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THE RELATIVE DIXMIER PROPERTY FOR INCLUSIONS
OF VON NEUMAN ALGEBRAS OF FINITE INDEX

BY SORIN POPA^

"// ne faut pas toujours integrer. 11 faut aussi desintegrer."
Eugen lonesco: La lecon

Dedicated to Professor Jacques Dixmier

ABSTRACT. - We prove that if an inclusion of von Neumann algebras At C M has a conditional expectation
C : M ̂  At satisfying the finite index condition £(x) > cx,\/x e .M+, for some c > 0, then At C M satisfies
the relative version of Dixmier's property on averaging elements by unitaries in A/", i.e., for any x € M., the norm
closure of the convex hull of {uxu* \ u unitary element in Af} contains elements of Af1 n M.. Moreover, in the
case A/", M. are factors of type Hi and At has separable predual, the finiteness of the index of the inclusion is
proved equivalent to the relative Dixmier property and to the property that a normal state on At has only normal
state extensions to M.. We give applications of these results. © Elsevier, Paris

RESUME. - Nous demontrons que si une inclusion d'algebres de von Neumann Af C M. est d'indice fini, i.e.,
si elle admet une esperance conditionnelle S : M. —>• Af satisfaisant la condition £(x) > cx^x € A^+, pour
un certain c > 0, alors Af C M satisfait la version relative de la propriete de Dixmier, i.e., pour tout x e M,
la fermeture en norme de F ensemble convexe co{uxu* \ u element unitaire dans At} contient des elements de
At' n M. Si en plus Af,M sont des facteurs de type Hi et A/" a un predual separable, alors on demontre que,
reciproquement, si A/' C M. a la propriete de Dixmier relative alors At C M. est d'indice fini. De meme, on
demontre que la finitude de Findice d'une inclusion de facteurs de type Hi, At C M, est equivalente au fait
que les etats normaux du sous-facteur At n'ont que des extensions normales a M. D'autres resultats et quelques
applications sont aussi donnes. © Elsevier, Paris

We prove in this paper a version for inclusions of von Neumann algebras of finite index
of Dixmier's classical result on the norm closure of "averaging" elements by unitaries,
as follows:

THEOREM. - Let At C M. be an inclusion of von Neumann algebras with a conditional
expectation £ : M. —^ M of finite index, i.e., 3c > 0 such that £(x) > ex, Vrc G .A/(+. Then
Af C M. has the relative Dixmier property, i.e., for any x G M., we have ^^{uxu* \ u
unitary element in At} H At' n M. •=/=• 0.

In the last part of the paper we present several applications of this theorem, notably a
result showing that for type Hi subfactors with separable preduals, the finiteness of the
Jones' index is in fact equivalent to the relative Dixmier property.

(*) Supported by NSF-Grant 9500882
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744 s. POPA

To prove the above theorem, we treat separately the finite and properly infinite cases.
The proof consists then in a series of applications of the Hahn-Banach theorem and of the
classical Dixmier theorem for single von Neumann algebras [Dl] (including its refined form
in [SZ1]), in some analysis specific to finite index situations, in convexity arguments and
in reduction-disintegration type techniques. Also, to prove the properly infinite, semifinite
case we make use of the general result ([PoR]) on derivations of von Neumann algebras
into the ideal generated by the finite projections of a semifinite von Neumann algebra.

For the elements of reduction theory needed in the properly infinite case we refer the
reader to [SZ1], [H] and [ApZ]. For basics of finite index analysis, see [PiPo], [Po2,4].

1. Some Preliminaries

We begin by making several considerations that will reduce the proof of the theorem
to proving it for selfadjoint elements "orthogonal" to •A/' V (A/'' D M), with A/", M being
both finite or both properly infinite von Neumann algebras.

But first of all, let us note that an expectation £ satisfying the condition £{x) > cx^x >
0 is automatically normal and faithful (cf. remark 1.1.2, (i) in [Po2]):

1.1 Proposition. IfJ^io C M.\ is an inclusion of von Neumann algebras -with a conditional
expectation £ of M.\ onto A^o satisfying £(x) >_ cx^x G A^i-f-, for some c > 0, then £
is automatically normal and faithful.

Proof. The faithfulness is clear from the condition.
Let A^* C A^* be the inclusion between the biduals of A^o? -^i ([S]) induced by the

initial inclusion and <?** : M^ —^ M^ the bidual of £. Thus f** is a normal conditional
expectation onto A^*, it satisfies the same inequality as £ does and coincides with £
when restricted to A^i.

For each i = 0,1 let pi G Z(A^*) denote the "normal" projection for A^, i.e.
j^A^* = piM-i and x G Mi^xpi = 0 implies x = 0 (this latter condition simply means
that A4i 3 x ^—> xpi € Mipz is an isomorphism; note that pi can also be characterized
as the largest projection p in Z(A4^) such that M^p = M.zp). Then clearly po > pi
and x G M.Q^X?\ = 0 implies x = 0 (both conditions due to A^o being a von Neumann
subalgebra of Mi). In particular it follows that <?**(pi) lies in Z(Mo) and has support po.

Let then £ ' : M^pi -^ M^pi be defined by
£\Xpi) = r^Xp^r^p^-^X € Air-

Since pi < pi(<?**(pi))~1 < c"1?! and <?** is normal, it follows that £ '
is normal. Also, <?**(Xpi) > cXp^X G A^, so that H^X^i)!! >
{^{Xp^-^Xpie^Xpi)-1/2^ > \\cXpi\\. But M^pi ^ Mpi and M^pi ^ Mo.
Thus, by [BaDH] (see also [Po2]), £ ' implements a normal conditional expectation of A^i
onto A4o, still denoted <?', satisfying £'{x) > cx^x € A^i+.

Let us show that this implies pi = po. To this end let ^ G (A/^*)*? ̂  ^ 0 be such that
s{^>) < po' Thus <^\Mo ls normal (since s{^p\^*} < po). But then ^ p o £ ' is normal on A^i,
and since £'{x) > ex, we also have y?(rc) < c~1^ o £\x)^x G M.\^.. Thus y? is normal
on A^i, so s((p) < pi. This shows that po = pi, so by the formula defining £ ' we have
£ = £ ' . Since £ ' is normal, it follows that £ is normal.

D

4° SERIE - TOME 32 - 1999 - N° 6



THE RELATIVE DIXMIER PROPERTY 745

Next we will show that we only need to prove the relative Dixmier property for x G M
satisfying the condition x G Z{N)' n M. To see that we may do so we need a technical
lemma. Its proof is elementary but, "faute de mieux", it is somewhat long and tedious.

1.2 Lemma. Let Z be a commutative von Neumann algebra and Z^ C Z ^ i = 0,1, be
von Neumann subalgebras such that ZQ V Zi = Z and such that there exist conditional
expectations Ei: Z —> Zi with IndEi < oo, i = 0,1. Then there exists a finite dimensional
^-subalgebra Ao C ZQ such that Ao V Z^ = S^^i = Z, where {pi}i are the minimal
projections of Ao.

Proof. Before any other consideration, let us note that if Ao C A is an inclusion of
abelian von Neumann algebras with a normal conditional expectation T : A —> Ao such
that hKLF^max^ | J^{x) > cx^x G A+})~1, then Ind^ can alternatively be described
by (Ind.F)-1 = mf{y{p){f{s)) \ s C fl,p € P{A),p{s) / 0}, where 0 is the spectrum of
A, Oo is the spectrum of AQ and / : 0 —^ ^o is the continuous surjection implementing
the inclusion C{^o) = Ao C A = 07(0). Also, if we denote a = (Ind.F)"1, then for
any p € P{A) the spectral projection e of ^F{p) corresponding to the open interval (0,1)
satisfies ae < T(y}e < (1 - a)e, in other words if so G Oo is so that 0 < ^F(p)(so) < 1
then a < ̂ {p){so) <: 1 -a. Moreover, note that by ([J], [BDH]) we always have Ind.F > 1
and if Ind^ < 2 then Ind.77 = 1, i.e., Ao = A.

Let then V denote the set of all isomorphism classes of 5-tuples

V={Z^Zo^Z^£o^£i)

in which Z is a commutative von Neumann, Zi C Z, i = 0,1 are von Neumann subalgebras
with ZoVZi = Z and Ei : Z —^ Zi are conditional expectations with IndEi < oo, i = 0,1.

By the preceding observation, for any V = {Z, Zo,Z^,£o,£i) ^ V, any constant c' > 0
with IndEi ^ c'"1^ = 1,2, and any p e P(Zo), the element Eo(E^ (p)) has gaps in its
spectrum, between 0 and c'2 and between 1 - c72 and 1, i.e., if so G ^o ^ spectrum(Zo)
is so that 0 < EoWp)){so) < 1 then c72 ^ Eo{E^{p)){so) < 1 - c'2.

To prove the lemma we need to show:
(*) VV = {Z,Zo,Z-i,£o,£i) ^ V, 3Ao C Zo finite dimensional *-subalgebra such that

Ao v Zi == z.
Let Vo = {V C V | (*) doesn't hold true for V}. Assume, on the contrary, that

Vo / 0 and let f3 = inf{Indy | V 6 Vo}, where for V = {Z,Zo,Z^£o,£i) € V we
set IndY = IndEo + Ind^i.

Let V = {Z,Zo,Z^£o,£i) G Vo be such that IndY < f3 + y?-2^. Let Po be the set
of projections q in P{Zo) such that Eo{E^{q)) < (1 - c2)!, where c = (IndY)-1. By
the weak continuity of Eo o E^ it follows that if {pi}i C P{Zo) is an increasing net
of projections in Po then its limit is still in Po. Thus Po is inductively ordered, with
respect to the usual order.

Let p G Po be a maximal element. Let po € P{Zo) be the support of Eo{E^{p)). Then
po belongs to Zo H i?i and Zo{l - po) = Z^l - po) == Z(l - po).

For assume on the contrary that there exists a projection q e Zo(l - Po) such that
Eo{E-t{q)) -^ q and denote qo = q - qi, where ^i is the spectral projection of Eo(E^{q))
corresponding to the set {1}. Thus qo is a non-zero projection in Zo and Eo(E^{qo)) doesn't
have 1 as an eigenvector, i.e., Eo{E^qo)) <, (1 - c2)!. But then the projection p + qo € Zo
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746 s. POPA

lies in Po, i.e., £o(Ei(p + go)) < (1 - c2)!. To see that this is indeed the case, note first
that since q^E^E^p)) = 0 we have go£'i(p) = 0 as well and thus £'i(go)£'i(p) = 0.
showing that E^{p) and E-^(qo) have mutually disjoint supports. Thus, if we assume that
p + qo is not in Po; then there would exist a non-zero projection go G Zo satisfying
Qo <: £'0(^1 (? + go)), and thus go < I?i(p + go) as well. But for any p' 6 Z we have
(1 -pQ^pQO -p') = (1 -p') - (1 -j/)^i(l -pQO -p') < (1 - c)(l -p'). By applying
this to p' == p+go it follows that if go satisfies the above inequalities then go < p+go. So by
replacing if necessary go by either q'^p or by go go we may assume that either go < p or that
Q.Q < ̂ Q^ while still having all the previous properties for go. If go < p then the inequality
Qo < ̂ ih)+^i(go) implies go = 9o(l-9o) < (l-go)^i(p)(l-^o)+(l-9o)^i(9o)(l-9o)
with (1 — go)£'i(p)(l — qo) = (1 — go)£i(p) having support orthogonal to the support of
(l-go).Bi(go)(l-go) - (l-go)^i(9o) and with (l-go)Ei(go)(l-go) < (l-c^l-go),
thus forcing go ^ ^i(^) an(l consequently ^o ^ ^o{^i{p))^ contradicting p G Po-
Similarily, if go ^ 9o then ^ = ^go < qoEo(E^(p + go))^o = qoEo{E^(qo))qo, so
that go < ^o(-Ei(9o)) < (1 - c2)!, a contradiction.

These contradictions show that p + go must in fact lie in Po- But since p + go
is strictly larger than p this contradicts the maximality of p. We conclude that
indeed the support po of the maximal element p in PQ satisfies po G Zo H Zi and
^o(l - Po) = ^i(l - Po) = ^(1 - Po).

Since (*) doesn't hold true for V = { Z ^ Z Q ^ Z \ ^ E Q ^ £ ^ ) , this shows that it doesn't hold
true for (Zpo^oPo^iPo^o^i) either, with this latter having the same index as V.
We may thus assume, without loss of generality, that in fact V is so that the maximal
projection p € Po satisfies supp£'o(£'i(p)) = 1.

Let then pi G Z^ be the spectral projection of £'i(p) corresponding to the set
{1}, p ' 6 Z\ the spectral projection of ^i(p) corresponding to the set [c, 1 — c],
p2 == p ' p . p ^ = p'(l — p) G Z and p4 G ^i the spectral projection of £a(p) corresponding
to the set {0}. Thus pi + p2 + P3 + p4 = 1.

For each 1 < j < 4 let Z3 = Zpj,Zf = Zipj,i = 0,1. Also, for each
1 ^ J < 4 for which pj ^ 0 we define the expectations E3^ : Z3 —> Z^ by
^) - ̂ (^)?(^))-l^ ^ ^P. = ^'^ = 0.1^ ^ '̂.

It is then immediate to see that Ind£^ < Ind£'^ and that for j = 1,4 we have
Ind£'o < (1 - c2)Ind£'o while for j = 2,3 we have Ind^ ^ (1 - c^Ind^i. Thus, if we
let Vj = (Z^Z^Zf,^,^) then by using that lndE{ > 1 we get

IndY, = Ind^o + Ind^ ^ Ind^o + Ind£;i - c2 = IndY - c2 < /?.

Thus (*) does hold true for each T^,l ^ j ^ 4, so there exist finite dimensional
subalgebras A3 C Z^ == ZoPj such that Z3 = A3 V Z[, 1 < j < 4. Let then AQ C Zo be
finite dimensional subalgebras such that A^pj = A3 and define Ao C ZQ to be the algebra
generated by p, 1 and the algebras AQ, 1 < j < 4. Then Ao is clearly a finite dimensional
von Neumann subalgebra of ZQ and it satisfies Ao V Z\ =• Z, thus contradicting the fact
that (*) doesn't hold true for V, i.e., V £ VQ. This final contradiction completes the
proof of the lemma.

D

1.3 Corollary. If At C M. is an inclusion of von Neumann algebras as in the statement
of the theorem then there exists a finite dimensional ^-subalgebra Ao of Z(J\r) such that
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THE RELATIVE DIXMIER PROPERTY 747

Ao V Z(A4) D Z(A/"). In particular, there exists a finite number of unitary elements
v^,...,Vrn in Z(Af) such that ^jVjXv] G ZW H M, \/x G M.

Proof. By the previous lemma, it is sufficient to show that if we denote ZQ ^ Z(Af),
Zi ^ Z(M) and Z ^ Z(J\f) V Z(M) = ZQ V Zi then there exist normal conditional
expectations Ei of finite index from Z onto Zi^i = 0,1.

Noting that Z is included in M' H .M and that £(^f/ H .M) C A/" H A/'' = Z(A/") = Z^
it follows that f(^) = ZQ. Since Ind^o < Ind<? < co, we may simply take Eo ^ £\z.

To define E^, note that, since £(x) > cx^x G .M+, it follows that if M. cA^i is
the basic construction for NCM, then £\{x) > (?x,\lx G .MI+ (see for instance 1.2.1
in [Po2]). Note also that if x € M' D Mi then £^(x) C ^i = ^(A^). By canonical
conjugation it follows that there exists a conditional expectation E^ of J\T' D A^ (=the
canonical conjugate of J\A' D M.\) onto ^i (=the canonical conjugate of itself) such that
Ei{x) > c2x,\/x € (M' D A^)+. In particular, if we still denote by £'1 the restriction of
£'1 to Z = Zo V Zi, then ^(rr) > c^^Vrc e Z+, so Ind^i < oo.

D

1.4 Notation. For x ^ M denote Cj^(x) = ̂ {uxu* | u G U(Af)}. Remark that, with
this notation, the relative Dixmier property for the inclusion Af C M. can be reformulated
as follows: "Cj^{x) DA/'' H M ̂  0,Va; G A^". If rr C M is a given element for which
C^r(x) DA/'7 H M. -^- 0, then we will say (occasionally!) that we have the relative Dixmier
property for x.

Note that if y e Cj^-(x) then Cj^{y) C Cj^-(x), so that if Cj^f(y) n Af' n M ^ 0
then C^(x) H Af' H A-l ^ 0. By taking ^/ G C7^(a;) of the form y = -^ Y^^ VjXv^
with v-L^..^Vm the unitary elements in Z(M.) given by Corollary 1.3, it thus follows
that in order to show that C^/-{x) HA/7 D M. ^L 0,Va: G A^, it is sufficient to show that
Wy) n M' n ̂  / 0,V^/ e Z^)' n A^.

But this means that we may simply replace the algebra M. by the smaller algebra
Z(J\fy n M., i.e., we only need to check the relative Dixmier property for the inclusion
Af C Z(Afy n M. Since the center of the algebra Z{M}' H M contains Z(Af), this
shows that in order to prove the relative Dixmier property for all inclusions of von
Neumann algebras with finite index Af C M. it is sufficient to prove it for those that
satisfy Z(AQ C Z(M).

Next we will show that we do have the relative Dixmier property for elements
x G A/" V J\f' D A4. This will enable us to concentrate on x ' s that are "perpendicular"
to Af V M' n M. But first note:

1.5 Lemma. If Af C M. is an inclusion of von Neumann algebras with a normal
faithful conditional expectation £ then there exists a unique normal faithful conditional
expectation of A4 onto J\f V J\f' H A4, denoted f/^vA^n.M- Moreover this expectation
satisfies £ = £ o £^Af'nM'

Proof. Let 0o be a normal semifinite faithful weight on At. Then clearly (f) = (J)Q o £
is a normal semifinite faithful weight on M. and its restriction to J\f V AT' D M.
is also semifinite. Moreover, since the modular automorphism group a^ associated
with ( / ) satisfies cr^A/") = A/', it follows that cr^A/7 D M) == A/'7 D M, so that

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPfiRIEURE



748 s. POPA

^(A/'VAy'HA^) = A/'V./V'n.M. This shows that the conditions in Tkesakfs criterion ([T])
for the existence of a (^-preserving normal conditional expectation of M. onto A/'VA/'' ft M.
are met.

Since (A^A^nA^/nA^ is included in .A/'VA/'/n.M, by a result of Connes ([Cl]), the
expectation is unique (not only among those expectations that preserve the weight ^). If we
denote it by £^\/^r'nM then (f) = (f) o £ and (f) = (/) o f/vvA^nA^ thus (f) = (f) o £ o f/vWr^M-
Thus, since both £ and £ o £^r\/j^'r\M are normal (^-preserving conditional expectations
onto A/", it follows that £ o £^^>nM = £ '

D
For the proof of the next result it is useful to note that if x is an element in M for which

there exists a sequence yo = x.y^y^... in M such that y^i € C7/v(^),Vn ^ 0 and
d(^,A/'7 H M) -^ 0 then Cj^{x) n A/"' H A/( / 0. Indeed, because if d(^,A/'' D M) < e
then d(?/,A/'' D A^() < £ for all y e C^{yn) (since all unitaries in A/" used for
averaging y^ commute with A/"' n M) so that diamC^^n) < 2e, and thus the condition
d(2/n,A/'' n M) -^ 0 implies nnC'v(^) is a single element set [ y ' } for some ^/ which
lies both in Cj^(x) and in A/7 ft A"!.

1.6 Proposition. IfJ\T,M,£ are as in the hypothesis of the Theorem then:
a). Af V A/"' n M. has a finite orthonormal basis over J\f which is contained in N ' H M..
b). C^(x) H A/'' H M ̂  0, Vrc e A/" V A/7 H A^ and ifx e A-l ^ ̂  ̂  ̂ v '̂n^ (a^) = 0

then either Cj^{x)^M^M'nM = {0} = Cf^(^)^lA/'/nA/(orC^•(r^)nA/'VA/'/nA^ = 0.

c^. C^-(^) nAy n M ̂  0,Va: G M if and only ifCj^(x) nAf nM ̂  9^x = x" e M
satisfying ^A/vA^nA^) = 0.

Proof, a). Note first that £{^ffnM) = Z(Af) and that any orthonormal basis ofA/''nA^
over Z{J\f} (with respect to £) is an orthonormal basis of J\f V A/7 H A/( over J\f (with
respect to the same £).

Thus 2'(A/") C A/"' D A^ is an inclusion of finite index with Zi = -Z(A/') abelian. It
follows that Af'nM is of type If in with the homogeneous type 1̂  von Neumann algebras
entering in its direct sum decomposition satisfying sup.n^ < oo (see 1.1.2 (iii) in [Po2]).
Thus A^' n M is a finitely generated module over Z = Z(M' D M).

Since Zi C 2 has finite index as well, if we define ZQ to be equal to Z and apply
Lemma 1.2 to ZQ,Z^,Z, it follows that Z is finitely generated over Zi. Altogether this
shows that A/^DA^ is a finitely generated module over Z^ = Z{J\T). By orthonormalizing a
given finite set of generators (see 1.1.7 in [Po2] or 1.1.3 in [Po4]), it follows that A/"' n M
has a finite orthonormal basis over Z(J\f).

b). By a) At C A/" V J\T' n M has an orthonormal basis {m,}i<^<^ c A/7 D M. Thus,
n

for any x G A^ V A/'7 D A< we have re = ^ m^, for some ^/ e Af. By applying the
j=i

classical Dixmier theorem to y [ , y ^ . . . ,y^ G A/', given any 5 > 0 we can find unitary
elements {^K^m C U(M) such that

i m

^ E ̂ ^>^ - ^~ < £/n||m^|

4e SfiRIE - TOME 32 - 1999 - N° 6



THE RELATIVE DIXMIER PROPERTY 749

1 < J < n, for some zj e 2{AT). Thus

1
m;,E ̂ ^-E

.7=1fc=l

< £.

Since ^ ^^=1 Ukxu^ is still in A/^ V A^ H .M, it follows that we may use the above
recursively for e = 1/2" to get a sequence of elements yo = x,y\, y^,... in Af V A '̂ H .M
such that ?/n+i G Cj^{yn}^n > 0 and d^y^A/"' D .M) -^ 0. Thus, by the observation
preceding the statement of the Proposition, Cj^(x) D Af' D M. / 0.

Now if in turn re G M. is so that <?A/'v.A/'/n.M(:r) = 0 ihen clearly ^A/'VA/'TI.M^) = 0 fo1'
any^/ G (7^(rc).ThusifC^Cr)nA/'VA/'/n.M / 0 and we take y G Cr^(^)nA/'VA/'/nAl
then we have both that y is in At V .V H M. and £j^\/j^' r\M(y) = 0- But this implies
z/ = 0 and so Cj^{x) H A^ V M' n A^( = {0}.

c). Assume Cj^{x) HA/'' D .M/ 0 (so = {0} by part b)) for all x = x* € M satisfying
fvvA/'/n.M(:z;) = 0- Let us first prove that this implies C\/•(;^)^A/'/^.A/( / 0 for all arbitrary
selfadjoint elements x in M.. To this end fix x = rr* e .M and denote a;o = ^vA/'/nA/t(a;)^
:KI = a: — a;o. By assumption it follows that \/e > 0, 3^i, ?;2? • • • ? ^n ^ U(Af) such that

1 n

- ̂  Vfe^i^ < ̂ /2.
^^=1

But then y = ̂  ^Z=i ^k^ov^ still belongs to A/" V A^' Ft A^ and so by part b) there exist
unitary elements uj G U(J\r\ 1 < j < m and some y[ G Af' H ^V( such that

—^ ^-^ -^i <^/2.
m 3=1 I 1

Altogether this shows that we have

nm ^ ujVkxv^j - y'l
J.k

< ——_ ̂  U,VkXlV^u]
nm

3,k

+ — ̂  ^^^o^^* - y[
nm

j,fc

<
1 -j Trl

- ̂  ^fc^i^ + — ̂  ^^* - y[ < e / 2 + £/2 = e.
n k m j=l

Thus, if we let yi = -^ Ej,fe UjVkXv^ then ?/i belongs to Cj^{x) and ||^/i - y[\\ < e.
Thus, by applying all this for e = l^^n ^ 1, we recursively obtain a sequence

of elements yo = x.y^y^... in M with ^+1 G Cj^{yn),n > 0, d(^,Ay' n A^l) <
1/2", n >_ 1. But by the observation preceding the statement of the Proposition this implies
that Cj^{x) n M' n M / 0.

Take now an arbitrary element rr in M.. By writing re = Re(rc) + %Im(rc) and using
the same argument as in the proof of the classical single algebra case (see [Dl]) together

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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with the above relative Dixmier property for selfadjoint elements, it readily follows that
in fact Cj^(x) D M' H M ̂  0 as well.

D
At this point let us recall (see e.g., 1.1.2 (iii) in [Po2]) that Ind(A^ C M) < oo implies

there exists a projection p in 2 (AQ D Z(M) such that pAf C pM is an inclusion of finite
von Neumann algebras and (1 - p^Af C (1 - p)M is an inclusion of properly infinite von
Neumann algebras. Thus, since obviously A/i C A^i,A/2 C M^ have the relative Dixmier
property if and only if A/i C A/2 C A^i C A^ has the relative Dixmier property, we may
deal separately with the case Af C M is an inclusion of finite von Neumann algebras and
respectively the case J\f C M. is an inclusion of properly infinite von Neumann algebras.

Altogether we have shown in this Section that in order to prove the Theorem it is
sufficient to prove the following statement:

1.7. Let At C M. be an inclusion of von Neumann algebras with a conditional expectation
£ : M —> Af of finite index and satisfying Z{J\f) C Z{M). Assume that either J\f, M are
both finite or both properly infinite. Then given any x == x* G M with <?A/vA^n.M(^) = 0,
we have Cj^-(x) H M' H M ̂  0.

Thus, we will assume throughout Sections 2 and 3 below, which contain the proofs of
the finite and respectively properly infinite cases of 1.7, that AT, M and x are as in 1.7.

2. Proof of the Finite Case

Consider first the case when A/", M are finite von Neumann algebras. We will proceed
by contradiction, using the Hahn-Banach theorem to separate Cj^(x) from Af V A/"' D M
with a functional equal to some linear combination of states that can be taken tracial on
J\f. The key observation which will then lead this to a contradiction is that the hypothesis
"£{x) > cx,\/x e M^' implies i'^ < c~1^ o <?,V<^ e M^\ so that, if a state (p on
M, is normal on A/", it is automatically normal on all M.. The argument is carried to an
end by using the "weak" version of the realtive Dixmier property in [Pol], showing that
C^x)" n A/"' n M / 9^x e M.

With this plan in mind, assume, on the contrary, that there exists an element x = x*
in M, with ^A/WnA^) = 0, such that C^r(x) H A/"' n M == 0. By 1.6 this implies
C^f(x) n A / ' V A / ' / n A / ( = 0 . Moreover, it implies that inf{||^|| | y G Cj^-(x)} > 0 and, in
fact, inf{||2/ - b\\ \ y G C^{x\ b C AfvAf^M} > 0 as well. Indeed, the first inequality is
clear (or else 0 e C^(x) so C^-(x) HjV HM ̂  0) and for the second one we use the fact
that if y G C^r{x) and b G B = AT V A/'' n M then S^^nM^y - b) = -b, \/y G C^{x)
so that |H| = \\£a{y -b)\\< \\y - 6||, thus \\y\\ < \\y - b\\ + ||6|| < 2\\y - &||, implying that

inf{|b - b\\ | y G C^), b G B} > 2-1 mf{||^|| | y G C^(rr)} > 0.

This shows that in the Banach quotient space M.JB (which has an isometric "adjoint"
operation * inherited from M) the set C^(x)/B is away from 0. By using the Hahn-Banach
theorem in the quotient space M/B it follows that there exists a selfadjoint functional $'
on M/B which separates the self-adjoint set Cj^r(x)/B from 0. By composing ^ with
the quotient map from M onto M/B, it follows that there exists a functional $ = $* on
M and CQ > 0 such that <I> vanishes on B = At V A/'' n M and ^>(y) > eo, 1y G Cj^-(x).
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From these properties of ^ and from the definition of Cj^(x), it follows that
^(x) > EQ, V^ G co{$(n . ^*) | u G ^(AO} so that ^(rr) ^ CQ, V^ G
(^W^co^*^)^ . „*) | n e ^(AO} and in fact ^Q/) > e^ \/y e C^(rr)
as well. Also, each ^ G CA/'(^) vanishes on A/'VA/'' D A^. In order to get a contradiction
we will first show that there exists a ^ in C^v($) with the property that it can be
written as <& = ^i - ^2 , with ^2 e S(M) commuting with J\f and being factorial
traces when restricted to A/". By using Sakafs Radon-Nykodim type theorem for ^2
and ^ = ^1^2 o <?, we will then obtain positive elements 0^2 € A/"' D A/l+ such that
^ o f(a/ • Oi7 ) — ^ o £ { a ' • a^2) is close to ^, and thus, still separates a; from 0. But
this will easily be seen to lead to a contradiction by using [Pol].

To prove the existence of ^ = ^i - ̂ 2 ^ CA^(^) with ^i^ states commuting with AT
and being factorial on A/\ we need the following:

2.1. Lemma. Let ^ = (-^i, - ^ 2 , . . . , ̂ n) ^ ^.M)", ^nJ 5^

C )̂ = co^^^^u . ̂ *))i<,<, | ̂  G ̂ (A^)} C (^(A^))71.

77?^ there exists (ai , . . . ,o:n) G Cj^{^) such that a^^^) = ^|Z(AO an^ ̂  ^ m ^le

centralizer of a^ 1 < i < n.

Proof. We first show that Cj^W H S^^(M) / 0, where Sj^^(M) ̂ {(ai , . . . , a,) in
^(A^)71 | ai^ is the unique trace on AT such that a^^^ = ^i\z(j^y 1 < % < n}.

Note that (^n)* = (A^*)", with the duality being given by

((^i,. . . ,^), ((^i, . . . ,^)) = ^^i^z(^),

then remark that, in the ^((A^*)71, ^n) topology on S{M)71, both C^-(^) and
Sj^^{M) are convex and compact. Assume first that Af = A4, in which case
SAf^(Af) = { ( a ^ , . . . ,a^)}, where a° G 5'(A/') is the unique trace state with
^(AO = ^IZ(A^). ^ < i < n. Assume (a;, . . . ,a^) ^ C^(^). By the Hahn-

n
Banach theorem there exist {x-^,...Xn} G A/^ and CQ > 0 such that ^ ^(^) ^

i=l

Sa°(^)+£o, V(^,...,^) G C^W.
1=1

By the classical Dixmier theorem there exist unitary elements u^,..., Um C U{J\r} such
m

^^ 11^ S UjXiU^ - ctr^ a;i|| < eo/2n, 1 < i < n, where dry denotes the central trace
j=i

, r m
on At. Then (^,..., ̂ ) = (^ ̂  ^(^- • ^))i<,<^ belongs to CA/-(^) and we have

.9=1

\^(xi)-a^Xi)\<eo/2n, 1 ̂  i < n.

Thus we get

E^°(^)<E ^°(^)+W2/ ^ ̂  v^i
1=1 1=1
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n n
which together with ^ o^(xi) + CQ < ̂  ^°(^) (that we have because (^°)^ e C^v'(^)

1=1 i=i
and because all elements in C/v(^) satisfy this inequality) gives a contradiction.

Now for the general case consider the linear application E : (fi^.M*))71 —> (^(A/'*))72

defined by £((<^)i<z<n) = (^ o <?)i<^.

Clearly £(5^v,(.M)) = {(Q-°)i<z<n} and E{C^)) = C7v(^ o £). Note also that
^({(^i^n}) = 5v^(.M). By the first part we have E{Cj^W) 3 (a,0),. But then
any ^ = (<^... ̂ n) € CTv(^) with E{(f>) = (a°), will belong to C^) H ^^(A^).
ending the proof of the fact that C^('0) n Sj^^{M) / 0.

Fix now a (0,), in ^(-^rifi'.v^.M). Let AT = ̂ {{^{u'u^^Kn \ u G ^(A/*)}, the
closure being taken in the usual uniform norm on (.A/I*)"' = (A^71)*. We want to prove that
K is compact in the ^((A^71)*,^72}) topology. By Akemann's compactness criteria [A],
in order to show this, we need to prove that if {en}n is a sequence of mutually orthogonal
projections in M, then <^(e^) —> 0 uniformly in <^' e U^ where ̂  = ^{(^(IA • IA*) |
H G U{J\r}}. It is clearly sufficient to check this uniform convergence for (f)' of the
form (f)i(u' IA*), u e U{J\f\ But ^{uenU*) < c~^(j)i{u£{en}u^ = c'1^^^)) and the
sequence {<^(f(en))}n tends to zero (because Sy^(<?(e^)) < 1 ) independently on u.

Altogether these show that K, with the affine action (<^)i ~^ (^^(^ • n*))^ °f Ae group
M(A/') on it, satisfies the hypothesis of the Ryll-Nardjewski fixed point theorem (see e.g.
[SZ2]). Thus there exists (ai,..., On) C K with a^ = Oi(u' u*)^u G U{Af). Since by its
definition -fC is included in (Tv(^), we are done.

D

For the separating functional <!>(= <!>*) considered before the lemma, let now
<E> =<!>+- <!>_ be its decomposition into positive and negative parts. Since $ vanishes
on J\f V A/7 D .M, it follows that $+ and ^-coincide when restricted to this algebra, in
particular $+(1) = ^-(l). By replacing $ with ^^(l)"1^, we may assume that <1>± are
states. Apply the previous Lemma for n = 2, '^i = ^+, ^2 = ^- ^ S{A4). It follows
that there exists ^ G C^($) such that ^ = ^i - ̂ 2 for some ^1,2 € S'(A^) which
both have J\f in their centralizers. Also ^(x) > eo > 0 and ^ vanishes on A/' V J\T' D A4,
meaning that ^1^2 coincide on this algebra.

Let us prove that in addition to these properties ^i^ can be taken to be factorial traces
when restricted to J\f. To this end, let C = {(^1^2) e {S(M))2 \ ('01 - ^2)(^) >
^o^i^^Ar'nM = ^AT^Af'nM and '0i^ commute with A/'}. Thus ( 7 / 0 and clearly (7
is compact in the ^((A^*)2,^2) topology. Since the function ('0i,'02) —)> {^i — ^2){x)
is continuous in this a*-topology, it follows that there exist (V^,^) e ^ suc^ ^at
(^i - ̂ 2)^) = sup{(^i - ̂ 2)(^) | (^1,^2) € 07} ̂ £1.

Let Co = {(^, ̂ 2) e ̂  I (^Ai -'^2)(a;) =: ^i}' Thus Co is convex, cr*-compact and non-
empty. Let ('0i, '02) ^ <7o be an extremal point in Co. We claim that '0i^ are (equal) factor
states when restricted to M. To see this, let p € P{Z(Af)) be such that p, 1 -p are non-zero
and note that both (r^i(-p), t-^'p}^ ((1 - ̂ -'^('(l - ?)), (1 - ̂ -^('(l - p)\
where ^ = ^i^{p), belong to Go. (Recall all the way that Z(J\f} C Z{M) !) By extremality,
it follows that either if^i^p) = 0 or '0i,2(l -p) = 0. This shows that '0i,2|z(AO are (equal)
characters on Z{Af) and so, since ^i^\Af = '01,2 °ctr^v, '0i,2|.v follow (equal) factor states
on Af (as in the proof of 2.1, ctr^y denotes the central trace on AT).
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Denote by LJ = '0i,2|^(AO the corresponding element in the spectrum of 2 (AT), f^. Also,
set '0 == o;octrvo<f and remark that -0 = '0iof = '02°<?. Since X ^ c~l£{X)^X G .M+,
we have ^i(X) < c-^i^Z)) = c-^X), so that ^i < c-1^. Similarly, ^2 ^ c-1-^.
We next want to prove the following:

2.2. Lemma. V<?i > 0,3ai,2 G A1+, ^c/z rtor a, < c-1!, ||'0, - ̂ {a1/2 • a,172)!! < ^i
and \\uaiU* - a^ < 6^,\/u 6 Z^(A/"),% = 1,2.

Proof. Let (71-^^,7^,) be the GNS representation for (A<_0)_Let ^ € Tr^(A^) be the
support projection of the state implemented by (^y,,^) on TT^(M). Since Af is in the
centralizer of ^ we have p G 7r^(A/'y D 7r^(.A/().

Denote A^ = ^^(A^)^, A/^ = 7r^(A/')p and still denote by '0 the state (-^,^) on
A^. Note that ^ is cyclic and separating for A^, so that the norm \\X\\^ = \\X^\\
implements the so-topology on the unit ball of A^^.

Since A/^ is in the centralizer of ^, there is a unique ^-preserving conditional expectation
£^ of M^ onto N^, which is implemented by the orthogonal projection of pT-C^ onto
^(AO^/, = A/^.

Moreover, if X e A-l is such that £{X) = 0, then we have <?(V*X) = 0,W e A^, so
that (^(JOP^^(^) = <7r^(X)^,7r^(y)^) = ^(Y*X) = 0,VY € A^, implying
that f(j97r^(X)j?) = 0. Thus ^(^(X')?) = ^(^(XQ^.VX' G A^. In particular,
since £{X'} ̂  c X ' ^ X ' G M+, we get ^{pTr^X^p) > cp-K^X')p^X1 G M+. By
density, ^^(rr') > cx^W € A^i^.

Note that since ^ is a normal faithful trace on A/^, we have that Af^ and M^ are finite
von Neumann algebras (cf. 1.1.3 in [Po2]). In fact, note that J\f^ is isomorphic to the type
Hi factor A/7M, where M denotes the (maximal) ideal in At generated by uj (cf. [Sa]).

Moreover, note that the inequality ̂  < c"1'̂  on M. implies that ̂  implements a state
on M^, still denoted by ^,, satisfying ^i{p7r^{X)p) = ̂ {X)^X e M, and '0, < c"^,
% = 1,2 on A4^\ Also, as states on M^\ ̂  have A/^ in their centralizers.

By the Radon-Nykodim theorem, it follows that there exist A, e M^' C\ M^,
0 < A, ̂  c-1!, such that ̂  = ^(A^2 • A,172) on A^, z = 1,2.

By the density of TT^(M) in ^(A^f) and Kaplansky's theorem, it follows that V^ > 0
there exists a, e M such that 0 ^ a,'< c-1! and llTr^a,172)^ - A^2^!! < 6. Since
[^A^2] = 0, [u,^} = O^u € ^(AO, this implies that [[^(^a,172^* - A^2)^ < ^, so
that \\ua1/2^ - a1/2^ < 26 on M.

Moreover, we have the estimate ̂ {a^2^2)-^ = ||^(av2•av2)-V;(AV2.AV2)|| <
2c~18. By taking, from the beginning, 8 to be less than c^i/4, this completes the proof.

D
We next want to prove that the positive elements a^ G M in the previous lemma are

small perturbations of elements in J\f' H M..

2.3. Lemma. Ifb G M is such that \\ubu^ - b\\^ < 6,\/u G U{M'), then there exists
b' € M' H M such that \\b - b'\\^ < 8.

Proof. Let Ej^'nM be the unique normal conditional expectation onto .V D M that
preserves ctr^y o <f, i.e., such that ctr^y 0^*0 EJ^'DM = ctr^- o £. By replacing if necessary
b by 6 - £j^'r\M{b} (which clearly still satisfies the inequality in the hypothesis) we may
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assume £j^'r\M{V} = 0. We will prove that this and the commutation relations in the
hypothesis of the lemma imply ||6|[^ < 8.

To this end, let us show that 3n e U(J\T) such that Re (ctr^(f(6*n^*))) < f^2^)!
as operators in Z(J\f). Indeed, let {(^,'^)}ie-r be a maximal family of pairs of
elements with qi mutually orthogonal projections in P(Z(A/')) and ui G U{Mqi)
such that Re (ctr^(f(6*^6<))) < (^/2)g,,V% e I . If ^ = 1 - ̂ ieiQi + 0 then
apply (2.3 in [Pol]) to the element bq G A^^, with £^qynMq{bq) -=- 0, to obtain
a projection ^o € Z(Af)^0 ^ Qo < q, and a unitary element UQ e A/^o such that
Re (ctr^/'(f(&*Ho&^))) < (82/2)qQ, contradicting the maximality of {(^,^)}^j. Thus
E^ = 1 and so u = E^ is a unitary element in A/'. We then have:

62 > \\ubu^ - b\\^ = 2|H|2, - 2Re ̂ ubu^

= 2|H|2, - 2Re o;(ctr^(6*^*))) > 2\\b\\^ - 2^/2.

This shows that \\b\\^ < S.
D

With these technical results in hand, let us now proceed to end the proof of the finite
case of the theorem.

Thus, let x = a;* G M satisfy f^v./V'n.M^O = 0?^i = (^i - ̂ {x} > 0. ^th ^2
states on M. that have Af in their centralizers and are factor states on At, as before.

By applying Lemmas 2.2, 2.3 above to '01, ̂ 2 and '0(= ^i o £ = ̂  o <?), it follows that
V<5 > 0,5 < £i/4,3ai,a2 G AV' n A^(,0 < a, < c-1! such that ||̂  - ̂ (a^2 •a^2)!! < 5.
Then we get:

/ / 1/2 l/2x / / 1/2 1/2\ ^
'tp[a^ xa-^ ) — V^^ xa2 ) >

^i(x) - ̂ (x) - 11̂  - ̂ /2 . a^2)!] - ||^2 - ̂ (a^2 • a^2)!] > e, - 2S.

But £ = £ o <?.^/vA/'/n.M. so that ^ = ̂  o E^j^i^M. and since ^A/vA^nA^^172^172) =
1/2c ( \ 1/2 n^ ^v^nA^(^)^ = 0, we get

0 > £i - 2S > £1 - £i/2 = ei/2 > 0

a contradiction which completes the proof of the finite case.
2.4. Remarks. 1°. The proof of the finite factorial case of the Theorem can be made

considerably shorter. Thus, 1.1-1.7, 2.2 and 2.3 are not needed and the Radon-Nykodim
argument at the end of the proof can be applied immediately after lemma 2.1, by using
that "£{x) > cx^x G .A/1+" implies "y? < c"1^ o <f,V(^ G M.^' (see A.I in [Po5] for an
elementary and short proof of this factorial type Hi case). The more general case when
£ preserves a normal faithful trace on M. can also be given a shorter proof. Most of the
difficulties encountered for the general case stem from the case when there exist no trace
preserving conditional expectations of finite index, yet there do exist expectations of finite
index. For an example of such an inclusion consider the locally trivial Jones subfactors
Nk C Mk of index (1/fc)-1 + (1 - 1/fc)-1 = k 2 / ( k - 1) and Ej, : Mj, -^ Nj, be the
expectation of minimal index, IndEk = 4. Then At = (BkNj, C OfcA^fc = A< and the
expectation £ == (BkEk has finite index but the unique trace preserving expectation E of
A4 onto At has infinite index.
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2°. Note that once we have the Dixmier property for all inclusions of finite von
Neumann algebras with conditional expectations having index majorized by a fixed
constant c~1, it follows that for any e > 0, there exists n = n(c,e) > 1, such
that given any inclusion J\f C M. of finite von Neumann algebras, with a normal
faithful conditional expectation £ : M. —^ At satisfying Ind<? < c~1, we have that
^x e A4,||a;|| < 1,3^1,^...^ G^(AO such that d(^]^L^ UkXu^N'nM) < e. For
assume this is not the case. Then ^CQ > 0, 3co < oo such that Vn > 1, 3A/n C A^n, with
£n : Mn -^ A/n satisfying £n{X) > coX^X E A^+, and ^Xn C Mn, \\Xn\\ < 1, such
that d(^^^ UkXr,u^M^ ̂ Mn) > £o ,VHi ,zA2, . . . , ^n G ^(A/n). But then applying the
relative Dixmier property for AT = (BnA/n C (DnAIn = Ad, £ = (Bn£n and X = (Dn^n
we get some Vi = 9n^i,n? • • • 5 Vfc = On^,n ^ ^(AQ such that

/ k \ / k \
£0/2 > d i E V3XV^^' n A-f = sup.d , ̂  ̂ ^^,A^ n Mn

\ j=i / \ j=i /

This gives a contradiction if n > fc.

3. Proof of the Properly Infinite Case

Unlike the finite case, where we used a contradiction argument and the Hahn-Banach
theorem, the proof of the properly infinite case will be direct and more or less constructive.

Thus, in this section we will assume that M C M. is an inclusion of properly infinite
von Neumann algebras, with Z(Af) C Z(A4) as always.

We first prove the theorem under the additional assumption that At (and thus A4) is
countably decomposable, or equivalently cr-finite, i.e., Af has normal faithful states. This
assumption will be needed for the reduction theory considerations below.

For X G M. and u = {u^^u^^ ...,i^) C U{J\r\ it will be convenient to denote
Tu(X) = ^ Y^^UjXu^. Note that M 3 x ^ T^{x) G M is completely positive and
unital, thus'r^X)*^^) < T^(X*X), by Kadison's inequality.

Let further J C A4 denote the norm closed ideal generated by the finite projections of
M. Note that £{J) = J H M is the ideal generated by finite projections in A/" and that £
implements a conditional expectation, still denoted by £, of M.I J onto A/"/ J . Note also
that if AV, M. are purely infinite then J = 0.

Then for K e J , K >, 0 we have £(K) > cK and by ([H] or [SZ1]) it follows that
for any e > 0 there exists u = (i^i, ...,14,) C U{M) such that ||r^(<?(^))|| < e, thus
\\T^K\\ < ec-1. Thus 0 G CA/-GPO.

If X G A4 then we denote by ||X||e the norm of X in the "Calkin" algebra
M / J . Thus ||X||e = ||X|| if M is purely infinite. Note that if X G M then
IIWnA^I = \\x/j\\(= ||xy.

For t G ^A/" denote by If the maximal ideal in J\f generated by t. Similarly, if s G ^IM
then denote by 1'^ the maximal ideal in M generated by s. Recall ([SZ1]) that if y G A/"
(resp. x G M.) then the function t —^ \\y/It\\ (resp. s —^ \\x/I^\\) is continuous on 0^/'
(resp. on f2^). Also, with the above notations, we have sup{|[^/7t|| | t € U/v} = |H|e.
sup{||;r/J^|| | s € ^M} = IM|e (cf. [SZ1], since Af^M. are countably decomposable).
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3.1. Lemma. For to G Ojv let Jto = {x € M. \ £{x*x) G Jio}. ^^n Jto ls a closed
bilateral ideal in M and J"to+ = {x C .M+ | £{x) G Jto}- Moreover, if{sk}i<k<n C O.M
^ r/z^ preimage of to under the surjection f : 0^ —> O^/-, implemented by the inclusion
G(^v) = -Z(AO C 2:(.M) = C(n^), r/i^n Jfo = ^V^• Als0' ifx ^ -^then the function
t —> \\X/Jf\\ is continuous on f^/v and its supremum equals ||X||e.

Proof. By the way it is defined, Jio is clearly a closed left ideal in A4. To prove that
it is a right ideal as well, note that if x e J^ then the function t —^ [|f(a;*^)/Jt|| has
a zero at to. Thus Vs > 0 there exists an open-closed neighborhood Vo of to in ST^
such that ||<f(rr*rc)/Jt|| < £,Vt G Vo- Equivalently, ifpyo denotes the projection in Z{J\f)
corresponding to the set Vo, we have ||<f(.r*a;)pyj|e < e. Thus, if y G M., then, by using
that Z(J\T) C Z{J\A) (so in particular pvo € >Z(.M)) we get:

\\£{y'txl'xy)pv,\\e < \\y'"x'xypv,\\e < W^xpy^e

<c-l|b||2||£(^)^||e<ec-l|b||2.

It thus follows that | \£{y* x* xy) /Ito\\ < ec~l\\y\\2. Since e was arbitrary, this shows that
\\£{y*x"xy)II^\\ = 0, thus £^x*xy) G ^o. proving that xy G J^.

If we now take x € Jto+? Aen £(rc2) € ^0 and since £{x2) >_ £{x)2 it follows that
£{x)2 G Jfo so ^̂  ^(a;) G ^to as we^' Conversely, if a: > 0 and £{x) G J^o then
re1/2 € Jfo (^y ̂  definition of Jio) so that x G Jio.

To prove the last part of the statement, let x G Jio. Since the continuous function
t i—> ||<?(a;*rc)|| has a zero at to, for each e > 0, there exists p E P{Z{Ar)) such that
p(^o) = 1 and ||<f(rr*a;)p[|e < £. By regarding p as an element in (7(0^) = Z(A^) D
^:(A/") = C(nv), we have p(5fe) = 1,VA;. But £(x*x)p >_ cx*xp, so that |[rr*a;p||e < c~l£,
implying that |[rc*a;/J^J| < c^e. Since e was arbitrary, this implies ||^/J^|| = 0 so
that x 6 rifcJ^.

Conversely, if x G HfcJ^» then, there exists pk G ^(^(A^)) such that pk{sk) = 1 and
||^jPfc||e < £,Vfc. If we denote p = \/kpk, it follows that p(sfc) = l,Vfc, and \\xp\\e < e.
But by the proof of Lemma 1.2 there exists q E P{Z{Af)) such that g < p and 9(^0) = 1-
Thus \\xq\\e < e, so that ||£(a;*;r)g||e < e2. Thus ||£(a;*;r)/Jto|| < e and since e > 0 was
arbitrary, this implies £{x*x) e Jfo, i.e., x G Jio.

The very last assertion in the statement of the lemma follows now by first noting that
for X G M. and t G O^y we have

||X/Jt|| = \\X/ H J^||=|| e X/I^\\= max ||X/J;||.
se^-K*) se^-K*) se/-1^)

And since by lemma 1.2 there exist continous functions ^i,^—^ '- .̂/v ^^ ^A-I ^^
that f o gk = id^^k (i.e., p^ are right inverses for /) and such that

f~\t) C {gi{t\g^{t},.^g^(f)}^t G ̂ ,

it follows that the function 0/v 3 t ^ \\X/Jt\\ is the maximum of the continuous
functions Q^y 31—^ ||X/J^^J|,z = l,...,n and thus it is itself continuous. Also, since
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U /-1^) = O.M, we have:
^/-K*)

snp{\\X/Jt\\ \teW

==sup{| |X/^| | |5e/- l(t)^e^}
=sup{||X/J;[||^enM}=IW.

D
The next technical lemma, based on a convexity argument, can be regarded as the crucial

point in proving the properly infinite case of the theorem.

3.2. Lemma. Letx = x* C M andt € Ov- Denote a = mf^sp^^2)/^) | y C Cv(^)}.
Then we have:
a) There exists y € C^/-{x) such that [[f^2)/^ - al|| < e; moreover, given any element
y E Cj^(x) satisfying ^{y^/If - al|[ < e, we have

\\£{{T^/It - al\\ < e^v = {v^ .., Vm} C U{M)

b) Ify G Cj^(x) satisfies [[f^2)/^ - al|| < E then

\\{y - Wo*)MII < {8ec-1)1/2^ e ̂ (AO.
c) I f y C C^(x) satisfies \W)IIt - al|| < e and y ' G C^{y} then \\(y - ̂ )/J,|| <
(8ec-1)1/2

Proofs) Let y e Cj^(x) be such that ini^sp^^2)/^) < a + e}. By [SZ1] there exists
u = (iAi,...,i4i) C U{Af) such that

||(r,(£(^))-al)/Jt||<^

Since Tu(£{y2)) == £(Ty,{y2)) we get, by Kadison's inequality applied as above,

W^)2) < f(T.(2/2)) = W{y2)) < a + e, modulo J,.

Since T^^/ G C^/(^)» by the definition of a we also get £((T^)2) ^ al modulo Jf (i.e.,
in the quotient C*-algebra M/It\ Thus ||(^((T^^)2) - al)/Jt[| < e. Since T^?/ e Cj^{x),
taking T^?/ for ?/ we get the first part of a). Next, if y satisfies \\{£(y2} - al)/It\\ <: e and
v = (z?i, ...,'^m) C U{.N") then again modulo If we have

a < <?((T^)2) < T,(f(?/2)) < T,((a + e)l) = a + 6.

b) Since by a) we have ||(<?((T^)2) - al)/It\\ < e for any v = (^i, ...,-ym) C U(M\
it follows that modulo It we have

o < eW) - (r^)2) = r,(^(^2)) - £{{ny)2) < e
Since £ has finite index we get:

||(r^2) - (T^)2)/^)! < c^lK^o/2)) - ̂ ((r^)2))/^!! < 2^c-1

Take then VQ e U(M) and note that {y - voyv^)2 = 4(T^(?/2) - (T^?/)2), where v = (1, z;o).
From the above we then get \\{y - voyv^)/Jt\\2 < 8ec~1.
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c) is now trivial from b).
D

Let us now show that from the estimates in lemma 3.2 at a point t we can get similar
estimates in a neighborhood of t:

3.3. Lemma. Let to G ̂  be fixed and assume y € M satisfies \\(uyu* - y ) / J t o || < ^o.
\/u G U{Af). Then there exists an open-closed neighborhood V of to such that
\\{uyu" - y)pv\\e < 2£o, V^ G U{M\

Proof. Assume, on the contrary, that for all neighborhood V of to, ~=^u e U(J\T}
satisfying \\{uyu" - y)pv\\e > 2£o.

Let {{pi, Ui)}i^i be a maximal family of pairs of elements with pi mutually orthogonal
projections in Z(Af) and ui G U{J\fpi) satisfying ||(^< - y)pi/Jt\\ > 3£o/2,Vt G Vp^
where Vp^ is the open closed set in ̂  corresponding to pi G Z(W). Let p = S^ and
Vp C ̂  its associated open-closed set.

There are two possibilities: either to G Vp or to € ^A/" \ Vp.
If to € Vp and we put u = S^ + (1 - p) then zi is a unitary element in Af and thus

||(z^/H* - y)/Jto\\ < ̂  by hypothesis. Thus, there exists an open-closed subset U C Vp
such that to e U and \\(uyu" - y)pu\\e < SQ- Since pu / 0 and pu < P = S,p,, it follows
that there exists i such that pupi / 0. But then we get

eo > \\{uyu^ - y)puPi\\e = sup{||(^^* - y)/Jt\\ \ t G ̂  H U} > 3eo/2,

a contradiction.
If to ^ ^A^ \ Vp, then by the initial contradiction assumption applied to V = ̂  \ Vp it

follows that there exists u e ^(AQ satisfying \\(uyu* - y)pv\\e > 2£o.
It then follows that there exists a non-empty open-closed set Vo C V such that if

Po = Pvo then

||(^* - y)po/Jt\\ > 3eo/2,Vt e Vo.

But then {(pz,^)}zeJ u {(Po,^o)} contradicts the maximality of {{pi,Ui)}^i. This final
contradiction completes the proof of the lemma.

D
We will now use 3.2, 3.3 and a compactness argument to obtain an element in Cj^{x)

that globally satisfies the commutation estimates with unitaries in A/":

3.4. Lemma. Let x = x* G M. Given any e > 0 there exists y G C^{x) such that
\\uyu* - y\\e < e^u G Z^(A/'). Moreover, if y ' is an arbitrary element in C^(y) then
\\V - V^e < e.

Proof. By 3.2, \/t G ̂ , 3^ e C^{x} such that ||(^^* - Vt)/Jt\\ < £/2,\/u G ^(A/").
By 3.3 it follows that there exists an open-closed neighborhood Vf of t in f2^ such that
\\(uytU" - yt)pVt\\e < e^u ^ U{Af).

Since ̂  is compact, there exists ti, ...,tn ^ ̂  such that U^iVt, = ̂ «
Take pi = pv^ and p^ = py^ - py^^Ri) if fc > 2, which will thus be mutually

orthogonal projections in Z(J\T}, with sum equal to 1. Let also y = ̂ ^VtkPk and note
that y G Cj^{x). Indeed, this is because if ^/i,...,^ G C^{x) and pi,...,pm is a finite
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partition of the identity with projections in Z(J\T} (which is included in Z(M)) then
^jVjPj e C^-(x), a fact that can be easily seen by the same argument as in the single
algebra case (see e.g. [H] or [SZ1]). Since

\\uy^ - y\\e = m^k\\upkyul'pk - ypk\\e = ma,Xk\\upkyt^pk - ytkPk\\e < £

it follows that y , defined this way, satisfies all the required conditions.
The last part is trivial, since any y ' e C^(y) is a norm limit of elements of the form

T^y, and for all such elements we have \\y — TuV\\e < £-
D

Let us now proceed with the proof of the properly infinite case (.V, M. are still assumed
countably decomposable for the moment). As in the finite case we take x = x* G M.
such that <?A/'vA/'/n.M(^) = 0. By Lemma 3.4, there exists y\ G Cj^(x) such that
\\Vi - vyi^\\e < 1/2, W € U(Af) and \\y^ - y'\\e < 1/2, V^ G C^/i). More generally,
by applying recursively Lemma 3.4 we can construct recursively a sequence of elements
{Vn}n C Cj^(x) such that:(i)^ G C^f{yn-i}\ (ii) the diameter of C^(yn) in the "Calkin"
algebra M/J is < 1/271; (iii) \\vy^ - ynV\\e < l/2n,V^ e ^(AQ. But then y^ is Cauchy
in M/J so there exists y = y * e M such that \\y - yn\\e tends to 0. By (iii) we also
have that y commutes with M modulo J .

Now in the purely infinite case J = 0,|| ||e = || || so we get y G Cj^(x) D ^ ' D M
and we are done.

When A/',.M are properly infinite but semifinite, by (I.I in [PoR]) it follows that
y = y ' + K for some y ' E A/"' H M and K C J . Thus Vn > l,3Kn C ^
such that \\y' - {y^ + Kn)\\ < l/2n. By the remark before Lemma 3.1, there exists
u = {u^..^Um} C U(Af) such that ||T,(^)|| < 1/271. Since T,(^) e C^(x) and
^^(2//) = ?/' it follows that y ' is at distance < l^-1 from Cj^(x)^n > 1. Thus
^// G C^-(x). But then, as we've noticed in 1.6 b), y ' = 0.

This completes the proof of the relative Dixmier property for inclusions of properly
infinite, countably decomposable von Neumann algebras with finite index.

To settle the case when Af,M are properly infinite but not necessarily countably
decomposable, let us first prove the following:

3.5. Lemma. Given any normal element u G A4 there exists a family of countably
decomposable projections {pi}i^i C M (i.e., each pi is the support of a normal state on
M.) such that E^ = 1 and {pi}iei C {u}' H At.

Proof. Since any normal element in M. is contained in a von Neumann algebra generated
by a unitary element, it is sufficient to prove the statement for u G M unitary.

Begin by noting that if q G M is a projection of countable type then Tq d£f ̂ nei^qu^
and Sq ^ s{£(q)) are also projections of countable type. Indeed, because if q is the support
of a normal state ^ on M then Tq is the support projection of E^^"!^^^ • u^)
and Sq is the support projection of '0 o £. Also, note that if {qn}n are of countable type
then \/nQn is of countable type.

Let then {pi}i^i be a maximal family of mutually orthogonal, countably decomposable
projections in {u}' n Af and assume p = 1 - E,p, / 0. Let 0 / qo < p be the
support projection of a normal state on pMp. From the above remark it follows that
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po^^n^ST^^qo) is of countable type as well. Note that qo < Tqo < STqo <
TSTqo < ... / po. Also, since (ST^^o) ^ A/',Vn, we have po <E A/". Moreover, for each

- fixed k G Z we have uk((ST)nqo)u~k < T^ST^qo < po so that ukpou~k < po. Taking
—fc for fc we get u~kpouk < po as well, so that ukpou~k = po^k G Z. Thus j?o belongs to
{nynA/'. But then {j^e^te)} contradicts the maximality of {pi}iei- Thus, ̂ i^ipi = 1.

D
By the preceding lemma and by using the fact that if x == x* G M. is such that

^A/'vA/'/nA^(^) = 0 then £^f\/^f'^M{p^xP^) = O^V^ where pi are as in 3.5, it follows
that in order to have the relative Dixmier property for inclusions of arbitrary properly
infinite von Neumann algebras with finite index, it is sufficient to have it in the countable
decomposable case, provided we can prove that the (minimal) number of averaging unitaries
needed depends only on ||a;|| and e. Thus, all we need in order to conclude the proof of
the properly infinite case of the Theorem is the following lemma, whose proof is identical
to the proof of Remark 2.4.2°, but which we include here in details, for convenience:

3.6. Lemma. For any e > 0, there exists n = n(c, e) > 1, such that given any inclusion
M C M. of countably decomposable properly infinite von Neumann algebras, with a
normal faithful conditional expectation £ '. M. —> J\f satisfying Ind£ < c~1, we have that
^x G M,\\x\\ < 1, 3^1,^2,. -^n C^(AO such that ̂  ELi ^fc^A/7 H.M) < e.

Proof. Assume this is not the case. Then El^o > 0,3co < oo such that Vn >
l,3A/n C Mn, with <?, : Mn -^ A/, satisfying <^(X) > c^X^X e .M+, and
Eb^ G A^nJI^nl l < 1, such that d(^^^^ UkX^u^^ H Mn) > so^V'ui,^,...,^ G
Z^(A/n). But then applying the relative Dixmier property for the inclusion of countably
decomposable, properly infinite von Neumann algebras Af = 9nA/n C QnA^n = M,
£ = @n£n (N.B. J\T,M are countably decomposable as being direct sums of countably
many such von Neumann algebras!) and to the element X = (S)n^n we get some
V^ = en^l,n,...,14 = ^nVk,n G U(Af) SUCh that

( \ k \ (\ k \
^0/2 > d - ̂  V,XV^M' n M ] = sup.d , ̂  v^x^^ H Mn

V J=l ) ^ 3=1 )

This gives a contradiction if n > k.
D

3.7. Remark. 1°. Note that the above proof of the properly infinite case of the Theorem
becomes much simpler if we assume the algebras A/\ M. are properly infinite factors of
countable type. Indeed, in this case no reduction theory argument is needed and so. Lemma
3.2 being stated for the factors ./V, M. and the ideal J (instead ofA/i, M.f, Jt\ the argument
following 3.4 can be applied directly (Lemmas 3.3 - 3.6 are not needed).

2°. Let us also present a very simple argument proving the Theorem in the separable
factorial type III (purely infinite) case. So assume Af C Ad are purely infinite factors
with separable preduals and let y? be a normal faithful state on M. such that y? o £ = y?.
If x = x* C M. is so that £^f\/^f'nM{x) = 0 ^d we denote by C^(x) the weak
closure of co{uxu* \ u G ^(AT)} (and thus of Cj^{x}\ then C^(x) n J V ' H M / 0 (for
instance by 2.1 in [ILPo]). But £{x) = 0 implies £(y) = 0,V?/ G C^(^), showing that
C]^(x) HA/'' H M. = {0}. By the inferior semicontinuity of the norm \\y\\y with respect
to the weak topology, it follows that Vn > 1,3^ G Cj^(x) such that \\yn\\^ < 1/n2.
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Thus, if en is the spectral projection of \y^\ corresponding to the interval [1/n, ||rr||] then
(p(£(en)) = ^(<°n) < 1/n. Since f(e^) > 0, this implies that \/e > 0, 3n > 1 such that
e[o,Q-](<?((°n)) / 0, where a = ce/4:\\x\\. By the well known properties of the Dixmier sets
for elements in purely infinite factors (cf e.g. [SZ1]), applied here for the factor Af and the
element f(e^) G A/", it follows that there exist HI, ^2, ...,^m e ^(AQ such that

^E^-)^* <2a
m j=i

Since <?(en) > cen, it follows that

1
2a >-N^,f(e,)^ > - V"

^ ̂ ^ ^ v / J ^ ^_^
J=l J=l

UjenUj.

Thus we get

1 _ _ i
^ ̂  ̂ -^* < |H| ^ ̂  ̂ -e,^* + 1/n < e/2 + e/2 = e.

j=i j=i

Since yn C C7v(^) and e was arbitrary, it follows that 0 G C7/v(;r), thus proving the
result in this separable, factorial type III case.

4. Applications

We will now mention some consequences of the Theorem. Our first result shows that
for inclusions of type Hi factors N C M, the finiteness of the index not only implies the
relative Dixmier property, but it is actually equivalent to it. Along the lines, we also prove
that the finite index condition on N C M is equivalent to the property that states on M
that are normal when restricted to N follow normal on all M.

4.1. Corollary. Let N C M be an inclusion of type //i factors.
(i). N C M has finite Jones index, [M : N] < oo, if and only if the only states on M

that are normal -when restricted to N are the normal states of M.
(ii). I f N c M has finite Jones index then N C M has the relative Dixmier property. If

in addition N has separable predual then, conversely, if N C M has the relative Dixmier
property then [M : N] < oo.

( H i ) . If N is isomorphic to the hyperfinite type 7/i factor R, then [M : N} < oo if and
only if any conditional expectation ofM onto N is normal (equivalently, if and only if any
state on M having N in its centralizer is normal on M).

Proof. If [M : N] < oo, then, by [PiPo], we have E^^x) > [M : N^x^x G M+,
where EN denotes the unique expectation of M onto N that preserves the trace r of M.
Thus TV C M has the relative Dixmier property by the theorem, proving the implication
=> in (ii).

Also, we have already mentioned in Section 2 that the implication => in (i) holds
true for all inclusions of von Neumann algebras J\f C M. with conditional expectations

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



762 S. POPA

£ : A4 —> At satisfying the finite index condition "<?(^) > cx^ix e A4^\ Indeed, for if
this condition is satisfied then for any state ^p on A4 we have (p < c~1^ o <?, so if ^)\^ is
normal, then (p is bounded above by the normal state (p o £ on A4 and thus, by Sal-cat's
Radon-Nykodim theorem ([Sa]), (p is normal itself.

To prove the converse in (i) and (ii), let us first deal with the case when TV' D M is
infinite dimensional. One can actually prove the following more general:

4.27 Lemma. Let AT C M. be an inclusion of von Neumann algebras and assume there
exists a sequence of mutually orthogonal non-z.ero projections {pn}n m M. such that for
each m one has the implication " x G Af^ xpm = 0 =^ x = 0". Then each normal state on
M can be extended to a singular state on M.. If in addition At has a separable predual, and
an infinite dimensional irreducible representation then At C M. doesn't have the relative
Dixmier property.

Proof. Let '0 be a normal state on Af. Since AT is isomorphic to Afpn we can view '0 as
a state ^n on Afpn' Let (pn be an arbitrary state on pnA4pn extending ^n and still denote
by (pn the state on AA defined by compression to pnA4pn, ^n(^) = ^n^PnXpn)^ ^ A4.
Let (f) G A4* be a weak limit of {(pn}n ^ A4*. Thus (p is a state on A4, (p\^- == '0 and (p is
singular on M. (because (^(1 — I^n>mPn) = 0,Vm and (1 — ^Sn>mPn) —> 1 as m —> oo).

If in addition Af has separable predual then let [xk}k ^ AT be a sequence of elements
dense in the unit ball of AT in the weak operator topology. If we assume, on the
contrary, that Af C A4 does have the relative Dixmier property, then in particular the
element X = Y^nXnPn in A4 satisfies Cj^(X) n At' D M / 0. But for each n one has
C^-(X)pr, = C^f{xn)pn c Afpn and since At' n A4 n A/pn = At' n A/j^ = Z(Af)pn, it
follows that CA/-(^O nAy' n M C S^(A/")pn. Consequently, \/e > 0 there exist finitely
many unitary elements ^1,^2, ...,'^m ^ U^Af) and some central elements {^n}n m the
unit ball of ^(AQ such that

— ̂  UkXUk - ̂ n^nPr
lib

k=l

< e.

Since Xpn = Xnpn and Uk commute with pn, Vfe,n, we have:

— ̂  UkXUk - ̂ n^nPr
lit

k=l

=sup^ -Em z-^fe=i

==

U^ - Zn

/ 1 m

E»(-S^\ im ' -J

^mfc=l

>
m

^-Ems

UkXnUk ~ ̂  ]Pn

UkXnUk - Zn ,Vn.

Thus, H i ,H2^ - - ?^m ^ U(J\r) have the property that

1 V-
^ ̂  ^fc^n^ -

fc=l

< £,Vn

But then, since {xk}k is dense in the unit ball of Af in the weak operator topology, by
the inferior semicontinuity of the uniform norm with respect to the wo-topology it follows
that \/x in the unit ball of AT ^z in the unit ball of Z{AT) such that

1 v-
^ ̂  UkXUk - Z

k=l

< e.
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Moreover, if TT : M —^ B(H) is an irreducible representation of N then, by using again
the inferior semicontinuity of the uniform norm with respect to the wo topology, the wo-
density of the unit ball of 7r(A/') in the unit ball of B(T-C) and the fact that, for z G Z{Af),
7v{z) is a scalar multiple of identity in B(H), it follows that W G B(T-C), E3a G C such that

^ m

— Y^ UkYut - al < e.
m z—/

k=l

But if TT is an infinite dimensional irreducible representation of the von Neumann algebra
Af, then the corresponding Hilbert space T~i is non-separable, and since 14,..., Um is a finite
set, there exists an (non-zero) invariant separable Hilbert subspace "Ho C T~C which is
reducing for all the elements u^,...,Um' Thus, if po denotes the orthogonal projection of
H onto HQ then Uipou^ = po^i. Taking V = po it follows that for some scalar a we have

^ m
\\po - al\\ = — V Ukpou^ - al <£,

m k=i

which is a contradiction if e < 1/2, no matter what a one takes. This completes the
proof of 4.2.

D
Let us now prove the implication <^ in (i) in the case N ' D M is finite dimensional. Note

that if the normal states on a von Neumann algebra M have only normal state extensions
to the von Neumann algebra M (D AQ and p E M' D M is a projection then the normal
states on J\fp have only normal state extensions to pMp. Note also that if dimNf H M < oo
and [M : N} = oo then there exists a non-zero minimal projection p G N ' D M such
that \pMp : Np] = oo (cf. [J]).

This shows that in order to prove the implication ^= in (i) it is sufficient to prove that
if an inclusion of type Hi factors N C M satisfies [M : N} = oo and TV7 H M = Cl then
there exist singular states on M which restrict to normal states on N.

To see this, recall that by [PiPo] for any e > 0 there exists q e P(M) such that
^N^q) < sl- Let Qe be a maximal projection in M such that E^^qe) < £- Then
clearly E^^e) has support 1, because if p would be a non-zero projection in N
such that pE^^e} = 0 then again by [PiPo] we can find ^i G P{pMp),0 ^ q^ < p
such that EpNp(q-i) < ep and so q^ + qi would contradict the maximality of q^. Now
let b^ = ^N(^)-l/2g£^(^)-l/2 and note that EN^) = 1 and r(^) = 1. Thus
be E ^(M, r)+ and r(- 6g) defines a normal state on M. Also, since E^^) = 1 we have
r(ybe) = r(y),\/y G N. Furthermore, be satisfies r(s(be)) = r(^) < £.

For each e = 2"71 take a a^ = 62— this way constructed. Since r(s(an)) < 2-n, if
for each m we denote pm = \/n>ms(an) then {pm}m is dicreasing to 0. Thus, if -0 is a
limit point of {r('bn)}n E M* in the cr(M*,M)-topology, then ^(1 - pn) = 0,Vn and
1 -Pn —^ 1 so that ^ is a singular state on M. Thus M has a singular state which restricted
to N is equal to the trace, thus finishing the proof of (i).

The implication <^= in (ii) in the case dimN' H M < oo follows now immediately from
(i) and the result in [P] showing that if M has singular states that restrict to the trace on
N and N has separable predual then N C M doesn't have the relative Dixmier property.

Finally, to prove (iii) assume N is isomorphic to R. If [M : N} < oo and E is a
conditional expectation from M onto N and (p is a normal state on N then (p o E is
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normal on M by (i). Thus, if {xi}i is a weakly convergent net in the unit ball of M then
(p(E(xi)) —^ 0, showing that {E{xi}}i is weakly convergent to 0 as well, thus E is normal.

Conversely, if [M : N] == oo then by (i) it follows that there exists a singular state (p
on M such that ^\N = T N . Let UQ be a countable discrete amenable subgroup of U(N)
such that U'Q = N and put ^ = j ^p(u ' H*)d/^(^), where p, is the invariant mean on
the discrete amenable group UQ and the integral is in the usual, Banach limit sense (see
e.g., [S]). Since ^ belongs to the closure in the a (M*, M)-topology of a countable set of
singular states on M, by [A] it follows that ^ is singular on M. Also, by construction we
have ^\N = TN and ^{u ' n*) = ̂ ^u G UQ. By Connes5 lemma in [C3], it thus follows
that ^(u • H*) = ^,VH G U{N). But then ^ is a singular -/V-hypertrace on M so by the
usual construction (see e.g. [C4]) it defines a singular conditional expectation of M onto
N. This completes the proof of the Corollary 4.1.

D

4.3. Remarks. 1°. Note that in the above Corollary the separability condition on N is
essential: indeed, it has been proved in [Po3] that if N C M is an irreducible inclusion of
type Hi factors and uj is a free ultrafilter then N^ C M^ does have the relative Dixmier
property, even when [M : 7V](= [M^ : N^}) is infinite.

2°. The hyperfiniteness assumption on N in the last part of the Corollary is also
essential. Thus, if the free group on two generators Fs is embedded in the usual way
in the free group on three generators Fs and N C M denotes the corresponding
inclusion of von Neumann factors L(¥^) C L^s), then it is easy to see that any
conditional expectation of M onto TV must coincide with the trace preserving one, while
[M : N] = oo. In fact, by using Day's trick one can show that if N C M is an inclusion
of type Hi factors then there exists a singular conditional expectation of M onto N iff
\/e > 0,V?zi,...,^ e U{N),^b (E ^(M.r)^ such that: EN^) = 1, ||^6< - &||i < e
and r(s(b)) < e. In turn, this last condition clearly doesn't hold true for L(F^) C L(F^),
for instance by ([MvN] or 2.1 in [Po7]).

Other examples of inclusions N C M of infinite index for which any expectation of M
onto N is normal are obtained by taking N to have the Connes-Kazhdan property T and
M an arbitrary type Hi factor containing N such that N ' D M = Cl and [M : N} = oo.
For many similar examples, see e.g. [Po3] or [Po6]. For instance, if N has the property
T, and if P is an arbitrary finite von Neumann algebra with a faithful normal trace and
no minimal projections, then there exists a unique conditional expectation of N * P onto
N(=N * C), while there always exist singular conditional expectations of R * P onto R !

3°. The proof of 4.1 obviously works beyond the factorial case, for rather general classes
of inclusions of finite von Neumann algebras. Let us mention though that if one drops the
finiteness condition, even just for M, the problem may become much more difficult to
solve. For instance, if one denotes by V the algebra of diagonal operators on the infinite
dimensional separable Hilbert space T~i, then it has been noted by J. Anderson in [An]
that the relative Dixmier property for V C B(7i) is equivalent to the positive solution to
an old standing problem of R.V. Kadison and I. Singer ([KSi]), asking whether each pure
state on P extends to a unique pure state on B(1-C). The answer to this is still not known,
despite considerable efforts (see e.g., [An], [BHKW], [BoT]). While all the results in these
papers are about proving that for certain large classes of operators X e B(H) the set
CT)(X) contains £{X\ £ being the unique normal conditional expectation of B(7-C) onto
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I>, thus pointing towards a positive answer to the Kadison-Singer problem, the opinion
among experts is that the answer to the problem might as well turn out to be negative.

In connection with this, let us point out that despite Ind<f = oo in this case, the inclusion
P C B(7-C) does satisfy that a state on B(H) which is normal on P is normal on all
B(H] and that £ is the only possible conditional expectation of B(H} onto P. Thus,
the extrapolation of the statement 4.1 (ii) to more general inclusions suggests that the
Kadison-Siger conjecture might have a negative answer, i.e., that V C B(H] does not
have the relative Dixmier property, while part (i) of 4.1 suggests that the conjecture might
have a positive answer. On the other hand, it is interesting to note that if there does exist
a pure state on P which extends to a pure state 99 on B(1~C) such that (p / (p o <?, then ^p
is still P-linear, in fact even P-multiplicative (cf. [An]; one can also prove this by using
the same argument as in 2.1 and in the proof following it). For certain fast growing free
ultrafilters uj on N it is easy to see that if (p^ = ̂  then this last condition forces ^p to
factor through S thus leading to a contradiction (see [Re]). For general ultrafilters though,
it is not clear that this would still be the case.

The next corollary gives a somewhat surprising consequence of the theorem, which,
while related in spirit to Connes' well known characterization of proper outerness of
automorphisms in [C2], may be interesting on its own:

4.4. Corollary. Let Q be an arbitrary von Neumann algebra and o-i, ...,a^ a finite set
of properly outer automorphisms of Q ( [ C l ] ) . Then

(o,.., o) e CO-K^T^*))!^ | u e U{Q)}.

Proof. This is a trivial consequence of the theorem, applied to the locally trivial
inclusion of von Neumann algebras A/" =^ {x © cri(^) Q ... 0 (7n(x) \ x e Q} C
M = M(^+i)x(y,+i)(<3), with its obvious expectation £ of index (n + I)2, and to the
elements {eoj}i<j<n C M (see [Po2] for the latter notations).

D
Note that the above result can be applied to the case when Q is the diagonal algebra

V ^ ^(N) mentionned in Remark 4.2.3°, in relation to the Kadison-Singer problem. Thus
one obtains that if X G B(H} belongs to the C*-algebra generated in B(H} by P and the
unitaries in the normalizer of P in B(T-C) then Cp(Z) D T> = {£(X)}. Thus we recover
some of the results in [An], [BHKW], [BoT].

4.5. Corollary. Let Q be a type //i factor and a : G —^ AutQ a properly outer action
of a discrete group G on Q. Let M = Q x a G be the associated von Neumann cross-
product algebra (thus M is a type //i factor) and denote by MQ the reduced C*-cross
product algebra, i.e., the C*-algebra generated in M by Q and the unitaries {ug}g^o C M
implementing a. Then Q C MQ has the relative Dixmier property but if G is infinite and Q
has separable predual then Q C M doesn ' t have this property.

Proof. The first part is an immediate consequence of Corollary 4.4 while the second part
is a trivial consequence of Corollary 4.1 (ii).

D
Finally, let us mention that another significant application of the Theorem is given in

[Po5].
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