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QUANTIZATION OF THE MARSDEN-WEINSTEIN
REDUCTION FOR EXTENDED DYNKIN QUIVERS

BY MARTIN P. HOLLAND

ABSTRACT. - Let r be a finite subgroup of SL'z(k), for k an algebraically closed field of characteristic zero.
W. Crawley-Boevey and the author [8] have introduced some noncommutative quantizations Ox of the coordinate
ring of the associated Kleinian singularity k2 /T indexed by those A in Z(kF) which have trace one on the regular
representation. Let Q be the quiver obtained by orienting the extended Dynkin graph associated to F by the
McKay correspondence. Let Rep(Q, 8) denote the space of representations of Q with dimension vector equal to the
minimal imaginary root 6 of the corresponding affine root system. The group GL(8) = fj^ GL(6z) acts naturally
on Rep(Q,6). It is shown that each 0^ may be realised as a certain quotient of the algebra of GL(6) -in variant
differential operators on Rep(Q,8). © Elsevier, Paris

RESUME. - Soit r un sous-groupe fini de SL'z(k), pour k un corps algebriquement clos de caracteristique
nulle. W. Crawley-Boevey et 1'auteur ont introduit [8] des quantifications non commutatives 0^ d'algebre des
fonctions regulieres sur la singularity kleinienne A^/r, indexees par les elements A 6 Z{kT} de trace egale a 1
sur la representation reguliere. On oriente, de fa9on arbitraire. Ie graphe de Dynkin etendu associe a T par la
correspondance de McKay pour obtenir un carquois Q. Soit Rep(Q, 6) 1'espace de representations de Q avec
vecteur de dimension egale a 6 la racine imaginaire minimale du systeme de racines affine associe. II existe une
action naturelle du groupe GL(^) = j"^ GL(^) sur Rep(Q,^). Nous montrons que chaque 0^ se realise comme
un certain quotient de 1'algebre des operateurs differentiels GL(^)-equivariante sur Rep(Q,^). © Elsevier, Paris

1. Introduction

Let k be an algebraically closed field of characteristic zero. If F is a finite non-trivial
subgroup of SL^(k) there are some non-commutative deformations 0^ of the coordinate
ring of the associated Kleinian singularity fc2/!'. These deformations are indexed by those
A in Z(kY} which have trace one on the regular representation. They were introduced
and studied by W. Crawley-Boevey and the author in [8]. In this paper we give a
completely new description of these deformations using invariant differential operators on
representation spaces of quivers. This new description should prove useful in investigating
the deeper properties of Ox. In particular, we exhibit Ox as the global sections of a sheaf
of algebras on the projective line and prove a Beilinson-Bernstein type theorem. Thus 0^
is analogous to a minimal primitive factor of the enveloping algebra of a semisimple Lie
algebra. In the earliest work of W. Crawley-Boevey and the author on deformations of
Kleinian singularities we constructed representations of Ox by differential operators in one
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814_ M. P. HOLLAND

variable. These representations were found case-by-case and relied on extensive computer
calculations. We decided not to publish these calculations in [8] hoping for a more natural
explanation. The main theorem below can be used to give such a representation of 0^.
W. Crawley-Boevey exhibits a different approach to ours in [7]. Let N o , . . . ,Nn be the
irreducible representations of r, with No trivial, and let V be the natural 2-dimensional
representation of r. The McKay graph of F is the graph with vertex set I = { 0 , l , . . . , n } ,
and with the number of edges between i and j being the multiplicity of Ni in V 0 Nj.
(Since V is self dual this is the same as the multiplicity of Nj in V (g) Ni.) McKay observed
that this graph is an extended Dynkin diagram [23]. Let Q be the quiver obtained from the
McKay graph by choosing any orientation of the edges, and let 6 G N7 be the vector with
6i = dim Ni. This is the minimal imaginary root for the affine root system associated to Q.
The simple roots for this root system are the usual basis ei of k1 and the real roots are the
images of these simple roots under sequences of suitable reflections. Henceforth we always
identify Z(kT) = k1, with A e Z(kT) corresponding to the vector whose %-th component
\i is the trace of A on Ni. Thus, for example, the dot product A • 6 = ̂  \i6i is the same as
the trace of A G Z{kT) on the regular representation kF. Let Rep(Q, S) denote the vector
space of representations of Q with dimension vector 8. The group GL{8) = n^eJ ^^(fe)
acts naturally on Rep(Q,8) by conjugation, with kernel fc*. Write p0l(^) for the Lie
algebra of GL(^)/fc*. We identify k1 and the characters of the Lie algebra of GL{8) via
\ ̂  ((^..., An) ̂  Y^ A.trA^. The Marsden-Weinstein reduction is the affine scheme
^l-l{0)//GL(8), where fi: T^Rep(Q, S) -> pg[(<5)* is the moment map. Let P(Rep(Q, 8))
denote the algebra of differential operators on Rep(Q,<$). Differentiating the action of
GL(8) on Rep(Q,8) we obtain a Lie algebra map i : pQl(8) -^ Derfefc[Rep(Q, <!))]. Thus,
for a character ^ of fQl(8) we can form

^x ^(Rep^Q^))^^
^{Rep^Q^^-x^QW)^'

The moment map is flat [8] and it follows from this that Sl^ is a quantization of
the Marsden-Weinstein reduction in the sense that, with its natural filtered structure,
grSI^ ^ k[^l~l(0)//GL(8)}. If a is an arrow of Q we write h(a) for its head and t(a) for
its tail. The defect 9 G I1 is defined by 9i = -8i + Y,f{a)=i sh{ay Our main result (see
Corollary 4.7) on deformations of Kleinian singularities is:

THEOREM 1. - Let A € k1 satisfy A • 8 = 1. There is a k-algebra isomorphism
/nA ^ Qt\—9—eo

We are also able to construct a sheaf of algebras analogous to a sheaf of twisted
differential operators on the flag variety. To put this in context we need to recall some
facts about moduli spaces of quivers. We orient Q so that there are no oriented cycles.
After King [14] one can form a coarse moduli space SH for families of 9-semistable
representations of Q with dimension vector 8. Here, M G Rep(Q,8) is 9-semistable if
whenever TV is a submodule of M with dimension vector (3 we have 9 ' (3 <^ 0. The space
W. is obtained as a categorical quotient TT : Rep(Q, 8)SQ8 ^ W. of the semistable points by
GL(8). It goes back to Ringel [29] that 9t ^ P1. It was proved by Kronheimer [16] for
k = C, and by Crawley-Boevey and the author [8], in general, that the Marsden-Weinstein
reduction is the Kleinian singularity associated to the extended Dynkin diagram by the
McKay correspondence. One can construct a certain partial resolution of this singularity
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MARSDEN-WEINSTEIN REDUCTION 815

by considering the (9-semistable points of /^(O) (thought of as a closed subvariety of
Rep(Q, 6) = T*Rep(Q, ^)). There is a categorical quotient of /^(O)^ by GL(S), denoted
by 9Jt. The natural'morphism / : 9Jt -^ ^(OYGL^) is proper and birational. Using
results of Crawley-Boevey [7] one shows that 9Jt has rational singularities, and that there
is a natural affine map p : 9Jt -^ 91. This means we can recover 9Jt = Spec^O^. We
construct a sheaf of algebras Ax on 9^, for each character ^ of pfll(^), by

^_ (^PRep^^)^)

((^PRep^^)^-^^^)))^)'

The sheaf A^ is a quantization of 9Jt, in the sense that ^AX ̂  p^Oyji. We complete the
analogy with minimal primitive factors of enveloping algebras of semisimple Lie algebras
with the theorem.

THEOREM 2. - Let x be a character of fQ[{S). Then

F(9t, A^ ^ ̂ x and IP(9l, A^ = 0, for i > 0.

If further, ^ • a + {9, a) + ao / 0, /or a// r^a/ wo^ a, r/z<?n r(9^_) induces an
equivalence of categories between the category of left Ax-modules which are quasi-coherent
as Oy\-modules and the category of left ^-modules.

This result is proved in Theorems 5.9 and 5.12 below. Theorem 1 is obtained from
a more general result. Let Q be an arbitrary quiver with vertex set I . For A lying in a
hyperplane of k1 defined below we obtain a fc-algebra homomorphism from the deformed
preprojective algebra II\ of [8], to a suitable matrix-valued version of St^.

When the parameter A = 0, the algebra 11° is the preprojective algebra as in [9] and [2].
Let a e N7 and let Rep(Q, a) be the space of representations of Q with dimension vector
a. The group GL(a) = n^J^^W acts "aturally on Rep(Q,a) with kernel fc* and
we write Ql(a) for the Lie algebra of GL(a). The preprojective algebra arises naturally
because Rep(II°, a) = /^(O), where p.: T^Rep{Q, a) -^ sK^)* is the moment map. The
nilpotent cone inside /^(O) has an important role for the quantum group associated to Q
[20]. The Marsden-Weinstein reduction /^((^//^(a) has been studied in [16], [27], [6].
Set k^ = e^^S which is naturally a GL(a)-module. Thus, E^ = k^ 0 k[Rep{Q,a)]
is an equivariant fe[Rep(Q, a)]-module. It follows that we can form V(E^), the algebra
of fc-linear differential operators on £'„. Let r : Ql(a) -^ V(E^) denote the natural map.
If ^ is a character of Ql{a) we define

_ P^)01^)

W^r-xKQW)0^'

Before we can explain our homomorphism we need to recall some of the root system
combinatorics associated to Q. The Ringel form on I1 is defined by

{a, (3) = ̂  ai(3i - ̂  a^a)0h{a).
i^I a€Q

The Tits form is the quadratic form on Z7 with q(a) = {a, a). The defect 9^ G I1 is defined
by <9a • 0 = -{0, o^). We identify k1 and the characters of fll(a) under the trace pairing.
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816 M. P. HOLLAND

THEOREM 3. - Let \ G k1 satisfy A • a = 1 — q(a). There is a k-algebra homomorphism
TJA _^ n^x-Qc.

This is proved in Theorem 3.14 below. In the special case when Q is extended Dynkin.
The homomorphism of the theorem is an isomorphism and, after suitable identifications
have been made, induces the isomorphism of Theorem 1. I am grateful to Alex Glencross
for showing me how to simplify the original proof of Theorem 3. I thank Bill Crawley-
Boevey for helpful conversations. I am also grateful to the referee for a number of
suggestions which improved the exposition.

The diagrams in this paper have been typeset using Paul Taylor's commutative diagram
package.

2. Invariant differential operators

2.1. We first recall some generalities about differential operators. Fix k an algebraically
closed field of characteristic zero. Let X be a smooth affine variety with coordinate ring
T = k[X}. Let Der/cT denote the T-module of fc-linear derivations of T. The algebra of
fc-linear differential operators on T (or X), written T>[T) (or P(X)), is the subalgebra of
EndfeT generated by EndyT and Der/,T. We usually identify T = EndrT. We shall also
need the concept of differential operators on a free module. If V is a finite-dimensional
vector space, write Ey = V (g^ T. Then End/^V 0^ ̂ (T) embeds naturally in Endfc(Ey).
This subalgebra is denoted by P(-Ey). Of course, V{Ek) = P(T). There is a filtration on
P(£'y), called the order filtration, defined by:

V°{Ev) = EndfcV 0^ T, V\Ev) = End^V 0 (T + Der^T),

and ̂ (Ev) = ̂ n-l(Ev)V1{Ey\ for n > 1. Now,

^(Ey)/^-1^) ̂  EndfcV (S)k ^(Der^T),

where ^(Der^T) is the n-th symmetric power of Der^T. In particular,

grV(Ev) ̂  EndkV 0^ ^Der^T) = End^Y 0^ fc[T^].

Write TT : T^X -^ X, for the canonical map and set k^X]^ = ^(Der^T). If
e <E ^{Ev) \ V^^Ey) its principal symbol is 0 + V^^Ey) in EndfcY (g^ fc[T*X]^.
If X is a vector space, there is an alternative filtration 071 on V(Ey), called the Bernstein
filtration. Identify X* with the space spanned by the coordinate functions on X, via
k[X} = 5'(X*), and X with the space of derivations defined by x(0) = 6(x), for
x G X,0 e X\ Then B° = End^Y, B1 = End^V 0fc (X* C X) and B71 = BlBn~l, for
n > 1. Again g^5P(X) ^ fc[T*X]. We always use the order filtration, unless otherwise
specified, although for the most part this doesn't make a lot of difference, except in the
final section of the paper.

2.2. Next we suppose that a connected reductive algebraic group G acts on X. Then G
acts on T and so one can differentiate this action to get a Lie algebra map L : Q —^ End^T.
In fact, the elements of g are acting as derivations of r, so one can extend L to an algebra
homomorphism L : U{^} —^ P(T). Filtering P(T) and U{^) as usual, this homomorphism
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MARSDEN-WEINSTEIN REDUCTION 817

is filtered and the associated graded homomorphism S{Q) —^ k^X] arises from the
moment map

^ : T^X -. s* 0 ̂  {x ̂  0(^)^))).

The action of G on End^T, ̂  = g8g~1, for ^ G G, 6 e End^T, restricts to an action
on P(r). Differentiating, we get an action of Q on V{T) by

x'e:=[i{x),e},
for x e Q,0 ^ P(T). For any G-module the fixed points under G are annihilated by Q. It
follows that the derivations 1(5) commute with elements of ^(T)0. Thus, (V^T)^))0

is an ideal of ^(T)0. More generally, if ^ is a character of Q then (P(T}{b - x)(Q))°
is an ideal of V(T)° and we write

^X(X,G)=
V(TY

(PCr^-^s))^

Of course Sl^X^G) = 0 if \ doesn't vanish on Ken. Since grSI^ is evidently a
homomorphic image of k[^~l(0)//G}, one sees that ^x is Noetherian. Note that here,
^(O) means the scheme-theoretic fibre. Knop [15] has shown that V{T)° is free over its
centre, a polynomial algebra. One expects that the properties of ̂ (T)0 should be similar to
those of the enveloping algebra of a semisimple Lie algebra and that the Sl^ should be like
minimal primitive factors. Musson and Van den Bergh have worked out the case when G is
a torus [26]. Schwarz [30], [31] has found criteria for the natural map e : 21° -^ V{X//G),
to be an isomorphism (this holds for what Schwarz terms "very good" actions [30, 3.24]),
generalising earlier work of Levasseur-Stafford, Levasseur, and Musson [19], [18], [25].
This can easily be generalised to equivariant modules. For example, suppose that we are
given a representation V of G. Write j : Q —^ End^V, for the corresponding Lie algebra
map. Now Ey := V 0^ T is a G-equivariant T-module. One checks that G acts on V{Ey)
by fc-algebra automorphisms via its identification with End^Y (g^ P(T). Thus there is an
induced Lie algebra map r : Q —^ P(£v). Note that

(1) r{X) = j{X) 01+10 i{X}, for X G Q.

In particular, Kerr == Kery H Ken. We define

^(X,G,Y)=
Wy)0

(P{Ey){r - x)W

whenever \ is a character of Q. We usually omit X,G,V from the notation. Again,
if \ doesn't vanish on Kerr we have S^ = 0. In the case of the trivial module we
have ^{X.G.k) = ̂ {X,G). Note that T^ is Noetherian since its associated graded
ring is a homomorphic image of (End^V 0^ k[fJi~1 {ff)})0 which is a finite module over
^^W^G]. Observe that if p is a character of G then P(-Ey) ^ T){Ey^k ) as
fe-algebras and G-modules. Thus,

(2) 3-W G, V) ̂  -P^X, G, V 0, ̂ ).

Now suppose that X is a representation of the reductive group G.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPfiRIEURE



818 M. P. HOLLAND

2.3. LEMMA. - The moment map ^ : T^X —> 0* is flat if and only ifdim^1^) =
2dimX - dimG.

Proof. - If IJL is flat then the zero fibre has pure dimension dimT^X — dimg*, by [11,
Corollary ffl.9.6]. On the other hand, if dim^'^O) = 2dimZ - dimG then ^ is flat at
0 by the local criterion for flatness [1, Proposition V.3.5]. Since the set of points at which
[L is flat is open [10, 11.1.1] and fc*-invariant, we are done. D

Let \ : Q -^ k be a character of Q. Note that grV(Ev) ̂  End^Y 0fc k[T*X} contains a
diagonal copy of k[T*X} (i.e. 1 (g)^ k[T*X}) and, by (1), taking symbols maps Q into this
diagonal copy. Thus, there is a natural surjective k^X} -module map

grP(i?y)/(grP(I?y))0 -. gr(P(£y)/P(£y)(T - x)(fl)).

We need a slight generalisation of a result of Schwarz [30, Proposition 8.11].

2.4. PROPOSITION. - Suppose that the moment map p, : T^X —^ 0* is flat. Then

( V(Ey) \ grP(Ey)
g {v(Ey)(r-x){Q)} (grP(^))fl

as k\r^ X\-modules. In particular,

gr?x^(Endfcy^A;[/.-l(0)])G

as k-algebras.

Proof. - The hypothesis ensures that i (hence r) is injective so that Q can be identified
with a subspace of k^X] via the symbol map. Let M = P^yV'Z^-By^T - ̂ )(s)
and let k^ denote the one-dimensional U(^) -module defined by the character \. Then
M ^ D(£'y) 0t/(g) k^. Consider the chain complex B, obtained from the classical
Chevalley-Eilenberg resolution [33, Theorem 7.7.2] of the trivial module by tensoring with
k^. Thus, Bp = U{Q) 0fc A^0 and the differential is defined by

p
d(u 0 x\ A ... A Xn) = V^(—l)^+l^A(a;^ — ^(^)) 0 x\ A ... A Xi A ... A Xp

i=l

+ V^ (—l)^-7^ (g) [xi^ X j ] A .FI A ... A Xi A ... A £j A ... A rrp.
i^i<j<p

B» is exact in positive degrees and ho{B^) == k^. Let (7, = V(Ey) ^[/(g) -B» ^
V{Ev) 0fc A'0. Then ^(G.) = M. We filter this complex by FynC* = ̂ -^Ey) ̂ k A^s.
As usual this filtration induces one on /i(C») and in particular on M = ho{C.). It is easy
to see that this filtration on M is the natural one coming from the order filtration on
V{Ey). There is a spectral sequence with £^ == FpCp^q/Fp^Cp^q. Since the filtration
on (7, is exhaustive and bounded below it converges to A(C»). Further observe that

E^ = V-^Ey) 0fc ^p^q^|V-q-\Ev) 0fc A^fl ̂  EndfcV 0j, fc[r*Z]_, ̂  A^g.

In particular, £"̂  is zero outside the region bounded by p > 0, q < 0, p + q > 0. Let
a ; i , . . . , a ;y be a basis of 5. We can identify these via their symbols with elements of

4° SERIE - TOME 32 - 1999 - N° 6



MARSDEN-WEINSTEIN REDUCTION 819

fc[T*X] which are homogeneous of degree one. Since fi is flat, these elements form a
regular sequence. Now the differential on E° is given by

P+9

d{u 0 x\ A ... A Xp^q) == ^ ^ î  0 a:i A ... A ̂  A ... A Xp-^-q.

In the j?-th column the only non-trivial homology it generates is in the (p, —p) position,
viz EndfcV 0^ {k[T'kX}p/k[T^X]p^Q). To see this, note that the usual Koszul complex
JC»(a:i,... ^ X r ) is exact except in degree zero, and splits into homogeneous components
because a:i, . . . ,a^ are a regular sequence of homogeneous elements of degree one.
Finally, E^ is End^V tensored with one of these components. Thus, the spectral sequence
collapses at E1 and we see that

^--^-(dia);
as needed. D

2.5. REMARK. - Note that ^~1{0) means the scheme-theoretic fibre. Also

(EndfeY (g)fc k^-1^)})0 ^ {G-equivariant morphisms / : /^(O) -^ End^Y}

as fc-algebras.

2.6. REMARK. - Note that with the hypothesis of the lemma V(T) is flat (on either side)
as a [/({^-module. See [4, Proposition 2.3.12].

3. Representation of the deformed preprojective algebra by differential operators

In this section we give a representation of the deformed preprojective algebra by
differential operators. We begin with the notation that we will use concerning quivers. Let
Q be any quiver (oriented graph) on the vertex set I = {0 , . . . , n} . We write a G Q for
a is an edge of Q. Then we write h(a) e I for the head of a and t(a) for its tail. Let
a ^ / 3 G Z7. The Ringel form is the bilinear form on I1 with

(a, (3) = ̂ a^i - ̂ a^)^(a).
iCi aCQ

The symmetric bilinear form is defined by (a^/3) = (a,/3) + {A0 ' )- The Tits form is
the quadratic form given by q{a) = (a^a) = ^(a^a). The Dynkin quivers of types An
(n > 1), Dn (n > 4), EQ, £7, Es are the connected quivers for which the quadratic form is
positive definite. The extended Dynkin quivers of types An (n >_ 0), Dn (n ^ 4), EQ, £'7,
Es are the connected quivers for which the quadratic form is positive semi-definite (where
Ao is the quiver with one vertex and one loop, and a quiver of type Ai has two vertices
joined by two arrows, in either direction). In this case we denote by 8 the minimal vector
in N7 \ {0} in the radical of (,). Any vertex i with 8i = 1 is called an extending vertex,
and deleting i one obtains the corresponding Dynkin quiver. If Q is extended Dynkin then
we always number the vertices I = { 0 , 1 , . . . , n} with 0 an extending vertex. Let e, : i G I

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPERIEURE



820 M. P. HOLLAND

be the usual basis of I1. We say a vertex i is loopfree if there are no arrows a : i —^ i. If
i is a loopfree vertex the ^m^ reflection Si 6 GL^(Z) is defined by Si{a) = a - (a, e,),
for a G Z7. The W?^/ ^WM/? is the subgroup of GL^(Z) generated by Si : i e I and is
loopfree. The simple roots are c^, for i loopfree. The real roots are the images of the simple
roots under the Weyl group. For more details on root systems in this context, see [13].
Let Q denote the double of Q. This is the quiver on the same vertex set as Q but with
an additional arrow a* : h{a) —^ t(a) for each edge a G Q. The opposite quiver to Q is
denoted Q*. It has the same vertex set as Q but has arrows a* : a e Q. The path algebra
of Q is denoted kQ. We write e^ for the trivial path in kQ corresponding to the vertex i. If
A € k1 we can think of it as the element ̂ ^ A,e, of fcQ. Recall from [8] the definition
of the deformed preprojective algebra with parameter A. Let c = Sa^o[^^*] and write
(c - A) for the two-sided ideal of kQ it generates. Then define

n^-^
( c -A) '

Again following [8] we denote 0^ = eoD^eo. The isomorphism class of 11̂  (and of 0^)
is unchanged if we replace A by a non-zero scalar multiple. For technical reasons we
also need to consider a global version of the deformed preprojective algebra. If S is a
commutative ring and A G S1 we define I I s ' x = S^/(c - A). Likewise 0s fx = eoll5^ go-
Note that kQ is a graded algebra if for a G Q we put a in degree zero and a* in degree one.
This induces a filtered structure on 11'̂  and hence on Ox. (Equally well, except in the last
section, we could use the grading and induced filtrations starting with a and a* in degree
one. In that case instead of using the operator filtration on the rings of differential operators
we consider, one works with the Bernstein filtration.) Let a G N7 and write Rep(Q, a) for
the space of representations of Q with dimension vector a. This is the vector space

Rep(Q,a) = JJ Rom^k^^k^^).
a^Q

Note that

Thus,

T*Rep(Q, a) = Rep(Q, a) = Rep(Q, a) C Rep(Q*, a).

fc[T*Rep(0, a)] = k[t^ : a G Q, 1 < p < h{a), 1 < q < t{a)}.
Let

T = fc[Rep(Q, a)] = k[t^ : a G Q, 1 < p <. h(a), 1 < q < t(a)].

Observe that the principal symbol of the differential operator QjQi^ is i^ . Let
GL(a) = Y[^iGL^(k). It has Lie algebra 0l(a) = Y[i^M^(k). Let e^ denote the
pq-th matrix unit in the %-th summand, for i G I and 1 < p, q < ai. GL{a) acts naturally on
Rep(Q, a) by conjugation with kernel fc*. Denote by pfll(a) the quotient of Q ((a) which
is the Lie algebra of GL(a)/fc*. Let us differentiate the action of GL(a) on Rep(Q, a).

3.1. LEMMA. - Differentiating the action of GL{a) on Rep(0,a) gives rise to the Lie
algebra map L : Ql{a) —> T>(T) defined by

^(a) o °'t(a)

v^ .a ° v-^ v^ . . 9^ ^ \^ V +a ———— - V^ V^ .a c/

^ " ^ Z^ Z^ ̂  Q^a Z^ / . ^gj n^a •
aCQ:t(a)==i J=l ^9 aGQ:/i(a)=z J==l P3
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MARSDEN-WEINSTEIN REDUCTION 821

Proof. - Note that if GLn(k) x ^n —> k71 is given by (g,v) ̂  5^ then differentiating
its action on the coordinate ring fc[a; i , . . . ,Xn] one gets:

Cij \—i- —Xj9/9xi.

Likewise if GLn(k) x fc71 —^ ^n is given by ( g ^ v ) i-̂  z^'"1 then one has:

Cij ^-> X i 9 / 9 x j .

To see where the formula in the statement comes from, think of, for a G Q with h(a) = %,
the action of GLc^(fc) on the component

Rom(ka^\ka^)=M^^(k)

of Rep(Q, a). This is just a^a) copies of the standard left action of GL^(fc) on fc"1. The
second term in the display follows from this. The first term is obtained similarly. D

3.2. NOTATION. - If A G k1 then we identify it with the character of ^((a) defined by
( A o , . . . , An) i—^ ̂  XiirAi. If A • a = 0 we regard A as a character of pQ^(a).

3.3. DEFINITION. - Let \ G k1 satisfy \' a = 0. Then we define

^ :== 2tx(Rep(0,a),GL(a)).

3.4. REMARK. - The reason we choose \' a = 0 is to avoid Sl^ collapsing to zero. Note
that Ken = fe(J^)ze^ where la, denotes the 0.1 x a^ identity matrix. (This is because
L factors through the natural map g —» EndA;Rep(Q,a)* and GL(a) acts on Rep(Q^a)
with kernel fc*.) So our assumption that \' a = 0 is to ensure that \ vanishes on Ken.

Recall that if Q has no oriented cycles then Rep(Q, a)//GL{a) is a point [17, Theorem 1].
Thus, the natural map e : 21° -^ P(Rep(Q, a)//GL(a)) = k of (2.2) is trivially surjective,
but this is not very interesting. For the most part, the examples considered in this paper
are quite different from the ones which Schwarz is interested in [30], [31].

It is perhaps worth making explicit the action of GL(a) on V(T). If g = (^o? • • • ^n)
is in GL(a) and a G Q then

(3) 9 -^ = g^QiW and 9 ' ^ = ̂ )^(a).

Here t01 is the a^a) x o't(a) matrix with p^ q entry t^ and 9°^ is the a^a) x 0^(0) matrix
with p,q entry 9/9t^p.

3.5. NOTATION. - We denote k01 = Q^fc0'1.

3.6. DEFINITION. - Let ^ G k1 satisfy ^ • a = 1. Then we define

^ := ^(Rep^^GL^),^).

3.7. REMARK. - The reason we assume \ ' a = 1 is as follows. Choose 6 G Z7 (so
that 0 arises from a character of GL(a)) with 6 ' a = —1, and put V = k^ 0^ fc^.
Now Kerj^'y = Ker^ (and hence both are equal to Kerry). For, if x = (a^)^j is in
the kernel of jv then each xi must be a scalar matrix and the value of this scalar is
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the same for all %, namely - i -^j^tr(^) . On the other hand, if each xi = sic,^ for
a scalar s, then the fact that 6 • a = -1 tells us that x G Kerjy. Finally, using (2),
^x ^ ^^(Rep^o^CHa),^ 0^ A^). To avoid ̂  collapsing to zero, ^ + Q must
vanish on Kerry. In other words, ^ • a = 1.

3.8. We recall a result of Crawley-Boevey on the preprojective algebra 11° and show
how it can be used to compute the GK dimensions of S^ and T^ for some cases. Partially
order Z7, by a < (3 if a, < /3,, for all i G I . Following Crawley-Boevey [6] let So
consist of those a G N7 such that a / 0 and (/3,a - /3) < -2 whenever 0 ^ /3 ^ a
with /3, a - /3 G N7. For a 6 So [6] proves that [L : T"Rep(Q, a) -> ps1^)* is flat with
integral fibres and that dlm^l~~l(0)//GL(a) = 2 - 2g(a).

3.9. EXAMPLE. - Let a € So and let \ G fc7.

(a) If ^ • a = 0 then Sl^ is a domain and has GK dimension 2 - 2q(a).
(b) If ^ • a = 1 then ̂  has GK dimension 2 - 2g(a).

Proof. - Crawley-Boevey's result says the moment map is flat with integral fibres. By
Proposition 2.4 this tells us that, for ^ • a = 0, we have

(4) g^2l^fc[/.-l(0)//GL(a)].

This shows that Sl^ is a domain. Since the filtration of Sl^ is not finite-dimensional there is a
potential problem in deducing that Sl^ has the same GK dimension as its associated graded
ring, namely 2 - 2g(a). However, [22, Corollary 1.4] applies to remove this difficulty,
proving (a). Now let \ C k1 satisfy \' a = 1. Again, we apply Crawley-Boevey's result
and Proposition 2.4 to get

(5) gr^ ̂  (Endfc^ ̂  fe^-^O)])01^.

(Since the moment map for ps[(a), not Ql(a), is flat, this application of the Proposition
occurs after twisting by 0 as in Remark 3.7.) Another application of [22] completes the
proof of (b). Alternatively, one can avoid the use of [22] by proving isomorphisms similar
to (4) and (5) using the Bernstein filtration, rather than the operator filtration. The result
then follows by [21, Proposition 8.6.5]. D

3.10. REMARK. - With the hypotheses of Example 3.9(b), W. Crawley-Boevey and the
author have proved that T^ is prime.

Obviously T^ and Sl^ depend on the orientation of Q, but not seriously.

3.11. LEMMA. - Let a G Q and let Q' be the quiver obtained from Q by reversing the
arrow a. Then there are k-algebra isomorphisms

gtX _^ ^X+Q'tCa^^a)-^/^)^) ^^ <^X __^ ^X+0't(a)e/,(a)-Q'/i(a)€t(a)^

These isomorphisms are filtered, for the Bernstein filtration.

Proof. - There is an isomorphism

P(Rep(Q,a))-.P(Rep(Q»)
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that is the identity on t^ and 9/Qt^ for all 1 < i < G^), 1 <: j < ^(fc), b -^ a, and
maps t^ to -9/Ot^ and 9/9^ to ̂ , for 1 < p < a^), 1 < q < a^y It is easy to
check that this isomorphism induces the claimed ones. D

3.12. NOTATION. - We write E^ = k^ 0^ T.

3.13. PROPOSITION. - There is a k-algebra homomorphism $ : kQ —^ V^E^)^^. If
ao = 1 this restricts to a k-algebra homomorphism eokQeo —^ P(^)GL(Q').

Proof. - Define a representation of Q by placing T0'1 at vertex %. Now, if a is an arrow
of Q then we associate to it the map T^0) -» T^0) given by the matrix F. On the other
hand, if a* is the opposite arrow then we associate to it the map T^M") —> r^a) given
by the matrix 9°. This certainly gives a fc-algebra homomorphism 6 : k~Q —^ End^JSo,. It
is clear that that the image is contained in the subalgebra P(£a). The formula (3) and the
definition of the action of GL(o;) on T>{E^ show that 6 has image in V^Ea)0^ and
so induces the homomorphism $ of the statement. Finally, $(eo)'D(£'a)$(eo) = V(T\ if
ao = 1. For, identifying V(E^) = My^{V{T)), we see that $(eo) is the obvious matrix
unit. Q

Recall from §3 the definition of the preprojective algebra 11°. In [8, Lemma 8.1 and
the subsequent paragraph] it was shown that there is a naturally defined graded fc-algebra
homomorphism

^:^O^M^^?-l(o)])GLM.
Let us briefly recall the construction. First one defines a map

^:fcO-.M^^(fc[r-Rep(Q,a)]).

This map sends an arrow a of Q to t°'. Now GL(a) acts naturally on

M^(A;[r^Rep(Q,a)]) ^ End^ ̂  fc[TRep(Q,a)].

The image of ^ clearly lies in the invariant matrices. Of course, the map $ of the lemma
quantizes ^. For, $ is a filtered homomorphism and its associated graded map is ^. The
map -^ is defined by observing that ^ descends to the quotient 11° —> My^ .(fc^'^O)]).
Restricting to the invariants one obtains ^. In this paper an attempt is made to quantize
'0. The codomain of <I> is V(Ea), a simple ring, and so one cannot make "a descent to the
quotient", as for ^, by just directly factoring out the relation ^[a, a*] - A. Instead we have
to work in P^)01^). Let us explain precisely what we mean by a quantization of -0.
Let A G k1 and let \ € k1 satisfy \ • a = 1 (^ will depend on A). There are natural graded,
surjective fc-algebra homomorphisms n° —^ gril-^ and Mv^ .(^[/^(O)])01^00 -^ gri^.
We are looking for a filtered fc-algebra homomorphism ̂  : 1̂  —^ S^ such that the diagram

grn^———^———gr^

(6)

n° —/— M^^-^o)])01^)
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commutes. We need one more piece of notation. Define 9a C ~L1 by

9, . /3=-<Aa).

Since Qa ' a = —q{a) we have a bijection

{A G k1 : X. a = 1 - q{a)} x^^ {x G (s^)*)0^ : X ̂  = 1}.

3.14. THEOREM. - L^ A 6 A/ satisfy X ' a == 1 — 9(0). TTz^z r/i^r^ ^ a filtered k-algebra
homomorphism

^ ^-^T^-^.
Further, with ^ = X — <9o,, diagram ( 6 ) commutes. If OQ = 1 then ̂  restricts to give a
k-algebra homomorphism

/nA _^ QfA-eo-^a

In order to prove the main theorem we need a lemma. First some notation.

3.15. NOTATION. - The direct sum decomposition

End^,= © Hom^T^T^)
v,w6^

restricts to another one

W0= © ^(r^T^).
v,w6-f

The component P^T^, T^) of P(^a) identifies with M^ xc., (P(T)). In particular, if (9
is an element of this component we speak of its ij entry 0^. Recall from Proposition 3.13
that there is a homomorphism $ : kQ —» V{Ea). We write e^ for ^(e^). Finally, if v G I
and 1 ̂  % , j < a^ then the element e^ of 0((a) = ^weJ^Qi-(^) can ^e ^entified with
an element of V^T^, T^). On the other hand, //(e^) is an element of P(T) and this can
be identified with an element of P(I?a) via the diagonal inclusion. With these conventions,
and using (1), we have r(e^) = ^(e^-) + e^-.

The proof of the theorem boils down to the following lemma. My original proof was
somewhat over-complicated. I am grateful to Alex Glencross for pointing out to me this
more concise argument.

3.16. LEMMA. — For i G I , we have

^| E aa*- E ̂ ^^l = E ^-^(4^
\^(a)=i t{a)=i j l<P,g<az

where \ = X — 9a.

Proof. - Using the notation in (3) and the definition of $ in Proposition 3.13 we have

^f E aa*- E ̂ ^^i) = ( E ta9a- E Qat\ +A^6^•
\^(a)=i t(a)=z j \^/i(a)=i t(a)=i
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Note that this is an element of T^T^T^) = M^(T). Consider, for 1 < p,q < a,,
the pq-th entry of this matrix:

^t(a) 0^(,) \

Z^ 2^ ̂ '/^ ~ ^ ^ ̂ "^ + A^9

^(a)=z J=l '̂ t(a)=i j=l 3P j

at(a) ^ aMa) / ^ \ \

E E^-^- E E(^+^) +^
^(a)=z J=l C7l/9^ t(a)=z J=l v (7r^ -/ /

= -^^p) + (^ - ̂  ^(a))9pg = -^(4p) + (Xi - Oii}6pq,
t(a)=z

The last equality uses Lemma 3.1 and the fact that ^ = A - 9^. It follows that

(7) $( ]̂  aa*- ^ a*a+A^) --f E 4^^)) + (^ - ̂ )e,
\/i(a)==i t(a)=i y \l<P,g^Q'^ /

On the other hand,

E 4g(^ - T)(4p)= - E 4^«p) + 4p - ̂ 5^)
l^P^^^z l^P»9<o'z

== - ( E 4^(4p) + 4p) + ̂ e.
\Kp,g^a, /

""I E ^^(^p) ) +(Xz-^)ez.
\l<p,g<a^ /

Now equation (7) completes the proof of the lemma. D

Proof of Theorem 3.14. - Recall that II-^ ^ Il~x. In order to prove the first part of
the theorem we must show that

$(^[a,a*]+A) C (P^)^-^)^^)))0^.

Since the image of $ consists of invariants and

E^'^E E aa*- E^
a-^Q iCi \h{a)=i t(a)=i ^

the lemma proves this. To prove the second part, note that for for v G I and 1 < ij < a^
one has

T(e^o=(^.)+e^o^^•)eo ^°
i{e^)eo + eo v = 0.

D
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3.17. EXAMPLE. - Let Q be the quiver

ao

01

0 • . •I
On

and let a = (1,1). Let A G fe2 be such that Ao + Ai ^ n. Then

^ : o> _, siA-eo-a,

is surjective. Further, the image is isomorphic to the global sections of a sheaf of twisted
differential operators on P^

Proof. - Note that q(a) = 1 — n. Thus the condition Ao + Ai = ^ Just says that
X ' a = l -g(a) . Now, P(T) = fc [^o , . . . ^n,9o,... A] and GL(a)/fc* ^ fc*. The
homomorphism

fe[to,...^n,(9(h...^]^/.A . /nA^A : 0" ->
(fc[to, . . . ̂ n, 9o, • . . , ̂ (E^O ̂  - AO + n + 1))^

is given by a^ai \—> Qjti. A simple calculation shows that the associated graded
homomorphism of this map is surjective. Finally, it is well known and easy to show
that the image is isomorphic to the global sections of a sheaf of twisted differential
operators on P71 (cf [5, Example 3.10(a)], [32, Theorem 6.1.2]). D

4. Extended Dynkin case

Consider now the extended Dynkin case. That is, let Q be a quiver of type An, n > 0,
Dn, n > 4, or En, n == 6,7,8 and suppose that 0 is an extending vertex. Let S denote the
minimal imaginary root. i.e. 8 G N7 \ {0} is minimal with q{8) = 0. Note that 60 = 1.
For x e k1 let 21̂  = ^(Rep(Q^), GL{S)) and ̂  = ^(Rep(Q^), GL{8),k6)). We
are going to show that the fc-algebra homomorphisms of Theorem 3.14 are isomorphisms,
when a = 6. After [8, Lemma 8.3, Corollary 3.6] and Proposition 2.4 the vertical maps
in diagram (6) are isomorphisms and so it will be enough to show that the graded map '0
is an isomorphism. To do this it is necessary to introduce a flat family of algebras with
special fibre Mv^ .(fc^'^O)])01'^^ Let A e k1 satisfy A • 8 = 0. As usual we regard
A as a character of pfll(^). Define

Tx = My^k^-^X)})0^ and Ax = fc^-^AV/GL^)].

If we grade fc[T*Rep(Q, 6)] by putting t^ in degree zero and t^ in degree one, for a G Q,
we get induced filtrations of Ax and Tx. Observe that

g^ - (grM^^-^A)]))01^ - M^W^W})^.
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But grfc^-^A)] ^ fc^-^O)]. This is because ^ is flat [8, Lemma 8.3]. Thus, grT^ ^ T°.
By [8, Lemma 8.1], the map ^ : kQ -^ My ^(fc[T^Rep(Q, 6)}) induces a filtered
fc-algebra homomorphism ^A : 11̂  —> Tx which makes the diagram

n° rpO

(8)

grnA g^ grr^
commute. (That 11° —^ grD^ is an isomorphism is shown in [8, Corollary 3.6].) Note
that ^x restricts to a map ̂  : Ox ̂  Ax since Ox = eoll^eo and Ax = eoTxeo. In [8,
Theorem 8.10] it is shown that ^° is injective. It follows from the diagram above that ̂ x

is injective. In [8, Corollary 8.11] it is shown that ̂  is an isomorphism.

4.1. LEMMA. - Suppose that X • a -^ 0, for all real roots a. Then ̂ x is an isomorphism.

Proof. - The hypothesis on A ensures that IP^oII^ = 1̂  [8]. Clearly then T^e^ = Tx

and so eoTX is a progenerator as an T'^-module with endomorphism ring A\ As a
consequence of the proof of [17, Theorem 1] (see (ii) at the end of §3) we have that
eoTX is generated as a module over Ax by the image of eoll^. It follows that ^x

restricted to a map eoll^ —> e^T^ is a bijection. Clearly then we obtain an isomorphism
n^ = Endoxeo^ -^ EndA^oT^ = Tx, as needed. D

Let S be a commutative ring and let A G S1 satisy A • 8 = 0. Consider the fibre product

Ys.x Spec 5

r*Rep(0,5)-^-p0l(J)

where A : Spec5 -» pQl(S) is the map corresponding to A. Observe that GL{8) acts
naturally on Ys,\, in such a way that all maps in the fibre product are equivariant (where
the action on Spec5' is trivial). We define Ts^x = Mv^ .(k^s^x])0^. There is a natural
ring homomorphism ^sfx : n5^ —^ T5^ which induces one ^'A : O8^ —^ k^s.x}0^'
Observe that if / : S —> U is a ring homomorphism then

QUJW ^ n^ 05 U, T^W^T^^sU^ and ^^=^01.

4.2. LEMMA. - T5^ is flat over S.

Proof. - Ys,\ -^ SpecS is flat by [8, Lemma 8.6]. Thus My^{k[Ys^\}) is flat over S.
Then T5^ is flat over S, for, by the Reynolds operator [24], it is a direct summand of
M^(k[Ys^]Y D
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4.3. LEMMA. -If S is a domain with quotient field F, and X'a ̂  Ofor all real roots a, then

^x 0 1 :11̂  0 F -^ T5^ 0 F

is an isomorphism.

Proof. - It suffices to show that the map is an isomorphism on tensoring with an algebraic
closure F of F. But now. Lemma 4.1 applies with the base field k replaced by F. D

4.4. LEMMA. - Suppose S is a Dedekind domain, m is a maximal ideal and C is a torsion
S-module, not necessarily finitely generated. IfToT^{C, S/m) = 0 then C 0 S / m •= 0.

Proof. - [8, Lemma 8.9] D

4.5. THEOREM. - The map ^° : 11° —> T° is an isomorphism.

Proof. - Recall that ^° is injective. Now fix some v G k1 such that v - a ̂  0 for all real
roots a. Let S = k[t\ and let A = vi G S1. Since II5^ is flat over S and ̂ ^ gives an
isomorphism on tensoring with the quotient field of 5, one has an exact sequence

0 -^ n5^ -^ T S J X -^ C -^ 0.

and C is a torsion 5'-module. Tensoring this sequence with the module k on which t acts
as zero, the first map becomes '0°, so remains injective. Thus, Torf((7, k) = 0, since T3^
is flat over 5'. By the previous lemma, C 0 k = 0, so ^° is an isomorphism. D

4.6. COROLLARY. - For any A with X ' 6 = 0 the map ^x : 11̂  -^ Tx is an isomorphism.

Proof. - By Equation (8), the map gn/^ : gril^ —> gTTX is surjective and we had already
established that it was injective. D

4.7. COROLLARY. - For any \ with X • 8 = 1 the k-algebra homomorphisms ̂  : IIA —>
^-^ and Ox -^ y^-96-eo ̂  isomorphisms.

Proof. - As we saw above, the natural map 11° —> gri^ is an isomorphism, by [8,
Corollary 3.6]. The moment map Rep(Q,6) —> pfll(<5)* is flat, by [8, Lemma 8.3]. Thus,
by Proposition 2.4 the natural map T° —^ gr?^ is an isomorphism. The result follows from
the commuting diagram (6) and Theorem 4.5. D

5. A sheaf of algebras

Retain the assumption of the first paragraph of the previous section that Q is an extended
Dynkin quiver, 6 is the minimal imaginary root etc. We also assume that Q has no oriented
cycles. We have seen earlier that S^, for \ a character of pfl((<5), quantizes the Marsden-
Weinstein reduction /^(OYGL^). Note that, by [16], [8], /^(OV/GL^) is the Kleinian
singularity associated to the extended Dynkin diagram by the McKay correspondence [23].
In this section we construct a sheaf of algebras on P1 that quantizes a certain partial
resolution of /^(O^GI^), defined in terms of moduli spaces of representations of 11°
of dimension vector 8. This sheaf of algebras is analogous to a sheaf of twisted differential
operators on the flag variety of a semisimple algebraic group. If 0 is a character of
C?L(5)/fc*, we identify it with an element of I1 : Q • 8 = 0. We denote by k[Rep(Q, 8)}e,
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the set of semi-invariants of weight 0 i.e. those functions on which GL{6) acts by the
character 6. We write 9 = 9g, the defect. We say that y G Rep(Q,(5) is 9-semistable if
there exists a semi-invariant / G fc[Rep(0^)]^a, with n > 1, such that /(^/) 7^ 0. We
say that y is Q-stable if, in addition, the stabiliser of y in G?£((5) is &* and the action
of GL(S) on the subset [x G Rep(Q^) : f(x) / 0} is closed. Write Rep{Q,8)SQS for
the set of 9-s^mistable points in Rep{Q,6). King [14] has shown that M e Rep(Q,6)
is 9-semistable (resp. 9-stable) if and only if 9 ' dim N < 0 (resp. < 0) for all proper
submodules (i.e. N ^ 0, N / M) of M (Note that King's definition of the weight of a
semi-invariant differs from ours by a sign). Further, [14], [24, Theorem 1.10] there is a
categorical quotient TT : Rep(Q, S)8/ —^ 91. One description of SH is as ProjA, where

A=©fc[Rep(Q^)]^.
n>0

By construction, there is a projective morphism 91 —» SpecAo = pt; the latter equality
holds as Q has no oriented cycles. The points of Rep(Q,5)^ have another description.
Let T denote the Auslander-Reiten translate. If M is an indecomposable finite-dimensional
fcQ-module then M is either preprojective, regular or preinjective according to whether
T^M) = 0, for n > 0, T^M) / 0, for all n G Z, or r-^M = 0, for n > 0. These
three possibilities occur when 9 - dim M is strictly less than, equal to, or strictly greater
than zero. An arbitrary finite-dimensional module is called regular if and only if all its
indecomposable direct summands are regular. It is not difficult to prove the following.

5.1. LEMMA. - The regular modules in Rep(Q, 6) are exactly the 9-semistable points.

As was first pointed out by Ringel [29]:

5.2. LEMMA. - y\ ^ p1.
Now consider /^(O) == Rep(n°,^) c Rep(Q,6). Just as for Rep(Q^), one

can consider 9-semistable and 9-stable points of /^(O). Again one can form a
categorical quotient /^(O)^ —^ 9Jt. Further 9Jt is constructed as ProjB, where
B = enX)^"1^)]^. This time, SpecBo = /^(O^GL^) and so we get a projective
morphism / : 9Jt -^ p.~l(Q)//GL{8). For this, see [28]. Since there is a simple II°-
modu^e of dimension 6 [6], it is easy to see that / is birational. Note that identifying
Rep(Q,8) = T^Rep(Q^) we can regard_T*Rep(Q^)^, the cotangent bundle of
Rep(Q^)^, as an open subset of Rep(Q,8). It is perhaps worth remarking that
T*Rep(Q, S)^8 is not, in general, equal to Rep(Q, S)^8. However we do have the following
result of Crawley-Boevey [7, Lemma 12.1].

5.3. LEMMA. - T*Rep(Q^)^ n /^(O) = ^(O)^.

By virtue of the lemma there is a natural affine map /^(O)^ —> Rep(Q,5)^
obtained by composing the inclusion /^(O)^ —^ T^Rep(Q, S)^ and the projection
T^Rep^Q^)8/ -^ Rep(Q,^)^. Taking categorical quotients this induces an affine map
p : W —> y\. We need another result of Crawley-Boevey [7, Theorem 12.3].

5.4. THEOREM. - 9Jt is normal.

5.5. REMARK. - Crawley-Boevey actually shows that /^(O)^ is normal. Of course, the
theorem follows from that. Interestingly though, Ringel has observed that /^(O) need
not be normal.
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As / is birational and projective, it gives a partial desingularisation of

/^(OV/GLO?);

in general, 9Jt is not smooth. Since /^(O^GI/^) has rational singularities we can
compute the cohomology of the structure sheaf of 9Jt (Actually, 9Jt itself has rational
singularities but we will not need this fact).

5.6. LEMMA. - The cohomology of the structure sheaf of 9Jt is given by

fe[9Jt] = k[^-lW//GL{6)} and W(Wt, 0^) = 0, for i > 0.

Proof. - Let g : 9Jt —> 9Jt be a resolution of singularities and consider the Leray spectral
sequence for the composite h :==• fg. Note that h is a resolution of ^~1{0)//GL{8). We
get that

R^f^g.O^ =^ R^h^

Of course, as /^(O^GL^) has rational singularities we obtain that the right-hand-side
is zero except for p = q = 0 when it is k[|JL~l{0)//GL(6)}. Since the 1,0 entry of the
£"2-page is clearly unchanged by any subsequent differentials we see that

R'f^o^ = o.

As 9Jt is normal and g is birational we have, by Zariski's Main Theorem, that

g^ = 0^

and so we deduce that Hl(9Jt, Oyn) = 0. Finally, IP (9Jt, Oyn) = 0, for % > 2 by the Leray
spectral sequence for the affine map p. D

Our aim is to give a noncommutative quantization of 9Jt. Let ^Rep^^)55 denote the
sheaf of fc-linear differential operators on Rep(Q? 8)y. For \ a character of pfl((^), define
a sheaf of fc-algebras on 9t by

(^Rep^^)0^

((^Rep^.X^-XXfl^)))^'

It is quasi-coherent as a sheaf of left 0^-modules.

5.7. PROPOSITION.

gr^^On.

Proof. - Let T = k[Rep(Q,8)} and s = P0^). Since ^ : Rep(Q^) -^ fl* is flat,
Proposition 2.4 tells us that the natural map

grP(T)/grP(r)s ̂  gr(P(T)/P(r)(. - x)(s))
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is an isomorphism. This isomorphism clearly passes to the localisation where one replaces
T by Ts, for some semi-invariant s of weight 9". Taking GL{ 8) -in variants we obtain
an isomorphism

P^Oyft\D^s) -^gr^ D+(.)

where D^.{s) is the open set SpecT^) of SH. Since these isomorphisms are evidently
compatible we have the isomorphism of the statement. D

Note that the proposition says that Ax is a quantization of the partial desingularisation
9Jt. For, since p is affine we can recover %T = Specp^Oyji ^ Specgr^. It would be
interesting to quantize a minimal resolution of singularities of

^(OV/GW

Next we investigate some of the properties of Ax. In its relation to S^ it behaves in a
similar way as does the sheaf of twisted differential operators on the flag variety to the
corresponding minimal primitive factor of the enveloping algebra of a semisimple Lie
algebra. We need a general result.

5.8. LEMMA. - Let A be a sheaf of k-algebras with a quasi-coherent filtration over a
variety X. Suppose that ^(X.giA) = 0. Then ̂ (X.A) = 0 and

grr(z^)^r(z,gr^).
Proof. - Applying the global sections functor to the short exact sequence

0 -> Ai-i -^ Ai -^ A/A-i -^ 0

one obtains the exactness of

H^A-i) - H^A) - H1^ (gr.4),).

By induction, we see that ^(X.Ai) = 0, for all i ^ 0. Thus,

o - r(z, A-i) - W A) - r(x, (grA),) - o
is exact. D

5.9. THEOREM. - The cohomology of Ax is given by

r(9l, A^ ^ ̂ x and W(^ A^ = 0,

for i > 0.

Proof. - There is a natural filtered homomorphism

^ ̂ r^A^.
To prove the first claim it is enough to show that the associated graded map is an
isomorphism. Thus, we must show that

(9) gTr^AX)^k[n-lW//GL(6)}.
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By Proposition 5.7 we know that gvAX ^ p^Oyj^. Since p is affine it follows that
H^^grA^) ^ H'(9Jt,Oa7t). By Lemma 5.6, we see that this cohomology group is
k[p,~l{Q)//GL{6)}, for i = 0, and vanishes, for i > 0. Now, by Lemma 5.8 we obtain (9),
as needed. Further we see that H^,^) = 0, for i = 1. Since W. ̂  P1, the vanishing
for i > 1 is clear. D

5.10. LEMMA.
If U is an open affine subset of^\ then the restriction map I^yi,^) —^ r(?7,^) is

injective and induces an isomorphism on division rings of fractions.

Proof. - Firstly observe that, I^OT;,^) and TfJJ^A^ are both Noetherian domains and
so have division rings of fractions, by equation (9) and Proposition 5.7. The first claim
follows once one has that

grF(9^)-. grF([/^)

is injective. But

grF(9^)=r(^gr^),

and likewise on E7, so this is clear. Finally, as F(9l, grA^) and T(U, grA^) have the same
fractions we easily deduce that the same is true for F(9l, A^) and F((7, A^. D

5.11. COROLLARY. - 21x has a faithful representation by differential operators on an open
subset of 91. In particular, the quotient division algebra of Sl^ is the first Weyl division
algebra D\(k).

Proof. - We can choose U as in the lemma so that GL{6)/k* is acting freely on Tr"1^).
An argument along the same lines as [30, Corollary 4.5] shows that T^U.A^ ^ ̂ (U\
hence the result. D

We can now show that there is an analogue of the Beilinson-Bemstein theorem [3], at
least when St^ is hereditary. Our approach uses the main theorem of Hodges and Smith [12].
However, first we need to point out that one of their hypotheses is not needed. Recall their
notation. Thus, X is an irreducible variety over a field K, 'R is a sheaf of Noetherian
AT-algebras over X. It is supposed that R = F(X, %) has a classical ring of quotients Q.
Further it is assumed that (i) The structure sheaf 0 of X is a subsheaf of % and that %
is a quasi-coherent sheaf of left 0-modules. (ii) If U is an open affine subset of X then
%(£/) is a subalgebra of Q containing R and is generated as a right or left ^-module
by F((7,0). (iii) There is a finite open affine cover (U^) for X such that the diagonal
embedding R —> 6%((7o,) obtained from the restriction maps makes 9%(E/a) a faithfully
flat right Ji-module. The reader will check that Hodges and Smith use the assumption in
(ii) that ̂ (U) is generated as a right or left ^-module by Y{U, 0) in only one place in the
proof of their main theorem, viz to obtain the conclusion of [12, Lemma 2.6]. However,
this use is unecessary. For, if U and V are open affine subsets of X then

n(u n v) = o{u n v)n(u n v) =o(u n v)n(V) =
o{u)o{v)n{v) = O{U)H{V) = n{u)n{v).

Here, the first equality is clear, the second uses that % is quasi-coherent, the third uses
that X is a variety, and the remaining equalities are clear. This, together with the proof of
[12, Lemma 2.5], yields the conclusion of [12, Lemma 2.6].
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5.12. THEOREM. - If\ ' a + (9, a} + OQ ̂  0, /or (rif r^a/ wo^ a, then r(9^ _) gives an
equivalence of categories between the category of left Ax-modules which are quasi-coherent
over Oy\ and the category of left ^-modules.

Proof. - For such a ^, S^ is hereditary [8, Theorem 4]. Now, if U is any open affine
subset of 91, then AX(U) has the same quotient division ring as Sl̂  and so is a torsionfree
Sl^-module. It follows that AX(U} is a flat right Sl^-module. Consider the complex

o ̂  ̂  -> r^o,^) e TO,^) ̂  r(E/o n u^A^ -^ o.
Since H^^t, A^) = 0, this complex is exact. Let M be a left S^-module. Apply _02ix M
to the above exact sequence. The flatness mentioned above ensures that the resulting
sequence is exact. Thus F^UQ.A^ C r(l/i,^) is a faithfully flat right Sl^-module.
Finally, we apply the main result of [12]. D

5.13. REMARK. - A Beilinson-Bemstein theorem should hold more generally than this.
For example, for the quiver Q = Au,v

1 2 _______^ ______. u-1

u-1-^—1 u+v-2 " ' ' •u+1

one can obtain the conclusion of Theorem 5.12 provided that for all integers % , j with
0 < i < u - 1, u <, j < u + v - 1 one has ELz+i Xt ^ N \ {0}.
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