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HEIGHT PAIRINGS FOR ALGEBRAIC CYCLES
ON ABELIAN VARIETIES

BY KLAUS KÜNNEMANN

ABSTRACT. – Beilinson and Bloch have given conditional constructions of height pairings between
algebraic cycles on smooth projective varieties over number fields. These pairings generalize the classical
Néron–Tate height pairing between divisors and zero-cycles and give conjecturally a description of the
behavior of motivicL-functions near the central point. We give an unconditional construction of height
pairings for algebraic cycles on abelian varieties. This improves a previous result where we have defined
height pairings on abelian varieties which have totally degenerate reduction at all places of bad reduction.
Our construction is based on the existence of projective regular models for abelian varieties over number
fields and on the study of cycles on degenerate fibers in mixed characteristic initiated by Bloch, Gillet, and
Soulé.

 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Beilinson et Bloch ont proposé une définition conjecturale des accouplements de hauteur
entre cycles algébriques sur les variétés projectives lisses definies sur un corps de nombres. Ces
accouplements généralisent l’accouplement de Néron–Tate entre zéro-cycles et diviseurs. Ils permettent de
décrire conjecturalement le comportement des fonctionsL motiviques au centre de leurs bandes critiques.
Nous proposons une construction inconditionnelle des accouplements de hauteurs entre cycles algébriques
sur les variétés abéliennes, qui généralise notre construction antérieure pour les variétés abéliennes à
réduction totalement dégénérée. Notre construction repose sur l’existence de modèles projectifs réguliers
pour les variétés abéliennes sur les corps de nombres, et d’autre part sur l’étude des cycles sur les fibres
dégénérées en caractéristique mixte initiée par Bloch, Gillet et Soulé.

 2001 Éditions scientifiques et médicales Elsevier SAS

0. Introduction

LetAK be an abelian variety which is defined over a number fieldK . Let CH p(AK)0 be the
Chow group of homologically trivial cycles of codimensionp onAK . The aim of this paper is to
show that there is a well defined height pairing

〈., .〉AK
:CH p(AK)0 ×CH dimAK+1−p(AK)0 −→R(1)

which generalizes the classical Néron–Tate height pairing between divisors and zero-cycles. The
precise statement of our result is given in Theorem 1.6. This improves a result in [12] where we
have constructed the above height pairing under the assumption that the abelian varietyAK has
totally degenerate reduction at all places of bad reduction. Beilinson and Bloch have given in [1]
and [2] conditional definitions of height pairings for homologically trivial cycles on any smooth
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projective variety which is defined over a number field. Conjecturally these height pairings can
be used to describe the behavior of motivicL-functions near the central point. We use a variant
of Beilinson’s construction to define the pairing (1) which is based on arithmetic intersection
theory as developed by Gillet and Soulé. In order to define a height pairing for algebraic cycles
onAK , we have to overcome two difficulties. We need a projective regular modelP of AK over
the ring of integersOK in K and extensions of homologically trivial cycles onAK to P which
are perpendicular to cycles supported in a special fiber with respect to the arithmetic intersection
pairing on the modelP .

Using results of Mumford, Chai, and Faltings, we have constructed in [12] projective regular
models for abelian varieties with semi-abelian reduction. We have shown furthermore that an
abelian varietyAK has potentially semi-stable reduction, i.e., locally at primes ofOK there exists
after a finite flat base change a projective strictly semi-stable modelP of AK . The special fiber
of a strictly semi-stable model has a canonical stratification. The strata in the special fiber of the
strictly semi-stable models of abelian varieties constructed in [12] have the following description.
Each stratum is a semi-abelian schemeGα which is an extension of an abelian varietyAα by a
split torusTα. The closurePα of Gα in P is a contraction product

Pα =Gα ×Tα Zα(2)

for some smooth projective toric varietyTα ↪→ Zα.
The problem to find suitable extensions of homologically trivial cycles onAK to a projective

regular model can be checked locally at primes ofOK . In [12], we have investigated this question
for strictly semi-stable models. LetS be the spectrum of a discrete valuation ring with finite
residue class fieldk. Let P be a projective strictly semi-stableS-model of ad-dimensional
abelian varietyAK as described above. We denote byi :Y ↪→P the special fiber ofP and by
Y (r) the disjoint union of ther-fold intersections of the irreducible components ofY . The natural
inclusions can be used to define canonical maps

γ :Ad−p−1
(
Y (2)

)
→Ad−p

(
Y (1)

)
, ρ :Ap

(
Y (1)

)
→Ap

(
Y (2)

)

between the groupsA·(Y (r)) of algebraic cycles onY (r) modulo homological equivalence. We
defineAp(Y ) = Coker(γ) andAp(Y ) = ker(ρ). We are looking for extensions of homologically
trivial cycles on the generic fiber ofAK to P which are perpendicular to cycles supported onY
with respect to the local arithmetic intersection pairing. This problem has a solution if the cycle
class map induces an injection

cl :Ap(Y )−→H ét
2p

(
Y ⊗k k,Q l(−p)

)
(3)

and the complex

Ad+1−p(Y )
i∗i∗−→Ap(Y )

.∩[Y ]−→ Ad−p(Y )(4)

is exact. Using results about cycles on degenerate fibers in mixed characteristic of Bloch, Gillet,
and Soulé [3], we have seen in [12] that (3) is injective and (4) is exact if the varietiesPα
satisfy Grothendieck’s standard conjectures and the Tate conjecture. In the special case where
AK has totally degenerate reduction at all places of bad reduction, eachPα is a smooth projective
toric variety and satisfies Grothendieck’s standard conjectures and the Tate conjecture. This is
sufficient to show in [12] that there is a well defined height pairing onAK . For general abelian
varieties, arbitrary contraction products (2) may appear as closures of strata in a model. We
have shown in [14] that Grothendieck’s standard conjectures and the Tate conjecture hold for a
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contraction product (2) if they hold for the abelian varietyAα. However we do not know that
these conjectures hold for arbitrary abelian varieties. Therefore we use a different argument for
general abelian varieties. The ring of algebraic cycles modulo homological equivalence on a
contraction product (2) can be computed as

A·(Pα) =A·(Aα)⊗Q A
·(Zα).

This isomorphism allows us to express the injectivity in (3) and the exactness of (4) in terms of
corresponding statements involving only the toric varietiesZα. We reduce our problem to the
case of totally degenerate reduction in the following way. We use Mumford’s construction to
produce a second abelian varietyA′

K with totally degenerate reduction together with a modelP ′

which is related to the original modelP as follows. The closures of the strata in the special fiber
of P ′ are precisely the toric varietiesZα which appear in the contraction productsPα of the
original model. Furthermore the simplicial complex which describes how the different strata are
related to each other coincides forP andP ′. This allows us to conclude the injectivity in (3) and
the exactness of (4) from the corresponding statements forP ′.

Notations and conventions

For an abelian groupX , we defineXQ =X ⊗Z Q, XR =X ⊗Z R, andX∗ = HomZ(X,Z).
The dual abelian variety of an abelian varietyA is denoted byAt. Let S denote the spectrum
of a field or a Dedekind domain. LetX be a separatedS-scheme of finite type. We denote by
CH p(X) the Chow group of algebraic cycles of dimensionp onX modulo rational equivalence
as defined in [7, 20.1]. However we takep to be the absolute dimension overS, which is the
relative dimension overS plus the dimension ofS. If X is regular and equidimensional of finite
Krull dimensiond, we writeCH p(X) =CH d−p(X).

1. Height pairings for algebraic cycles

1.1. LetK be a number field,OK its ring of integers, andXη a smooth projective variety of
dimensiond over η = SpecK . The Chow group of homologically trivial cycles onXη is the
kernel of the cycle class map

CH p(Xη)0Q = ker
(
cl :CH p(Xη)Q −→H2p

ét

(
Xη,Ql(p)

))
.

Bloch and Beilinson have given in [1], [2] conditional definitions of height pairings

〈., .〉Xη
:CH p(Xη)0Q ×CH d+1−p(Xη)0Q −→R.(5)

We recall a definition of Beilinson’s pairing which requires the following assumptions:

1.2. Assumption. – The varietyXη has a regular modelX which is flat and projective over
S =SpecOK .

Once we have a regular model, we can use arithmetic intersection theory [10, 4.3.8] to define
a pairing

〈., .〉X :CH p(X)0Q ×CH d+1−p(X)0Q −→R,(6)
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where CH p(X)0Q denotes the subspace ofCH p(X)Q consisting of cycle classes whose
restriction toXη is homologically trivial. Let

CH p
fin(X)Q = ker

(
CH p(X)Q −→ CH p(Xη)Q

)
.

We defineCH p
fin(X)

⊥
Q to be the orthogonal complement toCH p

fin(X)Q with respect to the
pairing (6). There is a canonical map

ϕX :CH d+1−p
fin (X)⊥Q −→ CH p(Xη)0Q.

1.3. Assumption. – The mapϕX is surjective.

If the Assumptions 1.2 and 1.3 hold, we can define the pairing (5) by applying the pairing (6)
to preimages underϕX . We obtain height pairings (5) which behave well under the action of
correspondences and generalize the classical Néron–Tate height pairing between divisors and
zero-cycles [1], [2], [11].

1.4. LetK ′ be a finite extension ofK ,X ′
η =Xη⊗KK

′, and denote byq the natural map from
X ′

η toXη. If our Assumptions 1.2 and 1.3 hold forXη andX ′
η then it follows from Lemma 1.5

below that

〈α,β〉Xη =
1

[K ′ :K]
〈q∗α, q∗β〉X′

η
(7)

holds for allα,β ∈ CH ·(Xη)0Q. We use Eq. (7) to define the pairing (5) if 1.2 and 1.3 hold for
X ′

η for some finite extensionK ′ of K . The following lemma shows that the definition of (5) via
(7) is independent of choices. It doesn’t depend on the choice of a fieldK ′ and on the choice of
a model overOK′ satisfying our Assumptions 1.2 and 1.3.

1.5. LEMMA. – LetKi, i= 1,2, be finite extensions ofK andηi = SpecKi. We assume that
Xηi =Xη ⊗η ηi admits a modelXi overOKi satisfying1.2 and1.3. Let qi denote the natural
map fromXηi toXη. We have

1
[K1 :K]

〈q∗1α, q∗1β〉Xη1
=

1
[K2 :K]

〈q∗2α, q∗2β〉Xη2

for all α ∈CH p(Xη)0Q andβ ∈CH d+1−p(Xη)0Q.

Proof. –Let L be a finite extension ofK which containsK1 andK2. Let pi denote the
natural map fromXL = Xη ⊗K L to Xηi . The varietyXL together withp1 andp2 induces
a correspondenceΓη = (p1, p2)∗[XL] in CH ·(Xη1 ×η Xη2). The correspondenceΓη and its
transposeΓtη induce mapsΓη,CH andΓtη,CH on Chow groups which satisfy

Γη,CH (q∗1α) = [L :K2] q∗2α, Γtη,CH (q
∗
2α) = [L :K1] q∗1α(8)

for all α ∈ CH ·(Xη). The productX1 ×S X2 is a model ofXη1 ×η Xη2 . Let Γ be a class
in CH ·(X1 ×S X2) which restricts toΓη. For γ ∈ CH p(Xηi)0Q, we denote bỹγ a lift in

CH d+1−p(Xi)⊥Q underϕXi . By definition and (8), we get

1
[K2 :K]

〈q∗2α, q∗2β〉Xη2
=

1
[K2 :K]

〈q̃∗2α, q̃∗2β〉X2 =
1

[L :K]
〈ΓCH q̃∗1α, q̃

∗
2β〉X2 .
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Using the projection formula [11, Lemma 4.1], this equals

1
[L :K]

〈q̃∗1α,ΓtCH q̃
∗
2β〉X1 =

1
[K1 :K]

〈q̃∗1α, q̃∗1β〉X1 =
1

[K1 :K]
〈q∗1α, q∗1β〉Xη1

.

This proves our claim. ✷
The following theorem is the main result of this paper.

1.6. THEOREM. – LetAη be an abelian variety with semi-abelian reduction overη. ThenAη

admits a regular modelP which is flat and projective overS = Spec (OK) for which the map

ϕP :CH dimAη+1−p
fin (P )⊥Q −→CH p(Aη)0Q

is surjective for allp� 0.

The proof of the theorem will be given in Sections 5 and 6. LetAη be an abelian variety
over η. By the semi-abelian reduction theorem [5, I 2.6], we may assume thatAη has semi-
abelian reduction if we replaceK by some finite field extension. We conclude from 1.4 and from
Theorem 1.6:

1.7. COROLLARY. – There is a canonical well defined height pairing

〈., .〉Aη
:CH p(Aη)0Q ×CH dimAη+1−p(Aη)0Q −→R

for every abelian varietyAη which is defined over a number fieldK .

2. Semi-stable reduction

2.1. LetR be a discrete valuation ring with quotient fieldK and perfect residue class fieldk.
We setS = SpecR, η = SpecK , S0 = Speck andX0 =X×S S0 for anS-schemeX . LetX be
a projective flatS-scheme with reduced special fiberY =X0. Let Y1, . . . , Yt be the irreducible
components ofY . ForI ⊂ {1, . . . , t}, we denote byYI the scheme-theoretic intersection

⋂
i∈I Yi.

We have in particularY∅ = X . Let X be a projective flatS-scheme of pure dimensiond + 1
which isstrictly semi-stableoverS, i.e., the generic fiberXη =X \ Y of X is smooth overη,
the special fiberY =X0 is reduced, eachYi is an effective Cartier divisor onX , and the schemes
YI are regular and have pure codimension|I| in X for each subsetI ⊂ {1, . . . , t}.

2.2. We recall some well known constructions from [3]. For every inclusion of subsets
I ⊆ J ⊆ {1, . . . , t}, we have a closed immersionu= uJI :YJ ↪→ YI which induces push-forward
and pull-back maps

u∗ :CH p(YJ )−→CH p+|J|−|I|(YI)(9)

and

u∗ :CH p(YI)−→ CH p(YJ )(10)

on Chow groups. Forr � 0, we denote byY (r) the disjoint union of allYI with |I|= r.
For I = {i1 < · · · < ir+1} and k ∈ {1, . . . , r + 1}, we set Ik = I \ {ik}. There are
unique homomorphismsδk∗ from CH p(Y (r+1)) to CH p+1(Y (r)) andδ∗k from CH p(Y (r)) to
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CH p(Y (r+1) such that the restriction ofδk∗ to CH p(YI) is (uIIk
)∗ and the component ofδ∗k in

CH p(YI) is (uIIk
)∗. We define

γ :CH p
(
Y (r+1)

)
→CH p+1

(
Y (r)

)
, γ =

r+1∑
k=1

(−1)k−1δk∗,(11)

ρ :CH p
(
Y (r)

)
→ CH p

(
Y (r+1)

)
, ρ=

r+1∑
k=1

(−1)k−1δ∗k.(12)

These maps satisfy

ρ2 = γ ◦ ρ+ ρ ◦ γ = γ2 = 0(13)

onCH p(Y (r)) for all p, r� 0 [3, Proof of Lemma 1]. Letπ :Y (1)→ Y denote the natural map.
We have exact sequences [12, 5.10]

CH d−p−1
(
Y (2)

) γ−→CH d−p
(
Y (1)

) π∗−→CH p(Y )−→ 0,

0−→ CH p(Y ) π∗
−→CH p

(
Y (1)

) ρ−→ CH p
(
Y (2)

)
,

whereCH p(Y ) denotes Chow cohomology ofY in the sense of Fulton [7, 17.3]. There is a
natural cap product

CH p(Y )×CH q(Y )−→CH q−p(Y ), (α,β) �→ α∩ β.(14)

The projection formula in [7, 17.3] applied toπ allows to describe this product in terms of the
intersection product on the smooth projective varietiesY (1). We have

α∩ π∗β = π∗(π∗α.β) ∀α ∈CH p(Y ), β ∈CH d−q
(
Y (1)

)
.(15)

2.3. We fix an algebraic closurek of k and a primel which is invertible onS. We denote by
V the base change of ak-schemeV to k. ForI �= ∅, we define

Ap(YI) = Im
(
cl :CH p(YI)Q −→H2p

ét

(
YI ,Q l(p)

)
.

The intersection product onCH ·(YI) induces a ring structure onA·(YI). For ∅ �= I ⊆ J ⊆
{1, . . . , r}, the maps (9) and (10) induce push-forward and pull-back maps

u∗ :Ap(YJ )−→Ap+|J|−|I|(YI)(16)

and

u∗ :Ap(YI)−→Ap(YJ ).(17)

2.4. We are going to extend the definitions in 2.3 to the caseI = ∅. The canonical morphism
j :Y (1)→X yields a push-forward map

j∗ = γ :CH ·(Y (1)
)

Q
−→CH ·+1(X)Q.(18)
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There is a natural ring structure onCH ·(X)Q [9, 8.3], [12, 5.2]. It follows from [12, 5.3] and
(15) that this product satisfies

j∗(α).β = j∗(α.j∗β), ∀α ∈CH ·(Y (1)
)

Q
, β ∈CH ·(X)Q.(19)

This projection formula shows that the image of

CH ·(Y (1)
)0

Q
= ker

(
cl :CH ·(Y (1)

)
Q
−→H2·

ét

(
Y (1),Q l(·)

)

under (18) defines an ideala in CH ·(X)Q. We letA·(X) = A·(Y∅) denote the quotient of
CH ·(X)Q by a. Using this definition, we can define the map (16) also in the caseI = ∅. The
following lemma shows that (17) is defined forI = ∅ as well.

2.5. LEMMA. – We havej∗j∗ CH p(Y (1))0Q ⊆CH p+1(Y (1))0Q.

Proof. –It follows from (13) that we have a commutative diagram

CH p
(
Y (1)

) γ=j∗

−ρ

CH p+1(X)

ρ=j∗

CH p
(
Y (2)

) γ
CH p+1

(
Y (1)

)
.

(20)

The mapρ on the left-hand side and the mapγ in the lower arrow are defined in terms of maps
(9) and (10) forI �= ∅. Hence these maps factor through the groupsA·(Y (r)). This yields our
claim. ✷

2.6. The groupsA·(YI) and the corresponding maps (16) and (17) satisfy functoriality, base
change, a projection formula and vanishing of the fundamental class ofY as explained in [3,
1.2 A1–A4]. This holds as the corresponding properties are already satisfied for Chow groups
(loc. cit.1.3.2). The degree of zero cycles defines natural trace mapstrI :Ap(YI)→Q for I �= ∅
which are compatible with (16). The maps (11) and (12) induce maps

γ :Ap
(
Y (r+1)

)
→Ap+1

(
Y (r)

)
, ρ :Ap

(
Y (r)

)
→Ap

(
Y (r+1)

)
.(21)

We define

Ap(Y ) = coker
(
γ :Ad−p−1

(
Y (2)

)
−→Ad−p

(
Y (1)

))
,

Ap(Y ) = ker
(
ρ :Ap

(
Y (1)

)
−→Ap

(
Y (2)

))
.

We obtain natural maps fromCH p(Y ) to Ap(Y ) and fromCH p(Y ) to Ap(Y ). The map from
CH p(Y )Q to Ap(Y ) is a surjection. The fact that the pairing (14) can be computed onY (1)

implies that there is a corresponding pairing betweenAp(Y ) andAq(Y )with values inAq−p(Y ).
The mapsγ = j∗ :Ap−1(Y (1))→Ap(X) andρ= j∗ :Ap(X)→Ap(Y (1)) induce maps

Ad+1−p(Y )
i∗−→Ap(X) i∗−→Ap(Y ).

The degree map fromCH 0(Y )Q to Q factors throughA0(Y ). We consider the following
sequence where the second map is induced by the identity onAp(Y (1)):

Ad+1−p(Y )
i∗i∗−→Ap(Y )

∩[Y ]−→Ad−p(Y ).(22)
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It follows from (20) that (22) is a complex.

2.7. LEMMA. – The exactness of the complex(22) is equivalent to the equality

ker(ρ|Ap(Y (1))) ∩ Im(γ|Ap−1(Y (2))) = Im(γ ◦ ρ|Ap−1(Y (1))).(23)

Proof. –This follows from the definitions if one observesγ ◦ ρ=−ρ ◦ γ. ✷
We observe that the equality in the lemma involves only the strata ofY and their natural

inclusion maps. It does not refer to the whole modelX .

2.8. It is shown in [3, Theorem 5] (compare also [13, 2.15]) that the complex (22) is exact
if the Q-vector spacesA·(YI) are finite dimensional and satisfy a hard Lefschetz and a Hodge
index theorem.

2.9. In the following, we assume that the residue class fieldk of R is finite. Accord-
ing to Deligne [4, 3.3.4], the cohomology groupsHp = H2p

ét (Y ,Q l(p)) carry a weight fil-
tration W·H

p = W·H
2p
ét (Y ,Q l(p)) with weights � 0. The étale homology groupsHp =

H ét
2p(Y ,Q l(−p)) are dual to étale cohomology and carry a weight filtrationW·Hp =

W·H
ét
2p(Y ,Q l(p)) with weights� 0. We have

H ét
2p

(
Y ,Q l(−p)

)Gal (k/k) ⊆W0H
ét
2p

(
Y ,Q l(−p)

)
=GrW0 H

ét
2p

(
Y ,Q l(−p)

)
.

We have derived in [12, 5.11] from the spectral sequence of cohomological descent that the
cokernel of the map

H2d−2p−2
ét

(
Y (2),Q l(d− p− 1)

) γ−→H2d−2p
ét

(
Y (1),Q l(d− p)

)
(24)

is GrW0 H
ét
2p(Y ,Q l(−p)). The map (24) is via the cycle class map compatible with the

corresponding map in (21). Hence there is a natural induced map

Ap(Y )−→GrW0 H
ét
2p

(
Y ,Q l(−p)

)
,

which we denote bycl as well. It follows from the functorial behavior of the cycle class map in
étale homology that it factors as

cl :CH p(Y )−→Ap(Y )−→GrW0 H ét
2p

(
Y ,Q l(−p)

)
⊆H ét

2p

(
Y ,Q l(−p)

)
.(25)

3. Reduction to the strictly semi-stable local case

3.1. It is a local problem to check Assumption 1.3. We describe how this assumption can
be checked for a strictly semi-stable model. This is sufficient if our variety has potentially
semi-stable reduction. LetX be a strictly semi-stableS-scheme as in Section 2. Instead of
Assumption 1.3, we consider:

3.2. Assumption. – For allp� 0, the cycle class map induces an injection

cl :Ap(Y )−→H ét
2p

(
Y ,Ql(−p)

)
(26)
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and the complex

Ad+1−p(Y )
i∗i∗−→Ap(Y )

.∩[Y ]−→ Ad−p(Y )(27)

is exact.

The following result is an adaptation of Theorem 6.11 in [12] to our situation. LetK be a
number field with ring of integersOK , S = SpecOK andη = SpecK . For a primep ofOK , we
denote bySp the spectrum of the completion of the localization ofOK atp. LetXη be a smooth
projectiveη-variety. A modelX of Xη overS has bad reduction at a primep if Xp =X ×S Sp

is not smooth overSp.

3.3. PROPOSITION. – LetXη be ad-dimensional smooth projectiveK-variety. Suppose that
Xη has a regular modelX which is flat and projective overS. For each placep of bad reduction
ofX , we assume that there exists a finite flat morphismS′

p→ Sp of spectra of complete discrete
valuation rings such that the following holds. The base changeX ′

p of Xp to S′
p admits a

projectiveS′
p-morphismX ′′

p → X ′
p which induces an isomorphism of generic fibers such that

X ′′
p is strictly semi-stable overS′

p and satisfies Assumption3.2. Then the map

ϕX :CH d+1−p
fin (X)⊥Q −→CH p(Xη)0Q

is surjective for allp� 0.

Proof. –Letαη be a class inCH p(Xη)0Q. We fix an extensionα of αη in the groupCH p(X)0Q.
Let p be a prime of bad reduction. We have natural mapsjp :Xp→X andgp :X ′′

p →Xp. The
morphismgp is a projective factorable l.c.i. morphism of relative dimension zero. The restriction
of gp to generic fibers is finite. Therefore we may assume without loss of generality thatα was
chosen such that there exists an elementαp in CH p(X ′′

p )0Q with

j∗p(α) = gp∗(αp).

LetX ′
η be the generic andi′′p :Y

′′→X ′′
p the special fiber ofX ′′

p overS′
p. The specialization map

spCH :CH d−p(X ′
η)−→CH d−p(Y ′′

p )

mapsαp|X′
η

to (i′′p)
∗(αp) ∩ [Y ′′

p ]. It follows from the compatibility of the cycle class map with
specialization [12, 5.8] that(i′′p)

∗αp ∩ [Y ′′
p ] is homologically trivial. We conclude from (26) that

the class of(i′′p)
∗αp in Ap(Y ′′

p ) lies in the kernel of the right-hand map in (27). It follows that
there exists an elementα′

p ∈CH d+1−p(Y ′′
p ) such that

(i′′p)
∗αp = (i′′p)

∗(i′′p)∗α
′
p

holds inAp(Y ′′
p ). By modifying α in closed fibers over bad reduction places, we may find a

global classα0 ∈CH p(X)0Q which is an extension ofαη toX and satisfies

j∗p(α
0) = j∗p(α)− (gp)∗(i′′p)∗(α′

p)

for all primesp of bad reduction. We claim thatα0 is contained inCH d+1−p
fin (X)⊥Q . We fix a

primep ofOK and an elementβ in the Chow groupCH p(Yp)Q of the special fiberip :Yp→Xp

ofX atp. We have to show that<α0, (ip)∗(β)>X vanishes. The good reduction case is already
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discussed in [12, proof of 6.11]. Suppose thatX has bad reduction atp. We have intersection
pairings with supports on the regular schemesXp andX ′′

p [9, 8.3], [12, 5.3]:

〈., .〉Xp
:CH p(Xp)×CH d+1−p

Yp
(Xp)−→CH d+1

Yp
(Xp)Q

degYp−→ Q,(28)

〈., .〉X′′
p
:CH p(X ′′

p )×CH d+1−p
Y ′′

p

(X ′′
p )−→CH d+1

Y ′′
p
(X ′′

p )Q
degY ′′

p−→ Q.(29)

It is shown in the proof of part 7) of Theorem 4.4.3 in [10] that they satisfy the projection formula

〈gp∗α,β〉Xp
= 〈α, g∗pβ〉X′′

p

for α ∈ CH p(X ′′
p ) andβ ∈ CH d+1−p

Yp
(Xp). The mapg∗p is defined inloc. cit. 4.4.1 and maps

CH p
Yp
(Xp) to CH p

Y ′′
p

(X ′′
p ). The pairing (28) describes the local contribution to the pairing (6)

at the primep. Givenβ ∈CH p(Yp), we have
〈
α0, ip∗β

〉
X
=

〈
j∗pα

0, ip∗β
〉
Xp

=
〈
gp∗(αp − (i′′p)∗α′

p), ip∗β
〉
Xp

=
〈
αp − (i′′p)∗α′

p, g
∗
pip∗β

〉
X′′

p

.

The elementg∗pip∗β in CH d+1−p
Y ′′

p

(X ′′
p )Q = CH p(Y ′′

p )Q induces an element inAp(Y ′′
p ). The

pairing (29) can be described as [12, 5.3]

CH p(X ′′
p )×CH p(Y ′′

p )−→Q, (α,β) �→ degY ′′
(
(i′′p)

∗α ∩ β
)
,

where. ∩ . refers to the cap product pairing (14). We recall that (14) factors through the groups
in 2.6. We obtain

〈α0, ip∗β〉X = degY ′′
p

(
(i′′p)

∗(αp − (i′′p)∗α′
p) ∩ (g∗pip∗β)

)
= 0

as(i′′p)∗(αp − (i′′p)∗α′
p) vanishes inAp(Y ′′

p ). ✷

4. Toric varieties and toric fibrations

4.1. All varieties in this section are defined over a finite fieldk. For a smooth projective variety
X , we denote byAp(X) the image ofCH p(X)Q under the cycle class map intoH2p

ét (X,Q l(p)).

4.2. We recall some useful properties of toric varieties. For any toric varietyZ for some split
torusT and any varietyY , the natural map

CH ·(Y )⊗Z CH ·(Z)−→CH ·(Y ×Z)

is an isomorphism [6, Theorem 2]. If the toric varietyZ is smooth and proper, the cycle class
map induces an isomorphism (loc. cit.Corollary to Theorem 2)

cl⊗Z Q l :CH p(Z)Q l
−̃→H2p

ét

(
Z,Q l(p)

)
.(30)
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The Chow groupCH ·(Z) is a freeZ-module which has a basis given by classes of closures of
T -orbits inZ [8, 5.2].

4.3. LetG be a split semi-abelian scheme. The group schemeG is an extension of an abelian
varietyA by a torusT which is split overk. Let T ↪→ Z be a smooth projective toric variety.
We are interested in the contraction productP =G×T Z . We recall some facts about algebraic
cycles on the toric fibrationP overA from Section 2 in [14]. We have a cartesian square

G×Z π̃
P

G
π

A

whereπ andπ̃ describe products ofGm-torsors which are algebraically equivalent to zero. This
yields isomorphisms [14, Lemma 9]

CH ·(A)Q ⊗Q CH ·(Z)Q−̃→CH ·(A×Z)Q
(π×idZ )∗

−̃→ CH ·(G×Z)Q
π̃∗

←̃−CH ·(P )Q.

Their composition defines an isomorphism ofQ -algebras

ϕCH :CH ·(A)Q ⊗Q CH ·(Z)Q−̃→CH ·(P )Q.(31)

The mapϕCH is CH ·(A)-linear and has the following description (loc. cit. Lemma 10). Given
an elementα in CH p(A)Q and aT -stable subvarietyV of Z , we have

ϕCH (α⊗ [V ]) = π∗(α).[G×T V ].(32)

There is a corresponding mapϕH in l-adic cohomology for which the diagram

CH p(A)Q ⊗Q CH q(Z)Q
ϕCH

˜

cl⊗cl

CH p+q(P )Q

cl

H2p
ét

(
A,Q l(p)

)
⊗Q l

H2q
ét

(
Z,Q l(q)

) ϕH

˜
H2p+2q

ét

(
P ,Q l(p+ q)

)
(33)

commutes. The mapϕH is anH ·
ét(A,Q l(·))-linear isomorphism ofQ l-algebras.

4.4. LEMMA. – For a smooth projective toric fibrationP as above, the map(31) induces an
isomorphism

ϕA :A·(A)⊗Q A
·(Z)−̃→A·(P ).

Proof. –Observe that the tensor product of Chow groups is taken overQ whereas the tensor
product of cohomology groups is taken overQl. Our claim follows from the commutativity
of (33) as (30) is an isomorphism.✷

4.5. Let Z ′ be a second smooth projective toric variety for a split torusT ′. We assume that
there is a surjectiont :T → T ′ and a closed immersionj :Z ′ → Z which identifiesZ ′ with
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the closure of aT -orbit in Z and is compatible with torus actions undert. Let G′ be the
push-out of the extensionG with respect tot and idA. We setP ′ = G′ ×T ′

Z ′ = G ×T Z ′

and denote byf :P ′ ↪→ P the natural map. Lete denote the differencedim(P ) − dim(P ′) =
dim(Z)− dim(Z ′).

4.6. LEMMA. – The diagrams

CH p(A)Q ⊗Q CH q(Z ′)Q
id⊗j∗

ϕCH

CH p(A)Q ⊗Q CH q+e(Z)Q

ϕCH

CH p+q(P ′)Q
f∗

CH p+q+e(P )Q

(34)

and

CH p(A)Q ⊗Q CH q(Z)Q
id⊗j∗

ϕCH

CH p(A)⊗CH q(Z ′)

ϕCH

CH p+q(P )Q
f∗

CH p+q(P ′)Q

(35)

as well as the corresponding diagrams inl-adic cohomology commute.

Proof. –As ϕCH and ϕH are CH ·(A)Q (resp.H ·
ét(A,Q l(·))) linear, it is sufficient to

show (34) and (35) for elements of the form1 ⊗ α for α ∈ CH ·(Z(′)) (resp. for α ∈
H ·

ét(Z(′),Q l(·))). We consider first the case of Chow groups. The commutativity in (35) follows
from the fact thatϕCH was defined in 4.3 as a composition of maps which are compatible with
pull-backs. The commutativity of (34) follows easily from the description ofϕCH in (32). Next
we consider cohomology. It is sufficient to consider elements of the form1 ⊗ α. We use the
surjectivity of (30) together with the properties ofϕH described above to derive from our result
for Chow groups that the corresponding diagrams inl-adic cohomology commute.✷

5. Projective regular models for abelian varieties

5.1. Let K be a number field,OK its ring of integers, andAη an abelian variety with semi-
abelian reduction overη = SpecK . Using results of Chai, Faltings and Mumford, we have shown
in [12] thatAη admits a projective regular model overS =SpecOK which has potentially semi-
stable reduction as required in Proposition 3.3. We recall the main existence statements from [12]
and describe the models under consideration in detail. This will allow us to show in the next
section that they fulfill the requirements made in Assumption 3.2. We also use the opportunity to
correct the statement of [12, Theorem 4.6].

5.2. THEOREM. – Let Aη be an abelian variety overη with semi-abelian reduction. There
exists a regular modelP ofAη which is flat and projective overS.

Proof. –[12, Theorem 4.2]. ✷
The projective regular modelP in Theorem 5.2 is first constructed over the completions of

the local rings ofOK . A descent argument shows that these local models are already defined
over the local rings ofOK . The global modelP is obtained from gluing these local models. The
construction of a projective regular model over a complete discrete valuation ring is based on
Mumford’s construction of degenerating families of abelian varieties. In its general form, this
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construction is due to Chai and Faltings. It describes degenerating families of abelian varieties in
terms of so called degeneration data. We recall the main facts from [5, Ch. II, III], [12, Section 2].

5.3. Let S be the spectrum of a complete discrete valuation ringR. LetG be a semi-abelian
S-scheme whose generic fiberGη is an abelian variety. LetL be a cubical ample invertible sheaf
onG. Associated withG is the Raynaud extensioñG [5, II.1]. The semi-abelianS-schemeG̃ is
an extension

0−→ T −→ G̃ π−→A−→ 0(36)

of an abelianS-schemeA by a torusT . The invertible sheafL induces a cubical ample invertible
sheafL̃ on G̃ which admits aT -linearization if the torusT is split overS. A triple (G,L,M)
for G andL as above is called a split ample degeneration overS if T is split andM is an
ample invertible sheaf onA such thatπ∗M∼= L̃. Split ample degenerations form a category
DEG split

ample which is equivalent to the categoryDD split
ample of split ample degeneration data. The

categoryDD split
ample is defined as follows ([5, III.2], [12, 2.2]). We consider data

(
A,X,Y,φ, c, ct, τ,M, λA, ψ, a, b

)
(37)

which fulfill the following requirements.
(d1) A is an abelianS-scheme.
(d2) X andY are free abelian groups of finite rankr.
(d3) φ :X→ Y is an injective homomorphism.
(d4) c :X→At(S) andct : Y →A(S) are homomorphisms of abelian groups.
(d5) τ is a trivialization

τ :1(Y×X)η
−̃→

(
ct × c

)∗P−1
A,η

of theGm-biextension(ct×c)∗P−1
A,η over the constantη-group scheme(Y ×X)η where

PA is the Poincaré biextension overA×S A
t.

(d6) M is a cubical ample invertible sheaf onA such that the associated polarization
λA :A→At satisfiesλA ◦ ct = c ◦ φ.

(d7) ψ is a trivialization

ψ :OYη −̃→
(
ct

)∗M−1
η

of the cubical invertible sheaf(ct)∗M−1
η over the constantη-group schemeYη which is

compatible withτ in the sense that we have (compare [12, 2.2])

Λ(ψ) = τ ◦ (idY × φ).(38)

The functionsa :Y → Z and b :Y × X → Z measure the denominators which are needed to
define the trivializationsτ andψ. Namely,ψ andτ identify ct(y)∗M and(ct(y), c(x))∗PA with

the fractional idealsma(y)
R andmb(y,x)

R in R. The functionb is bilinear, the functiona satisfies
a(0) = 0, and (38) implies

a(y+ y′)− a(y)− a(y′) = b
(
y,φ(y′)

)
∀y, y′ ∈ Y.(39)

Thepositivity conditionrequires that Eq. (39) define a positive definite bilinear form. Data (37)
as above which satisfy the positivity condition form by definition the objects of the category
DDsplit

ample of split ample degeneration data.
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5.4. We recall the definition of admissible cone decompositions from [12, 3.1]. We consider
data(X,Y,φ, a, b) as in (37). HenceX andY are free abelian groups of finite rankr, φ :X→ Y
is an injective homomorphism,b :Y ×X → Z is a bilinear function such that the induced form
b( . , φ( . )) is positive definite, anda :Y → Z is a function which satisfiesa(0) = 0 and (39).
There is a natural action ofY on X̃∗ =X∗×Z via

Sy(l, s) =
(
l+ sb(y, . ), s

)

for y ∈ Y , l ∈X∗ =HomZ(X,Z), ands ∈ Z. Let {σα}α∈I be a (not necessarily finite) rational
polyhedral cone decomposition of theY -stable cone

C = (X∗
R ×R>0)∪ {0}

in X̃∗
R. The cone decomposition{σα}α∈I is Y -admissible if the collection of the cones

σα is stable under the action ofY and if there are only finitely many orbits. We call a
cone decomposition{σα}α∈I of C semi-stable if{σα}α∈I is smooth [12, 1.11] and all one-
dimensional cones have a generator inX∗ × {1}. Given aY -admissible cone decomposition
{σα}α∈I , we define the notion of ak-twistedY -admissible polarization functionϕ for {σα}α∈I
as in [12, 3.1].

Let {σα}α∈I be a smoothY -admissible cone decomposition ofC. Let I+ be the setI with
the index of the zero cone removed. The groupY acts onI andI+. We denote byIY andI+Y
the orbit spaces for this action. Observe thatIY and I+Y are finite sets. Letα be an index in
I+, i.e., σα �= {0}. Let X̃(σα) be the subgroup of̃X = X × Z given by all elements which
are perpendicular tõX∗ ∩ σα with respect to the canonical pairing betweenX̃ and X̃∗. The
projection fromX̃ toX induces an injection of the free abelian groupX̃(σα) intoX . Associated
with eachα ∈ I+ is a cone decompositioñstar(σα) which is given as follows. Letstar(σα) be
the star ofσα which is the collection of all conesσβ in {σα}α∈I such thatσα is a face ofσβ .
Then s̃tar(σα) is by definition the smooth rational polyhedral cone decomposition inX̃(σα)∗R
which is given by the image ofstar(σα) under the natural projection.

5.5. We work over the spectrumS of a complete discrete valuation ringR and use the notations
from 2.1. LetAη be an abelian variety overη which has semi-abelian reduction and is polarized
by an ample invertible sheafLη . The connected componentG of the Néron model ofAη is a
semi-abelianS-scheme. The invertible sheafLη extends uniquely to a cubical ample invertible
sheafL onG and induces an invertible sheafL̃ on the Raynaud extension (36). If we replaceS
by a finite, étale extension, we may assume that the torusT is split and thatL̃ descends to a
cubical ample invertible sheafM onA. The triple(G,L,M) defines a split ample degeneration
overS as in 5.3. We denote by

(
A,X,Y,φ, c, ct, τ,M, λA, ψ, a, b

)

the set of degeneration data associated with(G,L,M). We obtain in particular data(X,Y,φ, a, b)
as described in 5.4. In [12, Section 3], we have constructed a projective regular compactifi-
cation ofG from a smoothY -admissible cone decomposition{σα}α∈I and from ak-twisted
Y -admissible polarization functionϕ for {σα}α∈I . The existence of such a pair({σα}α∈I , ϕ)
was shown inloc. cit.3.3. The compactification ofG constructed from({σα}α∈I , ϕ) is a strictly
semi-stableS-scheme if and only if the cone decomposition{σα}α∈I is semi-stable. A given
Y -admissible cone decomposition admits a semi-stable refinement if we are allowed to change
the integral structure onX∗

R. The change of the integral structure onX∗
R corresponds to a ramified
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base extension ofS. Therefore we replaceS by some finite flat extension which we allow this
time to be ramified. After such a suitably ramified extension ofS, we may find a refinement of a
givenY -admissible cone decomposition with the following properties. The refinement is a semi-
stableY -admissible cone decomposition{σα}α∈I which contains the coneσT = {0} × R>0,
satisfiesSy(σα)∩ σα = {0} for all y ∈ Y −{0}, and admits ak-twistedY -admissible polariza-
tion functionϕ for a suitablek ∈N [12, 4.5]. Forα ∈ I+, the injection ofX̃(σα) intoX defined
above determines a surjection of split tori overk

T0 −→ Tα −→ 0.(40)

The quotientGα of G0 by the kernel of (40) is a semi-abeliank-scheme

0−→ Tα −→Gα −→A0 −→ 0.

5.6. THEOREM. – Associated with the semi-stableY -admissible cone decomposition{σα}α∈I
and thek-twisted polarization functionϕ, there is a strictly semi-stable schemeP which is flat
and projective overS, and an ample invertible sheafLP onP such that:

(i) G is an open subscheme ofP andLP |G = L⊗k.
(ii) The action ofG on itself by translation extends toP.
(iii) The special fiberP0 is a reduced divisor with strictly normal crossings onP . It has a

natural stratification with strataGα for α in I+Y . The strata are precisely the orbits for
the action ofG0 onP0 given in(ii) . The special fiberG0 ofG coincides with the stratum
GσT . There is a canonical isomorphism ofk-varieties

Sy :Gα−̃→Gβ

if Sy(α) = β for somey ∈ Y .
(iv) The closurePα of the stratumGα is the disjoint union of allGβ such thatσα is a face of

σβ . If we equip it with its induced reduced subscheme structure, it becomes isomorphic to
the contraction product

Gα ×Tα Zα

whereTα ↪→ Zα is the smooth projective toric variety overk associated with the cone
decompositioñstar(σα) defined above. Forα ∈ I+, the canonical mapsSy fromGα to
GSy(α) induce isomorphismsSy fromPα toPSy(α) which fit into the commutative squares

Pα
Sy

πα

PSy(α)

πSy(α)

Pγ

Sy

Pα

Sy

A0

Tct(y)
A0 PSy(γ) PSy(α)

whereTct(y) denotes translation byct(y) ∈A(S) andσα is a face ofσγ .

Proof. –This follows from Theorem 3.5 and Theorem 4.7 in [12].✷
5.7. The construction of the models in Theorem 5.2 and Theorem 5.6 can be done in a way that

is compatible with the requirements made in 3.3. In fact, we have to choose an admissible cone
decomposition for each bad reduction prime in order to obtain a global model as in Theorem 5.2.
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After a suitable change of the integral structure, each of these cone decompositions admits a
semi-stable refinement. The change of the integral structure corresponds locally to a finite flat
ramified base change. The refinement of the cone decomposition corresponds to blowing ups
in the special fiber. The combination of these modifications yields locally a strictly semi-stable
model as required in Proposition 3.3.

5.8. Erratum to [12]. LetR be a discrete valuation ring with quotient fieldK . Let Aη be an
abelianK-variety which has semi-abelian reduction and is polarized by an ample invertible sheaf
Lη. In [12, Theorem 4.2], we claim that there exists a discrete valuation ringR′ which is a finite
flat extension ofR such that the base change ofAη to the quotient field ofR′ admits a projective
semi-stable model overR′ with properties (i)–(iv) listed in Theorem 5.6. This statement holds as
stated inloc. cit. if R is a complete discrete valuation ring. IfR is an arbitrary discrete valuation
ring, the finite flat ring extensionR′ of R constructed inloc. cit. no longer has to be a discrete
valuation ring. The statement of [12, Theorem 4.2] has to be corrected as follows. In the above
situation, there exists a finite field extensionK ′ of K such that the base change ofAη to K ′

admits a projective regular modelP over the integral closureR′ of R in K ′. This modelP has
semistable reduction over each localization ofR′ with the properties listed in [12, Theorem 4.2]
and Theorem 5.6 (i)–(iv). This correction does not affect the validity of the other results in [12].
The theorem is only used in the proof of [12, Theorem 6.13] where one can work over a complete
discrete valuation ring as in this paper.

6. Reduction to the totally degenerate case

6.1. Let K be a number field andAη a d-dimensional abelian variety with semi-abelian
reduction overη = SpecK . In the last section, we have seen thatAη admits a projective regular
model over the ring of integers inK which has potentially semi-stable reduction as required
in Proposition 3.3. In this section, we show that the strictly semi-stable models constructed in
Theorem 5.6 satisfy Assumption 3.2.

6.2. Let R be a complete discrete valuation ring with finite residue class fieldk. Let (G,L,M)
be a split ample degeneration overS such that the associated degeneration data

(
A,X,Y,φ, c, ct, τ,M, λA, ψ, a, b

)

admit a semi-stableY -admissible polyhedral cone decomposition{σα}α∈I which contains the
coneσT = {0}×R>0, satisfiesSy(σα)∩ σα = {0} for all y ∈ Y −{0}, and admits ak-twisted
Y -admissible polarization functionϕ for a suitablek ∈ N. Let P be the compactification ofG
constructed in Theorem 5.6 from({σα}α∈I , ϕ). In order to show that Assumption 3.2 holds for
the modelP , we construct a second strictly semi-stableS-schemeP ′ =Q. The new schemeQ
is closely related toP and will satisfy Assumption 3.2. Using again the pair({σα}α∈I , ϕ), we
constructP ′ =Q as a compactification of a totally degenerate semi-abelianS-schemeG′ from
a split ample degeneration(G′,L′,M′). We construct(G′,L′,M′) from its degeneration data

(
A′,X ′, Y ′, φ′, c′, (c′)t, τ ′,M′, λ′A, ψ

′, a′, b′
)

(41)

by Mumford’s construction 5.3. We choose a prime elementπR of R in order to define our new
degeneration data. The data (41) are defined as follows:

(d1) A′ is the trivial abelianS-scheme.
(d2) X ′ =X andY ′ = Y .
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(d3) ϕ′ = ϕ.
(d4) c :X ′→A′(S) = {e} andct :Y ′→ (A′)t(S) = {e} are the zero maps.
(d5) The trivialization

τ ′ :1(X′×Y ′)η

∼−→
(
(c′)t × c′

)∗P−1
A′,η = 1(X′×Y ′)η

is defined byτ ′(1(y,x)) = π
−b(y,x)
R · 1(y,x) for y ∈ Y ′ andx ∈X ′.

(d6) M′ =OS is the structure sheaf.
(d7) We define the trivialization

ψ′ :OY ′
η

∼−→ (c′)t∗(M′
η)

−1 =OY ′
η

by ψ′(1y) = π
−a(y)
R · 1y for all y ∈ Y ′.

It follows from the above definitions that we have

(X ′, Y ′, φ′, a′, b′) = (X,Y,φ, a, b).(42)

We have to show that our data satisfy (38) and that the positivity condition holds. We conclude
from (42) that (39) holds for our new data and that the positivity condition is satisfied. Eq. (38)
is a consequence of our definition ofτ ′ andψ′ if one observes the compatibility (39).

The degeneration data (41) determine a split ample degeneration(G′,L′,M′) overS. We may
use the cone decomposition{σα}α∈I and the polarization functionϕ to construct a strictly semi-
stableS-schemeP ′ with an ample invertible sheafLP ′ which is a compactification ofG′ as in
Theorem 5.6. We writeQ= P ′, e for the dimension ofQ0, and denote byi andj the inclusions
of the special fibersP0 andQ0 into P andQ. As the modelQ is constructed from the same
cone decomposition asP , it has a similar special fiber. The strata of the special fibersP0 and
Q0 correspond to elements inI+Y . TheQα for α ∈ I+ are smooth projective toric varieties and
eachPα is a contraction productGα ×Tα Qα. We are interested in the modelQ as it satisfies
Assumption 3.2.

6.3. THEOREM. – The cycle class in étale homology induces an isomorphism

cl⊗Q Q l :Ap(Q0)Q l
−̃→GrW0 H ét

2p

(
Q0,Q l(−p)

)
⊆H ét

2p

(
Q0,Q l(−p)

)
(43)

and the complex

Ae+1−p(Q0)
j∗j∗−→Ap(Q0)

.∩[Q0]−→ Ae−p(Q0)(44)

is exact.

Proof. –The first isomorphism follows from the bijectivity of (30) asAp(Q0) is the cokernel
of γ in (21) andGrW0 H ét

2p(Q0,Q l(−p)) is the cokernel ofγ in (24). The exactness of (44) follows
from 2.8 (compare [12, proof of 6.13]).✷

According to Lemma 4.4, there is for eachα ∈ I+Y a canonical isomorphism

ϕA :A·(A0)×Q A
·(Qα)−̃→A·(Pα).(45)

The following proposition shows that this isomorphism behaves naturally with respect to the
action ofY .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



520 K. KÜNNEMANN

6.4. PROPOSITION. – Let α andβ be elements inI+ such thatSy(α) = β holds for some
y ∈ Y . In this case, there are natural isomorphismsSy :Qα→ Qβ andSy :Pα→ Pβ and the
diagram

Ap(A0)⊗Q A
q(Qα)

id⊗Sy∗

ϕA

Ap(A0)⊗Aq(Qβ)

ϕA

Ap+q(Pα)
Sy∗

Ap+q(Pβ)

commutes.

Proof. –The mapsSy in the diagram have been introduced in Theorem 5.6(iv). The
isomorphismSy from Pα to Pβ fits into the left commutative square inloc. cit. The graph of
the translation mapTct(y) is algebraically equivalent to the graph of the identity. HenceTct(y)

acts trivially onA·(A0) and we obtain

π∗α(x) = π
∗
α T

∗
ct(y)(x) = S

∗
y π

∗
β(x) ∀x∈A·(A0).

The groupAp(A0)⊗Q A
q(Qα) is generated by elementsx⊗ [Qγ ] wherex ∈Ap(A0), γ ∈ I+

such thatσα is a face ofσγ , and[Qγ ] is the class of the subvariety which is given as the closure
of the stratumG′

γ = Tγ corresponding toγ in 5.6 (iii). We defineδ ∈ I+ by Sy(σγ) = σδ. The
mapSy in the proposition mapsQγ toQδ andPγ to Pδ. We have

Sy∗ϕA(x⊗ [Qγ ]) = Sy∗
(
π∗αx.

[
Gα ×Tα Qγ

])
= Sy∗(S∗

yπ
∗
βx.[Pγ ])

= π∗β(x).Sy∗[Pγ ]

= π∗β(x).
[
Gβ ×Tβ Qδ

]
= ϕA(x⊗ Sy∗ [Qγ ]).

This proves our claim. ✷
Next we check compatibility of (45) withγ andρ. We choose an ordering of the classes of one-

dimensional cones inI+Y , i.e. an identification of the irreducible components ofQ0 andP0 with
{1, . . . , t}. We consider the mapsγ andρ from (21). We claim with the corresponding notation
PI ,QI , P

(i),Q(i) as in Section 2 the following lemma.

6.5. LEMMA. – The diagrams

Ap(A0)⊗Q A
q
(
Q

(r+1)
0

) id⊗γ

ϕA

Ap(A0)⊗Q A
q+1

(
Q

(r)
0

)

ϕA

Ap+q
(
P

(r+1)
0

) γ
Ap+q+1

(
P

(r)
0

)
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and

Ap(A0)⊗Q A
q
(
Q

(r)
0

) id⊗ρ

ϕA

Ap(A0)⊗Q A
q
(
Q

(r+1)
0

)

ϕA

Ap+q
(
P

(r)
0

) ρ
Ap+q

(
P

(r+1)
0

)

as well as the corresponding diagrams inl-adic cohomology commute.

Proof. –The mapsγ andρ are defined in terms of the maps (16) and (17). Hence it is sufficient
to show the corresponding commutativity statements in the lemma for these maps. It follows
from our construction and from Proposition 6.4 that we may assume therefore that we are in the
situation of 4.5. Then our claim follows from Lemma 4.6.✷

We are ready to prove our final result.

6.6. THEOREM. – Let P be a strictly semi-stable model of an abelian variety as constructed
in 5.6. Then the cycle class map in étale homology induces an injection

cl :Ap(P0)−→H ét
2p

(
P0,Ql(−p)

)
(46)

and the complex

Ad+1−p(P0)
i∗i∗−→Ap(P0)

.∩[P0]−→ Ad−p(P0)(47)

is exact.

Proof. –We recall thatd, e, and g = d − e denote the dimensions ofP0, Q0, andA0

respectively. For allp, q � 0, we have a commutative diagram

Ap(A0)⊗Q A
d−p−q−1

(
Q

(2)
0

) id⊗γ

ϕA

Ap(A0)⊗Q A
d−p−q

(
Q

(1)
0

)

ϕA

Ad−q−1
(
P

(2)
0

) γ
Ad−q

(
P

(1)
0

)
.

(48)

We obtain a map of the cokernels of the horizontal maps

ϕ̃A :Ap(A0)⊗Q Ap+q−g(Q0)→Aq(P0)

which induces an isomorphism

ϕ̃A :
⊕
p

Ap(A0)⊗Q Ap+q−g(Q0)→Aq(P0).

The diagram (48) admits cycle class maps into the corresponding diagram inl-adic cohomology.
We obtain a commutative diagram of cokernels

Ap(A0)⊗Q Ap+q−g(Q0)

cl⊗cl

Aq(P0)

cl

H2p
ét

(
A0,Q l(p)

)
⊗Ql

GrW0 H ét
2(p+q−g)

(
Q0,Q l(−q− p)

)
GrW0 H ét

2q

(
P0,Q l(−q)

)
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where the horizontal maps become isomorphisms if we take on the left-hand side the direct
sum over allp. We have seen thatGrW0 H

ét
2q(P0,Q l(−q)) is a subspace ofH ét

2q(P0,Q l(−q)). It
follows that (46) is injective if the right vertical map in the diagram above is injective. However
this follows from the commutativity of the diagram if one observes the isomorphism (43). Next
we show the equality

ker(ρ|
Ap(P

(1)
0 )

)∩ Im(γ|
Ap−1(P

(2)
0 )

) = Im(γ ◦ ρ|
Ap−1(P

(1)
0 )

)(49)

which implies the required exactness by Lemma 2.7. It follows from Lemma 6.5 that we have

ker(ρ|
Ap(P

(1)
0 )

) =
⊕

q′+q=p

Aq′ (A0)⊗Q ker(ρ|Aq(Q
(1)
0 )
),

Im(γ|
Ap−1(P

(2)
0 )

) =
⊕

q′+q=p

Aq′ (A0)⊗Q Im(γ|Aq−1(Q
(2)
0 )
),

Im(γ ◦ ρ|
Ap−1(P

(1)
0 )

) =
⊕

q′+q=p

Aq′ (A0)⊗Q Im(γ ◦ ρ|Aq−1(Q
(1)
0 )
).

We see in particular that the left-hand side of (49) equals

⊕
q′+q=p

Aq′(A0)⊗Q

(
(ker(ρ|

Aq(Q
(1)
0 )
)∩ Im(γ|

Aq−1(Q
(2)
0 )

)
.

This proves our claim as (23) holds forQ0 by Theorem 6.3 and Lemma 2.7.✷
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