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FINITE QUANTUM GROUPS OVER ABELIAN GROUPS
OF PRIME EXPONENT

BY NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

ABSTRACT. – We classify pointed finite-dimensional complex Hopf algebras whose group of group-like
elements is abelian of prime exponentp, p > 17. The Hopf algebras we find are members of a general
family of pointed Hopf algebras we construct from Dynkin diagrams. As special cases of our construction
we obtain all the Frobenius–Lusztig kernels of semisimple Lie algebras and their parabolic subalgebras. An
important step in the classification result is to show that all these Hopf algebras are generated by group-like
and skew-primitive elements.

 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous classifions les algèbres de Hopf complexes de dimension finie dont le groupe des
éléments groupoïdaux est abélien d’exposant premierp, p > 17. Les algèbres de Hopf que nous trouvons
appartiennent à une famille d’algèbres de Hopf pointéesque nous construisons à partir de diagrammes
de Dynkin. Comme cas particuliers de notre construction nous obtenons tous les noyaux de Frobenius–
Lusztig des algèbres de Lie semi-simples et leurs sous-algèbres paraboliques. Une étape importante dans
notre classification consiste à montrer que toutes ces algèbres de Hopf sont engendrées par des éléments
groupoïdaux et des éléments primitifs tordus.

 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Since the discovery of quantum groups (Drinfeld, Jimbo) and their finite dimensional
variations (Lusztig, Manin), these objects were studied from different points of view and had
many applications. The present paper is part of a series where we intend to show that important
classes of Hopf algebras are quantum groups and therefore belong to Lie theory.

We will assume that the ground-fieldk is algebraically closed of characteristic0. One of our
main results is the explicit construction of a general family of pointed Hopf algebras from Dynkin
diagrams (Theorem 5.17). All the Frobenius–Lusztig kernels and their parabolic subalgebras
belong to this family, but in addition we get many new examples. We show that any finite
dimensional pointed Hopf algebra with group of prime exponent (greater than17) is indeed
in this family; see our main Theorem below. An important step in the proof follows from another
main result (Theorem 7.6), where we show that a large family of finite dimensional pointed Hopf
algebras is generated by group-like and skew-primitive elements, giving additional support to a
conjecture in [5].

If A is a Hopf algebra, then we denote byG(A) the group of group-like elements ofA. Recall
thatA is pointedif kG(A) is the largest cosemisimple subcoalgebra ofA, or equivalently if any
irreducibleA-comodule is one-dimensional.
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2 N. ANDRUSKIEWITSCH AND H.-J. SCHNEIDER

Let Γ be a finite abelian group and̂Γ the group of its characters. We denote the unit element
in Γ̂ by ε.

To state our main result, we have to introduce some notation. Alinking datumD of finite
Cartan type forΓ is a collectionD consisting of

a Cartan matrix of finite type(aij)1�i,j�θ of size θ × θ for someθ � 1, [20], elements
g1, . . . , gθ ∈ Γ, charactersχ1, . . . , χθ ∈ Γ̂ satisfying

χi(gi) �= 1, for all 1 � i � θ,(1.1)

χj(gi)χi(gj) = χi(gi)aij , for all 1 � i, j � θ,(1.2)

and a family(λij)1�i<j�θ, i�j of elements ink such thatλij is arbitrary if gigj �= 1 and
χiχj = ε, but 0 otherwise.

The elements(λij)1�i<j�θ, i�j are called the linking elements ofD.
Here, byi ∼ j, resp.i � j, 1 � i, j � θ we mean thati andj belong to the same connected

component, resp. to different connected components of the Dynkin diagram corresponding to
(aij).

Now we fix a primep > 2 and a natural numbers. We consider finite abelian groups of the
form Γ (s) := (Z/(p))s.

Let D be a linking datum of finite Cartan type forΓ (s) with Cartan matrix(aij)1�i,j�θ and
linking elements(λij)1�i<j�θ, i�j .

We define the algebrau(D) by generatorsa1, . . . , aθ, y1, . . . , ys and relations

yp
h = 1, ymyh = yhym, for all 1 � m,h � s,(1.3)

gaj = χj(g)ajyh, for all g ∈ Γ, 1 � j � θ,(1.4)

(adai)1−aij aj = 0, for all 1 � i �= j � θ, i ∼ j,(1.5)

aiaj −χj(gi)ajai = λij(1− gigj), for all 1 � i < j � θ, i � j;(1.6)

ap
α = 0, for all α ∈ Φ+.(1.7)

To formulate these relations we used the following natural interpretation of elementsg ∈ Γ
as words in the generatorsyh, 1 � h � s. Let Yh, 1 � h � s, be aZ/(p)-basis ofΓ, and write
g = Y t1

1 · · ·Y ts
s , wheret1, . . . , ts are natural numbers. Then in the relations above replaceg by

the formal expressionyt1
1 · · ·yts

s .
In (1.5),adai is the adjoint action ofai, that is for allx ∈ u(D),

(adai)x = ai(1)xS(ai(2)) = aix− gixg−1
i ai.

In this way the left hand side of (1.5) is meant as a well-defined expression in the generators.
In (1.7),Φ+ is the set of positive roots of the root system associated to the Cartan matrix(aij);

the “root vectors”aα are defined in Section 4.1 below.
Our main theorem is

THEOREM 1.8. – (a)Let D be a linking datum of finite Cartan type forΓ (s) with Cartan
matrix (aij), and assume thatp > 3 if (aij) has a connected component of typeG2. Thenu(D)
has a unique Hopf algebra structure determined by

∆yh = yh ⊗ yh, ∆ai = ai ⊗ 1 + gi ⊗ ai, for all 1 � h � s, 1 � i � θ.(1.9)

The Hopf algebrau(D) is pointed,G(u(D)) � Γ (s) anddimu(D) = ps+|Φ+|.
(b) Let p > 17. LetA be a pointed finite-dimensional Hopf algebra such thatG(A) � Γ (s).

Then there exists a linking datumD of finite Cartan type forΓ (s) such thatA� u(D).
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FINITE QUANTUM GROUPS OVER ABELIAN GROUPS OF PRIME EXPONENT 3

Remarks1.10. – (i) In Section 5 we define the notion of a “linking datum” for a general finite
abelian groupΓ. In the situation of the main theorem it is always possible to reduce to the case of
linking data with all entriesλij equal to0 or 1. Thus it follows from Theorem 1.8 that there are
only finitely many isomorphism classes of finite dimensional Hopf algebras with fixed coradical
kΓ (s). For more general finite abelian groups, this is no longer true [4,8,16].

(ii) The dimensions of the Hopf algebras in Theorem 1.8 are very special numbers. This
phenomenon is shown in general for arbitrary finite groupsΓ in Theorem 7.9.

(iii) Let (aij)1�i,j�θ be a finite Cartan matrix. The problem of actually finding all the

collectionsgi ∈ Γ (s), χi ∈ Γ̂ (s), 1 � i � θ, such that (1.1) and (1.2) hold has been discussed in
[5]. It can be stated as the problem of finding all the solutions of a system of algebraic equations
overZ/(p) and it is in principle solvable. Note that in particular

θ � 2s
p− 1
p− 2

,

see [5, Prop. 8.3].
(iv) The question of finding all the possible linking elements attached to a fixed collection

gi, χi, 1 � i � θ, (aij)1�i,j�θ , is also of combinatorial nature, see Section 5, and also [13]. Once
these two problems are solved effectively, the isomorphism classes of the Hopf algebrasu(D)
can be determined using [5, Prop. 6.3], [6, Lemma 1.2].

(v) As a consequence of Theorem 1.8 one obtains the complete classification of all finite
dimensional pointed Hopf algebras with group of group-likesΓ (1) = Z/(p), p �= 5,7. It is the
list given in [5, Theorem 1.3] plus the Frobenius–Lusztig kernels as described in [4]. Indeed,
replacing in the proof of Theorem 1.8 [5, Cor. 1.2] by [5, Th. 1.3] we get the classification for
all primesp �= 5 or 7, in view of Theorem 6.8 and [6, Lemma 4.2]. The only cases not covered
arep = 5, typeB2 andp = 7, typeG2. This result was independently obtained by Musson [28]
using different methods starting from our previous article [5].

(vi) Up to now, the determination of all finite dimensional pointed Hopf algebrasA with
G(A) � Γ, for a fixed groupΓ, was known only forΓ = Z/(2) [29]. Other classification results
of pointed Hopf algebras are known for some fixed dimensiond: d = p2 is easy and follows from
[29,30];d = p3 was done in [4], and by different methods in [10,36];d = p4 in [6] (and does not
seem to be possible via the other methods);d = 16 in [11], d = 32 in [17]; results on the case
whenΓ has exponent2 can be found in [2].

(vii) The classification of allcoradically gradedpointed Hopf algebras of dimensionp5 was
obtained in [18]. It is not difficult to deduce the classification of all pointed Hopf algebras of
dimensionp5 using Theorem 1.8 and results in [6].

(viii) The Hopf algebrasu(D) can be defined for any Cartan datum of finite typeD of
an arbitrary finite abelian group. Part (a) of Theorem 1.8 is a special case of the general
Theorem 5.17. For suitable choices ofD, the Frobenius–Lusztig kernels and their parabolic
subalgebras are of the formu(D). See Example 5.12. Otherwise Theorem 5.17 provides many
new examples of finite dimensional Hopf algebras arising from exotic linking data.

(ix) The results of this paper heavily dependon our paper [5] and on previous work on quantum
groups [21,22,33,34,12,27].

Conventions. Our reference for the theory of Hopf algebras is [26]. The notation for Hopf
algebras is standard:∆, S, ε, denote respectively the comultiplication, the antipode, the counit;
we use Sweedler’s notation but dropping the summation symbol.

If C is a coalgebra thenG(C) denotes the set of its group-like elements andC0 ⊂ C1 ⊂ · · ·
its coradical filtration. So thatC0 is the coradical ofC. As usual,Pg,h(C) denotes the space
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4 N. ANDRUSKIEWITSCH AND H.-J. SCHNEIDER

of (g, h)-skew primitives ofC, g, h ∈ G(C). If C has a distinguished group-like 1, then we set
P(C) = P1,1(C), the space of primitive elements ofC.

If A is an algebra and(xi)i∈I is a family of elements ofA thenk〈xi〉i∈I or simply k〈xi〉,
resp.〈xi〉i∈I or 〈xi〉 denotes the subalgebra, resp. the two-sided ideal, generated by thexi’s.

Let H be a Hopf algebra. A Yetter–Drinfeld module overH is a vector spaceV provided with
structures of leftH-module and leftH-comodule such thatδ(h.v) = h(1)v(−1)Sh(3) ⊗h(2).v(0).
We denote byHHYD the (braided) category of Yetter–Drinfeld modules overH .

Assume thatH = kΓ whereΓ is a finite abelian group. We denoteΓ
ΓYD :=H

H YD. Let g ∈ Γ,
χ ∈ Γ̂ andV a module, resp. a comodule, resp. a Yetter–Drinfeld module, overΓ. Then we denote
V χ = {v ∈ V : h.v = χ(h)v, ∀h ∈ Γ}, resp.Vg = {v ∈ V : δ(v) = g⊗ v}, resp.V χ

g := Vg ∩ V χ.
If V is a locally finite Yetter–Drinfeld module, thenV =

⊕
g∈Γ,χ∈Γ̂

V χ
g . Conversely, a vector

spaceV provided with a direct sum decompositionV =
⊕

g∈Γ,χ∈Γ̂
V χ

g has an evident Yetter–
Drinfeld module structure.

2. Outline of the paper and proof of the main result

Theorem 1.8 follows from Theorems 4.5, 5.17, 6.8, 6.10 and Corollary 7.7 in the present
article, along the guidelines proposed in [4]. We give now the proof of Theorem 1.8 assuming
those results which hold over arbitrary finite abelian groups. This section serves also as a guide
to the different sections of the paper.

2.1. The proof

Let A be a finite dimensional pointed Hopf algebra withG(A) � Γ (s). Let

grA :=
⊕
n�0

grA(n),

wheregrA(0) = A0, grA(n) = An/An−1, if n > 0 be the graded coalgebra associated to
the coradical filtration ofA. ThengrA is a graded Hopf algebra [26] and both the inclusion
ι :A0 ↪→ grA and the graded projectionπ : grA→A0 are Hopf algebra maps. Let

R := grAcoπ =
{
x ∈ grA: (id⊗π)∆(x) = x⊗ 1

}
;

it is a graded braided Hopf algebra inΓ (s)
Γ (s)YD with the grading inherited fromgrA:

R =
⊕
n�0

R(n), R(n) := R∩ grA(n).

Notice thatgrA can be reconstructed fromR as a biproduct:

grA� R#kΓ (s).

The braided Hopf algebraR is called thediagramof A. One has

R(0) = k1,(2.1)

R(1) =P(R),(2.2)
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FINITE QUANTUM GROUPS OVER ABELIAN GROUPS OF PRIME EXPONENT 5

and we know from Corollary 7.7 below that

R is generated as an algebra by R(1).(2.3)

Let V := R(1); it is a Yetter–Drinfeld submodule ofR. SinceR satisfies (2.1), (2.2) and (2.3) we
know thatR � B(V ) is a Nichols algebra, see Section 3.2. Now there exists a basisx1, . . . , xθ

of V andg1, . . . , gθ ∈ Γ (s), χ1, . . . , χθ ∈ Γ̂ (s) such thatxi ∈ V χi
gi

, 1 � i � θ. SinceA is finite
dimensional,χi(gi) �= 1 for all i [4, Lemma 3.1] and there is a finite Cartan matrix(aij)1�i,j�θ

such that (1.2) holds [5, Cor. 1.2].
To give an explicit description ofB(V ), we introduceroot vectorsin B(V ) generalizing the

root vectors defined in [21]. We note that Lusztig’s root vectors can be described up to a non-
zero scalar as an iterated braided commutator of simple root vectors. We then define the root
vectors in the general case by exactly the same iterated braided commutator with respect to our
more general braiding. As one of our main results, we obtain a presentation by generators and
relations and a PBW basis forB(V ) from the corresponding Theorem for Frobenius–Lusztig
kernels, using Drinfeld’s twisting essentially in the same way as in [5]. See Theorem 4.5. We
can then deduce part (a) of Theorem 1.8. For connected Dynkin diagrams it is a consequence of
Theorem 4.5; in the non-connected case we apply the idea of twisting the algebra structure by a
2-cocycle which is given by a Hopf algebra map [14]. See Theorem 5.17.

It follows from Theorem 4.5 thatgrA can be presented as an algebra by generatorsy1, . . . , ys

(homogeneous of degree0) andx1, . . . , xθ (homogeneous of degree1), and relations

yp
h = 1, ymyh = yhym, for all 1 � m,h � s,(2.4)

yhxj = χj(yh)xjyh, for all 1 � h � s, 1 � j � θ,(2.5)

(adxi)1−aij xj = 0, for all 1 � i �= j � θ;(2.6)

xp
α = 0, for all α ∈ Φ+;(2.7)

and where the Hopf algebra structure is determined by

∆yh = yh ⊗ yh, ∆xi = xi ⊗ 1 + gi ⊗ xi, for all 1 � h � s, 1 � i � θ.(2.8)

By [4, Lemma 5.4], we can chooseai ∈ Pgi,1(A)χi such that the class ofai in grA(1)
coincides withxi. We also keep the notationyj for the generators ofG(A). It is clear that
relations (1.3) and (1.4) hold.Now relations (1.5) and (1.6), resp. (1.7), hold because of
Theorem 6.8, resp. Lemma 6.9.

The Theorem now follows from Theorem 6.10.�
2.2. The general case

There are several obstructions to extend Theorem 1.8 to general finite abelian groups. First, it
is open whether the diagram of a finite dimensional pointed Hopf algebra is generated in degree
one, i.e. when it is a Nichols algebra; second, there are finite dimensional Nichols algebras which
are not of Cartan type [29].

For liftings ofgrA whenR is a Nichols algebra of Cartan type, the quantum Serre relations of
connected vertices in general still hold as we show in Theorem 6.8 below; however the powers
of the root vectors are not necessarily0. We should haveaNα

α = uα ∈ kG(A); the determination
of uα whenα is a non-simple root was done in [6] for typeA2, in [9] for typeB2, and in [7] for
typeAn for anyn (up to some exceptional cases concerning the orders of the roots of unity).
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6 N. ANDRUSKIEWITSCH AND H.-J. SCHNEIDER

3. Braided Hopf algebras

3.1. Biproducts

Let R be a braided Hopf algebra inHHYD; this means thatR is an algebra and a coalgebra
in H

HYD and that the comultiplication∆R :R → R ⊗ R is an algebra map when inR ⊗ R the
multiplication twisted by the braidingc is considered; in additionR admits an antipode. To
avoid confusions we use the following variant of Sweedler’s notation for the comultiplication of
R: ∆R(r) = r(1) ⊗ r(2). Let A = R#H be the biproduct or bosonization ofR [24], [31]. Recall
that the multiplication and comultiplication ofA are given by

(r#h)(s#f) = r(h(1).s)#h(2)f, ∆(r#h) = r(1)#(r(2))(−1)h(1) ⊗ (r(2))(0)#h(2).

The mapsπ :A → H and ι :H → A, π(r#h) = ε(r)h, ι(h) = 1#h, are Hopf algebra
homomorphisms; we haveR = {a ∈ A: (id⊗π)∆(a) = a ⊗ 1}. Conversely, letA, H be
Hopf algebras provided with Hopf algebra homomorphismsπ :A → H and ι :H → A. Then
R = {a ∈ A: (id⊗π)∆(a) = a ⊗ 1} is a braided Hopf algebra inHHYD. The action. of H on
R is the restriction of the adjoint action (composed withι) and the coaction is(π ⊗ id)∆; R is a
subalgebra ofA and the comultiplication is∆R(r) = r(1)ιπS(r(2)) ⊗ r(3). These constructions
are inverse to each other. We shall mostly omitι in what follows.

Let ϑ :A→R be the map given byϑ(a) = a(1)πS(a(2)). Then

ϑ(ab) = a(1)ϑ(b)πS(a(2)),(3.1)

for all a, b ∈ A and ϑ(h) = ε(h) for all h ∈ H ; therefore, for alla ∈ A, h ∈ H , we have
ϑ(ah) = ϑ(a)ε(h) and

ϑ(ha) = h.ϑ(a) = ϑ
(
h(1)aπS(h(2))

)
.(3.2)

Notice also thatϑ induces a coalgebra isomorphismA/AH+ � R. In fact, the isomorphism
A→R#H can be expressed explicitly as

a �→ ϑ(a(1))#π(a(2)), a ∈A.

If A is a Hopf algebra, the well-known adjoint representationad of A on itself is given by
adx(y) = x(1)yS(x(2)). If R is a braided Hopf algebra inHHYD then there is also a braided
adjoint representationadc of R on itself given by

adc x(y) = µ(µ⊗S)(id⊗ c)(∆⊗ id)(x⊗ y),

whereµ is the multiplication andc ∈ End(R ⊗ R) is the braiding. Note that ifx ∈ P(R) then
the braided adjoint representation ofx is just

adc x(y) = µ(id−c)(x⊗ y) =: [x, y]c.(3.3)

The element[x, y]c defined by the second equality for anyx andy, regardless of whetherx is
primitive, will be called a braided commutator.

WhenA = R#H , then for allb, d∈ R,

ad(b#1)(d#1) =
(
adc b(d)

)
#1.(3.4)
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3.2. Nichols algebras

Let H be a Hopf algebra and letR =
⊕

n∈N
R(n) be agradedbraided Hopf algebra inHHYD.

We say thatR is aNichols algebraif 2.1, 2.2 and 2.3 hold, cf. [29,5,3]. A Nichols algebraR is
uniquely determined by the Yetter–Drinfeld moduleP(R); given a Yetter–Drinfeld moduleV ,
there exists a unique (up to isomorphism) Nichols algebraR with P(R) � V . It will be denoted
B(V ). In fact, the kernel of the canonical map :T (V ) → B(V ) can be described in several
different ways. For instance,Ker =

⊕
n�0 KerSn whereSn is the “quantum symmetrizer”

defined from the braidingc; so thatB(V ) is a “quantum shuffle algebra” and as algebra and
coalgebra only depends on the braidingc :V ⊗ V → V ⊗ V . See [29,37,23,33–35].

Let H = kΓ where Γ is a finite abelian group. LetV be a finite dimensional Yetter–
Drinfeld module overΓ. Then there exist a basisx1, . . . , xθ of V and elementsg1, . . . , gθ ∈ Γ,
χ1, . . . , χθ ∈ Γ̂ such that

xj ∈ V χj
gj

, for all 1 � j � θ.(3.5)

In what follows we shall only consider Yetter–Drinfeld modulesV such thatχi(gi) �= 1,
1 � i � θ. The braidingc is given with respect to the basisxi ⊗ xj by c(xi ⊗ xj) = bij xj ⊗ xi,
where

(bij)1�i,j�θ =
(
χj(gi)

)
1�i,j�θ

.

Remark3.6. – LetV , resp.Ṽ , be a finite dimensional Yetter–Drinfeld module overΓ, resp.
Γ̃, with a basisx1, . . . , xθ such thatxi ∈ V χi

gi
, resp. with a basis̃x1, . . . , x̃θ such that̃xi ∈ V χ̃i

g̃i
.

Assume thatχi(gj) = χ̃i(g̃j) for all 1 � i, j � θ. Then there exists a unique algebra and
coalgebra isomorphismB(V )→ B(Ṽ ) such thatxi �→ x̃i for all 1 � i � θ.

DEFINITION 3.7. – We shall say that a braiding given by a matrixb = (bij)1�i,j�θ whose
entries are roots of unity isof Cartan typeif for all i, j, bii �= 1 and there existsaij ∈ Z such that

bijbji = b
aij

ii .

The integersaij are uniquely determined by the following rules:
• If i = j we takeaii = 2;
• if i �= j, we select the uniqueaij such that−ordbii < aij � 0.

Then(aij) is a generalized Cartan matrix [20]. We shall say a Yetter–Drinfeld moduleV is
of Cartan type, resp. finite Cartan type, if its corresponding braiding is of Cartan type, resp. the
same plus the matrix(aij) is of finite type.

3.3. The twisting functor

Let H be a Hopf algebra and letF be an invertible element inH ⊗H such that

F12(∆⊗ id)F = F23(id⊗∆)F, (ε⊗ id)(F ) = 1 = (id⊗ ε)(F ).(3.8)

ThenHF , the same algebraH but with the comultiplication∆F := F∆F−1, is again a Hopf
algebra [15]. We shall writeF = F 1 ⊗ F 2, F−1 = G1 ⊗ G2; the new comultiplication will be
denoted by∆F (h) = h(1,F ) ⊗ h(2,F ).

Let nowR be a braided Hopf algebra inHHYD, letA = R#H be its bosonization and consider
the Hopf algebraAF . It follows from the definitions thatπ :AF → HF and ι :HF → AF are
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8 N. ANDRUSKIEWITSCH AND H.-J. SCHNEIDER

also Hopf algebra homomorphisms. Hence

RF := {a ∈AF : (id⊗π)∆F (a) = a⊗ 1}

is a braided Hopf algebra in the categoryHF

HF
YD. We consider the corresponding mapϑF and

defineψ :R→ RF by

ψ(r) = ϑF (r), r ∈ R.(3.9)

The mapψ was defined in [5] in the caseH = kΓ is the group algebra of a finite abelian group.
The following lemma generalizes [5, Lemma 2.3]; part (iii), new even forH = kΓ, will be needed
in the sequel.

LEMMA 3.10. – (i)ψ is an isomorphism ofH-modules.(Recall thatH = HF as algebras.)
(ii) If r, s ∈ R then

ψ(rs) = F 1.ψ(r)F 2.ψ(s).(3.11)

(iii) If r ∈ R then

∆RF ψ(r) = F 1.ψ
(
r(1)

)
⊗ F 2.ψ

(
r(2)

)
.(3.12)

(iv) If R is a graded braided Hopf algebra, thenRF also is andψ is a graded map. IfR is a
coradically graded braided Hopf algebra(resp. a Nichols algebra), thenRF also is.

Proof. –(i) follows from (3.2):ψ(h.r) = ϑF (h.r) = ϑF (hr) = h.ϑF (r) = h.ψ(r). Now we
prove (ii):

ψ(rs) = ϑF (rs) = r(1,F )ϑF (s)π
(
SF (r(2,F ))

)
= r(1,F )π

(
SF (r(2,F ))

)
π(r(3,F ))ϑF (s)π

(
SF (r(4,F ))

)
= ψ(r(1,F ))π(r(2,F )).ψ(s) = ψ

(
F 1r(1)G

1
)
π
(
F 2r(2)G

2
)
.ψ(s)

= ψ
(
F 1r(1)

)
ε
(
G1

)
π
(
F 2r(2)G

2
)
.ψ(s) = F 1.ψ(r(1))π

(
F 2)π(r(2)

)
.ψ(s)

= F 1.ψ(r)π(F 2).ψ(s),

as claimed. Here we have used (3.1), the definitions and (3.8). For the proof of (iii), we first
observe that, ifr ∈R, then

ψ
(
r(1)

)
⊗ ψ

(
r(2)

)
= ϑF

(
r(1)πS(r(2))

)
⊗ ϑF (r(3)) = ψ(r(1))⊗ ψ(r(2)).(3.13)

Using thatϑF is a coalgebra map, (3.2) and (3.13), we conclude that

∆RF ψ(r) = ∆RF ϑF (r) = ϑF (r(1,F ))⊗ ϑF (r(2,F ))

= ϑF

(
F 1r(1)G

1
)
⊗ ϑF

(
F 2r(2)G

2
)

= ϑF

(
F 1r(1)

)
⊗ ϑF

(
F 2r(2)

)
= F 1.ϑF (r(1))⊗ F 2.ϑF (r(2)) = F 1.ψ

(
r(1)

)
⊗ F 2.ψ

(
r(2)

)
.

The proof of (iv) has no difference with the proof of the analogous statement in [5, Lemma
2.3]. �

We now consider the special case whenH = kΓ, Γ a finite abelian group. Letω : Γ̂× Γ̂→ k×

be a2-cocycle, i.e.ω(τ,1) = ω(1, τ) = 1 andω(τ, ζ)ω(τζ, η) = ω(τ, ζη)ω(ζ, η). The cocycleω
allows to define a mapΨ: Γ̂× Γ→ Γ by

〈τ,Ψ(χ, g)〉= ω(τ,χ)ω(χ, τ)−1〈τ, g〉, τ ∈ Γ̂.(3.14)
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We identify H with the Hopf algebrakΓ̂ of functions on the group̂Γ; we denote byδτ ∈ H
the function given byδτ (ζ) = δτ,ζ , τ, ζ ∈ Γ̂. Thenδτ = 1

|Γ|
∑

g∈Γ〈τ, g−1〉g. Let F ∈ H ⊗H be
given by

F =
∑

τ,ζ∈Γ̂

ω(τ, ζ)δτ ⊗ δζ .

ThenF satisfies (3.8); note thatH = HF . Let nowR be a braided Hopf algebra inΓΓYD; we can
consider the Hopf algebrasA = R#kΓ andAF , the braided Hopf algebraRF ∈ Γ

ΓYD and the
mapψ :R→ RF . We have

ψ(r) =
∑
τ∈Γ̂

ω(χ, τ)−1r#δτ , r ∈Rχ; ψ
(
Rχ

g

)
= Rψ

Ψ(χ,g).

See [5, Lemma 2.3]. Note that (3.11) is nowψ(rs) = ω(χ, τ)ψ(r)ψ(s), r ∈Rχ, s ∈ Rτ .

LEMMA 3.15. – If r ∈ P (R)χ
g ands ∈Rτ then

ψ
(
[r, s]c

)
= ω(χ, τ)[ψ(r), ψ(s)]c.(3.16)

Proof. –We have

ψ
(
[r, s]c

)
= ψ

(
rs− τ(g)sr

)
= ω(χ, τ)ψ(r)ψ(s) −ω(τ,χ)τ(g)ψ(s)ψ(r)

= ω(χ, τ)
(
ψ(r)ψ(s) − 〈τ,Ψ(χ, g)〉ψ(s)ψ(r)

)
= ω(χ, τ)[ψ(r)), ψ(s)]c,

where we used (3.14).�
Remark3.17. – It is possible to show that(ψ ⊗ ψ)c(r ⊗ s) = F.cF (ψ(r) ⊗ ψ(s)), for all

r ∈Rχ
g , s ∈ Rτ .

From the previous considerations and Lemma 3.10 we immediately get

PROPOSITION 3.18. –Let R be an algebra inΓ
ΓYD, (xi)i∈I a family of elements ofR,

xi ∈ Rχi
gi

for somegi ∈ Γ, χi ∈ Γ̂. Then:
(i) ψ(k〈xi〉) = k〈ψ(xi)〉, ψ(〈xi〉) = 〈ψ(xi)〉.
(ii) If R has a presentation by generatorsxi and relationstj , where also thetj ’s are

homogeneous thenRF has a presentation by generatorsψ(xi) and relationsψ(tj).
(iii) If xi is central andω(χi, τ) = ω(τ,χi) for all τ such thatRτ �= 0, thenψ(xi) is central.

4. Root vectors and Quantum Serre relations

4.1. Root vectors

In this section, we assume the following situation:
We fix a finite abelian groupΓ, a finite Cartan matrix(aij)1�i,j�θ and g1, . . . , gθ ∈ Γ,

χ1, . . . , χθ ∈ Γ̂ such that (1.1) and (1.2) hold. Letd1, . . . , dθ ∈ {1,2,3} such thatdiaij = djaji

for all i, j. We setqi = χi(gi), Ni the order ofqi. We assume, for alli andj, that the order of
χi(gj) is odd, and thatNi is not divisible by3 if i belongs to a connected component of typeG2.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



10 N. ANDRUSKIEWITSCH AND H.-J. SCHNEIDER

Let X be the set of connected components of the Dynkin diagram corresponding to(aij).
We assume that for eachI ∈ X , there existcI , dI such thatI = {j: cI � j � dI}; that is, after
reordering the Cartan matrix is a matrix of blocks corresponding to the connected components.
Let I ∈ X and i ∼ j in I; then Ni = Nj , henceNI := Ni is well defined. LetΦI , resp.
Φ+

I , be the root system, resp. the subset of positive roots, corresponding to the Cartan matrix
(aij)i,j∈I ; then Φ =

⋃
I∈X ΦI , resp.Φ+ =

⋃
I∈X Φ+

I is the root system, resp. the subset of
positive roots, corresponding to the Cartan matrix(aij)1�i,j�θ . Let α1, . . . , αθ be the set of
simple roots.

Let WI be the Weyl group corresponding to the Cartan matrix(aij)i,j∈I ; we identify it with
a subgroup of the Weyl groupW corresponding to the Cartan matrix(aij). We fix a reduced
decomposition of the longest elementω0,I of WI in terms of simple reflections. Then we obtain
a reduced decomposition of the longest elementω0 = si1 . . . siP of W from the expression ofω0

as product of theω0,I ’s in some fixed order of the components, say the order arising from the
order of the vertices. Thereforeβj := si1 . . . sij−1 (αij ) is a numeration ofΦ+.

We fix a finite dimensional Yetter–Drinfeld moduleV over Γ with a basisx1, . . . , xθ with
xi ∈ V χi

gi
, 1 � i � θ.

Major examples of modules of Cartan type are the Frobenius–Lusztig kernels. LetN > 1 be
an odd natural number and letq ∈ k be a primitiveN th root of1, not divisible by3 in case(aij)
has a component of typeG2. Let G = Z/(N)θ = 〈e1〉 ⊕ · · · ⊕ 〈eθ〉; let ηj ∈ Ĝ be the unique
character such that〈η(j), e(i)〉 = qdiaij . Let V be a Yetter–Drinfeld module overG with a basis
X1, . . . ,Xθ such that

Xi ∈ Vei
ηi

, for all 1 � i � θ.

We denote byc the braiding ofV. Lusztig defined root vectorsXα ∈ B(V), α ∈ Φ+ [22].
One can see from [23] that, up to a non-zero scalar, each root vector can be written as an
iterated braided commutator in some sequenceX
1 , . . . ,X
a of simple root vectors such as
[[X
1 , [X
2 ,X
3]c]c, [X
4,X
5 ]c]c. This can also be seen in the situation in [32].

We now fix for eachα ∈ Φ+ such a representation ofXα as an iterated braided commutator. In
the general case of ourV , we define root vectorsxα in the tensor algebraT (V ), α ∈ Φ+, as the
same formal iteration of braided commutators in the elementsx1, . . . , xθ instead ofX1, . . . ,Xθ

but with respect to the braidingc given by the general matrix(χj(gi)). Note that eachxα is
homogeneous and has the same degree asXα, where we mean the degree in the sense of [23].
Also,

xα ∈ T (V )χα
gα

,(4.1)

wheregα = gb1
1 · · ·gbθ

θ , χα = χb1
1 · · ·χbθ

θ , whereα = b1α1 + · · ·+ bθαθ.

THEOREM 4.2. – The Nichols algebraB(V) is presented by generatorsXi, 1 � i � θ, and
relations

adc(Xi)1−aij (Xj) = 0, for all i �= j,(4.3)

XN
α = 0, for all α ∈Φ+.(4.4)

Moreover, the following elements constitute a basis ofB(V):

Xh1
β1

Xh2
β2

· · ·XhP

βP
, for all 0 � hj � N − 1, 1 � j � P.

Proof. –It follows from results of Lusztig [21,22], Rosso [33,34] and Müller [27] thatB(V)
is the positive part of the so-called Frobenius–Lusztig kernel corresponding to the Cartan matrix
(aij). See [5, Th. 3.1] for details. The presentation by generators and relations follows from the
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considerations in the last paragraph of p. 15 and the first paragraph of p. 16 in [1] referring to
[12, §19, Corollary in p. 120]. The statement about the basis is [21,22].�
4.2. Nichols algebras of Cartan type

We can now prove the first main result of the present paper, describingB(V ) by generators
and relations whenV is of finite Cartan type, improving [5, Th. 1.1(i)]. As inloc. cit., we use
repeatedly Remark 3.6.

THEOREM 4.5. – The Nichols algebraB(V ) is presented by generatorsxi, 1 � i � θ, and
relations

adc(xi)1−aij (xj) = 0, for all i �= j,(4.6)

xNI
α = 0, for all α ∈ Φ+

I , I ∈X .(4.7)

Moreover, the following elements constitute a basis ofB(V ):

xh1
β1

xh2
β2

· · ·xhP

βP
, for all 0 � hj � NI − 1, if βj ∈ I, 1 � j � P.

Proof. –(a) Let us first assume that the braiding is symmetric, that isχi(gj) = χj(gi) for all
i, j. By [5, Lemma 4.2] we can assume moreover that the Cartan matrix(aij) is connected. From
our assumptions on the orders of theχi(gj) we then conclude that the braiding has the form
χj(gi) = qdiaij for all i, j whereq is a root of unity of orderN = χi(gi). See [5, Lemma 4.3].
Hence the Theorem follows directly from Theorem 4.2 and Remark 3.6.

(b) In the case of an arbitrary braiding we know from Lemma 4.1 of [5] that there exists a
finite abelian groupG satisfying:
• The braidingc of V can be realized from a Yetter–Drinfeld module structure overG that

we continue denoting byV , cf. Remark 3.6.
• There exists a cocycleω : Ĝ × Ĝ → k× with correspondingF ∈ kG ⊗ kG such that the

braiding ofVF is symmetric. Letψ :B(V ) →B(VF ) be the isomorphism having the same
meaning as in (3.9).

• The braiding ofVF is given in the basisψ(xi) ⊗ ψ(xj) by a matrix (bF
ij) such that

bF
ii = χi(gi) and the order of(bF

ij) is again odd for alli andj.
If  :T (V ) → B(V ), F :T (VF ) → B(VF ) denote the canonical maps, then we have a
commutative diagram

T (V )

ψ

�
B(V )

ψ

T (VF )
�F

B(VF ).

Clearly, ψ(Ker) = KerF ; if (rj)j∈J is a set of generators of the idealKer with
rj ∈ T (V )ηj

hj
then by Proposition 3.18(ψ(rj))j∈J is a set of generators of the idealKerF .

By the symmetric case (a), we know the generators ofKerϕF . Let us denoteXi := ψ(xi).
Then by Lemma 3.15 and (3.11), we haveψ(adc(xi)1−aij (xj)) = uij adc(Xi)1−aij (Xj) and
ψ

(
xNI

α

)
= uαXNI

α , α ∈ Φ+
I whereuij , uα are non-zero scalars. This implies the first claim of

the theorem. The second follows in a similar way.�
Let B̂(V ) be the braided Hopf algebra inΓΓYD generated byx1, . . . , xθ with relations (4.6),

where thexi’s are primitive. LetK(V ) be the subalgebra of̂B(V ) generated byxNI
α , α ∈ Φ+

I ,
I ∈ X ; it is a Yetter–Drinfeld submodule of̂B(V ).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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THEOREM 4.8. – K(V ) is a braided Hopf subalgebra inΓΓYD of B̂(V ).

Proof. –(a) As in the proof of Theorem 4.5 we first assume that the braiding is symmetric.
If i �= j, then χj(gi)χi(gj) = 1 and hence the corresponding Serre relation (4.6) says that
xixj = xjxi. Thus, we can easily reduce to the connected case. In such case,χj(gi) = qdiaij

as before and the Theorem is shown in [12].
(b) In the general case, we change the group as in the proof of Theorem 4.5. The isomorphism

ψ :T (V ) → T (VF ) respects the Serre relations up to non-zero scalars by Lemma 3.15. Also, it
maps subcoalgebras stable under the action of the group to subcoalgebras by Lemma 3.10(iii).
We conclude from (a) thatK(V ) is a subcoalgebra of̂B(V ). �

5. Linking datum and glueing of connected components

5.1. Linking datum

In this section, we fix a finite abelian groupΓ, a finite Cartan matrix(aij)1�i,j�θ and
g1, . . . , gθ ∈ Γ, χ1, . . . , χθ ∈ Γ̂ such that (1.1) and (1.2) hold. We preserve the conventions and
hypotheses from Section 4.

DEFINITION 5.1. – We say that two verticesi andj are linkable(or thati is linkable toj) if

i � j,(5.2)

gigj �= 1 and(5.3)

χiχj = 1.(5.4)

If i is linkable toj, thenχi(gj)χj(gi) = 1 by (5.2); it follows then from (5.4) that

χj(gj) = χi(gi)−1.(5.5)

LEMMA 5.6. –Assume thati andk, resp.j and�, are linkable. Thenaij = ak
, aji = a
k. In
particular, a vertexi can not be linkable to two different verticesj andh.

Proof. –If ai
 �= 0 thenaij = aji = 0 (otherwisej ∼ �) andak
 = a
k = 0 (otherwisei ∼ k).
If ajk �= 0 thenaij = aji = 0 (otherwisei ∼ k) andak
 = a
k = 0 (otherwisej ∼ �). Assume
thatai
 = 0 = ajk. Then

χi(gi)aij = χi(gj)χj(gi) = χ−1
k (gj)χ−1


 (gi) = χj(gk)χi(g
)

= χ−1

 (gk)χ−1

k (g
) = χk(gk)−ak� = χi(gi)ak� .

ThenNi dividesaij − ak
 and analogously,Nk dividesaij − ak
. So thataij = ak
 by the
assumptions on the order ofNi and Nk; by symmetry,aji = a
k. Assume that a vertexi is
linkable toj andh. Then2 = aii = ajh, soj = h. �

A linking datum of finite Cartan type forΓ is a collection

D = D
(
Γ, (aij)1�i,j�θ , (gi)1�i�θ, (χj)1�j�θ , (λij)1�i<j�θ, i�j

)
where (aij) is a Cartan matrix of finite type,(gi), (χj) are elements as above, and
(λij)1�i<j�θ, i�j are elements ink such thatλij is arbitrary if i andj are linkable but 0 other-
wise. The elementsλij are called thelinking elementsof D. Given a linking datum, we say that
two verticesi andj are linkedif λij �= 0.
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This definition generalizes part of the definition of compatible datum in [4, Section 5]. We
shall represent a linking datum by the Dynkin diagram of the Cartan matrix(aij) joining
linked vertices by a dotted line. To have a complete picture we add the pair(gi, χi) below the
vertexi.

DEFINITION 5.7. – Let us fix a decompositionΓ = 〈Y1〉⊕· · ·⊕〈Ys〉; let Mh denote the order
of Yh, 1 � h � s. Let D = D

(
Γ, (aij)1�i,j�θ , (gi)1�i�θ, (χj)1�j�θ , (λij)1�i<j�θ, i�j

)
be a

linking datum. We denote byu(D) the algebra presented by generatorsa1, . . . , aθ, y1, . . . , ys and
relations

yMh

h = 1, ymyh = yhym, for all 1 � m,h � s,(5.8)

(1.4), (1.5), (1.6) and

aNI
α = 0, for all α ∈Φ+

I , I ∈ X .(5.9)

Remark5.10. – In the preceding definition, one could consider only linking data withλij = 1
or 0. Indeed, one can replace the generatorai by λ−1

ij ai wheneverλij �= 0 for somej which is
unique by Lemma 5.6. The other relations do notchange since they are homogeneous in theai’s.
However, in the more general case where the relations (5.9) have a non-zero right side, one needs
general linking data.

Example5.11. – Here is a linking datum where all the connected components are points:

• · · · •
• •
• · · · •

Example5.12. – LetB := (bij)1�i,j�R be a finite Cartan matrix,0 � M � R and q ∈ k
a root of unity of orderN ; we assumeN is odd, and prime to3 if B contains a component
of type G2. Let d1, . . . , dR be integers in{1,2,3} such thatdibij = djbji. Let θ = R + M ,
B̃ := (bij)1�i,j�M andA = (aij) be the Cartan matrix

A =
(

B 0
0 B̃

)
.

Let Γ = (Z/(N))R, g1, . . . , gR the canonical basis ofΓ andχ1, . . . , χR be the character given
by χi(gj) = qdibij ; let gR+j = gj , χR+j = χ−1

j , 1 � j � M . Note thatj andj + R are linkable,
1 � j � M . Finally, letλj,j+R = 1 if 1 � j � M and 0 otherwise; then(λij)1�i<j�θ is a linking
datum forΓ, (aij), g1, . . . , gθ and χ1, . . . , χθ. The Hopf algebrau(D) with comultiplication
determined by (1.9) is the parabolic part of a Frobenius–Lusztig kernel. Since the numeration of
the Dynkin diagram is so far arbitrary, any such parabolic appears in this way.

Example5.13. – Here are some exotic examples of linking data:
Take 4 copies of A3 and label the vertices such that{1,2,3}, {4,5,6}, {7,8,9} and

{10,11,12} are the connected components. Then link3 with 4, 6 with 7, 9 with 10 and12 with
1. It is possible to realize this linking overZ/(N)12 for any oddN ; the corresponding braiding
will be symmetric in each component, that is, the corresponding subalgebra is the “Borel part”
of a Frobenius–Lusztig kernel. More examples arise considering more copies of more general
components.

See [13] for a combinatorial description of all linkings of Dynkin diagrams.
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5.2. Altering the multiplication by a cocycle

The following variation of Drinfeld’s twisting was stated by Doi: ifH is a Hopf algebra and
σ :H ×H → k is an invertible2-cocycle, so that

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)),

σ(1,1) = 1,

for all x, y, z ∈H , thenHσ – the sameH but with the multiplication.σ below – is again a Hopf
algebra, where

x.σy = σ(x(1), y(1))x(2)y(2)σ
−1(x(3), y(3)).

LEMMA 5.14. – [14]LetU , B be Hopf algebras.
(a)Let τ :U ⊗B → k be a bilinear map such that for allu, v ∈ U , a, b∈ B
(1) τ(uv, a) = τ(u, a(1))τ(v, a(2)),
(2) τ(u, ab) = τ(u(1), b)τ(u(2), a),
(3) τ(1, a) = ε(a),
(4) τ(u,1) = ε(u).

Let H be the tensor product Hopf algebraH = U ⊗ B and letσ :H ⊗ H → k be the bilinear
mapσ(u⊗a, v⊗b) = ε(u)τ(v, a)ε(b), for all u, v ∈ U , a, b∈ B. Thenτ is convolution invertible
with inverse given byτ−1(v, a) = ϕ(Sv)(a) = ϕ(v)(S−1a); σ is an invertible2-cocycle – with
inverseσ−1(u⊗a, v⊗ b) = ε(u)τ−1(v, a)ε(b), for all u, v ∈U , a, b ∈B – and consequentlyHσ

is a Hopf algebra.
(b) Assume thatB is finite dimensional and letϕ :U → (B∗)cop be a Hopf algebra

homomorphism. Thenτ :U ⊗ B → k, τ(v, a) = ϕ(v)(a), is invertible – with inverse given by
τ−1(v, a) = ϕ(Sv)(a) = ϕ(v)(S−1a), and satisfies1, 2, 3 and 4. Reciprocally, given suchτ
there is a unique suchϕ.

The following result is probably known. We include it for completeness.

LEMMA 5.15. – LetU , B andτ be as in the preceding lemma. Assume that
• U is generated as an algebra by skew-primitive elementsui, i ∈ I, and group-like elements

gk, k ∈ K , which in addition generateG(U) as a monoid;
• B is generated as an algebra by skew-primitive elementsbj , j ∈ J , and group-like elements

h
, �∈ L, which in addition generateG(B) as a monoid.
Let A be an algebra and letα :U → A, β :B → A be algebra maps and letγ : (U ⊗ B)σ → A
be given byγ(u⊗ b) = α(u)β(b) for all u ∈ U , b∈ B. Thenγ is an algebra map if and only if

τ(u(1), b(1))α(u(2))β(b(2)) = β(b(1))α(u(1))τ(u(2), b(2)),(5.16)

wheneveru, resp.b, belongs to the familyui, i ∈ I or gk, k ∈ K , resp.bj , j ∈ J or h
, � ∈L.

Proof. –(Sketch). Clearly,γ is an algebra map if and only if (5.16) holds for allu ∈ U , b ∈ B.
It follows also easily that (5.16) holds whenu = 1, or b = 1, or u ∈ G(U) andb ∈ G(B). Next,
let u, v ∈ U andb, c ∈ B be arbitrary elements; one can then check that (5.16) holds foruv and
bc if it holds for all the possibilitiesu(1) andc(1); u(2) andb(1); v(1) andc(2); v(2) andb(2). From
this observation and the hypothesis the lemma follows.�
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5.3. Glueing of connected components

In this subsection, we fix a linking datum

D = D
(
Γ, (aij)1�i,j�θ , (gi)1�i�θ, (χj)1�j�θ , (λij)1�i<j�θ, i�j

)
of finite Cartan type. LetA= u(D) be the algebra defined in Definition 5.7.

THEOREM 5.17. – (a)There exists a unique Hopf algebra structure onA determined by(1.9).

(b) The dimension ofA is |Γ|
∏

I∈X N
|Φ+

I
|

I .

Proof. –By induction on the number of connected components. Here is the first step:

LEMMA 5.18. – Theorem(5.17)is true if the Dynkin diagram corresponding to(aij)1�i,j�θ

is connected.

Proof. –Let V =
⊕

1�i�θ V χi
gi

be a Yetter–Drinfeld module overΓ with dimV χi
gi

= 1 and
pick xi ∈ V χi

gi
− 0. By Theorem 4.5 and the formulas for the biproduct, there exists a unique

algebra mapF :A→B(V )#kΓ such thatF(ai) = xi#1,F(yt) = 1#yt. Also, by Theorem 4.5
again, there are algebra mapsG1 :B(V ) →A, G2 :kΓ →A such thatG1(xi) = ai, G2(yt) = yt.
Let G :B(V )#kΓ →A, G(x#u) = G1(x)G2(u), x ∈ B(V ), u ∈ kΓ; thenG is an algebra map
by (1.4). It is clear now thatF is an isomorphism with inverseG; thusA is a Hopf algebra and
has the desired dimension by the dimension formula in Theorem 4.5.�

For the rest of this proof we assume: there existsθ̃ < θ such thati ∼ j, resp.i � h, if 1 � i � θ̃
and1 � j � θ̃, resp.θ̃ < h � θ. Let J = {1, . . . , θ̃} ∈ X . Let Υ := 〈Z1〉 ⊕ · · · ⊕ 〈Zθ̃〉, where the
order ofZi is the least common multiple ofordgi andordχi, 1 � i � θ̃. Let ηj be the unique
character ofΥ such thatηj(Zi) = χj(gi), 1 � i � θ̃, 1 � j � θ̃. This is well defined because
ordgi dividesordZi for all i.
• B := u(D1), withD1 = D(Γ, (aij)θ̃<i,j�θ , (gi)θ̃<i�θ, (χj)θ̃<j�θ, (λij)θ̃<i<j�θ,i�j), with

generatorsbθ̃+1, . . . , bθ (instead of theai’s) andy1, . . . , ys;
• U := u(D2), with D2 = D(Υ, (aij)1�i,j�θ̃ , (Zi)1�i�θ̃, (ηj)1�j�θ̃, (λij)1�i<j�θ̃, i�j),

with generatorsu1, . . . , uθ̃ (instead of theai’s) andz1, . . . , zθ̃.
Note that the linking datum ofU is empty sinceJ is connected. By the induction hypothesis,

dimB = |Γ|
∏

I∈X ,I �=J N
|Φ+

I
|

I anddimU = |Υ|N |Φ+
J
|

J .

LEMMA 5.19. – (a)For eachi, 1 � i � θ̃, there exists a unique characterγi :B→ k such that

γi(yk) = χi(yk), γi(bj) = 0,(5.20)

1 � k � s, θ̃ + 1 � j � θ.
(b) Let (λ̃ij)1�i<j�θ, i�j be an arbitrary linking datum. For eachi, 1 � i � θ̃, there exists a

unique(ε, γi)-derivationδi :B→ k such that

δi(yk) = 0, δi(bj) = λ̃ij ,(5.21)

1 � k � s, θ̃ + 1 � j � θ.
(c) There exists a unique Hopf algebra mapϕ :U → (B∗)cop such that

ϕ(zi) = γi, ϕ(ui) = δi,(5.22)

1 � i � θ̃.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



16 N. ANDRUSKIEWITSCH AND H.-J. SCHNEIDER

Proof. –(a) We have to show thatγi preserves the relations (5.8), (1.4), (1.5), (1.6), (5.9). This
is clear for (5.8), (1.4), (1.5), (5.9). We check (1.6): letθ̃ + 1 � j, h � θ such thatλjh �= 0. Then

χi(gjgh) = χjχh(gi)−1 = 1,

by (5.2) and (5.4). So that relations (1.6) hold and (a) is proven.
(b) This is equivalent to: there exists an algebra mapT :B→ M2(k) such that

T (yk) =
(

1 0
0 γi(yk)

)
, T (bj) =

(
0 λ̃ij

0 0

)
,(5.23)

1 � k � s, θ̃ + 1 � j � θ. ThenT is of the form

T (a) =
(

ε(a) δi(a)
0 γi(a)

)

and δi is the desired derivation. So, we need to show that the relations (5.8), (1.4), (1.5),
(1.6), (5.9) hold for the matrices in (5.23). This is evident for (5.8). For (1.4) it amounts to
λ̃ijχi(yk)−1 = λ̃ijχj(yk), which follows from (5.4) wheñλij �= 0. For (1.5) and (5.9) the
argument is clear. Finally, the left hand side of (1.6) forj < h, is 0, whereas the right-hand
side also vanishes sinceλjhγi(gj)γi(gh) = λjhχj(gi)−1χh(gi)−1 = λjh by (5.4) again.

(c) It is enough to verify thatδi, γi satisfy the defining relations (5.8), (1.4), (1.5), (1.6),
(5.9) forU . Indeed, this will automatically imply thatϕ is a Hopf algebra map. Note that (1.6)
are empty since the Dynkin diagram ofU is connected. For (5.8), it is enough to verify that
the equalities hold when applied to the generatorsbθ̃+1, . . . , bθ, y1, . . . , ys since both sides are
algebra maps. This is now not difficult; for instance

(γmγh)(bj) = γm(gj)γh(bj) + γm(bj) = 0 = (γhγm)(bj).

The first relations in (5.8) forΥ hold sinceordγi dividesordZi for all i. For (1.4) we need
again to verify only on generators, since both sides are skew-derivations; this verification is
in turn straightforward. The left-hand side of the Serre relations (1.5) is a skew-derivation by
[5, Lemma A.1]; again we are reduced to see that(adδi)1−aij δj(bh) = 0 = (ad δi)1−aij δj(yt),
θ̃ + 1 � h � θ, 1 � t � s. Write (adδi)1−aij δj = δi(adδi)−aij δj − q̂((adδi)−aij δj)δi, whereq̂
is a root of 1. Then

(ad δi)1−aij δj(yt) = δi(yt)(ad δi)−aij δj(yt)− q̂(ad δi)−aij δj(yt)δi(yt) = 0.

Similarly,

(ad δi)1−aij δj(bh) = δi(bh)(ad δi)−aij δj(1)− q̂(ad δi)−aij δj(gh)δi(bh) = 0,

since(adδi)−aij δj is a homogeneous polynomial inδi, δj of positive degree. Finally, relations
(5.9) follow from the next lemma. �

LEMMA 5.24. – LetB be a finite dimensional pointed Hopf algebra generated as an algebra
by group-like elements and a familybj , j ∈ J , of (hj ,1)-primitives, for somehj ∈G(B). Let Û
be the algebra presented by generatorsu1, . . . , uθ̃ andz1, . . . , zθ̃ with exactly the same relations
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as forU except for(5.9); it is a Hopf algebra via(1.9). LetN = NJ . Assume there exists a Hopf
algebra mapφ : Û → (B∗)cop such thatγi := φ(zi) andδi := φ(ui) satisfy

γi(bj) = 0, δi(g) = 0, j ∈J , g ∈ G(B),(5.25)

for all 1 � i � θ̃. Thenφ(uN
α ) = 0 for all α ∈Φ+

J .

Proof. –There exists a Hopf algebra projection : Û → kΥ such that(ui) = 0 and(zi) =
zi for all i. LetK be the subalgebra of̂U generated byuN

α , α ∈ Φ+
J , andzN

i , 1 � i � θ̃. We claim
that

φ(u) = φ
(
(u)

)
(5.26)

for all u ∈ K. Clearly, this implies the lemma. By Theorem 4.8, we know thatK is a Hopf
subalgebra of̂U . We have to prove thatφ(u)(b) = φ((u))(b) for b a monomial in the group-
likes ofB and thebj ’s. We do this by induction on the length of the monomial.

We first check the case of length 1. Here we show more generally that

φ(u)(g) = φ((u))(g) and φ(u)(bj) = φ
(
(u)

)
(bj)

for all g ∈ G(B), j ∈ J and u ∈ G(Û) or u of the form ui1 · · ·uitz, with z group-like,
1 � i1, . . . , it � θ̃, andt � 2. Note that each element inK is a linear combination of suchu’s
sinceN � 2. The case whenu is a group-like is clear. Letu = ui1 · · ·uitz, with z group-like,
1 � i1, . . . , it � θ̃, andt � 2. Thenφ(u) = δi1 · · ·δitφ(z), and

φ(u)(g) = δi1(g) · · ·δit(g)φ(z)(g) = 0,

φ(u)(bj) =
∑

1�r�t+1

δi1(gj) · · ·δir−1(gj)δir (bj)δir+1(1) · · ·φ(z)(1) = 0,

where we used (5.25) andt � 2.
Assume then thatb = cd wherec andd are monomials satisfying the claim. Sinceφ and are

Hopf algebra maps, we have

φ(u)(cd) = φ(u(2))(c)φ(u(1))(d) = φ
(
(u(2))

)
(c)φ

(
(u(1))

)
(d) = φ

(
(u)

)
(cd). �

We are ready now to conclude the proof of the theorem. Consider the cocycle

σ : (U ⊗B)⊗ (U ⊗B)→ k

obtained as in Lemma 5.14 from the mapϕ constructed in Lemma 5.19. Consider the Hopf

algebra(U ⊗B)σ; it has dimension|Υ||Γ|
∏

I∈X N
|Φ+

I
|

I . We claim that the group-like elements
zi ⊗ g−1

i are central in(U ⊗ B)σ for all i. By definition of(U ⊗ B)σ, we have to show for all
u∈ U , b ∈ B and1 � i � θ̃

ϕ(zi)(b(1))uzi ⊗ b(2)g
−1
i ϕ

(
z−1

i

)
(b(3)) = ϕ(u(1))

(
g−1

i

)
ziu(2) ⊗ g−1

i bϕ(Su(3))
(
g−1

i

)
.(5.27)

Sinceu ⊗ b = (u ⊗ 1)(1 ⊗ b) in (U ⊗ B)σ for all u ∈ U , b ∈ B, it is enough to check (5.27) on
generators ofU andB. This in turn follows easily from the definitions.

Let Ã be the quotient of(U ⊗B)σ by the central Hopf subalgebrak[zi ⊗ g−1
i : 1 � i � θ̃] with

quotient mapπ. Thendim Ã = |Γ|
∏

I∈X N
|Φ+

I
|

I by a result of the second author [26, Th. 3.3.1].
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Next we claim the existence of a surjective algebra mapF :A→ Ã such that

F(ai) = π(ui ⊗ 1), F(aj) = π(1⊗ bj), F(yk) = π(1⊗ yk),

for 1 � i � θ̃, θ̃ + 1 � j � θ, 1 � k � s. Again we have to verify the relations (5.8), (1.4), (1.5),
(1.6), (5.9). Up to (1.6) these relations already hold in(U ⊗B)σ. For (1.6), it is enough to show
that

π(ui ⊗ 1)π(1⊗ bj)− χj(gi)π(1 ⊗ bj)π(ui ⊗ 1) = λij

(
1− π(1⊗ gigj)

)
,

1 � i � θ̃, θ̃ + 1 � j � θ.

A tedious computation shows that the left-hand side is equal toχj(gi)λ̃ij(π(zi ⊗ gj)− 1). Since
π(zi ⊗ gi

−1) = 1, we haveπ(zi ⊗ gj) = π(1 ⊗ gigj). Hence the claim follows if we choose
λ̃ij = −χi(gj)λij for all 1 � i � θ̃, θ̃ + 1 � j � θ.

On the other hand, we have algebra mapsG1 :U → A, G2 :B → A given byG1(ui) = ai,
G1(zi) = gi, G2(bj) = aj G2(yk) = yk, 1 � i � θ̃, θ̃ + 1 � j � θ, 1 � k � s. Here we use that
ordgi dividesordZi for all i. Let G :U ⊗ B →A be defined byG(u ⊗ b) = G1(u)G2(b) for all
u∈ U , b ∈ B. We claim thatG is an algebra map. By Lemma 5.15, we have to verify

ϕ(u(1))(b(1))G1(u(2))G2(b(2)) = G2(b(1))G1(u(1))ϕ(u(2))(b(2)),

for all generators. This is a straightforward task; for the caseui and bj we need again the
conditionλ̃ij = −χi(gj)λij .

Since clearlyG factorizes through̃A, F is an isomorphism and the theorem follows.�

6. Lifting of relations

In this section, we assume the situation described in Section 4. To lift the Serre relations, we
need the following lemma.

LEMMA 6.1. – Let 1 � i �= j � θ and letI be the connected component containingi.
(a) If i ∼ j, assume thatNI �= 3; if i ∼ j andI is of typeBn, Cn or F4 assume furtherNI �= 5.

Then there exists no�, 1 � � � θ, such thatg1−aij

i gj = g
, χ
1−aij

i χj = χ
.
(b) Assume thati ∼ j andNI �= 3. If I is of typeBn, Cn or F4, resp.G2, assume further that

NI �= 5, resp.NI �= 7. Thenχ
1−aij

i χj �= ε.

Proof. –(a) Assume thatg1−aij

i gj = g
, χ
1−aij

i χj = χ
 for some�. Substitutingg
 andχ
 in
〈χ
, gi〉〈χi, g
〉= qai�

i and using〈χj , gi〉〈χi, gj〉= q
aij

i we conclude that

Ni divides2− aij − ai
.(6.2)

Changing the rôles ofi andj we obtain in the same way

Nj dividesaji(1− aij)− aj
 + 2.(6.3)

First assume thati � j. In particular,aji = 0 = aij andai
 = 0 or aj
 = 0. If ai
 = 0, resp.
aj
 = 0, then we get from (6.2), resp. (6.3), thatNi = 2, resp.Nj = 2, which is not possible.

Next assume thati ∼ j. If j = � thenNi divides2(1 − aij) by (6.2). The only possibility is
aij = −2 andNi = 3; but this was excluded in the hypothesis. Ifi = � thenNi divides−aij
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by (6.2) andNj dividesajiaij − 2 by (6.3); but this contradicts our general assumptions on the
Ni’s.

Finally, if i �= � andj �= � thenai
 �=−3 andaj
 �= −3. We discuss the different possible values
of aij . If aij = 0 or −1, by (6.2) and sinceNi is odd we see thatNi = 3 or 5, cases excluded by
hypothesis. Ifaij = −2 thenaji = −1. By (6.3),Nj divides−1− aj
; this discards everything
exceptaj
 = −1. But in this last case,ai
 = 0 andNi divides 4 by (6.2), a contradiction. Finally,
aij = −3 is impossible by analogous arguments.

(b) Assume thatχ1−aij

i χj = ε. We consider first the caseaij �= 0. Evaluating atgi, we
get q

1−aij

i χj(gi) = 1; henceqi = χi(gj). Evaluating atgj , we get thenqj = q
aij−1
i . Since

q
aji

j = q
aij

i we finally obtain

Ni dividesaijaji − aij − aji.(6.4)

The possible values ofaijaji − aij − aji are3, 5 or 7, where5, resp.7, is only possible ifI is
of typeBn, Cn or F4, resp.G2. This contradicts the hypothesis.

We consider finally the caseaij = 0; so thatχiχj = ε. SinceI is connected, there is a sequence
i = i1, i2, . . . , it = j of elements inI such thatai�i�+1 �= 0, 2 for all �, 1 � � < t. Then

q
ai1i2ai2i3 ...ait−1it

i = q
ai2i1ai2i3 ...ait−1it

i2
= · · ·= q

ai2i1ai3i2 ...aitit−1
j ,

by substitutingq
ai1i2
i = q

ai2i1
i2

, thenq
ai2i1
i2

= q
ai3i2
i3

and so on. Note thatqi = q−1
j sinceaij = 0

andχiχj = ε. Hence

Ni dividesai1i2ai2i3 . . . ait−1it + ai2i1ai3i2 . . .aitit−1 .(6.5)

The possible values of the sum in (6.5) are±2 or ±3. Hence (6.5) contradicts our assumptions
in (b). �

Let nowA be a pointed Hopf algebra withG(A) � Γ, not necessarily finite dimensional. Let
R be the diagram ofA (see Section 2.1). We assume there is an isomorphismP(R)∼= V in Γ

ΓYD.
Then ⊕

g,h∈Γ

ε�=χ∈Γ̂

Pg,h(A)χ ∼=−→A1/A0

∼=←−V #kΓ

(see [4, Lemma 5.4]). Letai ∈ Pgi,1(A)χi , 1 � i � θ, such thatai is mapped ontoxi for all i.
Then we know from [5, Lemma 5.4] that for allg ∈ Γ, χ ∈ Γ̂ with χ �= ε:

Pg,1(A)χ �= 0 ⇐⇒ there is some1 � � � θ: g = g
, χ = χ
;(6.6)

Pg,1(A)ε = k(1 − g).(6.7)

Recall that we have fixedΓ, (aij)1�i,j�θ , (gi)1�i�θ, (χj)1�j�θ as in the situation of
Section 4.

THEOREM 6.8. – LetA anda1, . . . , aθ be as above.
(a) There is a linking datumD

(
Γ, (aij)1�i,j�θ, (gi)1�i�θ, (χj)1�j�θ , (λij)1�i<j�θ, i�j

)
with linking elements(λij)1�i<j�θ, i�j such that(1.6)holds.

(b) LetI ∈ X . Assume thatNI �= 3. If I is of typeBn, Cn or F4, resp.G2, assume further that
NI �= 5, resp.NI �= 7. Then the quantum Serre relations(1.5)hold for all i �= j ∈ I.
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Proof. –It is known that (adai)1−aij aj ∈ P
g
1−aij
i

gj ,1
(A)χ

1−aij
i

χj , see for instance [5,

Appendix]. Part (b) of the theorem then follows from Lemma 6.1, (6.6) and (6.7).
To prove part (a), let us assume thati � j. By Lemma 6.1, (6.6) and (6.7) again,aiaj −

χj(gi)ajai = λij(1 − gigj), for someλij ∈ k. We can chooseλij = 0 whengigj = 1 or else if
χiχj �= ε. That is,λij is a linking datum for(aij), g1, . . . , gθ andχ1, . . . , χθ; and (1.6) holds. �

LEMMA 6.9. – LetA anda1, . . . , aθ be as above. Assume further that
• the hypothesis from Theorem6.8part (b) holds for allI ∈X .
• A is finite dimensional.
• gNi

i = 1, 1 � i � θ.
Then the relations(5.9)hold inA.

Proof. –Let us fix I ∈ X . Let Û be the algebra presented by generatorsâi, i ∈ I, y1, . . . , ys

and relations (5.8), (1.4), (1.5) and (1.6); it is a Hopf algebra via (1.9). LetN = NI and letK be
the subalgebra of̂U generated bŷaN

α , α ∈Φ+
I , andgN

i , i ∈ I. By Theorem 4.8, we know thatK
is a Hopf subalgebra of̂U . Note thatK is a graded Hopf algebra with trivial coradical. By the
choice of theai’s in A and Theorem 6.8, we see there is a well-defined Hopf algebra mapÛ →A
such that̂ai �→ ai, i ∈ I. The image ofK under this map is a finite dimensional pointed Hopf
algebra; it has a trivial coradical by [26] and therefore it is trivial. This implies the lemma.�

THEOREM 6.10. – LetA be as above and assume that
• the hypothesis from Theorem6.8part (b) holds for allI ∈X .
• grA� B(V )#kΓ, henceA is finite dimensional.
• gNi

i = 1, 1 � i � θ.
Then there exists a linking datum

D = D
(
Γ, (aij)1�i,j�θ , (gi)1�i�θ, (χj)1�j�θ , (λij)1�i<j�θ, i�j

)
such that

A � u(D).

Proof. –By Theorem 6.8 and Lemma 6.9, there exist elements(λij)1�i<j�θ, i�j such that

D = D
(
Γ, (aij)1�i,j�θ , (gi)1�i�θ, (χj)1�j�θ , (λij)1�i<j�θ, i�j

)
is a linking datum, and a surjective Hopf algebra mapJ :A → A, whereA = u(D). But
dimA = dimgrA = |Γ|dimB(V ) = dimA by Theorems 4.5 and 5.17; henceJ is an isomor-
phism. �

7. Hopf algebras generated in degree one

In this section,Γ is a finite abelian group. LetV ∈Γ
Γ YD be of Cartan type with braiding(bij)

and Cartan matrix(aij). As in [5] we say that the braiding(bij) satisfies therelative primeness
conditionif for all i, j, (aij) is 0 or relatively prime to the order ofbii.

The next lemma follows from [5]. We will apply it in the case of2× 2 (hence symmetrizable)
Cartan matrices.

LEMMA 7.1. – Let V ∈Γ
Γ YD be of symmetrizable Cartan type with braiding(bij)1�i,j�θ .

Assume that for all1 � i, j � θ, the order ofbij is odd, and that(bij)1�i,j�θ satisfies the relative
primeness condition. IfB(V ) is finite-dimensional, thenV is of finite Cartan type.
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Proof. –By [5, Lemma 4.1] we can realize the braiding over a suitable finite abelian groupΓ̃
and twist with a2-cocycleF such that the resulting braiding(bF

ij) is symmetric with elements
of odd order, has the same diagonal elements and is of Cartan type with the same Cartan matrix
(aij) asV . We can now conclude from [5, Lemma 4.3] that(bF

ij) is of FL-type (see [5]). Let

Ṽ F be the Yetter–Drinfeld module over̃Γ with braiding(bF
ij). SinceB(V ) andB(Ṽ F ) have the

same dimension,B(Ṽ F ) is finite-dimensional. Then(aij) is of finite Cartan type by [5, Theorem
3.1]. �

LEMMA 7.2. – Let S =
⊕

n�0 S(n) be a finite-dimensional graded Hopf algebra inΓ
ΓYD

such thatS(0) = k1. Assume thatS(1) is of finite Cartan type with basis(xi)1�i�θ , braiding
(bij)1�i,j�θ and Cartan matrix(aij)1�i,j�θ as in (3.7). For all 1 � l � θ, let ql = bll and
Nl = ord(ql).

Let 1 � i, j � θ, i �= j, and assume thatNi,Nj andord(bij) are odd, andNi is not divisible
by3 and> 7.

(a) Assumei ∼ j and let I be the connected component containingi, j. If the type ofI is
Bn,Cnor F4, assume thatNi is not divisible by5. If the type isG2, assume thatNi is not
divisible by5 or 7. Then(adc xi)1−aij xj = 0.

(b) Assumei � j andqiqj = 1 or ord(qiqj) = ord(qi). Thenxixj − bijxjxi = 0.

Proof. –Definez1 := xi, z2 := (adc xi)1−aij xj . In both cases we have to showz2 = 0. We
assume thatz2 is not0. Letgi ∈ Γ, χi ∈ Γ̂, 1 � i, j � θ, with bij = χj(gi) for all i, j. Then action
and coaction onz1, z2 are given byδ(z1) = gi ⊗ z1, δ(z2) = g

1−aij

i gj ⊗ z2 andh · z1 = χi(h)z1,
h · z2 = (χ1−aij

i χj)(h)z2 for all h ∈ Γ. The elementsz1, z2 are linearly independent since they
are non-zero and of different degree. The braiding(Bkl)1�k,l�2 of the 2-dimensional Yetter–
Drinfeld module with basisz1, z2 is given by

B11 = χi(gi) = qi, B12 =
(
χ

1−aij

i χj

)
(gi) = qib

−1
ji ,

B21 = χi(g
1−aij

i gj) = q
1−aij

i bji, B22 =
(
χ

1−aij

i χj

)(
g
1−aij

i gj

)
= q

1−aij

i qj .

ThenB12B21 = q
2−aij

i . We claim that(Bkl) is of Cartan type and satisfies the relative primeness
condition, that is there are integersA12,A21 such that

q
2−aij

i = qA12
i andA12 is relatively prime toNi,(7.3)

q
2−aij

i =
(
q
1−aij

i qj

)A21
, andA21 is relatively prime to ord

(
q
1−aij

i qj

)
.(7.4)

In both cases2−aij is relatively prime toNi, because of the hypothesis onNi. This shows (7.3).
We now prove (7.4) in case (a). ThenNI = Ni = Nj , and it suffices to find an integerA21

relatively prime toNi with q
2−aij

i = (q1−aij

i qj)A21 .
First assume thataij �= 0. Sinceaji �= 0 is relatively prime toNi, it is enough to consider

theajith power of (7.4). Sinceqaij

i = q
aji

j by the Cartan condition for(bij), we have to solve
(2− aij)aji ≡ ((1− aij)aji + aij)A21 modNi. Since(aij) is of finite Cartan type, the possible
values of(2 − aij)aji are−3, −4, −5, −6, −9 (−4, −6 resp.−5, −9 only occur if the type is
Bn,Cn or F4 resp.G2); the possible values of((1 − aij)aji + aij) are−3, −5, −7, (−5, resp.
−7 only occur if the type isBn,Cn or F4 resp.G2). Hence(2− aij)aji and((1− aij)aji + aij)
are relatively prime toNi by assumption, and the claim follows. (Note thata + b is never0.)
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If aij = 0, then by connectedness there is a sequencei = i1, i2, . . . , it = j of elements inI
such thatai�i�+1 �= 0,2 for all �, 1 � � < t. Then as in the proof of Lemma 6.1(b),

qa
i = qb

j , wherea = ai1i2ai2i3 . . . ait−1it , andb = ai2i1ai2i3 . . . ait−1it .

Since the possible values ofa, b are1, 2, −1, −2, thebth power of (7.4) leads to the congruence
2b≡ (b + a)A21 modNi, and the claim again follows.

Assume case (b), in particularaij = 0. If qiqj = 1, we get a contradiction since the
algebra generated byz1, z2 is finite-dimensional, henceB22 �= 1 by [4, Lemma 3.1]. If
ord(qiqj) = ord(qi), (7.4) is solvable sinceNi is odd.

Thus we have shown that(Bkl) is of Cartan type and satisfies the relative primeness condition.
Hence(Bkl) is of finite Cartan type by Lemma 7.1. In both casesA12 = 2 − aij − Ni is
a solution of (7.3), and−Ni < A12 � 0. Hence the possible values ofA12 are 0, −1, −2,
−3, and we see thatNi � 8. This contradicts our assumption, and we have shown the Serre
relationz2 = 0. �

LEMMA 7.5. – Let S =
⊕

n�0 S(n) be a finite-dimensional graded Hopf algebra inΓ
ΓYD

such thatS(0) = k1. Assume thatV = S(1) is of Cartan type with basis(xi)1�i,j�θ as described
in the beginning of Section4. Assume the Serre relations

(adc xi)1−aij xj = 0 for all 1 � i, j � θ, i �= j andi ∼ j.

Then the root vector relations

xNI
α = 0, for all α ∈Φ+

I , I ∈ X ,

hold inS.

Proof. –We fix a connected componentI ∈ X . Let VI be the Yetter–Drinfeld submodule
of V with basisxi, i ∈ I, andB̂(VI) the quotient ofT (VI) modulo the Serre relations of all
elementsxi, xj with i �= j in I. Let NI = N . The mapΨ : T (VI) ⊂ T (V ) → S factorizes over
B̂(VI), since the Serre relations hold inS. By Theorem 4.8 the subalgebraK(VI ) of B̂(V )
generated by the powers of the root vectorsxNI

α , α ∈ Φ+
I , is a braided Hopf subalgebra. As

a coalgebra,K(VI) is pointed and has trivial coradical. HenceK := Ψ(K(VI)) is a finite-
dimensional pointed and graded Hopf subalgebra ofS in Γ

ΓYD with trivial coradical. We have to
show the root vector relationxNI

α = 0, α ∈ Φ+
I in S, or equivalently thatK is one-dimensional,

that isP(K) = 0.
AssumeP(K) �= 0. SinceP(K) is in Γ

ΓYD, there areg ∈ Γ, χ ∈ Γ̂ with P(K)χ
g �= 0. By

[4, Lemma 3.1], we concludeχ(g) �= 1. But this is a contradiction, since for allg ∈ Γ, χ ∈ Γ̂,
Kχ

g �= 0 impliesχ(g) = 1. For,K is thek-span of all monomials

Ψ
(
xN

β1

)
· · ·Ψ

(
xN

βm

)
, m � 1, β1, . . . , βm ∈ Φ+

I .

For anyβ ∈ Φ+
I there are natural numbersbβ

i , 1 � i � θ, such thatβ =
∑θ

i=1 bβ
i αi, where

α1, . . . , αθ are the simple roots. By (4.1),xβ ∈ T (VI)
χβ
gβ , where

gβ =
∏
i∈I

g
bβ

i

i , χβ =
∏
i∈I

χ
bβ

i

i .
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Hence for allβ1, . . . , βm ∈ Φ+
I ,

Ψ(xN
β1

) · · ·Ψ(xN
βm

) ∈Kχ
g , whereχ = χN

β1
· · ·χN

βm
, g = gN

β1
· · ·gN

βm
.

It remains to show thatχ(g) = 1.
Let α,β ∈Φ+

I . Since the braiding is of Cartan type,

χα(gβ)χβ(gα) =
∏
i,j

χ
bα

i

i

(
g

bβ
j

j

)∏
i,j

χ
bβ

j

j

(
g

bα
i

i

)
=

∏
i,j

(
χi(gj)χj(gi)

)bα
i bβ

j =
∏
i,j

χi(gi)aijbα
i bβ

j ,

and

χα(gα) =
∏

i

χi(gi)bα
i bα

i

∏
i<j

(
χi(gj)χj(gi)

)bα
i bα

j =
∏

i

χi(gi)bα
i bα

i

∏
i<j

χi(gi)aijbα
i bα

j .

Hence, since all theχi(gi) have orderN ,

χN
α

(
gN

β

)
χN

β

(
gN

α

)
= 1, χN

α

(
gN

α

)
= 1.

Therefore we obtain

χ(g) =
∏
i,j

χN
βi

(
gN

βj

)
=

∏
i

χN
βi

(
gN

βi

)∏
i<j

χN
βi

(
gN

βj

)
χN

βj

(
gN

βi

)
= 1. �

THEOREM 7.6. – LetA be a finite-dimensional pointed Hopf algebra with coradicalkΓ, and
let R be the diagram ofA, that is

grA� R#kΓ,

andR =
⊕

n�0 R(n) is a graded braided Hopf algebra inΓΓYD with R(0) = k1, R(1) = P(R).
Assume thatR(1) is a Yetter–Drinfeld module of finite Cartan type with braiding(bij)1�i,j�θ .

For all i, let qi = bii, Ni = ord(qi). Assume thatord(bij) is odd andNi is not divisible by3 and
> 7 for all 1 � i, j � θ.

(1) For any1 � i � θ contained in a connected component of typeBn, Cn or F4 resp.G2,
assume thatNi is not divisible by5 resp. by5 or 7.

(2) For any1 � i, j � θ andi � j assumeqiqj = 1 or ord(qiqj) = Ni.
ThenR is generated as an algebra byR(1), that is A is generated by skew-primitive and

group-like elements.

Proof. –Let S := R∗ be the dual Hopf algebra ofR in the braided sense (see for
example [3, Section 2]).S =

⊕
n�0 S(n) is a graded braided Hopf algebra inΓΓYD with

S(0) = k1, S(n) = R(n)∗, for all n � 0. By assumption there arehi ∈ Γ, ηi ∈ Γ̂, 1 � i, j � θ,
with bij = ηj(hi) for all i, j, and a basis(yi) of R(1) with yi ∈ R(1)ηi

hi
for all i. Let (xi)

in V := S(1) = R(1)∗ be the dual basis of(yi). Then xi ∈ V χi
gi

with χi = η−1
i , gi = h−1

i

and bij = χj(gi) = ηj(hi) for all 1 � i, j � θ. ThusV is a Yetter–Drinfeld module overΓ
with the same braiding asR(1). By [5, Lemma 5.5],R is generated byR(1) if and only if
S(1) = P(S). Hence by duality,S is generated byS(1), sinceR(1) = P(R). It is easy to see
thatV = S(1)⊂P(S). Hence there are canonical surjections of graded braided Hopf algebras

T (V )→ S →B(V ).
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Here T (V ) is the tensor algebra, the elementsxi are primitive and of degree one, and both
maps are the identity onV . The kernelI of the first map is a homogeneous ideal generated
by elements of degree� 2, a coideal and stable under the action and coaction ofΓ. Since
B(V ) = T (V )/J , whereJ is the largest ideal with the same properties asI, there is a canonical
surjectionS →B(V ).

The xi satisfy the Serre relations (4.6) by Lemma 7.2, and then the root vector relations
(4.7) by Lemma 7.5. Therefore it follows from the description ofB(V ) in Theorem 4.5 that
S = B(V ). This meansS(1) = P(S), hence by duality thatR is generated byR(1). �

A special case of the last theorem together with a main result in [5] allows to prove the
following

COROLLARY 7.7. – Letp > 17 be a prime number. Then any finite-dimensional pointed Hopf
algebra with coradicalk(Z/(p))s for some natural numbers is generated by group-like and
skew-primitive elements.

Proof. –Let A be a finite-dimensional pointed Hopf algebra with coradicalk(Z/(p))s and
let R be the diagram ofA. ThenR(1) is a Yetter–Drinfeld module of finite Cartan type by [5,
Corollary 1.2]. Hence the claim follows from Theorem 7.6.�

Let us state explicitly another corollary of the theorem.

COROLLARY 7.8. –Under the hypothesis of Theorem7.6, if the Dynkin diagram attached to
the pointed Hopf algebra is connected, thenA is generated by group-like and skew-primitive
elements.

In principle, the idea behind the proof of Theorem 7.6 is as follows. LetA be a finite-
dimensional pointed Hopf algebra with coradicalkΓ, Γ any finite group. LetR be the
diagram ofA, and S := R∗ the dual braided Hopf algebra. Consider the diagramR̃ of the
bosonizationS#kΓ. ThenP(S) is naturally embedded inP(R̃) (and this embedding is in
fact an isomorphism). Moreover,dim(P(R)) � dim(P(S)) � dim(P(R̃)), anddim(P(R)) =
dim(P(R̃)) if and only if S(1) = P(S) or R = B(P(R)).

Corollary 7.7 can also be seen as a direct consequence of Section 6 and [5]: By [5]P(R̃) is of
finite Cartan type. Then the result follows from Theorem 6.8 and 6.9 applied toA = S#kΓ.

The next theorem is another application of this principle. It shows that only very special
dimensions are possible for finite-dimensional pointed Hopf algebras.

THEOREM 7.9. – For any finite groupΓ of odd order there is a natural numbern(Γ) such
that the dimension of any finite-dimensional pointed Hopf algebra with coradicalkΓ is � n(Γ).

Proof. –Let A be a finite-dimensional pointed Hopf algebra with coradicalkΓ and diagramR
andR̃ as defined above. SinceR andR̃ are braided Hopf algebras overΓ of the same dimension,
anddim(P(R)) � dim(P(R̃)), we can iterate this process and after finitely many steps we obtain
a graded braided Hopf algebraT overΓ with dim(R) = dim(T ) andT = B(P(T )). By a result
of Graña [19] using [5, Theorem 3.1] which follows from [23], the number of isomorphism
classes of Yetter–Drinfeld modulesV over the fixed groupΓ with finite-dimensionalB(V )
is finite. Thus we can take forn(Γ) the product of the largest such dimension with the order
of Γ. �
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