, extendU toC\D
by using the same formula and set

U∗(λ) =U−1(λ)−U(0) (|λ|< 1),
U∗(λ) =−U−1(λ) +U(0) (|λ|> 1).

(4.3)

ThenU∗ ∈HF (T) and, identifyingU ∈ L2(T) to the hyperfunction having the same Fourier
coefficients, we haveU∗ = (U−1,0)− U , so thatÛ ∗ Û∗ = 0. Hence

∨
n∈Z

SnÛ � L2
ω(T) if

U∗ ∈ �ω∗ , which is indeed the case if(logω(−n))/
√
n→n→∞∞. Assume again thatω(n) = 1

for n� 0, and thatlim infn→∞ ω(−n)> 0. We will say thatω is quasianalytic when we have

∑
n<0

logω(n)
n2

=+∞.(4.4)

If ω is not quasianalytic, it follows from the discrete version of the Beurling–Malliavin
theorem [13] thatMV �= {0} for every nonempty open arcV , where

MV =
{
f ∈ L2

ω(T) | f |V = 0 a.e.
}
,

which provides another family of nontrivialz-biinvariant subspaces ofL2
ω(T).

On the other hand if
∑∞

n=1
logρ(n)

n2 =+∞, whereρ(n) = [
∑

p�−n
1

ω2(p) ]
−1, a sharp result of

Beurling [12, p. 407] shows thatf(eit) �= 0 a.e. for every nonzerof ∈ L2
ω(T).
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In particular ifω is quasianalytic, and if the sequence(ω(−n)/nα)n�1 is eventually increasing
for someα > 1/2, then f(eit) �= 0 a.e. for every nonzerof ∈ L2

ω(T). The now classical
“Theorem of summability of the logarithm” [18,49–51], due to the second author, says much
more: we havelog |f | ∈ L1(T) for every nonzerof ∈ L2

ω(T) if ω is quasianalytic, withω(n) = 1
for n� 0, and satisfies the two following regularity conditions(

ω(−n)
)
n�1

is eventually log-concave,(4.5) (
logω(−n)√

n

)
n�1

is eventually increasing.(4.6)

In the remainder of this section we will consider quasianalytic weightsω, with ω(n) = 1 for
n� 0 which satisfy (4.6) and(

ω(−n)
nα

)
n�1

is eventually log-concave for someα>
3
2
.(4.7)

Denote by|A| the Lebesgue measure of a Borel setA ⊂ R and notice that ifF ∈ C1(D) ∩
L∞(D) and if ∂̄F ∈ L∞(D), thenC(∂̄F ) is continuous onC, F − C+(∂̄F ) ∈ H∞, so that
limr→1− F (r eit) exists a.e. onT. We now state as a lemma two important results concerning
asymptotically holomorphic functions in the disc.

LEMMA 4.1 [17, Lemma 4.7 and Theorem 5.10]. –LetF ∈ C1(D)∩L∞(D), r0 ∈ [0,1) and
let ρ : [r0,1)→ (0,∞) be a continuous function such that(1− r) logρ(r) is increasing on[r0,1)
and such that

1∫
r0

log logρ(r)dr =+∞.

Assume that|∂̄F (λ)|� ρ−1(|λ|) for r0 � |λ|< 1.
Then eitherlimr→1− F (r eit) = 0 a.e. orF satisfies the two following conditions:
(i) There existsk0 � 1 such that we have, fork � k0∣∣{r ∈ [1− 2−k,1− 2−k−1

]
| inf
|λ|=r

|F (λ)|> ρ−1(|λ|)
}∣∣� 2−k−2;

(ii) limr→1−
∫ 2π

0 log |F (r eit)|dt >−∞.

An important result of Bourgain [19] shows that a functionf ∈ L2(T)\{0} belongs
to H2.H

∞
if and only if log |f | ∈ L1(T). Lemma 4.1 gives more precise factorizations for

f ∈ L2
ω(T)\{0} whenω satisfies the hypothesis of the theorem of summability of the logarithm.

SetH2
0 = {f ∈ H2 | f(0) = 0}. We state as a corollary such a result, which follows from the

proof of [18, Theorem 6.3]. A more precise result will be given in Appendix B.

COROLLARY 4.2. – Let ω ∈ S be a quasianalytic weight satisfying(4.5) and (4.6), with
ω(n) = 1 for n � 0. Then for everyf ∈ L2

ω(T) there existsg ∈H2, h ∈H2
0 , k � 0 satisfying

the following conditions:
(i) (log− |ĥ(n)|)/

√
n→n→∞∞;

(ii) f(eit) = e−ikt eh(eit)g(eit) a.e. onT.

Notice that the theorem of summability of the logarithm is an immediate consequence of
Corollary 4.2.
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We follow now the strategy outlined in the introduction. Denote by

N (D) =
{
f ∈H(D)

∣∣∣ sup
0�r<1

2π∫
0

log+
∣∣f(r eit)∣∣dt <+∞}

=

{
f ∈H(D)

∣∣∣ lim
r→1−

2π∫
0

log+
∣∣f(r eit)∣∣dt <+∞}

the Nevanlinna class of the disc.

LEMMA 4.3. – Letω ∈ S be a quasianalytic weight such thatω(n) = 1 for n� 0, and assume
that ω satisfies the regularity conditions(4.6) and (4.7). Thenv+ ∈ N (D) for everyv ∈ �ω∗

which is not left-cyclic.

Proof. –For σ ∈ S+ denote again byLσ the Legendre transform ofσ introduced in
Definition 2.3. We have, forc > 0

Lσ1/c(r) = Lσ

(
rc
)1/c (0� r < 1).(4.8)

Now setσ(n) = ω(−n− 1)−1 for n � 0, so thatσ = (ω∗)+, according to the notations of
Section 3. Thenσ is eventually log-convex and since

∑∞
n=1

logσ(n)
n2 =+∞, we have (see [12])

1∫
0

log logLσ(r)dr =+∞.(4.9)

Also, since the sequence((logσ−1/c(n))/
√
n)n�1 is eventually increasing, it follows

from [43] and (4.8) that we have, forc > 0

(1− r) logLσ

(
rc
)

is eventually increasing asr→ 1−.(4.10)

Let u ∈ �ω\{0} such that(u ∗ v)n = 0 for n� 0, and letφ ∈W (σ) satisfy the conditions of
Proposition 2.5. Denote byDϕ(u−) theϕ-Dynkin extension ofu− and setF = u+ +Dϕ(u−).

If follows from Theorem 3.1 and formula (3.21) that we have, forλ∈D

v+(λ)F (λ) =
1
π

∫ ∫
D

v+(ξ)∂̄F (ξ)
λ− ξ dm(ξ) +

1
2iπ

∫
T

u+(ξ)v−(ξ)
λ− ξ dξ.(4.11)

Also it follows from Proposition 2.5 that we have, for someε > 0, as|λ| → 1−

∂̄F (λ) = o
(
L−ε
σ (|λ|)

)
.(4.12)

Sinceu+v− ∈ L1(T), the function

θ :λ→ 1
2iπ

∫
T

u+(ξ)v−(ξ)
λ− ξ dξ

belongs to
⋃

p<1H
p(D)⊂N (D). Sinceu+ ∈H2(D) we see that there existsψ ∈H∞(D), with

‖ψ‖H∞(D) = 1, such thatψF ∈L∞(D) andψθ ∈H∞(D), so thatv+ψF ∈ L1(D).
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Set G = ψF , and setρ(r) = L
ε/2
σ (r9) for r ∈ [0,1). We have |∂̄G(λ)| = o(L−ε

σ (|λ|)
as |λ| → 1−. A fortiori, |∂̄G(λ)| = o(ρ−1(|λ|)) as |λ| → 1−. It follows from (4.9) that∫ 1

0
log logρ(r)dr =+∞, and it follows from (4.10) that(1− r) log ρ(r) is eventually increasing

asr→ 1−.
SetAk = {r ∈ [1 − 2−k,1 − 2−k−1] | inf |λ|=r |G(λ)| � ρ−1(r)},Bk =

⋃
r∈Ak

rT. Since
F (eit)ψ(eit) = limr→1− G(r eit) does not vanish a.e. onT becauseu �= 0, it follows from
Lemma 4.1(i) that there existsk0 � 1 such that|Ak| � 2−k−2 for k � k0. We can also assume
thatr9 � 1− 8(1− r) for 1− 2−k0 � r < 1.

Let λ ∈ D be such that1− 2−k � |λ|� 1− 2−k−1, with k � k0, and letr ∈Ak+2. We have
2−k−3 � 1 − r � 2−k−2 � r − |λ|, andr9 � 1 − 8(1 − r) � 1 − 2−k � |λ|. Using Cauchy’s
formula, we obtain

∣∣v+(λ)
∣∣= ∣∣∣∣ 12iπ

∫
rT

v+(ξ)
ξ − λ dξ

∣∣∣∣� ρ(r)
2π(r− |λ|)

2π∫
0

∣∣v+
(
r eit
)
G
(
r eit
)∣∣dt

� 2k+1Lε/2
σ (|λ|). 1

π

2π∫
0

∣∣v+
(
r eit
)
G
(
r eit
)∣∣dt.

Averaging overAk+2, we get∣∣v+(λ)
∣∣� 2k+1

|Ak+2|
Lε/2
σ (|λ|) 1

π

∫ ∫
Ak+2×[0,2π]

∣∣v+
(
r eit
)
G
(
r eit
)∣∣drdt

� 22k+5

1− 2−k
Lε/2
σ (|λ|) 1

π

∫ ∫
Bk+2

∣∣v+(ξ)G(ξ)
∣∣dm(ξ)� 64

π

L
ε/2
σ (|λ|)
(1− |λ|)2

∥∥v+G
∥∥
L1(D)

.

Since (1 − r) logLσ(r) is eventually increasing asr → 1−, this shows that|v+(λ)| =
o(Lε

σ(|λ|) as |λ| → 1−. Hencev+∂̄F ∈ L∞(D), by (4.12). It follows then from (4.11) and the
definition ofG thatv+G ∈ L∞(D).

Using Lemma 4.1(ii), we see that

lim
r→1−

2π∫
0

log
∣∣G(r eit)∣∣dt >−∞.

SinceG is bounded onD, this shows that

lim
r→1−

2π∫
0

log+
∣∣G−1
(
r eit
)∣∣dt <+∞

and so

lim
r→1−

2π∫
0

log+
∣∣v(r eit)∣∣dt� lim

r→1−

2π∫
0

log+
∣∣G−1
(
r eit
)∣∣dt+ 2π log+[‖v+G‖L∞(D)

]
<+∞

which concludes the proof of the lemma.✷
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Forp� 1 setθp(n) = 1 for n� 0, θp(n) = ep
√

|n| for n < 0, so that̃θ∗p = θ̃p = θp. We deduce
from Lemma 4.3 the following result.

COROLLARY 4.4. – Let ω ∈ S be a weight satisfying the conditions of Lemma4.3. Then
every nontrivial left-invariant subspaceV of �ω∗ is contained in�θ∗

p
for somep� 1. Moreover

(V,‖.‖ω∗) is isomorphic to(V,‖.‖θ∗
p
), so thatlimsupn→∞ e−p

√
n.‖S−n

|V ‖<+∞.

Proof. –It follows from Lemma 4.3 thatlimsup|λ|→1−(1−|λ|) log+ |v+(λ)|<+∞ for every
v ∈ V . A standard application of Cauchy’s inequalities shows then that

limsup
n→∞

(
log+ |vn|

)
/
√
n <+∞ for everyv ∈ V.

Forp� 1, q � 1 setVp,q = {v ∈ V | supn�0 |vn|e−p
√
n � q‖v‖ω∗}, so thatVp,q is closed. We

haveV =
⋃

p�1, q�1 Vp,q . Hence there existsp � 1, q � 1 such that
◦
V p,q �= 0, and there exist

w ∈ Vp,q andr > 0 such that

sup
n�0

∣∣∣∣wn +
rvn
‖v‖ω∗

∣∣∣∣e−p
√
n � q

[
r+ ‖w‖ω∗

]
for everyv ∈ V \{0}.

Set k = q + 2q
r ‖w‖ω∗ . We obtain|vn| � k ep

√
n‖v‖ω∗ for v ∈ V,n � 0, and we have, for

v ∈ V ,

‖v‖2θ∗
p+1

�
∑
n<0

|vn|2 +
∞∑
n=0

|vn|2 e−(2p+2)
√
n �
(
1 + k2

∞∑
n=0

e−2
√
n

)
‖v‖ω∗ .

It follows from the growth conditions on(ω(−n))n�0 that supn∈Z θp+1(n)/ω(n) < +∞.
Hence(V,‖.‖ω∗) is isomorphic to(V,‖.‖θ∗

p+1
). ✷

LEMMA 4.5. – Letω ∈ S be a weight satisfying the conditions of Lemma4.3. Then for every
f ∈ L2

ω(T) there existg ∈H2 andk � 0 such that∨
n�0

znf =
∨

n�−k

zng.

Proof. –Let M be a nontrivial z−1-invariant subspace ofL2
ω(T), and denote by

π :L2
ω(T) → L2

ω(T)/M the canonical surjection. Using the formula〈π(f), v〉 = 〈f̂ , v〉 for
f ∈M , v ∈ M̂⊥ we can identify isometrically(L2

ω(T)/M)
∗ to M̂⊥. It follows from Corol-

lary 4.4 that there existsp� 1 such that(M̂⊥,‖.‖ω∗) is isomorphic to(M̂⊥,‖.‖θ∗
p
). Let k > 0

such that‖v‖ω∗ � k‖v‖θ∗
p

for v ∈ M̂⊥, and letf ∈ L2
ω(T). There existsv ∈ M̂⊥ such that

‖v‖ω∗ = 1 and‖π(f)‖= 〈f̂ , v〉. We obtain

∥∥π(f)∥∥= ∣∣∣∣∑
n∈Z

f̂(n)v−n−1

∣∣∣∣� ‖f‖θp.‖v‖θ∗
p

� k‖f‖θp.

Henceπ : (L2
ω(T), ‖.‖θp)→ L2

ω(T)/M is continuous.
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SetB = {h ∈H2|
∑

n�0 |ĥ(n)|ep
√

|n| < +∞}. ThenB is a Banach algebra, andeh ∈ B for

everyh ∈ B. Since‖znf‖θp � θ̃p(n)‖f‖θp = e
p
√

|n|‖f‖θp for n � 0, we see that the series∑
n�0 ĥ(n)z

nf is absolutely convergent in�θp for f ∈ �θp , h ∈ B.

Computing Fourier coefficients, we see that
∑

n�0 ĥ(n)z
nf = hf . Now extendπ by con-

tinuity toL2
θp
(T). We obtain

π(hf) =
∑
n�0

ĥ(n)π
(
znf
) (

f ∈L2
θp
(T), h ∈ B

)
.(4.13)

Now let f ∈ L2
ω(T). It follows from Corollary 4.2 that there existk � 0, g ∈H2 andh ∈ B

such thatf = z−k ehg. Seth1 = eh, h2 = e−h. We have

π(f) =
∑
n�0

ĥ1(n)π
(
zn−kg

)
, π
(
z−kg
)
=
∑
n�0

ĥ2(n)π
(
znf
)
.(4.14)

The lemma follows then from (4.14).✷
According to [31] we will say that a left-invariant subspaceM of �ω is analytic if

M+ :=M ∩ �+ω �= {0}. An elementary theory developed in [31, §3] shows that ifω ∈ S satisfies
ω(n) = 1 for n � 0, and if (logω(−n))/

√
n →n→∞ ∞, then every analytic left-invariant

subspaceM of �ω has the form
∨

n�0S
nM+. Of course,M̌+ = {f ∈H2 | f̂ ∈M+} has the

division property introduced in Section 2, and it follows from the results of [31] that the map
G→

∨
n�0 S

nĜ is then a bijection from the lattice of nonzero closed subspaces ofH2 having
the division property onto the lattice of analytic left-invariant subspaces of�ω .

Denote byN+(D) the Smirnov class, i.e. the class of analytic functions in the disc of the form
VF , whereV is inner andF ∈N (D) is outer. We obtain the following result.

THEOREM 4.6. – Letω ∈ S be a weight satisfying the following conditions:
(1) ω(n) = 1 (n� 0);
(2)
∑

n<0
logω(n)

n2 =+∞;
(3) (logω(−n)/

√
n)n�1 is eventually increasing;

(4) (ω(−n)/nα)n�1 is eventuallylog-concave for someα > 3/2.
Then everyz−1-invariant subspaceF of L2

ω(T) has the formF =
∨

n�−k z
nG wherek � 0

and where G is a closed subspace ofH2 having the division property. In particular for every
nontrivial translation invariant subspaceM of �ω there exists a unique singular inner function
U such thatM =

∨
n∈Z

SnÛ and for every nontrivial invariant subspaceN of �ω∗ there exists
a unique singular inner functionU such that

N =
{
v ∈ �ω∗ | v+U ∈N+(D), lim

r→1−
v+(rξ) + v−(rξ) = 0 a.e. onT

}
.

Proof. –It follows from Lemma 4.5 that there exists for every nontrivialz−1-invariant
subspaceF of L2

ω(T) a nonnegative integerk such thatzkF ∩H2 �= {0} and the first assertion
follows from [31, Th. 4.5].

Now if F is translation invariant thenF ∩H2 �= {0} and it follows from [25, Th. 3.8] that there
exists a unique singular inner functionU such thatF =

∨
n∈Z

znU , so thatF̂ =
∨

n∈Z
SnÛ (this

follows also from [31, Th. 4.5]). Now letN be a nontrivial translation invariant subspace of
�ω∗ . There exists a unique singular inner functionU such thatN = {v ∈ �ω∗ | Û ∗ v = 0}. The
convolution product̂U∗ v makes sense for

∑
n<0 |vn|2 < +∞, limn→∞ |vn|1/n � 1, and the
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convolution equation̂U∗ v = 0 was discussed in [25, Proposition 3.12]: we haveÛ ∗ v = 0 iff
U.v+ ∈ N+(D) andlimr→∞ v+(rξ)+ limr→1− v−(r−1ξ) = 0 a.e. onT, which concludes the
proof of the theorem. ✷

Let F be az−1 invariant subspace ofL2
ω(T). For a givenk � 0 there exists a unique closed

subspaceG of H2 having the division property such thatF =
∨

n�−k z
nG but the pairs(k,G)

satisfying the above condition are not unique in general. The set of all these pairs is discussed
in [31, Corollary 3.6].

For ϕ ∈ N (D), ϕ �= 0 denote byD(ϕ) the G.C.D. of all inner functionsU such that
Uϕ ∈ N+(D). ThenD(ϕ) is singular and we have as well knowϕ = D(ϕ)−1VF whereV
is inner,F outer and where the G.C.D. ofV andD(ϕ) equals1. In particular,ϕD(ϕ) ∈N+(D).

We now deduce from Theorem 4.6 a complete description of the pairs(u, v), with u ∈ �ω\{0},
v ∈ �ω∗\{0} satisfyingu ∗ v = 0.

COROLLARY 4.7. – Let ω ∈ S be a weight satisfying the conditions of Theorem4.6 and
let u ∈ �ω\{0}, v ∈ �ω∗\{0}. Thenu ∗ v = 0 if and only ifu and v satisfy the two following
conditions:

(1) v+ ∈N (D), andlimr→1− v+(rξ)+ limr→1− v−(r−1ξ) = 0 a.e. onT;

(2) u ∈
∨

n∈Z
SnD̂(v+).

Proof. –Assume thatu ∗ v = 0. Then
∨

n∈Z
V Snv is a nontrivial invariant subspace of�ω∗ ,

and sov satisfies (1). We also know that[
∨

n∈Z
V Snv]⊥ =

∨
n∈Z

V SnÛ for some singular inner

functionU . SinceÛ ∗ v = 0, Uv+ ∈N+(D) and soD(ϕ) is a divisor ofU .

HenceU ∈D(v+)H2 ∈
∨

n∈Z
znD(v+) and sou ∈

∨
n∈Z

SnD̂(v+).

Conversely ifu andv satisfy (1) and (2) then̂D(v+) ∗ v = 0, sinceD(v+)v+ ∈ N+(D), and
sou ∗ v = 0. ✷

Notice that ifω ∈ S satisfies the conditions of Theorem 4.6 then we can assume, by modifying
if necessaryω on a finite set, thatω is nonincreasing. In this case it is easy to see that the map
f → zf is an absolutely continuous contraction, and so inner functions are bounded multipliers
onL2

ω(T), see [25]. Condition (2) of Corollary 4.7 means thatu is the Fourier sequence of some
functionf ∈ [UL2

ω(T)]−. We do not know any more concrete characterization of such functions.
Notice also that the translation invariant subspaces of�ω∗ are independent of the choice of

ω if ω satisfies the hypothesis of Theorem 4.6, an illustration of the rigidity of quasianalytic
structures.

Now let r ∈ (0,1) and setΩ= {z ∈C | r < |z|< 1}. The Hardy spaceH2(Ω) can be viewed
as an “analytic analogue” of the spacesL2

ω(T) considered in Theorem 4.6 (if we definêf(n) to
be the Laurent coefficient off of ordern for f ∈H2(Ω) we see thatH2(Ω) is isomorphic to
the space�2σ(Z) whereσ(n) = 1 for n� 0, σ(n) = rn for n < 0). Thez-biinvariant subspaces
of H2(Ω) were characterized long ago by Sarason in his thesis [46], and they have the form
UH2(Ω) whereU is an “inner function” on the annulusΩ, i.e. a function having radial
limits of constant modulus on both components of∂Ω. More recently, Hitt and Sarason [39,
47] characterized thez−1-invariant subspaces (and, by symmetry, thez-invariant subspaces)
of H2(Ω). These subspaces have the form

∨
n�−k z

nG whereG is a closed subspace ofH2

“nearly invariant for the backward shift”, which means thatz−1f ∈G for everyf ∈G such that
f(0) = 0.

In particular,zkF ∩H2 �= {0} for somek � 0 if F is a nontrivialz−1-invariant subspace of
H2(Ω), and we see that there is a large analogy between the “analytic” and the “quasianalytic”
situations. The methods used here are completely different from the methods of Hitt and Sarason.
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Since the closed subspaces ofH2 having the division property form a subclass of the class of
closed subspaces ofH2 nearly invariant for the backward shift we deduce immediately from [39,
47] that these subspaces have the formF = Uϕ[V H2]⊥, whereV is an inner function, or
V = {0}, whereU is a singular inner function, orU = 1, and whereϕ is an outer function
satisfying‖ϕf‖2 = ‖f‖2 for everyf ∈ [VH2]⊥. These subspaces form a very large class. For
exampleCf has the division property for every functionf ∈H2 without zeroes inD.

5. The general case

In this section we obtain results analogous to the results of Section 4 forω ∈ S when
(ω(−n))n�1 satisfies suitable growth and regularity conditions.

In order to shorten the formulations of the results, it is convenient to introduce the following
regularity conditions(

logω(−n)
nα

)
n�1

is eventually increasing for everyα ∈ (0,1);(5.1) (
logω(−n)

n
(logn)A

)
n�1

is eventually increasing for someA> 0.(5.2)

Condition 5.2 was introduced by Borichev [14]. The second assertion of the following
elementary result strenghtens [14, Lemma 1] (forσ ∈ S+ we defineσ̄ as in Section 2, and for
ω ∈ S we defineω̃ as in Section 3).

PROPOSITION 5.1. – Letω ∈ S, and assume that(ω(−n))n�1 is eventuallylog-concave.
(i) If ω satisfies(5.1), then

limsup
n→∞

log ω̃(−n)
logω(−n) =max

(
1, limsup

n→∞

log ω̄+(n)
logω(−n)

)
.

(ii) If ω satisfies(5.2) thenLσ(rs)L
−(1−r)a

σ (r)→r→1− 0 for everya > 0 and everys > 1,
whereσ = (ω∗)+.

Proof. –Assume thatω satisfies (5.1). Notice that both sides of (i) are not affected if we change
a finite set of values of(ω(n))n∈Z or if we multiply a subsequence of the sequence(ω(n))n∈Z

by some positive constant. Hence we can assume thatω(0) = 1, so thatω−1(n) � ω̄+(n) for
n� 0, and that(ω(−n))n�0 is log-concave, so thatω(−n) = supp�0 ω(−n+ p)/ω(p). Hence
ω̃(−n) =max(ω(−n), ω̄+(n), δ(n)), where

δ(n) = sup
1�p�n−1

ω(p− n)
ω(p)

� sup
1�p�n−1

ω(p− n)ω̄+(p).

In particularω̃(−n)/ω(−n)� 1 andω̃(−n)/ω̄+(n)� 1.
Hencelim infn→∞

log ω̃(−n)
logω(−n) � 1 and

limsup
n→∞

log ω̃(−n)
logω(−n) � limsup

n→∞

log ω̄+(n)
logω(−n) .

Let c > max(1, limsupn→∞
log ω̄+(n)
logω(−n) ), and leta ∈ (0,1). We can assume that̄ω+(n) �

ω(−n)c for n � 1 and that the sequence((logω(−n))/na)n�1 is nondecreasing. Forn � 1,
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we obtain

log δ(n)� c logω(−n) sup
1�p�n−1

pa + (n− p)a
na

= 21−ac logω(−n).

Hence

limsup
n→∞

log ω̃(−n)
logω(−n) �max

(
1, limsup

n→∞

log ω̄+(n)
logω(−n)

)
,

which gives (i). Now assume thatω satisfies (5.2). Forx > 0 set

ϕ(x) = sup
n�0

(
logω(−n)− nx

)
.

Thenϕ is differentiable on(0,∞)\∆ where∆ is a countable, discrete set. An elementary
computation given in the proof of [14, Lemma 1] shows that there existc > 0 andδ > 0 such that
−xϕ′(x)
ϕ(x) > cx−1/A for x ∈ (0, δ), x /∈∆. Henceϕ(x).e−Acx−1/A

is decreasing on(0, δ). Since

logLσ(e−x)− ϕ(x) is bounded on(0,∞), we see thatω satisfies (ii). ✷
Wheninfn∈Zω(n) = 0 it is of course no longer possible to interpret elements of�ω as Fourier

sequences of functions on the unit circle. In this situation we need to consider the setMω of
“convolution multipliers” on�ω . Denote byEo the set of all sequencesu = (un)n∈Z for which
the set{n ∈ Z | |un| �= 0} is finite. A sequencew = (wn)n∈Z is a convolution multiplier on�ω
if the mapRw :u→ u ∗ w is continuous from (Eo, ‖.‖ω) into �ω. Notice thatMω ⊆ �ω since
w = w ∗ eo ∈ �ω for w ∈Mω, whereeo = (δo,n)n∈Z. In this situationRw extends continously
to �ω and this extension belongs to the commutant of the shift operatorS. It is well known [47,
Section 8] that conversely there exists for every elementR of the commutant ofS a unique
w =Reo ∈Mω such thatR=Rw.

Also

Rwu= lim
n→∞

1
n+ 1

(
n∑

k=0

∑
|p|�k

wpS
pu

)
for u ∈ �ω , w ∈Mω and we have

Rwu=
∑
p∈Z

wpun−p (u ∈ �ω, w ∈Mω).(5.3)

According to formula (5.3), we will writew∗u instead ofRwu for u ∈ �ω ,w ∈Mω. Equipped
with the operator norm, (Mω,∗) is a Banach algebra. Hence we can define

ew =
∞∑
n=0

w∗n

n!
∈Mω for everyw ∈Mω,

denoting byw∗n thenth convolution power ofw, so thatRew = eRw .
Notice that if

∑
n∈Z

|wn|ω̃(n) < +∞, thenw = (wn)n∈Z ∈Mω, andRw =
∑

n∈Z
wnS

n.
Also
∑

p∈Z
|wp||un−p|<+∞ for everyu ∈ �ω.

The results of this section will be based on the following slight reformulation of [18,
Lemma 4.2], which we state as a lemma

LEMMA 5.2. – For every δ > 0 there existsB(δ) � 1 such that if F ∈ C1(D) and
L : (0,1)→ (0,∞) satisfy the following conditions for somer0 ∈ [0,1):
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(i)
∫ 1

0 log logL(r)dr =+∞;
(ii) (1− r)B(δ) logL(r) is non-decreasing on[r0,1);
(iii) |∂̄F (z)|� L−1(|z|) (r0 � |z|< 1);
(iv) |F (z)|� L(|z|s)δ(1−|z|) (r0 � |z|< 1) for somes > 16;
(v) lim|z|→1− L(|z|n)|F (z)|=+∞ for everyn� 1,

then there existsk0 � 1 such that∣∣{r ∈ [1− 2−k,1− 2−k−1
] ∣∣ inf

|z|=r

∣∣F (z)∣∣� L−1(r)
}∣∣� 2−k−2 (k � k0).

Proof. –We can assume that1−|z|s � 16(1−|z|) and thatLs(|z|)� 4 for |z|� r0. Since the
conclusion does not involve the values ofL andF near the origin, the result follows immediately
from [18, Lemma 4.2] applied to2δ. ✷

The following consequence of Lemma 5.2 can be proved using essentially the same method as
in the proof of [18, Theorem 6.1]. A more precise result will be proved in detail in Appendix B.

COROLLARY 5.3. – Let ω ∈ S. Setω(s)(n) = ω(n) for n � 0, ω(s)(n) = ωs(n) for n < 0.
Assume that(ω(−n))n�0 is eventually log-concave and satisfies(5.2), and that

∑
n<0

logω(n)
n2

=+∞.

If limsupn→∞
log ω̄+(n)
logω(−n) < 1/64, then for everyu ∈ �ω and everys < 1/4 there existk � 0,

v ∈ �+ω and a sequencew = (wn)n<0 satisfying the following conditions:
(i)
∑

n<0 |wn|ω̃(s)(n)<+∞;
(ii) Sku= ew ∗ v.
Before using Lemma 5.2 and Corollary 5.3 to obtain our main theorem we need to recall some

more elementary results from [31]. Letσ ∈ S+. Set

Kσ(r) =
∞∑
n=0

σ̄(n+ 1)rn, Mσ(r) =

[ ∞∑
n=0

σ−2(n)r2n
]1/2

for r ∈ [0,1), whereσ̄(n) = supp�0 σ(p)/σ(n+ p) for n � 0. For p � 1 denote byAp,σ the
set of functionsf ∈ H(D) which can be written as a quotientf = g/h where g ∈ H(D),
h ∈ H(D) satisfy the conditions|g(λ)| � Kσ(|λ|), |h(λ)| � Mσ(|λ|) (λ ∈ D), |h(0)| � 1/p.
DefineBp,σ in a similar way by replacing the condition|g(λ)|�Kσ(|λ|) by the weaker condition
|g(λ)|� 2Kσ(|λ|)Mσ(|λ|). Forr ∈ [0,1) set

Λσ(r) = sup
{
|f(λ)|, f ∈Ap,σ, |λ|= r

}
, ∆σ(r) = sup

{
|f(λ)|, f ∈ Bp,σ, |λ|= r

}
.

Finally set, forp� 1

σ(p)(n) = inf
0<r<1

r−nΛσ(r), σ[p](n) = inf
0<r<1

r−n∆σ(r).(5.4)

The sequences (ω(p)
+ (n))n�0 and(ω[p]

+ (n))n�0 play for general weightsω ∈ S the role played
by the sequences(ep

√
n)n�0 when ω(n) = 1 for n � 0. For example ifM is a nontrivial

left-invariant subspace of�ω such thatM ∩ �+ω �= {0} then there existsp � 1 such that
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supn�0
|vn|

ω
(p)
+ (n)

< +∞ for every v ∈ M⊥ and such thatlimsupn→∞
‖S−n

|M⊥‖

ω
[p]
+ (n)

< +∞, where

M⊥ = {v ∈ �ω∗ | 〈u, v〉= 0 (u ∈M)}, see [31, Section 3].
We will say that a closed subspaceN of �+ω has the division property if̌N = {f ∈ Hω+ |

f̂ ∈N} has the division property in the sense of Definition 2.1.
If

∞∑
n=0

[ω(p)
+ (n)]2

ω2(−n) <+∞

for every p � 1, it follows from [31, Corollary 3.5] thatN = (
∨

n�0S
nN) ∩ �+ω and

�ω = �+ω +
∨

n�0 S
nN for every nontrivial closed subspaceN of �+ω having the division

property. Also,M =
∨

n�0 S
n(M ∩ �+ω ) for every left-invariant subspaceM of �ω such that

M ∩ �+ω �= {0}.
Precise evaluations in various concrete cases of the growth of the weightsσ(p) andσ[p], based

on the Matsaev–Mogulskii estimates of quotient of analytic functions [42], are given in [31,
Section 4]. We state as a lemma the following consequence of these results.

LEMMA 5.4. – Let ω ∈ S. Assume that(ω(−n))n�1 is eventually log-concave, and that

( logω(−n)
nα )n�1 is eventually increasing for everyα ∈ [0,1).

If limsupn→∞
log ω̄+(n)
logω(−n) < 1, then

limsup
n→∞

logω[p]
+ (n)

logω(−n) = limsupn→∞

log ω̄+(n)
logω(−n)

for everyp � 1, andM =
∨

n�0S
n(M ∩ �+ω ) for every left-invariant subspaceM of �ω such

thatM ∩�+ω �= {0}. AlsoN = (
∨

n�0S
nN)∩�+ω and�ω = �+ω +

∨
n�0 S

nN for every nontrivial
closed subspaceN of �+ω having the division property.

Proof. –Clearly,ω[p]
+ (n)� ω̄+(n+ 1)� [ω̃(1)]−1ω̄+(n) for n� 0, and so

limsup
n→∞

logω[p]
+ (n)

logω(−n) � limsup
n→∞

log ω̄+(n)
logω(−n) for p� 1.

Setσ(n) = ω−1(n) for n � 0, and letc ∈ (limsupn→∞
log ω̄+(n)
logω(−n) ,1). Thenω̄+(n) � σc(n)

whenn is sufficiently large. Sinceω−1
+ (n)� ω(0)−1 ω̄+(n) for n� 0, we see that there exists

an integerk � 1 such thatMω+(r) � kMσc(r) andKω+(r) � kKσc(r) for r ∈ [0,1). Hence

Bω+,p ⊂Bσc,pk2 , andω[p]
+ � [σc][pk2 ] for p� 1.

It follows from [31, Proposition 4.4] thatlog(σc)[q](n)
logσ−c(n) →n→∞ 1 for every q � 1. Hence

limsupn→∞
logω

[p]
+ (n)

logω(−n) � c for everyp� 1, which proves the first assertion.

It follows from the growth condition onω that
∑

n<0ω
−ε(n)<+∞ for everyε > 0, and the

other assertions follow then from [31, Corollary 3.5].✷
Before proceeding to the proof of the main result of the paper, we need the following technical

observation

LEMMA 5.5. – Letω ∈ S. Assume thatω satisfies the following conditions:
(i) (ω(−n))n�1 is eventually log-concave;
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(ii) ( logω(−n)
n (logn)A)n�1 is eventually increasing for someA> 0;

(iii) limsupn→∞
log ω̄+(n)
logω(−n) < 1/200.

Then

limsup
r→1

logMω+(r)
(1− r) logL(ω∗)+(r200)

<+∞,

andKω+(r) = O(L(ω∗)+(r
200)) asr→ 1−.

Proof. –Setσ = (ω∗)+, so thatσ(n) = ω(−n− 1) for n� 0. We have

Kω+(r) =
∞∑
n=0

ω̄+(n+ 1)rn and Mω+(r) =

( ∞∑
n=0

ω−2(n)r2n
)1/2

for r ∈ [0,1). Sinceω̄+(n+ 1)� [ω̃(1)]−1ω(0)ω−1(n) for n� 0,Mω+(r)� ω̃(1)
ω(0)Kω+(r), and

it suffices to show that

limsup
r→1−

logKω+(r)
(1− r) logLσ(r200)

<+∞.

Set∆(r) = supn�0 ω̄+(n+1)rn, so thatKω+(r)� (1− rβ)−1∆(r1−β) for β ∈ (0,1).
We have

limsup
n→∞

log ω̄+(n+1)
logσ−1(n)

= limsup
n→∞

log ω̄+(n)
logω(−n) < 1/200.

Choosed < 1/200 such thatω̄+(n + 1) � σ−d(n) whenn is sufficiently large, and choose
β ∈ (0,1) such that1−β

d > 200. It follows in particular from Proposition 5.1(ii) that

(1− r)k logLσ(r) →
r→1−

∞ for everyk > 0.

Then limsupr→1−∆(r)L−d
σ (r

1
d ) � 1, and solimsupr→1− Kω+(r) L−d−1

σ (r
1−β

d ) = 0. The
lemma follows then immediately from Proposition 5.1(ii).✷

We will use the following lemma to circumvent the fact that the sequence(wn)n<0 provided
by Corollary 5.3 is not a convolution multiplier on�ω.

LEMMA 5.6. – Let ω ∈ S. Assume thatω satisfies the following growth and regularity
conditions:

(1)
∑

n<0
logω(n)

n2 =+∞;

(2) ( logω(−n)
nα )n�1 is eventually increasing for everyα ∈ (0,1);

(3) (ω(−n)/nα)n�1 is eventually log-concave for someα> 3/2;

(4) limsupr→1−
logMω+ (r)

(1−r) logL(ω∗)+ (r200) <+∞;

(5) Kω+(r) = O(L(ω∗)+(r
13)) asr→ 1−.

Then there existss > 4 such thatlimsup|λ|→1− L−1
(ω∗)+(|λ|s)|v+(λ)|<+∞ for everyv ∈ �ω∗

which is not left-cyclic.

Proof. –We will use the same strategy as in the proof of Lemma 4.3. Setσ = (ω∗)+,
K =Kω+ , M =Mω+ . Letu ∈ �ω, v ∈ �ω∗ . Forn� 0 we have∣∣∣∣∑

p<0

un−pvp

∣∣∣∣� ‖u‖ω‖v‖ω∗ sup
p<0

1
ω∗(p)ω(n− p) = ‖u‖ω‖v‖ω

∗ω̄(n+1).
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We obtain ∣∣P+(u+v−)(λ)
∣∣� ‖u‖ω‖v‖ω∗K(|λ|) (λ ∈D).(5.5)

Now assume thatv ∈ �ω∗ is not left-cyclic, and letu ∈ �ω\{0} such thatv⊥
∨

n<0 S
nu. With

the notations of Section 2, letϕ ∈W (σ) and setF = u+ +Dϕ(u−), G= C+(v+∂̄F ), so that
G ∈ L1(D),H =−P+(u+v−). It follows from Theorem 3.1 thatv+F =G+H .

Assume that there exists a continuous increasing functionρ on [0,1) andk0 � 1 satisfying∣∣{r ∈ [1− 2−k,1− 2−k−1
]
| inf
|λ|=r

|F (λ)|� ρ−1(r)
}∣∣� 2−k−2 (k � k0).(5.6)

Since 3/8 − 1/32 > 1/3, we can assume that1 − r1/3 < (3/8 − 1/32)(1 − r) for
r ∈ [1− 2−k0 ,1]. Set

Ak =
{
r ∈
[
1− 2k +2−k−5,1− 2−k−1 − 2−k−2 + 2−k−4

]
| inf
|λ|=r

|F (λ)|� ρ−1(r)
}
,

Bk =
⋃

r∈Ak
rT. It follows from (5.6) that|Ak|� 2−k−5 for k � k0.

Let λ ∈D such that1− |λ|� 2−k0 , and letk � k0 such that1− 2−k � |λ|< 1− 2−k−1. We
have 1

|Ak+1| � 2k+6 � 64
1−|λ| . Also

1− |λ|1/3 <
(
3
8
− 1
32

)
(1− |λ|)� 3.2−k−3 − 2−k−5 = 2−k−2 +2−k−3 − 2−k−5,

and sor < |λ|1/3 and 1
r−|λ| � 2k+6 = 64

1−|λ| for r ∈Ak+1. Let r ∈Ak+1. We have

∣∣v+(λ)
∣∣= 1
2π

∣∣∣∣∫
rT

v+(ξ)dξ
ξ − λ

∣∣∣∣� 32
π(1− |λ|)

2π∫
0

r
∣∣v+
(
r eit
)∣∣dt

� 32ρ(r)
π(1− |λ|)

2π∫
0

[
r
∣∣G(r eit)∣∣+ ∣∣H(r eit)∣∣]dt

� 32ρ(|λ|
1/3)

π(1− |λ|)

2π∫
0

r
∣∣G(r eit)∣∣dt+ 64ρ(|λ|1/3)

1− |λ| K
(
|λ|1/3

)
‖u‖ω‖v‖ω∗ .

Averaging overAk+1, we obtain

∣∣v+(λ)
∣∣� 32ρ(|λ|1/3)

π(1− |λ|)|Ak+1|

∫ ∫
Bk+1

|G(ξ)|dm(ξ) + 64
1− |λ|ρ

(
|λ|1/3

)
K
(
|λ|1/3

)
‖u‖ω‖v‖ω∗ .

We have ∫ ∫
Bk+1

|G(ξ)|dm(ξ)�
∫ ∫

D

|G(ξ)|dm(ξ)<+∞,

and
1

|Ak+1|
� 64
1− |λ| � 64K(|λ|)� 64K

(
|λ|1/3

)
.
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Hence we have ∣∣v+(λ)
∣∣=O(ρ(|λ|1/3)K(|λ|1/3)

1− |λ|

)
(|λ| → 1−).(5.7)

Since the sequence( logω(−n)
nα )n�1 is eventually increasing for everyα ∈ (0,1), an elementary

verification shows that( logσ
−1(n)
nα )n�1 is also eventually increasing for everyα ∈ (0,1). It

follows then from [51] that(1 − r)k logLσ(r) is eventually increasing asr → 1− for every
k � 1, and we obtain

logLσ(rs)
logLσ(r)

→
r→1−

0 (s > 1).(5.8)

Now choosea ∈ (12,12.5), so that 16a < 200. Set ρ(r) = Lσ(ra) = (Lσ1/a(r))a for
r ∈ (0,1). It follows again from [43] that(1− r)k logρ(r) is eventually increasing asr→ 1−.
Since

∑
n�1

logσ(n)
n2 =+∞,

∫ 1

0 log logρ(r) = +∞.
It follows from Proposition 2.5 that we can chooseϕ ∈W (σ) such that∣∣∂̄F (λ)∣∣= ∣∣∂̄Dϕ(u−)(λ)

∣∣=O(L−ε
σ (|λ|)

)
for someε > 0 as|λ| → 1−. It follows then from (5.8) that|∂̄F (λ)|= o(ρ−1(|λ|)) as|λ| → 1−.
Also |F (λ)|=O(M(|λ|)) as|λ| → 1−. Let

δ > limsup
r→1−

(1− r) logM(r)
(1− r) logLσ(r200)

.

Then there existsr0 ∈ (0,1) such that

M(r)� Lσ

(
r200
)δ(1−r) = ρ

(
r

200
a

)δ(1−r)

for r ∈ (r0,1). SinceF = u+ + C+(∂̄F ) we cannot have|F (λ)| →|λ|→1− 0 because otherwise
the function−u− would provide an analytic extension ofu+ to C vanishing at infinity, hence
vanishing identically.

Since 200
a > 16, it follows then from Lemma 5.2 thatF and ρ satisfy (5.6). Obviously,

Lσ(r)
1−r →r→1− ∞. SinceK(r) = O(Lσ(r13)) as r→ 1−, and sincea < 13, we deduce from

(5.7) that|v+(λ)|=O(L3
σ(r

a/3)). Hence|v+(λ)|=O(Lσ(rb)) for everyb∈ (4, a/3). ✷
We set as beforeω(s)(n) = ω(n) (n� 0), ω(s)(n) = ωs(n) (n < 0) for ω ∈ S, s > 0.

COROLLARY 5.7. – If ω ∈ S satisfies the conditions of Lemma5.6, then there existss < 1/4
such that

∑∞
n=0 |vn|2ω−2s(−n− 1)<+∞ for everyv ∈ �ω∗ which is not left-cyclic. Moreover

the norms‖.‖ω∗
(s)

and‖.‖ω∗ are equivalent on every nontrivial left-invariant subspace of�ω∗ .

Proof. –Set againσ = (ω∗)+. There existss0 ∈ (0,1/4) such that|v+(λ)|=O(Lσ(|λ|1/s0 ))
as|λ| → 1− for everyv ∈ �ω∗ which is not left-cyclic.

Let s1 ∈ (s0,1/4) ands ∈ (s1,1/4). It follows from (5.8) that

Lσ

(
|λ|1/s0

)
� Ls1

σ

(
|λ|1/s1

)
= Lσs1 (|λ|)

when1− |λ| is sufficiently small, and it follows then from Cauchy’s inequalities that

limsup
n→∞

|vn|ω−s1(−n− 1) = limsup
n→∞

|vn|σs1(n)<+∞.
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We obtain

∞∑
n=0

|vn|2ω−2s(−n− 1)�
(
sup
n�0

|vn|ω−s1(−n− 1)
)2 ∞∑

n=0

ω2s1−2s(−n− 1)<+∞.

Now letV be a nontrivial left-invariant subspace of�ω∗ . ThenV ⊂ �ω∗
(s)

.
The injection �ω∗

(s)
→ �ω∗ is clearly continuous. Using the topology of coordinatewise

convergence, we see that the graph of the injection(V,‖.‖ω∗)→ (�ω∗
(s)
,‖.‖ω∗

(s)
) is closed. Hence

(V,‖.‖ω∗) is isomorphic to(V,‖.‖ω∗
(s)
). ✷

Let σ ∈ S+, and letN be az-invariant subspace of the weighted Hardy spaceHσ =H2
σ(D).

We define the (possibly infinite) index ofN by the formulaInd(N) = dim(N/zN). Also we
will say thatN is zero-free if

⋂
f∈N f

−1({0}) = ∅. It is easy to see, and well-known also (see
for example [31]), thatN has the division property introduced in Section 2 if and only ifN is
zero-free andInd(N) = 1. The following theorem is the main result of the paper (according to
the notations introduced in Section 2 we setω+(n) = supp�0

ω(p)
ω(n+p) for ω ∈ S).

THEOREM 5.8. – Letω ∈ S be a weight satisfying the following conditions:
(1)
∑

n<0
logω(n)

n2 =+∞;

(2) ( logω(−n)
n (logn)A)n�1 is eventually increasing for someA> 0;

(3) (ω(−n)/nα)n�1 is eventuallylog-concave for someα > 3/2;
(4) limsupn→∞

log ω̄+(n)
logω(−n) < 1/200.

Then for everyu ∈ �ω there existsv ∈ �+ω andk � 0 such that
∨

n�0 S
nu=

∨
n�−k S

nv, and
for every nontrivial left-invariant subspaceM of �ω there existsk � 0 and a closed subspaceN
ofH+

ω having the division property such thatM =
∨

n�−k S
nN̂ . In particular, every nontrivial

translation invariant subspaceM of �ω has the formM =
∨

n�0 S
nN̂ whereN is a zero-free

z-invariant subspace ofHω+ of index1.

Proof. –We could use the same method as in the proof of Corollary 4.5, but we will use here
a duality argument. Denote byW the set of elements of�ω∗ which are not left-cyclic. It follows
from Lemma 5.5 thatω satisfies the conditions of Lemma 5.6, and it follows from Corollary 5.7
thatW ⊂ �ω∗

(s)
for somes > 1/4.

Let u ∈ �ω\{0}. It follows from Corollary 5.3 that there existsϕ ∈Mω(s) , ω ∈ �+ω andk � 0
such thatSku= eϕ ∗w, with ϕn = 0 for n� 0 and

∑
n<0 |ϕn|ω̃(s)(n)<+∞.

Setψ = eϕ, so thatψ ∈Mω(s) , ψn = 0 for n > 0 and
∑

n�0 |ψn|ω̃(s)(n) < +∞. We have

‖Sku −
∑0

n=−pψnS
nw‖ω(s) →p→∞ 0. Now let v ∈ �ω∗ and assume that〈Snw,v〉 = 0 for

n� 0. Thenv ∈W ⊂ �ω∗
(s)

and so

〈Sku, v〉= lim
p→∞

0∑
n=−p

ψn〈Snw,v〉= 0.

This shows thatSku ∈
∨

n�0 S
nw, and the same argument shows thatw ∈

∨
n�0 S

n+ku. Hence∨
n�0S

nu=
∨

n�−k S
nw.

The other assertions follow then immediately from Lemma 5.4.✷
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Forσ ∈ S+, p� 1 define againσ(p) andσ[p] by (5.4), so thatlogσ[p](n) = O(
√
n) asn→∞

for everyp� 1 if
∑∞

n=1
log σ̄+(n)

n3/2 <+∞ (see [31, Section 4]). Since

lim
n→∞

σ(p)(n+ k)
σ(p)(n)

= lim
n→∞

σ[p](n+ k)
σ[p](n)

= 1

for everyk � 1, we obtain, using the observations of [31] mentioned before Lemma 5.4.

COROLLARY 5.9. – Let ω be a weight satisfying the conditions of Theorem5.8. Then for
everyv ∈ �ω∗ which is not left-cyclic there existsp � 1 such thatlimsupn→∞

|vn|
ω

(p)
+ (n)

<+∞,

and for every nontrivial left-invariant subspaceV of �ω∗ there existsp � 1 such that

limsupn→∞
‖S−n

|V ‖

ω
[p]
+ (n)

<+∞. In particular,

limsup
n→∞

log‖S−n
|V ‖√
n

<+∞

for every nontrivial left-invariant subspaceV of �ω∗ if
∑∞

n=1
log ω̄+(n)

n3/2 <+∞.

We thus see that Lemma 5.6 and Corollary 5.7 were only a step in the proof of Theorem 5.8,
since Corollary 5.9 gives a much better result.

Whenσ(n) = (n + 1)−1/2, the weighted Hardy spaceHσ = H2
σ(D) is the usual Bergman

spaceB2(D) of square integrable holomorphic functions in the disc [36]. According to
Korenblum [41] we will say that a functionU ∈B2(D) is Bergman-inner if‖U‖B2(D) = 1 and if
〈U, znU〉= 0 for n� 1. A Bergman-inner function will be said to be singular if it has no zeroes
in D.

It follows from the Aleman–Richter–Sundberg theorem [3] that the zero-freez-invariant
subspaces ofB2(D) of index 1 are the subspaces of the form

∨
n�0 z

nU whereU is a singular
Bergman-inner function [31, Proposition 5.1]. We obtain in particular the following result.

COROLLARY 5.10. – Setω(n) = (n + 1)−1/2 (n � 0), ω(n) = e|n|/(log |n|+1)a

(n < 0),
where 0 < a � 1. Then every nontrivial translation invariant subspace of�ω has the form∨

n∈Z
SnÛ whereU is a singular Bergman-inner function.

If ω is as above, then every nontrivial left-invariant subspace of�ω∗ is (isomorphically)

contained in�ω∗
p

whereωp(n) = (n + 1)−1/2 for n � 0, ωp(n) = ep
√

|n| for n < 0. We do
not know a concrete description of these subspaces.

Using conditions analogous to conditions (4) and (5) of Lemma 5.5 it is possible to obtain
formulations of Theorem 5.8 by replacing the condition( logω(−n)

n (logn)A)n�1 eventually

increasing for someA > 0 by the condition( logω(−n)
nδ )n�1 eventually increasing for some

suitableδ ∈ (1/2,1).
But the constants involved in these conditions would depend onδ (the constantB(δ) is not

given explicitely in Lemma 4.2 of [18]) and on the realα > 3/2 for which (ω(−n)/nα)n�1

is eventually log-concave, and there are minor technical complications to obtain a version of
Corollary 5.3 suitable for this purpose. We leave the details to the reader. Notice that the results
of this section apply to the weightsω(c) defined by the formulaω(c)(n) = e−n/log(n+1) for n� 0,
ω(c)(−n) = ec(|n|/log(|n|+1)) for n < 0 if c > 200. The constant200 is indeed not best possible. It
would be interesting to see whether Theorem 5.8 holds forω(c) for c > 1, but significant progress
in this direction would necessitate to revisit the proof of [18, Lemma 4.2]. We will not do it here.
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6. New counterexamples in the Fréchet case, and an open problem

If F is a space of sequences onZ we will set as aboveF+ = {u = (un)n∈Z ∈ F | un = 0
(n < 0)} andF− = {u= (un)n∈Z ∈F | un = 0 (n� 0)}.

Set

U =
{
u= (un)n∈Z | limsup

n→−∞
|un|1/|n| < 1, limsup

n→∞
|un|1/n � 1

}
.

For r ∈ [0,1) setΩr = {λ ∈ C | r < |λ|< 1} and denote bŷf(n) thenth Laurent coefficient of
f ∈H(Ωr). Equip the inductive limitV = lim→H(Ωr) with the usual locally convex topology.
ThenV̂ = U , andU , equipped with the topology induced by the topology ofV , is a topological
algebra with respect to convolution. Using the formula〈u, v〉=

∑
n∈Z

unv−n−1 we can identify
U∗ to U and, since (U ,∗) is an integral domain,U does not have any nontrivial translation
invariant subspace (the right and left-invariant subspaces ofU are described in [26]).

Notice thatU = U+⊕ U− is the direct sum of a nuclear Fréchet space and a D.F.N. space (i.e.,
the strong dual of a nuclear Fréchet space).

More sophisticated counterexamples to the translation invariant subspace problem for
reflexive, locally convex complete linear spaces of sequences can be found in the literature. Set

A=
⋂
p�1

{
u= (un)n∈Z

∣∣∣∣∑
n<0

|un|2 e2|n|−
2|n|

p <+∞, limsup
n→∞

|un|1/n � 1
}

and forβ ∈ (1/2,1) set

Aβ =
⋂
p�1

{
u= (un)n∈Z

∣∣∣∣∑
n<0

|un|2 ep|n|
β

<+∞, limsup
n→∞

|un|1/n � 1
}
.

Also set

B+ =
⋃
p�1

{
u= (un)n�0

∣∣∣∣ ∞∑
n=0

|un|2 e
−pn

log(n+2) <+∞
}
,

B− =
⋂
p�1

{
u= (un)n<0

∣∣∣∣∑
n<0

|un|2 e
p|n|

log(|n|+1) <+∞
}

andB = B+ ⊕ B−, so thatB+ is a D.F.N. space,B− a nuclear Fréchet space, andB = B∗ a
reflexive, locally convex complete topological algebra with respect to convolution.

Atzmon [6,7] showed that the Fréchet spacesA andAβ have no nontrivial translation invariant
subspaces, and Borichev [14], using the theory of asymptotically holomorphic functions, showed
that a similar result holds forB (which means thatB has no nontrivial closed ideals). In all these
examples, the spectrum of the shift operator is empty. We now use the results of Section 5 to
produce examples of Fréchet spaces of sequences onZ having no nontrivial translation invariant
subspaces for which the spectrum of the shift operator equals the unit circle.

THEOREM 6.1. – Let

D =
⋂
p�1

{
u= (un)n∈Z

∣∣∣∣∑
n<0

|un|2 e
p|n|

log(|n|+1) <+∞,

∞∑
n=0

|un|2 e
−2n√

log(n+2) <+∞
}
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and forβ ∈ (1/2,1) set

Eβ =
⋂
p�1

{
u= (un)n∈Z

∣∣∣∣∑
n<0

|un|2 ep|n|
β

<+∞,

∞∑
n=0

|un|2 e
−2n

log(n+2) <+∞
}
.

Then the spacesD andEβ do not possess any nontrivial translation invariant subspace.

Proof. –Setωp(n) = ep|n|/log(|n|+1) for n < 0, ωp(n) = e−n/
√

log(n+2) for n � 0, so that
D =
⋂

p�1 �ωp . We can identifyD∗ to
⋃

p�1 �ω∗
p
⊂ B. Let u ∈ D and assume that there exists

v ∈D∗\{0} such thatu ∗ v = 0. There existsp� 1 such thatv ∈ �ω∗
p
. Then(ω∗

p)+ is eventually
log-convex, so thatsupn�0((ω̄∗

p)+(n))/ωp(−n) < +∞. Also ω∗
p satisfies the conditions of

Theorem 5.8, and it follows then from Corollary 5.8 thatlimsupn→∞ |un|/ωp(−n) < +∞,
so thatu+ ∈ B+ andu ∈ B. Since(B,∗) is an integral domain,u = 0 andD does not possess
any nontrivial translation invariant subspace.

Now fix β ∈ (1/2,1) and setωp(n) = ep|n|
β

for n < 0, ωp(n) = e−n/log(n+2) for n � 0,
so thatEβ =

⋂
p�1 �ωp . We can again identifyE∗β to

⋃
p�1 �ω∗

p
. Let M �= Eβ be a translation

invariant subspace ofEβ , and setN = {v ∈ E∗β | 〈u, v〉= 0 (u ∈M)}, so thatN is a translation
invariant subspace ofE∗β . Clearly,N �= {0}, and soN ∩�ω∗

p
�= {0} for somep� 1. SinceN ∩�ω∗

p

is closed in�ω∗
p
, it follows from Theorem 5.8 thatN ∩ �+ω∗

p
�= {0}. HenceN+ �= {0}, where

N+ = {v = (vn)n∈Z ∈ N | vn = 0(n < 0)}. Setσp = (ω∗
p)+, and setV = {f ∈

⋃
p�1Hσp |

f̂ ∈N}. ThenV is a zero-freez-invariant subspace of
⋃

p�1Hσp which is closed with respect
to the locally convex inductive topology on

⋃
p�1Hσp . But it follows from a result of Matsaev–

Mogulskii [42] that closedz-invariant subspaces of
⋃

p�1Hσp are determined by their zero-set,

and soV =
⋃

p�1Hσp ,N+ =
⋃

p�1 �
+
ω∗

p
andN = E∗β , so thatM = {0}. ✷

We now go back to weighted Hilbert spaces of sequences onZ. There were no specific
requirements onω+ = ω |Z+ in Theorem 5.8. In fact we have the following result.

PROPOSITION 6.2. – For every σ ∈ S+ there existsω ∈ S, satisfying the conditions of
Theorem5.8, such thatω |Z+= σ.

Proof. –Define σ̄ as in Section 2. Forx > 0 set V (x) =
∑∞

n=0 σ̄(n)
103
e−nx, W (x) =

logV (x)
x2 ,ϕ(x) = V (x)1/x

2
= eW (x). It follows from Hadamard’s three circles theorem thatlogV

is convex on(0,∞). Henceϕ is decreasing, convex and infinitely differentiable on(0,∞).
Now setθ(y) = infx>0(ϕ(x) + xy) for y > 0 and setω(n) = σ(n) for n� 0, ω(−1) = eθ(1)

andω(n) = eθ(|n|)+
|n|

log |n| for n�−2. It follows from standard properties of Legendre transforms
that θ is increasing, concave and infinitely differentiable on(0,∞), and log θ(y)

y →y→∞ 0. Set
ρ(n) = ω(−n−1) for n� 0. Thenρ ∈ S+, and sinceσ = ω |Z+∈ S+, an elementary verification
shows thatω ∈ S. Clearly, ( logω(−n)

nα )n�1 is eventuallylog-concave for everyα > 0, and∑
n<0

logω(n)
n2 =+∞. We havēσ(n)10

3
e−nx � V (x) for x> 0, and so

103 log σ̄(n)� inf
x>0

(
logV (x) + nx

)
= inf

0<x<1

(
logV (x) + nx

)
= inf

0<x<1

(
ϕ(x) + nx

)
= θ(n)

whenn is sufficiently large, andlimsupn→∞
log ω̄+(n)
logω(−n) � 10−3.

SincelogV is decreasing we have2W (x)<−xW ′(x) for x> 0. Hence

∣∣W ′(x)
∣∣> 2 logV (x)

x3
>
1
x2

and
log |W ′(x)|
|W ′(x)| < x2 log 1/x2
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whenx is sufficiently small, so that

log(−W ′(x))
−xW ′(x)

→
x→0+

0.

Hence

limsup
x→0+

W (x) + log(−W ′(x))
−xW ′(x)

� 1/2.

For everyy > 0 there exists a uniquex > 0 such thatθ(y) = ϕ(x) + xy, andϕ′(x) = −y. It
follows from standard properties of Legendre transforms thatϕ(x) = supu>0 θ(u)− xu, so that
x= θ′(y)→y→∞ 0.

Hence

limsup
y→∞

[
θ(y)
yθ′(y)

− 1
]
log y= limsup

x→0+

ϕ(x)
−xϕ′(x)

log
(
−ϕ′(x)

)
= limsup

x→0+

W (x) + log(−W ′(x))
−xW ′(x)

� 1/2.

We thus see that there existsy0 > 0 such that θ(y)
yθ′(y) − 1<

1
log y for y > y0. We obtain

θ(y)
θ(y)− yθ′(y) > 1 + logy > log y for y > y0,

which shows that( θ(n)
n logn)n�1 is eventually increasing. A fortiori( logω(−n)

n logn)n�1 is
eventually increasing, andω satisfies the conditions of Theorem 5.8.✷

Theorem 5.8 and Proposition 6.2 suggest the following problem:

Problem 3. – Does the weighted Hardy spaceHσ = H2
σ(D) possess a nontrivial, zero-free

z-invariant subspace of index1 for everyσ ∈ S+?

Denote byT the shift operatorf → zf on Hσ. It is not difficult to see that the nontrivial
zero-freez-invariant subspaces of index 1 ofHσ are thez-invariant subspacesM for which
σ(T ∗

|M⊥)⊂ T (or, equivalently,σ(TM )⊂T, whereTM is the operator induced byT onHσ/M ).
All singly generated zero-free invariant subspace ofHσ have index1, but the existence of such
subspaces is unknown in the general case. A negative answer to Problem 6.3 would of course
provide an example of a weightω ∈ S for which �ω = �2ω(Z) has no nontrivial translation
invariant subspace.

When σ ∈ S is nonincreasing and whenσ(n) →n→∞ 0, the shift T on Hσ belongs to
the classAℵo of Brown–Chevreau–Pearcy and it follows in particular from [20] that for
every singular inner functionU there existsf ∈ Hσ such thatf /∈

∨
n�0 z

nUf , which shows
that z-invariant subspaces ofHσ are not determined by their sets of zeroes inD. A recent
construction of Borichev [15], based on lacunary series, shows more generally that ifσ ∈ S+ is
log-convex, and ifinfn�0 σ(n) = 0, thenHσ possesses for everyp such that2� p�∞ a zero-
free,z-invariant subspace of indexp. The existence of nontrivial zero-freez-invariant subspaces
of Hσ seems to be an open problem for arbitraryσ ∈ S+.

Whenσ is log-convex there are three available methods to obtain partial positive answers to
Problem 3. The so-called Keldysh method, developped by Nikolski in [43], gives in particular
explicit examples of functionsf ∈ Hσ without zeroes inD, such that

∨
n�0 z

nf 	 Hσ when

σ(n) = e−nα

, 1/2� α < 1. Another approach, based on functions of “extremal rate of growth
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and decrease” was proposed by Hedenmalm and the second author in an unpublished paper [37],
and developped in the case whereσ(n) = e−

√
n. A variant of this method was recently

used by Borichev, Hedenmalm and the second author [17] to produce zero-freez-invariant
subspaces of arbitrary index in all “large” Bergman spaces. Atzmon [8,9] obtained recently new
positive results on the existence of translation invariant subspaces of�ω , based on the theory
of entire functions of zero exponential type. It follows from Atzmon’s results that ifσ ∈ S+ is
log-convex, and ifsupn�0[σ(n+ 1)σ(n− 1)/σ(n)2]1/n <+∞, thenHσ possesses a nontrivial
z-invariant subspaceM such thatσ(T ∗

|M⊥) = {1}, which gives a positive answer to Problem 3
in this situation. We refer to [31, Section 5] for a detailed discussion of these results. It seems
that the answer to Problem 3 ought to be positive forlog-convex weights, but the general case
remains unclear.

Appendix A. Strong convexity properties

In this appendix we give a proof of Proposition 2.5. This result is a discrete version of
results from [16, Appendix B]. Our direct approach, based on the inversion formula for Laplace
transforms, seems somewhat simpler.

We denote as above byLσ the Legendre transform ofσ ∈ S+, see Definition 2.4.
Let σ ∈ S+. Forα ∈R, we defineσα ∈ S+ by the formula

σα(n) = (n+ 1)ασ(n) (n� 0).(A.1)

Clearly,σµ is log-convex forµ< α if σα is log-convex.

LEMMA A.1. – Let σ ∈ S+, and assume thatσα is eventually log-convex for someα > 0.
Then

lim
r→1−

L1−µ/α
σ (r)L−1

σµ
(r)<+∞ (0� µ< α).

Proof. –We can assume thatσα is log-convex, so thatσ is log-convex.Setr0 = 0, rn =
σ(n)

σ(n−1)

for n� 1. We havern =
σα(n)

σα(n−1) (1 +
1
n )

−α for n� 1. Sinceσα is log-convex,

rnn =
[

σα(n)
σα(n− 1)

]n(
1+

1
n

)−nα

� σ(n)
σ(0)

(n+ 1)α
(
1 +

1
n

)−nα

.

Hence there existsc > 0 satisfying

rnn � cσ(n)(n+1)α (n� 1).(A.2)

Now letµ ∈ (0, α), and setp= α
α−µ , so thatα(p− 1)− pµ= 0. Let r � r1 and letn� 1 be

such thatr ∈ [rn, rn+1]. We have

Lp
σµ
(r)� (n+ 1)−pµσ−p(n)rnp � (n+ 1)−pµσ−p(n)rn(p−1)

n rn.

Using (2.20) and (A.2) we obtain

Lp
σµ
(r)� cp−1σ−1(n)rn = cp−1Lσ(r) (r � r1)

and the lemma follows. ✷
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LEMMA A.2. – Letσ ∈ S+, and assume thatσα is eventually log-convex for someα > 1/2.
ThenW (σ) contains a strictly decreasing functionφ which is continuously differentiable
on [0,1) and satisfies

limsup
r→1−

φ(r)Lσ1/2 (r)<+∞.

Proof. –Forφ ∈ L2
+(0,1) setφ̃(t) = e−tφ2(e−t) (t > 0). Thenφ̃ ∈ L1(R+) and we have

σ2
ϕ(n) = 2L(ϕ̃)(2n+ 1) (n� 0),(A.3)

where we denote byL(φ̃) : z→
∫∞
0
e−ztφ̃(t)dt the usual Laplace transform of̃φ.

Denote byΓ the gamma-function and set, fors > 0

es(t) =
ts−1 e−t

Γ(s)
(t > 0).(A.4)

ThenL(es)(z) = (z + 1)−s for Re z � 0.
Now assume thatσα is eventually log-convex for someα > 1/2. Replacingα by α − ε is

necessary, we can assume thatσα(n)→n→∞ 0. ThenW (σα) contains a functionF which is
continuous on[0,1).

Set G = F̃ , ψ(t) = et(G ∗ e2α)(t) for t > 0 and ϕ(r) = [ψ(− log r)]1/2 for r ∈ (0,1).
Since ϕ̃ = G ∗ e2α ∈ L1(R+), ϕ ∈ L2(0,1). Also G ∗ e2α = (G ∗ e2α−1) ∗ e1 and so
ψ(x) =

∫ x
0 (G ∗ e2α−1)(t) et dt for x > 0. SinceG and e2α−1 are continuous on(0,∞),

G ∗ e2α−1 is continuous on(0,∞) and we see thatϕ is strictly decreasing and continuously
differentiable on(0,1).

We have

σ2
ϕ(n) = 2L(G ∗ e2α)(2n+ 1) =

σ2
F (n)

(2n+ 2)2α
,

and soϕ ∈W (σ). By using the inversion formula for Fourier transforms we obtain, fort > 0

(G ∗ e2α)(t) e−(2n+1)t =
1
2π

∣∣∣∣∣
∞∫

−∞

L(G)(2n+ 1+ iy)
(2n+ 2+ iy)2α

eiyt dy

∣∣∣∣∣� σ2
F (n)
4π

∞∫
−∞

dy
|2n+ 2+ iy|2α

=
σ2
F (n)

(2n+ 2)2α−1

1
4π

∞∫
−∞

ds
(1 + s2)α

= (n+ 1)σ2
ϕ(n)

1
2π

∞∫
−∞

ds
(1 + s2)α

.

Hence

ϕ2(r)�
[
2
π

∞∫
−∞

ds
(1 + s2)α

]
(n+1)σ2

ϕ(n)r
−2n

for n� 0, 1/2� r < 1. Sinceϕ ∈W (σ), ϕ(r) = O(L−1
σ1/2
(r)) asr→ 1−. Modyfingϕ near0 if

necessary, we can arrangeϕ to be continuously differentiable on[0,1). ✷
Proof of Proposition 2.5. –Chooseφ∈ L2

+(0,1) satisfying the conditions of Lemma A.2 with
respect toσ. Thenφ satisfies (i) andφ(r) = O(L−1

σ1/2
(r)) as r → 1−. Also it follows from

Lemma A.1 thatL−1
σ1/2
(r) = O(L1/2α−1

σ (r)) asr→ 1−. We obtain

φ2(r) = O
(
L1/α−2
σ (r)

)
asr→ 1−.(A.5)

4e SÉRIE– TOME 35 – 2002 –N◦ 2



WEIGHTED HILBERT SPACES OF SEQUENCES 221

Let δ ∈ (0,1− 3/2α) and setβ = α(1− δ)− 1, so thatβ > 1/2. We have[ ∞∑
n=0

σ−2(n)r2n
]1/2

�
( ∞∑

n=0

(n+ 1)−2β

)1/2

Lσ−β
(r)

for 0� r < 1.

Using again Lemma A.1 we see thatL
1− β

α+β
σ−β (r) = O(Lσ(r)) asr→ 1−. We obtain

( ∞∑
n=0

σ−2(n)r2n
)1/2

=O
(
L1+β/α
σ (r)

)
asr→ 1−.(A.6)

Sinceδ = 1− β+1
α , this gives

φ2(r)

( ∞∑
n=0

σ−2(n)r2n
)1/2

=O
(
L−δ
σ (r)

)
asr→ 1−(A.7)

and assertion (ii) of Proposition 2.5 follows immediately from Proposition 2.3.✷
Appendix B. Factorization theorems

We give here quantitative versions of known factorization theorems [18, Theorems 6.1
and 6.3]. These results, which have some interest in themselves, are more precise than the
factorization results needed in Sections 4 and 5.

Recall that ifω ∈ S and if w = (wn)n∈Z satisfies
∑

n∈Z
|wn|ω̃(n) < +∞, thenw is a

convolution multiplier on�ω, andw ∗ u=
∑

n∈Z
wnS

nu for u ∈ �ω.
We first give an easy elementary result.

PROPOSITION B.1. – Letω ∈ S and letu ∈ �ω . If limsupn→∞ |u−n|1/n < 1 then there exists
k � 0, v ∈ �+ω andw = (wn)n<0 such thatlimsupn→−∞ |wn|1/|n| < 1 andSku= ew ∗ v.

In particular ∨
n�0

Snu=
∨

n�−k

Snv.

Proof. –SetΩr = {λ ∈ C | r < |λ| < 1} for r ∈ [0,1), setρ = limsupn→∞ |u−n|1/n and
setf(λ) =

∑
n∈Z

unλ
n for λ ∈ Ωρ. Let r ∈ (ρ,1). By using a suitable Weierstrass product we

can writef = Bg whereB ∈ H(D) and whereg ∈ H(Ωr) has no zeroes inΩr . In this situ-
ation we have as well-knowng = zp eh, whereh ∈ H(Ωr) and wherep ∈ Z is the winding
number ofg(sT) with respect to the origin fors ∈ (r,1). Writing h= h1+ h2, with h1 ∈H(D),
h2 ∈ H0(C\rD) we obtain a factorizationf = z−kf1 ef2 , where k � 0, f1 ∈ H(D),
f2 ∈ H0(C\rD), so thate−f2f = z−kf1. Thenw = f̂2 satisfieslimsupn→−∞ |wn|1/|n| < 1,
wn = 0 for n� 0, ande−w ∗ u = e−Rwu = S−kf̂1 ∈ �ω , whereR ω is defined as in Section 5.
Setv = f̂1. Thenv ∈ �+ω , andSku= ew ∗ v.

Now setϕ= ew, ψ = e−w, so thatϕ andψ belong toMω. We have

u=
∑
n�0

ϕnS
n−kv, S−kv =

∑
n�0

ψnS
nu, and

∨
n�0

Snu=
∨

n�−k

Snv. ✷
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In what follows we will need the notion of boundary value for functionsϕ ∈ L1
loc(D) such

that ∂̄ϕ, computed in the sense of distribution theory, is a measure of bounded variation onD.
This theory is developed in detail in [32]. Here we can restrict attention to the case where
∂̄ϕ ∈ L∞(D), so that C(∂̄ϕ) is continuous onC and ϕ is continuous onD, since
ϕ − C+(∂̄ϕ) ∈ H(D). In this situation we define the “boundary value” ofϕ on T to be the
hyperfunction defined by the formula

b(ϕ) =
(
ϕ− C+(∂̄ϕ),C−(∂̄ϕ)

)
.(B.1)

We obtain

b̂(ϕ)(n) =
1
π

∫ ∫
D

∂̄ϕ(ξ)ξ−n−1 dm(ξ) (n < 0).(B.2)

It follows from the Cauchy–Pompeiu formula that

1
π

∫ ∫
rD

∂̄ϕ(ξ)ξ−n−1 dm(ξ) =
1
2iπ

∫
rT

ϕ(ξ)ξ−n−1 dξ

for n < 0, r ∈ (0,1). Also

lim
r→1−

∫
rT

C(∂̄ϕ)(ξ)ξ−n−1 dξ =
∫
T

C(∂̄ϕ)(ξ)ξ−n−1 dξ = 0

for n� 0, sinceC−(∂̄ϕ) ∈H0(C\D), and we obtain

b̂(ϕ)(n) = lim
r→1−

1
2iπ

∫
rT

ϕ(ξ)ξ−n−1 dξ (n ∈ Z).(B.3)

Now assume that̄∂ϕ ∈ L∞(D) and that

sup
0�r<1

2π∫
0

∣∣ϕ(r eit)∣∣2 dt <+∞.

Then ϕ − C+(∂ϕ) ∈ H2, limr→1− ϕ(r eit) exists a.e. onT and it follows from (B.3) that
b(ϕ) ∈ L2(T) and we have

b(ϕ)
(
eit) = lim

r→1−
ϕ
(
r eit
)

a.e. onT.(B.4)

Now let ϕ be as above, and assume thatψ ∈ L∞(D), ∂̄ψ ∈ L∞(D), ϕ∂̄ψ ∈ L∞(D), so that
∂̄(ϕψ) = ϕ∂̄ψ +ψ∂̄ϕ ∈L∞(D). We obtain

b(ϕψ) = b(ϕ)b(ψ).(B.5)

As in Section 2 we will denote byLσ the Legendre transform ofσ ∈ S+. We will need the
following technical result.
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LEMMA B.2. – Let σ ∈ S+be eventually log-convex, and assume that the sequence

( logσ
−1(n)√
n

)n�1 is eventually increasing. Letδ > 1 andε ∈ (0, δ− 1). Then there exists for every

f ∈H−
σ∗ a functionϕ ∈ C1(D) satisfying the two following conditions:

(i) |ϕ(λ)|=O(L−1−ε
σ (|λ|δ)) (|λ| → 1−);

(ii) f = C−(ϕ).

Proof. –It follows from (4.10) that(1− r) logLσ(rc) is eventually increasing asr→ 1− for

everyc > 0. Fix δ > 1, ε ∈ (0, δ− 1) andδ1 ∈ (1, δ1/2

(1+ε)1/2 ). When1− r is sufficiently small we
have

Lσ

(
rδ
)1+ε � Lσ

(
rδ1
) (1+ε)(1−rδ1 )

1−rδ =Lσ1/δ1 (r)
δ1

(1+ε)(1−rδ1 )
1−rδ .

Hence there existr0 ∈ (0,1) andη ∈ (0,1) satisfying

Lσ

(
rδ
)1+ε � L1−η

σ1/δ1
(r) (r0 � r < 1).(B.6)

Now letα > 3/2η, and setθ(n) = σ1/δ1 (n)/(n+1)α for n� 0. Since

lim inf
n→∞

logσ−1(n)√
n

> 0,

we haveθ(n) � σ(n) whenn is sufficiently large, and soH−
σ∗ ⊂ H−

θ∗ . Let f ∈ H−
σ∗ . Since

1− η < 1− 3
2α , it follows then from Proposition 2.5 that there exists a functionρ ∈w(θ), which

is continuously differentiable and strictly decreasing on[0,1) and satisfies∣∣∂̄Dρ(f−)(λ)
∣∣=O(Lη−1

θ (|λ|) (|λ| → 1−
)
.

But θ(n) � σ1/δ1 (n) for n � 0, and soLσ1/δ1 (r) � Lθ(r) for r ∈ [0,1). It follows
then from (B.6) and Proposition 2.3 that the functionϕ = ∂̄Dρ(f) satisfies the required
conditions. ✷

The following factorization result is a quantitative version of [18, Theorem 6.3]. It is also
related to Bourgain’s theorem from [19].

THEOREM B.3. – Letω ∈ S, and assume thatω satisfies the following conditions:
(1) ω(n) = 1 (n� 0);
(2)
∑

n<0
logω(n)

n2 =+∞;
(3) (ω(−n))n�1 is eventuallylog-concave;

(4) ( logω(−n)√
n

)n�1 is eventually increasing.

Then for everyf ∈ L2
ω(T) and everys < 1/4 there existsg ∈H2, h ∈H2

0 , k � 0 satisfying
(i) limsupn→∞ |ĥ(n)|ωs(−n)<+∞;
(ii) f(eit) = e−ikt eh̄(eit)g(eit) a.e. onT.

Proof. –Set σ(n) = ω−1(−n − 1) for n � 0, so thatσ = (ω∗)+, let s > 4, δ ∈ (1, s/4)
and ε ∈ (0, δ − 1). Let f ∈ L2

ω(T)\{0}, and setf+(λ) =
∑∞

n=0 f̂(n)λ
n for |λ| < 1,

f−(λ) =
∑

n<0 f̂(n)λ
n for |λ|> 1, F = f++ C+(ϕ), whereϕ ∈ C1(D) satisfies the conditions

of Lemma B.2 with respect tof, δ andε. We obtain∣∣∂̄F (λ)∣∣=O(L−1−ε
σ

(
|λ|δ
))

(|λ| → 1−).(B.7)
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AlsoF ∈ C1(D) and, sincef+ ∈H2, there existsψ ∈H∞(D), with ‖ψ‖H∞(D) = 1, such that
Fψ ∈ L∞(D). Set

A=
{
r ∈ [0,1) | inf

|λ|=r
|F (λ)|� L−ε/2

σ (rs)
}
,

and setB =
⋃

r∈A rT. Fork � 0 set

∆k =
{
λ ∈C | 1− 2−k � |λ|� 1− 2−k−1

}
,

Ωk =
{
λ∈C | 1− 2−k < |λ|< 1

}
,

Ak =A ∩
[
1− 2−k,1− 2−k−1

]
andBk =B ∩∆k. Setρ(r) = Lε/2

σ (rs) for r ∈ [0,1). It follows from (4.9), (4.10) and (B.7) that
F.ψ andρ satisfy the hypothesis of Lemma 4.1. Since|F (λ)| � |F (λ)|.|ψ(λ)| for λ ∈ D, we
deduce from Lemma 4.1(i) that there existsk0 � 1 for which we have

|Ak|� 2−k−2 (k � k0).(B.8)

Now denote byχk the characteristic function ofAk and set, forλ ∈C

uk(λ) =
1
π

∫ ∫
∆k

∂̄F (ξ)
λ− ξ dm(ξ) (k � 0),

vk(λ) =
1

2|Ak|
χk(|λ|)uk−1(λ).

λ

|λ| (k � 1).

Sinceuk−1 is analytic for|λ|> 1− 2k, we have

1
2iπ

∫
rT

uk−1(ξ)
λ− ξ dξ = uk−1(λ)

for r ∈Ak, |λ|> 1− 2−k−1. Since

1
π

∫ ∫
D

vk(ξ)
λ− ξ =

1
2π|Ak|

∫ ∫
Bk

uk−1(ξ)
λ− ξ

ξ

|ξ| dm(ξ),

we obtain

1
π

∫ ∫
D

vk(ξ)
λ− ξ dm(ξ) = uk−1(λ)

(
k � 1, |λ|> 1− 2−k−1

)
.(B.9)

It follows from (B.7) that‖uk−1‖L∞(D) = O(L−1−ε
σ [(1 − 2−k+1)δ]). Also it follows from

(4.9) and (4.10) thatLσ(r) e
1

r−1 →r→∞∞, so that2k = o(Lε/2[(1− 2−k+1)δ]. We obtain

‖vk‖L∞(D) = o
(
L−1−ε/2
σ

[
(1− 2−k+1)δ

])
.(B.10)

Setv(λ) =
∑∞

k=1 vk(λ). It follows from (B.10) that the series
∑∞

k=1 vk converges inL∞(D).
HenceC(v) is bounded and continuous onC, and it follows from (B.9) that we have

C(v) |
C\D
= C(∂̄F ) |

C\D
.(B.11)
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When1−|λ| is sufficiently small, we have1−|λ|s/δ � 4(1−|λ|), so that|λ|s � (1−2−k+1)δ

for λ ∈∆k. It follows then from (B.10) that we have

|v(λ)|= o
(
L−1−ε/2
σ

(
|λ|s
))

(|λ| → 1−).(B.12)

Now setG = f+ + C+(v), so that∂̄G = v and letλ ∈ Ωk+1, so thatup−1(λ) = C+(vp)(λ)
for p� k. We have∣∣F (λ)−G(λ)∣∣= ∣∣C+(∂̄F )(λ)− C+(v)(λ)

∣∣
=

∣∣∣∣∣
∞∑

p=k+1

up−1(λ)−
∞∑

p=k+1

C+(vp)(λ)

∣∣∣∣∣
� 1
π

∫ ∫
Ωk

|∂̄F (ξ)|
|λ− ξ| dm(ξ) +

1
π

∫ ∫
Ωk+1

|v(ξ)|
|λ− ξ| dm(ξ).

By continuity, this inequality holds forλ ∈ ∆k+1. Using (B.7) and (B.10), we see that
supλ∈∆k+1

|F (λ) −G(λ)| = o(L−1−ε/2
σ [(1 − 2−k)δ]) ask→∞. Since|λ|s � (1 − 2−k)δ for

λ∈∆k+1 whenk is sufficiently large, we obtain∣∣F (λ)−G(λ)∣∣= o(L−1−ε/2
σ

(
|λ|s
))

(|λ| → 1−).(B.13)

It follows then from the definition ofB that we have

lim inf
|λ|→1−

λ∈B

Lε/2
σ

(
|λ|s
)
|G(λ)|� 1.(B.14)

Since∂̄G = v, ∂̄G being computed in the sense of distributions,∂̄G(λ) = 0 for λ ∈ D\B.
It follows from (B.12) and (B.14) that there existsr1 ∈ (0,1) such thatG(λ) �= 0 and
|∂̄G(λ)/G(λ)| � L−1

σ (|λ|s) for λ ∈ B, r1 � |λ| < 1. SetU(λ) = 0 for |λ| < r1 or for λ /∈ B,
U(λ) = ∂̄G(λ)/G(λ) for λ ∈B, r1 � |λ|< 1. We obtain

|U(λ)|� L−1
σ

(
|λ|s
)
(λ ∈D).(B.15)

Now setH = C+(U), h = C(U)|T, f1 = f e−h. SinceH is bounded and continuous onD,
and sincē∂ e−H = U e−H , ∂̄ e−H ∈ L∞(D) and it follows from (B.15) thatG∂̄ e−H ∈ L∞(D).
It follows then from (B.5) thatf1 = b(G e−H), since

lim
r→1−

G
(
r eit
)
= lim

r→1−
f+
(
r eit
)
+ C(v)

(
eit
)
= f
(
eit) a.e. onT.

Also ∂̄(G e−H)(λ) = 0 for r1 < |λ|< 1, and so

f̂1(n) =
1
π

∫ ∫
r1D

∂̄
(
G e−H

)
(ξ)ξ−n−1 dm(ξ)

for n < 0 andlimsupn→∞ |f̂1(−n)|1/n < 1. Sinceh ∈ C(T), f1 ∈ L2(T).
Sinceh= b(H), ĥ(n) = 0 for n� 0. Also it follows from (B.2) and (B.15) that we have, for

n� 0, ∣∣ĥ(−n− 1)∣∣� sup
0�r<1

L−1
σ

(
rs
)
rn � sup

0�r<1
L−1/s
σ

(
rs
)
rn = sup

0�r<1

(
L−1
σ (r)r

n
)1/s

.
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Henceĥ(−n) � σ1/s(n) = ω−1/s(−n− 1) and |ĥ(n)| = O(ω−1/s(n)) asn→−∞. Since
f = ehf1, the theorem follows then immediately from Proposition B.1.✷

In order to obtain our second factorization theorem we will need the following extension of
formula (B.5).

LEMMA B.4. – Let ϕ ∈ L1
loc(D), ψ ∈ L∞(D), with ∂̄ϕ ∈ L∞(D). Assume that there exists

a continuous non-negative non-increasing functionρ on [0,1) such thatess sup |ϕ(λ)|ρ(|λ|) <
+∞ and|∂̄ψ(λ)|� ρ(|λ|) a.e. onD.

Then

b(ϕ̂ψ)(n) = lim
r→1−

∑
p∈Z

r|p|b̂(ϕ)(p)b̂(ψ)(n− p) (n ∈ Z).

Proof. –Setϕ− = C+(ϕ), so thatb(̂ϕ−)(n) = 0 for n� 0 andb(̂ϕ−)(n) = b(̂ϕ)(n) for n < 0.
Then ∑

p<0

|b̂(ϕ)(p)|.|b̂(ψ)(n− p)|=
∑
p<0

|b ̂(ϕ−)(p)|.|b(̂ψ)(n− p)|<+∞,

and b̂(ϕ−ψ)(n) =
∑

p<0 b(̂ϕ)(p)b(̂ψ)(n − p), by (B.5). Hence we can restrict attention to the
case whereϕ ∈H(D).

Let s ∈ [0,1) andr ∈ (s,1). Thenb(ψ) ∈ L∞(T) and we have, forn ∈ Z

∞∑
p=0

rpb(̂ϕ)(p)b(̂ψ)(n− p) = rn

2iπ

∫
rT

ϕ(ξ)b(ψ)
(
ξ

r

)
ξ−n−1 dξ.

We obtain, by the Cauchy–Pompeiu formula∣∣∣∣∣ 12iπ
∫
rT

ϕ(ξ)ψ(ξ)ξ−n−1 dξ −
∞∑
p=0

rpb(̂ϕ)(p)b(̂ψ)(n− p)
∣∣∣∣∣

� 1
2π

∣∣∣∣∫
sT

[
ϕ(ξ)ψ(ξ)ξ−n−1 − rnϕ(ξ)ψ

(
ξ

r

)]
dξ
∣∣∣∣

+
1
π

∫ ∫
s<|ξ|<r

[
|ϕ(ξ)|

∣∣∂̄ψ(ξ)∣∣+ rn−1|ϕ(ξ)|
∣∣∣∣∂̄ψ(ξr

)∣∣∣∣]∣∣ξ−n−1
∣∣dm(ξ).

There existsM > 0 such that |ϕ(ξ)|.|∂̄ψ(ξ)| � M and |ϕ(ξ)||∂̄ψ(ξ/r)| � M a.e. for
|ξ|� r, r ∈ [0,1). Hence

limsup
r→1−

∣∣∣∣∣ 12iπ
∫
rT

ϕ(ξ)ψ(ξ)ξ−n−1 dξ −
∞∑
p=0

rpb(̂ϕ)(p)b(̂ψ)(n− p)
∣∣∣∣∣�M

(
1 + |s|−|n|−1

)(
1− s2

)
for everys ∈ (0,1), and the lemma follows from (B.3).✷

Forω ∈ S, s > 0 set as in Section 5ω(s)(n) = ω(n) (n � 0), ω(s)(n) = ωs(n) (n� 0). The
following factorization result, which is slightly more precise than Corollary 5.3, is a quantitative
version of [14, Theorem 4] and [18, Theorem 6.1].

THEOREM B.5. – Letω ∈ S, and assume thatω satisfies the following conditions:
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(1)
∑

n<0
logω(n)

n2 =+∞;
(2) (ω(−n))n�1 is eventually log-concave;

(3) ( logω(−n)
n (logn)A)n�1 is eventually increasing for someA> 0;

(4) limsupn→∞
log ω̄+(n)
logω(−n) < 1/4;

(5) limsupn→∞
log+ ω−1(n)
logω(−n) < 1/64.

Then for everyu ∈ �ω and everys < 1/4 there existsv ∈ �+ω , k � 0 and w = (wn)n<0

satisfying the following conditions:
(i)
∑

n<0 |wn|ω̃(s)(n)<+∞;
(ii) Sku= ew ∗ v.

Proof. –Set againσ = (ω∗)+ and set

β = limsup
n→∞

log ω̄+(n)
logω(−n) , γ = limsup

n→∞

log+ ω−1(n)
logω(−n) , K =min

(
β−1,2−4γ−1

)
,

so thatK > 4. Let s > 4, and let t ∈ (4,min(s,K)), δ ∈ (1, t/4) and ε ∈ (0, δ − 1). Let
u ∈ �ω\{0} and setF = u+ + C+(ϕ), whereϕ ∈ C1(D) satisfies the condition of Lemma B.2

with respect tou−, δ and ε. Also setρ(r) = L
ε/2
σ (rt) for r ∈ [0,1). Thenb(̂F ) = u, andF

satisfies (B.7).
Forα ∈ (0,1), c < γ−1 there existsM > 0 such that we have, forλ ∈D

∣∣u+(λ)
∣∣�M

( ∞∑
n=0

σ−1/c(n).|λ|n
)

�M
(
1− |λ|α

)
logLσ1/c

(
|λ|1−α

)
.

Hence

log+
∣∣u+(λ)

∣∣= o(logLσ1/c

(
|λ|1−α

))
= o
(
ρ
(
|λ|

c(1−α)
t

))
as|λ| → 1−.

Sinceγ−1 > 16t, we can choosec andα such thatc(1−α)
t > 16. Let η ∈ (16, c(1−α)

t ). It
follows from Proposition 5.1 that we have

|F (λ)|ρ
(
|λ|η
)|λ|−1 →

|λ|→1−
0.(B.16)

Since the sequence( logωd(−n)
nα )n�1 is eventually increasing for everyα ∈ (0,1) and every

d > 0 it follows again from [43] that(1 − r)k logρ(r) is eventually increasing asr→ 1− for
everyk > 0. SinceF satisfies (B.7) and (B.16), and sinceb(F ) = u �= 0, it follows then from
Lemma 5.2 that there existsk0 � 1 such that|Ak|� 2−k−2 for k � k0, where

Ak =
{
r ∈
[
1− 2−k,1− 2−k−1

]
| inf
|λ|=r

|F (λ)|� ρ(r)
}
.

Using the same construction as in the proof of Theorem B.3 we obtain two functionsG ∈L1
loc(D)

and U ∈ L∞(D), with ∂̄G ∈ L∞(D), and r1 ∈ (0,1) such that(∂̄G)(λ) − G(λ)U(λ) = 0
for r1 < |λ| < 1, |U(λ)| � L−1

σ (|λ|t) for λ ∈ D and |F (λ) − G(λ)| = O(L−1−ε/2
σ (|λ|t)) as

|λ| → 1−. Set againH = C+(U), h= C(U)|T, so that̂h(n) = 0 for n� 0. Setw = (ĥ(n))n<0,

v = b ̂(e−HG). We have againb(G) = b(F ) = u and |ĥ(n)| = O(ω−1/t(n)) asn→ −∞. It
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follows from Proposition 5.1 that

limsup
n→∞

log ω̃(1/s)(n)
logω1/t(−n) < 1.

Since
∑

n<0 ω
−α(n)<+∞ for everyα> 0, this shows that

∑
n<0 |ĥ(n)|ω̃(1/s)(n)<+∞, and

w satisfies (i). In particularw is a convolution multiplier on�ω(1/s) . Henceew =
∑∞

n=0
w∗n

n! is

also a convolution multiplier on�ω(1/s) . Since
∑

n<0 |ĥ(n)| < +∞, we haveew = êh = b̂(eH)

ande−w = ê−h = b̂(e−H). Also, since�1ω̃(1/s)
(Z) is a Banach algebra with respect to convolution,

we have
∑

n∈Z
|b̂(e−H)(p)||un−p|<+∞ for n ∈ Z.

Since|F (λ)−G(λ)| →|λ|→1− 0 it follows from (B.16) that|G(λ)| =O(Lε/2(1−|λ|)
σ (|λ|16t))

as|λ| → 1−. Also∣∣(∂̄e−H
)
(λ)
∣∣=O(|U(λ)|)=O(L−1

σ

(
|λ|t
))

as|λ| → 1−.

It follows then from Lemma B.4 that

b
(
ê−HG

)
(n) = lim

r→1−

∑
p∈Z

r|p|b
(
ê−H
)
(p)b(Ĝ)(n− p) =

∞∑
p=0

b
(
ê−H
)
(p)un−p

for n ∈ Z.
Hencev = b(ê−HG) = e−w ∗ u ∈ �ω. Since ∂̄(e−HG) = (∂̄G − GU) e−H vanishes for

r1 < |λ| < 1, we see as in the proof of Theorem B.3 thatlimsupn→−∞ |vn|1/|n| < 1, and the
theorem follows then immediately from Proposition B.1.✷

REFERENCES

[1] A BKAR A., HEDENMALM H., Invariant subspaces on multiply connected domains,Publ. Math.42
(1998) 521–557.

[2] A LEMAN A., RICHTER S., ROSSW.T., Pseudocontinuations and the Backward Shift,Indiana Math.
J. 47 (1) (1998) 223–276.

[3] A LEMAN A., RICHTERS., SUNDBERGC., Beurling’s theorem for the Bergman space,Acta Math.177
(1996) 275–310.

[4] A POSTOLC., Hyperinvariant subspaces for bilateral weighted shifts,J. Int. Eq. Op. Theory7 (1984)
1–9.

[5] ATZMON A., An operator without invariant subspace on a nuclear Fréchet space,Ann. of Math.117
(1983) 660–694.

[6] ATZMON A., An operator on a Fréchet space with no common invariant subspace with its inverse,
J. Funct. Anal.55 (1984) 68–77.

[7] ATZMON A., Nuclear Fréchet spaces of entire functions with transitive differentiation,J. Analyse
Math.60 (1993) 1–19.

[8] ATZMON A., Entire functions, invariant subspaces and Fourier transforms,Israel Math. Conference
Proceedings11 (1997) 37–52.

[9] ATZMON A., WeightedLp spaces of entire functions, Fourier transforms and invariant subspaces,
Preprint.

[10] ATZMON A., The existence of self-adjoint translation invariant subspaces on symmetric self-adjoint
sequence spaces onZ, J. Funct. Anal.178 (2000) 372–380.

[11] ATZMON A., SODIN M., Completely indecomposable operators and a uniqueness theorem of
Cartwright–Levinson type,J. Funct. Anal.169 (1999) 164–188.

4e SÉRIE– TOME 35 – 2002 –N◦ 2



WEIGHTED HILBERT SPACES OF SEQUENCES 229

[12] BEURLING A., Mittag–Leffler lectures in Complex Analysis (1977–78); Collected works of A.
Beurling, 361–443.

[13] BEURLING A., MALLIAVIN P., On Fourier transforms of measures with compact support,Acta
Math.107 (1962) 291–309.

[14] BORICHEVA., Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras
of sequences,Math. USSR Sb.64 (2) (1989) 323–338.

[15] BORICHEV A., Invariant subspaces of given index in Banach spaces of analytic functions,J. Reine
Angew. Math.505 (1998) 23–44.

[16] BORICHEVA., HEDENMALM H., Completeness of translates in weighted spaces on the half-line,Acta
Math.174 (1995) 1–84.

[17] BORICHEV A., HEDENMALM H., VOLBERG A., Large Bergman spaces: invertibility, cyclicity, and
subspaces of arbitrary index, Preprint.

[18] BORICHEV A., VOLBERG A., Uniqueness theorems for almost analytic functions,Leningrad Math.
J. 1 (1990) 157–190.

[19] BOURGAIN J., A problem of Douglas and Rudin of factorization,Pacific J. Math.121 (1) (1986)
47–50.

[20] BROWN S., CHEVREAU B., PEARCY C., On the structure of contraction operators II,J. Funct.
Anal.76 (1988) 269–293.

[21] DOMAR Y., Translation invariant subspaces of weighted�p andLp spaces,Math. Scand.49 (1981)
133–144.

[22] DOMAR Y., Entire functions of order� 1, with bounds on both axes,Ann. Acad. Sci. Fenn.22 (1997)
339–348.

[23] DYNKIN E.M., Functions with a given estimate for∂f/∂z̄ andN . Levinson’s theorem,Math. Sb.81
(1972) 182–190.

[24] EL FALLAH O., KELLAY K., Sous-espaces biinvariants pour certains shifts à poids,Ann. Inst.
Fourier 48 (1998) 1543–1588.

[25] ESTERLE J., Singular inner functions and biinvariants subspaces for dissymmetric weighted shifts,
J. Funct. Anal.44 (1997) 64–104.

[26] ESTERLEJ., Countable inductive limits of Fréchet algebras,J. Ann. Math.71 (1997) 195–204.
[27] ESTERLE J., Exact factorization never holds for Banach spaces of sequences,St. Petersburg Math.

J. 12 (2001) 869–874.
[28] ESTERLE J., Apostol’s bilateral weighted shifts are hyperreflexive,Operator Theory: Advances and

Applications127 (2001) 243–266.
[29] ESTERLEJ., GAY R., Product of hyperfunctions on the circle,Israel J. Math.116 (2000) 271–283.
[30] ESTERLEJ., VOLBERG A., Sous-espaces invariants par translation de certains espaces de Hilbert de

suites quasi-analytiquement pondérées,C. R. Acad. Sci. Paris, Ser. A326 (1998) 295–300.
[31] ESTERLEJ., VOLBERGA., Analytic left-invariant subspaces of weighted Hilbert spaces of sequences,

J. Op. Theory45 (2001) 265–301.
[32] HARLOUCHETI., Trace de Cauchy pour certaines fonctions localement intégrables sur un ouvert borné

deC, submitted.
[33] HARLOUCHET I., Idéaux fermés de certaines algèbres de Beurling quasi-analytiques sur le cercle

unité,J. Math. Pures Appl.79 (2000) 863–899.
[34] HEDENMALM H., A comparison between the closed modular ideals of�1(ω) and L1(ω), Math.

Scand.58 (1986) 275–300.
[35] HEDENMALM H., Bounded analytic functions and closed ideals,J. Anal. Math.48 (1987) 142–166.
[36] HEDENMALM H., KORENBLUM B., ZHU K., The Theory of Bergman Spaces, GTM 199, Springer-

Verlag, 2000.
[37] HEDENMALM H., VOLBERG A., Zero-free invariant subspaces in weighted Bergman spaces with

critical topology, Preprint.
[38] HELSON H., Lectures on Invariant Subspaces, Academic Press, 1954.
[39] HITT D., Invariant subspaces ofH2 of an annulus,Pacific J. Math.134 (1) (1988) 101–120.
[40] KELLAY K., Fonctions intérieures et vecteurs bicycliques,Archiv. der Math.77 (2001) 253–264.
[41] KORENBLUM B., Outer functions and cyclic elements in Bergman spaces,J. Funct. Anal.115 (1993)

104–118.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



230 J. ESTERLE AND A. VOLBERG

[42] MATSAEV V.I., M OGULSKII E.Z., A division theorem for analytic functions with a given majorant
and some of its applications,J. Soviet Math.14 (1980) 1078–1091.

[43] NIKOLSKII N., Selected problems in weighted approximations and spectral analysis,Proc. Steklov
Inst. Math.120 (1974).

[44] NIKOLSKII N., Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.
[45] NIKOLSKII N., Yngve Domar’s forty years in harmonic analysis, Festschrift in honour of Lennart

Carleson and Yngve Domar (Uppsala, 1993),Acta Univ. Upsaliensis58 (1995) 45–78.
[46] SARASON D., TheHp-spaces of an annulus,Mem. Amer. Math. Soc.56 (1965).
[47] SARASON D., Nearly invariant subspaces for the backward shift,Operator Theory Adv. Appl.35

(1988) 481–493.
[48] SHIELDS A., Weighted shift operators and analytic function theory, in: Pearcy C. (Ed.),Topics in

Operator Theory, Amer. Math. Soc. Math. Surveys, Vol.13, 1974, pp. 49–128.
[49] VOLBERGA., The logarithm of an almost analytic function is summable,Soviet Math. Dokl.26 (1982)

238–243.
[50] VOLBERG A., Asymptotically holomorphic functions and certain of their applications,Proc. I.C.M.

KyotoII (1990) 959–967.
[51] VOLBERG A., JORICKE B., Summability of the logarithm of an almost analytic function and a

generalization of the Levinson–Cartwright theorem,Math. USSR Sb.58 (1987) 337–349.
[52] WIENER N., Tauberian theorems,Ann. of Math.33 (1932) 1–100.
[53] YAKUBOVITCH D., Invariant subspaces of the operator of multiplication byz in the spaceEp in a

multiply connected domain,LOMI, Stek. Akad. Nauk. SSSR178 (1989) 166–183.

(Manuscript received June 17, 2000;
accepted, after revision, October 6, 2000.)

Jean ESTERLE

Laboratoire de Mathématiques Pures,
UPRESA 5467,

Université de Bordeaux I,
351, cours de la Libération,

33405 Talence cedex, France
E-mail: esterle@math.u-bordeaux.fr

Alexander VOLBERG

Department of Mathematics,
Michigan State University,

East Lansing, MI 48824, USA
E-mail: volberg@math.msu.edu

4e SÉRIE– TOME 35 – 2002 –N◦ 2


