Annales scientifiques de l'É.N.S.

FRANCISCO J. CALDERÓN-MORENO

Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor

Annales scientifiques de l'É.N.S. 4^e série, tome 32, nº 5 (1999), p. 701-714 http://www.numdam.org/item?id=ASENS_1999_4_32_5_701_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1999, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

LOGARITHMIC DIFFERENTIAL OPERATORS AND LOGARITHMIC DE RHAM COMPLEXES RELATIVE TO A FREE DIVISOR

By Francisco J. CALDERÓN-MORENO*

ABSTRACT. – We prove a structure theorem for differential operators in the 0-th term of the V-filtration relative to a free divisor. manifold. As an application, we give a formula for the logarithmic de Rham complex with respect to a free divisor in terms of V_0 -modules, which generalizes the classical formula for the usual de Rham complex in terms of \mathcal{D} -modules, and the formula of Esnault-Viehweg in the case of a normal crossing divisor. We also give a sufficient algebraic condition for perversity of the logarithmic de Rham complex. © Elsevier, Paris

RÉSUMÉ. – Nous prouvons un théorème de structure pour les opérateurs différentiels dans le terme 0 de la V-filtration relative à un diviseur libre. Comme application, nous donnons une formule pour le complexe de de Rham logarithmique par rapport à un diviseur libre en termes de V_0 -modules, qui généralise la formule classique pour le complexe de de Rham usuel en termes de D-modules et celle de Esnault-Viehweg dans le cas d'un diviseur à croisements normaux. Nous donnons aussi une condition algébrique suffisante pour la perversité des tels complexes. © Elsevier, Paris

Introduction

Let X be a complex manifold and $Y \subset X$ be a divisor. We consider the \mathcal{O}_X -modules of the logarithmic derivations, $\mathcal{D}er(\log Y)$, and logarithmic forms, $\Omega^1_X(\log Y)$, due to K. Saito; and the \mathcal{V} -filtration of Malgrange-Kashiwara relative to Y on the ring of differential operators on X, $\mathcal{V}^Y_{\bullet}(\mathcal{D}_X)$. We prove:

THEOREM 1. – If Y is free then $\mathcal{V}_0^Y(\mathcal{D}_X) = \mathcal{O}_X[\mathcal{D}er(\log Y)].$

As a consequence of this theorem, $\mathcal{V}_0^Y(\mathcal{D}_X)$ is a coherent sheaf. Another consequence is the equivalence between $\mathcal{V}_0^Y(\mathcal{D}_X)$ -modules and \mathcal{O}_X -modules with logarithmic connections. Therefore, a $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module (or logarithmic \mathcal{D}_X -module) \mathcal{M} defines a logarithmic de Rham complex $\Omega^{\bullet}_X(\log Y)(\mathcal{M})$. We also use this theorem in the proof of:

THEOREM 2. – If Y is free and \mathcal{M} is a left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module, then there is a canonical isomorphism:

$$\Omega^{\bullet}_X(\log Y)(\mathcal{M}) \cong \mathbf{R}\mathcal{H}om_{\mathcal{V}^Y_o(\mathcal{D}_X)}(\mathcal{O}_X,\mathcal{M}).$$

To show this, we first construct a resolution of \mathcal{O}_X as $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module, which we call the logarithmic Spencer complex and denote by $\mathcal{S}p^{\bullet}(\log Y)$. Finally, we define the notion of Koszul free divisor (a free divisor for which the symbols of a basis of logarithmic

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. - 0012-9593/99/05/© Elsevier, Paris

^{*} Supported by DGICYT PB94-1435.

derivations form a regular sequence in the graded ring associated to the filtration by the order on \mathcal{D}_X). Nonsingular and normal crossing divisors and all the plane curves are Koszul free divisors. We prove:

THEOREM 3. – If Y is a Koszul free divisor, then the logarithmic de Rham complex $\Omega^{\bullet}_X(\log Y)$ is perverse.

Some results of this paper have been announced in [4]. We give here the complete proofs of all of those results announced and other new results.

1. Notations and Preliminaries

Let X be a complex analytic manifold of dimension n and Y be a divisor of X defined by the ideal \mathcal{I} . Let \mathcal{D}_X denote the sheaf of linear differential operators over X, $\mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X)$ the sheaf of derivations of \mathcal{O}_X , and $\mathcal{D}_X[\star Y]$ the sheaf of meromorphic differential operators with poles along Y. Given a point x of Y, we note by I = (f), \mathcal{D} , $\mathcal{D}er_{\mathbb{C}}(\mathcal{O})$, \mathcal{O} and $\mathcal{D}_X[\star Y]_x$ the respective stalks at x. Let F^{\bullet} denote the filtration of \mathcal{D}_X by the order of the operators and $\Omega^{\bullet}_X[\star Y]$ the meromorphic de Rham complex with poles along Y.

1.1. Logarithmic forms and logarithmic derivations. Free divisors

We recall some notions of [7] that we will use repeatedly:

A section δ of $\mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X)$, defined over an open set U of X, is called a *logarithmic* derivation (or vector field) if for each point x in $Y \cap U$, $\delta_x(\mathcal{I}_x) \subset \mathcal{I}_x$ (if $I = \mathcal{I}_x = (f)$, it is sufficient that $\delta_x(f) \in (f)\mathcal{O}$). The sheaf of logarithmic derivations is denoted by $\mathcal{D}er(\log Y)$, and is a coherent \mathcal{O}_X -submodule of $\mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X)$ and a Lie subalgebra, whose stalks are $\operatorname{Der}(\log f) = \mathcal{D}er(\log Y)_x = \{\delta \in \operatorname{Der}_{\mathbb{C}}(\mathcal{O}) \mid \delta(f) \in (f)\}.$

We say that a meromorphic q-form ω with poles along Y, defined in an open set U, is a logarithmic q-form along Y or, simply, a *logarithmic q-form*, if for every point x in U, $f\omega$ and $df \wedge \omega$ are holomorphic at x. The sheaf of logarithmic q-forms along Y in U is denoted by $\Omega_X^q(\log Y)(U)$. This definition gives rise to a coherent \mathcal{O}_X -module $\Omega_X^q(\log Y)$, whose stalks are $\Omega^q(\log f) = \Omega_X^q(\log Y)_x = \{\omega \in \Omega_X^q[\star Y]_x \mid f\omega \in \Omega^q, df \wedge \omega \in \Omega^{q+1}\}.$

The logarithmic q-forms along Y define a subcomplex of the meromorphic de Rham complex along Y, that we call the logarithmic de Rham complex and denote by $\Omega^{\bullet}_{X}(\log Y)$.

Contraction of forms by vector fields defines a perfect duality between the \mathcal{O}_X -modules $\Omega^1_X(\log Y)$ and $\mathcal{D}er(\log Y)$, that we denote by \langle , \rangle . Thus, both of them are reflexive. In particular, when $n = \dim_{\mathbb{C}} X = 2$, $\Omega^1_X(\log Y)$ and $\mathcal{D}er(\log Y)$ are locally free \mathcal{O}_X -modules of rank 2.

We say that Y is free at x, or I is a free ideal of \mathcal{O} , if $\text{Der}(\log I)$ is free as \mathcal{O} -module (of rank n). If $f \in \mathcal{O}$, we say that f is free if the ideal I = (f) is free. We say that Y is free if it is at every point x. In this case, $\mathcal{D}er(\log Y)$ is a locally free \mathcal{O}_X -module of rank n (see [18], [7, Examples 1.1], [6]). We can use the following criterion to determine when a divisor Y is free at x:

SAITO'S CRITERION. – The \mathcal{O} -module Der(log f) is free if and only if there exist n elements $\delta_1, \delta_2, \dots, \delta_n$ in Der(log f), with

$$\delta_i = \sum_{j=1}^n a_{ij}(z) \frac{\partial}{\partial z_j} \ (i = 1, \dots, n),$$

where $z = (z_1, z_2, \dots, z_n)$ is a system of coordinates of X centered in x, such that the determinant $det(a_{ij})$ is equal to af, with $a \in \mathcal{O}$ a unit. Moreover, in this case, $\{\delta_1, \delta_2, \dots, \delta_n\}$ is a basis of Der(log f).

When Y is free, we have the equality $\Omega_X^p(\log Y) = \wedge^p \Omega_X^1(\log Y)$. Using the fact that $\Omega_X^1(\log Y) \cong \mathcal{H}om_{\mathcal{O}_X}(\mathcal{D}er(\log Y), \mathcal{O}_X)$, we can construct a natural isomorphism $\gamma^p : \Omega_X^p(\log Y) \cong \mathcal{H}om_{\mathcal{O}_X}(\wedge^p \mathcal{D}er(\log Y), \mathcal{O}_X)$, defined locally by $\gamma^p(\omega_1 \wedge \cdots \wedge \omega_p)(\delta_1 \wedge \cdots \wedge \delta_p) = \det(\langle \omega_i, \delta_j \rangle)_{1 \le i,j \le p}$.

1.2. V-filtration. logarithmic operators

We define the \mathcal{V} -filtration relative to Y on \mathcal{D}_X as in the smooth case ([12], [11]): $\mathcal{V}_k^Y(\mathcal{D}_X) = \{P \in \mathcal{D}_X \mid P(\mathcal{I}^j) \subset \mathcal{I}^{j-k}, \forall j \in \mathbb{Z}\}, k \in \mathbb{Z}, \text{ where } \mathcal{I}^p = \mathcal{O}_X \text{ when } p \text{ is negative. Similarly, } \mathcal{V}_k^I(\mathcal{D}) = \{P \in \mathcal{D} \mid P(I^j) \subset I^{j-k}, \forall j \in \mathbb{Z}\}, \text{ with } k \text{ an integer, and } I^p = \mathcal{O} \text{ when } p \ge 0. \text{ If } I = (f), \text{ we note } \mathcal{V}_k^f(\mathcal{D}) = \mathcal{V}_k^I(\mathcal{D}). \text{ A logarithmic differential operator (or, simply, a logarithmic operator) is a differential operator of degree 0 with respect to the <math>\mathcal{V}$ -filtration. As $F^1(\mathcal{D}_X) = \mathcal{O}_X \oplus \mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X)$, we have $F^1(\mathcal{V}_0^Y(\mathcal{D}_X)) = \mathcal{O}_X \oplus \mathcal{D}er(\log Y)$. We also have $\mathcal{D}er(\log Y) = \mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X) \cap \mathcal{V}_0^Y(\mathcal{D}_X) = \mathcal{G}r_{F^*}^1(\mathcal{V}_0^Y(\mathcal{D}_X)).$

REMARK 1.2.1. – The inclusion $\mathcal{D}er(\log Y) \subset \mathcal{G}r_{F^{\bullet}}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X}))$ gives rise to a canonical graded morphism of graded algebras:

$$\kappa : \mathcal{S}ym_{\mathcal{O}_X}(\mathcal{D}er(\log Y)) \longrightarrow \mathcal{G}r_{F^{\bullet}}(\mathcal{V}_0^Y(\mathcal{D}_X)).$$

Similarly, we have a canonical graded morphism of graded \mathcal{O} -algebras: κ_x : Sym_{\mathcal{O}}(Der(log I)) \rightarrow Gr_F•($\mathcal{V}_0^I(\mathcal{D})$), which is the stalk of κ at x.

2. Logarithmic operators relative to a free divisor

2.1. The Structure Theorem

We denote by $\{,\}$ the Poisson bracket defined in the graded ring $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$ (cf. [14], [10]). Given two polynomials F, G in $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D}) = \mathcal{O}[\xi_1, \dots, \xi_n]$:

$$\{F,G\} = \sum_{i=1}^{n} \frac{\partial F}{\partial \xi_i} \frac{\partial G}{\partial x_i} - \sum_{i=1}^{n} \frac{\partial F}{\partial x_i} \frac{\partial G}{\partial \xi_i}.$$

PROPOSITION 2.1.1. – Let f be free. Consider a basis $\{\delta_1, \dots, \delta_n\}$ of Der(log f). Let R_0 be a polynomial in $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$, homogeneous of order d, and such that there exist other polynomials R_k in $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$, with $k = 1, \dots, d$, homogeneous of order d - k such that:

$$\{R_k, f\} = fR_{k+1}, \ (0 \le k < d) \tag{1}$$

(we will say that R_0 verifies the property (1) for R_1, R_2, \dots, R_d). Then there exist polynomials H_j^k in $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$, homogeneous of order d - k - 1, with $j = 1, \dots, n$ and $k = 1, \dots, d - 1$, such that:

- a) $R_k = \sum_{j=1}^n H_j^k \sigma(\delta_j)$, where $\sigma(\delta_j)$ denotes the principal symbol of δ_j .
- b) $\{H_j^k, f\} = fH_j^{k+1} \ (1 \le j \le n, \ 0 \le k < d-1)$. This is the same as saying: H_j^k satisfies the property (1) for $H_j^{k+1}, \dots, H_j^{d-1}$.

Proof. – Let $\{\delta_1, \dots, \delta_n\}$ be a basis of Der(log f) and $A = (\alpha_i^j)$ such that:

$$\delta_j = \sum_{i=1}^n \alpha_i^j \frac{\partial}{\partial x_i} = \underline{\alpha}^j \bullet \underline{\partial}^t,$$

with $j = 1, \dots, n$. We consider the ring $\mathcal{O}_{2n} = \mathbb{C}\{x_1, \dots, x_n, \xi_1, \dots, \xi_n\}$. Thanks to Saito's Criterion, we know that $\{\delta_1, \dots, \delta_n, \frac{\partial}{\partial \xi_1}, \dots, \frac{\partial}{\partial \xi_n}\}$ is a basis of the \mathcal{O}_{2n} -module $\operatorname{Der}_{\mathcal{O}_{2n}}(\log f)$. So, as we have, for $k = 1, \dots, d$, $\{R_k, f\} \in (f)$, then there exist homogeneous polynomials G_j^k in $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$, of degree d - k - 1, or null, with $j = 1, \dots, n$ and $k = 1, \dots, d - 1$, such that:

$$((R_k)_{\xi_1}, (R_k)_{\xi_2}, \cdots, (R_k)_{\xi_n}) = (G_1^k, G_2^k, \cdots, G_n^k)A \qquad \left((R_k)_{\xi_i} = \frac{\partial R_k}{\partial \xi_i}\right).$$

Using the Euler relation $R_k = \frac{1}{d} \sum_{i=1}^n (R_k)_{\xi_i} \xi_i$, and as $\sigma(\delta_i) = \underline{\alpha}^i \bullet \underline{\xi}^t$, we obtain $R_k = \frac{1}{d} \sum_{j=1}^n G_j^k \sigma(\delta_j)$. By Saito's Criterion, the determinant of the matrix A is equal to g = uf, with $u \in \mathcal{O}$ invertible. Let $B = (b_{ij}) = \operatorname{Adj}(A)^t$. We have:

$$g\{G_j^k, f\} = \sum_{i=1}^n f_{x_i} \frac{\partial (\sum_{l=1}^n (R_k)_{\xi_l} b_{lj})}{\partial \xi_i} \stackrel{(1)}{=} f \sum_{l=1}^n b_{lj} (R_{k+1})_{\xi_l} = fgG_j^{k+1}.$$

We conclude by setting $H_j^k = \frac{1}{d}G_j^k$, for $j = 1, \dots, n$ and $k = 0, \dots, d-1$.

PROPOSITION 2.1.2. – Let $\{\delta_1, \dots, \delta_n\}$ be a basis of Der(log f). If a polynomial R_0 of $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$ is homogeneous and satisfies the property (1) of proposition 2.1.1, we can find a differential operator Q in $\mathcal{O}[\delta_1, \dots, \delta_n]$ such that R_0 is the symbol of Q.

Proof. – We will do the proof by induction on the order of R_0 . If $R_0 \in \mathcal{O}$, it is obvious. We suppose that the result holds if the order of R_0 is less than d. Now let R_0 of order d satisfying (1). By proposition 2.1.1 there exist n homogeneous polynomials H_j^0 of order d - 1 such that: $R_0 = \sum_{j=1}^n H_j^0 \sigma(\delta_j)$, H_j^0 satisfies (1) (j = 1, ..., n). By induction hypothesis, there exist $Q_j \in \mathcal{O}[\delta_1, \dots, \delta_n]$ such that $H_j^0 = \sigma(Q_j)$. So $R_0 = \sigma(Q)$, and $Q = \sum_{i=1}^n Q_i \delta_i \in \mathcal{O}[\delta_1, \dots, \delta_n]$.

REMARK 2.1.3. – Really, the previous argument proves that if R_0 satisfies (1), then R_0 is a polynomial in $\mathcal{O}[\sigma(\delta_1), \dots, \sigma(\delta_n)]$.

THEOREM 2.1.4. – If f is free and $\{\delta_1, \dots, \delta_n\}$ is a basis of $\text{Der}(\log f)$, each logarithmic operator P can be written in a unique way as a polynomial $P = \sum \beta_{i_1\dots i_n} \delta_1^{i_1} \cdots \delta_n^{i_n}, \ \beta_{i_1\dots i_n} \in \mathcal{O}$. In other words, the ring of logarithmic operators is the \mathcal{O} -subalgebra of \mathcal{D} generated by logarithmic derivations:

$$\mathcal{V}_0^I(\mathcal{D}) = \mathcal{O}[\delta_1, \cdots, \delta_n] = \mathcal{O}[\text{Der}(\log f)].$$

Proof. – The inclusion $\mathcal{O}[\delta_1, \dots, \delta_n] \subseteq \mathcal{V}_0^I(\mathcal{D})$ is clear. We prove the other inclusion by induction on the order of $P_0 \in \mathcal{V}_0^I(\mathcal{D})$. If the order of P_0 is zero, then it is a holomorphic function and the result is obvious. We suppose that the result is true for every logarithmic operator Q whose order is strictly less than d. Let P_0 be a logarithmic operator of order d. We know that: $[P_0, f] = fP_1$, with $P_1 \in \mathcal{V}_0^I(\mathcal{D})$. So, there exist some P_k , with

 4^e série – tome $32 - 1999 - n^\circ 5$

 $k = 0, \dots, d$, such that $[P_k, f] = fP_{k+1}$. If we set $R_k = \sigma(P_k)$, in the case that P_k has order d - k, and $R_k = 0$ otherwise, we obtain $\{R_k, f\} = fR_{k+1}$. By the proposition 2.1.2, there exists Q in $\mathcal{O}[\delta_1, \dots, \delta_n]$ of order d and such that $\sigma(P_0) = \sigma(Q)$. We apply the induction hypothesis to $P_0 - Q$ and obtain $P_0 = P_0 - Q + Q \in \mathcal{O}[\delta_1, \dots, \delta_n]$.

On the other hand, using the structure of Lie algebra it is clear that we can write a logarithmic operator as a \mathcal{O} -linear combination of the monomials $\{\delta_1^{i_1}\cdots\delta_n^{i_n}\}$. The uniqueness of this expression follows from the fact that these monomials are linearly independent over \mathcal{O} .

REMARK 2.1.5. – As a immediate consequence of the theorem (see remark 2.1.3), we obtain an isomorphism α : $\operatorname{Gr}_{F^{\bullet}}(\mathcal{V}_0^I(\mathcal{D})) \cong \mathcal{O}[\sigma(\delta_1), \cdots, \sigma(\delta_n)].$

COROLLARY 2.1.6. – If Y is free at x, the morphism κ_x from the symmetric algebra $\operatorname{Sym}_{\mathcal{O}}(\operatorname{Der}(\log f))$ to $\operatorname{Gr}_{F^{\bullet}}(\mathcal{V}_0^f(\mathcal{D}))$ (see remark 1.2.1) is an isomorphism of graded \mathcal{O} -algebras. As a consequence, if Y is a free divisor, the canonical morphism κ : $\operatorname{Sym}_{\mathcal{O}_Y}(\operatorname{Der}(\log Y)) \to \mathcal{G}r_{F^{\bullet}}(\mathcal{V}_0^Y(\mathcal{D}_X))$ is an isomorphism.

Proof. – Let x be in X and $f \in \mathcal{O}$ a reduced local equation of Y. Let $\{\delta_1, \dots, \delta_n\}$ be a basis of Der(log f). The symmetric algebra of the \mathcal{O} -module Der(log f) is isomorphic to a polynomial ring:

$$\beta$$
: Sym _{\mathcal{O}} (Der(log f)) $\cong \mathcal{O}[\sigma(\delta_1), \cdots, \sigma(\delta_n)].$

Also $\bigoplus_{i=1}^{n} \mathcal{O}\sigma(\delta_{i}) = \operatorname{Gr}_{F^{\bullet}}^{1}(\mathcal{V}_{0}^{I}(\mathcal{D})) \subset \operatorname{Gr}_{F^{\bullet}}(\mathcal{V}_{0}^{I}(\mathcal{D}))$, where $\sigma(\delta_{i})$ is the image of δ_{i} by the morphism κ_{x} . Therefore we conclude that the morphism $\kappa_{x} = \alpha^{-1}\beta$ is an isomorphism (see remark 2.1.5). On the other hand, the inclusion $\mathcal{D}\operatorname{er}(\log Y) = \mathcal{G}\operatorname{r}_{F^{\bullet}}^{1}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X})) \subset \mathcal{G}\operatorname{r}_{F^{\bullet}}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X}))$ gives rise to a canonical graded morphism of graded \mathcal{O}_{X} -algebras (see remark 1.2.1) $\kappa : \mathcal{S}\operatorname{ym}_{\mathcal{O}_{X}}(\mathcal{D}\operatorname{er}(\log Y)) \to \mathcal{G}\operatorname{r}_{F^{\bullet}}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X}))$, whose stalk at each point x of Y is the canonical graded isomorphism κ_{x} . \Box

COROLLARY 2.1.7. – $\mathcal{V}_0^Y(\mathcal{D}_X)$ is a coherent sheaf of rings.

Proof. – By [1, theorem 9.16, p. 83], we have to prove that $\mathcal{G}r_{F^{\bullet}}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X}))$ is coherent, but this sheaf is locally isomorphic to a polynomial ring which is coherent ([3, lemma 3.2, VI, p. 205]).

2.2. Equivalence between \mathcal{O}_X -modules with a logarithmic connection and left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -modules

DEFINITION 2.2.1. – (cf. [8]) Let \mathcal{M} be a \mathcal{O}_X -module. A connection on \mathcal{M} , with logarithmic poles along Y, (or logarithmic connection on \mathcal{M}), is a \mathbb{C} -homomorphism $\nabla : \mathcal{M} \to \Omega^1_X(\log Y) \otimes \mathcal{M}$, that satisfies Leibniz's identity: $\nabla(hm) = \mathrm{dh} \cdot m + h \cdot \nabla(m)$, (d is the exterior derivative over \mathcal{O}_X). We will note $\Omega^q_X(\log Y)(\mathcal{M}) = \Omega^q_X(\log Y) \otimes \mathcal{M}$. If δ is a logarithmic derivation along Y, it defines a \mathbb{C} -morphism $\nabla_\delta : \mathcal{D}\mathrm{er}(\log Y) \to \mathcal{E}\mathrm{nd}_{\mathbb{C}}(\mathcal{M})$, with $\nabla_\delta(m) = \langle \delta, \nabla(m) \rangle$.

REMARK 2.2.2. – A logarithmic connection ∇ on \mathcal{M} gives rise to a \mathcal{O}_X -morphism $\nabla' : \mathcal{D}er(\log Y) \to \mathcal{H}om_{\mathbb{C}}(\mathcal{M}, \mathcal{M})$, which satisfies Leibniz's condition $(\nabla'_{\delta}(fm) = \delta(f) \cdot m + f \cdot \nabla'_{\delta}(m))$. Conversely, given ∇' satisfying this condition, we define $\nabla : \mathcal{M} \to \Omega^1_X(\log Y)(\mathcal{M})$, with $\nabla(m)(\delta) = \nabla'_{\delta}(m)$.

DEFINITION 2.2.3. – A logarithmic connection ∇ is integrable if, for each pair δ and δ' of logarithmic derivations, it satisfies $\nabla_{[\delta,\delta']} = [\nabla_{\delta}, \nabla_{\delta'}]$, ([,] is the Lie bracket in $Der(\log Y)$ and the commutator in $Hom_{\mathbb{C}}(\mathcal{M}, \mathcal{M})$).

Given a logarithmic connection ∇ , we can define, for $q = 1, \dots, n$, a morphism $\nabla^q : \Omega^q_X(\log Y)(\mathcal{M}) \to \Omega^{q+1}_X(\log Y)(\mathcal{M}), \nabla^q(\omega \otimes m) = \mathrm{d}\omega \otimes m + (-1)^q \omega \wedge \nabla(m)$. The integrability condition is equivalent to $\nabla^q \circ \nabla^{q-1} = 0$, for every q (cf. [8]).

DEFINITION 2.2.4. – Let \mathcal{M} be a \mathcal{O}_X -module, and ∇ an integrable logarithmic connection along Y on \mathcal{M} . With the above notation, we call the logarithmic de Rham complex of \mathcal{M} , and we denote by $\Omega^{\bullet}_X(\log Y)(\mathcal{M})$, the complex (of sheaves of \mathbb{C} -vector spaces) $(\Omega^{\bullet}_X(\log Y)(\mathcal{M}), \nabla^{\bullet})$.

We consider the rings $R_0 = \mathcal{O}_X \subset R_1$ and $\mathbf{R} = \mathcal{V}_0^Y(\mathcal{D}_X) = \bigcup_{k \ge 0} R_k$ $(1 \in R_0 \subset \mathbf{R})$, with $R_k = F^k(\mathcal{V}_0^Y(\mathcal{D}_X))$. They satisfy the following properties:

- (1) $\mathcal{G}r_{F^{\bullet}}(\mathbf{R})$ is commutative;
- (2) the canonical morphism α : Sym_{R₀}($\mathcal{G}r_{F^{\bullet}}^{1}(\mathbf{R})$) $\rightarrow \mathcal{G}r_{F^{\bullet}}(\mathbf{R})$, defined by $\alpha(s_{1} \otimes \cdots \otimes s_{t}) = s_{1} \cdots s_{t}$, is an isomorphism (see Corollary 2.1.6);
- (3) R_1 is an (R_0, R_0) -bimodule, and a Lie algebra $(\mathcal{G}r_{F^{\bullet}}(\mathbf{R})$ is conmutative);
- (4) R_0 is a sub- (R_0, R_0) -bimodule of R_1 such that the two induced structures of R_0 -module over the quotient R_1/R_0 are the same.

Let $\mathbf{T}_{R_0}(R_1) = R_0 \oplus R_1 \oplus (R_1 \otimes_{R_0} R_1) \oplus \cdots$ be the tensor algebra of the (R_0, R_0) bimodule R_1 , and let $\psi : \mathbf{T}_{R_0}(R_1) \to \mathbf{R}$ be the canonical morphism defined by the inclusion $R_1 \subset \mathbf{R}$. L. Narváez proposed the following result and its proof. It can be considered as the reciprocal of a Poincaré-Birkhoff-Witt theorem [15, theorem 3.1, p. 198].

PROPOSITION 2.2.5. – The morphism ψ induces an isomorphism:

$$\phi: \mathbf{S} = rac{\mathbf{T}_{R_0}(R_1)}{J} \stackrel{\sim}{ o} \mathbf{R}, \quad \phi((i(x_1) \otimes \cdots \otimes i(x_t)) + J) = x_1 x_2 \cdots x_t,$$

where *i* is the inclusion of R_1 in the tensor algebra, and *J* is the two sided ideal generated by the elements:

a)
$$a - i(a), a \in R_0 \subset R_1$$
, b) $i(x) \otimes i(y) - i(y) \otimes i(x) - i([x, y]), x, y \in R_1$.

Proof. – The morphism ϕ is well defined. The algebra $\mathbf{T}_{R_0}(R_1)$ is graded, so it is filtered, and induces a filtration G^{\bullet} on the quotient. The induced morphism $\phi : \mathbf{S} \to \mathbf{R}$ is filtered $(\psi(a) = a \in R_0, \ \psi(i(x_1) \otimes \cdots \otimes i(x_t)) = x_1 x_2 \cdots x_t \in R_t)$. So, we can define a graded morphism of R_0 -rings:

$$\pi: \mathcal{G}r_{G^{\bullet}}(\mathbf{S}) \to \mathcal{G}r_{F^{\bullet}}(\mathbf{R}),$$
$$\pi(\sigma_t(i(x_1) \otimes \cdots \otimes i(x_t) + J)) = \sigma'_t(x_1 \cdots x_t) = \overline{x_1} \cdots \overline{x_t},$$

where $x_i \in R_1$, $\overline{x_i} = \sigma'_1(x_1)$ is the class of x_i in R_1/R_0 , $\sigma_t(P)$ is the class of $P \in \mathbf{S}$ in $\mathcal{G}r_{G^{\bullet}}^t(\mathbf{S})$, and $\sigma'_t(Q)$ the class of $Q \in R_t$ in $\mathcal{G}r_{F^{\bullet}}^t(\mathbf{R})$. (Note that $\mathcal{G}r_{G^{\bullet}}(\mathbf{S})$ is conmutative).

On the other hand, the image of $R_0 \subset R_1$ in **S** is exactly the part of degree zero of **S**, and then we obtain a morphism of R_0 -modules from $\mathcal{G}r_{F^{\bullet}}^1(\mathbf{R}) = R_1/R_0$ to $\mathcal{G}r_{G^{\bullet}}^1(\mathbf{S})$ which induces a morphism of R_0 -algebras:

$$\rho: \mathcal{S}ym_{R_0}\left(\frac{R_1}{R_0}\right) \to \mathcal{G}r_{G^{\bullet}}(\mathbf{S}), \ \ \rho(\overline{x_1} \otimes \cdots \otimes \overline{x_t}) = \sigma_t(i(x_1) \otimes \cdots \otimes i(x_t) + J),$$

which is obviously surjective. The composition $\pi\rho$ is equal to α , and, by property (2) of **R**, we deduce that ρ is injective. As ρ and $\pi\rho$ are isomorphisms, π is also an isomorphism, as we wanted to prove.

COROLLARY 2.2.6. – Let Y be a free divisor. Let \mathcal{M} be a \mathcal{O}_X -module. An integrable logarithmic connection on \mathcal{M} gives rise to a left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -structure on \mathcal{M} , and vice versa.

Proof. – A \mathcal{O}_X -module \mathcal{M} with an integrable logarithmic connection ∇ has a natural structure of left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module defined by its structure as \mathcal{O}_X -module. Let μ be the morphism of $(\mathcal{O}_X, \mathcal{O}_X)$ -bimodules $\mu : R_1 = \mathcal{O}_X \oplus \operatorname{Der}(\log Y) \to \operatorname{End}_{\mathbb{C}}(\mathcal{M}),$ $\mu(a + \delta)(m) = am + \nabla_{\delta}(m). \mu$ induces a morphism ν from $\mathbf{T}_{R_0}(R_1)$ and, as $\nu(J) = 0$, a morphism from $\mathcal{V}_0^Y(\mathcal{D}_X) \simeq \mathbf{T}_{R_0}(R_1)/J$ to $\operatorname{End}_{\mathbb{C}}(\mathcal{M})$, which defines an structure of $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module on \mathcal{M} .

On the other hand, a left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module structure on \mathcal{M} defines an integrable logarithmic connection ∇ on \mathcal{M} : $\nabla_\delta(m) = \delta \cdot m$.

REMARK 2.2.7. – A left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module structure on \mathcal{M} defines a logarithmic de Rham complex. If $\{\delta_1, \dots, \delta_n\}$ is a local basis of $\mathcal{D}er(\log Y)$ and $\{\omega_1, \dots, \omega_n\}$ its dual basis, the differential of the complex is defined by: $\nabla^p(U)(\omega \otimes m) = d\omega \otimes m + \sum_{i=1}^n ((\omega_i \wedge \omega) \otimes \delta_i \cdot m).$

3. The logarithmic de Rham complex

3.1. The logarithmic Spencer complex

DEFINITION 3.1.1. – We call the logarithmic Spencer complex, and denote by $Sp^{\bullet}(\log Y)$, the complex:

$$0 \to \mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}} \wedge^n \mathcal{D}\mathrm{er}(\log Y) \xrightarrow{\varepsilon_{-n}} \cdots \xrightarrow{\varepsilon_{-2}} \mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}} \mathcal{D}\mathrm{er}(\log Y) \xrightarrow{\varepsilon_{-1}} \mathcal{V}_0^Y(\mathcal{D}_X),$$

$$\varepsilon_{-1}(P \otimes \delta) = P\delta; \quad \varepsilon_{-p}(P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = \sum_{i=1}^p (-1)^{i-1} P\delta_i \otimes (\delta_1 \wedge \cdots \widehat{\delta_i} \cdots \wedge \delta_p)$$

$$+ \sum_{1 \leq i < j \leq p} (-1)^{i+j} P \otimes ([\delta_i, \delta_j] \wedge \delta_1 \wedge \cdots \widehat{\delta_i} \cdots \widehat{\delta_j} \cdots \wedge \delta_p), \quad (2 \leq p \leq n).$$

We can augment this complex of left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -modules by another morphism ε_0 : $\mathcal{V}_0^Y(\mathcal{D}_X) \to \mathcal{O}_X, \ \varepsilon_0(P) = P(1)$. We call the new complex $\widetilde{Sp}^{\bullet}(\log Y)$.

This definition is essentially the same as the definition of the usual Spencer complex Sp^{\bullet} of \mathcal{O}_X (cf. [13, 2.1]) and generalizes the definition given by Esnault and Viehweg [9, App. A] in the case of a normal crossing divisor. We denote by $Sp^{\bullet}[\star Y] = \mathcal{D}_X[\star Y] \otimes_{\mathcal{D}_X} Sp^{\bullet}$ the meromorphic Spencer complex of $\mathcal{O}_X[\star Y]$.

THEOREM 3.1.2. – Let Y be a free divisor. The complex $Sp^{\bullet}(\log Y)$ is a locally free resolution of \mathcal{O}_X as left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module.

Proof. – To see the exactness of $\widetilde{S}p^{\bullet}(\log Y)$ we define a discrete filtration G^{\bullet} such that it induces an exact graded complex (cf. [1, ch. 2, lemma 3.13]):

$$G^{k}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X}) \otimes \wedge^{p}\mathcal{D}\mathrm{er}(\log Y)) = F^{k-p}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X})) \otimes \wedge^{p}\mathcal{D}\mathrm{er}(\log Y),$$

$$\mathcal{G}\mathbf{r}_{G^{\bullet}}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X})\otimes\wedge^{p}\mathcal{D}\mathrm{er}(\log Y))=\mathcal{G}\mathbf{r}_{F^{\bullet}}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X}))[-p]\otimes\wedge^{p}\mathcal{D}\mathrm{er}(\log Y),$$

and $G^k(\mathcal{O}_X) = \mathcal{O}_X$, $\mathcal{G}r_{G^{\bullet}}(\mathcal{O}_X) = \mathcal{O}_X$. As the above filtrations are compatible with the differential of $\widetilde{S}p^{\bullet}(\log Y)$, we can consider the graduated complex $\mathcal{G}r_{G^{\bullet}}(\widetilde{S}p^{\bullet}(\log Y))$:

$$0 \to \mathcal{G}\mathbf{r}_{F^{\bullet}}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X}))[-n] \otimes \bigwedge^{n} \mathcal{D}\mathrm{er}(\log Y) \xrightarrow{\psi_{-n}} \cdots \xrightarrow{\psi_{-1}} \mathcal{G}\mathbf{r}_{F^{\bullet}}(\mathcal{V}_{0}^{Y}(\mathcal{D}_{X})) \xrightarrow{\psi_{0}} \mathcal{O}_{X} \to 0,$$
$$\psi_{-p}(G \otimes \delta_{j_{1}} \wedge \cdots \wedge \delta_{j_{r}}) = \sum_{i=1}^{p} (-1)^{i-1} G\sigma(\delta_{j_{i}}) \otimes \delta_{j_{1}} \wedge \cdots \widehat{\delta_{j_{i}}} \cdots \wedge \delta_{j_{r}}, \quad (2 \le p \le n),$$

 $\psi_{-1}(G \otimes \delta_i) = G\sigma(\delta_i), \quad \psi_0(G) = G_0, \text{ with } \{\delta_1, \dots, \delta_n\} \text{ a basis of } \mathcal{D}er(\log Y).$ This complex is the Koszul complex of the graduated ring $\mathcal{G}r_{F^{\bullet}}(\mathcal{V}_0^Y(\mathcal{D}_X)) \cong \mathcal{S}ym_{\mathcal{O}_X}(\mathcal{D}er(\log Y))$ with respect to the $\mathcal{G}r_{F^{\bullet}}(\mathcal{V}_0^Y(\mathcal{D}_X))$ -regular sequence $\sigma(\delta_1), \dots, \sigma(\delta_n)$ in the ring $\mathcal{G}r_{F^{\bullet}}(\mathcal{V}_0^Y(\mathcal{D}_X))$. So, it is exact. \Box

LEMMA 3.1.3. – For every logarithmic operator $P \in \mathcal{V}_0^f(\mathcal{D})$, there exists, for each positive integer p, a logarithmic operator $Q \in \mathcal{V}_0^f(\mathcal{D})$ and an integer k such that $f^{-p}P = Qf^{-k}$.

Proof. – We will prove the lemma by induction on the order of the logarithmic operator. If P has order 0, it is in \mathcal{O} , and it is clear that $f^{-p}P = Pf^{-p}$. Let P be of order d, and consider the logarithmic operator $[P, f^p] = -f^p[P, f^{-p}]f^p$, of order d-1. By induction hypothesis, there exists an integer m such that $[P, f^{-p}]f^m \in \mathcal{V}_0^f(\mathcal{D})$. Let k be the greatest of the integers m and p. It is clear that: $f^{-p}Pf^k = Pf^{k-p} - [P, f^{-p}]f^k \in \mathcal{V}_0^f(\mathcal{D})$.

REMARK 3.1.4. – For every operator Q in $\mathcal{D}_X[\star Y]_x$, we can always find a positive integer m such that $f^m Q \in \mathcal{V}_0^f(\mathcal{D})$. Equivalently, for each meromorphic differential operator Q, there exists a positive integer p and a logarithmic operator Q' such that we can write: $Q = f^{-p}Q'$.

LEMMA 3.1.5. – We have the following isomorphisms:

 $\overline{i=1}$

- $I. \quad \mathcal{O}_X[\star Y] \otimes_{\mathcal{O}_X} \mathcal{V}_0^Y(\mathcal{D}_X) \xrightarrow{\sim} \mathcal{D}_X[\star Y] \xleftarrow{\sim} \mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}_X} \mathcal{O}_X[\star Y];$
- 2. $\alpha : \mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_{\alpha}^Y(\mathcal{D}_X)} \mathcal{O}_X \cong \mathcal{O}_X[\star Y], \quad \alpha(P \otimes g) = P(g);$
- 3. $\rho: \mathcal{D}_X[\star Y] \otimes_{\mathcal{V}^Y(\mathcal{D}_X)} \mathcal{D}_X[\star Y] \cong \mathcal{D}_X[\star Y], \quad \rho(P \otimes Q) = PQ.$

Proof. – 1. The inclusions $\mathcal{V}_0^Y(\mathcal{D}_X), \mathcal{O}_X[\star Y] \subset \mathcal{D}_X[\star Y]$ give rise to the previous isomorphisms of $(\mathcal{V}_0^Y(\mathcal{D}_X), \mathcal{O}_X[\star Y])$ -modules. Locally, $af^{-k} \otimes P = af^{-k}P = aQ \otimes f^{-p}$, with P and Q logarithmic operators such that $f^{-k}P = Qf^{-p}$. We have seen how to obtain Q from P (lemma 3.1.3), and we can obtain P from Q in the same way. On the other hand, we saw in remark 3.1.4 how to express a meromorphic differential operator as a product of a meromorphic function and a logarithmic operator.

2. We compose the following isomorphisms of left $\mathcal{D}_X[\star Y]$ -modules:

$$\mathcal{O}_X[\star Y] \otimes_{\mathcal{O}_X} \mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{O}_X \cong \mathcal{O}_X[\star Y] \otimes_{\mathcal{O}_X} \mathcal{O}_X \cong \mathcal{O}_X[\star Y].$$

3. We obtain this isomorphism of $\mathcal{D}_X[\star Y]$ -bimodules from 1. and the isomorphism $\mathcal{O}_X[\star Y] \otimes_{\mathcal{O}_X} \mathcal{O}_X[\star Y] \cong \mathcal{O}_X[\star Y], g_1 \otimes g_2 \mapsto g_1g_2.$

PROPOSITION 3.1.6. – Let Y be a free divisor. We have the following isomorphisms of complexes of $\mathcal{D}_X[\star Y]$ -modules:

$$\mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{\bullet} \cong \mathcal{S}p^{\bullet}[\star Y], \quad \mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{\bullet}(\log Y) \cong \mathcal{S}p^{\bullet}[\star Y].$$

Proof. – As Sp^{\bullet} is a subcomplex of \mathcal{D}_X -modules of $Sp^{\bullet}[\star Y]$, and $\mathcal{D}_X[\star Y]$ is flat over $\mathcal{V}_0^Y(\mathcal{D}_X)$, the complex $\mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_0^Y} Sp^{\bullet}$ is a subcomplex of $\mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_0^Y} Sp^{\bullet}[\star Y]$, (see lemma 3.1.5, 1.). But, by the third isomorphism of lemma 3.1.5, this complex is the same as $Sp^{\bullet}[\star Y]$. Hence, we have an injective morphism of complexes from $\mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_0^Y} Sp^{\bullet}$ to $Sp^{\bullet}[\star Y]$, defined locally in each degree by: $P \otimes Q \otimes \delta_1 \wedge \cdots \wedge \delta_p \mapsto PQ \otimes (\delta_1 \wedge \cdots \wedge \delta_p)$. This morphism is clearly surjective and, consequently, an isomorphism.

For the second isomorphism, we consider $\mathcal{V}_0^Y(\mathcal{D}_X)$ as a subsheaf of \mathcal{O}_X -modules of \mathcal{D}_X . As $\mathcal{D}er(\log Y)$ is \mathcal{O}_X -free, we have the inclusions $\mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}} \wedge^p \mathcal{D}er(\log Y) \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}} \wedge^p \mathcal{D}er(\log Y)$, and $\wedge^p \mathcal{D}er(\log Y) \hookrightarrow \wedge^p \mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X)$ (cf. [2, AIII 88, Cor.]). As \mathcal{D}_X is flat over \mathcal{O}_X , we have other inclusion $\mathcal{D}_X \otimes_{\mathcal{O}} \wedge^p \mathcal{D}er(\log Y) \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}} \wedge^p \mathcal{D}er(\log Y) \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}} \wedge^p \mathcal{D}er(\log Y) \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}} \wedge^p \mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X)$ ($p \ge 0$). So, we obtain a new inclusion $\mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}} \wedge^p \mathcal{D}er(\log Y) \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}} \wedge^p \mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X)$, for $p = 0, \dots, n$. These inclusions give rise to an injective morphism of complexes of $\mathcal{V}_0^Y(\mathcal{D}_X)$ -modules $\mathcal{S}p^{\bullet}(\log Y) \hookrightarrow \mathcal{S}p^{\bullet}$. As $\mathcal{D}_X[\star Y]$ is flat over $\mathcal{V}_0^Y(\mathcal{D}_X)$ (see lemma 3.1.5, 1.) we have an injective morphism of complexes of $\mathcal{D}_X[\star Y]$ -modules $\theta' : \mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{\bullet}(\log Y) \hookrightarrow \mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{\bullet}$, that is surjective: $P \otimes Q \otimes (\delta_1 \wedge \cdots \wedge \delta_p) = \theta'((Pf^{-k}) \otimes Q' \otimes (f\delta_1 \wedge \cdots \wedge f\delta_p))$, where $f^k Q = Q'f^p$ (using lemma 3.1.3). Composing θ' with the first isomorphism, we obtain the result.

3.2. The logarithmic de Rham complex

For each divisor Y, we have a standard canonical isomorphism:

$$\lambda^p: \mathcal{H}om_{\mathcal{O}_X}(\wedge^p \mathcal{D}er(\log Y), \mathcal{O}_X) \cong \mathcal{H}om_{\mathcal{V}_0^Y}(\mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}_X} \wedge^p \mathcal{D}er(\log Y), \mathcal{O}_X),$$

defined by: $\lambda^p(\alpha)(P \otimes \delta_1 \wedge \cdots \wedge \delta_p) = P(\alpha(\delta_1 \wedge \cdots \wedge \delta_p))$. Composing this isomorphism with the isomorphism γ^p defined in section 11. We can construct a natural morphism ψ^p , for $p = 0, \cdots, n$:

$$\psi^p: \Omega^p_X(\log Y) \cong \mathcal{H}om_{\mathcal{V}^Y_0}(\mathcal{V}^Y_0(\mathcal{D}_X) \otimes \wedge^p \mathcal{D}er(\log Y), \mathcal{O}_X),$$

$$\psi^p(\omega_1 \wedge \dots \wedge \omega_p)(P \otimes \delta_1 \wedge \dots \wedge \delta_p) = P(\det(\langle \omega_i, \delta_j \rangle)_{1 \le i, j \le p})$$

Similarly, if \mathcal{M} is a left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module, and $p \in \{1, \dots, n\}$, there exist

$$\psi^p_{\mathcal{M}} = \lambda^p_{\mathcal{M}} \circ \gamma^p_{\mathcal{M}} : \ \Omega^p_X(\log Y)(\mathcal{M}) \xrightarrow{\sim} \mathcal{H}om_{\mathcal{V}^Y_0}(\mathcal{V}^Y_0(\mathcal{D}_X) \otimes \wedge^p \mathcal{D}er(\log Y), \mathcal{M}).$$

$$\psi^{p}_{\mathcal{M}}(\omega_{1} \wedge \dots \wedge \omega_{p} \otimes m)(P \otimes \delta_{1} \wedge \dots \wedge \delta_{p}) = P \cdot \det(\langle \omega_{i}, \delta_{j} \rangle)_{1 \leq i, j \leq p} \cdot m$$

THEOREM 3.2.1. – If \mathcal{M} is a left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module (or, equivalently, is a \mathcal{O}_X -module with an integrable logarithmic connection), the complexes of sheaves of \mathbb{C} -vector spaces $\Omega^{\bullet}_X(\log Y)(\mathcal{M})$ and $\operatorname{Hom}_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{Sp}^{\bullet}(\log Y), \mathcal{M})$ are canonically isomorphic.

Proof. – The general case is solved if we prove the case $\mathcal{M} = \mathcal{V}_0^Y(\mathcal{D}_X)$, using the isomorphisms $\Omega^{\bullet}_X(\log Y)(\mathcal{M}) \cong \Omega^{\bullet}_X(\log Y)(\mathcal{V}_0^Y(\mathcal{D}_X)) \otimes_{\mathcal{V}_0^Y} \mathcal{M}$, and

$$\mathcal{H}om_{\mathcal{V}_Y}(\mathcal{S}p^{\bullet}(\log Y), \mathcal{M}) \cong \mathcal{H}om_{\mathcal{V}_Y}(\mathcal{S}p^{\bullet}(\log Y), \mathcal{V}_0^Y(\mathcal{D}_X)) \otimes_{\mathcal{V}_Y} \mathcal{M}.$$

For $\mathcal{M} = \mathcal{V}_0^Y(\mathcal{D}_X)$, we obtain the right $\mathcal{V}_0^Y(\mathcal{D}_X)$ -isomorphisms

$$\phi^p = \psi^p_{\mathcal{V}^Y_0(\mathcal{D}_X)}: \ \Omega^p_X(\log Y)(\mathcal{V}^Y_0(\mathcal{D}_X)) \to \mathcal{H}om_{\mathcal{V}^Y_0}(\mathcal{S}p^{-p}(\log Y), \mathcal{V}^Y_0(\mathcal{D}_X)),$$

$$\phi^p((\omega_1 \wedge \cdots \wedge \omega_p) \otimes Q)(P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = P \cdot \det(\langle \omega_i, \delta_j \rangle) \cdot Q.$$

To prove that these isomorphisms produce an *isomorphism of complexes* we have to check that they commute with the differential of the complex. By the second isomorphism of proposition 3.1.6, we obtain a natural morphism τ^{\bullet} of complexes of sheaves of right $\mathcal{V}_0^Y(\mathcal{D}_X)$ -modules. These morphisms τ^i are clearly injective:

 $\tau^{\bullet}: \mathcal{H}om_{\mathcal{V}_{0}^{Y}}(\mathcal{S}p^{\bullet}(\log Y), \mathcal{V}_{0}^{Y}(\mathcal{D}_{X})) \longrightarrow \mathcal{H}om_{\mathcal{D}_{X}[\star Y]}(\mathcal{S}p^{\bullet}[\star Y], \mathcal{D}_{X}[\star Y]),$

locally defined by $\tau^p(\alpha)(R \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = f^{-k}\alpha(P \otimes (f\delta_1 \wedge \cdots \wedge f\delta_p))$, where P is a local section of $\mathcal{V}_0^Y(\mathcal{D}_X)$ such that $Rf^{-p} = f^{-k}P$ (see lemma 3.1.3). Using lemma 3.1.3 it is easy to check that the following diagram commutes for each $p \geq 0$, where the Φ^p are isomorphisms.

$$\Phi^{p}: \ \Omega^{p}_{X}[\star Y](\mathcal{D}_{X}[\star Y]) \longrightarrow \ \mathcal{H}om_{\mathcal{D}_{X}[\star Y]}(\mathcal{D}_{X}[\star Y] \otimes p \wedge \mathcal{D}er_{\mathbb{C}}(\mathcal{O}_{X}), \mathcal{D}_{X}[\star Y]),$$

$$\Phi^{p}((\omega_{1} \wedge \dots \wedge \omega_{p}) \otimes Q)(P \otimes (\delta_{1} \wedge \dots \wedge \delta_{p})) = P \cdot \det(\langle \omega_{i} \cdot \delta_{j} \rangle_{1 \leq i, j \leq p}) \cdot Q.$$

But Φ^{\bullet} , j^{\bullet} and τ^{\bullet} are morphisms of complexes, and τ^{\bullet} is injective, hence we deduce that the ϕ^p commute with the differential and so define a isomorphism of complexes.

COROLLARY 3.2.2. – There exists a canonical isomorphism in the derived category:

$$\Omega^{\bullet}_{X}(\log Y)(\mathcal{M}) \cong \mathbf{R}\mathcal{H}om_{\mathcal{V}^{Y}_{X}(\mathcal{D}_{X})}(\mathcal{O}_{X},\mathcal{M}).$$

Proof. – By theorem 3.1.2, the complex $Sp^{\bullet}(\log Y)$ is a locally free resolution of \mathcal{O}_X as left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module and we apply theorem 3.2.1.

REMARK 3.2.3. – In the specific case that $\mathcal{M} = \mathcal{O}_X$, we have that the complexes $\Omega^{\bullet}_X(\log Y)$ and $\mathcal{H}om_{\mathcal{V}^Y_0(\mathcal{D}_X)}(\mathcal{S}p^{\bullet}(\log Y), \mathcal{O}_X)$ are canonically isomorphic and so, there exists a canonical isomorphism:

$$\Omega^{\bullet}_X(\log Y) \cong \mathbf{R}\mathcal{H}om_{\mathcal{V}^Y_0(\mathcal{D}_X)}(\mathcal{O}_X, \mathcal{O}_X).$$

REMARK 3.2.4. – A classical problem is the comparison between the logarithmic and the meromorphic de Rham complexes relative to a divisor Y,

$$\Omega^{\bullet}_{X}[\star Y] \cong \mathbf{R}\mathcal{H}om_{\mathcal{D}_{X}}(\mathcal{O}_{X}, \mathcal{O}_{X}[\star Y]) \cong \mathbf{R}\mathcal{H}om_{\mathcal{V}^{Y}_{o}}(\mathcal{O}_{X}, \mathcal{O}_{X}[\star Y]).$$

If Y is a normal crossing divisor, an easy calculation shows that they are quasi-isomorphic (cf. [8]). The same result is true if Y is a strongly weighted homogeneous free divisor [6]. As a consequence of theorem 2.1.4, if Y is an arbitrary free divisor, the meromorphic de Rham complex and the logarithmic de Rham complex are quasi-isomorphic if and only if:

$$0 = \mathbf{R}\mathcal{H}om_{\mathcal{D}_X}\left(\mathcal{D}_X \otimes_{\mathcal{V}_0^Y}^{\mathbf{L}} \mathcal{O}_X, \frac{\mathcal{O}_X[\star Y]}{\mathcal{O}_X}\right) \left(= \mathbf{R}\mathcal{H}om_{\mathcal{V}_0^Y}\left(\mathcal{O}_X, \frac{\mathcal{O}_X[\star Y]}{\mathcal{O}_X}\right)\right)$$

4. Perversity of the logarithmic complex

4.1. Koszul Free Divisors

DEFINITION 4.1.1. – Let $Y \subset X$ a divisor. We say that Y is a Koszul free divisor at x if it is free at x and there exists a basis $\{\delta_1, \dots, \delta_n\}$ of $\text{Der}(\log f) = \mathcal{D}\text{er}(\log Y)_x$ such that the sequence of symbols $\{\sigma(\delta_1), \dots, \sigma(\delta_n)\}$ is regular in $\text{Gr}_{F^{\bullet}}(\mathcal{D})$. If Y is a Koszul free divisor at every point, we simply say that it is a Koszul free divisor.

It is clear that if a basis of $\mathcal{D}er(\log Y)_x$ satisfies the condition above, then every basis does. By coherence, if a divisor is a Koszul free divisor at a point, then it is a Koszul free divisor near that point. Exemples of Koszul free divisors are nonsingular and normal crossing divisors, and plane curves (see corollary 4.2.2 and remarks 4.2.3 and 4.2.4).

PROPOSITION 4.1.2. If $\{\delta_1, \dots, \delta_n\}$ is a basis of Der(log f), and the sequence $\{\sigma(\delta_1), \dots, \sigma(\delta_n)\}$ is $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$ -regular, then

$$\sigma(\mathcal{D}(\delta_1,\cdots,\delta_n)) = \operatorname{Gr}_{F^{\bullet}}(\mathcal{D})(\sigma(\delta_1),\cdots,\sigma(\delta_n)).$$

Proof. – The inclusion $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})(\sigma(\delta_1), \cdots, \sigma(\delta_n)) \subset \sigma(\mathcal{D}(\delta_1, \cdots, \delta_n))$ is clear. Let G be the symbol of an operator P of order d, with $P = \sum_{i=1}^{n} P_i \delta_i \in \mathcal{D}(\delta_1, \cdots, \delta_n)$. We will prove by induction that $G = \sigma(P)$ belongs to the ideal $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})(\sigma_1, \cdots, \sigma_n)$, with $\sigma_i = \sigma(\delta_i)$. We will do the induction on the maximum order of the P_i $(i = 1, \cdots, n)$, which we will denote by k_0 . As P has order d, k_0 is greater or equal to d - 1. If $k_0 = d - 1$, we have $\sigma(P) = \sum_{i \in K} \sigma(P_i)\sigma_i$, with K the set of subindices j such that P_j has order k_0 in \mathcal{D} . We suppose that the result holds when $d - 1 \leq k_0 < m$. Let $G = \sigma(P)$, with $P = \sum_{i=1}^{n} P_i \delta_i$ and $k_0 = m$. If $\sum_{i \in K} \sigma(P_i)\sigma_i \neq 0$, then $G = \sigma(P) = \sum_{i \in K} \sigma(P_i)\sigma_i \in \operatorname{Gr}_{F^{\bullet}}(\mathcal{D})(\sigma_1, \cdots, \sigma_n)$. If $\sum_{i \in K} \sigma(P_i)\sigma_i = 0$, we define G_i by $G_i = \sigma(P_i)$ if $i \in K$ and 0 otherwise. Then, as $\{\sigma_1, \cdots, \sigma_n\}$ is a $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$ -regular sequence, we have:

$$(G_1, \dots, G_n) = \sum_{i < j} G_{ij}(\sigma_j e_i - \sigma_i e_j), \qquad (e_i = (0, \dots, 0, \overset{\cdot}{1}, 0, \dots, 0)),$$

with $G_{ij} \in \operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$ homogeneous polynomials of order m-1. We choose, for $1 \leq i < j \leq n$, operators Q_{ij} , of order m-1 in \mathcal{D} , such that $\sigma(Q_{ij}) = G_{ij}$, and define $(Q_1, \dots, Q_n) = (P_1, \dots, P_n) - \sum_{i < j} Q_{ij}(\delta_j e_i - \delta_i e_j - \underline{\alpha}_{ij})$, where $\underline{\alpha}_{ij}$ are the vectors with n coordinates in \mathcal{O} defined by the relations:

$$[\delta_i, \delta_j] = \sum_{k=1}^n a_{ij}^k \delta_k = \underline{\alpha}_{ij} (\delta_1, \cdots, \delta_n)^t.$$

These Q_i , of order m in \mathcal{D} , verify $(\sigma_m(Q_1), \dots, \sigma_m(Q_n)) = (G_1, \dots, G_n) - \sum_{i < j} G_{ij}(\sigma_j e_i - \sigma_i e_j) = 0$. So, Q_i has order m - 1 in \mathcal{D} . Moreover,

$$\sum_{i=1}^{n} Q_i \delta_i = \sum_{i=1}^{n} P_i \delta_i - \sum_{i < j} Q_{ij} (\delta_i \delta_j - \delta_j \delta_i - [\delta_i, \delta_j]) = \sum_{i=1}^{n} P_i \delta_i = P.$$

We apply the induction hypothesis to $G = \sigma(P)$, with $P = \sum_{i=1}^{n} Q_i \delta_i$, and obtain $\sigma(P) \in \operatorname{Gr}_{F^{\bullet}}(\mathcal{D})(\sigma_1, \dots, \sigma_n)$.

Now we consider the complex $\mathcal{D}_X \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{\bullet}(\log Y)$:

$$0 \to \mathcal{D}_X \otimes_{\mathcal{O}_X} \wedge^n \mathcal{D}er(\log Y) \xrightarrow{\mathcal{E}_{-n}} \cdots \cdots \xrightarrow{\mathcal{E}_{-2}} \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{D}er(\log Y) \xrightarrow{\mathcal{E}_{-1}} \mathcal{D}_X,$$

where the local expressions of the morphisms are defined in 3.1.1. We can augment this complex of \mathcal{D} -modules by another morphism

$$\varepsilon_0: \mathcal{D}_X \to \frac{\mathcal{D}_X}{\mathcal{D}_X(\mathcal{D}er(\log Y))}, \quad \varepsilon_0(P) = P + \mathcal{D}_X(\mathcal{D}er(\log Y)).$$

We denote by $\mathcal{D}_X \otimes_{\mathcal{V}_0^Y} \widetilde{\mathcal{S}}p^{\bullet}(\log Y)$ the new complex.

PROPOSITION 4.1.3. – Let Y be a Koszul free divisor. Then the complex $\mathcal{D}_X \otimes_{\mathcal{V}_0^Y} \widetilde{\mathcal{S}} p^{\bullet}(\log Y)$ is exact.

Proof. – We can work locally. Fix a point $x \in Y$ and a reduced local equation f. To prove that the complex $\mathcal{D} \otimes_{\mathcal{V}_0^f} \widetilde{S}p^{\bullet}(\log f)$ is exact, we define a discrete filtration G^{\bullet} such that the graded complex is exact (cf. [1, ch. 2, lemma 3.13]):

$$G^{k}\left(\mathcal{D} \otimes_{\mathcal{O}} \bigwedge^{p} \operatorname{Der}(\log f)\right) = F^{k-p}(\mathcal{D}) \otimes_{\mathcal{O}} \bigwedge^{p} \operatorname{Der}(\log f)$$
$$G^{k}\left(\frac{\mathcal{D}}{\mathcal{D}(\delta_{1}, \cdots, \delta_{n})}\right) = \frac{F^{k}(\mathcal{D}) + \mathcal{D} \cdot (\delta_{1}, \cdots, \delta_{n})}{\mathcal{D}(\delta_{1}, \cdots, \delta_{n})},$$

with $\{\delta_1, \dots, \delta_n\}$ a basis of $\mathcal{D}er(\log Y)$. Clearly the filtration is compatible with the differential of the complex. Moreover, $\operatorname{Gr}_{G^{\bullet}}(\mathcal{D} \otimes \wedge^p \operatorname{Der}(\log f)) = \operatorname{Gr}_{F^{\bullet}}(\mathcal{D})[-p] \otimes \wedge^p \operatorname{Der}(\log f)$, and, by the previous proposition,

$$\operatorname{Gr}_{G^{\bullet}}\left(\frac{\mathcal{D}}{\mathcal{D}(\delta_{1},\cdots,\delta_{n})}\right) = \frac{\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})}{\sigma(\mathcal{D}\cdot(\delta_{1},\cdots,\delta_{n}))} = \frac{\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})}{\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})\cdot(\sigma(\delta_{1}),\cdots,\sigma(\delta_{n}))}.$$

We consider the complex $\operatorname{Gr}_{G^{\bullet}}(\mathcal{D} \otimes_{\mathcal{V}^{f}_{0}(\mathcal{D})} \widetilde{S}p^{\bullet}(\log f))$:

 $0 \to \operatorname{Gr}_{F^{\bullet}}(\mathcal{D})[-n] \otimes \wedge^{n} \operatorname{Der}(\log f) \xrightarrow{\psi_{-n}} \cdots \xrightarrow{\psi_{-2}} \operatorname{Gr}_{F^{\bullet}}(\mathcal{D})[-1] \otimes \operatorname{Der}(\log f) \xrightarrow{\psi_{-1}} Gr_{F^{\bullet}}(\mathcal{D}) \xrightarrow{\psi_{0}} \frac{\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})}{\operatorname{Gr}_{F^{\bullet}}(\mathcal{D}) \cdot (\sigma(\delta_{1}), \cdots, \sigma(\delta_{n}))} \to 0,$ $\psi_{-p}(G \otimes \delta_{j_{1}} \wedge \cdots \wedge \delta_{j_{p}}) = \sum_{i=1}^{p} (-1)^{i-1} G\sigma(\delta_{j_{i}}) \otimes \delta_{j_{1}} \wedge \cdots \widehat{\delta_{j_{i}}} \cdots \wedge \delta_{j_{p}}, \quad (2 \le p \le n),$ $\psi_{-1}(G \otimes \delta_{i}) = G\sigma(\delta_{i}), \quad \psi_{0}(G) = G + \operatorname{Gr}_{F^{\bullet}}(\mathcal{D}) \cdot (\sigma(\delta_{1}), \cdots, \sigma(\delta_{n})).$

This complex is the Koszul complex of the ring $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$ with respect to the sequence $\sigma(\delta_1), \dots, \sigma(\delta_n)$. So, as this sequence is $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$ -regular in $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$, the complex $\operatorname{Gr}_{G^{\bullet}}(\mathcal{D} \otimes_{\mathcal{V}_0^f} \widetilde{Sp}^{\bullet}(\log f))$ is exact. So $\mathcal{D} \otimes_{\mathcal{V}_0^f} \widetilde{Sp}^{\bullet}(\log f)$ is exact and $\mathcal{D} \otimes_{\mathcal{V}_0^f} Sp^{\bullet}(\log f)$ is a resolution of $\mathcal{D}/\mathcal{D}(\delta_1, \dots, \delta_n)$.

4.2. Perversity of the logarithmic complex

THEOREM 4.2.1. – Let Y be a Koszul free divisor. Then the logarithmic de Rham complex $\Omega^{\bullet}_{X}(\log Y)$ is a perverse sheaf.

Proof. – By proposition 4.1.3 the homology of the complex $\mathcal{D}_X \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{\bullet}(\log Y)$ is concentrated in degree 0. Its homology group in degree 0 is:

$$h^0(\mathcal{D}_X \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{ullet}(\log Y)) = rac{\mathcal{D}_X}{\mathcal{D}_X \cdot \mathcal{D}\mathrm{er}(\log Y)} = \mathcal{E}.$$

But \mathcal{E} is a holonomic \mathcal{D}_X -module because, if $\{\delta_1, \dots, \delta_n\}$ is a local basis of $\mathcal{D}er(\log Y)$ at x, $\mathcal{G}r_F(\mathcal{E})_x = \operatorname{Gr}_{F^{\bullet}}(\mathcal{D})/(\sigma(\delta_1), \dots, \sigma(\delta_n))$ has dimension n (using the fact that $\sigma(\delta_1), \dots, \sigma(\delta_n)$ is a $\mathcal{G}r_{F^{\bullet}}(\mathcal{D}_X)$ -regular sequence). So, using remark 3.2.3 for the first equality and theorem 3.1.2 for the last equality, we have:

$$\Omega_X^{\bullet}(\log Y) = \mathbf{R}\mathcal{H}om_{\mathcal{D}_X}(\mathcal{D}_X \otimes_{\mathcal{V}_Y}^{\mathbf{L}} \mathcal{O}_X, \mathcal{O}_X) = \mathbf{R}\mathcal{H}om_{\mathcal{D}_X}(\mathcal{E}, \mathcal{O}_X)$$

and then the logarithmic de Rham complex is a perverse sheaf, as solution of a holonomic \mathcal{D}_X -module, (cf. [13]).

COROLLARY 4.2.2. – Let Y be any divisor in X, with $\dim_{\mathbb{C}} X = 2$. Then the logarithmic de Rham complex $\Omega^{\bullet}_{X}(\log Y)$ is a perverse sheaf.

Proof. – We know that, if $\dim_{\mathbb{C}} X = 2$, any divisor Y in X is free [17]. So, we have only to check that the other condition of definition 4.1.1 holds. We consider the symbols $\{\sigma_1, \sigma_2\}$ of a basis $\{\delta_1, \delta_2\}$ of Der(log f), where f is a reduced equation of Y. We have to see that they form a $\operatorname{Gr}_{F^{\bullet}}(\mathcal{D})$ -regular sequence. If they do not, they have a common factor $g \in \mathcal{O}$, because they are symbols of operators of order 1. If g is a unit, we divide one of them by g and eliminate the common factor. If g is not a unit, it would be in contradiction with Saito's Criterion, because the determinant of the coefficients of the basis $\{\delta_1, \delta_2\}$ would have as factor g^2 , with g not invertible, and this determinant has to be equal to f multiplied by a unit.

REMARK 4.2.3. – There are Koszul free divisors Y in higher dimensions, and not necessarily normal crossing divisor. For example ([16]), $X = \mathbb{C}^3$ and $Y \equiv \{f = 0\}$, with $f = 2^8 z^3 - 2^7 x^2 z^2 + 2^4 x^4 z + 2^4 3^2 x y^2 z - 2^2 x^3 y^2 - 3^3 y^4$. A basis of Der(log f) is $\{\delta_1, \delta_2, \delta_3\}$, with $\delta_1 = 6y \partial_x + (8z - 2x^2) \partial_y - xy \partial_z$, $\delta_2 = (4x^2 - 48z) \partial_x + 12xy \partial_y + (9y^2 - 16xz) \partial_z$, $\delta_3 = 2x \partial_x + 3y \partial_y + 4z \partial_z$, and the sequence $\{\sigma(\delta_1), \sigma(\delta_2), \sigma(\delta_3)\}$ is Gr_F•(D)-regular.

REMARK 4.2.4. – The Koszul condition over free divisor is not necessary for the perversity of the logarithmic de Rham complex. For example ([5]), if $X = \mathbb{C}^3$ and $Y \equiv \{f = 0\}$, with f = xy(x+y)(y+tx), a basis of Der(log f) is $\{x\partial_x + y\partial_y, x^2\partial_x - y^2\partial_y - t(x+y)\partial_t, (xt+y)\partial_t\}$ and the graded complex $\mathcal{G}r_{G^{\bullet}}(\mathcal{D}_X \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{\bullet}(\log Y)) = K(\sigma(\delta_1), \sigma(\delta_1), \sigma(\delta_3); \mathcal{G}r_{F^{\bullet}}(\mathcal{D}_X))$ is not concentrated in degree 0, but the complex $\mathcal{D}_X \otimes_{\mathcal{V}_0^Y} \mathcal{S}p^{\bullet}(\log Y)$ is. Moreover, in this case the dimension of $\mathcal{D}_X/\mathcal{D}_X(\delta_1, \delta_2, \delta_3)$ is 3 and so, $\Omega^{\bullet}_X(\log Y)$ is a perverse sheaf.

Acknowledgements

I wish to thank my advisor Luis Narváez for introducing me to the subject of this work and for giving me useful suggestions during my research work. I am grateful to David Mond for his interest and for revising my English. I also wish to thank the referee for a careful reading of the manuscript and for a number of suggestions which I hope make the paper easier to read.

REFERENCES

- [1] J.E. BJÖRK, Rings of Differential Operators, (North Holland, Amsterdam, 1979).
- [2] N. BOURBAKI, Algèbre Commutative, Chapitres 3 et 4, (Actualités Scientifiques et Industrielles, Vol. 1293, Hermann, Paris, 1967).
- [3] C. BĂNICĂ and O. STĂNĂSILĂ, Algebraic methods in the global theory of complex spaces, (John Wiley, New York, 1976).
- [4] F.J. CALDERÓN-MORENO, Quelques propriétés de la V-filtration relative à un diviseur libre, (Comptes Rendus Acad. Sci. Paris, t. 323, Série I, 1996, pp. 377-381).
- [5] F.J. CALDERÓN-MORENO, D. MOND, L. NARVÁEZ-MACARRO and F.J. CASTRO-JIMÉNEZ, Logarithmic Cohomology of the complement of a Plane Curve. (Preprint, Univ. of Warwick, 1999).
- [6] F.J. CASTRO-JIMÉNEZ, D. MOND and L. NARVÁEZ-MACARRO, Cohomology of the complement of a free divisor, (Transactions of the A.M.S., Vol. 348, 1996, pp. 3037–3049).
- [7] J. DAMON, Higher multiplicities and Almost Free Divisor and Complete Intersections, (Memoirs of the A.M.S., Vol. 589, 1996).
- [8] P. DELIGNE, Equations Différentielles à Points Singuliers Réguliers, (Lect. Notes in Math, Vol. 163, Springer-Verlag, 1987).
- [9] H. ESNAULT and E. VIEHWEG, Logarithmic De Rham complexes and vanishing theorems. Invent. Math., Vol. 86, 1986, pp. 161–194).
- [10] C. GODBILLON, Géométrie Différentielle et Mécanique Analytique. (Collection Méthodes, Hermann, Paris, 1969).
- [11] M. KASHIWARA, Vanishing cycle sheaves and holonomic systems of differential equations, (Lect. Notes in Math, Vol. 1012, 1983, pp. 134–142).
- [12] B. MALGRANGE, Le polynôme de Bernstein-Sato et cohomologie évanescente, (Astérisque, Vol. 101-102, 1983, pp. 233–267).
- [13] Z. MEBKHOUT, Le formalisme des six opérations de Grothendieck pour les \mathcal{D}_X -modules cohérents, (Travaux en cours, Vol. 35, 1989, Hermann, Paris).
- [14] F. PHAM, Singularités des systèmes de Gauss-Manin, (Progress in Math, Vol. 2, Birkhäuser, 1979).
- [15] G.S. RINEHART, Differential forms on general commutative algebras, (Trans. A.M.S., Vol. 108, 1963, pp. 195-222).
- [16] K. SAITO, On the uniformization of complements of discriminant loci. (Preprint, Williams College, 1975).
- [17] K. SAITO, Theory of logarithmic differential forms and logarithmic vector fields. (J. Fac. Sci. Univ. Tokyo, Vol. 27, 1980, pp. 265–291).
- [18] H. TERAO, Arrangements of hyperplanes and their freeness-I. (J. Fac. Sci. Univ. Tokyo, Vol. 27, 1980, pp. 293–312).

(Manuscript received January 22, 1998; accepted after revision November 30, 1998.)

F. J. CALDERÓN-MORENO

Facultad de Matemáticas, Univ. de Sevilla, Ap 1160, 41080 Sevilla, Spain.
Mathematics Institute. Univ. of Warwick, Coventry CV4 7AL, United Kingdom. E-mail: calderon@algebra.us.es

714

 4^{e} série – tome 32 – 1999 – n° 5