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HEIGHT PAIRINGS FOR ALGEBRAIC CYCLES
ON ABELIAN VARIETIES

By KLaus KUNNEMANN

ABSTRACT. — Beilinson and Bloch have given conditional constructions of height pairings between
algebraic cycles on smooth projective varieties over number fields. These pairings generalize the classical
Néron-Tate height pairing between divisors and zero-cycles and give conjecturally a description of the
behavior of motivicL-functions near the central point. We give an unconditional construction of height
pairings for algebraic cycles on abelian varieties. This improves a previous result where we have defined
height pairings on abelian varieties which have totally degenerate reduction at all places of bad reduction.
Our construction is based on the existence of projective regular models for abelian varieties over number
fields and on the study of cycles on degenerate fibers in mixed characteristic initiated by Bloch, Gillet, and
Soulé.
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RESUME. — Beilinson et Bloch ont proposé une définition conjecturale des accouplements de hauteur
entre cycles algébriques sur les variétés projectives lisses definies sur un corps de nombres. Ces
accouplements généralisent I'accouplement de Néron-Tate entre zéro-cycles et diviseurs. lls permettent de
décrire conjecturalement le comportement des fonctionsotiviques au centre de leurs bandes critiques.

Nous proposons une construction inconditionnelle des accouplements de hauteurs entre cycles algébriques
sur les variétés abéliennes, qui généralise notre construction antérieure pour les variétés abéliennes a
réduction totalement dégénérée. Notre construction repose sur I'existence de modeles projectifs réguliers

pour les variétés abéliennes sur les corps de nombres, et d'autre part sur I'étude des cycles sur les fibres
dégénérées en caractéristique mixte initiée par Bloch, Gillet et Soulé.
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0. Introduction

Let A be an abelian variety which is defined over a number fi€ldet CH? (A )° be the
Chow group of homologically trivial cycles of codimensipion A . The aim of this paper is to
show that there is a well defined height pairing

(1) () a, t CHP(AR)" x CHE™ARTI=P(4 )0 — R

which generalizes the classical Néron—Tate height pairing between divisors and zero-cycles. The
precise statement of our result is given in Theorem 1.6. This improves a result in [12] where we
have constructed the above height pairing under the assumption that the abelianA/ariedg

totally degenerate reduction at all places of bad reduction. Beilinson and Bloch have given in [1]
and [2] conditional definitions of height pairings for homologically trivial cycles on any smooth
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504 K. KUNNEMANN

projective variety which is defined over a number field. Conjecturally these height pairings can
be used to describe the behavior of motiifunctions near the central point. We use a variant

of Beilinson’s construction to define the pairing (1) which is based on arithmetic intersection
theory as developed by Gillet and Soulé. In order to define a height pairing for algebraic cycles
on Ak, we have to overcome two difficulties. We need a projective regular meaélA x over

the ring of integer®x in K and extensions of homologically trivial cycles dr; to P which

are perpendicular to cycles supported in a special fiber with respect to the arithmetic intersection
pairing on the modeP.

Using results of Mumford, Chai, and Faltings, we have constructed in [12] projective regular
models for abelian varieties with semi-abelian reduction. We have shown furthermore that an
abelian varietyd - has potentially semi-stable reduction, i.e., locally at prim&8gfthere exists
after a finite flat base change a projective strictly semi-stable m@ddl A, . The special fiber
of a strictly semi-stable model has a canonical stratification. The strata in the special fiber of the
strictly semi-stable models of abelian varieties constructed in [12] have the following description.
Each stratum is a semi-abelian sche@gewhich is an extension of an abelian variety, by a
split torusT,,. The closure?, of G, in P is a contraction product

) P, =Gy x> 7,

for some smooth projective toric variety, — Z,.

The problem to find suitable extensions of homologically trivial cyclesianto a projective
regular model can be checked locally at prime®af. In [12], we have investigated this question
for strictly semi-stable models. L&t be the spectrum of a discrete valuation ring with finite
residue class field. Let P be a projective strictly semi-stablg-model of ad-dimensional
abelian varietyAdx as described above. We denoteiby — P the special fiber of? and by
Y (") the disjoint union of the-fold intersections of the irreducible componentdofThe natural
inclusions can be used to define canonical maps

vad—p—l(y%2U__,Ad—p(ydln7 p:Ap(ydln _éAp(y%2U

between the groupd’ (Y (")) of algebraic cycles oir ") modulo homological equivalence. We
defineA, (Y") = Coker(y) andA?(Y") = ker(p). We are looking for extensions of homologically
trivial cycles on the generic fiber of - to P which are perpendicular to cycles supportedron

with respect to the local arithmetic intersection pairing. This problem has a solution if the cycle
class map induces an injection

3) cl: Ay (Y) — HSE (Y @1, &, Qi(~p))
and the complex

P .NY
(@) Aasrp(V) Z5 ar(v) 2 4, (v

is exact. Using results about cycles on degenerate fibers in mixed characteristic of Bloch, Gillet,
and Soulé [3], we have seen in [12] that (3) is injective and (4) is exact if the variBties
satisfy Grothendieck’s standard conjectures and the Tate conjecture. In the special case where
Ag has totally degenerate reduction at all places of bad reduction Jéaista smooth projective

toric variety and satisfies Grothendieck’s standard conjectures and the Tate conjecture. This is
sufficient to show in [12] that there is a well defined height pairingdgp. For general abelian
varieties, arbitrary contraction products (2) may appear as closures of strata in a model. We
have shown in [14] that Grothendieck’s standard conjectures and the Tate conjecture hold for a
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HEIGHT PAIRINGS FOR ALGEBRAIC CYCLES 505

contraction product (2) if they hold for the abelian variety. However we do not know that
these conjectures hold for arbitrary abelian varieties. Therefore we use a different argument for
general abelian varieties. The ring of algebraic cycles modulo homological equivalence on a
contraction product (2) can be computed as

A(P,) =A(Ay) ®g A (Za).

This isomorphism allows us to express the injectivity in (3) and the exactness of (4) in terms of
corresponding statements involving only the toric variefigs We reduce our problem to the
case of totally degenerate reduction in the following way. We use Mumford’s construction to
produce a second abelian variety, with totally degenerate reduction together with a maglel
which is related to the original modél as follows. The closures of the strata in the special fiber
of P’ are precisely the toric varieties, which appear in the contraction produd®s of the
original model. Furthermore the simplicial complex which describes how the different strata are
related to each other coincides fBrand P’. This allows us to conclude the injectivity in (3) and

the exactness of (4) from the corresponding statement8’for

Notations and conventions

For an abelian grouX, we defineXg = X ®z Q, Xp = X ®z R, andX* = Homgz (X, Z).
The dual abelian variety of an abelian varietyis denoted byA’. Let S denote the spectrum
of a field or a Dedekind domain. Let be a separated-scheme of finite type. We denote by
CH ,(X) the Chow group of algebraic cycles of dimenspan X modulo rational equivalence
as defined in [7, 20.1]. However we taketo be the absolute dimension ovg&y which is the
relative dimension ove$ plus the dimension aof. If X is regular and equidimensional of finite
Krull dimensiond, we write CH? (X)) = CH 4—,(X).

1. Height pairingsfor algebraic cycles

1.1 Let K be a number fieldD its ring of integers, and(,, a smooth projective variety of
dimensiond overn = Spec K. The Chow group of homologically trivial cycles aX,, is the
kernel of the cycle class map

CHP (X)) = ker(cl: CHP(X,))q — HZ (X7, Qu(p)))-

€

Bloch and Beilinson have given in [1], [2] conditional definitions of height pairings
(5) () x, : CHP(X;)g x CH™' P (X)) — R.

We recall a definition of Beilinson’s pairing which requires the following assumptions:

1.2. Assumption— The varietyX,, has a regular modeX which is flat and projective over
S =SpecOk.

Once we have a regular model, we can use arithmetic intersection theory [10, 4.3.8] to define
a pairing

(6) () x: CHP(X) x CH™'P(X)) — R,
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506 K. KUNNEMANN

where CH?(X)¢, denotes the subspace @fH”(X)q consisting of cycle classes whose
restriction to.X,, is homologically trivial. Let

CHY (X)o= ker(CH”(X)Q — C’H”(XW)Q).

We define CHY, (X)) to be the orthogonal complement @H, (X)q with respect to the
pairing (6). There is a canonical map

px: CHgt 7P(X)g — CHP(X,)8,.

1.3. Assumption— The mappx is surjective.

If the Assumptions 1.2 and 1.3 hold, we can define the pairing (5) by applying the pairing (6)
to preimages undepx. We obtain height pairings (5) which behave well under the action of
correspondences and generalize the classical Néron-Tate height pairing between divisors and
zero-cycles [1], [2], [11].

1.4.Let K’ be afinite extension ok, X, = X, ® ¢ K', and denote by the natural map from
X, to X, If our Assumptions 1.2 and 1.3 hold fof,, and X7, then it follows from Lemma 1.5
below that

1 * *
(7) (a,B8)x, = m@ @, q 5>X;
holds for alla, 8 € CH‘(XW)PQ. We use Eq. (7) to define the pairing (5) if 1.2 and 1.3 hold for
X, for some finite extensioi” of K'. The following lemma shows that the definition of (5) via
(7) is independent of choices. It doesn’t depend on the choice of aiie&thd on the choice of
a model oveO g satisfying our Assumptions 1.2 and 1.3.

15 LEMMA. — Let K;, i = 1,2, be finite extensions df andn; = Spec K;. We assume that
X, = X, ®, n; admits a modeK; over Ok, satisfyingl.2and1.3. Letg; denote the natural
map fromX,, to X,,. We have

(11 B)x,, = ] (B, ¢508)x,,

1
[Kl:K] [KQ:K

forall o« € CH?(X,)% and3 € CH™ ™ 7(X,)J.

Proof. —Let L be a finite extension of{ which containsk’; and K,. Let p; denote the
natural map fromX; = X, ®x L to X,,. The variety X together withp, andp, induces
a correspondencE, = (p1,p2)«[Xr] in CH (X,, %, X,,). The correspondendg, and its
transposeFf7 induce maps’,;, cx andl“f,,cH on Chow groups which satisfy

(8) Ly onl(gio) = [L: Ko gze, Ty op(g3a) =[L: Ki]ga

for all « € CH ' (X,)). The productX; xg X, is a model ofX, x, X,,. LetI" be a class

in CH.(X; x5 X») which restricts tol',,. For v € CH?(X,,)¢, we denote byy a lift in

CHd+1_p(Xi)6 underpx,. By definition and (8), we get
1

m <QQaaQ2ﬂ>Xr,2 = m <(J2047QQ5>X2 = [

1 P
I K| (Cem aionq38) x, -
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HEIGHT PAIRINGS FOR ALGEBRAIC CYCLES 507

Using the projection formula [11, Lemma 4.1], this equals

(g7, Ty 30)x, = = (i, ¢iB) x, = == (di, 41 B)x,, -

[L: K] [K1: K] [K1: K]

This proves our claim. O

The following theorem is the main result of this paper.

1.6. THEOREM. — Let 4,, be an abelian variety with semi-abelian reduction oyemThenA4,,
admits a regular modeP which is flat and projective ove¥ = Spec (O ) for which the map

pp: CHE P (PYS — CHP(A,)Y

is surjective for allp > 0.

The proof of the theorem will be given in Sections 5 and 6. Hgtbe an abelian variety
over 7. By the semi-abelian reduction theorem [5, | 2.6], we may assumeAhdtas semi-
abelian reduction if we replad€ by some finite field extension. We conclude from 1.4 and from
Theorem 1.6:

1.7. COROLLARY. — There is a canonical well defined height pairing
() a, s CHP(Ay)g x CHE™AnH17P(4,)8 — R

for every abelian varietyl,, which is defined over a number fiefd.

2. Semi-stablereduction

2.1. Let R be a discrete valuation ring with quotient fiehd and perfect residue class fietd
We setS = Spec R, n = Spec K, Sy = Speck and Xy = X x g .Sy foranS-schemeX. Let X be
a projective flatS-scheme with reduced special fibgr= X,. LetYi,...,Y; be the irreducible
componentsoY’. Forl C {1,...,t}, we denote by the scheme-theoretic intersectioy). ; Y;.
We have in particulaly = X. Let X be a projective flatS-scheme of pure dimensiah+ 1
which isstrictly semi-stable@ver S, i.e., the generic fibeX,, = X \ Y of X is smooth ovep,
the special fibet” = X is reduced, each; is an effective Cartier divisor oX , and the schemes
Y; are regular and have pure codimensiffnin X for each subsef C {1,...,t}.

2.2. We recall some well known constructions from [3]. For every inclusion of subsets
ICJC{l,...,t}, wehave aclosed immersian=u ;s : Y; — Y which induces push-forward
and pull-back maps

9) w,: CHP(Yy) — CHPTV =1 (v7)
and
(10) u*: CHP(Yr) — CH*(Yy)

on Chow groups. For > 0, we denote byY (") the disjoint union of allY; with |I| =r.
For I = {i; < -+ <ipy1} and k € {1,...,r + 1}, we setl, = I\ {ix}. There are
unique homomorphisms,.. from CH? (Y ("+1) to CH?**(Y(")) andd; from CHP(Y (") to
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508 K. KUNNEMANN

CH? (Y "+1) such that the restriction @.. to CH?(Y7) is (urz, )« and the component @ in
CHP(Y7) is (urr,,)*. We define

r+1

(11) y: CHP (YD) — CHPP (Y (™), oy =) " (—1)F o,
k=1
r+1

(12) p: CHP(Y")) — CHP (YY), p=> (1) 155,
k=1

These maps satisfy

(13) p2=’yop—|—p0fy:ry2:()

on CH? (Y (™)) for all p,r > 0 [3, Proof of Lemma 1]. Letr: Y() — Y denote the natural map.
We have exact sequences [12, 5.10]

CH*™P7 (Y®) 2 CHOP (Y (V) T CHY (V) — 0,

0— CH?(Y) == cHP (YD) 25 cHP (Y1),

where CH?(Y) denotes Chow cohomology &f in the sense of Fulton [7, 17.3]. There is a
natural cap product

(14) CHP(Y) x CH(Y) — CHq_p(Y), (o,8)—anp.

The projection formula in [7, 17.3] applied toallows to describe this product in terms of the
intersection product on the smooth projective varieti€s . We have

(15) anmpB=m(r"a.f) Yae CHP(Y), Be CH1(YW).
_2.3. We fix an algebraic closure of k and a prime which is invertible onS. We denote by
V the base change offaschemé to k. For I # (), we define

AP(Y;) =Im(cl: CHP(Y7)g — HZ¥ (Y7,Qi(p)).

The intersection product o@H (Y7) induces a ring structure oA (Y7). For #£1 C J C
{1,...,r}, the maps (9) and (10) induce push-forward and pull-back maps

(16) uy s AP(Yy) — AP ()
and
(17) u*: AP(Yr) — AP(Yy).

2.4, We are going to extend the definitions in 2.3 to the chAsef). The canonical morphism
j: Y — X yields a push-forward map

(18) je=7:CH (YW — CH ™ (X)q.

Q
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There is a natural ring structure @i (X )q [9, 8.3], [12, 5.2]. It follows from [12, 5.3] and
(15) that this product satisfies

(19) ji(@).B=ji(a.j*B), Yae CH (YW),, B€CH (X)q.
This projection formula shows that the image of
CH (YD) =ker(cl: CH (Y V) ) — HEZ (YD, Q4(-))

under (18) defines an idealin CH (X)g. We let A (X) = A (Yy) denote the quotient of
CH (X)q by a. Using this definition, we can define the map (16) also in the ¢asd). The
following lemma shows that (17) is defined fbe= () as well.

25.LEMMA. — We havej*j, CHP(Y())) C CHp+1(y(1))%_
Proof. It follows from (13) that we have a commutative diagram

Y=Jx

CH? (Y () CHP(X)

(20) |- J/p—j*

CH? (Y®) — cHPH (Y D).

The mapp on the left-hand side and the mapn the lower arrow are defined in terms of maps
(9) and (10) forl # (. Hence these maps factor through the grodp& ("). This yields our
claim. O

2.6. The groupsA ' (Y7) and the corresponding maps (16) and (17) satisfy functoriality, base
change, a projection formula and vanishing of the fundamental cla¥sasf explained in [3,
1.2 A1-A4]. This holds as the corresponding properties are already satisfied for Chow groups
(loc. cit. 1.3.2). The degree of zero cycles defines natural trace mapd?(Y;) — Q for I #0
which are compatible with (16). The maps (11) and (12) induce maps

(21) 7:AP(y(r+1)) _, AP+l (Y('r’))7 p:A”(Y(’”)) oap (Y(”“)),
We define
Ap(Y) = coker (v: AP (Y @) — Ad=r(y ),

AP(Y) =ker(p: AP (Y(l)) — AP (Y(2))).

We obtain natural maps fror6H ,(Y) to A,(Y") and fromCH?(Y") to AP(Y'). The map from
CH,(Y)g to A,(Y) is a surjection. The fact that the pairing (14) can be computet 6h

implies that there is a corresponding pairing betwdé(”) andA,(Y") with valuesin4,_,(Y).

The mapsy = j, : AP~ (Y(V) = AP(X) andp = j*: AP(X) — AP(Y()) induce maps

Agp1_, (V) 225 AP(X) -5 AP(Y).

The degree map fronCH,(Y)g to Q factors throughA4,(Y'). We consider the following
sequence where the second map is induced by the identityf Gri(})):

(22) Agsrp(¥V) 2 ar(v) 24, .
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It follows from (20) that (22) is a complex.

2.7. LEMMA. — The exactness of the comp(@®) is equivalent to the equality

(23) ker(p| ap(y )) NIM(Y] gp-1(y @) =Im(y 0 pl g1y ).

Proof. —This follows from the definitions if one observgs® p=—po~y. O
We observe that the equality in the lemma involves only the strafd ahd their natural
inclusion maps. It does not refer to the whole model

2.8. It is shown in [3, Theorem 5] (compare also [13, 2.15]) that the complex (22) is exact
if the Q-vector spaces! (Y;) are finite dimensional and satisfy a hard Lefschetz and a Hodge
index theorem.

2.9. In the following, we assume that the residue class fieldf R is finite. Accord-
ing to Deligne [4, 3.3.4], the cohomology groups® = H?f(?,@l(p)) carry a weight fil-
tration W.HP = WHéQt”(Y,Ql(p)) with weights < 0. The étale homology group&l, =
Hs(Y,Qi(—p)) are dual to étale cohomology and carry a weight filtratidhH, =
W.HSE (Y, Qu(p)) with weights> 0. We have

HE(7,Qu(—p) S ™0 c WoHE (7, Qu(—p)) = Grlf HE (T, Qu(—p)).

We have derived in [12, 5.11] from the spectral sequence of cohomological descent that the
cokernel of the map

(24) HX7P72(Y®),Qu(d —p—1)) -5 HZ (YD, Qy(d - p))

is GrgVHS;(Y,Ql(—p)). The map (24) is via the cycle class map compatible with the
corresponding map in (21). Hence there is a natural induced map

Ap(Y) — Grg HE (Y, Qu(—p)),

which we denote by! as well. It follows from the functorial behavior of the cycle class map in
étale homology that it factors as

(25) cl: CHP(Y) - AP(Y)—’GI“(‘)/VHS; (77Ql(_p)) - HS; (?7Ql(_p))~

3. Reduction to the strictly semi-stablelocal case

3.1. It is a local problem to check Assumption 1.3. We describe how this assumption can
be checked for a strictly semi-stable model. This is sufficient if our variety has potentially
semi-stable reduction. LeX be a strictly semi-stablé&-scheme as in Section 2. Instead of
Assumption 1.3, we consider:

3.2. Assumption— For allp > 0, the cycle class map induces an injection
(26) cl: Ap(Y) — Hyy (Y, Qu(-p))
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and the complex

27) Agsrp(V) 2 ar(v)y ™ 4, (v)

is exact.

The following result is an adaptation of Theorem 6.11 in [12] to our situation.A_dte a
number field with ring of integer®k, S = Spec Ok andn = Spec K. For a primep of Ok, we
denote byS, the spectrum of the completion of the localizatiortdt atp. Let X,, be a smooth
projectiven-variety. A modelX of X, overS has bad reduction at a prinpaf X, = X xg .5,
is not smooth oves,,.

3.3. PROPOSITION — Let X, be ad-dimensional smooth projectiv€-variety. Suppose that
X, has a regular modeK which is flat and projective ove¥. For each place of bad reduction
of X, we assume that there exists a finite flat morph#m- .5, of spectra of complete discrete
valuation rings such that the following holds. The base chaAgeof X, to S| admits a
projective S;,-morphismX} — X} which induces an isomorphism of generic fibers such that
X, is strictly semi-stable ove$), and satisfies Assumpti@2 Then the map

px : CHEF P (X)g — CHP(X,)}

is surjective for allp > 0.

Proof. —Let o, be aclass irCH” (X,,)¢,. We fix an extension of a, in the groupCH” (X ).
Letp be a prime of bad reduction. We have natural mgpsX, — X andg,: X' — X,,. The
morphismyg, is a projective factorable I.c.i. morphism of relative dimension zero. The restriction
of g, to generic fibers is finite. Therefore we may assume without loss of generality thas
chosen such that there exists an elemgnin CH” (X)), with

Jp (@) = gp=(ap).
Let X, be the genericand : Y — X/ the special fiber ok’ overS,. The specialization map
SPcH * CHd*p(X;) - CHd*p(YpN)
mapsa,|x; to (iy)*(ap) N [Y,']. It follows from the compatibility of the cycle class map with
specialization [12, 5.8] that}))*«, N [Y,’] is homologically trivial. We conclude from (26) that

the class ofiiy)*a, in AP(Y,’) lies in the kernel of the right-hand map in (27). It follows that
there exists an elemenf, € CH 411-,(Y,’) such that

()" = (i) (7).

holds in AP(Y,"). By modifying « in closed fibers over bad reduction places, we may find a
global class:’ € CH? (X){, which is an extension af,, to X and satisfies

Jp (@) =g (@) = (gp)+ (i)« ()
for all primesp of bad reduction. We claim that° is contained inCHﬁIl_p(X)é. We fix a
primep of Ok and an element in the Chow groupCH ,,(Y; ) of the special fibef,, : Y, — X,
of X atp. We have to show that a?, (i, ). (3) > x vanishes. The good reduction case is already
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discussed in [12, proof of 6.11]. Suppose thathas bad reduction gt. We have intersection
pairings with supports on the regular schemgsand X/ [9, 8.3], [12, 5.3]:

deg Yp

(28) () x, 1 CHP(X,) x CHYF' 7P (X,) — CHP (X,)g — @,

cgy//

(29) (o) xy - CHP(X) x ()HdYt1 "(Xy) — CHYH (X))o —F Q.
Itis shown in the proof of part 7) of Theorem 4.4.3 in [10] that they satisfy the projection formula
<gp*a>B>Xp = <a>g;/6>X{j’

for a € CHP(X}) andf € CHdel”’(Xp). The mapg, is defined inloc. cit. 4.4.1 and maps
CH@p( ) to CH’;,, (X}). The pairing (28) describes the local contribution to the pairing (6)
at the primep. leenﬁ € CHp(Y,), we have

(0, ipB) = (GpasipalB)
= <9p* (ap — (ig)*a/ )>ip*5>
- <Otp p)*ap7gplp*ﬂ>xn

The elementyyiy.. 3 in CHgf,r,l P(X))o = CH (Y, )g induces an element inl,(Y,’). The
pairing (29) can be described as [12,5.3]

CHP (X)) x CHp(Y,') — Q, (« ,,B)Hdegy,,(( N*anpg),

where. N . refers to the cap product pairing (14). We recall that (14) factors through the groups
in 2.6. We obtain

(@°,ipsB) x = degyy (i) (ap — (i) x0y) N (g5ipsf3)) =0

as(iy)*(ap — (iy)«0y,) vanishes ilA?(Y,’). 0

4. Toric varietiesand toric fibrations

4.1. All varieties in this section are defined over a finite figld=or a smooth projective variety
X, we denote byd? (X)) the image ofCH? (X )g under the cycle class map intbjt”(f, Qi(p))-

4.2. We recall some useful properties of toric varieties. For any toric vafiefiyr some split
torusT and any variety”, the natural map

CH.(Y) &y CH.(Z) — CH.(Y x Z)

is an isomorphism [6, Theorem 2]. If the toric varigtyis smooth and proper, the cycle class
map induces an isomorphisto¢. cit. Corollary to Theorem 2)

(30) cl®z Qi: CHP(Z)q,——H¥ (Z,Qu(p)).
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The Chow groupCH .(Z) is a freeZ-module which has a basis given by classes of closures of
T-orbitsinZ [8, 5.2].

4.3. Let G be a split semi-abelian scheme. The group schén®an extension of an abelian
variety A by a torusT’ which is split overk. Let T — Z be a smooth projective toric variety.
We are interested in the contraction prodict G x' Z. We recall some facts about algebraic
cycles on the toric fibratio® over A from Section 2 in [14]. We have a cartesian square

GxZ2=p
G—"—= A

wherer and# describe products d&,,,-torsors which are algebraically equivalent to zero. This
yields isomorphisms [14, Lemma 9]

(TrXidz)* 7*

CH (A)g®g CH (Z)g—CH (Ax Z)g — CH(Gx Z)g<— CH (P)g.
Their composition defines an isomorphism@falgebras
(31) pon : CH (A)g @ CH' (Z)g— CH (P)q.

The mapy oy is CH (A)-linear and has the following descriptiolo€. cit Lemma 10). Given
an elementvin CH?(A)q and aI'-stable subvariety” of Z, we have

(32) von(a® [V]) =7 (a).[G xT V].
There is a corresponding map; in [-adic cohomology for which the diagram

$YCoH

CH?(A)g ®g CHY(Z)g CHPT(P)q

(33) lcl@cl lcl
$H
HZP(A,Qu(p) ®g, H(Z,Qu(q)) — HX (P, Qi(p+q))

commutes. The mapy is anH;, (A, Q;(-))-linear isomorphism of);-algebras.

4.4. LEMMA. — For a smooth projective toric fibratio®? as above, the maf81) induces an
isomorphism

A A(A) ®q A(Z)%A(P)

Proof. —Observe that the tensor product of Chow groups is taken@wshereas the tensor
product of cohomology groups is taken ov@r. Our claim follows from the commutativity
of (33) as (30) is an isomorphismO

45. Let Z' be a second smooth projective toric variety for a split taftisWe assume that
there is a surjection: T — T and a closed immersiop: Z' — Z which identifiesZ’ with
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the closure of ar-orbit in Z and is compatible with torus actions underLet G’ be the
push-out of the extensio@ with respect tot andids. We setP’ = G’ xT' 2/ = G xT 7'
and denote by : P’ — P the natural map. Let denote the differencéim(P) — dim(P’) =
dim(Z) — dim(Z").

4.6. LEMMA. — The diagrams

id®j«

CHP(A)q ®q CHY(Z')g —> CHP(A)g ®q CHT™*(Z)q
(34) i“ i“
CHP (P')q & CHP* 7+ (P)g
and
CHP(A)g ©q CHY(Z)g "~ CHP(A) ® CHY(Z')
(35) i i
CHP*I(P)g - CHPYI(P')g

as well as the corresponding diagramg/#adic cohomology commute.

Proof. —As ooy and ¢p are CH (A)g (resp. H (A, Q(+))) linear, it is sufficient to
show (34) and (35) for elements of the form® o for o € CH (Z()) (resp. fora e
H; (Z(),Q(+))). We consider first the case of Chow groups. The commutativity in (35) follows
from the fact thatp -y was defined in 4.3 as a composition of maps which are compatible with
pull-backs. The commutativity of (34) follows easily from the descriptiorpef; in (32). Next
we consider cohomology. It is sufficient to consider elements of the foshm. We use the
surjectivity of (30) together with the properties pf; described above to derive from our result
for Chow groups that the corresponding diagramisalic conomology commute.

5. Projectiveregular modelsfor abelian varieties

5.1. Let K be a number fieldQ its ring of integers, andi,, an abelian variety with semi-
abelian reduction over = Spec K. Using results of Chai, Faltings and Mumford, we have shown
in [12] that A,, admits a projective regular model ovgr= Spec Ok which has potentially semi-
stable reduction as required in Proposition 3.3. We recall the main existence statements from [12]
and describe the models under consideration in detail. This will allow us to show in the next
section that they fulfill the requirements made in Assumption 3.2. We also use the opportunity to
correct the statement of [12, Theorem 4.6].

5.2. THEOREM. — Let A4, be an abelian variety oven with semi-abelian reduction. There
exists a regular modeP of A,, which is flat and projective oves.

Proof. —[12, Theorem 4.2]. O

The projective regular modéd? in Theorem 5.2 is first constructed over the completions of
the local rings ofOk. A descent argument shows that these local models are already defined
over the local rings 00k . The global modeP is obtained from gluing these local models. The
construction of a projective regular model over a complete discrete valuation ring is based on
Mumford’s construction of degenerating families of abelian varieties. In its general form, this
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construction is due to Chai and Faltings. It describes degenerating families of abelian varieties in
terms of so called degeneration data. We recall the main facts from [5, Ch. 11, 111], [12, Section 2].

5.3. Let S be the spectrum of a complete discrete valuation find.et G be a semi-abelian
S-scheme whose generic fib@¥, is an abelian variety. Lef be a cubical ample invertible sheaf
on G. Associated withG is the Raynaud extensiar [5, II.1]. The semi-abeliais-scheme? is
an extension

(36) 0—T—G-"5A4A—0

of an abelians-schemeA by a torusI'. The invertible sheaf induces a cubical ample invertible
sheafl on G which admits &'-linearization if the torug” is split overS. A triple (G, £, M)

for G and £ as above is called a split ample degeneration ¢véfr 1" is split and M is an
ample invertible sheaf ol such thatr* M = £. Split ample degenerations form a category
DEG P!t "which is equivalent to the categoRyD *P*  of split ample degeneration data. The

ample ) ample
categoryDD;'@nlllf1C is defined as follows ([5, 111.2], [12, 2.2]). We consider data
(37) (A?X?Y7¢7C7Ct7T7M7>\A7w7a7b)

which fulfill the following requirements.
(d1) A is an abeliars-scheme.
(d2) X andY are free abelian groups of finite rank
(d3) ¢: X — Y is an injective homomorphism.
(d4) c: X — A*(S) andc! : Y — A(S) are homomorphisms of abelian groups.
(d5) 7 is a trivialization

rlvn, (¢ x ) Py

of the G,,,-biextension(c! x c)*ngj7 over the constanj-group scheméY” x X)), where
‘P4 is the Poincaré biextension overx g A?.

(d6) M is a cubical ample invertible sheaf aa such that the associated polarization
Aa: A — Al satisfies\g ocl =co ¢.

(d7) 4 is a trivialization

1h: Oy, —(c") M

of the cubical invertible she&tt)*Mgl over the constanj-group schemé&’, which is
compatible withr in the sense that we have (compare [12, 2.2])

(38) A(y) =7o(idy x ).

The functionsa:Y — Z andb:Y x X — Z measure the denominators which are needed to
define the trivializations and. Namely,;» andr identify ¢! (y)* M and(ct(y), c(z))*P 4 with

the fractional idealsn%*) andm’*"*) in R. The functionb is bilinear, the functiom: satisfies
a(0) =0, and (38) implies

(39) aly+y) —aly) —ay)=b(y,0(y)) Vy,y €Y.

The positivity conditiorrequires that Eq. (39) define a positive definite bilinear form. Data (37)
as above which satisfy the positivity condition form by definition the objects of the category
DD*Plit of split ample degeneration data.

ample
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5.4. We recall the definition of admissible cone decompositions from [12, 3.1]. We consider
data(X,Y, ¢,a,b) asin (37). HenceX andY are free abelian groups of finite rankp: X — Y
is an injective homomorphism; Y x X — Z is a bilinear function such that the induced form
b(.,¢(.)) is positive definite, and:Y — Z is a function which satisfieg(0) = 0 and (39).
There is a natural action af on X* = X* x Z via

Sy(l,s)= (l + sb(y, .),5)

foryeY,le X*=Homy(X,Z), ands € Z. Let {0, }acs be a (not necessarily finite) rational
polyhedral cone decomposition of tiestable cone

C=(Xg xRso) U{0}

in Xﬁ. The cone decompositiofo, }acr is Y-admissible if the collection of the cones
o, is stable under the action df and if there are only finitely many orbits. We call a
cone decompositiofo, }acr Of C semi-stable if{c, }ocr is smooth [12, 1.11] and all one-
dimensional cones have a generatotXifi x {1}. Given aY -admissible cone decomposition
{0a}acr, we define the notion of A-twistedY -admissible polarization functiop for {4 }acr
asin[12,3.1].

Let {0, }aecr be a smooth -admissible cone decomposition ©f Let I be the setl with
the index of the zero cone removed. The gréipcts on/ and/*. We denote byly and 75
the orbit spaces for this action. Observe tiatand IJr are finite sets. Letv be an index in
I, ie., o, #{0}. LetX(aa) be the subgroup ok = X x Z given by all elements which
are perpendicular t&(* N o, with respect to the canonical pairing betwe&nand X *. The
projection fromX to X induces an injection of the free abelian groﬁpoa) into X. Associated
with eacha € I is a cone decompositionar (o, ) which is given as follows. Lettar(c,,) be
the star ofs,, which is the collection of all conesg in {04 }acr such thato,, is a face ofog.
Thenstar(c,,) is by definition the smooth rational polyhedral cone decompositiaki (o, )%
which is given by the image afar(c,,) under the natural projection.

5.5. We work over the spectrursi of a complete discrete valuation ridijand use the notations
from 2.1. LetA,, be an abelian variety overwhich has semi-abelian reduction and is polarized
by an ample invertible sheal,. The connected compone@t of the Néron model o4, is a
semi-abeliar5-scheme. The invertible she&f, extends uniquely to a cubical ample invertible
sheaf’ on G and induces an invertible sheéfon the Raynaud extension (36). If we replate
by a finite, étale extension, we may assume that the tbrissplit and thatC descends to a
cubical ample invertible shed# on A. The triple(G, £, M) defines a split ample degeneration
overS as in 5.3. We denote by

(A’ X’Y’¢7C7 Ct’T’M7>\A7w7a’ b)

the set of degeneration data associated {@th., M). We obtain in particular datgX, Y, ¢, a, b)

as described in 5.4. In [12, Section 3], we have constructed a projective regular compactifi-
cation of G from a smoothY -admissible cone decompositida,, },c; and from ak-twisted

Y -admissible polarization functiop for {o, }ocr. The existence of such a pdifo, }acr, )

was shown ifoc. cit. 3.3. The compactification @ constructed fronf{o,, }acr1, ¥) is a strictly
semi-stableS-scheme if and only if the cone decompositipm, } s IS semi-stable. A given

Y -admissible cone decomposition admits a semi-stable refinement if we are allowed to change
the integral structure oA §. The change of the integral structure §jj corresponds to a ramified
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base extension of. Therefore we replacd by some finite flat extension which we allow this
time to be ramified. After such a suitably ramified extensio§ oive may find a refinement of a
givenY -admissible cone decomposition with the following properties. The refinement is a semi-
stableY -admissible cone decompositida,, }.c; Which contains the coner = {0} x R,
satisfiesS, (0n) No, = {0} forall y € Y — {0}, and admits &-twistedY -admissible polariza-

tion functiony for a suitablek € N [12, 4.5]. Fora € I, the injection otf((aa) into X defined
above determines a surjection of split tori ower

(40) To— Ty, — 0.
The quotient,, of G by the kernel of (40) is a semi-abeliarscheme
0—T,— Gy, — Ay —0.

5.6. THEOREM. — Associated with the semi-stalifeadmissible cone decompositié, } ac s
and thek-twisted polarization functior, there is a strictly semi-stable scher®ewhich is flat
and projective ovels, and an ample invertible shedfr on P such that

(i) G isanopensubschemeBfandLp|q = L&F.

(ii) The action of7 on itself by translation extends @

(i) The special fiberP, is a reduced divisor with strictly normal crossings éh It has a
natural stratification with strataG,, for « in I3f. The strata are precisely the orbits for
the action ofG, on P, given in(ii). The special fibe€, of G coincides with the stratum
G.,. There is a canonical isomorphism lefvarieties

Sy:Ga—>Gp

if Sy(a) =0 forsomeyeY.

(iv) The closureP, of the stratunG,, is the disjoint union of altz3 such thatr,, is a face of
os. If we equip it with its induced reduced subscheme structure, it becomes isomorphic to
the contraction product

Gy xTe 7,

whereT,, — Z, is the smooth projective toric variety ovkrassociated with the cone
decompositiostar(c,) defined above. For € I'", the canonical maps, from G, to
G, () iInduce isomorphisms, from P, to Ps, (,) Which fitinto the commutative squares

s,
Py —> Ps,(a) P,——P,
l‘n’a lﬂ'Sy(a) isy lsy
Tet (y)

Ao Ao Ps, ()& Ps,(a)

whereT.,) denotes translation by (y) € A(S) ando, is a face of,.

Proof. —This follows from Theorem 3.5 and Theorem 4.7 in [1211

5.7. The construction of the models in Theorem 5.2 and Theorem 5.6 can be done in a way that
is compatible with the requirements made in 3.3. In fact, we have to choose an admissible cone
decomposition for each bad reduction prime in order to obtain a global model as in Theorem 5.2.
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After a suitable change of the integral structure, each of these cone decompositions admits a
semi-stable refinement. The change of the integral structure corresponds locally to a finite flat
ramified base change. The refinement of the cone decomposition corresponds to blowing ups
in the special fiber. The combination of these modifications yields locally a strictly semi-stable
model as required in Proposition 3.3.

5.8. Erratum to[12]. Let R be a discrete valuation ring with quotient field. Let A, be an
abelianK -variety which has semi-abelian reduction and is polarized by an ample invertible sheaf
L,.In[12, Theorem 4.2], we claim that there exists a discrete valuationtirghich is a finite
flat extension of? such that the base changef to the quotient field o2’ admits a projective
semi-stable model ove®’ with properties (i)—(iv) listed in Theorem 5.6. This statement holds as
stated inloc. cit.if R is a complete discrete valuation ring.&fis an arbitrary discrete valuation
ring, the finite flat ring extensio®’ of R constructed idoc. cit. no longer has to be a discrete
valuation ring. The statement of [12, Theorem 4.2] has to be corrected as follows. In the above
situation, there exists a finite field extensififi of K such that the base change 4f to K’
admits a projective regular mod#! over the integral closur&’ of R in K’. This modelP has
semistable reduction over each localizatiom¥fwith the properties listed in [12, Theorem 4.2]
and Theorem 5.6 (i)—(iv). This correction does not affect the validity of the other results in [12].
The theorem is only used in the proof of [12, Theorem 6.13] where one can work over a complete
discrete valuation ring as in this paper.

6. Reduction tothetotally degenerate case

6.1. Let K be a number field and!, a d-dimensional abelian variety with semi-abelian
reduction over = Spec K. In the last section, we have seen thatadmits a projective regular
model over the ring of integers ik which has potentially semi-stable reduction as required
in Proposition 3.3. In this section, we show that the strictly semi-stable models constructed in
Theorem 5.6 satisfy Assumption 3.2.

6.2. Let R be a complete discrete valuation ring with finite residue classkidlét (G, £, M)
be a split ample degeneration ovesuch that the associated degeneration data

(A’ X’Y’¢7C7 Ct’T’M7>\A7w7a’ b)

admit a semi-stabl& -admissible polyhedral cone decompositian, }.<; which contains the
coneor = {0} x Ry, satisfiesS, (cn) Noo = {0} forally € Y — {0}, and admits &-twisted

Y -admissible polarization functiop for a suitablek € N. Let P be the compactification aff
constructed in Theorem 5.6 froffo, }acr, ). In order to show that Assumption 3.2 holds for
the modelP, we construct a second strictly semi-staBlschemeP’ = Q. The new schemé&

is closely related td” and will satisfy Assumption 3.2. Using again the pdit, }acr, p), we
constructP’ = () as a compactification of a totally degenerate semi-abéliaoheme’’ from

a split ample degeneratid’, £', M’). We construct{G’, £', M') from its degeneration data

(41) (A/’ X/7 Y/’ ¢/7 C/7 (C/)t’ T/’ M/’ A/A7 w/’ a/7 b/)

by Mumford’s construction 5.3. We choose a prime elementf R in order to define our new
degeneration data. The data (41) are defined as follows:

(d1) A’ is the trivial abelianS-scheme.

(d2) X=X andY’ =Y.
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(d3) ¢’ =¢.
(d4) c: X' — A'(S)={e}andc': Y’ — (A")!(S) = {e} are the zero maps.
(d5) The trivialization

7'/ . ]-(X’><Y’),, ; ((C/)t X C/)*’lel’n = l(X/XY/)n

is defined byr' (1, ) = W};b(y’w)
(d6) M’ = Oy is the structure sheaf.

(d7) We define the trivialization

1y, fory €Y andz € X'.

V' Oy == () (M)~ = Oyy
by ¢/(1,) = 75" .1, forally e Y.
It follows from the above definitions that we have

(42) (XY ¢ ,d,0)=(X,Y,0,a,b).

We have to show that our data satisfy (38) and that the positivity condition holds. We conclude
from (42) that (39) holds for our new data and that the positivity condition is satisfied. Eq. (38)
is a consequence of our definitiondfandy)’ if one observes the compatibility (39).

The degeneration data (41) determine a split ample degenefétinf’, M’) overS. We may
use the cone decompositida,, }.cr and the polarization functiop to construct a strictly semi-
stableS-schemeP’ with an ample invertible shealp: which is a compactification afi’ as in
Theorem 5.6. We writé) = P’, e for the dimension of),, and denote by and; the inclusions
of the special fiberd’y and @, into P and Q. As the modekQ is constructed from the same
cone decomposition aB, it has a similar special fiber. The strata of the special filgrand
Qo correspond to elements #if-. TheQ,, for a € I't are smooth projective toric varieties and
eachP, is a contraction produdf,, x> Q.. We are interested in the mod@l as it satisfies
Assumption 3.2.

6.3. THEOREM. — The cycle class in étale homology induces an isomorphism
(43) cl®qQ 5Ap(Qo)Qz;>GrgVH§,t; (Qo,Qi(—p)) Hit; (Qo,Qu(—p))
and the complex

(44) Aci1(Qo) 25 A47(Qo) X% 4, (Qo)
is exact.

Proof. —The first isomorphism follows from the bijectivity of (30) as,(Qo) is the cokernel
of yin (21) andGrgVHzé;(@, Q:(—p)) isthe cokernel of in (24). The exactness of (44) follows
from 2.8 (compare [12, proof of 6.13]).0

According to Lemma 4.4, there is for eaate 15~ a canonical isomorphism
(45) pa:A(Ag) XQ A (Qa)—A (Pa).

The following proposition shows that this isomorphism behaves naturally with respect to the
action ofY.
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6.4. PROPOSITION — Let o and 8 be elements id* such thatS,(a) = 3 holds for some
y € Y. In this case, there are natural isomorphisifig: Q. — Qs and S, : P, — Pg and the
diagram

AP(Ag) ©g A(Qu) 225 AP(49) ® A9(Qs)

Apta (Py) Sy Apta (pﬁ)

commutes.

Proof. -The maps.S, in the diagram have been introduced in Theorem 5.6(iv). The
isomorphismsS,, from P, to P fits into the left commutative square iac. cit The graph of
the translation maff:.(, is algebraically equivalent to the graph of the identity. Hefige,
acts trivially onA (A4y) and we obtain

(x) =7 TS )((L‘):S;’ITE(:L‘) Vo e A(Ay).

7r ct(y

The groupA?(Ay) ®g A?(Q.) is generated by elements® [Q.,] wherex € AP(Ay), v € IT
such that, is a face ofr,, and[Q, ] is the class of the subvariety which is given as the closure
of the stratumG, = T’, corresponding tey in 5.6 (iii). We defines € I'* by S,(o,) = 05. The
map.S, in the proposition mapg., to Qs and P, to Ps. We have

This proves our claim. O

Next we check compatibility of (45) with andp. We choose an ordering of the classes of one-
dimensional cones ifiy", i.e. an identification of the irreducible componentg&fand P, with
{1,...,t}. We consider the mapsandp from (21). We claim with the corresponding notation
Pr,Qr, P, QW as in Section 2 the following lemma.

6.5. LEMMA. — The diagrams

- id® ,
AP(Ag) ®g AT(QYTY) —= AP(Ag) ®g A7+ (QF)

Ao (P are1 (B
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and
T ld® s
AP(4o) 0 A1(Q)) —— AP(4) ®g A1(Q )
"
Ap+a (p(g’”)) L Aprta (P(S’”“))

as well as the corresponding diagrams/iadic cohomology commute.

Proof. —The mapsy andp are defined in terms of the maps (16) and (17). Hence it is sufficient
to show the corresponding commutativity statements in the lemma for these maps. It follows
from our construction and from Proposition 6.4 that we may assume therefore that we are in the
situation of 4.5. Then our claim follows from Lemma 4.6

We are ready to prove our final result.

6.6. THEOREM. —Let P be a strictly semi-stable model of an abelian variety as constructed
in 5.6. Then the cycle class map in étale homology induces an injection
(46) cl: Ap(Py) — HSZ (Py, Qu(—p))

and the complex

% .N[Po
(47) Adirp(Po) 25 ar(py) B 4, ()

is exact.

Proof. —~We recall thatd, ¢, and ¢ = d — e denote the dimensions dfy, @y, and Ay
respectively. For alp, ¢ > 0, we have a commutative diagram

AP(Ag) g AT P01 (Q)) T AP(Ay) g ATP=a(QLV)
(48) lLPA lSOA
A1 (P : At-a(pfY).

We obtain a map of the cokernels of the horizontal maps

Pa:AP(Ag) ®q Aptq—g(Qo) — Ag(Fo)

which induces an isomorphism

$a: @D AP(A0) ©g Apig—g(Qo) = Ag(P).

p

The diagram (48) admits cycle class maps into the corresponding diagfaawio cohomology.
We obtain a commutative diagram of cokernels

AP(Ap) ®q Ap+q-9(Qo) Aq(Po)

lcl@cl \Lcl

HZF (Ao, Qu(p)) ®q, Gry Hsf, o o (Qo,Qu(—¢ — p)) — Gy HS: (Po, Qu(—q))

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



522 K. KUNNEMANN

where the horizontal maps become isomorphisms if we take on the left-hand side the direct
sum over allp. We have seen thatry HS' (P, Q,(—q)) is a subspace dff§t (Py, Q;(—q)). It

follows that (46) is injective if the right vertical map in the diagram above is injective. However
this follows from the commutativity of the diagram if one observes the isomorphism (43). Next
we show the equality

(49) ker(p‘Ap(pél))) N Im(’Y‘Ap—l(po(?))) =Im(yo p|Ap—1(p(§1>))

which implies the required exactness by Lemma 2.7. It follows from Lemma 6.5 that we have

ker(p\Ap(Pm) @ A7 (Ag) ®Q ker(p\Aq(Q(l)))

q'+9=p
(FY|AP I(P(Q)) @ Aq AO) ®Q Im(’Y|Aq 1(Q(2)))
q'+q=p
Im (’YOP|AP l(p(l)) @ Aq (Ao) ®@Im(’yop‘Aq 1Q(1)))
q’'+q=p

We see in particular that the left-hand side of (49) equals

@ A4 (Ao) o) ((ker(p\Aq(le))) ﬂIm(’y|Aq71(ng))).
q'+q=p

This proves our claim as (23) holds @Y by Theorem 6.3 and Lemma 2.70
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