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CYCLES ON SIEGEL THREEFOLDS AND
DERIVATIVES OF EISENSTEIN SERIES

BY STEPHEN S. KUDLA * AND MICHAEL RAPOPORT

ABSTRACT. - We consider the Siegel modular variety of genus 2 and a p-integral model of it for a
good prime p > 2, which parametrizes principally polarized abelian varieties of dimension two with a level
structure. We consider algebraic cycles on this model which are characterized by the existence of certain
special endomorphisms, and their intersections. We characterize that part of the intersection which consists
of isolated points in characteristic p only. Furthermore, we relate the (naive) intersection multiplicities of
the cycles at isolated points to special values of derivatives of certain Eisenstein series on the metaplectic
group in 8 variables. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Nous etudions Fespace de modules de Siegel de genre 2 et, pour un nombre premier
p > 2, un modele p-entier de cet espace qui parametre les varietes abeliennes principalement polarisees
de dimension 2 munies d'une structure de niveau. On considere des cycles algebriques sur ce modele
definis par 1'existence d'endomorphismes speciaux, ainsi que leurs intersections. On caracterise la partie
de ces intersections qui est constituee de points isoles de caracteristique p. On donne une formule qui relie
la multiplicite d'intersection (naive) de ces cycles en les points isoles aux valeurs speciales de derivees de
certaines series d'Eisenstein sur Ie groupe metaplectique en 8 variables. © 2000 Editions scientifiques et
medicales Elsevier SAS

Introduction

The classical Siegel-Weil formula relates a special value of a Siegel-Eisenstein series,
an analytic object, to the representation numbers of quadratic forms, essentially diophantine
quantities. Recent work has revealed that analogous relations should exist between the special
values of derivatives of such series and quantities in arithmetical algebraic geometry, e.g.,
heights. One such relation involving Shimura curves was proved by one of us in [19]. In that
paper, it was established that the nonsingular Fourier coefficients of the derivative at 0 of certain
Siegel-Eisenstein series of weight 3/2 on the metaplectic group in four variables1 are closely
related to the value of the height pairing of a pair of arithmetic cycles on a Shimura curve.

It is a hope, already expressed in [19], that a similar relation holds in general between the
derivative at 0 of certain incoherent Siegel-Eisenstein series on the metaplectic group in 2n
variables and the height pairing of suitable arithmetic cycles on Shimura varieties associated to
orthogonal groups of signature (n — 1,2). This would constitute an arithmetic analogue of the
result of the first author [ 18] which relates the value at 1 /2 of certain coherent Siegel-Eisenstein

* NSF grant number DMS-9622987.
1 i.e., the metaplectic cover of the symplectic group of rank 2 over Q.
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696 S.S. KUDLA AND M. RAPOPORT

series with the intersection pairing on suitable classical cycles on these Shimura varieties. As
a basic first step in the incoherent case, it can be shown that (at least for nonsingular Fourier
coefficients) both sides of the identity to be proved can be written as a sum of terms enumerated
by the places of Q. One can then hope to prove identities between individual corresponding terms
one place at a time.

This paper is the first of a pair in which we generalize some of the results of [19] to higher
dimensions in the case of finite primes of good reduction.

A first difficulty in the general program is that models over the integers of the Shimura varieties
associated to orthogonal groups are not well understood. For low values of n there are, however,
exceptional isomorphisms which relate the groups in question to symplectic groups, and the
Shimura varieties associated to them have integral models which one can investigate. In the
present paper we are concerned with the exceptional isomorphism which relates the orthogonal
group of signature (3,2) with the symplectic group in 4 variables. In the companion paper [21]
we are concerned with the Shimura variety associated to an orthogonal group of signature (2,2)
which is related to certain Hilbert-Blumenthal surfaces.

Let us now be more specific about the contents of this paper. Let B be an indefinite quaternion
algebra over Q. Let C = M^ (B) and put

(0.1) V={xeC; xf=x,tTO(x)=0},

where x ̂  x ' =^xL is the involution on C induced by the main involution on B. Then
(V, q), with q defined by x2 = q(x) • 1, is a quadratic space of signature (3,2) and the group
G = G Spin(y) of V can be identified with a twisted form of the group of symplectic similitudes
in 4 variables. Let V be the space of oriented negative 2-planes in V(R) and let K be a compact
open subgroup of G(Ay). Then, the Shimura variety Sh(G,P)j<, whose complex points are
given by

(0.2) Sh(G,P)x(C) - G(Q) \ [D x G(Af)/K],

is a (twisted) version of the Siegel 3-fold over Q. For example, the case of the split quaternion
algebra B = M2(Q) yields the usual Siegel modular variety of genus 2.

The exceptional isomorphism of G = GSpin(V) with a form of GSp4 plays a fundamental
role throughout the paper. In particular, we use it to construct a good integral model of
Sh(G,V)K- More precisely, we fix a prime p > 2 such that B is unramified at p and take
K of the form K = Kp ' Kp, where Kp c G(A^) is sufficiently small and where Kp is the
natural maximal compact open subgroup of G(Qp). Then we use the modular interpretation of
Sh(G,P)j< to construct a smooth model M over SpecZ(p), as a parameter space of certain
abelian varieties with additional structure.

Algebraic cycles on Sh(G,P)j< were defined analytically in [18] as follows. For x e V^ let
q(x) = ̂ ((xi.Xj)) G Sym^(Q) be the matrix of inner products of the components of x for the
symmetric bilinear form ( , ) associated to q. Assume that d = q(x) is positive-definite (hence
n < 3), and let Vx be the subspace of oriented negative 2-planes orthogonal to all entries of x.
Let Gx be the pointwise stabilizer of x. Then Sh(Ga;, Vx) is a sub-Shimura variety of Sh(G, V),
and thus defines a cycle of codimension n in Sh(G,Z>)j<. These cycles are a special case of
the totally geodesic cycles in locally symmetric spaces studied in [20] and elsewhere. A slight
generalization of the previous construction yields a cycle Z{d,uj;K) of Sh(G,P)j< which is
associated to any positive definite d e Sym^(Q) and any X-invariant compact open subset uj of
V^Af^.

The next step is to give a modular definition of these cycles. First, for one of the abelian
varieties parametrized by M, we define the notion of a special endomorphism (Definition 2.1).
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CYCLES ON SIEGEL THREEFOLDS AND EISENSTEIN SERIES 697

The space of such endomorphisms is a finitely generated free Z(p)-module equipped with a
quadratic form q. The cycle Z{d, uj\ K) (= Z(d, uj) if K is fixed) is then obtained by imposing an
n-tuplej of special endomorphisms such that ^(j) = d, and satisfying an additional compatibility
with respect to uj. If uj satisfies an integrality condition at p, this definition can be used to extend
the cycle Z(d^ uj) to a cycle Z(d, uj) for the integral model M. of the Shimura variety. Here, by
a cycle on M., we mean a scheme which maps by a finite unramified morphism to M.. At this
point we meet a very important problem: in contrast to M., the cycles Z(d,cj) will no longer
be smooth, in general. In fact, they often are not flat over Z(p) and may even have embedded
components. Our justification for our choice of this integral extension of the classical cycles is
that their definition is very simple, has a nice inductive structure with respect to intersection, and
that we are able to prove something about them. Before stating these results, we note that, while
the arithmetic cycles Z(d^) can be defined for any d e Sym^(Q), any n, they are nonempty
only when d is positive semidefinite and with coefficients in Z(p).

We fix positive integers HI , . . . , rir with n\ + • • • + Ur = 4 and, for each i, we choose a positive
definite di G Sym^. (Z(p)) and a JC-invariant open compact subset uji 6 V(Kf)n^. The resulting
cycles Z(di^uji) on M. have generic fibres of codimension n^. We form the fibre product

(0.3) Z=Z{d^^) XM'"XM^{dr^r)-

To each point $ of Z, we then associate '^fundamental matrix T^ e Sym^C/L^)^o, defined
by T^ = ^(j), where j = (ji, • • • Jr) is the 4-tuple of special endomorphisms imposed at a point
of the fiber product. Note that the diagonal blocks of T are (d i , . . . , dr). The function ^ \—^ T^
is locally constant for the Zariski topology on Z and induces a disjoint sum decomposition in
which the summands are again special cycles of a definite kind,

(0.4) Z= [J Z(T^).
reSym4(Z(p))^o

diag(T)=(di,...,^)

Here uj = uj\ x - • • x uj^' The summand on the right corresponding to T is the set of points ̂  where
T^ •= r. This decomposition illustrates the inductive nature of the special cycles mentioned
above.

The decomposition (0.4) bears some formal similarity to the partitioning into isogeny classes
that occurs in the approach of Langlands-Kottwitz to the calculation of the zeta function of a
Shimura variety. In that approach the stable conjugacy class of the Frobenius endomorphism is
the most basic invariant of an isogeny class. In our context this role is played by the fundamental
matrix. One of our discoveries is that the fundamental matrix and more specifically its divisibility
by p governs the intersection behaviour of the special cycles. In any case, Z(T^) = 0 if
ordp det(T) = 0. Furthermore, if ^ <E Z(T, uj) with det(T) ̂  0, i.e., T = T^ is positive definite,
then the point $ lies in characteristic p and is not the specialization of a point of Z in
characteristic 0. In this case, the connected component Z(T,UJ) of Z containing ^ consists
entirely of supersingular points of M.. Contrary to what one might expect, however, the condition
det(T^) -=^ 0 is not sufficient to ensure that ^ is an isolated point of intersection. One of our main
results is the characterization of when this is the case.

THEOREM 0.1. - Let ^ e Z with det(T^) -^ 0. Then ̂  is an isolated intersection point if and
only if T^ represents 1 over Zp. In this case the underlying abelian variety is isomorphic to a
power of a supersingular elliptic curve.

When T = T^ does not represent 1 over Zp (but still is positive definite), then the connected
component Z(T^ uj} of Z containing $ is a union ofprojective lines and, in fact, one can enumer-

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



698 S.S. KUDLA AND M. RAPOPORT

ate these lines. It turns out that the more divisible T^ is by p, the more components there will be.
A more thorough analysis of the set of irreducible components can be found in [21]. We point
out that this phenomenon of excess intersection does not occur in the case of Shimura curves at
a place of good reduction [19], but it does occur at a place of bad reduction [22].

With the previous notation let us put

(0.5) {Z(d^^)^.^Z(dr^r)^ropeT= ^ e(0,
^z,

^ isolated

where each isolated intersection point ^ appears with multiplicity e(^) = lg0^, the length of
the local ring of Z at ^.

We next come to the relation with Eisenstein series, for which we refer the reader to Section 8
or the first part of [19] for more details. Let TV be a symplectic space over Q of dimension 8 and
let

(0.6) W = W^ + • • • + Wr
be a decomposition of W into symplectic spaces Wz of dimension 2n^. Let

(0.7) z :Mpi^x —xMp^—>Mp^

be the corresponding embedding of metaplectic groups. Let <!>(s) be the standard section of the
induced representation I(s,\v) of Mp^ which is of the form <!>{s) = ^oo{s) 0 ^f{s). Here
the finite part is associated to the Schwartz function char a; e S(Y(Af)4') under the natural map
5'(V(A^)4) -^ If(0, ̂ ) defined via the Well representation. Similarly, the component ^oo(«s) at
oo is associated to the Gaussian for the 5-dimensional quadratic space V^R) over M of signature
(5,0) under the map S^V^R)4) -^ Joo(0, x). Thus the section ^(s) is determined by

(0.8) uj = uj\ x ' • • x (jj^

and is incoherent in the sense of [19]. In particular, for h e Mp^(lY), the corresponding
Eisenstein series E(h, 5, <?) vanishes at the center of symmetry 5=0. For any (h\,..., hr) G
Mp^ ^ x • • • x Mpy. ̂  we put

(0.9) Fd^dA^ • • • ̂  ̂ roper = Y, E^(z{h^.. ̂ hr)A ̂ ).
TeSym4(Z(p))>o

For T in the sum, the diagonal blocks are d i , . . . , dr\ T is represented by ^(A^), but not by
V(Qp). Moreover, T represents 1 over Zp. On the right in (0.9), we are summing over certain
Fourier coefficients of the derivative at 0 of the Eisenstein series for Mp^. Our second main
result is the following identity (Corollary 9.4).

THEOREM 0.2.- We have

F^d^... ̂ y' = c- W^\h,) . • . W^\hr) • logp.

(0.10) • vol(pr(^)) . (Z^i^i),...^^,^))^61",

where c=^vo\{SO(V/(R))).

Unexplained notation may be found in the body of the text. The identity is proved by
unravelling both sides of (0.10), where, for the right side, we use the decomposition (0.4) and
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Theorem 0.1. The identity then reduces to the statement that, for T e Sym4(Z(p))>o such that T
is not represented by V(Qp) and where T represents 1 over Zp, we have

(all) [(logprl • S^j] [voiw-1 -^P))] = ̂ (T,.))—
Here, in the first factor on the left, there appears a quotient of the derivative at 0 of a certain
Whittaker function for the quadratic space V(Qp) by the value at 0 of a Whittaker function for a
twist V^Qp), and, in the second factor, a Fourier coefficient of a theta integral. In fact, the second
factor can also be identified with an orbital integral. It turns out that the first factor equals the
multiplicity e(^) of any point ^ C Z(T, uj) (which is constant), while the second factor is equal
to the number of points in Z(T, a;). For the multiplicity e($), the calculation can be reduced to
a problem on one-dimensional formal groups of height 2 which has been solved by Gross and
Keating [7]. For the calculation of the Whittaker functions we use the results of Kitaoka [14]
on local representation densities. It should be pointed out that we are using here the length of
the local ring Oz^ as the multiplicity of a point ^, whereas the sophisticated definition would
also involve Tor-terms. It is a fundamental question whether these correction terms vanish. This
question we have to leave open.

In summary, we may say that Theorem 0.2 is proved by explicitly computing both sides
of (0.10) and comparing them. It would of course be highly desirable to find a more direct
connection between the analytic side and the algebro-geometric side of this identity.

We now give an overview of the structure of this paper. In Section 1, we introduce the Shimura
variety and formulate the moduli problem solved by M. Our special cycles are introduced
in Section 2. We define the fundamental matrix in Section 3 and isolate there the part of Z
lying purely in characteristic p. It is clear from the above description that to proceed further
we need a thorough understanding of the supersingular locus of M. XspecZ( SpecFp. This
is essentially due to Moret-Bailly [23] and Oort [24]. In Section 4, we give a presentation of
their results in terms of Dieudonne theory, better suited for our needs. A similar presentation
was independently given by Kaiser [11] for a different purpose. The heart of the paper is
Section 5. In it we determine the space of special endomorphisms of certain Dieudonne
modules and deduce the characterization of isolated intersection points (Theorems 5.11, 5.12
and 5.14). Here again the exceptional isomorphism plays a vital role. In Section 6, we
explain the reduction of the calculation of e(^) to the result of Gross and Keating, and, in
Section 7, we explain how to count the number of isolated points. Section 8 is a review
of the Fourier coefficients of Siegel Eisenstein Series. In Section 9, we bring everything
together and prove the identity (0.10) above. In Section 10, we review some results of Kitaoka
and show how they can be used to prove the formulas on Whittaker functions needed in
Section 9. Finally, there is an appendix containing some facts on Clifford algebras in our special
situation.

In conclusion we wish to thank A. Genestier for very useful discussions on our special cycles
which helped us to correct some misconceptions we had about them. We also thank Th. Zink
and Ch. Kaiser for helpful remarks, and the referee for his comments. We thank the NSF and
the DFG for their support. S.K. would like to express his appreciation for the hospitality of
the Univ. Wuppertal and the Univ. of Cologne during January 1995 and May and June of 1997
respectively. Finally, M.R. is very grateful to the Mathematics Department of the University of
Maryland for inviting him and making his stay in Washington a memorable pleasure.
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700 S.S. KUDLA AND M. RAPOPORT

1. The Shimura variety

In this section, we review the construction of the Siegel 3-folds associated to indefinite
quaternion algebras over Q, and the corresponding moduli problem. The use of the Clifford
algebra is modeled on [28]. We refer to the appendix for some facts on those Clifford algebras
that will be relevant for our purposes.

Let B be an indefinite quaternion algebra over Q, let C = M^(B), with involution x ' = txL,
and let

(1.1) V = {x C C; x ' =x and iv(x) = 0}.
We define a quadratic form q on V by setting x2 = q(x) ' 1^ G M^(B) (cf. Appendix A, A.3).
Since B is indefinite, the signature of (V, q) is (3,2) (cf. Appendix A, A.6), and the Witt index
of V over Q is 2 if B = M^ (Q) and 1 if B is a division algebra (cf. Appendix A, A.3). Let C(V)
be the Clifford algebra of the quadratic space (V, q). Since, for x e V C (7, x2 = q(x), there is a
natural algebra homomorphism C(V) —> C extending the inclusion of V into C. The restriction
of this map to the even Clifford algebra C~^(V) induces an isomorphism

(1.2) C+(Y)^G.

Let

(1.3) G=GSpm(V)={geCx^ggf=1.(g)}

(cf Appendix A, A.3), so that G is a twisted form over Q of GSp4 (cf Appendix A, A.2). The
group G acts on V C C by conjugation and this action yields an exact sequence

(1.4) 1 — — Z — — G — — S O ( V ) — — 1 ,

where Z is the center of G.
Let V be the space of oriented negative 2-planes in V(R). This space has two connected

components and the group G(R) acts transitively on it, via its action on V(R). For an oriented 2-
plane z C P, let z\, z^ e z be a properly oriented basis such that the restriction of the quadratic
form q from V(R) to z has matrix -la for the basis ^i, z^. Let jz = z\z^ G C(R). Viewing
jz as the image of the element z^ C C(y(R)), the Clifford algebra of V(R), and recalling
the commutative diagram of Section A.3 of Appendix A, we see that j^ = —jz and that
j2 = -z^zj = -1. Hence, jzj'z = 1 and so, jz € G(R). There is an isomorphism of algebras
over M,

(1.5) C-^C+(^ z——^2,
where C+ (z) is the even Clifford algebra of the real 2-plane z. The composition of this map with
the map

(1.6) C^(z) C C+(y(R)) -^C(R) = M2(B(M))

induces a morphism, defined over R, hz : § —> G, where S = Rc/R^m, as usual. Note that
^z (i) = j z ' The space V can thus be viewed as the space of conjugacy classes of such maps under
the action of the group G(M). The data (G, P) or (G, h^) defines a Shimura variety Sh(G, V)
[2,3], whose canonical model is defined over Q. Note that V is isomorphic to two copies of the
Siegel space of genus 2, and, if B = M2(Q), Sh(G,P) is just the Siegel modular variety of
genus 2.

Since G satisfies the Hasse principle, the Shimura variety represents a certain moduli problem
over (Sch /Q), [17]. To define this we must introduce more notation.
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Fix a maximal order OB in B such that 0^ = OB. and let Oc = M^Oa). Let D{B) be the
product of the primes p at which Bp is division, and, as in [I], choose r e Bx such that T' = -T,
^"2 == -DW, and rOBT-1 = OB. By Section A.5 of Appendix A, the map x ̂  x* == r^r"1

is a positive involution of B preserving OB. Also, for

(1.7) 0=^ }^M^B),

^ = —OL and x* = ax'a~1 = oT^x'a is a positive involution of (7, preserving Oc.
Let [/ = Oc, viewed as a module for Oc under both left and right multiplication. Define an

alternating form:

(1.8) ( , ) : U x U — — Z
by

(1.9) (x^y)=tl{yfa-lx).
Then

(1.10) (cx,y) =tT(y/a~lcx) =tT(y/a~lcaa~lx) = (x,c*y),
and

(1.11) (xc,y)=iT(y/a~lxc) =^(cy'a~lx) =(x,yc/).
Thus, if g e G ,

(L12) {xg,yg}=v{g){x,y},
and, in particular, for z e V,

(l-l3) { x j z , y j z ) = ( x , y ) .
We fix a compact open subgroup J^ c G(Af). The functor Mj< associates to S € (Sch/Q)

the set of quadruples, (A, L, A, 77), up to isomorphism, where
(i) A is an abelian scheme over S, up to isogeny,

(ii) L : C —> End0 (A) is a homomorphism such that

det(^(c);Lie(A))=7V°(c)2,

where N°(c) is the reduced norm on C.
(iii) A is a Q-class of polarizations on A which induce the involution * on C:

Ao^oA-1^^*).

(iv) 77 is a 7^-class of isomorphisms

r]:V(A)-^U^Af

which are G-linear (for the left module structure on U) and respect the symplectic forms
on both sides up to a constant in A^. Here

y(A)=fJr,(A)0Q.
a

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



702 S.S. KUDLA AND M. RAPOPORT

For the precise meaning of the datum (iv) we refer to [17, p. 390]. In particular, if S = Speck
is the spectrum of a field, the ^-class rj is supposed to be stable under the action of the Galois
group G8i\(k/k) where k is the algebraic closure used to form the Tate module of A.

Note that the abelian scheme A will have relative dimension 8 over S.

PROPOSITION 1.1. - For K neat this moduli problem is representable by a smooth quasi-
projective scheme MK over Q and

M^(C)^Sh(G^)(C).

Proof.-For the representability, see [17]. We prove the last assertion in detail, since the
conventions involved will be used later.

For T C Bx, as above, let

(1.14) ro=D(B)-l/2reBX(R),

so that r2 = -1. Choose /3 e Bx such that

(1.15) f3r=-rf3 and /?'=-/?.

Since B is indefinite, f32 > 0, and we can set

(1.16) f3o=((32)-l/2(3eBX(R),

so that /3^ = 1. The vectors

(1.17) f ^°) and ( . ^em
V-Po ) \-TO/?O ) v /

form a standard basis of an oriented negative 2-plane ZQ e P, and

".") ^(-^ *)(.„„ ^H" j.zw-1/2-:...
LEMMA 1.2. - For any z e P,

(^2/)=(^^),

and, for x e ^(R), ^ ̂  0,

(.rj'^a;) >0,

^2; /^ m ^^ same connected component ofV as ZQ, and

(xj^x) <0,

if z and ZQ lie in opposite components.

Proof. - For the first assertion:

(L19) (^z,y)=-(x,yj^)=(yj^x).

4e SERIE - TOME 33 - 2000 - N° 5
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For the second, write z == gzo for g € G(R), so that

(L20) 3z =gjzo9~1 =g^og~1-

Then, we have

( x j z . x ) = (xgaog^.x)

=y(9)~l{xgaQ,xg}

= ̂ (g)~1 ̂ {(xgya^xgao)

=u(g)-lD(B)-l/2tT(a(xgya-l(xg))

(1.21) =v(g)-lD(B)-l/2tr({xgr(xg)).

Since x ^—> re* is a positive involution, this gives the claim. D

Let V^ be the connected component of V containing ZQ and V~ the connected component of
V not containing ZQ. Then, for any z G 2^, we obtain a (principally) polarized abelian variety
over C,

(1.22) A,=(^(R)j^£7(Z),±(, ))

with dimA^ = 8 and with an action, given by left multiplication,

(1.23) ^:Oc^End(A,).

Note that L satisfies condition (iii) for the polarization of Az induced by { , ), thanks to relation
(1.10) above. Furthermore,

(1.24) V(A,) = U(Z) 0 Q = U(Af).

If

(1.25) 7 e F = {g e G(Q)+; [7(Z)^ = [/(Z)},

then right multiplication by 7~1 induces an isomorphism

(1.26) A^A^.

Thus F \ ̂ + parametrizes such principally polarized abelian varieties, up to isomorphism.
More generally, to (z, g) e V x G(Af), we associate the collection (A, L, A, fj) defined by:
• (A, i) = (A^ b), where Az is taken up to isogeny;
• A is the Q-class of polarizations determined by ( , );
• 77 is the I^-class containing the isomorphism:

r{g}
V(A,)=U(Af)^U(Af).

Note that, if 7 € G(Q) and k e K, then (7^, ^ / g k ) defines a collection isomorphic to that defined
^ {z-, g). v^ the element of Hom°(A^ A^) given on U(R) by right multiplication by 7~1. The
map

(1.27) G(Q)(z^^(A^A^)/-

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



704 S.S. KUDLA AND M. RAPOPORT

yields the isomorphism

(1.28) G(Q)\PxG(A;)/^-^M^(C). D

We now turn to the construction of a ^-integral model. Fix a prime p such that p \ D(B), so
that C 0 Qp ̂  M4(Qp). Let Oc be the maximal order chosen above, and note that the maximal
order Oc 0 Zp in C (g) Qp is the stabilizer of the lattice U^ == U (g) Zp in U (g) Qp under both
right and left multiplication. The choice of r made before (1.7) ensures that ( , ) defines a perfect
pairing

(1.29) ^):u^xU^—.^p.

Let Kp be the stabilizer of U^ in G(Qp), acting on [/Qp via right multiplication. Let KP c
G^A? be compact open, and take K = Kp • K^.

We now want to formulate a moduli problem over (Sch /Z(p)) which extends the previous one.
The functor MKP associates to S C (Sch/Z(p)) the set of isomorphism classes of quadruples
(A^A,^), where

(i) A is an abelian scheme over 6', up to prime to p isogeny;
(ii) L : Oc 0 Z(p) —> End(A) 0 Z(p) is a homomorphism such that, for c e Oc,

det(^(c);Lie(A))=7V°(c)2,

where N° is the reduced norm on (7;
(iii) A is a Z.^ -class of isomorphisms A —> A such that nA, for a suitable natural number n,

is induced by an ample line bundle on A;
(iv) rjP is a J^ -class of Oc-linear isomorphisms (in the sense of Kottwitz)

rf:y^(A)^£/0A^

which respects the symplectic form on both sides up to a constant in {AP)X. Here

VP(A)=]^T,{A)^q.
£^p

In the determinant condition above, the equality is meant as an identity of polynomial
functions. In the case at hand, it simply says dim A = 8.

PROPOSITION 1.3. - For KP neat the above moduli problem is representable by a smooth
quasiprojective scheme MK? over SpecZ(p). Its generic fibre can be canonically identifiedwith
MK,

MKP XspecZ(p) SpecQ=M^.
Let us briefly explain the last identification on geometric points. Let S be the spectrum of an

algebraically closed field of characteristic 0. Let us consider (A, L, A, rjP) e MK?(S). Then the
p-adic Tate module Tp(A) is equipped with a perfect symplectic form, unique up to scaling by
Z^ and hence there is an Oc ̂  Zp-linear isomorphism

^:Tp(A)^U^

which respects the symplectic forms up to Z^. The set of such rjp's form a single orbit for
Kp, which acts via right multiplication in U^. Hence, from (A, L, A, fjP), we obtain an object
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(A 0 Q, ^ 0 Q, A 0 Q, 77^ • 77p) of Mpc(S). Passage in the other direction is similar. For example,
in the isogeny class A and for 77 G rj, there is an abelian variety B, unique up to prime to p
isogeny, such that r]p (Tp (B)) = U^.

The above proposition tells us that, when K = Kp • Kp, as above, then M.KP provides us with
a smooth model of Sh(G, V)K over Zcp). From now on, we will use the same notation for both
moduli problems, if this does not cause confusion.

2. Special cycles

In this section we give a modular definition of the special cycles in Sh(G,'P), which were
defined analytically in [18]. We then explain the relation between the two definitions.

Recall that the quadratic form on the space V C C = M^(B) was defined by x2 = q(x) • 12.
Let

(2.1) (x,y) = q(x 4- y) - q(x) - q(y)
be the corresponding bilinear form, so that q(x) = - (x^ x). If x = {x\, ^2? • • • ̂ n) € ^(Q), we
let

(2.2) q{x) = J((^^))^. e SymJQ).

This defines a quadratic map q: V71 —> Sym^.
Fix a positive integer n. For d G Sym^(Q) a symmetric rational matrix, let

(2.3) Qd={x^Vn^q{x)=d}

be the corresponding hyperboloid. The group G acts diagonally on Vn and preserves Qd-
Cycles in Sh(G,P) were defined analytically in [18] as follows. For x G J?d(Q), let {x) C V

be the Q-subspace spanned by the components of x, and let Vx = {x}1- be its orthogonal
complement. Let T>x denote the space of oriented negative 2-planes in Va;(M), and let Gx be
the pointwise stabilizer of (x) in G. Note that Gx ^ GSpin(T4), and that Vx C V. Moreover,
for z € T>x -> the homomorphism hz factors through Gx (H^) • Thus there is a natural morphism of
Shimura varieties, rational over Q,

(2.4) , Sh(O^)——Sh(G,P).

If the space (x) is not positive-definite, then Vx = 0. If (x) is positive-definite of dimension r
then d is positive semi-definite of rank r, sig(Vc) == (3 — r, 2) and Vx has codimension r in V.
Hence the previous construction is only interesting when d is positive semi-definite and even
only when d is positive definite with n ̂  3.

For a fixed compact open subgroup K C G{Af) and for h e G(Aj), there is a cycle, namely
the image of the map

(2.5) Z{x^K) :G,(Q) \Vx x &c(A^)/(G,(A^) C\hKh-1} -^ G(Q) \V x G(Af)/K

given by (z, g) i—^ (z, gh). This map is finite and generically injective, hence the cycle image is
taken with multiplicity 1. This cycle of codimension r = rk(<f) on Sh(G, V)K is rational over Q.

Assume that ^(Q) ̂  (f) and fix XQ G ^(Q). Let (/? e ^(V^A^)71)^ be a Schwartz function
which is ^-invariant, and write

(2.6) supp(^) n ^(Aj) = Y[Kh^xo
r
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for elements hr C G(Aj-). Then define the weighted cycle:

(2.7) Z(d^^K)=^^lxo)'Z(x^h^K).
r

This cycle is independent of the choice of .TO and of the orbit representatives hr. It is a (weighted
linear combination of) cycle(s) of codimension r = rk(d) on Sh(G, P)j< and is rational over Q.
If (p is the characteristic function of a JC-invariant compact open subset uj of ^(A^)71, then
Z(d, uj; K) = Z(d, (^; K) can be considered as a disjoint union of maps (2.5), or as the union of
the images of these maps.

We introduce the following definition, which will play a key role throughout the paper.

DEFINITION 2.1. - Let (A, L, A, rj) € MK<,S). A special endomorphism of (A, L, A, rj) is an
element j € End^(A, i) which satisfies

(2.8) f=j and tr°(j)=0.

Here * denotes the Rosati involution of A. Also note that End0 (A, i) is a finite-dimensional
semisimple Q-algebra, so that the reduced trace appearing here makes sense. Indeed, this is well
known when S is the spectrum of a field. The case when S is irreducible follows by reduction to
its generic point, and the general case follows by considering the irreducible components of S.

LEMMA 2.2.- Let j be a special endomorphism of (A,i,\,rj) e MK(S), where S is
connected. Then

(2.9) f=q(j).^
with q(j) e Q.

Proof. - Again we may reduce first to the case where S is irreducible and then to the case when
S is the spectrum of a field. However, for rj C rjletx =rj"{j) G Endc(U(Af)) = C{Af). Under
the last identification the adjoint involution * with respect to ( , ) corresponds to the involution /

on G(A) (cf. (1.11)). Hence x lies in V{Af) and the assertion follows (cf. Appendix A, A.3). D

The previous lemma justifies the following definitions. Let S be a connected scheme and
^ = (A, i, A, rj) e MK(S) be an 5-valued point of MK' Let

(2.10) C^End^A^)013

and

(2.11) V^° = {x e C^ x " = x and tT°{x) = 0}.
Then V^ is the finite-dimensional Q-vector space of special endomorphisms with quadratic form

(2.12) ^ : V f — — Q

given by x2 = q^{x) • idA. By the universal property of the Clifford algebra of (VP, q^) there is
a natural homomorphism

(2.13) c(lf^)-.^0.

This structure is compatible with specialization. If 5" C S is a connected closed subscheme, let
^/ e MK^S') be the restriction of $. Then we have a homomorphism of Q-algebras

(2.14) C^ = En4(A, ̂ op ̂  End^(A, ,)°P = C^
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inducing a map

V^° ̂  V^°

of quadratic spaces.
Let us spell out these concepts in the classical case.

LEMMA 2.3. - Let^ C MK(C) with parameter ( z , g ) in Sh(G,P)j<. Let A^P = U(R)/U(^)
be the real torus underlying Az.

(i) G(Q)-^E^do(At,OP^)o^ y^r(y)^

where r(y) denotes the action ofy C C(Q) on U (R) D ?7(Q) Z?v n^r multiplication. Moreover,
^)*=^Q/).

(ii) C7^Centc(Q)0.) ^ if ^ {^ € Y(Q); x^ =j,x}.

(iii) Center) (^) H V(R) = z1-.

In particular,

v^=v(Q)nz-L,
and so 0 < dimQ V° ^ 3.

Proof. - The first two assertions are obvious by (1.11). To prove the last assertion let z\, z^ € z
be a properly oriented basis such that the restriction of the quadratic form q to z has matrix —1^
in terms of this basis. Let v € ^(IR) with (v, Zi) =ca,i= 1, 2. Then

v ' Jz = v ' (z± ' ^2) = z-^z^v - 02^1 + ai^2 = JzV - a^zi + ai^2.

Hence z' C Center) {jz) if and only if ai == 03 = 0, i.e., if and only ifvez-L. D

Let us return to the abstract situation.

LEMMA 2.4. - Let ^ = (A, i, X, rj) € MK^S) be a point with values in a connected scheme
S. The quadratic space V? is positive-definite.

Proof. - We may assume that S is the spectrum of a field. The assertion follows from the
positivity of the Rosati involution, since

q(x) -idA =x2 = x ' x * , x C VP. D

We next give a modular definition of the cycles introduced above. We take here the point
of view that a cycle is given by a finite unramified morphism into the ambient scheme. Let
K c G{Af) be a compact open subgroup, and let uj c ^(A^-)71 be a J^-invariant compact
open subset. Consider the functor on (Sch/Q) which associates to a scheme S the set of
isomorphism classes of 5-tuples (A, L, A, 77; j) where (A, i, A, 77) e MK^S). Here the additional
element j = (ji,... Jn) e End0 (A, ̂ n is an n-tuple of special endomorphisms of A, satisfying
the following condition:

(2.15) for some (and hence for all) 77 e 77, the element 77* (j) e Eiidc^Aj))" lies in uj\
(2.16) q(S)=d.
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Let us explain the condition (2.15). As in the proof of Lemma 2.2 above, for any rf C rj

x = ̂ *(J) e V{Afr c C(A^n - Endc (^(A^))".

The condition imposes that x <E cj. If T) is changed to r(A:) o ^, with k ^ K and r(A;) e
Endc'(^(Aj-)) the endomorphism defined by right multiplication by k, then

(2.17) (r(A:)o77)*(j)=r(A-)o^*(j)or^)-1.

The condition (2.15) asserts that 77* (j) = r(a;) for some x^uj. If this is the case, then

(2.18) {r(k)on)\J)=r(k)o^{j)or(k)-l=r{k-lxk),

and k~lxk e c^. Thus the condition (2.15) depends only on rj.
To interpret condition (2.16) we may assume S to be connected. Let ( , ) be the bilinear

form on the space of special endomorphisms of (A, L, A, rj) associated to the quadratic form q of
Lemma 2.2. Then q(]) = \ (UiJj))ij ^ Sym^(Q) is defined as in (2.2). The condition (2.16)
requires that g(j) = d.

PROPOSITION 2.5. - The above functor has a coarse moduli scheme Z(d^). IfK is neat,
then Z(d^uj) is a fine moduli scheme and the forgetful morphism

(2.19) Z(d,cj)—>MK

is finite and unramified. Furthermore Z(d^ c^)(C) = Z(d^ uj^ K).

Proof. - The first statement follows easily from the second. Let us assume that K is neat.
The relative representability of the forgetful morphism by a morphism of finite type follows in
a standard way from Grothendieck's theory of Hilbert schemes since MK may be considered as
a moduli scheme of polarized abelian varieties with additional structure. To verify the valuative
criterion of properness for the morphism (2.19), we have to check that an endomorphism between
the generic fibers of abelian schemes over the spectrum of a discrete valuation ring extends
uniquely. This follows from the Neron property of abelian schemes. Since the matrix d gives
the squares j^ of the special endomorphisms, the morphism is quasi-finite and hence finite. The
unramifiedness follows from the rigidity theorem for abelian varieties.

The last statement is to be interpreted as an equality between the image of (2.5) and
Z(d, a;) (C), and follows easily from Lemma 2.3 above. D

We now assume that p\ 2D{B) and that K = Kp • Kp with Kp neat, as in Proposition 1.3,
and we formulate a p-integral version of the previous moduli problem.

Before doing this let us point out that for a point $ = (A, L, A, ̂ p) e MKP (S) of the p-integral
version of our moduli problem with values in a connected scheme S we may transpose the
concepts above. Hence we introduce the Z(p)-algebra

(2.20) C^End^A^^Z^)

and

(2.21) V^ ={xe C^ x ' = x and tr°(rr) = 0}.

The latter is a Z(p)-module with a Z(p)-valued positive definite quadratic form. The elements of
V^ will again be called the special endomorphisms of (A, L, A, ̂ p).
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Let now again d C Sym^(Q). Let ̂ p C y(A^)n be a J^-invariant open compact subset. Then
a point of the corresponding moduli problem Z(d,ujP) on a Z(p)-scheme S is an isomorphism
class of 5-tuples (A,^A,7f; j ) where (A,^A,7f) is an object of MKP^S) and where j C
(End(A, b) (g) Z(p))7'1 is an n-tuple of special endomorphisms which satisfies (2.16) above and,
in addition,

(2.22) (^)*(j)e^.

These conditions are to be interpreted in the same way as (2.15), (2.16) above.
To clarify the relation between the p-integral version Z(d, uj?) and the previous Z(d, a;), let

(2.23) ^=V^Y,

where V(Zp) = V{Q)p) U (Re ^ Zp), the intersection taking place inside of C (g) Qp. Let

(2.24) u j = ^ p X ^ P ,

be a 7^-invariant open compact subset of V^A/^.

PROPOSITION 2.6. - lfKP is neat, the functor Z{d, UJP) is representable by a scheme which
maps by a finite unramified morphism to M.KP- Furthermore, there is an identification

Z(d^p) XspecZ(p) SpecQ=Z(d^).

Remark 2.7.- By Lemma 2.4 the scheme Z(d^P) is empty unless d is positive semi-
definite. Similarly Z(d^P) = 0, unless d e Sym^(Z(p)). Note that it may well happen that
Z(d, ujP) is non-empty but where both sides of the equality in Proposition 2.6 are empty. In fact,
we will later consider cases in which d e Syn^ (Z(p)) is positive definite so that Z(d, uj) = 0 and
when Z(d^) ̂  0.

From now on, since we will be interested in the arithmetic situation, we will simplify our
notation by denoting uj what is denoted by uJP above, i.e.,

(2.25) ^Cl^)"

is a KP -invariant open compact subset.

3. The intersection problem

We continue to fix p \ 2D(B) and a neat open compact subgroup KP C G^A^) as at the end of
Section 2. Then M. = MKP is a regular noetherian scheme of dimension 4. We wish to consider
the intersection of the cycles introduced in a modular way in the previous section. Let us set up
our problem in a more precise way.

We fix integers n\,..., rir with 1 ^ ni ^ 4 and with 77,1 + • • • + Ur = 4. For each z, we choose
dz C Sym^ (Q) positive definite, and a J^-invariant open compact subset c^ C ^(A^)^. Let

(3J) Z=Z(di,LJi) XM • • • XM^(dr^r)

be the fiber product of the corresponding special cycles.
By what has been said in Section 2, since the codimensions of the generic fibres of our special

cycles add up to the arithmetic dimension of MKP. one might expect that Z consists of finitely
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many points of characteristic p. We will see that this is in fact quite false, but we will be able
to determine that part of Z which lies purely in characteristic p and also determine the isolated
points of Z.

Let ^ be a point of Z, with corresponding point (A^, ̂  A, ̂ p) c M.. We denote by C^ and
(V^, q^) the Z(p)-algebra and the quadratic Z(p)-module associated to (A^, A, if) (cf. (2.20)).
The projections Z —>• Z{di,uji} define HI -tuples of special endomorphisms

(3.2) J^V^S z = l , . . . , r .

Let

/(JlJl)^ • • • (JlJr)A

(3.3) T^ ; •.. ; eSym^)),

VJrJl)^ • • • (Jrjr)^/

where ( , )^ is the bilinear form associated to q^. Here, as always, p ^ 2. The matrix T^
is called the fundamental matrix associated to the intersection point ^ of the special cycles
Z(di,cc;i),. . . , Z(dr,^r)' We note that the blocks on the diagonal of T^ are d i , . . . , dr. By
the results of Section 2, the function ^ i-̂  7^ is constant on each connected component of Z.
Therefore, for T e Sym4(Z(p)) we may introduce

ZT ={Z(d^^) U • • • H Z(dr^r))^

(3.4) == union of the connected components of Z consisting of the points ^ with T^ = T.
We note here the hereditary nature of our construction, given by

(3.5) Z(T,UJ^ x • • • x^)= (Z(di,cji) XM • • • x^Z^cjj)^

valid provided that the blocks on the diagonal of T are d i , . . . , dr. We may therefore write

(3.6) Z = Z(di,^i) XM • • • XM Z(dr^r) = U^T = n ^(T^}.
T TeSym4(Z(p))^o

diag(T)=(di,...,d,)

Herect; =cc;i x • • • x ujr-
We shall see that the fundamental matrix governs the intersection behaviour of our special

cycles. We first note the following result.

PROPOSITION 3.1.- Let ^GZ=^(di ,cc ; i ) XM-" XM Z(dr,uJr}, ^here uji C ̂ (A?^
and dz G Sym^ (Q) positive-definite with HI + • • • + rir = 4. Suppose that det(T^) 7^ 0. Then ^
Z;^ m ^/z^ special fiber of Z, and ^ does not lie in the closure of any point ofZ in the generic
fiber.

Proof. - By Lemma 2.4 the assumption on T^ means that T^ e Sym.4(Z(p)) is positive definite.
However, for a point of M. in characteristic zero, the space of special endomorphisms is
contained in a three-dimensional positive definite quadratic space. D

Next suppose that $ e A^(Fp). In this case, the standard Honda-Tate results yield information
about the possibilities for C^. We have i'.M^B) = C ̂  End°(A^), so that, up to isogeny
A^ ^ A x A, where dim A = 4 and there is an embedding B ̂  End0 (A).

_ LEMMA 3.2. - Suppose that p \ D{B). Then there are no simple abelian varieties AQ over
¥p with dimAo = 2 or 4 and with B c—^ End°(Ao).
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Proof.-If Ao is simple over ¥q, then E = End°(Ao) is a central simple algebra over
F=Q(7TAo),and

(3.7) 2dimAo = [E : F}1/2 • [F: Q].

Here_7TAo denotes as usual the Frobenius endomorphism. If dimAo ^ 2 and AQ remains simple
over Fp, then F is a CM field. Suppose that dimAo = 2, so that [F : Q] = 2 or 4. The second
case is excluded, since then E = F is commutative. In the first case, E is a division quaternion
algebra over F ramified only at places over p. Thus p splits in F and invv(E) = inVv(E) = \
for v | p. But the embedding B c-^ E yields an isomorphism B 0Q F ^ E. This is possible only
ifp | -D(B) and F splits B at all other primes.

If dim A = 4, then [F : Q] = 2, 4 or 8, and the last case is again excluded since E = F. In
the case [F : Q] = 4, F is a quaternion algebra over F, ramified only at primes lying overp, and
B 0Q F ^ E. This cannot occur if p \ D{B). Finally, if [F : Q] = 2, then p splits in F and F is
a division algebra over F of dimension 16 with invariants ^ and | at the primes over p. There is
no homomorphism from a quaternion algebra B (g)Q F into such an algebra. D

Returning to A, and assuming that p \ D(B), we see that A cannot be simple and that any
simple factor of A of dimension 1 or 2 must occur with multiplicity at least 2. Thus we have
various possibilities for A, up to isogeny:
(3.8.i) A ^ A2 x A2, with dimA2 = 2 simple and End°(A2) ^ F for a CM field F with

[F : Q] = 4 which splits B, i.e., such that B 0Q F ̂  M^F). Then, End°(A) ^ M2(F),
C^0 = End0 (A, L) ̂  F, and V^ = Q.

(3.8.ii) A ̂  A2 x A2, with dimA2 = 2 simple and End°(A2) ^ F, where E is a quaternion
algebra over a CM field F with [F : Q] = 2. More precisely, p splits in F and F ̂
Hp (g)Q F, where Hp is the quaternion algebra over Q ramified at oo and p. Let B' be
the quaternion algebra over Q whose invariants agree with those of B except at oo and p.
Then End0 (A) ^ M^E), End0 (A, i) ̂  B' ̂  F, and V^ = [x C B'; tr(.r) = 0}. Here
note that B (g)Q B' ^ M2(Hp) and hence that (B (g)Q F) 0^ (B' (g)Q F) c^ M2(F).

(3.8.iii) A ^ A§ x A^ where Ao and Ai are non-isogenous ordinary elliptic curves. Then
End0 (A) ^ M2(Fo) x M2(Fi) for imaginary quadratic fields Fo and Fi, which split B.
Then, End0 (A, u) ̂  Fo x Fi, and V^ = Q.

(3.8.iv) A ^ A^, for an ordinary elliptic curve Ao. Then End°(A) ^ M4(Fo) where the
imaginary quadratic field Fo splits B, End°(A^) ^ M2(Fo) and V^ ^ {x e M2(Fo);
t^=a;,tr(a;) =0}.

(3.8.v) A ̂  A§ x A^, where Ao is a supersingular elliptic curve and Ai is an ordinary elliptic
curve. Then End°(A) ^ M2(Hp) x M2(Fi), End0 (A,i) ̂  B' x Fi. Since the Rosati
involution acts on End°(A^) by (&,a) ̂  (b^a), the conditions x* = x and tr(rr) = 0
force V^ ̂  Q.

(3.8.vi) A c^A^, for a supersingular elliptic curve Ao. Then End0 (A) ̂  M4(Hp), End°(A^) ̂
M2(B'),and

y^0 ={xe M2(B'); ^/ = t^ = x, iT(x) = 0} - y.
For the last identification we are using the proposition in Section A.4 of Appendix A. Indeed,

by A.5 the Rosati involution on End°(A^) ̂  Mg(Hp) is of main type. Since the Rosati involution
induces via restriction to M2(B) the given involution ofneben type, its restriction to M2(B') is
of main type by the proposition of A.4.

Note that dim V^ ^ 3, with the exception of the supersingular case (3.8.vi). As a consequence,
we have the following:
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PROPOSITION 3.3. - LetT <E Syni4(Z(p)) anduj C V(A^)4 with corresponding special cycle
Z(T, io). Ifdet(T) ̂  0, then the point set underlying Z(T^ uj) maps to the supersingular locus
of M XspecZ(p) SpecFp. In particular, Z(T,UJ) is proper over SpecZ(p) with support in the
special fibre.

Proof. - Indeed the previous results imply that this is true for closed points. D

COROLLARY 3.4.- For i = l , . . . ,r , let d, C Sym^(Q) be positive definite with
HI + • • • + rir = 4, and let uji C V^)^ with corresponding special cycles Z(dz, cc;,). For T e
Syni4(Z(p)) with diagonal blocks d i , . . . , dr, let ZT be the union of the connected components
of Z(d\,uj\) x^ • • • x^ Z(dr^r), where the fundamental matrix has value T. Ifdet(T) ̂  0,
then the point set underlying ZT lies over the supersingular locus ofMx specZc Spec Fp.

Having answered these very crude questions on the intersection behaviour of our special
cycles, we are led to ask more precise questions. Again for i = 1,... ,r let di e Sym^.(Q)
be positive-definite with HI + • • • + rir = 4 and let uji C ^(Ap^ with corresponding cycles
Z(di,C(;i),.. .,Z{dr^r}' We then ask:

(a) under which conditions do the cycles Z{d^, 0:1),..., Z(dr, uJr} intersect properly? More
precisely, can one parametrize the isolated points of Z = Z{d\, uj\) x ̂  • • • x ̂  Z(dr, u^r} and
calculate at such an isolated point y ,

(3-9) e(y)=\g^(0^y)7

(b) Let V be a connected component of Z = Z (di, uj\) x ̂  • • • x M Z {dr, u^r) lying over the
supersingular locus ofA /(xspecZ(p) SpecFp. The intersection number along Y is

(3-10) X^Oz.^'-^Ozr)

(cf. [22,27]). An important question to answer is when the derived tensor product here can be
replaced by an ordinary tensor product, i.e., by Oz' In the case when Y is an isolated point
this would mean that the length in (3.9) is in fact the intersection number of Z\,..., Zr at y .
In particular one may ask, when does the intersection number along Y depend only on T with
Y C ZT^ Related to this question is the problem of the singularities of the schemes Z(d,c<;):
under which conditions are they Cohen-Macaulay, or even locally complete intersections? In
general they are neither [21].

Our next task will be to investigate the structure of the supersingular locus M.^ C
M. xspecZ(p) SpecFp.

4. Structure of the supersingular locus

As mentioned in the introduction, the results of this section are a presentation of results of
Moret-Bailly [23] and Oort [24]. A similar presentation was independently given by Kaiser [11].

We put F = Fp, and let W = W(¥) be the ring of Witt vectors of F and JC = W ̂  Qp its
quotient field. Also write W[F, V] for the Cartier ring of F.

Throughout this section, we assume that p \ D{B), and we fix an isomorphism Oc <^z ̂ p ̂
M4(Zp).

Suppose that ^ = (A, L, A, 7f) e .M^F), and let A(p) be the p-divisible (formal) group of A.
The action of Oc 0z Zp ^ M^Zp) on A(p) then induces a decomposition A(p) ^ Ao(p)4,
where Ao(p) is a p-divisible formal group of dimension 2 and height 4. Let LQ be the
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(contravariant) Dieudonne module of Ao(p) and let C = LQ ^w K- be the associated isocrystal.
This does not depend on the choice of $ e Mss(¥), up to isomorphism.

More precisely, we fix a base point <^o = (Ao, ̂ , Ao, rf^) e .M^F) and let £=LQ ^>w K be
the isocrystal associated to it. The isocrystal C has a polarization ( , ), is isoclinic with slope -
and has dim^c C = 4. Then F is a-linear, V = pF~1 is a~1 -linear, and

(4.1) (Fx^)=(x,Vy}a.

If ^ = (A, L, A, T^) C ̂ ^(F) is another point, then the choice of an isogeny between ^ and ^o
defines a TV-lattice L C C.

For a TV-lattice LcC of rank 4, set

(4.2) L^^e/;; (^L) CTV}.

DEFINITION 4.1. - (a) A W-lattice L in C is special if and only if L = c ' L±, for some
ce/C^

(b) A W-lattice L in C is admissible if

L ^ F L ^ p L .

For TV-lattices L, L' in £, we define the (generalized) index \L': L\ as

length(L7L n L'} - length ( L / L U L7).

If L is special, then [L1- : L\ e Z is divisible by 4. We can replace L by a • L, for a e K^ to
obtain a lattice with L= L-L or L= pL^. In this case we call L standard.

We note that, if L is an admissible lattice, then, since C is isoclinic of slope 1/2, we have

dimp L / F L = 2.

We define a set of lattices as follows:

(4.3) X = {L C £; L admissible and special}.

If L e X then FL e X. This follows from (FT^ = V-1 • L^ (c/ (4.1)).
The conditions in our moduli problem imply that the lattice L c C associated to ^ e Mss(¥)

and an isogeny between ^ and ^o actually lies in X. Note that each admissible lattice is the
Dieudonne module of a ̂ -divisible formal group of dimension 2 and height 4 over F.

Recall from (3.8.vi) that End°(A^, i)°P =: C ' ^ M^B'), where B' is the definite quaternion
algebra over Q with the same local invariants as B at all primes £ ̂  p. As before, let V =
[x € M2(B'); x ' = x and tr(a;) = 0}. Let

(4.4) Gf={g^ G^; gV'g-1 = V and^/ = v{g)}.

Note that the action of G'(Qp) on A^ (p) up to isogeny passes to C. In fact,

(4.5) GW^eGLGC); (^^) =^)M, F^=^}.

Here^e/C^
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The action of G'(Qp) preserves the set of lattices X. Fix an isomorphism ^(A^) ^ B^A^)
and, hence, an isomorphism G(A^) ^ G'(A^). Then, the usual analysis identifies G'(Q) with
the group of self-isogenies of ^o and yields an isomorphism

(4.6) .M^F) ̂  G'(Q) \ (X x G ' ^ / K ^ .

We will now describe the lattices in X in more detail.

DEFINITION 4.2. - ForL<E X, let

a(L) = dimp L / ( F L + VL).

Since a(L) = dimp Hom^y^y] (L, F), we see that a(L) is the a-number [24] of the ̂ -divisible
group Ao(p) associated to L, i.e.,

a(L) =Rom^{ap,Ao{p)).

Since

L

FL+VL

(4.7) FL VL

^LnYL

pL
we have

,A ̂  /^ r 2 if^^=^^,
^ ^'{l if[L:FL^VL]=l.
Let

(4.9) Xo={LeX; a(L)=2}.

Such lattices will be called superspecial.
In addition to the superspecial lattices, the following type of lattice will play a key role in the

description of the structure of X.

DEFINITION 4.3. - A lattice L C C is distinguished if L is admissible and FL = cL^ for
some ce A^.

We denote by X the set of distinguished lattices. jDbviously, if L e X is distinguished, the
index [2^ : L] is congruent to 2 mod 4. Note that if L is distinguished, then FL = VL. Indeed,
by (4.1) for any lattice Z we have (FL)^ =V~1L±. Hence if FL = c • L^ we get

L = c(FL)1- = cV-1].1- = cV^c^FL = V-^FL,
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i.e., VL = FL, as claimed. Similarly one sees that if Z € X, then FL e X.
Starting with a distinguished lattice, we can scale it to obtain a distinguished lattice Z with

either

(4.10) Z^zZ^p-^Z or Z^Z^zp^Z-S
with all indices equal to 2. We will call distinguished lattices scaled in this way standard. We
note that if, in the identity defining a distinguished lattice L, the order of c is odd, then L may be
scaled^ to be standard in the sense of the first alternative of (4.10) above. If the order of c is even,
then L can be scaled to be standard in the sense of the second alternative of (4.10), and hence,
FL can be scaled to be standard in the sense of the first alternative of (4.10).

For any L 6 X and for any F-line i C Z/FL, let L = L{£) be the inverse image of i in Z.
Thus

Z ^ LF ^ L

(4.11) | | |
^ Y ^ + 1
L / F L D £ D 0

LEMMA 4.4. - For H C Z/FL, L = L{£) e X.

Proof. - First, since FL = VL, we have

(4.12) F L c F L c L ,

and

(4.13) F L ^ F V L = p L D p L .
Hence L is admissible.

Next, we have

(4.14) ZDLDFL,

where all inclusions have index 1. Furthermore, on L / F L we have a nondegenerate alternating
form with values in F induced by c~1 • ( , ) if FL = cL^. Clearly L / F L is a maximal isotropic
subspace and hence L is special. D

The above proof infract shows the following. Suppose that L e X with FL = p • L ± . Then
L^ =pL(£). lfFL± =pL, then L(£)1- = L(£).

Thus to any distinguished L we have associated a projective line P ( L / F L ) and a family of
admissible special lattices parametrized by the F-points of this projective line. These projective
lines have a natural ¥p2 -structure which we now describe.

For any TV-lattice L in £, we have

(4.15) FL=VL ^^ Ft2L=FVL=pL <^> p-lF2L=L.

LEMMA 4.5. - Suppose thatp^F^L = L, and let

Lo={x^L; p~lF2x=x}.

Then LQ is a Zp2 -module and

Lo 0z^ W ̂  L.
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If Lj^ X_is distinguished, then L i^ preserved by the a2-linear endomorphismp"1^2, and we
have L^ LQ 0z^ W. Moreover, FL is also preserved by p~lF2, and (FL)o = F(£o). Thus,
the two-dimensional F-vector space L / F L has a natural Fp2-structure:

(4.16) L / F L c± Lo/FLo (g)p 2 F.

We may then view any line £ as an element of P(Lo/FLo)(¥). We denote by P~ the projective
line P(Zo/FZo) over ¥p2.

LEMMA 4.6. - Under the isomorphism

L / F L ̂  Lo/FLo (g)p^ ̂

the automorphism induced by p~lF2 on L / F L coincides with 10 a2 onL^/FL^^ 3 F. Hence,

P-^^LW^L^W),
where £ is identified with a point in P~(F).

COROLLARY 4.7. - A lattice L(£) associated to a distinguished L is superspecial, i.e., has
a{L(£)) = 2, if and only if£ e P^(Fp2).

PROPOSITION 4.8. - Suppose that L <E X with a(L) = 1, and let

L=F~\FL-^VL).

Then L is distinguished and L=L{£) for a unique line £ G Py(F) \ P~(Fp2).

Proof. - Let L1- = c ' L. Then

(FZ)^ = {FL)1- H (VL)^ = V-^L^ n F^L^- = p^c • (FL n VL).

On the other hand, F2!^ = F2L + pL. Let S = L / p L , and let / and v be the cr-linear
respectively a~1 -linear endomorphisms of S induced by F and V. Since FV = VF = p, we
have fv = vf = 0 and so ker(/) = im(v) and ker(^) = im(/) are two-dimensional subspaces
of S. However, for any L ^ X there is some j ̂  2 with F3 L C pL and hence / is nilpotent. If
f2 = 0, then F2L = pL since both lattices have index 4 in L and this would imply a(L) = 2,
contrary to our assumption. Therefore, since im(/) is two-dimensional we must have that im(/2)
is one-dimensional and im(/2) = im(/) n im(v). Hence

F2! = F2L + pL = FL n VL.

It follows that F(FL) =p • c~l(FL)l•. On the other hand, FL is admissible, since

pFL =p(FL + VL) CpLc F2! = FL n VL c FL c FL = FL + VL,

where all inclusions are of index 1. It follows that FL e X and hence also L e X. Finally
L=L(£) for the line

7 = L / F L C L / F L . D
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We summarize the above construction in the following theorem.

THEOREM 4.9.- There is a natural G\Q)p)-equivariant map

JJP^(F)^X
LGX

which induces a bijection

]J(P^(F)\P^>))^X\Xo.

The map associates to (L, t), where £ C L / F L is a line, the element L = L(-f) e X.
The action ofg e G^Qp) on the index set of the left hand side is lifted in the obvious way to

the whole set appearing on the left hand side.

Remark 4.10. - It can be shown that the map above is in fact a morphism, i.e., is the map on
F-points induced by a morphism of schemes over SpecFp,

II p^^88-
LeX

This can be shown by the method of Oort, [24], or using Cartier theory, as in Stamm, [30]. Using
either of these methods one can construct a morphism of schemes over Spec Fp,

G'(Q) \ [( U P-) x G\^}/KA —^M88

L \ ~ ~ / JLex

which turns out to be the normalization of the curve Ad83.

The "distinguished curves" cross at the superspecial points. To describe this, it will be useful
to have a normal form for superspecial lattices.

LEMMA 4.11. - Fix 6 <E Z^ with ̂  = -6. Let L e XQ be superspecial and standard.
(i) Suppose that L = L^. Then there is a basis ei, 63, 63, e^for L over W such that 63 = Fei,

64 = Fe'2, Fe^ = pe\, Fe^ = pe^ and such that the matrix for the polarisation is

0 1^(^^L-^-vv^/^j--^^ o ; -

(ii) IfL = pL^, then L = F L ' where L' e XQ with L' = (I/)^

PROPOSITION 4.12. - Suppose that L G XQ is superspecial and standard.

(i) IfL1- = L, consider lattices L such that L ̂  L ̂  FL and such that FL = pL^. Such L ' s
are distinguished', there are p + 1 of them, and they can be described explicitly as follows. Let
e\,..., 64 be a standard basis as in Lemma 4.11. Then the distinguished L ' s have the form

Z=lV(ei+/^2)+-FL,

where JJL € Z^ such that /^cr = —Imodp.
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(ii) IfL= pL^, then the distinguished L ' s containing L with index 1 are those associated, as
in(\),toL' =F-1L.

Proof of Lemma 4.11. -Since p~lF2 is a ^-linear automorphism of I/, we can write
L = LQ (g)z 2 W for the rank 4 lattice Z/o of fixed points of p~lF2. Let So = Lo/pLo, a four-
dimensional symplectic vector space over Fp2, and note that FLo/pLo is an isotropic 2-plane
in So, which is paired with the quotient Lo/FLo. We can then choose e\ and 62 € LQ whose
images form a basis for Lo/FLo and such that (ei, 62) = 0, after modification by elements of
FLo, if necessary. The elements ei, 62, es :== I^ei and 64 := Fe2 then give a TV-basis for L, and
Fe3 = F^i == j?ei, and Fe^ = F'2e<2 = pe^ as required, since e\ and 62 € Lo. The matrix for
the polarization is then

(4.17) f ° ^V where A = (e,Fe), with ̂ f6 1).
\ A u / V^/

Note that det(A) C Z^, and that

(4.18) -^ = {Fe.eY = (e,Ve) = (e,Fe) = A,

since V == pF~1 and so, on Lo, V = ^2 • F"1 = F. If we change the vector e to a • e,
for a G GL2(Zp2), then A changes to aAtaa. Since det(A) C Z^ and since the norm map
N : Z^ —^ Z^ is surjective, it is easy to check that, for a suitable choice of a we can obtain
aAta(T=6•l2. D

Proof of Proposition 4.12.- Let us prove (i). Using the standard basis of Lemma 4.11, we have
L = [ei, 62,63,64] (the square brackets indicate the W-span) and FL == [pe^^pe^, 63, e^}. Any
lattice L with L D L D .FL and with [L : L\ = 1 has the form

(4.19) L = W • (aei + be^) + FL,

where at least one of a and & e IV is a unit. If a is a unit, we can write L = \e\ + f^e^, pe2, £3,64].
Then

(4.20) FL= [e^^r i^e^pe^pe^.pe^} and pZ^ = [64 - /^3,pe4,.pei,pe2].

Comparing, we see that fi must be a unit and that /^CT = —1 modp, as claimed. It is easy to
check that the case in which a is not a unit yields no solutions. The assertion (ii) is trivial. D

COROLLARY 4.13.- The map appearing in Theorem 4.9 is surjective. Any lattice in
XQ has p + 1 preimages which all lie on distinct lines. In fact, the preimages of L G XQ
correspond to the distinguished lattices F~1L where L ranges over the lattices associated to
L in (i) of Proposition 4.12 (respectively to distinguished lattices L associated to L in (ii) of
Proposition 4.12). Finally, the images of two distinct lines P~ and P~ have at most one lattice
in common which then lies in XQ.

Proof. - The last assertion follows since, if L, L' e X, L -^ V\ both lie on P~, then Z =
L+L'. D

The next result gives a standard basis for a distinguished lattice.
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LEMMA^ 4.14^- Let Lbe a distinguished lattice "which is standard.
(i) IfFL == pL^, then there exists a W-basis 61 , . . . , 64 ofL such that 63 = Fe\, 64 == Fe-2,

Fe^ = pe\, Fe^ = pe^, and such that the polarisation has matrix

1
-1

(fe^)),,^^ I -p
P

(ii) IfFL^ = pL, then L = FL' where L' e X with F L ' = p • L11

Proof of ( i ) . -Let LQ be the fixed points of p~lF2 on Z. Since FL =pL±, ( , ) induces a
nondegenerate symplectic form on the two-dimensional ¥p2 -vector space Lo/FLo. Choose e\
and 62 ^ -^o whose images in Lo/FLo are a basis for this space and such that (61,62) = ^. Let
63 = ̂ i and 64 = 1^62, so that, as in Lemma 4.11, ^63 = F^i = pe\ and ^64 == F^e^ = pe-z.
The polarization then has matrix

(4.21)
f 6J A '
-^A -pSJ

where J = ( _ ^ 1) and A = (e, Fe) = - ̂ ^ as in the proof of Lemma 4.11. In the present
case, however, A = Omodj). A HenseFs lemma argument shows that we can replace e by
06 + bFe with a e GL2 (Zp2) and b C N2 (Zp2) to achieve A = 0, while preserving the condition
(6, 6) = 6J. D

Recall that G'(Qp), given by (4.6) above, acts on the set of admissible lattices. For any
lattice L, (gL)1- = ̂ (^"^(L^). If L e X is a special lattice, with L = c • L^, then gL =
v(g)c • {gL)1-, so that gL is again special. Moreover, a(gL) = a(L) so that the subset of
superspecial lattice is preserved. Also, if L is distinguished, and if g e G"(Qp), then gL is again
distinguished. Since the valuation of v(g) is an arbitrary integer, for any L G X (respectively
L C X) there is g e G'(Qp) such that gL (respectively gL) is standard with {gL)1- = gL
(respectively F{gL) =p- (gL)^). By Lemmas 4.11 and 4.14, we have:

COROLLARY 4.15. - G'(Qp) acts transitively on the set of superspecial lattices and on the
set of distinguished lattices.

We would finally like to compute the stabilizers in G'(Qp) of the superspecial and
distinguished lattices.

Let B' be as above, and, identifying Qp2 with a subfield of By, write B' = Qp2 + IIQp2 for
an element II e B'y x with n2 = p and such that Ha = a^II, for a G Qp2. Let Co be the fixed set
for the automorphism p"1^2 of £, and let II operate on Co by F. By construction, II2 = p, and
so Co is naturally a left vector space over By of dimension 2.

LEMMA 4.16.- Let

EndK:(r,F):={aeEndK:(/:); Fa=aF}.

Then,

End^F) =End^(Co,F) =End^(£o).

The polarization on £ induces a Qp2-bilinear symplectic form on Co, which still satisfies
(Fx^)=(x,Vy)a.
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LEMMA 4.17. - Let U be a left B^-vector space with a B-Hermitian form ( , ) : U x U —>
By Thus (bx.cy) = b(x,y)cL and ( y , x ) = (x,yY, where b H-> b' is the main involution on B'
Write

{x,y)= (x,y)o6 + (x,y)^6H,
where (x,y)o and (x,y)^ e Qp2. Then,

( , ) i : [ / x£ /——Q^2

is a symplectic Qp2 -bilinear form on the Qp2 -vector space U such that

(*) (iL^)i=(;r,m/)^
and

(x,y)o=-(x,Ily)-i.

The map ( , ) i-̂  ( , )i yields a bijection between the space of By-Hermitian forms on U and the
space of symplectic forms satisfying (*).

Proof. - We just check the behavior of II. We have

(11̂  y) = H(x, y)o6 + II(^ y)^H
(4.22) =-p{x^6-(x^6H
and

(4.23) (x, IL/) = -{x, y)o6H - p(x, y^S.
Thus

(4.24) {Ilx^y),=-{x^={x^y)^

as required. It is at this point that the factor of 6 is required in the formulas. D

In terms of the Bp-Hermitian form ( , ) on CQ determined by the restriction to CQ of ( , ), we
obtain an identification of G'(Qp) with the unitary group of a Bp-Hermitian form,

GW = [g C GL(£); (gx^gy} = v{g){x^y} and Fg = gF}

^ [g e GLB/(£o); {gx.gy) = y{g) • {x,y), y{g) e Q;}.

Let 0' = Op' = 2^2 + IIZp2 be the maximal order in Bp. If L is an admissible lattice such
ihatp~lF'2L = L, then the fixed point set LQ ofp'1?'2 is naturally an O'-lattice in the B' -vector
space Co, and dimp 3 Lo/ULo = 2. Conversely, given any 0' -lattice A with this last property,
we set F = a (g) II on L = L(A) := W 0z 2 ^' Then since n2 = P on ̂  we have L D FL D pL
and dimp L / F L = 2, i.e., L is admissible, and p~lF2L = L. The following is easily checked,
using the formulas of Lemma 4.17.

LEMMA 4.18. - (i) Suppose that L € XQ is superspecial with L = L^, and let ei,..., 64 be
a standard basis as in Lemma 4.11. Then e[ == 6~le^ and e^ = 6~le^ is an 01-basis for Z/o, and
the matrix for the B-Hermitian form on CQ is ((e^, e' -))ij = Is.

(ii) Suppose that L e X is distinguished and that FL == p-L-^ and let e\,..., 64 be a standard
basis as in Lemma 4.14. Then e[ = (^ei and e^ = —6~le'2form an 01-basis for LQ and

(^e^) nz^j^zj- \ _n
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Thus, in classical language (c/ [29,8]), the superspecial lattices correspond to local compo-
nents of the principal genus of quaternion Hermitian lattices, while the distinguished lattices
correspond to local components of a non-principal genus of such lattices.

In less classical language we may describe our results in terms of the Bruhat-Tits building
of the adjoint group G^ over Qp (comp. [11]). The building B(G^ Qp) is a tree and may be
identified with the fixed points

B(G^^)=B(G^!C)F.

There are two kinds of vertices in B{G'^ Qp). The vertices of the first kind correspond to the
equivalence classes of lattices L C C which are F-invariant. Here two lattices Z/i and L^ are
equivalent if Li is homothetic to L^ or to L^. Hence the vertices of the first kind are in one-to-
one correspondence with the distinguished lattices L which are standard and with FL = pL^.
The vertices of the second kind in 0(G^,Qp) correspond to the edges in B(G^JC) whose
vertices are interchanged by F. Equivalently, they correspond to pairs {L, FL} of lattices in XQ
which are standard. We thus obtain bijections

X <—> Z x {vertices of the first kind in B(G^, Qp)}

and

XQ <—> Z x {vertices of the second kind in B{G'^ Qp)}.

These bijections are G^Q^-equivariant, where g e G^Qp) acts on the Z-component on the
right via n ̂  n + ord(^)). The action of F on the left corresponds to the translation n ̂  n +1
on the first factor and the trivial action on the second factor on the right. Furthermore, a lattice
L € XQ and L e X are incident (i.e., L e P^) if and only if the corresponding vertices of
B(G^, Qp) lie on one and the same edge.

In these terms the stabilizer K^ of a distinguished lattice Z e X is a maximal compact
subgroup of the first kind of G^Qp), and the stabilizer K88 of a superspecial lattice L G XQ
is a maximal compact subgroup of the second kind of G^Qp).

Remark 4.19. - We return, for a moment, to the global situation, and recall that X is the
set of distinguished lattices in C. As observed in Remark 4.10, our calculations "show" that the
supersingular locus M^ is a union of rational curves and that the irreducible components are in
bijection with the set

(4.25) G^Q) \ {X x G(A^)/^) ^ G^Q) \ (G'^/K^ x G(A^)/^),

where K^ is the stabilizer in G'(Qp) of a fixed distinguished lattice Z e X. These curves cross,
p + 1 at a time, at the superspecial points, and there are p2 + 1 such crossing points on each
component. The set of all crossing points is in bijection with the set

(4.26) G'(Q) \ (Xo x G[K^/K^ ^ G'(Q) \ (G^Qp)/^8 x G(A^)/^),

where K^ is the stabilizer in G^Qp) of a fixed superspecial lattice L e XQ.

We finally observe two consequences of our description of M^.
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Fix a factorization D{B) = D\D^, and let K = Yi^K^ be the compact open subgroup of
G(Af) with local factors

{ Kf if £\D^
Ki= Kf if£ D^

K^ if£\D(B).
Here, we have fixed a maximal order R in B, and for £ \ D(B\ we fix an isomorphism Ms (B^) ̂
M4(Q^) such that M^R^) ̂  M^). Then let K^ = G(Q^) H IVL^). Thus, for ^ | D^ (re-
spectively ^ | D^), KH is the stabilizer ofaHermitian 0^-lattice of principal (respectively non-
principal) type, and, for i\D(B\ K^ is a hyperspecial maximal compact subgroup of G(Q^).
Note that, in contrast to the general assumptions above, K is not neat. Still, for a fixed prime
p\ D{B\ one can consider the coarse moduli space M.K (the quotient by a finite group of one
of the schemes considered above) and its points over F. Let B^ denote the definite quaternion
algebra with D(B^) = D(B)p. Then, by (4.25), the components of the supersingular locus in
the fiber of M.K at p correspond to the classes of maximal Hermitian lattices in the genus of type
(D-i^pD^) for B^. An explicit formula for this number H(D^^pD^) was found by Hashimoto
and Ibukiyama [9]. In the case D(B) = 1, so that B = M2(Q), the abelian varieties parame-
terized by M-K^) have the form A ̂  A^, where Ao is a principally polarized abelian surface.
Thus, in this case, M.K ^ AS,!, and the description of the supersingular locus reduces to some of
the information given by Katsura and Oort [12], Theorem 5.7, and Ibukiyama, Katsura and Oort
[ 10]. In particular, the number of irreducible components of the supersingular locus is H (1, p).

As another example, fix a square free positive integer D and distinct primes p\ and
p2 relatively prime to D. Consider indefinite quaternion algebras B\ and B^ over Q with
discriminants D{B^) = Dp^ and D(B^) = Dp^. Let G\ and G^ be the associated groups, via
(1.3). As in (4.5), let G[ be the twist of Gi at p^ and let G^ be the twist of C?2 at ^i. These
groups are both associated to the definite quaternion algebra Bf^ ^ B^^, and are isomorphic.
Fix an isomorphism G[ ^ G^ and compatible isomorphisms

Gi (A^2} ̂ c ' (h^2} ~ c ' (^plp2} ̂ r^t^P2}^l^f j — ^ l ^ f )—'J'2\^^f f—^^y-^f ) i

and let K^P2 = K^P2 = K^2 be a sufficiently small compact open subgroup. Also let

^i,pi = K^, for *i = d or ss,
K^^=K^,
K^=K^
K-2^ = K^, for *i = d or ss,

where the notation is as above. Let

K^=K^K^K^
K;2=KP1P2K^K^.

LetM^1 =M^i andA^22 =M^2 be the corresponding moduli schemes, defined over Z(p^)
andZ(p^) respectively.

Then, using (4.25) and (4.26), there are (noncanonical but equivariant) bijections between
various sets of irreducible components or crossing points as follows:

Components((A^2 x FpJ8'8') ^ Components ({M^ x FpJ^-),

Components((A^28 x FpJ8-8-) ^Crossing points ((M^ x FpJ8-8-),
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Crossing points ((M^ x FpJ8-8-) ^ Components ((M^ x FpJ8-8-),

Crossing points ((.Ml8 x FpJ8-8-) ^Crossing points ((My x Fp,)8-8-).

Here we have written (Mf x FpJ8-8- for the supersingular locus of the fiber over p^ of M\\
where *i = ss, for example. These results are in the spirit of those ofRibet [25,26], who considers
components and their crossing points for the fibers of Shimura curves and modular curves at
primes of bad reduction.

5. Endomorphism algebras and points of proper intersection

In this section, we consider the points of intersection of the special cycles in the supersingular
locus, using the information obtained in Section 4 about the structure of this locus. In particular,
in the decomposition

Z(di,^i) XM • • • X^Z(dr,(jJr)= Y[ ^(T,UJ)

reSym4(Z(p))^o
diag(T)==(di,...,d,)

of (3.6), we fix a matrix T and we obtain a criterion, in terms of T, for Z(T,u) to consist
of isolated points. We also show that, even when det(T) 7^ 0, there can be components of the
supersingular locus in the image of Z(T, uj) in A^88.

We retain the notation of Sections 2-4, and we begin by obtaining information about the
endomorphism rings of various types of admissible lattices.

For an admissible lattice L, let OL = End^(L, F) be the Zp-algebra of TV-linear endomor-
phisms of L which commute with F. Note that Endw(L,F) is an order in the Qp-algebra
EndK;(A F) = Cp = C ' 0Q Qp ̂  M^Bp). Also, observe that Endw(L, F) = Endw(F^L, F)
for any j G Z. If L = c ' L^ is special, we have

(5.1) ( F j L ) = p 3 c ' ( F j L ) ± .

Thus, to determine OL for L € XQ we may assume L = L±.
By Lemma 4.18, we immediately have the following.

_ LEMMA 5.1. - For any super special lattice L e XQ (respectively any distinguished lattice
L € X) Endw(L, F) (respectively Endw(L, F)) is a maximal order in Cy

In either case, this order is isomorphic to M'z(0'\ where 0' = Zp2 + IIZp2, as in Section 4.
The map M-^(0') —> M^W^) given by reduction modulo n can be described as follows.
Consider the case of L e XQ. As in Section 4, let LQ be the fixed points ofp^F2 on L. Then
define

(5.2) redz.: End^(L, F) —. Endp^ (Lo/FLo) ̂  M^W^)
as the composition

(5.3) Endw(L, F) -^ Endz^ (LO, F) —> End^, (Lo/FLo).

This map is surjective. The surjective reduction map for Z e X

(5.4) red^:EncW(Z,F) —. End^^ (Lo/FLo) ̂  M^(¥p2)
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is defined analogously. Note that L / F L ^ Lo/FLo (g)p 3 F, and that the endomorphism a
induced on L / F L by a e End^v(Z, F) is red^a) (g) 1.

Next, suppose that L e X \ XQ, and let L be the unique distinguished lattice associated to L by
Proposition 4.8. Recall that FL = FL + VL. In particular, for every element a e Endw(L, F),
aFL C FL, so that aL C L, and there is a natural homomorphism which is injective,

(5.5) Endw(L,F)^Endw(L,F).

On the other hand, there is a unique line £ C L / F L such that L = L{£) is the inverse image of £
in L.

LEMMA 5.2. - L^r L C X \ XQ. With the notations introduced above,

Endw{L,F)={aeEndw(L,F)', a(£)c£}.

Here a is the endomorphism of L/FL induced by a. In fact, there are t\vo possibilities'.
(i)if£eP^(¥)-^(¥^),then

Endw{L^F)=(Ted^-l(¥p^l^

(ii) iff G S^(Fp4) - P^(F^), then

Endw{L,F)=(Ted^)-l(¥^),

for some embedding ¥p4 ̂  Ms (Fp2).

Proo/^ - As remarked above, the automorphism of L / F L = Lo/FLo 0F 3 F induced by
p ~ l F ' 2 is just 1 0 a2. Since, for any a e Endw{L,F), a commutes with this automorphism,
a(£) C £ implies that Q^a2^)) C cr2^). Since a nonscalar endomorphism can have at most
two eigenlines, a(£) C £ and a4^) -^ £ implies that a == a • Is, for a <E Fp2. If a4^) = ^ but
a2(^) 7^ ^, and if a is not a scalar endomorphism, then £ and cr2^) are the distinct eigenlines of
a. Then ¥p2 [a] ̂  Fp4, and any endomorphism f3, with f3 G Endyy (L, F) must lie in this subfield
ofM2(Fp2). D

Note that the lattices in (ii) of Lemma 5.2 are characterized intrinsically by the condition
that F^L = p2L but F^L -^ pL. We let X^ be the set of lattices appearing in (ii) and X^ =
X \ X(ii) \ Xo the set appearing in (i). Recall that OL = Endw(L, F) and 0^ = Endw(L, F).
Then

redL(0L) = TedL{Endw(L,F)) ̂  M^(¥p2) i fLe Xo,
(5.6) red^(0L) =red^(End^(L,F)) c,Fp4 i fLcX^

red^(OL) = red^(End^(L,F)) ^Fp2 i fLe X^.

In particular, the endomorphism algebras of all the L's with L C X^ and with a given associated
L coincide. Any endomorphism of one such L preserves all lattices L' e X in the image of P~.

Recall that Cp = End^(/;, F), and let

(5.7) Vp = [x e Cp; x- = x and tr0^) = 0},
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where * is the adjoint with respect to the polarization ( , ) on the isocrystal C.
Note that OL and 0^ are invariant under the involution ^ on C / . Indeed, let L1- = cL and

.re0L.Then

x^L±)cL±, i.e, x ^ ( L ) c L .

Similarly, if FL = cL1- and x G 0^ then ;r*(£^) c Z^, i.e., x^FL) c FL, i.e., a;*(Z) c Z,
since rr* commutes with F.

For L C X and for L € X, let

(5.8) TVL-End^L^ny; and A^ = End^(£,F) n V;.

These are Zp-lattices in V? on which the quadratic form given by squaring, x2 = q(x) • id is
valued in Zp.

We now describe the reduction maps for distinguished and for superspecial lattices. We start
with the case of distinguished lattices.

LEMMA 5.3. - Let L e X, and put n~ = red~(7V~). Then n~ is equal toLi Li Li Li

{x=a • 12; a G Fp2, a^ = —a}

and the ¥p-valued quadratic form q on n— is given by x2 = q(x) ' 12, i.e. q(x) = —a • a°'. In
particular, q does not represent 1 and hence the Clifford algebra C(n~) is isomorphic to Fp2.
The following diagram is commutative

N- q ^ Jly L ——^ ^P
red-L; \

"Z———Fp

Proof. - Replacing L by F3 L we may assume that L is standard with FL = p • L±. The
symplectic form ( , ) on C induces a nondegenerate alternating pairing

(5.9) ( , ) : L / F L x L / F L — > ¥ .

This pairing descends to a nondegenerate alternating Fp2 -bilinear pairing on Lo/FLo with values
in ¥p2. The induced involution on Endp 2 (Lo/FLo) is compatible with the reduction map,

red^(.r*) = red-(re)*, x C OL.

Now any endomorphism ^ of the two-dimensional symplectic vector space Lo/FLo over ¥p2
with af* = ̂  is a scalar. Hence for re e N- we get

red(a*) =a -12 , a ^ ¥ p 2 .

But x <E N-^ acts on Lo/pLo preserving the subspace FLo/pLo. Since .r commutes with F,
it acts on the subspace as a^ • 12. The condition tr°(.r) = 0 implies therefore that a = -a".
Therefore we have proved that n^ is contained in the subspace above. It is easy to see that we
have in fact an equality. The remaining assertions are obvious. D
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Next we consider the case of superspecial lattices.

LEMMA 5.4. - Let L € XQ and put HL = red^A^).
(i) HL is isomorphic to

{xeM^(¥p2); txa=xandtT(x)=0}=\x= ( a b ); aeFp, be¥p2\.
I \° a ) )

The ¥ p-valued quadratic form q on HL is given by x2 = q(x) • 1^, i.e., q(x) = —(a2 + bba).
(ii) Let C(riL) be the Clifford algebra of the three-dimensional quadratic space n^. Then the

natural map C(\\L) —^ Ma (Fp2) is an isomorphism.
(iii) The following diagram is commutative'.

NL^^^P

redz.
\ Y
n'̂ -^F,

Proof. - Replacing L by F3L we may assume L1- = L. On Lo/FLo we have the non-
degenerate anti-Hermitian form

(5.10) ( J : Lo/FLo x Lo/FLo —> ¥p2

induced by the formula

(5.11) (v,w) = {v,Fw) modp,

where v and w are representatives of v and w in LQ. We may find a basis of Lo/FLo such that
the induced involution on M^(¥p2) is given by x n- ^-a^. Now the lemma is proved in a way
similar to Lemma 5.3 above. D

We now return to the points of intersection of the special cycles in the supersingular locus. Let
T G Syni4(Z(p)) with det T ^ 0 and uj C V(A^)4 with corresponding special cycle Z(T,UJ).
Let $ e Z(T,uj} correspond to the collection (A^^A^J). By Corollary 3.4, the point
corresponding to the collection (A^, L, A, 7f) lies in .M^F). Thus, End^A^)013 = C9 = C' ^
MS^'), where B' is the definite quaternion algebra over Q with discriminant D(B)p. The
last isomorphism here can be chosen so that the Rosati involution corresponds to the involution
x ̂  x ' = txi ofM^B'). Then, as in (3.8.vi),

(5.12) V^° =Vf^{xe M2(BQ; x ' = x and tv(x) = 0}.

The components j i , . . . ̂ 4 o f j lie in V\ and therefore, in particular, we must have T > 0 if
Z(T, uj) is to be non-empty.

Let L be the contravariant Dieudonne module of the formal group Ao(p), where we write
A^(p) ̂  Ao(p)4, as in Section 4. By choosing an isogeny of $ with the chosen base point ̂  we
obtain, as in Section 4, an identification C = L ®w K- of its isocrystal with that of the base point.
Then L e X, and there is a natural algebra homomorphism

(5.13) C^ ^)z Zp = End(A^ ^)°P 0z Zp ̂  End^(L, F) = OL C Gp.
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Let NL = Endw(L, F) D Vp, as in (5.8) above. The collections of endomorphisms j induce
collections of elements of Endy^(L, F) and of Vp, which we will denote by the same letters.
Let M be the Zp-submodule of NL spanned by the components ji, j^ j3, j4 ofj. We have the
following commutative diagram:

{^"•.n} C C^—-Endw(L,F) D NL D M

(5.14)

V c c1 __. r^i—^p 3 V;

Recall that T = T^ e Sym4(Z(p)) c Syn^Zp) is the matrix of inner products of the elements
Ji, • • • 5 j4 with respect to the quadratic form on Vp. Thus we have the following basic observation:

LEMMA 5.5. - At a point a/intersection ^ G Z(T,UJ) D .M^F) with corresponding lattice
L e X, the matrix T^=T is represented by the lattice NL = Endw (L, F) D Vp in the quadratic
space Vp. In fact, T is the matrix for the restriction of the quadratic form on NL to the sublattice
M spanned by j i , . . . , ̂ 4.

Suppose L e X \ XQ with associated distinguished lattice L. Recall that OL C 0- and let
^ L

OM be the Zp-subalgebra of 0- = End^(L, F) generated by ^'i, . . . ,^4, i.e., by M. Also let
C(M) be the Clifford algebra of M. Let HL = red-(A^) and let m~ = redy(M), so that

M C NL C A^

(5.15)

mL c HL c

LEMMA 5.6. - Suppose that L ̂  X\XQ with associated distinguished lattice L.
(i) The natural map C(M) —^ OM is an isomorphism.
(ii) There is a commutative diagram

OM C 0-

red^(0M) red^Cy ̂  M^)

U

C(m^) ^ C(n^)=F^.l2

Proof. - The inclusion of C(m^) into C(n-) is induced by the inclusion of quadratic spaces
my C n~. We obviously have a commutative diagram with surjective vertical arrows,

C(M) 0M

(5.16)

C(m^)——^red^(OM)
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But the upper horizontal arrow is surjective since both algebras are generated by M. This proves
that the lower horizontal arrow is surjective. By the statement at the beginning it is also injective
which proves the equality sign at the south-west corner of the diagram in (ii). The rest of the
Lemma follows from Lemma 5.3. D

Next let us consider the case when L e XQ. We use somewhat similar notation: let HL ==
redL(A^) and m^ = redj^OM).

The same arguments yield:

LEMMA 5.7. - Suppose that L C XQ is superspecial. There is a commutative diagram:

OM C OL

red^OM) C redL(0L)^M2(Fp2)

C(mL) C(iu)

Our next task will be to show that the matrix T mod p in M^ (Fp) controls the size of m = m~
or rriL. Recall that, as in Lemma 5.5,

T=^{UrJs)).

where ( , ) is the bilinear form on NL associated to q, i.e., [x, y) = q(x + y) — q(x) — q(y). By
Lemmas 5.3 and 5.4(iii), therefore

Tmodp-((red(^),red(^)).

We now list the possibilities for m, which is the span of red(j'i),... ,red(j4), in the non-
superspecial and the superspecial case separately.

LEMMA 5.8. - Let L € X \ XQ with associated L e X. The possibilities for m = m~ are the
following:
(i) ifdim^p m = 1, then T has rank 1 modulo p and does not represent 1;
(ii) ifm=0, then p T.

Proof. -The first alternative corresponds to the case where m = ny, by Lemma 5.3. The
assertion now follows from Lemma 5.5. D

LEMMA 5.9.- Let L e XQ. The possibilities for m = m^ and C(m) C M^(¥p2) are the
following:

(i) the rank of Tmodp is 3, or equivalently dimm = 3. Then C(m) ̂  N2(^2);
(ii) the rank of Tmodp is 2. Then dimm = 2 and C(m) ̂  M2(Fp).

(iii) The rank of Tmodp is 1 and dimm = 2. Then m is of the form m = mo + r, where v is the
radical and dimmo = dimr == 1. In this case

C(m)^C(mo)~H/(^2),
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where

C(mo) -
'FpeFp,
F 2^ iTp2.

and the element e acts on C(mo) by the nontrivial automorphism of order 2.
(iv) The rank of Tmodp is 1 and dimm = 1. Then

Cfm)-^0^^-IF^

(v) T = 0 modp and dimm = 1. Then

C(m)=A(m)^F^]/(^2).

(vi) m = 0. Then T = 0 modp and C(m) == Fp ^ in the center ofM^(¥p2).

In cases (iii) [respectively (iv)], mo [respectively m] is a nondegenerate line, so that the
quadratic form on it is isomorphic to either x2 or ax2, with a e F^ \ F^'2, yielding a Clifford
algebra Fp C Fp or Fp2.

LEMMA 5.10.- In cases (iii) a^ (iv) above, when an ¥p2 arises in the Clifford algebra
C(m), this Fp2 is not central in M2(Fp2).

Proof. - Choose x e m spanning a nondegenerate line for which C(¥px) ̂  ¥p2. Then .r is
an endomorphism of the two-dimensional Fp2-vector space Lo/FLo with ti(x) = 0, and with
x2 = q(x) • id, where q{x) ^ F^'2. This last condition is equivalent to our hypothesis on the
Clifford algebra. Thus, x has two distinct eigenvalues ±^/q(x) on Lo/FLo, and hence does not
lie in the center. D

We can now describe the intersections of our special cycle with the supersingular locus. For
this, we use the following basic observation. Let L e X be a distinguished lattice. Suppose that
^ € Z(T, a;), with associated module of special endomorphisms M, lies on P~. Then M prolongs
into a module of special endomorphisms for all points of P~ if and only if M C Endw(L, F).
This follows from Lemma 5.3. Indeed, by this lemma,

red^(M) C red^(^) C ¥p2 • 1 c red^O^)

for all L' C (X \ Xo) H P^. Hence M C Ou for all L' e P ;̂ by continuity.

THEOREM 5.11. - Suppose that £, C Z(T, uj) with image in the supersingular locus M^^)
with corresponding L G X.

(i) The rank of T = T^ modulo p is at most 3.
(ii) IfT^ represents 1, then L ^ Xo and ^ is a point of proper intersection.
(iii) If L C X \ Xo, with associated distinguished lattice L, the whole distinguished P~^^ L

associated to L in the supersingular locus, and passing through ,̂ occurs in Z(T,uo). In
particular, ^ is not a point of proper intersection.

Proof. - The reduction of T = T^ modulo p is the matrix for the quadratic form on the images
of j i , . . . , j4 in m = mi/, respectively m = m^, and m has dimension at most 3. This proves (i).
If L e X \ Xo, then T = T^ does not represent 1, by Lemma 5.8. Furthermore, in this case by
Lemma 5.3,

C(m)cFp2.1Cred^(0L'),
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for any L' e P^, which is not superspecial. This implies M c OM C O L ' . If now Lf e P~
is superspecial it follows that M c OM C OL' by specialization. This proves (iii). Finally,
returning to (ii), the argument just given shows that if ^ G Z(T,uj} lies on P-, then T is
represented by m^ and hence does not represent 1. D

It remains to consider the cases where T does not represent 1. We first treat the case when
p\T.

THEOREM 5.12.- Suppose that p\T and that ^ € Z(T,UJ) has image in .M^F) with
corresponding L G XQ. Then ^ is not a point of proper intersection. More precisely.

(i) If m = red^(M) = 0 then each of the p + 1 distinguished P1 ' s through pr($) C M88

occurs in the image of Z(T,^), i.e., for every distinguished L with L D L D FL, we have
M C Endvy(£, F); furthermore, red~(M) = 0.
^ (ii) If m = redi/(M) is a null line in HL, then there is a unique distinguished L with
L D L D FL and with M C Endw(L, F); furthermore, red--(M) = 0. Hence there is a unique
distinguished P1 passing through pr(^) G M88 and contained in the image of Z(T, uj).

Proof. - We may assume that L1- = L. First suppose that m is a null line, and choose XQ G M
such that XQ = redi^o) spans m = red^(M). The endomorphism XQ of the two-dimensional
vector space Lo/FLo satisfies x^ = 0 but XQ ̂  0. Thus im(^o) is a line in Lo/FLo.

LEMMA 5.13. - Assume that L = L^. The lattice L defined by FL = xo(L) + FL lies in X
and L <E P^. Moreover, M C End^(£, F), and red^(M) = 0.

Proof. - Since .TO commutes with F, we clearly have F(FL) = xo{FL) + F2L = xo(FL) +
pL C FL. Similarly one sees that V(FL) c FL, i.e., pFL c F(FL), hence FL is admissible.
Note that {FL)1- ^ L - L = L ^ F L with [(FL)^ : L] = [L: FL} = 1.

To show that FL is distinguished, it will suffice to prove that F{FL) c p(FL)1-, i.e., that
{F^L.FL} CpW.But

(F%FL) = {xo{FL) +pL^o(L) + FL}

c{xo(FL),xo(L)}^pW
={FL^xl(L)}+pW
c(FL,FL)^pW

(5.17) cpW.

Here we have used the fact that x^ = XQ and that x^ = 0, i.e., that x^{L) c FL. We conclude
that FL C X and hence also L <E X.

Next, we must show that every element of M preserves L or, equivalently, FL. In fact, we
show that M • L c FL, so that red^(M) = 0. First, consider the reduction sequence

(5.18) 0—>Mo—^M^Wp-xo— . 0 ,

where

(5.19) Mo = {y e M; y(L) C FL}.

It suffices to prove the inclusions xo(L) c FL and y ( L ) C FL for all y <E Mo. Recall that, for
a- € M, re2 = ^(a;) • id. Since p \ T^ the resulting quadratic form on M/pM is identically zero,
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and so C{M/pM) = /\(M/pM). In particular, for any x\ and x^ e M, .2:1^2 = —x^x\ modp,
i.e.,

(5.20) ^2 (L) C ;T2;ri(L) +^.

Now, fory € Mo,

^(F£)=^o(L)+^(FL)

C;ro^(L)+pL+F(2/(L))

Cxo(FL)^F2L
(5.21) cF{xo{L)+FL)=F2L.
Next, observe that a;2 = ^(.ro) • id and q(xo) = Omodj? implies that x^(L) C pL, not just FL.
Thus

xo{FL)=x^L)^Fxo(L)
CpL-}-Fxo{L)

(5.22) = F{FL + ;ro(L)) = F2^.
This completes the proof of the lemma. D

To finish the proof of (ii), we show that the distinguished lattice FL constructed in
Lemma 5.13 is unique. Note that ker(^o) = im(^o). If Lf = W • u + FL is another distinguished
lattice, whose image V = L ' ' / F L is distinct from ker(;ro), then

(5.23) xo{£f)=[m(x-o)^£^

so that L' is not preserved by XQ .
Now suppose that red^M) = 0, i.e., that M • L C FL. Let FL = W • u + FL be any

distinguished lattice with L D FL D FL. We want to show that, for any x C M, rr(L) C FL =
pL1- or, equivalently x(FL) C F2!/ = j? • (FL)^. But now

{x(FL),FL} = {Wx(u) + F.r(L), IV^ + FL)

(5.24) CW(a;(^)+piy.
But now, since x* = x,

(5.25) {x(u\u} = {u,x(u)) = -{x(u),u)

so that (x{u),u) = 0. Thus {x(FL),FL) C pW, i.e., x(FL) C pF(L)± = F2^, as required.
This concludes the proof of Theorem 5.12. D

We now turn to the case when p \ T but T does not represent 1.

THEOREM 5.14. - Suppose that p \ T and that T does not represent 1. Let ^ G Z(T, uj) with
pr(^) G M33^) and with corresponding L G XQ. Then ^ is not a point of proper intersection.
More precisely.

(i) Tjfdimpp m = 1 and m does not represent 1, then precisely two of the p + 1 distinguished
P^'s through pr(^) occur in the image of Z(T,UJ). These are the only two distinguished
lattices Li and L^ with Li D L D FLi and with M C End^(L^ F) (z = 1, 2). Furthermore,
red^(M)^(0) ,z=l ,2 .

(ii) 7/'diniFp m = 2 a^J m = mo +1 ̂  m Lemma 5.9(iii), where m 6/(9^y not represent 1, ̂ n
precisely one of the p + 1 distinguished P ^ ' s through pr(^) occMry m pr(Z(r,o;)). /r ^ ̂
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only distinguished lattice Li with Li D L D FLi aW m'r/? M C Endw(L^,F). Furthermore
red^(M)^(0).

Pwo/: - We may again assume L^ = L. We first consider case (i). Choose XQ C M such that
XQ = redL(^o) spans m = red^M). Then XQ is an automorphism of Lo/FLo with

^=^•1 ,

where e e F^ \ F^'2. Furthermore, by Lemma 5.8, ^o is not central. Hence XQ has two distinct
eigenvalues e-i_ = ̂ /e and £2= -^/£ in ¥p2. Let ^i and E^ be the corresponding eigenspaces
and let FL^ and FL^ be the corresponding lattices in £,

FLcFLiCL, z=l ,2.

Since ^o commutes with I7' and V, the eigenspaces Ei^and £"2 are preserved by F and V, hence
FLi and -FI/2 are admissible. To see that FL\ and FL^ are distinguished, it suffices to see that
FLi C p ' L^-, i.e., that

(FL^L,)cp'W^ i=l^.

Equivalently, we have to see that the eigenspaces E\ and E^ are isotropic with respect to the
antihermitian form (5.11) on Lo/FLo. If v e ̂ , then XQV = £ z - v and

£ • (v,v)= (ev,v) = (x^v.v) =(xov,xov) ={eiV,av} = -e ' (v,v).

It follows that FLi and FL^^re distinguished.
The lattices Li = F~l(FLi) C X for i = 1 and 2 are the distinguished lattices appearing

in the statement of (i). We have red^ (M) ^ 0 since XQ induces an automorphism of the
eigenspace Ei. On the other hand any y G M with red^) = 0, i.e., with ?/(L) C -FL, also
satisfies y{Li) c L cLi.lt follows that M C End^(Z^ F), hence (i), by the remark preceding
Theorem 5.11.

Now we consider case (ii). Let XQ e mo with x^ = e • 1, for e G F^ \ F^'2, and let ]/o be a
generator of the radical r. Then XQVQ = -y^xo. Therefore Z/Q maps the eigenspace E\ of XQ in
Lo/FLo to the eigenspace ^2 and the eigenspace E^ to Fi. Since ̂ 2 = 0, but ZJQ ̂  0, precisely
one of the two eigenspaces is annihilated by y^. The corresponding lattice is distinguished and
yields as in case (i) the lattice L\ appearing in the statement of (ii). D

COROLLARY 5.15.- Let ^ e 2(T,uj) c Z(d^^) x^ • • • XM Z(dr^r), where d, e
Sym^ (Q)>o with ni + • • • + Ur = 4 (cf. (3.1) and (3.6)). Then ̂  is a point of proper intersection
if and only if its fundamental matrix T =T^ is nonsingular and represents 1 over Zp. In this case
$ is supersingular and superspeciaL

A topic we have not touched upon in the present paper is to describe the shape of the
intersection of our cycles in the case of improper intersection, or, equivalently, to describe, for
T e Sym4(Q)>o, the cycle Z(T^) when its dimension is positive. We refer to the companion
paper [21] to the present one for more information on this topic.

6. Intersection multiplicities

In this section we consider the intersection multiplicity at a point of proper intersection. More
precisely, we return to the setup of the third section, i.e., we fix a decomposition 4 = ni + • • • +
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nr, where n, > 1 for all z, elements ̂  C Sym^ (Q)>o and ̂  C l^A^ giving rise to special
cycles Z(di,cc;i),...,Z(d^o^). We fix a point ^ e ^(^i,cc;i) x^ • • • x^ Z(d^c^) with
det(T^) ̂  0 and where T = T^ represents 1 over Zp. Let <^ correspond to (A^A^Ji,.. .Jy.).
Since det(T) ^- 0 and since T represents 1 over Zp, the associated Dieudonne module L is
superspecial and corresponds to a formal group A of dimension 2 and height 4, with a collection
of endomorphisms j = (ji , . . . ,.74) spanning a Zp-submodule M of rank 4 in Endyy(L, F). By
changing the trivialization of the rational Dieudonne module we may assume that L = L-L, i.e.,
that A is equipped with a principal quasi-polarization A^. By the theorem of Serre and Tate, the
infinitesimal deformations of (A, L, X, ̂ p) correspond to those of (A, A^), i.e.,

(6.1) ^=Def(^A^).

Here M.^ denotes the formal completion of M at ^ and Def(A, A^) the formal deformation
space of (A, A^) over Spf W. Similarly, for the special cycles one has, with obvious notation,

(6.2) i(^^=Def(A,A^;j,),

Z(T^)^= (Z(di,^i) XM " • x^Z{dr,uJr))^
(6.3) = Def(^ A^;j) = Def(A, A^; M).
Here uj = 0:1 x • • • x c^r. Recall that any x ^ M satisfies a;* = x and tr(a;) = 0, that the quadratic
form on M is given by x2 = q(x) • id, and that T is the matrix for that quadratic form with respect
to the basis j i , . . . ,^4. Since T represents 1 over Zp, there exists an XQ e M such that x^ = id.
The quadratic lattice M can be written as M = Zp • XQ + Mo, where Mo = rr^-. Moreover, if
a; C Mo, then a^o = —XQX, since the subalgebra of Endy^(L, F) generated by M is the image
of C (M), the Clifford algebra of M.

The idempotents e i = ^ ( l + a ; o ) , e 2 = ^ ( l - a ; o ) — recall that p ^ 2 — give a splitting
A ^ AL x ^2, with Ai = e\A and ^2 = 62.4 of dimension 1 and height 2. If .r e Mo,
rcei = e^x, and so Mo can be viewed as a submodule of Hom(^.i,A2). Let 2^ = e^L be the
Dieudonne module of Az. Then L= L-^Q) L^. Furthermore, L\ and 1/2 are paired trivially under
the symplectic pairing on L. Indeed, if v\ e I/i and v^ e ^2, we have

{^i, ^2) = <ei'yi, 62^2) = <^i, 6162^2) = 0,

since e\ == e\. It follows that ( , ) induces a perfect symplectic pairing ( , )i on Li, i.e., Ai
and A2 are equipped with principal quasi-polarizations. Since a principal quasi-polarization on a
p-divisible formal group of dimension 1 and height 2 deforms automatically we obtain a natural
identification

Def(A,A^;M)=Def(Ai,A2;Mo).
The length e(^) of the local Artin ring appearing on the right was determined by Gross and
Keating in Section 5 of [7]. Since we have assumed in all of the above that p -^ 2, we may as well
continue to make this assumption, although Gross and Keating do not. Choose a basis ̂ i, ^2, ^3
for Mo such that

q(u^ + u^2 + ̂ 3^3) = dP^u^ + e^u^ + e^u^,

with 0 ̂  oi ^ a2 ^ 03, and £1, £2, ^3 ^ ̂ . Thus, over Zp, T is equivalent to the diagonal
matrix diag^^^, e^, e^3). Recall that by Lemma 5.9, Z(T, uj) = 0 unless ordp det T ̂
1, i.e., 03 > 1. In addition, the matrix diag^^^R"2,^^3) is represented by the norm
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form on the maximal order in the quaternion division algebra over Qp. This imposes additional
restrictions on the a^, see Section 10.

PROPOSITION 6.1 (Gross, Keating, [7], Proposition 5.4). - If a^ + 02 is even, then e(^) =
Cp(r^) is equal to:

ai-l (ai+a2-2)/2

^ (z + l)(ai + d2 + 03 - 3^V + ^ (ai + l)(2ai + 02 + 03 - 4z)p1

i=0 i=ai

+j(al+l)(a3-a2+l)p ( a l+ a 2 ) / 2 .

T^ai + 02 ^ odd, then e(^) = Cp(T^) is equal to:

ai-l (ai+a2-l)/2

^ (z 4- l)(ai + a2 + 03 - 3zy + ^ (ai + l)(2ai + 02 + 03 - 4zV.

COROLLARY 6.2. - We have e(^) = 1 if and only ifoYdp(det(T^) = 1. /M this case the special
cycles Z(di, 0:1),..., Z(dy, ujr) are all regular at ^ and their tangent spaces give a direct sum
decomposition of the tangent space ofM. at ^.

Proof. - The first statement follows from the formulas above. In this case, the cycles Z(di,uji)
have to be irreducible and reduced locally at ^, and the intersection multiplicity in the sense of
Serre, which is bounded by the length, is equal to 1. The rest follows from [5], Proposition 8.2,
and Example 8.2.1. D

At this point we have completely answered the question (a) at the end of Section 3.
What is not clear is whether the length e(^) is indeed the intersection multiplicity of
Z[d\, u j - y ) , . . . , Z(dr, u^r} at ^. This is the content of the question (b) of Section 3.

CONJECTURE 6.3.- Let ^ be an isolated intersection point of Z{d\,uj\),..., Z{dr,u0r)'
Then

(Oz(^i) ̂  • • • ̂  Oz(d^))^ = (Oz(d^) ̂ - " ^ Oz(d^))^

hence e($) is the intersection multiplicity of Z(d\,^\),... ,Z(dr,uJr) at ̂

We stress that this conjecture is reasonable only because M. is smooth over SpecZ(p).
Indeed, Genestier [6] (comp. [22]) has shown that in the Drinfeld-Cherednik situation of bad
reduction the analogues of the special cycles considered here may have embedded components.
On the other hand, assume in our situation that Z(d^^) is an intersection of n, divisors in
M. Then if ^ is an isolated intersection point of Z(di, c^ i ) , . . . , Z(dr, c^r) it follows that each
partial intersection Z(d^,c^J n • • • D Z(di^^) (1 ^ %i ^ • • • ^ ^ ^ r) is locally at ^ a
complete intersection. Hence it also follows that the length e(^) is the intersection multiplicity
of Z{d\, 0:1),..., Z(dr, u^r) at ^, and the above conjecture holds true.

Remark 6.4. - Assume that ^ e Z(di,o;i) H • • • U Z(dr,uJr} is a point with fundamental
matrix T =T^ which is nonsingular and represents over Zp a unit e C Z^ \ Z^'2. Therefore,
there exists x^ G M such that x\ = E • id. Hence we obtain an action of Zp2 = Zp^] on A,

a:Zp2 —>End(A).

We may write M in the form M = Zp • x^ + Mi, where Mi =x^. For x G Mi we have
xx-i = —x\x. Comparing with the definitions in the companion paper to this one, we see that
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(A, a) is precisely one of the formal groups with Zp2-action considered there [21] and that the
elements of M\ are special endomorphisms in the sense of that paper. In particular, the formal
completion of Z(di,cji) D • • • D Z(dr,(^r) at $ coincides with the formal completion of the
corresponding subvariety of the Hilbert-Blumenthal surface considered in [21].

7. The total contribution of isolated points

In this section we will consider the total contribution of the points of proper intersection of
our special cycles. Using our previous results and a counting argument, we are able to give an
explicit formula.

We return to the global situation of Sections 1 and 2 and fix data as follows. We assume
as always that p \ 2D(B) and that K = Kp • Kp where Kp is the standard maximal compact
subgroup (see the end of Section 4), and where K10 is neat. We then have the moduli scheme M. =
M.KP which is smooth over SpecZ(p). As in Section 3, we fix n i , . . . , Ur with 1 ̂  ui^ 4 and
with n\ 4- • • • + rir = 4. For i = 1,.. . , r, choose positive definite matrices di G Sym^ (Z(p))>o
and J^-invariant open compact subsets c^ C V^A^)^. We then have the cycles Z(di^ uji), i =
1,.. . , r. We then define the contribution of the points of proper intersection to the intersection
numberofZ(di^i),.. . ^ Z ( d r , ^ r ) to be

(7.1) {Z(d^^)^.^Z(dr^r)}p,ropeT:=^e^).
^

Here the sum runs over the points of proper intersection ^ in Z(d\, uj\) Xj^ • • - Xj^ Z(d^uJr)^
and e(^) denotes the length of the local ring at ^, as described in Section 6. Note that, if
Conjecture 6.3 were known to hold, this is also the local intersection multiplicity at ^.

In the special case r = 1, we let di = T, and we have the cycle Z(T, c^), whose image in M
lies in the supersingular locus .M8®. Then Z(T, uj} is a collection of isolated points if and only if
T represents 1 over Zp (Corollary 5.15). In this case we use the notation

(7.2) {Z{T^)}^= ^ e(Q.
^Z{T,UJ)

In general, by (3.6) and the analysis of the previous sections, we may write

(7.3) <^(di,^),... ,Z{d^r)Y^ = ̂  {Z(T^)}^
proper^r))p =^^r^),^

T

where the summation is over T e Sym4(Z(p))>o which are nonsingular, represent 1 over Zp,
and have diagonal blocks d i , . . . , dr:

T=

/ d ^
d2 ...

\ .. . dr.

We will now give more explicit expressions for the above entities. For this it will suffice to
give an expression for (7.2). But the results of Section 6 show that the intersection multiplicities
e(^) in the sum of (7.2) only depend on T and even only on its Zp-equivalence class. As in
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Proposition 6.1, we denote this integer by ep(T) and thus may write

(7.4) <Z(r^)>^e^(r). |Z(T^)(F)

It remains to determine the cardinality of Z(T^ c<;)(F).
As before, let B' be the definite quaternion algebra with discriminant D(B)p, let C' =

M^B'), and let V = [x e C"; x ' = x and tr(x) = 0}. Let Q be as in (4.5). Recall that we
also have fixed an isomorphism G'(A^) c^ G(A^), and a base point <^o = (Ao,^,Ao,^) <E
.M^F) such that the associated Dieudonne module Lo € X is superspecial, with stabilizer
Kp in G^Qp). Then, under the parametrization (4.7), the set of superspecial points in A^F)
corresponds to the double coset space

(7.5) G^Q) \ (GW/^ x G{^)/KP)

(cf Corollary 4.15). For a superspecial point (A,^A,7f) of A^F), the choice of an
isogeny 7: {A,i) -^ (Ao^o) compatible with the polarizations determines a pair (fi^^) G
G ' ( ^ p } / K ^ x G(A^)/KP, and the passage to G^Q)-orbits removes the dependence on the
choice of 7.

The choice of an isogeny 7 also yields an identification of the space End^A,^)015 with
End°(Ao, /.o)°P -== G', and of the space of special endomorphisms of (A, L, A) with V^Q). Let
^r(Q) c ̂ (Q)4 be the fibre over T of the map defined by the quadratic form on V^Q),

(7.6) ^(Q)4——Sym4(Q).

Returning to the set Z(T, cc;)(F), we consider the map

(7.7) ^(T^)(F) ̂  G'(Q) \ (^(Q) x G ' ^ / K ' ^ x G(A^)/^)

defined as follows. To a point ^ = (A^,A,77p;j) <E Z(r,o;)(F), and a choice of isogeny 7 :
(A, i) -^ (Ao, ^o), there is an associated triple (7*j^p,^), where 7^ e V^Q)4 is the 4-tuple
of endomorphisms determined by j and 7. Again, the passage to G^Q)-orbits removes the
dependence on the choice of 7.

It is not difficult to describe the image of Z(r,^)(F). For y e ^(Q), the triple (y^p,^)
lies in the image if and only if
(i) the images of the components of y under the inclusion V ^—> End^(£,F) preserve the

lattice gpLo, and
(ii) the image of y under rf^ lies in ̂  • uj.
We note that the condition (i) is equivalent to the assertion that the components of the 4-tuple
g^y lie in

(7.8) nZ^y^nEnd^^A^.
We let (pp be the characteristic function of V^Zp)4, let ̂  = char(^) be the characteristic
function of uj, and set ̂  = ̂  0 ̂ . Then (^ e S^V^A^)4)^. Conditions (i) and (ii) can
then be summarized as follows.

LEMMA 7.1. - The G'^)-orbit of the triple (y,^,^) lies in the image of Z(T,UJ)(¥) if
and only if^f^y) + 0, where g = (ft,,^) G G'(A^).

Note that the function (y, g) ̂  (^(^y) is invariant under the diagonal action of G^Q) on
the left and under the action of K ' = K'^ and of Z^Af) on the right. The total contribution
of the superspecial points may be expressed as an integral.
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THEOREM 7.2. - Let T e Sym4(Z(p))>o be nonsingular and such that T represents 1 over
Zp. Let uj C V(A^)4 be K^'-invariant open and compact, and let K ' = K^ C G^Aj). Let
pr(X7) be the image of K ' in Z'(A^) \ G'(A^ ̂  SO(y')(Aj). Then

(Z(7»^ = e,(T) . vol(pr(^))-1 . Jrj(^).

/^r^ ̂  = (pp (g) (̂  e 5'(V(Aj)4) as above, and ̂ Tj(^j) denotes the theta integral

IrM)= f ^ ^{g-^dg.

G /(Q)^ /(A/)\G /(A^) y^T^)

The measure dg is induced by an arbitrary Haar measure on Z\Kf) \ G'{Kf) and the atomic
measure on Z'(Q) \ G^Q). The coefficient Cp(T) is given by the formulas in Proposition 6.1.
The identity of the theorem remains valid if T is nonsingular but not positive definite, since, in
that case, T is not represented by V\ and hence both sides of the identity vanish.

Proof. - By Lemma 7.1, we see that

(7.9) [Z(7>)(F)|= ^ ^(^y).
(^(QA^^xG^A^/^Z^Aj))

On the other hand, since pr(7T) is neat, the stabilizer in ^(Q) \ G^Q) of a coset

gK'Z^A^/Z^Af)

is trivial. Thus, we have

(7.10) |Z(r^)(F)|=vol(pr(^))-1 f ^ ^(^y)^
(^(Q^A/AG'^A^) y^rTO

for a measure as described in the theorem. In combination with (7.4), this gives the claimed
expression. D

COROLLARY 7.3.- In the situation of the beginning of this section,

<Z(di,a;i),... ̂ (dr^r)}^ = ̂ (T^pr^))-1 . Jrj(^).
T

where T runs over all T <E Sym4(Z(p))>o which represent 1 over Zp a/zJ /z<m? diagonal blocks
di , . . . , dr. The function ̂  = ̂  0 ̂  e S^V^A^-)4) ^ defined by

^=^V\^)\

^ = char(c<;i x • • • x ̂ ).

Remark 7.4. - Formula (7.10) expresses the quantity \Z(T,^)(¥)\ as a product of orbital
integrals. More precisely, note that the components of y <E ^(Q) span a four-dimensional
subspace of the five-dimensional space Vi'. Since G acts on V7 via its projection to SO(y'),
the stabilizer of y in G^Q) is precisely ^(Q), the kernel of this projection. Since G'(Q) acts
transitively on ^(Q), we can unfold to obtain:
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|z(r^)(F)|=voi(^)-1 f ^(g-^dg
^(QAG^)

(7.11) =vol(^ /)- lvol(Z /(Q)\^ /(AJ))0^(^)OT(^),
for orbital integrals which depend on T,

(7.12) Or(^)= y ^(^y)^
Z(Ap\G(A?

and

(7.13) OT^}= y ^-^d^.
^(QpAG^Qp)

In our main theorem (in Section 9), we will identify the right hand sides of the formulas of
Theorem 7.2 and Corollary 7.3 as special values of derivatives of Fourier coefficients of certain
Eisenstein series. In the next section we will explain more precisely the Eisenstein series in
question.

8. Fourier coefficients of Siegel-Eisenstein series

In this section, we recall, from [19], the construction of certain incoherent Siegel-Eisenstein
series and the structure of the Fourier coefficients of their derivative at s = 0, the center
of symmetry. To be more precise, these Eisenstein series occur on the metaplectic cover of
the symplectic group of rank 4 over Q, and have an odd functional equation. Their Fourier
coefficients are parameterized by rational symmetric matrices T G Syn^Q). In [19], a formula
was given for the derivative at s = 0 of such a coefficient, when det(T) 7^ 0.

We retain the notation of Section 1, and we refer to Sections 1-6 of [19] for more details.
Thus B is an indefinite quaternion algebra over Q of discriminant D(B), C = M^{B), V is
given by (1.1), and G is given by (1.3), etc. In particular, V is a five-dimensional quadratic space
over Q with signature (3,2). Let \ = \y be the quadratic character of A^d^ attached to V:
\(x) = (x, det(V))A, where ( , )A is the global Hilbert symbol. Note that ^oo(-l) = 1.

Let TV be a symplectic vector space of dimension 8 over Q, with a fixed symplectic
basis e i , . . . , 64, e[ , . . . , 64, and let H^ be the metaplectic extension of SP(WA), with Siegel
parabolic PA. For s € C and for \ as above, let I^s^) be the global degenerate principal
series representation of H^. As explained in [19], (2.9), the representation ^(O,^) has a
direct sum decomposition into two types of irreducible representations. One of these types are
the irreducible summands, like r^V), associated to five-dimensional quadratic spaces with
character \y The other type are the irreducible summands associated to incoherent collections,
in the sense of Section 2 of [19]. One such summand is Il4(C), associated to the incoherent
collection C, defined as follows. For any finite prime t, C^ = V^, while Coo = V^, where V^ is
the quadratic space over R of signature (5,0). There is a surjective map

(8.i) \f: 5((CA/)4) = s(y{A^) -. n,(c)f c 74(0, x)/.
A section ^>{s) C h{s^) is standard if its restriction to the standard maximal compact

subgroup KH in H^ is independent of s. For ̂ f e S(V(Af)4), let <Pf {s) be the standard section
of h(s^)f such that <^(0) = A^(^). Let <?(s) = <^(s) (g) ^f(s), where ^(s) is the
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standard section of I^(s^ ")()oo whose restriction to KH^, is the character det572. Then ^(s) is an
incoherent section with ^(0) G Tl^C). The incoherent Eisenstein series

(8.2) E{h^s^)= ^ ^(7^^)
7€PQ\^Q

converges for Re{s) > 5/2, and its analytic continuation vanishes at the point 5=0, [19]. There
is a Fourier expansion

(8.3) E{h,s^)= ^ ET(h,s^},
TeSym4(Q)

with respect to the unipotent radical of P. When ^(s) = (^ ̂ (s) is a factorizable section, and
when det(T) -^ 0, there is a product formula

(8.4) ET{^S^ ^) = n ̂ rA^ ^),
^<00

where IVr,^^? 5, ̂ ) is the local generalized Whittaker integral (cf. Section 4 of [19]). For fixed
h, T, and ^, there is a finite set of places S such that, [19], Proposition 4.1,

(8.5) JJ WrA 5, <^) = ̂ {28 + ̂ C^ + 2)-1,
i^s

and hence

(8.6) £;T(^ s, <?) = C^(25 + 4)-1C5(25 + 2)-1 . [J WrA 5. ̂ )•
^e6'

Since det(T) ̂  0, the factors Wr^(h^^ 5, ̂ ) have an entire analytic continuation.
Fix T with det(T) ^ 0. Since £r(^0, ^) = 0, at least one of the factors in the product

formula (8.6) vanishes at s = 0. In particular, by Proposition 1.4 of [19], the factor at t vanishes
whenever the five-dimensional quadratic space Cg does not represent T. Let Diff(T,C)j be the
set of finite places at which C^ fails to represent T, and let

r^ ni f f fTH rDiff(r^U{oc} ifsig(T)=(3,l)or(l ,3),(8.7) Diff(T, C) - ̂  ̂ ^ ̂  otherwise.

By Corollary 5.3 of [19], |DifF(T, C) \ is odd; and, by Corollary 5.4 of loc. cit,

(8.8) oTdET(h,s,<P)^\Diff(T,C)\.
s=0 '

Thus, the only nonsingular T for which 2^(/i,0, ^) can be nonzero are those for which
|Diff(T,C)| = 1. We will relate the value E^(h,0, ̂ ) for Diff(T,C) = {p} to the numbers
(^(T, uj))p in the previous section.

Let us fix a finite prime p. We wish to give a formula for E^{h^ 0, ^) if T e Sym^Q) is
nonsingular with Diff(r,C) = {p}. Let B' be the definite quaternion algebra over Q which is
ramified at p and whose invariants coincide with those of B at all finite primes other than p. Let
G'^lVhGBQ.andlet

(8.9) V = [x G M^B'Y x ' = x and tr(^) = 0},
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with quadratic form defined by squaring, as in Section 1. Let Q = GSpm^V) be defined by the
analogue of (1.3). Note that there is an exact sequence

(8.10) 1 —> Z ' —> G' —> SO(y') —> 1

of algebraic groups over Q, where Z ' is the center of G'.
We fix identifications B'(A^) = B(A^), and hence V^A^) = V(A^), and G^A? = G(A^).

We also assume that (pf C S'(y(Aj-)4) is factorizable, so that (pf = (pp (g) ̂ p and we can view
^ as a Schwartz function on V^A^)4. Recall that there is a surjective map

(8.11) A^^A^—^I^njC^x)/.

Recall, [31,19], that the local degenerate principal series representation ^4,^(0, \p) has a direct
sum decomposition with irreducible factors

(8.12) i4,p(o, xp) = R^Vp) e R^v;).
Let T e Sym4(Q) be nonsingular with Diff(T, C) = {p}. Then the linear functional

(8.13) Wr,p(M,-):kp(^Xp)——C

vanishes identically on R^(Vp) = R^{Cp), and does not vanish identically on the summand
R^(V^), [19], Proposition 1.4. We choose a standard section ^(^), with <^,(0) C ^(Vp), and
such that

(8.14) Wr,p(e, 0,^)^0.
Let (pp e S'((^)4) be a Schwartz function whose image Ap(c^) in J4,p(0, ̂ p) is ^p(O). Note that
V is positive definite, and let ̂  <E ^((V^o)4) be me Gaussian, ̂ (x) = exp(-7rtr(g(a;))).
Finally, let ( '̂r = ^p 0 ̂  so that

(8.15) ^-^^^^^^^^^^^(^(A)4).

Recall that the metaplectic group H^ acts on the space 5'(y(A)4) via the Weil representation
uj = uj^, defined using our fixed additive character '0 of A/Q. For g e G'(A) and h e H^, let

(8.16) 0{g^)= ^ ^W}{g-1^
yeV^Q)4

be the theta function attached to (^/, and let

(8.17) A^)-! f ^(^^ev(^))d^
G'^ZCAAG^A)

for the Tamagawa measure dg on Z(A) \ G'(A), and where ev((//) denotes the projection of (//
to the subspace of functions all of whose local components are even (cf. [19], (7.19)). Note that
0{g, h, (//) can be defined by the same formula for g <E 0(1^) (A), and that

(8.18) I{h^')= ( ^^^)d^
o(y/)(Q)\o(y/)(A)
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where vol^V^Q) \ OC^A), dg) = 1. For g c ̂ (A) and h C ̂ o, let

(8.19) OT(gM}= ^ (^WK^y),
ye^(Q)

and

(8-20) ^Tj(^)- E ^O^y)-
ye^(Q)

where 0rj(^^) depends only on ^. The function ̂  is invariant under G^R) and, for
y C ̂  (Q), it has the value

(8.21) ^(y^e-2-^).
Therefore, for h e i^oo. we have

(8.22) 0T^g^f)= ^ (^W^)(^ly)=^W^oo)(yo)•0^J(^^),
ye^(Q)

where yo is any fixed element of ^(Q).
For h <E ^foo. and for yo e ^y(Q), set

(8.23) ^/2W:=(^W^)(yo).

More explicitly, as in (11.74) of [19], if h has Iwasawa decomposition h = (n(b)m{a)k,t) e
Sp4(R) x C1 ̂  Mp4(H^o), for 6 e Sym4(R), a c GL4(R)+, and A; e ̂ ^, then

W^/2(/,) = ^ . det(a)5/2 e(tr(r6)) e-^^) det(^)5/2

(8.24) = ^ . det(a)5/2 e(tr(TT)) det(^)5/2,
where r =b-\- ia^a.

Recalling that Z^R) \ G^R) ̂  SO(y/)(R) is compact, we have the following formula for
the Tth Fourier coefficient of the theta integral:

2Jr(/^')= I M^ev(^))d(7
G'^Z'^G'W

=W^\h). f OTj(g.ey(^))dg
G /(Q)Z /(A)\G /(A)

(8.25) =W^2W^o\(SO(Vf)(R)^^g). f ^Tj(^,ev(^)) d ,̂
G /(Q)Z'(Ay)\G /(A/)

where d / g is the measure arising from the counting measure on Z'(Q) \ G'(Q) and the Haar
measure on Z'(A^) \ G^Af) ̂  SO(y/)(A^) coming from some choice of a gauge form /z on
SO(y'). Also d^g is the Haar measure on SC^V^R) induced by p..

With the notation just described, and for h e -J^oo, Corollary 6.3 of [19] specializes to

w eT(h•o•t)-^^•VT^•
if T is nonsingular with DifF(T, C) = {p}.
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Substituting the expression (8.25) for the Fourier coefficient of the theta integral found above,
we obtain:

PROPOSITION 8.1.- Suppose that ^(s) = ̂ ^(s) (g) ^f(s) with ^(0) = A/(^/), is an
incoherent standard section. For h e Hoc, and for each T e Syn^Q) with det(T) / 0 and
Diff(T,C) = {p}, choose (pp and ^p(s), such that Wr,p(e, 0, <^,) ̂  0. Then

E^h^ <?) = VO^SO^XR)) • W^W . ̂ ^ • ITM).

Here

ITJ{^f)= j ^ ^(^f){9~ly)^fg
G/(Q)Z'(A^)\G'(A/) y^r(Q)

/ °Tj(g^y(^))dfg,
G'/(Q)Z/(A/)\G/(A^

and the measures are as described after (8.25) above.

If the function <//.• is locally even, then the integral

(8.27) lT,fW= f 0T,f{g^ff)dfg
G'^Z^Af^G^Af)

occurs in Theorem 7.2, where the measure arises from an arbitrary Haar measure on Z^Af) \
G'(Aj), and the quantity

(8.28) vo^pr^))-1^,/^)
is independent of the choice. Therefore, we can obtain the expression

(̂M, ̂ =^(SO(V')(R)pr(K')) . W^(h) . w^•p(e'o^p) .
^T^p^i ^5 ^ p )

(8.29) ^^(pr^))-1^^),
where the factor vo^SC^y^IR^pr^')) is computed using the Tamagawa measure on
SC^V^A). Hence, since pr^') is neat,

(8.30) vol(SO(y/)(R)pr(X/)) =2|SO(y /)(A) :SO(y/)(Q)SO(y/)(R)pr(^/)|-\

and the quantities in (8.29) separated by a dot do not depend on any choice of measure.

9. The main theorem

In this section we assemble the results of previous sections and state our main results.
We begin by further specializing the formula of Proposition 8.1. Specifically, we need more

information about the factor

(9.1) Wr,pM^p)
Wr,p(eA^)'
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Fix the prime p with p \ 2D{B), and assume that ^p is the characteristic function of V(Zp)4.
Recall that ^p(s) is the standard section with ^p(O) = \p{^p). Also, let ̂  be the characteristic
function of the lattice y'(Zp)4, and let ^p(s) be the standard section with ^p(O) == \p{^p).

Recall that a nonsingular T G Syn^Qp) is represented by precisely one of the quadratic
spaces V(Qp) and V^Qp), [19], Proposition 1.3.

PROPOSITION 9.1. - Suppose that (pp, (pp. ^p, ^ are as above, and that T e Syn^Qp)
with det(T) ̂  0.
(i) y^r,̂  0. ^p) 7^ 0, then T e Syn^Zp).

(ii) IfT (ESym^p) and if T is represented by V^Qp), then W^p(e,0, <Pp) ̂  0.
(iii) IfT G Syn^Zp) is represented by V(Qp), and ifT represents 1, then

^^4 .̂(,̂ l)b,-l).e.(D,

"where ep(T) is the local intersection multiplicity given in Proposition 6.1.

The proof will be given in Section 10.
A subset uj C V^A^)71 is said to be locally centrally symmetric if it is invariant under the action

of the group ^2(A^). The characteristic function ̂  e ̂ (^(A^) of such a set is locally even,
as in (8.17), i.e., ̂  = ev(^). The function ̂  = ̂  (g) ̂  e ^(y^Aj)^) is then locally even
as well, so that the expression (8.29) holds for the derivative of the Fourier coefficients of the
associated Eisenstein series.

We can now state our main result.

THEOREM 9.2. - Assume that p \ 2D(B) and that (pp, ^p'y <!>p, ^f are as above. Let
uj C V(AP)4: be a locally centrally symmetric Kp-invariant compact open subset. Let ^(s) =
^oo(^) 0 ^p(s) (g) ^As) be the standard section corresponding to ^ = (poo 0 <^p 0 ̂  G
^(y^ (A)4) with (^ = char(o;) (cf. Lemma 7.1). Suppose that T <E Syn^Q) with det(T) ̂  0
and with Diff(T,C) = {p}.
(i) IfT i Sym4(Z(p))>o, then Z(T^) = 0, (Z{T^))p = 0, and

Ef^(h,0^)=0.

(ii) If T G Sym4(Z(p))>o represents 1 over Zp, then Z(T^UJ) is zero-dimensional, and, for
h^H^,

ET{^ <?) = Jvo^SOC^R)) . Wy\K) -vol(pr(^)) -logp. <^(T^)^.

Note that, if r e Sym4(Z(p))>o does not represent 1, then Z(T,UJ) contains components of
the supersingular locus (Corollary 5.15 and Theorems 5.12 and 5.14). In this case, we do not
have a formula for the contribution of Z(T^ uj) to the intersection number.

In Theorem 9.2, the chosen gauge form ̂  on 80(1^) = Z ' \ Q determines the Haar measure
on SC^y^R) used to compute vol(SO(y')(]R)). The corresponding gauge form on the inner
twist SO(V) = Z\G determines the measure on Z^Af) \ G^Af) used to compute vol(pr(JC)).
Note that the product vol(SO(y')(R)) vol(pr(^)) is independent of the choice of ̂

Proof of Theorem 9.2. - Beginning with formula (8.29), and using (iii) of Proposition 9.1 and
Theorem 7.2, we have
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ET(h,0, <?) =vol(SO(V/)(R)p^(A^/)) • W^{h} •

^r.pM,̂ ) ,/ ,^-i, , ,,•^^^.vol(pr(^)) Z^(^)

^o^SO^KBDpr^)) • W^ih] •

• J logp • (p2 + l)(p - 1). ep(T) • vo^prG^))-1^,/^)

= vo^SCKVOOR) pr(A")) • W^{h} •

(9.2) . J logp • (p2 + 1) (p - 1). <Z(T, o;))p.

To finish the proof, we simply note the following relation between volumes.

LEMMA 9.3. - Recall that Kp = GL^OB^) n G'(Qp) and Kp = GL^OB' ) n G^Qp).
Then, for the Haar measures on Z'(Af) \ G'(Af), Z'(Qp) \ G'(<Qp), Z(Ay) ^(Ay), and
^(Qp) \ G'(Qp) determined by the fixed gauge form [i and the corresponding form on the inner
twist,

vol(pr(X))^vol(pr(^))_
vol(pr(^)) vol(pr(^)) ^ ' y ^ / '

This finishes the proof of Theorem 9.2. D

Proof of Lemma 9.3, following Kottwitz [16]. -We may replace G / Z and G'/Z' by their
simply connected coverings G respectively Gr and pr(Kp) and pr(^p) by their inverse images
Kp respectively Kp. We use on G(Qp) respectively G^Qp) the Haar measure induced by a top
differential form on the Zp-form of G respectively G' corresponding to an Iwahori subgroup
T p C K p respectively Ip c Kp. These measures are compatible (cf. [16], p. 632). The volumes of
Ip and Ip are related as follows. Choose as in [16] a maximal split torus S in G and a maximal
torus S'i containing S which splits over an unramified extension. We also denote by 5i the
canonical Zp-form of S'i. Choose 5", S[ of the same sort for G ' . Then

vol(7p)^i(Fp)_(p-l)2

vol(7;) ^(Fp) P 2 - ! 5

since in the case at hand S'i ^ G^ and S[ ̂  Resq 2/Qp^m. The result follows since

\Kp/Tp\=1^2p^<2p2^2p3+p\ \ K p / T p =p+l ,

hence

vol(pr(^)) ^ vol(Jp) \Kp/Tp ^ (p - I)2 p4 - 1
vol(pr(J^)) vol(^) ' |^/Jp' ^ - 1 ' P - 1 '

We next formulate the corresponding result for the intersection of special cycles.
For n i , . . . , Ur with 1 ̂  n, ^ 4 and with HI + • • • + Ur = 4, let d, e Sym^ (Z(p))>o and fix

locally centrally symmetric JC^-invariant open compact subsets ̂  c ^(A^)711. Let

(9.3) W = Wi + . • • + Wr
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be a decomposition of W into symplectic subspaces of dimensions 2r^, compatible with the
fixed symplectic basis, and let

(9.4) ^ J ^ A X . - . x T ^ A — — ^ A

be the corresponding homomorphism of metaplectic groups, covering the embedding

(9.5) i: Sp(Wi,A) x • . • x Sp(^,A) ̂  SP(WA).

Restricting to the archimedean place, for ( / i i , . . . , hn) e ^1,00 x • • • x T^oo, we have

(9.6) W^(i(h^..^hr))=W^(h,)--W^\hr)^

where T has diagonal blocks di , . . . , c^. Thus, by (7.3), we obtain:

COROLLARY 9.4.- With the above notations,

^E/(^l,...,^),0,<?)=lvol(SO(yQ(R)).^2(^)••.^
T

^^(pr^.logp.^di^i),...^^,^)}^0^

w/z^r^ the intersection number on the right side is defined by (7.3), and the summation runs over
T e Sym4(Z(p))>o such thatD'iff(T,C) = {?}, diag(T) = (rfi,... ,dr), and T represents 1 over
Zp. Also, ^ is determined as in Theorem 9.2 with uj = uj\ x ' • • x Ur-

Of course, the left side of the expression of Corollary 9.4 is part of the (di , . . . , c^)th Fourier
coefficient of the pullback

(9.7) F(h^...,hr^):=Ef{i(h^..^hr)^^)

(cf. [19], (6.13)). This result gives an analogue of the results of [19].

10. Representation densities

In this section, we give the proof of Proposition 9.1, which is based on a formula of Kitaoka,
[14], for representation densities. In this section, for x e Q^, \{x) = (x,p)p.

We begin by recalling the well-known relation between the values of the function Wr,p(e, s,
^p), at integer values of s and classical representation densities.

For a suitable choice of basis for V(Zp) the quadratic form q has matrix

/i \
(10.1) 5=5o= J . ls .

\ l - l 2 /

For r ^ O , let

Is0 \
(10.2) Sr =\ 5 • lr .

V J - l . /
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For nonsingular matrix T C Syn^Zp), let

(10.3) ^(^,^)=^p-^lo+8r)#{.^eM5+2r,4(Z/^Z); Sr[x] -Tej/Syn^Zp)}

be the classical representation density [15, p. 98]. This quantity depends only on the GL^^p)-
equivalence class of T, so we assume that

(10.4) T=diag(£oPao^lPal^2Pa2^3Pa3),

with £i e Z^ and 0 < ao ^ 01 ^ 02 ^ 03. Then, as explained in Corollary A. 1.5 of [19],
WT,p(e, r, ̂ p) = 0 if T C Syn^Qp) \ Syn^Zp), and

(10.5) WT^e^<Pp)=ap(Sr^T)

if T G Syn^Zp), since the factor 7p(Vp) in loc. cit. is 1 in our present case. Recall — see [14],
Lemma 9 and the discussion on pp. 450-453, for example — that a? (Sr, T) is a rational function
of X =p~r, i.e., there is a rational function As r(^0 such that

(10.6) ap(Sr^T)=As,T{p~r).

We therefore have

(10.7) ^T,pM, ^p) = -log(p) • ̂ {A5,TW}|^.

At this point we have proved part (i) of Proposition 9.1.
Similarly, let ^pp be the characteristic function of the lattice y'(Zp)4 = V^^Zp)4 and let

^p(s) be the corresponding standard section. Again, for a suitable choice of basis for V''(Zp),
the quadratic form on V'CLp) has matrix

(10.8) S ' = SQ = diag(l, 1, -/3, -p,p/3),

where f3 C Z^ \ Z^'2. Again, the factor 7p(Vp') = 1, and so

(10.9) TVT,p(eA ̂ ) =?-4 • ap(5o,r).

The following two results imply parts (ii) and (iii) of Proposition 9.1.

PROPOSITION 10.1.- Suppose that T (E Syn^Zp) is not represented by V{Q)p) and that
T represents 1. Let ep(T) be the local intersection multiplicity, given by the formulas of
Proposition 6.1. Then,

W^p(e^ <Pp) = -log(^). -^{AS,T{X)} ̂

=logp.(l-p-4)(l-p-2).ep(^).

PROPOSITION 10.2. - Suppose that T e Syn^Zp) with det(T) ̂  0 represents 1. Then

Wr,p(e,0, ̂ ) =p-4 . ap(S^T) = JP-^I -P-2)2^+ 1) ifV\(Qp) represents T,
1 0 otherwise.
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Of course, we would like to have analogous information about Wp (e, 0, ^p) and Wr,p (e, 0,
^p) for all T. At first, we simply restrict to the case where p \ T, so that we may assume that
GO = 0, i.e.,

(10.10) T=dmg(£o,elpa\e2pa2,e3pa3).

Note that S ^ 15. Then, by the standard reduction formula, [13, p. 149],

(10.11) ap(Sr^T)=ap(Sr^o)ap(Sr^T),

where Sr is obtained by adding a split space of dimension 2r to

(10.12) 5=diag(l,U,£o)

and

(10.13) f=dmg(e^pa\e2pa^e3pa3).

Note that

(10.14) a^eo) = (l +^o)p-2-7') = (l +^o)^-2^),

where X=p-r, [32].
Now suppose that ^(^o) = 1, i.e., that T represents 1. Let H^m be the split quadratic form of

rank 2m over Zp, so that

lm^

(10.15) ^" l̂- J -

Then Sr is isomorphic to the split space H^r^ and Kitaoka gives an explicit formula for the
representation density Op(H^rmT) for any ternary form T, [14]. His formulas, in the cases
ai — as even and a\ — 02 odd, are given as a sum of five double sums! These can be simplified
to yield the following expressions:

PROPOSITION 10.3 (Kitaoka, [14]). - Let X = p^, and let

f=dmg{e,pa\£2Pa2^3pa3)^

with 0 ̂  ai ^ 02 ^ 03.
Let

( 1 ifa\ = 02 = 03 mod(2),
v(T)= X(-^2) ?yai^a2^a3mod(2),

X(-W3) ;yai^a2^a3mod(2),
X(-^2^3) y^i ^ a2 = 03 mod(2).

(i) 7/'ai = (22 mod(2), r/z^n

/u- \̂ o^_^_^ /min(ai,^) \
Q/p^2r+4^J ^ f l ^ ^-/c, ^^ai+a2+a3+/c-2^

(l-p-2X)(l-p-2X2) - ^ p [ ^ + X ^ J A l
v ' / v ' / ^=0 \ k=0 /

/ ai \ / 03-02 \

+p^x- E^ E(^)4
\k=0 ) \ j=0 )

-where e = ̂ (—^i^).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



748 S.S. KUDLA AND M. RAPOPORT

(ii) lfa\ ̂  02 mod(2), then

/ r r rp\ ax <22~l /min(oi,-0 \
aP^r^l) Y. . / Y. 2^-fc , ^^01+02+03+^-2^ ]

(l-P-2X)(l-p-2X2) ^ ^ ^ A +W)A ) •

Note that these expressions exhibit the functional equation of the local degenerate Whittaker
function under X ̂  X~1. Evaluating at X = 1 and taking (10.11) and (10.14) into account, we
obtain:

COROLLARY 10.4. - Suppose that T represents 1.
(i) lfa\ = a2 mod(2), then

0.1+02 1

^ap-^^^ E (m^a^^+iy+p^-^+^Fg2,^
v p / v " / ^=o \ ^=o /

where ^=^(-^^2).
(ii) Ifa\ ̂  02 mod(2), r^n

(l-^f^-^-^+X^)) E (min(oi^)+iy.

Zn ca^ (ii), this quantity vanishes if and only if\(T) = —1. In case (i), if a^ = 03 mod(2), then
X(T) = 1 fl^J there are an odd number of terms in the last sum, so that the whole expression is
nonzero. If'02 i=.a^ mod(2), then \(T) -==- ^(-£1^2) = e, so that the whole expression vanishes
ifandonlyif\(T)=-l.

PROPOSITION 10.5. - Suppose that T represents 1. Also suppose that ^(T) = -1, so that T
is not represented by S, i.e., by V(Qp).

(i) Ifa\ = 02 mod(2), then

9 ( AS,T{X) }\
9X{(l-p-^)(l-p-^)f\^

^-1 /min(o^) \
=- E A E (01+02+03+2^-4^) -p^^^+l)^^3^-1).

£=0 \ k=0 ) \ z /£=0 \ k=0

(ii) Ifa-i ^ 02 mod(2), then

9 ( Asr(X) } ^T mî ,,)
^KT^^XXT^^i)} =- 2^ P L. (^ i+02+a3+2fc-4^

ai+q^—l .
^ ( A Cy\ ^ | 2 min(ai,^)J°_J ^,T(A) ^ | ^

^=0 A;=0v v •' / v ± ) } ^=1 p—f\ ^—n

After a short manipulation, these expressions coincide, up to sign, with those given in
Proposition 6.1 for the local intersection multiplicity ep(T)!
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COROLLARY 10.6. - Suppose that p\T and CQ is a square, i.e., that T represents 1 over Zp.
Also suppose that T is not represented by S. Then

———{As^X)} =-(1-^)(1-^-4)^(T),
dx X=l

where ep(T) is as in Proposition 6.1.

This completes the proof of Proposition 10.1.

Proof of Proposition 10.2. - We apply the reduction formula to 5" — -^oProof of Proposition 10.2. - We apply the reduction formula to S ' = SQ to obtain:

(10.16) ap(S^T)=ap(S\£o)ap(S\f)^

where

(10.17) ^=diag(l,-^A-p^)

and T is as in (10.13).
If eo is a square, then

ap(S\£o)=l-p-\

[32]. On the other hand, 5" is just the norm form on the maximal order of the division quaternion
algebra over Qp. The following result is due to Gross and Keating, [7], Proposition 6.10. For
convenience, we give a proof.

LEMMA 10.7. -We have

ap(S^f)=2p-l{p^l)2.

Proof. - Let B be the division quaternion algebra over Qp, and let R be its maximal order.
Then, for a suitable Zp-basis, S" is the matrix for the quadratic form Q given by the reduced
norm on R. Let

-V(T) = #{x C (W.R)3; Q[x} = Tmod^},

so that

^(5/,^)=^p-6rA^(^).
Choose a uniformizer TT € R such that 7r2 = —p, and hence Q[7rx} = pQ[x}. Note that x e R if
and only if Q[x\ G Zp. Thus there is a bijection

{xe (R/p'R)3^ Q[x] =pfmodpr}^{y^{R/pr-l^R)3^ Q[y] ̂ Tmod^-1},

given by x ̂  7^~lx. Since \R/7rR\ = p2, we have

A^(pf)=P6Apr-.(f)^

and hence

ap(S^pf)=ap{S^f).

Thus, we may replace f by T ' = diag(^i, e^p^-^, e^p0'3-0'1). Here e\ can be taken to be equal
to either 1 or /3. Using reduction, we have
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a^S^TI)=a^SI,e^(S^T")^

where

^^diag^i/^-ap) and T" =d^g{^pa2-a\£spa3-al).

By Theorem 3.1 of [32],

ap(^i)=l+7?-1.

If^i = 1, the form 57' is just the norm form on the trace zero elements in R, while, if^i = /3, then
S" is isomorphic to (3 times this norm form. Since Op^S"\ /^T") = ap(Sff, T"}, Proposition 8.6
of [19] yields

/ qn r p / / \ _ f 2(p + 1) if T" is anisotropic,
"-PV0 5 1 ) ~~ } ^ ,,^ 0 otherwise.

D
Thus

a^{S^ T) = a^S'^ 1)^(5', T),

^(l-p-^+l),

as claimed in Proposition 10.2. D

Appendix A. Notes on Clifford algebras

A.I.

Let (V, q) be a nondegenerate quadratic space of dimension 5 over a field F of characteristic
not 2. Let C(V) be its Clifford algebra, with its 2-grading

C(V)=C^(V)eC~(V).

The Clifford involution c ̂  c' of C(V) is the unique involution which acts by the identity map
onVcC-(y).Thus

(v^-'-VrY =V'r'"v[.

If v ^ , . . . , 2:5 is a basis for V, then the element ^ = 2:1 • • • ^5 lies in the center of C(V) and satisfies

6' =S.

Let

G=GSpm(V)={g^C^(V)x^gVg-l=V^dgg/=^g)}

which may be considered as an algebraic group over Spec F.

A.2.

In this section suppose that F is algebraically closed and choose a Witt decomposition of the
quadratic space V,

y=y+eyoe^_,
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where dimy± = 2 and V± are maximal isotropic subspaces of V. Let VQ e Vo be a basis
vector with q{vo) = 1. We recall the Spin representation of G. We use the identifications of
representations of C (V),

c(y)/c(y)C(y-)>o = C(Y+ e Vo)
=c(y+)(i+z;o)ec(y+)(i-^o).

As C(y)4"-modules the last two modules are isomorphic. Either one of them defines the Spin
representation W of G. Its dimension is 4.

Fix an isomorphism A2V^= F and let

\:W—>F

be the linear functional obtained by composing this isomorphism with the projection of C(V+) =
A(V+) onto A2V^. We obtain an alternating F-form on W by

(x,y)=\(xy).

LEMMA. - For c e C(V), and for x and y e W,

(c^{c)x,y)=(x,a{cf)y).

In particulars/or g e G = G SpinfV),

{a(g)x,a(g)y)=v{g){x,y).

Here a(g) denotes the spin representation action ofg on W, and v. G —> Fx, i/{g) = gg' is
the restriction to G of the spinor norm on C(V).

Proof. - Choose a basis eo, ei, VQ, fo, f\ for V such that the matrix for the quadratic form is

/ 1 0\
0 1

1
1 0

\0 1 /

InC(y),^ =l ,eo/o+/oeo=l,ei / i+/iei = 1, e§ = 0, vo(l -\-vo) = (1 -\-vo), etc. The spin
representation TV = C(V+)(l+2;o) has basis (l+^o), eo{l+vo), 60^1(1+^0). andei(l+vo)-
We take A to be the coefficient of eo^i (1 + ^o) ^d the symplectic form has matrix

J= -i, ^

It is easy to check that

/O 0 0 0\ /O 0 0 0\ /I 0 0 0
. . ( l 0 0 0 | , . f o 0 0 Q\ / . f o - 1 0 0

^MO 0 0 I ? a(el)= 0 -1 0 0 - ^o)- L 0 1 0
<o o o O/ u o o o/ \o o o -i.
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^0 1 0 0\ /O 0 0 1>
( f \ i 0 0 0 0 ] , ,, . [ 0 0 -1 0(7(/0)= o o o o and a(A)= o o o o

Vo o 1 O/ \o o o o^
If cr(c) is any of these matrices, then Jto'(c)J~l = cr(c), and hence, for any c € C(V),
Jto'(c)J~l = a(c'), as claimed. D

COROLLARY. - o-: G = G Spm(V) -^ G Sp(TV).

A.3.

In this section F is again arbitrary, of characteristic not 2.

LEMMA. -Let (V^q) be a nondegenerate quadratic space of dimension 5. The subspace
6 • V C C^~(V) is characterized as:

6 • V =- [x e C^V); x' =x and tr(.r) = 0}.

Proof. - Recall that 6 e C~(V) is central in C(Y) and satisfies ^/ = 6. It is, thus, clear that
x = 6v satisfies x ' = x. On the other hand, x2 = q(v)62 = a lies in F, the center of C^V).
In addition, if re 7^ 0, then x cannot lie in the center of C'^^V), since, if it did, then v = 6~lx
would lie in the center of C(Y), and this is not the case. If a = 0, so that x2 = 0, the condition
tr(x) = 0 is immediate. If x2 = a ̂  0, choose u e V with q(u) -^ 0 but with (u, v) = 0, and set
y = 6u. Then xy = —yx, and so, over an algebraic closure of -F, left multiplication by y gives an
isomorphism between the =L^/a eigenspaces of x, and thus these spaces have the same dimension
and tr(rr) = 0. This proves that 6V is contained in the space on the right hand side. The converse
inclusion will be proved further down. D

Let B be a quaternion algebra over F with main involution L, and let C = M^(B) with
involution x i—>- x ' =t^. Let

VB = [x (E C; x ' = x and tr(x) == 0}

-H? -'.)• ° £ F • t e B } •
Note that

/ _ 2_/ 'a2+^) ^
x x - x - [ a^^b))'

so that the inclusion VB ^—^ M-^(B) induces a homomorphism

C(VB,Qs)-^M2(B),

where the quadratic form on VB is C[B(X) = x x ' . The diagram

C(VB,qB)——^M^(B)

!'t v
C(VB,te)——^M2(£?)

commutes, and induces an isomorphism C^Ve^a) —^Ms^), compatible with the involu-
tions.
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Conversely, let V be a nondegenerate quadratic space of dimension 5. The Clifford involution
induces an isomorphism C+(V) ̂  C^V)0?, hence C^(V) is of the form

C+(y)^M2(£?),

for a quaternion algebra B over F. We may choose the isomorphism compatible with the
involutions x i—^ x ' . This map then carries 6V into Vg. For dimension reasons we obtain an
isometry,

(V^^qv)^(VB^qB).

This also concludes the proof of the lemma above.

COROLLARY.-

G={geC^{V)x^gf=^g)}.

A.4.

Any involution of the central simple algebra C = Mn(JE?), has the form x ̂  hx'h~1 where
x ' == tx\ where h 6 GLn{B) with h' = ±/i. If h' == /i, we say that the involution is of main type,
while, if h' = —h, we say that h is of nebentype. As observed above, the Clifford involution on
Ms {B) is of main type.

Let E be a central simple algebra over F, with dim? E = 162, and with a nontrivial involution
x ^—> x11 whose restriction to F is trivial. Then there is a quaternion algebra B over I71 and
an isomorphism E c^ Ms(B). For a quaternion algebra B^ over I7', let d = M^^B-^) and let
^ !—>• a;771 be an involution of C\ whose restriction to F is trivial. Suppose that there is a (unitary)
homomorphism

^:Ci=M2(B^)^E=Ms(B)

such that

ii(cr=h{c^)

Let Ca == Cent^; (zi (Gi)) be the centralizer of the image of C\ and let i^: 62 ̂  E be the natural
inclusion. Then (72 ̂  M2(J52), where B\ 0 B-z ̂  M2(5), and we have an isomorphism

Z == ̂  (g) %2 : Ci (g> C2 -̂  E

such that

^(ci^ca)^^1^2),

for an involution 772 of €2.

PROPOSITION. - The types of the involutions 77 = 771 0 772 are:

( main (̂ ) neben , , f main 0 m^mwarn = { , a^a neben = ^ ,I neben 0 main I neben 0 neben.

Proof. - We can assume that I7 is algebraically closed. Then, on B = B^ = B^= M^^F),

( a b Y ^ f d -b\
\c d ) ~ \-c a ) '
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as usual, and a main involution on C\ = C^ = M-^(B) or on E = Mg(B), is given by x ̂  txL .
On Mn(B) ̂  M^n(F), this amounts to applying transpose on the matrix of the 2 x 2 blocks and
then applying L blockwise. We denote this type of transpose by x ^ t x and write x^^x for the
usual transpose on M2n(F). Let T = ( _ ^ 1) e B = M^{F), so that T' = -T, and, for x <E B,

rx'T^^x.

Setting h = hn == diag(r,..., r) in M^(B), we have involutions of nebentype

x^^x^-^

which, on Mn(B) ̂  M^n^F) are just given by x \-^ T.^, the usual transpose, rather than the
blockwise transpose.

Now consider the explicit isomorphism

i'.M^F)^M^(B) -^ Ms(B),
(aij)(^y i—> (aijy).

Applying the involution of main type on Mg(B), we have

t^(x^yY =i(Tx^tyL).

Similarly, applying the involution of nebentype on Mg(B), we have

T^(x (g) y) = i^x (g) faV/i"1) =i(^x (g) Ty).

Every involution on E compatible with the isomorphism i: C\ 0 C^ -^ E is conjugate to one
of these two by an element of the form g = i{g^ (g) g^), with t g L = ±g. Note that

t . _ /. f Tgl = 9i and ̂ 2 = ̂ ,y — y •—' i T 1 1 iI ^i =-^i and ^2 =-^2,

and

y^^J^i^i ^^--^
L 9i=-9i and ^2 = ^2.

Also observe that the involution

x i—> g^xg^ = g^x'h-^g^

is of main type if T^! == —g^ and of nebentype if T^! = ̂ i, since

Tgl = ̂ g^ = ±g^ ̂  ±\gihY = -g^h. D

A.5.

Let B be a quaternion algebra over R.

LEMMA. - For r (E Bx with r' = ±T, the involution x ̂  x" = rx'r-1 on B is positive if and
only if:

( r ' = -r andr2 < 0 if B = IV^CR),
1 T' = T ifB = H is division.[ r - r if
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In particular, if B = H, then x* = x1' is the unique positive involution on B.

Proof.-Take r € Bx such that r' = -r and r2 < 0. Note that the condition on r2 is
automatic when B = H. Choose T] ^ Bx such that ryr = —rr] and T^ = —rj. Then every element
a; C B can be written uniquely in the form x = a + brj with a and & C R(r) ̂  C. Then

x* = r(a + br]Yr~1 = a' - rj'

and

tr(^*) = tr((a + brj)^ - rj'b^) = tr(a^ + br]^ - arfV - brjrjV) = 2(aa1 + W^2).

If B = MsQR), then rj2 > 0, and this quantity is positive, while, if B = H, then if < 0, and this
quantity can be negative. Note that, when B = MsQR), then an involution denned by a r with
r2 > 0 cannot be positive. D

A.6.

Let B = M2 (R) and let C = M-^ (B) with involution x ' =txL as above and let

V = {x e C; x ' = x and tr{x) = 0}.

Then the signature of V for the form qp of A.3 is (3,2).
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