Annales scientifiques de l’é.n.S.

Curtis T. McMullen
 Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations

Annales scientifiques de l'É.N.S. 4^{e} série, tome 33, no 4 (2000), p. 519-560
http://www.numdam.org/item?id=ASENS_2000_4_33_4_519_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 2000, tous droits réservés.
L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

POLYNOMIAL INVARIANTS FOR FIBERED 3-MANIFOLDS AND TEICHMÜLLER GEODESICS FOR FOLIATIONS

By Curtis T. McMULLEN ${ }^{1}$

Abstract

Let $F \subset H^{1}\left(M^{3}, \mathbb{R}\right)$ be a fibered face of the Thurston norm ball for a hyperbolic 3manifold M.

Any $\phi \in \mathbb{R}_{+} \cdot F$ determines a measured foliation \mathcal{F} of M. Generalizing the case of Teichmüller geodesics and fibrations, we show \mathcal{F} carries a canonical Riemann surface structure on its leaves, and a transverse Teichmüller flow with pseudo-Anosov expansion factor $K(\phi)>1$.

We introduce a polynomial invariant $\Theta_{F} \in \mathbb{Z}\left[H_{1}(M, \mathbb{Z}) /\right.$ torsion $]$ whose roots determine $K(\phi)$. The Newton polygon of Θ_{F} allows one to compute fibered faces in practice, as we illustrate for closed braids in S^{3}. Using fibrations we also obtain a simple proof that the shortest geodesic on moduli space \mathcal{M}_{g} has length $\mathrm{O}(1 / g)$. © 2000 Éditions scientifiques et médicales Elsevier SAS

RÉsumé. - Soit M une variété hyperbolique de dimension 3, et $F \subset H^{1}\left(M^{3}, \mathbb{R}\right)$ une face fibrée de la boule unité dans la norme de Thurston.

Chaque $\phi \in \mathbb{R}_{+} \cdot F$ détermine un feuilletage mesuré \mathcal{F} de M. Généralisant le cas des géodésiques de Teichmüller et des fibrations, nous démontrons que \mathcal{F} porte une structure complexe canonique sur les feuilles, et admet un flot transverse de Teichmüller, avec facteur d'expansion pseudo-Anosov $K(\phi)>1$.

Nous introduisons un invariant polynomial $\Theta_{F} \in \mathbb{Z}\left[H_{1}(M, \mathbb{Z}) /\right.$ torsion $]$, dont les racines déterminent $K(\phi)$. Le polygone de Newton de Θ_{F} permet le calcul pratique des faces fibrées, comme nous l'illustrons pour les tresses fermées dans S^{3}. Nous obtenons aussi, en utilisant les fibrations, une preuve simple du fait que la géodésique la plus courte sur l'espace de modules \mathcal{M}_{g} est de longueur $\mathrm{O}(1 / g)$. © 2000 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Every fibration of a 3-manifold M over the circle determines a closed loop in the moduli space of Riemann surfaces. In this paper we introduce a polynomial invariant for M that packages the Teichmüller lengths of these loops, and we extend the theory of Teichmüller geodesics from fibrations to measured foliations.

Riemann surfaces and fibered 3-manifolds. Let M be a compact oriented 3-manifold, possibly with boundary. Suppose M fibers over the circle $S^{1}=\mathbb{R} / \mathbb{Z}$, with fiber S and pseudo-

[^0]Anosov monodromy $\psi: S \rightarrow S$:

Then there is:

- a natural complex structure J_{s} along the fibers $S_{s}=\pi^{-1}(s)$, and
- a flow $f: M \times \mathbb{R} \rightarrow M$, circulating the fibers at unit speed, such that the conformal distortion of f is minimized.

Indeed, the mapping-class ψ determines a loop in the moduli space of complex structures on S, represented by a unique Teichmüller geodesic

$$
\gamma: S^{1} \rightarrow \mathcal{M}_{g, n}
$$

The complex structure on the fibers is given by $\left(S_{s}, J_{s}\right)=\gamma(s)$. The time t map of the flow f is determined by the condition that on each fiber, $f_{t}:\left(S_{s}, J_{s}\right) \rightarrow\left(S_{s+t}, J_{s+t}\right)$ is a Teichmüller mapping. Outside a finite subset of S_{s}, f_{t} is locally an affine stretch of the form

$$
\begin{equation*}
f_{t}(x+i y)=K^{t} x+i K^{-t} y \tag{1.1}
\end{equation*}
$$

where $K>1$ is the expansion factor of the monodromy ψ. The Teichmüller length of the loop γ in moduli space is $\log K$.

This well-known interplay between topology and complex analysis was developed by Teichmüller, Thurston and Bers (see [4]). The fibration π, the resulting geometric structure on M and the expansion factor K are all determined (up to isotopy) by the cohomology class $\phi=[S] \in H^{1}(M, \mathbb{R})$.

Fibered faces. In this paper we extend the theory of Teichmüller geodesics from fibrations to measured foliations.

The Thurston norm $\|\phi\|_{T}$ on $H^{1}(M, \mathbb{R})$ leads to a coherent picture of all the cohomology classes represented by fibrations and measured foliations of M. To describe this picture, we begin by defining the Thurston norm, which is a generalization of the genus of a knot; it measures the minimal complexity of an embedded surface in a given cohomology class. For an integral cohomology class ϕ, the norm is given by:

$$
\|\phi\|_{T}=\inf \left\{\left|\chi\left(S_{0}\right)\right|:(S, \partial S) \subset(M, \partial M) \text { is dual to } \phi\right\}
$$

where $S_{0} \subset S$ excludes any S^{2} or D^{2} components of S. The Thurston norm is extended to real classes by homogeneity and continuity. The unit ball of the Thurston norm is a polyhedron with rational vertices.

An embedded, oriented surface $S \subset M$ is a fiber if it is the preimage of a point under a fibration $M \rightarrow S^{1}$. Any fiber minimizes $|\chi(S)|$ in its cohomology class. Moreover, [S] belongs to the cone $\mathbb{R}_{+} \cdot F$ over an open fibered face F of the unit ball in the Thurston norm. Every integral class in $\mathbb{R}_{+} \cdot F$ is realized by a fibration $M^{3} \rightarrow S^{1}$; more generally, every real cohomology class $\phi \in \mathbb{R}_{+} \cdot F$ is represented by a measured foliation \mathcal{F} of M. Such a foliation is determined by a closed, nowhere-vanishing 1-form ω on M, with $T \mathcal{F}=\operatorname{Ker} \omega$ and with measure

$$
\mu(T)=\left|\int_{T} \omega\right|
$$

for any connected transversal T to \mathcal{F}. For an integral class, the leaves of \mathcal{F} are closed and come from a fibration $\pi: M \rightarrow S^{1}$ with $\omega=\pi^{*}(d t)$.

Generalizing the case of fibrations, we will show (Section 9):
THEOREM 1.1. - For any measured foliation \mathcal{F} of M, there is a complex structure J on the leaves of \mathcal{F}, a unit speed flow

$$
f:(M, \mathcal{F}) \times \mathbb{R} \rightarrow(M, \mathcal{F})
$$

and a $K>1$, such that f_{t} maps leaves to leaves by Teichmüller mappings with expansion factor $K^{|t|}$.

The foliation \mathcal{F}, the complex structure J along its leaves, the transverse flow f and the stretch factor K are all determined up to isotopy by the cohomology class $[\mathcal{F}] \in H^{1}(M, \mathbb{R})$.

Here f has unit speed if it is generated by a vector field v with $\omega(v)=1$, where ω is the defining 1 -form of \mathcal{F}. The complex structure J makes each leaf \mathcal{F}_{α} of \mathcal{F} into a Riemann surface, and

$$
f_{t}: \mathcal{F}_{\alpha} \rightarrow \mathcal{F}_{\beta}
$$

is a Teichmüller mapping with expansion factor K if

$$
\mu\left(f_{t}\right)=\frac{\bar{\partial} f_{t}}{\partial f_{t}}=\left(\frac{K^{2}-1}{K^{2}+1}\right) \frac{\bar{q}}{|q|}
$$

for some holomorphic quadratic differential $q(z) d z^{2}$ on \mathcal{F}_{α}. Away from the zeros of q, such a mapping has the form of an affine stretch as in (1.1).

Quantum geodesics. Theorem 1.1 provides, for a general measured foliation \mathcal{F} with typical leaf S, a 'quantum geodesic'

$$
\gamma: \mathbb{R} / H_{1}(M, \mathbb{Z}) \rightarrow \operatorname{Teich}(S) / H_{1}(M, \mathbb{Z})
$$

Here $H_{1}(M, \mathbb{Z})$ acts on \mathbb{R} by translation by the periods Π of ω, and on Teich (S) by monodromy around loops in M. Generically Π is a dense subgroup of \mathbb{R}, in which case \mathbb{R} / Π and Teich $(S) / H_{1}(M, \mathbb{Z})$ are 'quantum spaces' in the sense of Connes [12]. The map γ plays the role of a closed Teichmüller geodesic for the virtual mapping class determined by \mathcal{F}.

The Teichmüller polynomial. Next we introduce a polynomial invariant Θ_{F} for a fibered face $F \subset H^{1}(M, \mathbb{R})$. This polynomial determines the Teichmüller expansion factors $K(\phi)$ for all $\phi=[\mathcal{F}] \in \mathbb{R}_{+} \cdot F$.

Like the Alexander polynomial, Θ_{F} naturally resides in the group ring $\mathbb{Z}[G]$, where $G=$ $H_{1}(M, \mathbb{Z}) /$ torsion. Observe that $\mathbb{Z}[G]$ can be thought of as a ring of complex-valued functions on the character variety $\widehat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$, with

$$
\left(\sum a_{g} \cdot g\right)(\rho)=\sum a_{g} \rho(g)
$$

To define Θ_{F}, we first show F determines a 2-dimensional lamination $\mathcal{L} \subset M$, transverse to every fiber $[S] \in \mathbb{R}_{+} \cdot F$ and with $S \cap \mathcal{L}$ equal to the expanding lamination for the monodromy $\psi: S \rightarrow S$. Next we define, for every character $\rho \in \widehat{G}$, a group of twisted cycles $Z_{2}\left(\mathcal{L}, \mathbb{C}_{\rho}\right)$. Here a cycle μ is simply an additive, holonomy-invariant function $\mu(T)$ on compact, open transversals T to \mathcal{L}, with values in the complex line bundle specified by ρ.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

The Teichmüller polynomial $\Theta_{F} \in \mathbb{Z}[G]$ defines the largest hypersurface $V \subset \widehat{G}$ such that

$$
\begin{equation*}
\operatorname{dim} Z_{2}\left(\mathcal{L}, \mathbb{C}_{\rho}\right)>0 \quad \text { for all } \rho \in V \tag{1.2}
\end{equation*}
$$

More precisely, we associate to \mathcal{L} a module $T(\widetilde{\mathcal{L}})$ over $\mathbb{Z}[G]$, and $\left(\Theta_{F}\right)$ is the smallest principal ideal containing all the minor determinants in a presentation matrix for $T(\widetilde{\mathcal{L}})$. Thus Θ_{F} is welldefined up to multiplication by a unit $\pm g \in \mathbb{Z}[G]$.

Information packaged in Θ_{F}. Let $\Theta_{F}=\sum a_{g} \cdot g$ be the Teichmüller polynomial of a fibered face F of the Thurston norm ball in $H^{1}(M, \mathbb{R})$. In Sections 3-6 we will show:
(1) The Teichmüller polynomial is symmetric; that is, $\Theta_{F}=\sum a_{g} \cdot g^{-1}$ up to a unit in $\mathbb{Z}[G]$.
(2) For any fiber $[S]=\phi \in \mathbb{R}_{+} \cdot F$, the expansion factor $k=K(\phi)$ of its monodromy ψ is the largest root of the polynomial equation

$$
\begin{equation*}
\Theta_{F}\left(k^{\phi}\right)=\sum a_{g} k^{\phi(g)}=0 \tag{1.3}
\end{equation*}
$$

(3) Eq. (1.3) also determines the expansion factor for any measured foliation $[\mathcal{F}]=\phi \in \mathbb{R}_{+} \cdot F$.
(4) The function $1 / \log K(\phi)$ is real-analytic and strictly concave on $\mathbb{R}_{+} \cdot F$.
(5) The cone $\mathbb{R}_{+} \cdot F$ is dual to a vertex of the Newton polygon

$$
N\left(\Theta_{F}\right)=\left(\text { the convex hull of }\left\{g: a_{g} \neq 0\right\}\right) \subset H_{1}(M, \mathbb{R})
$$

To see the relation of Θ_{F} to expansion factors, note that a fibration $M \rightarrow S^{1}$ with fiber S determines a measured lamination $\left(\lambda, \mu_{0}\right) \in \mathcal{M L}(S)$, such that the transverse measure μ_{0} on λ is expanded by a factor $K>1$ under monodromy. Thus the suspension of μ_{0} gives a cycle $\mu \in Z_{2}\left(\mathcal{L}, \mathbb{C}_{\rho}\right)$ with character

$$
\rho(\gamma)=K^{[S] \cdot[\gamma]}
$$

for loops $\gamma \subset M$. Therefore $\Theta_{F}(\rho)=0$ (as in (1.2) above), and thus K can be recovered from the zeros of Θ_{F}.

The relation between F and the Newton polygon of $\Theta_{F}((1)$ above $)$ comes from the fact that $K(\phi) \rightarrow \infty$ as $\phi \rightarrow \partial F$.

A formula for $\Theta_{F}(t, u)$. One can also approach the Teichmüller polynomial from a 2dimensional perspective. Let $\psi: S \rightarrow S$ be a pseudo-Anosov mapping, and let $\left(t_{1}, \ldots, t_{b}\right)$ be a multiplicative basis for

$$
H=\operatorname{Hom}\left(H^{1}(S, \mathbb{Z})^{\psi}, \mathbb{Z}\right) \cong \mathbb{Z}^{b}
$$

where $H^{1}(S, \mathbb{Z})^{\psi}$ is the ψ-invariant cohomology of S. (When ψ acts trivially on cohomology, we can identify H with $H_{1}(S, \mathbb{Z})$.) By evaluating cohomology classes on loops, we obtain a natural $\operatorname{map} \pi_{1}(S) \rightarrow H$. Choose a lift

$$
\widetilde{\psi}: \widetilde{S} \rightarrow \widetilde{S}
$$

of ψ to the H-covering space of S.
Let $M=S \times[0,1] /\langle(x, 1) \sim(\psi(x), 0)\rangle$ be the mapping torus of ψ, let

$$
G=H_{1}(M, \mathbb{Z}) / \text { torsion } \cong H \oplus \mathbb{Z}
$$

and let $F \subset H^{1}(M, \mathbb{R})$ be the fibered face with $[S] \in \mathbb{R}_{+} \cdot F$. Then we can regard Θ_{F} as a Laurent polynomial

$$
\Theta_{F}(t, u) \in \mathbb{Z}[G]=\mathbb{Z}[H] \oplus \mathbb{Z}[u]=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{b}^{ \pm 1}, u^{ \pm 1}\right]
$$

where u corresponds to $[\widetilde{\psi}]$.
To give a concrete expression for Θ_{F}, let E and V denote the edges and vertices of an invariant train track $\tau \subset S$ carrying the expanding lamination of ψ. Then $\widetilde{\psi}$ acts by matrices $P_{E}(t)$ and $P_{V}(t)$ on the free $\mathbb{Z}[H]$-modules generated by the lifts of E and V to \widetilde{S}. In terms of this action we show (Section 3):
(6) The Teichmüller polynomial is given by

$$
\Theta_{F}(t, u)=\frac{\operatorname{det}\left(u I-P_{E}(t)\right)}{\operatorname{det}\left(u I-P_{V}(t)\right)}
$$

Using this formula, many of the properties of Θ_{F} follow from the theory of Perron-Frobenius matrices over a ring of Laurent polynomials, developed in Appendix A.

Fixed-points on $\mathbb{P} \mathcal{M} \mathcal{L}_{s}(S)$. Let $\mathcal{M} \mathcal{L}_{s}(S)$ denote the space of measured laminations $\Lambda=$ (λ, μ) on S twisted by $s \in H^{1}(S, \mathbb{R})$, meaning μ transforms by $e^{s(\gamma)}$ under $\gamma \in \pi_{1}(S)$.

The mapping-class ψ acts on $\mathcal{M} \mathcal{L}_{s}(S)$ for all $s \in H^{1}(S, \mathbb{R})^{\psi}$, once we have chosen the lift $\widetilde{\psi}$. As in the untwisted case, ψ has a unique pair of fixed-points [$\Lambda_{ \pm}$] in $\mathbb{P} \mathcal{M} \mathcal{L}_{s}(S)$, whose supports $\lambda_{ \pm}$are independent of s. In Section 8 we show:
(7) The eigenvector $\Lambda_{+} \in \mathcal{M} \mathcal{L}_{s}(S)$ satisfies

$$
\psi \cdot \Lambda_{+}=k(s) \Lambda_{+}
$$

where $u=k(s)>0$ is the largest root of the polynomial $\Theta_{F}\left(e^{s}, u\right)=0$. The function $\log k(s)$ is convex on $H^{1}(S, \mathbb{R})^{\psi}$.
Short geodesics on moduli space. It is known that the shortest geodesic loop on moduli space \mathcal{M}_{g} has Teichmüller length $L\left(\mathcal{M}_{g}\right) \asymp 1 / g$ (see [40]). In Section 10 we show mappingclasses with invariant cohomology provide a natural source of such short geodesics.

More precisely, let $\psi: S \rightarrow S$ be a pseudo-Anosov mapping on a closed surface of genus $g \geqslant 2$, leaving invariant a primitive cohomology class

$$
\xi_{0}: \pi_{1}(S) \rightarrow \mathbb{Z}
$$

Let $\widetilde{S} \rightarrow S$ be the corresponding \mathbb{Z}-covering space, with deck group generated by $h: \widetilde{S} \rightarrow \widetilde{S}$, and fix a lift $\widetilde{\psi}$ of ψ to \widetilde{S}. Then for all $n \gg 0$, the surface $R_{n}=\widetilde{S} /\left\langle h^{n} \widetilde{\psi}\right\rangle$ has genus $g_{n} \asymp n$, and $h: \widetilde{S} \rightarrow \widetilde{S}$ descends to a pseudo-Anosov mapping-class $\psi_{n}: R_{n} \rightarrow R_{n}$.

This renormalization construction gives mappings ψ_{n} with expansion factors satisfying

$$
K\left(\psi_{n}\right)=K(\phi)^{1 / n}+\mathrm{O}\left(1 / n^{2}\right)
$$

and hence produces closed Teichmüller geodesics of length

$$
L\left(\psi_{n}\right)=\frac{L(\psi)}{n}+\mathrm{O}\left(n^{-2}\right) \asymp \frac{1}{g_{n}}
$$

This estimate is obtained by realizing the surfaces R_{n} as fibers in the mapping torus of ψ; see Section 10.

Fig. 1. The 4 component fibered link $L(\beta)$, for the pure braid $\beta=\sigma_{1}^{2} \sigma_{2}^{-6}$.

Fig. 2. The fibered face of Thurston norm ball for $M=S^{3}-L(\beta)$.

Closed braids. The Teichmüller polynomial leads to a practical algorithm for computing a fibered face $F \subset H^{1}(M, \mathbb{R})$ from the dynamics on a particular fiber $[S] \in \mathbb{R}_{+} \cdot F$.

Closed braids in S^{3} provide a natural source of fibered 3-manifolds to which this algorithm can be applied, as we demonstrate in Section 11. For example, Fig. 1 shows a 4 -component link $L(\beta)$ obtained by closing the braid $\beta=\sigma_{1}^{2} \sigma_{2}^{-6}$ after passing it through the unknot α. The disk spanned by α meets β in 3 points, providing a fiber $S \subset M=S^{3}-L(\beta)$ isomorphic to a 4-times punctured sphere.

The corresponding fibered face is a 3-dimensional polyhedron

$$
F \subset H^{1}(M, \mathbb{R}) \cong \mathbb{R}^{4}
$$

its projection to $H^{1}(S, \mathbb{R}) \cong \mathbb{R}^{3}$ is shown in Fig. 2. Details of this example and others are presented in Section 11.

Comparison with the Alexander polynomial. In [33] we defined a norm $\|\cdot\|_{A}$ on $H^{1}(M, \mathbb{R})$ using the Alexander polynomial of M, and established the inequality

$$
\|\phi\|_{A} \leqslant\|\phi\|_{T}
$$

between the Alexander and Thurston norms (when $b_{1}(M)>1$). This inequality suggested that the Thurston norm should be refined to polynomial invariant, and Θ_{F} provides such an invariant for the fibered faces of the Thurston norm ball.

The Alexander polynomial Δ_{M} and the Teichmüller polynomial Θ_{F} are compared in Table 1. Both polynomials are attached to modules over $\mathbb{Z}[G]$, namely $A(M)$ and $T(\widetilde{\mathcal{L}})$. These modules give rise to groups of (co)cycles with twisted coefficients, and Δ and Θ_{F} describe the locus of characters $\rho \in \widehat{G}$ where $\operatorname{dim} Z^{1}\left(M, \mathbb{C}_{\rho}\right)>1$ and $\operatorname{dim} Z_{2}\left(\mathcal{L}, \mathbb{C}_{\rho}\right)>0$ respectively.

```
4e}\mathrm{ SÉRIE - TOME 33-2000-N` 4
```

Table 1

Alexander	Teichmüller				
3-manifold M	Fibered face F for M				
Alexander module $A(M)$	Teichmüller module $T(\widetilde{\mathcal{L}})$				
$\operatorname{Hom}(A(M), B)=Z^{1}(M, B)$	$\operatorname{Hom}(T)(\widetilde{\mathcal{L}}), B)=Z_{2}(\widetilde{\mathcal{L}}, B)$				
Alexander polynomial Δ_{M}	Teichmüller polynomial Θ_{F}				
Alexander norm on $H^{1}(M, \mathbb{Z})$	Thurston norm on $H^{1}(M, \mathbb{Z})$				
$\\|\phi\\|_{A}=b_{1}(\operatorname{Ker} \phi)+p(M)$	$\\|\phi\\|_{T}=\inf \{\|\chi(S)\|:[S]=\phi\}$				
$\\|\phi\\|_{A}=\\|\phi\\|_{T}$ for the cohomology class of a fibration $M \rightarrow S^{1}$					
Extended Torelli group of S acts on $H^{1}(S)$ with twisted coefficients	Extended Torelli group acts on $\mathcal{M} \mathcal{L}(S)$ with twisted coefficients				

The polynomials Δ and Θ_{F} are related to the Alexander and Thurston norms on $H^{1}(M, \mathbb{R})$, and these norms agree on the cohomology classes of fibrations. Moreover, if the lamination \mathcal{L} for the fibered face F has transversally oriented leaves, then Δ_{M} divides Θ_{F} and F is also a face of the Alexander norm ball (Section 7).

From a 2-dimensional perspective, the polynomials attached to a fibered manifold M can be described in terms of a mapping-class $\psi \in \operatorname{Mod}(S)$. The description is most uniform for ψ in the Torelli group $\operatorname{Tor}(S)$, the subgroup of $\operatorname{Mod}(S)$ that acts trivially on $H=H_{1}(S, \mathbb{Z})$. By providing ψ with a lift $\widetilde{\psi}$ to the H-covering space of S, we obtain the extended Torelli group $\widetilde{\operatorname{Tor}}(S)$, a central extension satisfying:

$$
0 \rightarrow H_{1}(S, \mathbb{Z}) \rightarrow \widetilde{\operatorname{Tor}}(S) \rightarrow \operatorname{Tor}(S) \rightarrow 0
$$

The lifted mappings $\widetilde{\psi} \in \widetilde{\operatorname{Tor}}(S)$ preserve twisted coefficients for any $s \in H^{1}(S, \mathbb{R})$, so we obtain a linear representation of $\operatorname{Tor}(S)$ on $H^{1}\left(S, \mathbb{C}_{s}\right)$ and a piecewise-linear action on $\mathcal{M L}_{s}(S)$. For example, when S is a sphere with $n+1$ boundary components, the pure braid group P_{n} is a subgroup of $\widetilde{\operatorname{Tor}}(S)$, and its action on $H^{1}\left(S, \mathbb{C}_{s}\right)$ is the Gassner representation of P_{n} [6].

Characteristic polynomials for these actions then give the Alexander and Teichmüller invariants Δ_{M} and Θ_{F}.

Other foliations. Gabai has shown that every norm-minimizing surface $S \subset M$ is the leaf of a taut foliation \mathcal{F} (see [21]), and the construction of pseudo-Anosov flows transverse to taut foliations is a topic of current research. It would be interesting to obtain polynomial invariants for these more general foliations, and in particular for the non-fibered faces of the Thurston norm ball.

Notes and references. Contributions related to this paper have been made by many authors.
For a pseudo-Anosov mapping with transversally orientable foliations, Fried investigated a twisted Lefschetz zeta-function $\zeta(t, u)$ similar to $\Theta_{F}(t, u)$. For example, the homology directions of these special pseudo-Anosov mappings can be recovered from the support of $\zeta(t, u)$, just as $\mathbb{R}_{+} \cdot F$ can be recovered from Θ_{F}; and the concavity of $1 / \log (K(\phi))$ holds in a general setting. See [18,20].

Laminations, foliations and branched surfaces with affine invariant measures have been studied in $[25,13,31,8,38]$ and elsewhere. The Thurston norm can also be studied using taut
foliations [22], branched surfaces [37,34] and Seiberg-Witten theory [27]. Another version of Theorem 1.1 is presented by Thurston in [45, Theorem 5.8].

Background on pseudo-Anosov mappings, laminations and train tracks can be found, for example, in [16], [42, §8.9], [44,4,24,5] and the references therein. Additional notes and references are collected at the end of each section.

2. The module of a lamination

Laminations. Let λ be a Hausdorff topological space. We say λ is an n-dimensional lamination if there exists a collection of compact, totally disconnected spaces K_{α} such that λ is covered by open sets U_{α} homeomorphic to $K_{\alpha} \times \mathbb{R}^{n}$.

The leaves of λ are its connected components.
A compact, totally disconnected set $T \subset \lambda$ is a transversal for λ if there is an open neighborhood U of T and a homeomorphism

$$
\begin{equation*}
(U, T) \cong\left(T \times \mathbb{R}^{n}, T \times\{0\}\right) \tag{2.1}
\end{equation*}
$$

Any compact open subset of a transversal is again a transversal.
Modules and cycles. We define the module of a lamination, $T(\lambda)$, to be the \mathbb{Z}-module generated by all transversals [T], modulo the relations:
(i) $[T]=\left[T^{\prime}\right]+\left[T^{\prime \prime}\right]$ if T is the disjoint union of T^{\prime} and $T^{\prime \prime}$; and
(ii) $[T]=\left[T^{\prime}\right]$ if there is a neighborhood U of $T \cup T^{\prime}$ such (2.1) holds for both T and T^{\prime}.

Equivalently, (ii) identifies transversals that are equivalent under holonomy (sliding along the leaves of the lamination).

For any \mathbb{Z}-module B, we define the space of n-cycles on an n-dimensional lamination λ with values in B by:

$$
Z_{n}(\lambda, B)=\operatorname{Hom}(T(\lambda), B) .
$$

For example, cycles $\mu \in Z_{n}(\lambda, \mathbb{R})$ correspond to finitely-additive transverse signed measures; the measure of a transversal $\mu(T)$ is holonomy invariant by relation (ii), and it satisfies

$$
\mu\left(T \sqcup T^{\prime}\right)=\mu(T)+\mu\left(T^{\prime}\right)
$$

by relation (i).
Action of homeomorphisms. Let $\psi: \lambda_{1} \rightarrow \lambda_{2}$ be a homeomorphism between laminations. Then ψ determines an isomorphism

$$
\psi^{*}: T\left(\lambda_{2}\right) \rightarrow T\left(\lambda_{1}\right)
$$

defined by pulling back transversals:

$$
\psi^{*}([T])=\left[\psi^{-1}(T)\right]
$$

Applying $\operatorname{Hom}(\cdot, B)$, we obtain a pushforward map on cycles,

$$
\psi_{*}: Z_{n}\left(\lambda_{1}, B\right) \rightarrow Z_{n}\left(\lambda_{2}, B\right)
$$

satisfying $\left(\psi_{*}(\mu)\right)(T)=\mu\left(\psi^{-1}(T)\right)$ and thus generalizing the pushforward of measures.

```
4e}\mathrm{ SÉRIE - TOME 33-2000- N` 4
```

The mapping-torus. Now let $\psi: \lambda \rightarrow \lambda$ be a homeomorphism of an n-dimensional lamination to itself. The mapping torus \mathcal{L} of ψ is the ($n+1$)-dimensional lamination defined by

$$
\mathcal{L}=\lambda \times[0,1] /\langle(x, 1) \sim(\psi(x), 0)\rangle
$$

The lamination \mathcal{L} fibers over S^{1} with fiber λ and monodromy ψ. Since cycles on \mathcal{L} correspond to ψ-invariant cycles on λ, we have:

PROPOSITION 2.1.- The module of the mapping torus of $\psi: \lambda \rightarrow \lambda$ is given by

$$
T(\mathcal{L})=\operatorname{Coker}\left(\psi^{*}-I\right)=T(\lambda) /\left(\psi^{*}-I\right)(T(\lambda))
$$

Example: $\left(\mathbb{Z}_{p}, x+1\right)$. - Let $\lambda=\mathbb{Z}_{p}$ be the p-adic integers, considered as a 0 -dimensional lamination, and let $\psi: \lambda \rightarrow \lambda$ be the map $\psi(x)=x+1$. Then the mapping torus \mathcal{L} of ψ is a 1 -dimensional solenoid, satisfying

$$
T(\mathcal{L}) \cong \mathbb{Z}[1 / p]
$$

where $\mathbb{Z}[1 / p] \subset \mathbb{Q}$ is the subring generated by $1 / p$. Indeed, the transversals $T_{n}=p^{n} \mathbb{Z}_{p}$ and their translates generate $T(\lambda)$, so their images $\left[T_{n}\right]$ generate $T(\mathcal{L})$. Since T_{n} is the union of p translates of T_{n+1}, we have $\left[T_{n}\right]=p\left[T_{n+1}\right]$, and therefore $T(\mathcal{L}) \cong \mathbb{Z}[1 / p]$ by the map sending $\left[T_{n}\right]$ to p^{-n}.

Observe that

$$
Z_{1}(\mathcal{L}, \mathbb{R})=\operatorname{Hom}(\mathbb{Z}[1 / p], \mathbb{R})=\mathbb{R}
$$

showing there is a unique finitely-additive probability measure on \mathbb{Z}_{p} invariant under $x \mapsto x+1$.
Twisted cycles. Next we describe cycles with twisted coefficients.
Let $\widetilde{\lambda} \rightarrow \lambda$ be a Galois covering space with abelian deck group G. Then G acts on $T(\widetilde{\lambda})$, making the latter into a module over the group ring $\mathbb{Z}[G]$. Any G-module B determines a bundle of twisted local coefficients over λ, and we define

$$
Z_{n}(\lambda, B)=\operatorname{Hom}_{G}(T(\tilde{\lambda}), B)
$$

For example, any homomorphism

$$
\rho: G \rightarrow \mathbb{R}_{+}
$$

makes \mathbb{R} into a module \mathbb{R}_{ρ} over $\mathbb{Z}[G]$. The cycles $\mu \in Z_{n}\left(\lambda, \mathbb{R}_{\rho}\right)$ can then be interpreted as either:
(i) cycles on $\widetilde{\lambda}$ satisfying $g_{*} \mu=\rho(g) \mu(T)$ for all $g \in G$; or
(ii) cycles on λ with values (locally) in the real line bundle over λ determined by $\rho \in H^{1}\left(\lambda, \mathbb{R}_{+}\right)$.

Geodesic laminations on surfaces. Now let S be a compact orientable surface with $\chi(S)<0$. Fix a complete hyperbolic metric of finite volume on $\operatorname{int}(S)$.

A geodesic lamination $\lambda \subset S$ is a compact lamination whose leaves are hyperbolic geodesics.
A train track $\tau \subset S$ is a finite 1-complex such that
(i) every $x \in \tau$ lies in the interior of a smooth arc embedded in τ,
(ii) any two such arcs are tangent at x, and
(iii) for each component U of $S-\tau$, the double of U along the smooth part of ∂U has negative Euler characteristic.
A geodesic lamination λ is carried by a train track τ if there is a continuous collapsing map $f: \lambda \rightarrow \tau$ such that for each leaf $\lambda_{0} \subset \lambda$,
(i) $f \mid \lambda_{0}$ is an immersion, and
(ii) λ_{0} is the geodesic representative of the path or loop $f: \lambda_{0} \rightarrow S$.

Collapsing maps between train tracks are defined similarly. Every geodesic lamination is carried by some train track [24, 1.6.5].

The vertices (or switches) of a train track, $V \subset \tau$, are the points where 3 or more smooth arcs come together. The edges E of τ are the components of $\tau-V$; some 'edges' may be closed loops.

A train track is trivalent if only 3 edges come together at each vertex. A trivalent train track has minimal complexity for λ if it has the minimal number of edges among all trivalent τ carrying λ.

The module of a train track. Let $T(\tau)$ denote the \mathbb{Z}-module generated by the edges E of τ, modulo the relations

$$
\left[e_{1}\right]+\cdots+\left[e_{r}\right]=\left[e_{1}^{\prime}\right]+\cdots+\left[e_{s}^{\prime}\right]
$$

for each vertex $v \in V$ with incoming edges $\left(e_{i}\right)$ and outgoing edges $\left(e_{j}^{\prime}\right)$. (The distinction between incoming and outgoing edges depends on the choice of a direction along τ at v.) Since there is one relation for each vertex, we obtain a presentation for $T(\tau)$ of the form:

$$
\begin{equation*}
\mathbb{Z}^{V} \xrightarrow{D} \mathbb{Z}^{E} \rightarrow T(\tau) \rightarrow 0 . \tag{2.2}
\end{equation*}
$$

As for a geodesic lamination, we define the 1-cycles on τ with values in B by

$$
Z_{1}(\tau, B)=\operatorname{Hom}(T(\tau), B)
$$

THEOREM 2.2. - Let $\lambda \subset S$ be a geodesic lamination, and let τ be a train track carrying λ with minimal complexity. Then there is a natural isomorphism

$$
T(\lambda) \cong T(\tau)
$$

Corollary 2.3. - For any geodesic lamination λ, the module $T(\lambda)$ is finitely-generated.
COROLLARY 2.4. - If λ is connected and carried by a train track τ of minimal complexity, then we have

$$
T(\lambda) \cong \mathbb{Z}^{|\chi(\tau)|} \oplus \begin{cases}\mathbb{Z} & \text { if } \tau \text { is orientable } \\ \mathbb{Z} / 2 & \text { otherwise } .\end{cases}
$$

(Here $\chi(\tau)$ is the Euler characteristic of τ.)
Proof. - Use the fact that the transpose $D^{*}: \mathbb{Z}^{E} \rightarrow \mathbb{Z}^{V}$ of the presentation matrix (2.2) for $T(\tau)$ behaves like a boundary map, and $\sum n_{i} v_{i}$ is in the image of D^{*} iff $\sum n_{i}=0$ (in the orientable case) or $\sum n_{i}=0(\bmod 2)($ in the non-orientable case $)$.

Proof of Theorem 2.2. - Let $\tau_{0}=\tau$. The collapsing map $f_{0}: \lambda \rightarrow \tau_{0}$ determines a map of modules

$$
f_{0}^{*}: T\left(\tau_{0}\right) \rightarrow T(\lambda)
$$

sending each edge $e \in E$ to the transversal defined by

$$
T=f_{0}^{*}(e)=f_{0}^{-1}(x)
$$

for any $x \in e$. We will show f_{0}^{*} is an isomorphism.

```
4e SÉRIE - TOME 33-2000 - N N 4
```


Fig. 3. Three possible splittings.

We begin by using λ to guide a sequence of splittings of τ_{0} into finer and finer train tracks τ_{n}, converging to λ itself, in the sense that there are collapsing maps $f_{n}: \lambda \rightarrow \tau_{n}$ converging to the inclusion $\lambda \subset S$. We will also have collapsing maps $g_{n}: \tau_{n+1} \rightarrow \tau_{n}$ such that $f_{n}=g_{n} \circ f_{n+1}$. Each τ_{n} will be of minimal complexity.

The train track τ_{n+1} is constructed from τ_{n} as follows. First, observe that each edge of τ_{n} carries at least one leaf of λ (since τ_{n} has minimal complexity). Thus each cusp of a component U of $S-\tau$ (where tangent edges a, b in τ come together) corresponds to pair of adjacent leaves λ_{a}, λ_{b} of λ. Choose a particular cusp, and split τ_{n} between a and b so that the train track continues to follow λ_{a} and λ_{b}. When we split past a vertex, we obtain a new trivalent train track τ_{n+1}. There are 3 possible results of splitting, recorded in Fig. 3.

In the middle case, the leaves λ_{1} and λ_{2} diverge, and we obtain a train track τ_{n+1} carrying λ but with fewer edges than τ_{n}; this is impossible, since τ_{n} has minimal complexity.

In the right and left cases, we obtain a train track τ_{n+1} of the same complexity as τ_{n}, with a natural collapsing map $g_{n+1}: \tau_{n+1} \rightarrow \tau_{n}$. Since the removed and added edges e and f are both in the span of $\langle a, b, c, d\rangle$, the module map

$$
\begin{equation*}
g_{n}^{*}: T\left(\tau_{n}\right) \rightarrow T\left(\tau_{n+1}\right) \tag{2.3}
\end{equation*}
$$

is an isomorphism.
By repeatedly splitting every cusp of $S-\tau$, we obtain train tracks with longer and longer edges, following the leaves of λ more and more closely; thus the collapsing maps can be chosen such that $f_{n}: \lambda \rightarrow \tau_{n}$ converges to the identity. Compare [42, Proposition 8.9.2], [24, §2].

To prove $T(\lambda) \cong T\left(\tau_{0}\right)$, we will define a map

$$
\phi: T(\lambda) \rightarrow T_{\infty}=\underline{\longrightarrow} T\left(\tau_{n}\right)
$$

(where the direct limit is taken with respect to the collapsing maps g_{n}^{*}). Given any transversal T to λ, there is a neighborhood U of T in λ homeomorphic to $T \times \mathbb{R}$. Then for all $n \gg 0$, we have

$$
\sup _{x \in \lambda} d\left(f_{n}(x), x\right)<d(T, \partial U)
$$

and thus all the leaves of λ carried by $\tau \cap U$ are accounted for by T. Therefore T is equivalent to a finite sum of edges in $T\left(\tau_{n}\right)$:

$$
f_{n}^{*}\left(\left[e_{1}\right]+\cdots+\left[e_{i}\right]\right)=[T],
$$

and we define $\phi(T)=\left[e_{1}\right]+\cdots+\left[e_{i}\right]$.
It is now straightforward to verify that ϕ is a map of modules, inverting the map $T_{\infty} \rightarrow T(\lambda)$ obtained as the inverse limit of the collapsings $f_{n}^{*}: T\left(\tau_{n}\right) \rightarrow T(\lambda)$. But the maps g_{n}^{*} of (2.3) are isomorphisms, so we have $T(\lambda) \cong T_{\infty} \cong T\left(\tau_{0}\right)$.

Twisted train tracks. Train tracks also provide a convenient description of twisted cycles on a geodesic lamination.

Let $\lambda \subset S$ be a geodesic lamination carried by a train track τ. Let

$$
\pi: \widetilde{S} \rightarrow S
$$

be a Galois covering space with abelian deck group G. We can then construct modules $T(\widetilde{\lambda})$ and $T(\widetilde{\tau})$ attached to the induced covering spaces of λ and τ. The deck group acts naturally on $\widetilde{\lambda}$ and $\widetilde{\tau}$, so we obtain modules over the group ring $\mathbb{Z}[G]$. The arguments of Theorem 2.2 can then be applied to the lift of a collapsing map $f: \lambda \rightarrow \tau$, to establish:

THEOREM 2.5. - The $\mathbb{Z}[G]$-modules $T(\widetilde{\lambda})$ and $T(\widetilde{\tau})$ are naturally isomorphic. A choice of lifts for the edges and vertices (E, V) of τ to $\widetilde{\tau}$ determines a finite presentation

$$
\mathbb{Z}[G]^{V} \xrightarrow{D} \mathbb{Z}[G]^{E} \rightarrow T(\widetilde{\tau}) \rightarrow 0
$$

for $T(\widetilde{\tau})$ as a $\mathbb{Z}[G]$-module.

Example. - Let S be a sphere with 4 disks removed. Let $\widetilde{S} \rightarrow S$ be the maximal abelian covering of S, with deck group

$$
G=H_{1}(S, \mathbb{Z})=\langle A, B, C\rangle \cong \mathbb{Z}^{3}
$$

generated by counterclockwise loops around 3 boundary components of S.
Let $\tau \subset S$ be the train track shown in Fig. 4. Then for suitable lifts of the edges of τ, the module $T(\widetilde{\tau})$ is generated over $\mathbb{Z}[G]$ by $\langle a, b, c, d, e, f\rangle$, with the relations:

$$
\begin{aligned}
b & =a+d \\
A^{-1} d & =a+e \\
b & =c+f \\
c & =B^{-1} e+C f
\end{aligned}
$$

Fig. 4. Presenting a track track.
coming from the 4 vertices of τ. Simplifying, we find $T(\widetilde{\tau})$ is generated by $\langle a, b, c\rangle$ with the single relation

$$
(1+A) a+A B(1+C) c=(1+A B C) b
$$

This relation shows, for example, that

$$
\operatorname{dim} Z_{1}\left(\tau, \mathbb{C}_{\rho}\right)= \begin{cases}3 & \text { if } \rho(A)=\rho(B)=\rho(C)=-1 \\ 2 & \text { otherwise }\end{cases}
$$

for any 1-dimensional representation $\rho: G \rightarrow \mathbb{C}^{*}$.

Notes.

(1) The usual (positive, countably-additive) transverse measures on a geodesic lamination λ generally span a proper subspace $M(\lambda)$ of the space of cycles $Z_{1}(\lambda, \mathbb{R})$. Indeed, a generic measured lamination λ on a closed surface cuts S into ideal triangles, so any train track τ carrying λ is the 1 -skeleton of a triangulation of S. At the same time λ is typically uniquely ergodic, and therefore

$$
\operatorname{dim} M(\lambda)=1<\operatorname{dim} Z_{1}(\lambda, \mathbb{R})=\operatorname{dim} Z_{1}(\tau, \mathbb{R})=6 g(S)-6
$$

(2) Bonahon has shown that cycles $\mu \in Z_{1}(\lambda, \mathbb{R})$ correspond to transverse invariant Hölder distributions; that is, the pairing

$$
\langle f, \mu\rangle=\int_{T} f(x) d \mu(x)
$$

can be defined for any transversal T and Hölder continuous function $f: T \rightarrow \mathbb{R}$ [8, Theorem 17]. See also [8, Theorem 11] for a variant of Theorem 2.2, and [7] for additional results.
(3) One can also describe $Z_{1}(\lambda, \mathbb{R})$ as a space of closed currents carried by λ, since these cycles are distributional in nature and they need not be compactly supported (when λ is noncompact).

3. The Teichmüller polynomial

In this section we define the Teichmüller polynomial Θ_{F} of a fibered face F, and establish the determinant formula

$$
\Theta_{F}(t, u)=\operatorname{det}\left(u I-P_{E}(t)\right) / \operatorname{det}\left(u I-P_{V}(t)\right)
$$

We begin by introducing some notation that will be used throughout the sequel.
Let M^{3} be a compact, connected, orientable, irreducible, atoroidal 3-manifold. Let $\pi: M \rightarrow$ S^{1} be a fibration with fiber $S \subset M$ and monodromy ψ. Then:

- S is a compact, orientable surface with $\chi(S)<0$, and
- $\psi: S \rightarrow S$ is a pseudo-Anosov map, with an expanding invariant lamination
- $\lambda \subset S$, unique up to isotopy.

Adjusting ψ by isotopy, we can assume $\psi(\lambda)=\lambda$.

By the general theory of pseudo-Anosov mappings, there is a positive transverse measure $\mu \in Z_{1}(\lambda, \mathbb{R})$, unique up to scale, and $\psi_{*}(\mu)=k \mu$ for some $k>1$. Then $[\Lambda]=[(\lambda, \mu)]$ is a fixedpoint of ψ in the space of projective measured laminations $\mathbb{P M} \mathcal{L}(S)$. Moreover $\left[\psi^{n}(\gamma)\right] \rightarrow[\Lambda]$ for every simple closed curve $[\gamma] \in \mathbb{P} \mathcal{M} \mathcal{L}(S)$.

Associated to (M, S) we also have:

- $\mathcal{L} \subset M$, the mapping torus of $\psi: \lambda \rightarrow \lambda$, and
- $F \subset H^{1}(M, \mathbb{R})$, the open face of unit ball in the Thurston norm with $[S] \in \mathbb{R}_{+} \cdot F$.

We say F is a fibered face of the Thurston norm ball, since every point in $H^{1}(M, \mathbb{Z}) \cap \mathbb{R}_{+} \cdot F$ is represented by a fibration of M over the circle [43, Theorem 5].

The flow lines of ψ. Using ψ we can present M in the form

$$
M=(S \times \mathbb{R}) /\langle(s, t) \sim(\psi(s), t-1)\rangle
$$

and the lines $\{s\} \times \mathbb{R}$ descend to the leaves of an oriented 1-dimensional foliation Ψ of M, the flow lines of ψ. The 2-dimensional lamination $\mathcal{L} \subset M$ is swept out by the leaves of Ψ passing through λ.

Invariance of \mathcal{L}. We now show \mathcal{L} depends only on F.
THEOREM 3.1 (Fried). - Let $\left[S^{\prime}\right] \in \mathbb{R}_{+} \cdot F$ be a fiber of M. Then after an isotopy,

- S^{\prime} is transverse to the flow lines Ψ of ψ, and
- the first return map of the flow coincides with the pseudo-Anosov monodromy $\psi^{\prime}: S^{\prime} \rightarrow S^{\prime}$.

For this result, see [17, Theorem 7 and Lemma] and [19].
COROLLARY 3.2. - Any two fibers $[S],\left[S^{\prime}\right] \in \mathbb{R}_{+} \cdot F$ determine the same lamination $\mathcal{L} \subset M$ (up to isotopy).

Proof. - Consider two fibers S and S^{\prime} for the same face F. Let ψ, ψ^{\prime} denote their respective monodromy transformations, $\lambda, \lambda^{\prime}$ their expanding laminations, and $\mathcal{L}, \mathcal{L}^{\prime} \subset M$ the mapping tori of $\lambda, \lambda^{\prime}$.

By the theorem above, we can assume S^{\prime} is transverse to Ψ and hence transverse to \mathcal{L}.
Let $\mu^{\prime}=\mathcal{L} \cap S^{\prime}$. Then $\mu^{\prime} \subset S^{\prime}$ is a ψ^{\prime}-invariant lamination with no isolated leaves. By invariance, μ^{\prime} must contain the expanding or contracting lamination of ψ^{\prime}. Since flowing along Ψ expands the leaves of \mathcal{L}, we find $\mu^{\prime} \supset \lambda^{\prime}$.

By irreducibility of ψ^{\prime}, the complementary regions $S^{\prime}-\lambda^{\prime}$ are n-gons or punctured n-gons. In such regions, the only geodesic laminations are isolated leaves running between cusps. Since μ^{\prime} has no isolated leaves, we conclude that $\mu^{\prime}=\lambda^{\prime}$ and thus $\mathcal{L}=\mathcal{L}^{\prime}$ (up to isotopy).

Modules and the Teichmüller polynomial. By the preceding corollary, the lamination $\mathcal{L} \subset M$ depends only on F. Associated to the pair (M, F) we now have:

- $G=H_{1}(M, \mathbb{Z}) /$ torsion, a free abelian group;
- $\widetilde{M} \rightarrow M$, the Galois covering space corresponding to $\pi_{1}(M) \rightarrow G$;
- $\widetilde{\mathcal{L}} \subset \widetilde{M}$, the preimage of the lamination \mathcal{L} determined by F; and
- $T(\widetilde{\mathcal{L}})$, the $\mathbb{Z}[G]$-module of transversals to $\widetilde{\mathcal{L}}$.

Since \mathcal{L} is compact, $T(\mathcal{L})$ is finitely-generated and $T(\widetilde{\mathcal{L}})$ is finitely-presented over the ring $\mathbb{Z}[G]$.
Choose a presentation

$$
\mathbb{Z}[G]^{r} \xrightarrow{D} \mathbb{Z}[G]^{s} \rightarrow T(\widetilde{\mathcal{L}}) \rightarrow 0
$$

and let $I \subset \mathbb{Z}[G] \underset{\sim}{\text { be }}$ the ideal generated by the $s \times s$ minors of D. The ideal I is the Fitting ideal of the module $T(\widetilde{\mathcal{L}})$, and it is independent of the choice of presentation; see [28, Ch. XIII, $\S 10]$, [36].

Using the fact that $\mathbb{Z}[G]$ is a unique factorization domain, we define the Teichmüller polynomial of (M, F) by

$$
\begin{equation*}
\Theta_{F}=\operatorname{gcd}(f: f \in I) \in \mathbb{Z}[G] . \tag{3.1}
\end{equation*}
$$

The polynomial Θ_{F} is well-defined up to multiplication by a unit $\pm g \in \mathbb{Z}[G]$, and it depends only on (M, F).

Note that $\mathbb{Z}[G]$ can be identified with a ring of complex algebraic functions on the character variety

$$
\widehat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)
$$

by setting $\left(\sum a_{g} \cdot g\right)(\rho)=\sum a_{g} \rho(g)$.
Theorem 3.3.- The locus $\Theta_{F}(\rho)=0$ is the largest hypersurface $V \subset \widehat{G}$ such that $\operatorname{dim} Z_{2}\left(\mathcal{L}, \mathbb{C}_{\rho}\right)>0$ for all $\rho \in V$.

Proof. - A character ρ belongs to the zero locus of the ideal $I \Leftrightarrow$ the presentation matrix $\rho(M)$ has rank $r<s \Leftrightarrow$ we have

$$
\operatorname{dim}_{\mathbb{C}} Z_{2}\left(\mathcal{L}, \mathbb{C}_{\rho}\right)=\operatorname{dim} \operatorname{Hom}\left(T(\widetilde{\mathcal{L}}), \mathbb{C}_{\rho}\right)=s-r>0
$$

and the greatest common divisor of the elements of I defines the largest hypersurface contained in $V(I)$.

Computing the Teichmüller polynomial. We now describe a procedure for computing Θ_{F} as an explicit Laurent polynomial.

Consider again a fiber $S \subset M$ with monodromy ψ and expanding lamination λ. Associated to this data we have:

- $H=\operatorname{Hom}\left(H^{1}(S, \mathbb{Z})^{\psi}, \mathbb{Z}\right) \cong \mathbb{Z}^{b}$, the dual of the ψ-invariant cohomology of S;
- $\widetilde{S} \rightarrow S$, the Galois covering space corresponding to the natural map

$$
\pi_{1}(S) \rightarrow H_{1}(S, \mathbb{Z}) \rightarrow H
$$

- $\tau \subset S$, a ψ-invariant train track carrying λ; and
- $\widetilde{\lambda}, \widetilde{\tau} \subset \widetilde{S}$, the preimages of $\lambda, \tau \subset S$.

Note that pullback by $S \subset M$ determines a surjection $H^{1}(M, \mathbb{Z}) \rightarrow H^{1}(S, \mathbb{Z})^{\psi}$, and hence a natural inclusion

$$
H \subset G=H_{1}(M, \mathbb{Z}) / \text { torsion }=\operatorname{Hom}\left(H^{1}(M, \mathbb{Z}), \mathbb{Z}\right)
$$

Alternatively, we can regard \widetilde{S} as a component of the preimage of S in the covering $\widetilde{M} \rightarrow M$ with deck group G; then $H \subset G$ is the stabilizer of $\widetilde{S} \subset \widetilde{M}$.

Now choose a lift

$$
\tilde{\psi}: \widetilde{S} \rightarrow \widetilde{S}
$$

of the pseudo-Anosov mapping ψ. Then we obtain a splitting

$$
G=H \oplus \mathbb{Z} \widetilde{\Psi}
$$

where $\widetilde{\Psi} \in G$ acts on $\widetilde{M}=\widetilde{S} \times \mathbb{R}$ by

$$
\begin{equation*}
\widetilde{\Psi}(s, t)=(\widetilde{\psi}(s), t-1) . \tag{3.2}
\end{equation*}
$$

If we further choose a basis $\left(t_{1}, \ldots, t_{b}\right)$ for H, written multiplicatively, and set $u=[\widetilde{\Psi}]$, then we obtain an isomorphism

$$
\mathbb{Z}[G] \cong \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots t_{b}^{ \pm 1}, u^{ \pm 1}\right]
$$

between the group ring of G and the ring of integral Laurent polynomials in the variables t_{i} and u.

Remark. - Under the fibration $M \rightarrow S^{1}$, the element $u \in H_{1}(M, \mathbb{Z}) /$ torsion maps to -1 in $H_{1}\left(S^{1}, \mathbb{Z}\right) \cong \mathbb{Z}$, as can be seen from (3.2).

A presentation for $T(\widetilde{\mathcal{L}})$. The next step in the computation of Θ_{F} is to obtain a concrete description of the module $T(\widetilde{\mathcal{L}})$.

We begin by using the train track τ to give a presentation of $T(\widetilde{\lambda})$ over $\mathbb{Z}[H]$. Let E and V denote the sets of edges and vertices of the train track $\tau \subset S$. By choosing a lift of each edge and vertex to the covering space $\widetilde{S} \rightarrow S$ with deck group H, we can identify the edges and vertices of $\widetilde{\tau}$ with the products $H \times E$ and $H \times V$. These lifts yield a presentation

$$
\begin{equation*}
\mathbb{Z}[H]^{V} \xrightarrow{D} \mathbb{Z}[H]^{E} \rightarrow T(\widetilde{\tau}) \rightarrow 0 \tag{3.3}
\end{equation*}
$$

for $T(\widetilde{\tau}) \cong T(\widetilde{\lambda})$ as a $\mathbb{Z}[H]$-module.
Since τ is ψ-invariant, there is an H-invariant collapsing map

$$
\widetilde{\psi}(\widetilde{\tau}) \rightarrow \widetilde{\tau}
$$

By expressing each edge in the target as a sum of the edges in the domain which collapse to it, we obtain a natural map of $\mathbb{Z}[H]$-modules

$$
P_{E}: \mathbb{Z}[H]^{E} \rightarrow \mathbb{Z}[H]^{E}
$$

There is a similar map P_{V} on vertices.
We can regard P_{E} and P_{V} as matrices $P_{E}(t), P_{V}(t)$ whose entries are Laurent polynomials in $t=\left(t_{1}, \ldots, t_{b}\right)$. In the terminology of Appendix A, such a matrix is Perron-Frobenius if it has a power such that every entry is a nonzero Laurent polynomial with positive coefficients.

THEOREM 3.4. - $P_{E}(t)$ is a Perron-Frobenius matrix of Laurent polynomials.

Proof. - For any $e, f \in E$, the matrix entry $\left(P_{E}\right)_{e f}$ is a sum of monomials t^{α} for all α such that $\widetilde{\psi}(\alpha \cdot e)$ collapses to f. Thus each nonzero entry is a positive, integral Laurent monomial, and since ψ is pseudo-Anosov there is some iterate $P_{E}^{N}(t)$ with every entry nonzero.

The matrices $P_{E}(t)$ and $P_{V}(t)$ are compatible with the presentation (3.3) for $T(\widetilde{\tau})$, so we obtain a commutative diagram

Here $P(t)=\psi^{*}$ under the natural identification $T(\widetilde{\tau})=T(\widetilde{\lambda})$.
The next result makes precise the fact that twisted cycles on \mathcal{L} correspond to ψ-invariant twisted cycles on λ (compare Proposition 2.1).

```
4e}\mathrm{ SÉRIE - TOME 33-2000 - N N 4
```

THEOREM 3.5. - There is a natural isomorphism

$$
T(\widetilde{\mathcal{L}}) \cong \operatorname{Coker}(u I-P(t))
$$

as modules over $\mathbb{Z}[G]$.
Here $u I-P(t)$ is regarded as an endomorphism of $T(\widetilde{\tau}) \otimes \mathbb{Z}[u]$ over $\mathbb{Z}[G]=\mathbb{Z}[H] \otimes \mathbb{Z}[u]$.
Proof. - The lamination \mathcal{L} fibers over S^{1} with fiber λ and monodromy $\psi: \lambda \rightarrow \lambda$, so we can regard $\widetilde{\mathcal{L}}$ as $\widetilde{\lambda} \times \mathbb{R}$, equipped with the action of $G=H \oplus \mathbb{Z} \widetilde{\Psi}$. The product structure on $\widetilde{\mathcal{L}}$ gives an isomorphism $T(\widetilde{\mathcal{L}}) \cong T(\widetilde{\lambda}) \cong T(\widetilde{\tau})$ as modules over $\mathbb{Z}[H]$, so to describe $T(\widetilde{\mathcal{L}})$ as a $\mathbb{Z}[G]$ module we need only determine the action of u under this isomorphism. But u acts on $\widetilde{\lambda} \times \mathbb{R}$ by $(x, t) \mapsto(\widetilde{\psi}(x), t-1)$, so for any transversal $T \in T(\widetilde{\lambda})$ we have $u T=\widetilde{\psi}^{*}(T)=P(t) T$, and the theorem follows.

The determinant formula. The main result of this section is:
THEOREM 3.6. - The Teichmüller polynomial of the fibered face F is given by:

$$
\begin{equation*}
\Theta_{F}(t, u)=\frac{\operatorname{det}\left(u I-P_{E}(t)\right)}{\operatorname{det}\left(u I-P_{V}(t)\right)} \tag{3.5}
\end{equation*}
$$

when $b_{1}(M)>1$.
Remarks. -
(1) If $b_{1}(M)=1$ then the numerator must be multiplied by $(u-1)$ if τ is orientable. Compare Corollary 2.4.
(2) To understand the determinant formula, recall that by Theorem 3.3, the locus $\Theta_{F}(t, u)=0$ in \widehat{G} consists of characters for which we have

$$
\operatorname{dim} Z_{2}\left(\mathcal{L}, \mathbb{C}_{\rho}\right)>0
$$

Now a cocycle for \mathcal{L} is the same as a ψ-invariant cocycle for λ, so we expect to have $\Theta_{F}(t, u)=\operatorname{det}(u I-P(t))$. But the module $T(\widetilde{\lambda})$ is not quite free in general, so we need the formula above to make sense of the determinant.

Proof of Theorem 3.6. - To simplify notation, let $A=\mathbb{Z}[G]$, let T be the A-module $T(\widetilde{\lambda}) \otimes$ $\mathbb{Z}[G]$, and let $P: T \rightarrow T$ be the automorphism $P=\widetilde{\psi}^{*}$.

Let K denote the field of fractions of A. For each $f \in A, f \neq 0$, we can invert f to obtain the ring $A_{f}=A[1 / f] \subset K$, and there is a naturally determined A_{f}-module T_{f} with automorphism P_{f} coming from P (see e.g. [2, Ch. 3]). The presentation (3.3) for T determines a presentation

$$
\begin{equation*}
A_{f}^{V} \xrightarrow{D_{f}} A_{f}^{E} \rightarrow T_{f} \rightarrow 0 \tag{3.6}
\end{equation*}
$$

for T_{f}.
Now let $\Theta=\Theta_{F}(t, u) \in A$ be the Teichmüller polynomial for (M, F) (defined by (3.1)), and define $\Delta \in K$ by

$$
\Delta=\Delta(t, u)=\frac{\operatorname{det}\left(u I-P_{E}(t)\right)}{\operatorname{det}\left(u I-P_{V}(t)\right)}
$$

Our goal is to show $\Theta=\Delta$ up to a unit in A. The method is to show that $\Theta=\Delta$ up to a unit in A_{f} for many different f. We break the argument up into 5 main steps.
I. The map $D_{f}: A_{f}^{V} \rightarrow A_{f}^{E}$ is injective whenever $f=\left(t_{i}^{2}-1\right) g$ for some $i, 1 \leqslant i \leqslant b$, and some $g \neq 0$ in A.

To see this assertion, we use the dynamics of pseudo-Anosov maps. It is enough to show that the transpose $D_{f}^{*}: A_{f}^{E} \rightarrow A_{f}^{V}$ is surjective - then D_{f}^{*} has a right inverse, so D_{f} has a left inverse. We prefer to work with D_{f}^{*} since it behaves like a geometric boundary map.

Given a basis element t_{i} for $H=\operatorname{Hom}\left(H^{1}(S, \mathbb{Z})^{\psi}, \mathbb{Z}\right)$, choose an oriented simple closed curve $\gamma \subset S$ such that $[\gamma]=t_{i}$. (Such a γ exists because every t_{i} is represented by a primitive homology class on S, and every such class contains a simple closed curve.) Then $\left[\psi^{n}(\gamma)\right]=t_{i}$ as well, since ψ fixes all homology classes in H. On the other hand, for n sufficiently large, $\psi^{n}(\gamma)$ is close to the expanding lamination λ of ψ. Thus by replacing γ with $\psi^{n}(\gamma), n \gg 0$, we can assume that γ is carried with full support by τ.

Now choose any vertex $v \in V$, and lift γ to an edge path $\tilde{\gamma} \subset \widetilde{\tau}$, starting at the (previously fixed) lift \tilde{v} of v. Since $[\gamma]=t_{i}$, the $\operatorname{arc} \tilde{\gamma}$ connects v to $t_{i} v$. Letting $e \in A^{E}$ denote the weighted edges occurring in $\tilde{\gamma}$, we then have

$$
D^{*}[e]=\left(\pm t_{i}-1\right) v \in A^{V}
$$

where the sign depends on the orientation of the switch at v.
In any case, when $f=\left(t_{i}^{2}-1\right) g$, the factor $\left(\pm t_{i}-1\right)$ is a unit in A_{f}, and thus D_{f}^{*} is surjective and D_{f} is injective.
II. If T_{f} is a free A_{f}-module and D_{f} is injective, then $\Theta=\Delta$ up to a unit in A_{f}.

Indeed, if T_{f} is free then

$$
T_{f} \xrightarrow{u I-P} T_{f} \rightarrow T(\widetilde{\mathcal{L}})_{f} \rightarrow 0
$$

presents $T(\widetilde{\mathcal{L}})_{f}$ as a quotient of free modules. It is not hard to check that the formation of the Fitting ideal commutes with the inversion of f, and thus $(\Theta) \subset A_{f}$ is the smallest principal ideal containing the Fitting ideal of $T(\widetilde{\mathcal{L}})_{f}$. From the presentation of $T(\widetilde{\mathcal{L}})_{f}$ above, we have $\Theta=\operatorname{det}(u I-P(t))$ up to a unit in A_{f}.

To bring Δ into play, note that by injectivity of D_{f} we have an exact sequence:

$$
0 \rightarrow A_{f}^{V} \xrightarrow{D_{f}} A_{f}^{E} \rightarrow T_{f} \rightarrow 0 .
$$

Since T_{f} is free, this sequence splits, and thus P_{E} can be expressed as a block triangular matrix with P_{V} and P on the diagonal. Therefore

$$
\operatorname{det}\left(u I-P_{V}(t)\right) \operatorname{det}(u I-P(t))=\operatorname{det}\left(u I-P_{E}(t)\right)
$$

which gives $\Theta=\Delta$ up to a unit in A_{f}.
III. The set

$$
I^{\prime}=\left\{f \in A: T_{f} \text { is free and } D_{f} \text { is injective }\right\}
$$

generates an ideal $I \subset A$ containing $\left(t_{i}^{2}-1\right)$ for $i=1, \ldots, b$.
Let $f=\left(t_{i}^{2}-1\right)$, so D_{f} is injective. Then the $|V| \times|V|$-minors of D generate the ideal (1) in A_{f}.

Consider a typical minor $\left(V \times E^{\prime}\right)$ of D with determinant $g \neq 0$, where $E=E^{\prime} \sqcup E^{\prime \prime}$. Set $h=f g$. Then the composition

$$
A_{h}^{V} \xrightarrow{D_{h}} A_{h}^{E} \rightarrow A_{h}^{E^{\prime}}
$$

is an isomorphism (since its determinant is now a unit). Therefore the projection $A_{h}^{E^{\prime \prime}} \rightarrow T_{h}$ is an isomorphism, so T_{h} is free.

Since the minor determinants g generate the ideal (1) in A_{f}, we conclude that $f=\left(t_{i}^{2}-1\right)$ belongs to the ideal I generated by all such $h=f g$.
IV. There are $a, c \in A$ such that $(a) \supset I,(c) \supset I$ and

$$
\begin{equation*}
a \Theta=c \Delta \tag{3.7}
\end{equation*}
$$

Write $\Delta / \Theta=a / c \in K$ as a ratio of $a, c \in A$ with no common factor. By definition, for any $f \in I^{\prime}$ we have $\Theta=\Delta$ up to a unit in A_{f}; therefore $a / c=d / f^{n}$ for some unit $d \in A^{*}$ and $n \in \mathbb{Z}$. Since $\operatorname{gcd}(a, c)=1, a$ and c are divisors of f. As $f \in I^{\prime}$ was arbitrary, the principal ideals generated by a and c both contain I^{\prime}, and hence I.
V. We have $\Theta=\Delta$ up to a unit in A.

Let (p) be the smallest principal ideal satisfying

$$
(p) \supset I \supset\left(t_{1}^{2}-1, \ldots, t_{b}^{2}-1\right)
$$

(the second inclusion by (III) above). If the rank b of $H^{1}(S, \mathbb{Z})^{\psi}$ is 2 or more, then $\operatorname{gcd}\left(t_{1}^{2}-1, \ldots, t_{b}^{2}-1\right)=1$ and thus $(p)=1$. Since a, c in (3.7) generate principal ideals containing I, they are both units and we are done.

To finish, we treat the case $b=1$. In this case we have $(p) \supset\left(t_{1}^{2}-1\right)$, so we can only conclude that $\Theta=\Delta$ up to a factors of $\left(t_{1}-1\right)$ and $\left(t_{1}+1\right)$.

But Δ and Θ have no such factors. Indeed, Δ is a ratio of monic polynomials of positive degree in u, so it has no factor that depends only on t_{1}.

Similarly, if we specialize to $\left(t_{1}, u\right)=(1, n)$ (by a homomorphism $\phi: A \rightarrow \mathbb{Z}$), then $P: T \rightarrow T$ becomes an endomorphism of a finitely generated abelian group, and $T(\mathcal{L})=\operatorname{Coker}(u I-P)$ specializes to the group $K=\operatorname{Coker}(n I-P)$. For $n \gg 0$, the image of $(u I-P)$ has finite index in T, so K is a finite group. Thus $(\phi(\Theta))=(n)$, the annihilator of K; in particular, $\phi(\Theta) \neq 0$. This shows $\left(t_{1}-1\right)$ does not divide Θ. The same argument proves $\operatorname{gcd}\left(\Theta, t_{1}+1\right)=1$, and thus $\Theta=\Delta$ up to a unit in A.

Notes. The train track τ in Fig. 4 provides a typical example where the module $T(\widetilde{\tau})$ is not free over $\mathbb{Z}[H]$. Indeed, letting $H=H_{1}(S, \mathbb{Z}) \cong \mathbb{Z}^{3}$, we showed in Section 2 that the dimension of

$$
Z_{1}\left(\tau, \mathbb{C}_{\rho}\right)=\operatorname{Hom}\left(T, \mathbb{C}_{\rho}\right)
$$

jumps at $\rho=(-1,-1,-1)$, while its dimension would be constant if T were a free module. Thus $f \in \mathbb{Z}[H]$ must vanish at $\rho=(-1,-1,-1)$ for $T(\tau)_{f}$ to be free - showing the ideal I in the proof above contains $\left(t_{1}+1, t_{2}+1, t_{3}+1\right)$.

4. Symplectic symmetry

In this section we show the characteristic polynomial of a pseudo-Anosov map $\psi: S \rightarrow S$ is symmetric. This symmetry arises because ψ preserves a natural symplectic structure on $\mathcal{M} \mathcal{L}(S)$.

We then show the Teichmüller polynomial Θ_{F} packages all the characteristic polynomials of fibers $[S] \in \mathbb{R}_{+} \cdot F$, and thus Θ_{F} is also symmetric.

Symmetry. Let λ be the expanding lamination of a pseudo-Anosov mapping $\psi: S \rightarrow S$. The characteristic polynomial of ψ is given by $p(k)=\operatorname{det}(k I-P)$, where

$$
P: Z_{1}(\lambda, \mathbb{R}) \rightarrow Z_{1}(\lambda, \mathbb{R})
$$

is the induced map on cycles, $P=\psi_{*}$.
THEOREM 4.1. - The characteristic polynomial $p(k)$ of a pseudo-Anosov mapping is symmetric; that is, $p(k)=k^{d} p(1 / k)$ where $d=\operatorname{deg}(p)$.

Proof. - Since ψ is pseudo-Anosov, each component of $S-\lambda$ is an ideal polygon, possibly with one puncture. Since these polygons and their ideal vertices are permuted by ψ, we can choose $n>0$ such that ψ^{n} preserves each complementary component D of $S-\lambda$ and fixes its ideal vertices.

By Theorem 2.2, there is a natural isomorphism $Z_{1}(\lambda, \mathbb{R}) \cong Z_{1}(\tau, \mathbb{R})$, where τ is a ψ-invariant train track carrying λ. By [24, Theorem 1.3.6], there exists a complete train track τ^{\prime} containing τ. The train track τ is completed to τ^{\prime} by adding a maximal set of edges joining the cusps of the complementary regions $S-\tau$. Since ψ^{n} fixes these cusps, $\psi^{n}\left(\tau^{\prime}\right)$ is carried by τ^{\prime}.

Now recall that the vector space $Z_{1}\left(\tau^{\prime}, \mathbb{R}\right)$ can be interpreted as a tangent space to $\mathcal{M} \mathcal{L}(S)$, and hence it carries a natural symplectic form ω. If τ^{\prime} is orientable (which only happens on a punctured torus), then ω is just the pullback of the intersection form on S under the natural map

$$
Z_{1}\left(\tau^{\prime}, \mathbb{R}\right) \rightarrow H_{1}(S, \mathbb{R})
$$

If τ^{\prime} is nonorientable, then ω is defined using the intersection pairing on a covering of S branched over the complementary regions $S-\tau^{\prime}$; see [24, §3.2].

For brevity of notation, let

$$
\left(V \subset V^{\prime}\right)=\left(Z_{1}(\tau, \mathbb{R}) \subset Z_{1}\left(\tau^{\prime}, \mathbb{R}\right)\right)
$$

and let

$$
P=\psi_{*}: V \rightarrow V, \quad Q=\left(\psi^{n}\right)_{*}: V^{\prime} \rightarrow V^{\prime}
$$

then $P^{n}=Q \mid V$.
Both P and Q respect the symplectic form ω on V^{\prime}. If (V, ω) is symplectic - that is, if $\omega \mid V$ is non-degenerate - then P is a symplectic matrix and the symmetry of its characteristic polynomial $p(k)$ is immediate. Unfortunately, (V, ω) need not be symplectic - for example, V may be odd-dimensional.

To handle the general case, we first decompose V^{\prime} into generalized eigenspaces for Q; that is, we write

$$
V^{\prime} \otimes \mathbb{C}=\bigoplus V_{\alpha}=\bigoplus_{\alpha} \bigcup_{1}^{\infty} \operatorname{Ker}(\alpha I-Q)^{i}
$$

Grouping together the eigenspaces with $|\alpha|=1$, we get a Q-invariant decomposition $V^{\prime}=U \oplus S$ with

$$
U \otimes \mathbb{C}=\bigoplus_{|\alpha|=1} V_{\alpha} \quad \text { and } \quad S \otimes \mathbb{C}=\bigoplus_{|\alpha| \neq 1} V_{\alpha}
$$

For $x \in V_{\alpha}$ and $y \in V_{\beta}$, the fact that Q preserves ω implies

$$
\omega(x, y)=\omega(Q x, Q y)=0
$$

unless $\alpha \beta=1$. Thus U and S are ω-orthogonal, and therefore (U, ω) and (S, ω) are both symplectic.

Since ψ^{n} fixes all the edges in $\tau^{\prime}-\tau, Q$ acts by the identity on V^{\prime} / V. Therefore S is a subspace of V, and

$$
V=S \oplus(U \cap V)=S \oplus W
$$

Since $P^{n}=Q$, the splitting $V=S \oplus W$ is preserved by $P ; P \mid S$ is symplectic; and the eigenvalues of $P \mid W$ are roots of unity. Therefore

$$
p(k)=\operatorname{det}(k I-P \mid S) \cdot \operatorname{det}(k I-P \mid W)
$$

The first term is symmetric because $P \mid S$ is a symplectic matrix, and the second term is symmetric because the eigenvalues of $P \mid W$ lie on S^{1} and are symmetric about the real axis. Thus $p(k)$ is symmetric.

Characteristic polynomials of fibers. We now return to the study of the Teichmüller polynomial $\Theta_{F}=\sum a_{g} \cdot g \in \mathbb{Z}[G]$. Given $\phi \in H^{1}(M, \mathbb{Z})=\operatorname{Hom}(G, \mathbb{Z})$, we obtain a polynomial in a single variable k by setting

$$
\Theta_{F}\left(k^{\phi}\right)=\sum a_{g} k^{\phi(g)}
$$

Recall that \mathcal{L} denotes the mapping torus of the expanding lamination λ of any fiber $[S] \in \mathbb{R}_{+} \cdot F$ (Corollary 3.2); and \mathcal{L} is transversally orientable iff λ is.

THEOREM 4.2. - The characteristic polynomial of the monodromy of a fiber $[S]=$ $\phi \in \mathbb{R}_{+} \cdot F$ is given by

$$
p(k)=\Theta_{F}\left(k^{\phi}\right) \cdot \begin{cases}(k-1) & \text { if } \mathcal{L} \text { is transversally orientable }, \\ 1 & \text { otherwise },\end{cases}
$$

up to a unit $\pm k^{n}$.
Proof. - Let $t_{i}, u \in G$ be a basis adapted to the splitting $G=H \oplus \mathbb{Z}$ determined by the choice of a lift of the monodromy, $\widetilde{\psi}: \widetilde{S} \rightarrow \widetilde{S}$. Then $\phi\left(t_{i}\right)=0$ and $\phi(u)=1$, so $k^{\phi}: G \rightarrow \mathbb{C}^{*}$ has coordinates $(t, u)=(1, k) \in \widehat{G}$. Thus

$$
\Theta_{F}\left(k^{\phi}\right)=\left.\Theta_{F}(1, u)\right|_{u=k}=\operatorname{det}\left(k I-P_{E}(1)\right) / \operatorname{det}\left(k I-P_{V}(1)\right)
$$

by the determinant formula (3.5).
Applying the functor $\operatorname{Hom}(\cdot, \mathbb{R})$ to the commutative diagram (3.4), with $t=1$, we obtain the adjoint diagram

Here $m=1$ if \mathcal{L} (and hence τ) is orientable, and $m=0$ otherwise (compare Corollary 2.4).
Since the rows of the diagram above are exact, the characteristic polynomial of $P=P(1)^{*}$ is given by the alternating product

$$
p(k)=\frac{\operatorname{det}\left(k I-P_{E}(1)\right)(k-1)^{m}}{\operatorname{det}\left(k I-P_{V}(1)\right)}=\Theta_{F}\left(k^{\phi}\right)(k-1)^{m} .
$$

COROLLARY 4.3. - The Teichmüller polynomial is symmetric; that is,

$$
\Theta_{F}=\sum a_{g} \cdot g= \pm h \sum a_{g} \cdot g^{-1}
$$

for some unit $\pm h \in \mathbb{Z}[G]$.
Proof. - Since $\mathbb{R}_{+} \cdot F \subset H^{1}(M, \mathbb{R})$ is open, we can choose $[S]=\phi \in \mathbb{R}_{+} \cdot F$ such that the values $\phi(g)$ over the finite set of g with $a_{g} \neq 0$ are all distinct. Then symmetry of Θ_{F} follows from symmetry of the characteristic polynomial $p(k)=\Theta_{F}\left(k^{\phi}\right)=\sum a_{g} k^{\phi(g)}$.

Notes. Although the characteristic polynomial $f(u)=\operatorname{det}(u I-P)$ of a pseudo-Anosov mapping ψ is always symmetric, $f(u)$ may factor over \mathbb{Z} into a product of non-symmetric polynomials. In particular, the minimal polynomial of a pseudo-Anosov expansion factor $K>1$ need not by symmetric. For example, the largest root $K=1.83929 \ldots$ of the non-symmetric polynomial $x^{3}-x^{2}-x-1$ is a pseudo-Anosov expansion factor; see [1], [20, §5].

5. Expansion factors

In this section we study the expansion factor $K(\phi)$ for a cohomology class $\phi \in \mathbb{R}_{+} \cdot F$, and prove it is strictly convex and determined by Θ_{F}.

Definitions. Let $[S]=\phi \in \mathbb{R}_{+} \cap F$ be a fiber with monodromy ψ and expanding measured lamination $\Lambda \in \mathcal{M} \mathcal{L}(S)$. The expansion factor $K(\phi)>1$ is the expanding eigenvalue of $\psi: \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{M} \mathcal{L}(S)$; that is, the constant such that

$$
\psi \cdot \Lambda=K(\phi) \Lambda
$$

The function

$$
L(\phi)=\log K(\phi)
$$

gives the Teichmüller length of the unique geodesic loop in the moduli space of Riemann surfaces represented by

$$
\psi \in \operatorname{Mod}(S) \cong \pi_{1}\left(\mathcal{M}_{g, n}\right)
$$

(Compare [4].)
THEOREM 5.1. - The expansion factor satisfies

$$
\begin{equation*}
K(\phi)=\sup \left\{k>1: \Theta_{F}\left(k^{\phi}\right)=0\right\} \tag{5.1}
\end{equation*}
$$

for any fiber $[S]=\phi \in \mathbb{R}_{+} \cdot F$.
Proof. - By Theorem 4.2, $p(k)=\Theta_{F}\left(k^{\phi}\right)$ is the characteristic polynomial of the map

$$
P: Z_{1}(\lambda, \mathbb{R}) \rightarrow Z_{1}(\lambda, \mathbb{R})
$$

determined by monodromy of S, and the largest eigenvalue of P is $K(\phi)$, with eigenvector the expanding measure associated to Λ.

Since the right-hand side of (5.1) is defined for real cohomology classes, we will use it to extend the definition of $K(\phi)$ and $L(\phi)$ to the entire cone $\mathbb{R}_{+} \cdot F$. Then we have the homogeneity properties:

```
4e}\mathrm{ SÉRIE - TOME 33-2000- N
```

$$
\begin{aligned}
K(a \phi) & =K(\phi)^{1 / a} \\
L(a \phi) & =a^{-1} L(\phi)
\end{aligned}
$$

Here is a useful fact established in [18, Theorem F].
THEOREM 5.2 Fried. - The expansion factor $K(\phi)$ is continuous on F and tends to infinity as $\phi \rightarrow \partial F$.

Next we derive some convexity properties of the expansion factor. These properties are illustrated in Fig. 7 of Section 11.

THEOREM 5.3. - For any $k>1$, the level set

$$
\Gamma=\left\{\phi \in \mathbb{R}_{+} \cdot F: K(\phi)=k\right\}
$$

is a convex hypersurface with $\mathbb{R}_{+} \cdot \Gamma=\mathbb{R}_{+} \cdot F$.
Proof. - By homogeneity, Γ meets every ray in $\mathbb{R}_{+} \cdot F$, and thus $\mathbb{R}_{+} \Gamma=\mathbb{R}_{+} \cdot F$. For convexity, it suffices to consider the level set Γ where $\log K(\phi)=1$.

Choose a fiber $[S] \in \mathbb{R}_{+} \cdot F$ and a lift ψ of its monodromy. Then we obtain a splitting $H^{1}(M, \mathbb{R})=H^{1}(S, \mathbb{R})^{\psi} \oplus \mathbb{R}$ and associated coordinates (s, y) on $H^{1}(M, \mathbb{R})$ and $(t, u)=\left(e^{s}, e^{y}\right)$ on $\widehat{G}=\exp H^{1}(M, \mathbb{R})$.

By the determinant formula (3.5), $\Theta_{F}(t, u)$ is the ratio between the characteristic polynomials of $P_{E}(t)$ and $P_{V}(t)$. By Theorem 3.4, $P_{E}(t)$ is a Perron-Frobenius matrix of Laurent polynomials; let $E(t)>1$ denote its leading eigenvalue for $t \in \mathbb{R}_{+}^{b}$. Since $P_{V}(t)$ is simply a permutation matrix, we have $\Theta_{F}(t, E(t))=0$ for all t. By Theorem A. 1 of Appendix A, $y=\log E\left(e^{s}\right)$ is a convex function of s, so its graph Γ^{\prime} is convex.

To complete the proof, we show $\Gamma^{\prime}=\Gamma$. First note that $\Gamma^{\prime} \subset \Gamma$. Indeed, if $\phi=(s, y) \in \Gamma^{\prime}$, then $\Theta_{F}\left(e^{s}, e^{y}\right)=0$ and so $K(\phi) \geqslant e$. But by Theorem A.1, the ray $\mathbb{R}_{+} \cdot \phi$ meets Γ^{\prime} at most once; since $u=E(t)$ is the largest zero of $\Theta_{F}(t, u)$, we have $K(\phi)=e$, and thus $(s, u) \in \Gamma$.

Since Γ^{\prime} is a graph over $H^{1}(S, \mathbb{R})$, it is properly embedded in $H^{1}(M, \mathbb{R})$; but Γ is connected, so $\Gamma=\Gamma^{\prime}$.

COROLLARY 5.4. - The function $y=1 / \log K(\phi)$ on the cone $\mathbb{R}_{+} \cdot F$ is real-analytic, strictly concave, homogeneous of degree 1 , and

$$
y(\phi) \rightarrow 0 \quad \text { as } \phi \rightarrow \partial F
$$

Proof. - The homogeneity of $y(\phi)$ follows from that of $K(\phi)$.
Let Γ be the convex hypersurface on which $\log K(\phi)=1$. Since Γ is a component of the analytic set $\Theta_{F}\left(e^{\phi}\right)=0$, and $K(\phi)$ is homogeneous, $K(\phi)$ is real-analytic.

To prove concavity, let $\phi_{3}=\alpha \phi_{1}+(1-\alpha) \phi_{2}$ be a convex combination of $\phi_{1}, \phi_{2} \in \mathbb{R}_{+} \cdot F$, and let $y_{i}=1 / \log K\left(\phi_{i}\right)$, so $y_{i}^{-1} \phi_{i} \in \Gamma$. By convexity of Γ, the segment [$y_{1}^{-1} \phi_{1}, y_{2}^{-1} \phi_{2}$] meets the ray through ϕ_{3} at a point p which is farther from the origin than $y_{3}^{-1} \phi_{3}$. Since

$$
p=\frac{\alpha y_{1}\left(y_{1}^{-1} \phi_{1}\right)+(1-\alpha) y_{2}\left(y_{2}^{-1} \phi_{2}\right)}{\alpha y_{1}+(1-\alpha) y_{2}}=\frac{\phi_{3}}{\alpha y_{1}+(1-\alpha) y_{2}}
$$

we find

$$
y_{3}^{-1} \leqslant\left(\alpha y_{1}+(1-\alpha) y_{2}\right)^{-1}
$$

and therefore $y(\phi)$ is concave.

Finally $y(\phi)$ converges to zero at ∂F by Theorem 5.2 , so by real-analyticity it must be strictly concave.

Notes.

(1) The concavity of $1 / \log K(\phi)$ was established by Fried; see [18, Theorem E], [20, Proposition 8], as well as [31] and [32]. Our proof of concavity is rather different and uses only general properties of Perron-Frobenius matrices (presented in Appendix A).
(2) By Corollary 5.4, the expansion factor $K(\phi)$ assumes its minimum at a unique point $\phi \in F$, providing a canonical center for any fibered face of the Thurston norm ball.
Question. Is the minimum always achieved at a rational cohomology class?

6. The Thurston norm

Let $F \subset H^{1}(M, \mathbb{R})$ be a fibered face of the Thurston norm ball. In this section we use the fact that $K(\phi)$ blows up at ∂F to show one can compute the cone $\mathbb{R}_{+} \cdot F$ from the polynomial Θ_{F}. This observation is conveniently expressed in terms of a second norm on $H^{1}(M, \mathbb{R})$ attached to Θ_{F}.

Norms and Newton polygons. Write the Teichmüller polynomial $\Theta_{F} \in \mathbb{Z}[G]$ as

$$
\Theta_{F}=\sum a_{g} \cdot g
$$

The Newton polygon $N\left(\Theta_{F}\right) \subset H_{1}(M, \mathbb{R})$ is the convex hull of the finite set of integral homology classes g with $a_{g} \neq 0$. We define the Teichmüller norm of $\phi \in H^{1}(M, \mathbb{R})$ (relative to F) by:

$$
\|\phi\|_{\Theta_{F}}=\sup _{a_{g} \neq 0 \neq a_{h}} \phi(g-h) .
$$

The norm of ϕ measures the length of the projection of the Newton polygon, $\phi\left(N\left(\Theta_{F}\right)\right) \subset \mathbb{R}$. Multiplication of Θ_{F} by a unit just translates $N\left(\Theta_{F}\right)$, so the Teichmüller norm is well-defined.

THEOREM 6.1. - For any fibered face F of the Thurston norm ball, there exists a face D of the Teichmüller norm ball,

$$
D \subset\left\{\phi:\|\phi\|_{\Theta_{F}}=1\right\}
$$

such that $\mathbb{R}_{+} \cdot F=\mathbb{R}_{+} \cdot D$.
Proof. - Pick a fiber $[S] \in \mathbb{R}_{+} \cdot F$ with monodromy ψ. Choose coordinates $(t, u)=\left(e^{s}, e^{y}\right)$ on

$$
H^{1}\left(M, \mathbb{R}_{+}\right) \cong \exp \left(H^{1}(S, \mathbb{R})^{\psi} \oplus \mathbb{R}\right)
$$

and let $E(t)$ be the leading eigenvalue of the Perron-Frobenius matrix $P_{E}(t)$. As we saw in Section 5 , we have $\mathbb{R}_{+} \cdot \Gamma=\mathbb{R}_{+} \cdot F$, where Γ is the graph of the function

$$
y=f(s)=\log E\left(e^{s}\right) .
$$

Now the determinant formula (3.5) shows $\Theta_{F}(t, u)$ is a factor of $\operatorname{det}\left(u I-P_{E}(t)\right)$ with $\Theta_{F}(t, E(t))=0$, so by Theorem A.1(C) of Appendix A, $\mathbb{R}_{+} \cdot \Gamma$ coincides with the dual cone $C\left(u^{d}\right)$ of the leading term u^{d} of $\Theta_{F}(t, u)$. Equivalently, $\mathbb{R}_{+} \cdot \phi$ meets the graph of $f(s)$ iff ϕ achieves its maximum on $N\left(\Theta_{F}\right)$ at the vertex $v \in N\left(\Theta_{F}\right)$ corresponding to u^{d}.

```
4e}\mathrm{ SÉRIE - TOME 33-2000 - N N 4
```

Since Θ_{F} is symmetric (Corollary 4.3), so is its Newton polygon, and thus the unit ball B of the Teichmüller norm is dual to the convex body $N\left(\Theta_{F}\right)$. Under this duality, the linear functionals ϕ achieving their maximum at v correspond to the cone over a face $D \subset B$; and therefore

$$
\mathbb{R}_{+} \cdot F=C\left(u^{d}\right)=\mathbb{R}_{+} \cdot D
$$

Skew norms. Although in some examples the Thurston and Teichmüller norms actually agree (see Section 11), in general the norm faces F and D of Theorem 6.1 are skew to one another.

Here is a construction showing that F and D carry different information in general. Let $\lambda \subset S$ be the expanding lamination of a pseudo-Anosov mapping ψ, and let $\mathcal{L} \subset M$ be its mapping torus. Assume $b_{1}(M) \geqslant 2$.

Assume moreover that ψ has a fixed-point x in the center of an ideal n-gon of $S-\lambda$, with $n \geqslant 3$. (In the measured foliation picture, x is an n-prong singularity.) Then the mapping torus of x gives an oriented loop $X \subset M$ transverse to S. Construct a 3-dimensional submanifold

$$
M^{\prime} \stackrel{i}{\hookrightarrow} M
$$

by removing a tubular neighborhood of $X \subset M$, small enough that we still have $\mathcal{L} \subset M^{\prime}$. Let $S^{\prime}=S \cap M^{\prime}$; it is a fiber of M^{\prime}.

Let F and F^{\prime} be the faces of the Thurston norm balls whose cones contain [S] and $\left[S^{\prime}\right]$. We wish to compare the norms of ϕ and $\phi^{\prime}=i^{*}(\phi)$ for $\phi \in \mathbb{R}_{+} \cdot F$.

First, the Teichmüller norms agree: that is,

$$
\begin{equation*}
\left\|\phi^{\prime}\right\|_{\Theta_{F}^{\prime}}=\|\phi\|_{\Theta_{F}} \tag{6.1}
\end{equation*}
$$

Indeed, the mapping torus of the expanding lamination is $\mathcal{L}^{\prime}=\mathcal{L}$ for both M^{\prime} and M, and therefore $i_{*}\left(\Theta_{F^{\prime}}\right)=\Theta_{F}$, which gives (6.1).

On the other hand, the Thurston norms satisfy

$$
\begin{equation*}
\left\|\phi^{\prime}\right\|_{T}=\|\phi\|_{T}+\phi(X) \tag{6.2}
\end{equation*}
$$

Indeed, let $[R]=\phi$ be a fiber in M and let $\left[R^{\prime}\right]=\left[R \cap M^{\prime}\right]$ be the corresponding fiber in M^{\prime}. Then we have

$$
\left\|\phi^{\prime}\right\|_{T}=\left|\chi\left(R^{\prime}\right)\right|=|\chi(R-X)|=|\chi(R)|+|R \cap X|=\|\phi\|_{T}+\phi(X)
$$

By (6.1) and (6.2), the Teichmüller and Thurston norms can agree on at most one of the cones $\mathbb{R}_{+} \cdot F$ and $\mathbb{R}_{+} \cdot F^{\prime}$. With an appropriate choice of X, one can construct examples where the Thurston norm is not even a constant multiple of the Teichmüller norm on $\mathbb{R}_{+} \cdot F$.

Notes.

(1) Theorem 6.1 provides an effective algorithm to determine a fibered face F of M from a single fiber S and its monodromy ψ.
The first step is to find a ψ-invariant train track τ. Bestvina and Handel have given an elegant algorithm to find such a train track, based on entropy reduction [5]. Versions of this algorithm have been implemented by T. White, B. Menasco - J. Ringland, T. Hall and P. Brinkman; see [9].

Once τ is found, it is straightforward to compute the matrices $P_{E}(t)$ and $P_{V}(t)$ giving the action of $\tilde{\psi}$ on $\widetilde{\tau}$. The determinant formula

$$
\Theta_{F}(t, u)=\operatorname{det}\left(u I-P_{E}(t)\right) / \operatorname{det}\left(u I-P_{V}(t)\right)
$$

then gives the Teichmüller polynomial for F, and the Newton polygon of Θ_{F} determines the cone $\mathbb{R}_{+} \cdot F$ as we have seen above. Finally F itself can be recovered as the intersection of $\mathbb{R}_{+} \cdot F$ with the unit sphere $\|\phi\|_{A}=1$ in the Alexander norm on $H^{1}(M, \mathbb{R})$ (see Section 7).
(2) For any fiber $[S] \in \mathbb{R}_{+} \cdot F$ with expanding lamination λ, we have

$$
\|[S]\|_{\Theta_{F}}=-\chi(\lambda)
$$

where the Euler characteristic is computed with Čech cohomology. To verify this equation, use the determinant formula for Θ_{F} and observe that $\chi(\lambda)=\chi(\tau)=|V|-|E|$.

7. The Alexander norm

In this section we show that a fibered face F can be computed from the Alexander polynomial of M when λ is transversely orientable.

The Alexander polynomial and norm. Assume $b_{1}(M)>1$, let $G=H_{1}(M, \mathbb{Z}) /$ torsion, and let $\widehat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.
Recall that the Teichmüller polynomial of a fibered face defines, via its zero set, the largest hypersurface $V \subset \widehat{G}$ such $\operatorname{dim} Z_{2}\left(\mathcal{L}, \mathbb{C}_{\rho}\right)>0$ for all $\rho \in V$ (Theorem 3.3). Similarly, the Alexander polynomial of M,

$$
\Delta_{M}=\sum a_{g} \cdot g \in \mathbb{Z}[G]
$$

defines the largest hypersurface on which $\operatorname{dim} H^{1}\left(M, \mathbb{C}_{\rho}\right)>0$. (See [33, Corollary 3.2].) The Alexander norm on $H^{1}(M, \mathbb{R})$ is defined by

$$
\|\phi\|_{A}=\sup _{a_{g} \neq 0 \neq a_{h}} \phi(g-h) .
$$

(By convention, $\|\phi\|_{A}=0$ if $\Delta_{M}=0$.)
THEOREM 7.1. - Let F be a fibered face in $H^{1}(M, \mathbb{R})$ with $b_{1}(M) \geqslant 2$. Then we have:
(1) $F \subset A$ for a unique face A of the Alexander norm ball, and
(2) $F=A$ and Δ_{M} divides Θ_{F} if the lamination \mathcal{L} associated to F is transversally orientable.

Remark. - Transverse orientability of \mathcal{L} is equivalent to transverse orientability of $\lambda \subset S$ for a fiber $S \in \mathbb{R}_{+} \cdot F$, and to orientability of a train track τ carrying λ.

Proof of Theorem 7.1. - In [33] we show

$$
\|\phi\|_{A} \leqslant\|\phi\|_{T}
$$

for all $\phi \in H^{1}(M, \mathbb{R})$, with equality if ϕ comes from a fibration $M \rightarrow S^{1}$; this gives part (1) of the theorem.

For part (2), pick a fiber $[S] \in \mathbb{R}_{+} \cdot F$ with monodromy ψ and invariant lamination λ. Let (t, u) be coordinates on the character variety \widehat{G} adapted to the splitting $G=H \oplus \mathbb{Z}$ coming from the choice of a lift $\widetilde{\psi}$ of ψ.

If \mathcal{L} is transversally orientable, then λ is carried by an orientable train track τ. Since τ fills the surface S, we obtain a surjective map:

$$
\begin{equation*}
\pi: Z_{1}\left(\tau, \mathbb{C}_{t}\right) \cong H_{1}\left(\tau, \mathbb{C}_{t}\right) \rightarrow H_{1}\left(S, \mathbb{C}_{t}\right) \tag{7.1}
\end{equation*}
$$

for any character $t \in \widehat{H}$.
Let $P(t)$ and $Q(t)$ denote the action of $\widetilde{\psi}$ on $Z_{1}\left(\tau, \mathbb{C}_{t}\right)$ and $H_{1}\left(S, \mathbb{C}_{t}\right)$ respectively. Fixing a nontrivial character t, we have

$$
\Delta_{M}(t, u)=\operatorname{det}(u I-Q(t)) \quad \text { and } \quad \Theta_{F}(t, u)=\operatorname{det}(u I-P(t))
$$

up to a unit in $\mathbb{Z}[G]$. By (7.1), $\Delta_{M}(t, u)$ is a divisor of $\Theta_{F}(t, u)$. It follows that Δ_{M} divides Θ_{F} (using an algebraic argument as in Section 3 to lift the divisibility to $\mathbb{Z}[G]$).

The action of $\widetilde{\psi}$ on $\operatorname{Ker}(\pi)$ corresponds to the action of ψ by permutations on the components of $S-\tau$, so it does not include the leading eigenvalue $E(t)$ of $P(t)$. Therefore $\Delta_{M}(t, E(t))=0$, so we can apply Theorem A.1(C) of the Appendix to conclude that there is a face A of the Alexander norm ball with $\mathbb{R}_{+} \cdot A=\mathbb{R}_{+} \cdot F$ (just as in Theorem 6.1). By (1) we have $F \subset A$, and therefore $F=A$.

Note. Dunfield has given an example where the fibered face F is a proper subset of the Alexander face A; see [14].

8. Twisted measured laminations

In this section we add another interpretation to the Teichmüller polynomial, by showing Θ_{F} determines the eigenvalues of $\psi \in \operatorname{Mod}(S)$ on the space of twisted (or affine) measured laminations $\mathcal{M} \mathcal{L}_{s}(S)$. We will establish:

THEOREM 8.1. - A pseudo-Anosov mapping $\psi: S \rightarrow S$ has a unique pair of fixed-points

$$
\Lambda_{+}, \Lambda_{-} \in \mathbb{P} \mathcal{M} \mathcal{L}_{s}(S)
$$

for any $s \in H^{1}(S, \mathbb{R})^{\psi}$. The supporting geodesic laminations $\left(\lambda_{+}, \lambda_{-}\right)$of $\left(\Lambda_{+}, \Lambda_{-}\right)$coincide with the expanding and contracting laminations of ψ respectively, and we have

$$
\psi \cdot \Lambda_{+}=k \Lambda_{+},
$$

where $k>0$ is the largest root of the equation $\Theta_{F}\left(e^{s}, k\right)=0$.
$\boldsymbol{\mathcal { M }} \mathcal{L}_{\boldsymbol{s}}(\boldsymbol{S})$. Fix a cohomology class $s \in H^{1}(S, \mathbb{R})$. We can interpret s as a homomorphism

$$
s: H_{1}(S, \mathbb{Z}) \rightarrow \mathbb{R}
$$

determining an element $t \in H^{1}\left(S, \mathbb{R}_{+}\right)$by

$$
t=e^{s}: H_{1}(S, \mathbb{Z}) \rightarrow \mathbb{R}_{+}=S L_{1}(\mathbb{R})
$$

Thus s (or t) gives \mathbb{R} the structure of a module $\mathbb{R}_{s}\left(\right.$ or $\left.\mathbb{R}_{t}\right)$ over the ring $\mathbb{Z}\left[H_{1}(S, \mathbb{Z})\right]$.
The space of twisted measured laminations, $\mathcal{M} \mathcal{L}_{s}(S)$, is the set of all $\Lambda=(\lambda, \mu)$ such that:

- $\lambda \subset S$ is a compact geodesic lamination,
- $\mu \in Z_{1}\left(\lambda, \mathbb{R}_{s}\right)$ is a cycle, and
- $\mu(T)>0$ for every nonempty transversal T to λ.

Here μ can be thought of as a transverse measure taking values in a fixed flat \mathbb{R}-bundle $L_{s} \rightarrow S$. For $s=0$, the bundle L_{s} is trivial, so $\mathcal{M} \mathcal{L}_{0}(S)$ reduces to the space of ordinary measured laminations $\mathcal{M L}(S)$. Let $\mathbb{P} \mathcal{M} \mathcal{L}_{s}(S)=\mathcal{M} \mathcal{L}_{s}(S) / \mathbb{R}_{+}$denote the projective space of rays in $\mathcal{M} \mathcal{L}_{s}(S)$.

Using train tracks, one can give $\mathcal{M L}_{s}(S)$ local charts and a topology. A basic result from [25] is:

THEOREM 8.2 (Hatcher-Oertel). - The spaces $\mathcal{M} \mathcal{L}_{s}(S)$ form a fiber bundle over $H^{1}\left(M, \mathbb{R}_{+}\right)$. In particular, $\mathcal{M} \mathcal{L}_{s}(S) \cong \mathbb{R}^{n}$ for all s.

Perron-Frobenius eigenvectors. Let $\psi: S \rightarrow S$ be a pseudo-Anosov mapping with monodromy ψ and expanding lamination λ carried by an invariant train track τ. As in (3.4), we obtain a matrix

$$
P_{E}(t): \mathbb{Z}[H]^{E} \rightarrow \mathbb{Z}[H]^{E}
$$

describing the action of $\widetilde{\psi}$ on the edges of $\widetilde{\tau}$, and $P_{E}(t)$ is a Perron-Frobenius matrix of Laurent polynomials by Theorem 3.4. We can think of $P_{E}(t)$ as a map

$$
P_{E}: H^{1}\left(S, \mathbb{R}_{+}\right)^{\psi} \rightarrow \operatorname{End}\left(\mathbb{R}^{E}\right)
$$

whose values are traditional Perron-Frobenius matrices over \mathbb{R}.
As in Section 4, we can apply the functor $\operatorname{Hom}\left(\cdot, \mathbb{R}_{t}\right)$ to (3.4) to obtain the adjoint diagram:

For each t, the largest eigenvalue $E(t)$ of $P_{E}(t)^{*}$ is positive and simple, with a positive eigenvector $\mu(t) \in \mathbb{R}^{E}$.

THEOREM 8.3. - For each $t \in H^{1}\left(S, \mathbb{R}_{+}\right)$, the leading eigenvalue $u=E(t)$ of $P_{E}(t)^{*}$ is the largest root of the polynomial equation

$$
\Theta_{F}(t, u)=0
$$

and its positive eigenvector $\mu(t)$ belongs to $Z_{1}\left(\tau, \mathbb{R}_{t}\right)$.
Proof. - First suppose $t=1$ is the trivial cohomology class. Then $P_{E}(1)$ is an integral PerronFrobenius matrix, and hence $u=E(1)>1$ is the largest root of the polynomial $\operatorname{det}\left(u I-P_{E}(1)\right)$. On the other hand, $P_{V}(1)$ is a permutation matrix, with eigenvalues on the unit circle, so $\operatorname{det}\left(u I-P_{V}(1)\right)$ has no root at $u=E(1)$. Since Theorem 3.6 expresses $\Theta_{F}(1, u)$ as the ratio of these two determinants, $E(1)$ is the largest root of the polynomial $\Theta_{F}(1, u)=0$.
To see $\mu(1)$ is a cycle, just note that $D(1)^{*} \mu(1)=0$ because (8.1) is commutative and $P_{V}(1)$ has no eigenvector with eigenvalue $E(1)$.

```
4 e}\mathrm{ SÉRIE - TOME 33-2000 - N N 4
```

The same reasoning applies whenever $E(t)$ is not an eigenvalue of $P_{V}(t)$, and thus the Theorem holds for generic t. By continuity, it holds for all $t \in H^{1}\left(S, \mathbb{R}_{+}\right)$.

Proof of Theorem 8.1. - Suppose $\psi \cdot \Lambda=E \Lambda$. As we saw in Corollary 3.2, the only possibilities for the support of Λ are the expanding and contracting geodesic laminations λ_{+}, λ_{-}of ψ. In the case $\Lambda=\left(\lambda_{+}, \mu\right)$, positivity of μ on transversals implies μ is a positive eigenvector of $P_{E}(t)^{*}$, $t=e^{s}$, under the isomorphism

$$
Z_{1}\left(\lambda_{+}, \mathbb{R}_{t}\right)=Z_{1}\left(\tau, \mathbb{R}_{t}\right)
$$

Since $P_{E}(t)^{*}$ is a Perron-Frobenius matrix, its positive eigenvector is unique up to scale, and thus $k=E(t)$. By Theorem 8.3, k is the largest root of $\Theta_{F}(t, k)=\Theta_{F}\left(e^{s}, k\right)=0$.

COROLLARY 8.4. - Let $k(s)$ be the eigenvalue of

$$
\psi: \mathcal{M} \mathcal{L}_{s}(S) \rightarrow \mathcal{M} \mathcal{L}_{s}(S)
$$

at Λ_{+}. Then $\log k(s)$ is a convex function on $H^{1}(S, \mathbb{R})^{\psi}$.
Proof. - Apply Theorem A. 1 of Appendix A.
Notes.
(1) It can happen that $\psi \cdot \Lambda_{+}=k(s) \Lambda_{+}$with $0<k(s)<1$, even though $\Lambda_{+} \in \mathcal{M} \mathcal{L}_{s}(S)$ is supported on the expanding lamination of ψ. Indeed, $k(s)$ depends on the choice of a lift $\widetilde{\psi}$ of ψ, and changing this lift by $h \in H$ changes $k(s)$ to $e^{\phi(h)} k(s)$.
(2) Question. Given a Riemann surface $X \in \operatorname{Teich}(S)$, is there a natural isomorphism $\mathcal{M} \mathcal{L}_{s}(S) \cong Q_{s}(X)$ between the space of twisted measured laminations and the space of twisted quadratic differentials, defined as holomorphic sections of $K(X)^{2} \otimes L_{s}$? Hubbard and Masur established this correspondence in the untwisted case [26].
(3) The existence of a fixed-point for ψ on $\mathcal{M L}_{s}(S)$ is also shown in [38, Proposition 2.3].

9. Teichmüller flows

We now turn to the study of measured foliations \mathcal{F} of M.
Assume M is oriented and \mathcal{F} is transversally oriented; then the leaves of \mathcal{F} are also oriented. Measured foliations so oriented correspond bijectively to closed, nowhere-vanishing 1-forms ω on M, and we let $[\mathcal{F}]=[\omega] \in H^{1}(M, \mathbb{R})$. A flow $f: M \times \mathbb{R} \rightarrow M$ has unit speed (relative to \mathcal{F}) if it is generated by a vector field v with $\omega(v)=1$. Such a flow preserves the foliation \mathcal{F} and its transverse measure.

In this section we prove:
Theorem 9.1. - Let F be a fibered face of the Thurston norm ball for M. Then any $\phi \in \mathbb{R}_{+} \cdot F$ determines:

- a measured foliation \mathcal{F} of M with $[\mathcal{F}]=\phi$,
- a complex structure J on the leaves of \mathcal{F}, and
- a unit-speed Teichmüller flow

$$
f:(M, \mathcal{F}) \times \mathbb{R} \rightarrow(M, \mathcal{F})
$$

with stretch factor $K\left(f_{t}\right)=K(\phi)^{|t|}$.
The data (\mathcal{F}, J, f) is unique up to isotopy.

The idea of the proof is to use the results on twisted measured laminations in Section 8 to construct the analytic structure (\mathcal{F}, J, f) from the purely combinatorial information provided by the cohomology class ϕ.

From measured laminations to quadratic differentials. As usual we choose a fiber $[S] \in$ $\mathbb{R}_{+} \cdot F$ with monodromy ψ and expanding and contracting laminations $\lambda_{ \pm}$. Choose a lift $\widetilde{\psi}$ of ψ to the H-covering space \widetilde{S} of S, and write

$$
G=H_{1}(M, \mathbb{Z}) / \text { torsion }=H \oplus \mathbb{Z} \widetilde{\psi}
$$

Let G act on \widetilde{S} by

$$
(h, i) \cdot s=\widetilde{\psi}^{i}(h(s))
$$

this action embeds G into the mapping-class $\operatorname{group} \operatorname{Mod}(\widetilde{S})$.
THEOREM 9.2. - There exist measured laminations $\widetilde{\Lambda}_{ \pm} \in \mathcal{M} \mathcal{L}(\widetilde{S})$, supported on $\widetilde{\lambda}_{ \pm}$, such that for all $g \in G$ we have

$$
\begin{equation*}
g \cdot \widetilde{\Lambda}_{ \pm}=K^{ \pm \phi(g)} \widetilde{\Lambda}_{ \pm} \tag{9.1}
\end{equation*}
$$

where $K=K(\phi)$ is the expansion factor of ϕ.
Proof. - Writing $\phi=(s, y)$, the condition $K=K(\phi)$ means $y>0$ is the largest solution to the equation $\Theta_{F}\left(K^{s}, K^{y}\right)=0$. By Theorem 8.1 there exists a twisted measured lamination $\Lambda_{+} \in \mathcal{M} \mathcal{L}_{s \log K}(S)$, supported on λ_{+}, with $\psi \cdot \Lambda_{+}=K^{y} \Lambda_{+}$. The lift of Λ_{+}to \widetilde{S} then gives a lamination $\widetilde{\Lambda}_{+}$satisfying (9.1).

To construct Λ_{-}, note that $K(\phi)=K(-\phi)$ because the expansion and contraction factors of a pseudo-Anosov mapping are reciprocal. Thus the same construction applied to $-\phi$ yields $\widetilde{\Lambda}_{-}$ satisfying (9.1).

Although $\operatorname{int}(\widetilde{S})$ has infinite topological complexity, it has a natural quasi-isometry type coming from the lift of a finite volume hyperbolic metric on $\operatorname{int}(S)$. Complex structures compatible with this quasi-isometry type are parameterized by the (infinite-dimensional) Teichmüller space Teich (\widetilde{S}).

THEOREM 9.3. - There is a Riemann surface $X \in \operatorname{Teich}(\widetilde{S})$ and a holomorphic quadratic differential $q(z) d z_{\widetilde{S}}^{2}$ on X such that:
(1) $G \subset \operatorname{Mod}(\widetilde{S})$ acts by commuting Teichmüller mappings $g(x)$ on X, preserving the foliations of q, and
(2) The map $g(x)$ stretches the vertical and horizontal leaves of q by $\left(K^{-\phi(g)}, K^{+\phi(g)}\right)$, where $K=K(\phi)$.
Proof. - Integrating the transverse measures on $\widetilde{\Lambda}_{ \pm}$, we will collapse their complementary regions and obtain a map $f: \widetilde{S} \xrightarrow{\longrightarrow} X$.

On any small open set $U_{\alpha} \subset \widetilde{S}$, we can introduce local coordinates (u, v) such that u and v are constant on the leaves of $\widetilde{\Lambda}_{-}$and $\widetilde{\Lambda}_{+}$respectively. Then there is a continuous map

$$
f_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}
$$

given by $f_{\alpha}(u, v)=x(u)+i y(v)$, where $x(u)$ and $y(v)$ are monotone functions whose distributional derivatives $\left(x^{\prime}(u), y^{\prime}(v)\right)$ are the transverse measures for $\left(\widetilde{\Lambda}_{-}, \widetilde{\Lambda}_{+}\right)$. The coordinate $z_{\alpha}=f_{\alpha}$ is unique up to

$$
\begin{equation*}
z_{\alpha} \mapsto \pm z_{\alpha}+b \tag{9.2}
\end{equation*}
$$

4^{e} SÉRIE - TOME $33-2000-\mathrm{N}^{\circ} 4$
the sign ambiguity arises because the laminations are not oriented.
Since the coordinate change (9.2) is holomorphic, we can assemble the charts

$$
V_{\alpha}=f_{\alpha}\left(U_{\alpha}\right)
$$

to form a Riemann surface X. The forms $d z_{\alpha}^{2}$ on U_{α} are invariant under (9.2), so they patch together to yield a holomorphic quadratic differential q on X. Finally the maps f_{α} piece together to give the collapsing map $f: \widetilde{S} \rightarrow X$.

The construction of $f: \widetilde{S} \rightarrow X$ is functorial in the measured laminations ($\widetilde{\Lambda}_{-}, \widetilde{\Lambda}_{+}$). That is, if we apply the same construction to ($a^{-1} \widetilde{\Lambda}_{-}, a^{+1} \widetilde{\Lambda}_{+}$), we obtain a new marked surface $f^{\prime}: \widetilde{S} \rightarrow X^{\prime}$ and a unique map $F: X \rightarrow X^{\prime}$ such that $F \circ f=f^{\prime}$. Moreover F is a Teichmüller mapping, stretching the vertical and horizontal leaves of q by a^{-1} and a^{+1} respectively.

Since $g \in G$ multiplies the laminations $\left(\widetilde{\Lambda}_{-}, \widetilde{\Lambda}_{+}\right)$by $\left(K^{-\phi(g)}, K^{+\phi(g)}\right)$, this functoriality provides the desired lifting of G to Teichmüller mappings on X.

Isotopy. Finally we quote the following topological result of Blank and Laudenbach, recently treated by Cantwell and Conlon [29,35,11]:

THEOREM 9.4. - Any two measured foliations $\mathcal{F}, \mathcal{F}^{\prime}$ representing the same cohomology class on M are isotopic.

Proof of Theorem 9.1. - We will construct (\mathcal{F}, J, f) from the Riemann surface X, its quadratic differential q and the action of G given by Theorem 9.3.

Let $\widetilde{\mathcal{F}}$ be the measured foliation of $X \times \mathbb{R}$ with leaves $X_{r}=X \times\{r\}$ and with transverse measure $d r$. Let $\widetilde{f}_{t}: X \times \mathbb{R} \rightarrow X \times \mathbb{R}$ be the unit speed flow $\widetilde{f}_{t}(x, r)=(x, r+t)$. Let \widetilde{J} be the unique complex structure on $T \widetilde{\mathcal{F}}$ such that $\left(X_{0}, \widetilde{J}_{0}\right)=X$ and such that $\widetilde{f}_{t}: X_{0} \rightarrow X_{t}$ is a Teichmüller mapping stretching the vertical and horizontal leaves of q by $\left(K^{-t}, K^{+t}\right)$. Finally, let G act on $X \times \mathbb{R}$ by

$$
\begin{equation*}
g \cdot(x, r)=(g(x), r+\phi(g)) \tag{9.3}
\end{equation*}
$$

where $g(x)$ is the Teichmüller mapping of X to itself provided by Theorem 9.3.
With this action, G preserves the structure $\left(\widetilde{\mathcal{F}}, \widetilde{J}, f_{t}\right)$, and therefore the quotient $N=$ $(X \times \mathbb{R}) / G$ carries a measured foliation \mathcal{F}, a complex structure J on $T \mathcal{F}$, and a unit speed Teichmüller flow $f_{t}: N \rightarrow N$.

To complete the construction, we will show N can be identified with M in such a way that $[\mathcal{F}]=\phi$. To construct a homeomorphism $N \cong M$, first note that ϕ pulls back to a trivial cohomology class on $X \cong \widetilde{S}$, so there exists a smooth function $\xi: X \rightarrow \mathbb{R}$ such that

$$
\xi(h(x))=\xi(x)+\phi(h)
$$

for all $h \in H \subset G$. Set $a=\phi(\widetilde{\psi})>0$, so $\phi(h, i)=\phi(h)+a i$. Then the homeomorphism of $X \times \mathbb{R}$ given by

$$
(x, r) \mapsto(x, a r+\xi(x))
$$

conjugates the action of $g=(h, i)$ by

$$
\begin{equation*}
g \cdot(x, r)=(g(x), r+i) \tag{9.4}
\end{equation*}
$$

to the original action (9.3). Thus both actions have the same quotient space. On the other hand, the quotient of $X \times \mathbb{R}$ by the action of G given by (9.4) is:

$$
N=(X \times \mathbb{R}) / G=((X / H) \times \mathbb{R}) / \mathbb{Z} \cong M
$$

because \mathbb{Z} acts on $X / H \cong S$ by a map isotopic to ψ.
Thus we have identified N with M. It is easy to see that $[\mathcal{F}]=\phi$ under this identification, so we have completed the construction of (\mathcal{F}, J, f).

To prove uniqueness, the first step is to apply Theorem 9.4 to see that ϕ determines \mathcal{F} up to isotopy. Then, given two Teichmüller flows f_{1} and f_{2} for the same foliation \mathcal{F}, we can pick a fiber S which is nearly parallel to the leaves of \mathcal{F} and transverse to both flows. Each flow determines, via its distortion of complex structure, a pair of ψ-invariant twisted measured laminations [$\Lambda_{ \pm}$] for S. The uniqueness of (\mathcal{F}, J, f) then follows from the uniqueness of these twisted laminations, guaranteed by Theorem 8.1.

Note. Our original approach to Theorem 9.1 involved taking the geometric limit of the pseudo-Anosov flows known to exist for fibered classes in $H^{1}(M, \mathbb{Q})$ by ordinary Teichmüller theory. An examination of the expansion factor $K([\mathcal{F}])$ led to the more algebraic approach presented here.

10. Short geodesics on moduli space

Let S be a closed surface of genus $g \geqslant 2$, and let $\mathcal{M}_{g}=\operatorname{Teich}(S) / \operatorname{Mod}(S)$ be its moduli space, endowed with the Teichmüller metric. Then closed geodesics on \mathcal{M}_{g} correspond bijectively to conjugacy classes of pseudo-Anosov elements $\psi \in \operatorname{Mod}(S) \cong \pi_{1}\left(\mathcal{M}_{g}\right)$. The length $L(\psi)$ of the geodesic for ψ is given by

$$
L(\psi)=\log K(\psi)
$$

where $K(\psi)>1$ is the pseudo-Anosov expansion factor for ψ. From [40] we have:
THEOREM 10.1 (Penner). - The length of the shortest geodesic on the moduli space \mathcal{M}_{g} of Riemann surfaces of genus g satisfies $L\left(\mathcal{M}_{g}\right) \asymp 1 / g$.
(Here $A \asymp B$ means we have $A / C \leqslant B \leqslant C A$ for a universal constant C.)
In this section we show any closed fibered hyperbolic 3-manifold with $b_{1}(M) \geqslant 2$ provides a source of short geodesics on moduli space as above.

Indeed, let $S \subset M$ be a fiber of genus $g \geqslant 2$ with monodromy ψ. The assumption $b_{1}(M) \geqslant 2$ is equivalent to the condition that ψ fixes a primitive cohomology class

$$
\xi_{0} \in H^{1}(S, \mathbb{Z})
$$

Let $\widetilde{S} \rightarrow S$ be the \mathbb{Z}-covering space corresponding to ξ_{0}, with deck group generated by $h: \widetilde{S} \rightarrow \widetilde{S}$, and let $\widetilde{\psi}$ be a lift of ψ to \widetilde{S}.

THEOREM 10.2. - For all n sufficiently large,

$$
R_{n}=\widetilde{S} /\left\langle h^{n} \widetilde{\psi}\right\rangle
$$

is a closed surface of genus $g_{n} \asymp n$, and $h: \widetilde{S} \rightarrow \widetilde{S}$ descends to a pseudo-Anosov mapping class $\psi_{n} \in \operatorname{Mod}\left(R_{n}\right)$ with

$$
\begin{equation*}
L\left(\psi_{n}\right)=\frac{L(\psi)}{n}+\mathrm{O}\left(n^{-2}\right) \asymp \frac{1}{g_{n}} \tag{10.1}
\end{equation*}
$$

Proof. - Corresponding to the commuting maps $\widetilde{\psi}$ and h on \widetilde{S}, we have a covering space

$$
\widetilde{M}=\widetilde{S} \times \mathbb{R} \rightarrow M
$$

with deck group $\mathbb{Z} H \oplus \mathbb{Z} \widetilde{\Psi}$, where

$$
H(s, t)=(h(s), t) \quad \text { and } \quad \widetilde{\Psi}(s, t)=(\widetilde{\psi}(s), t-1)
$$

Define a map

$$
(\phi, \xi): H_{1}(M, \mathbb{Z}) \rightarrow \mathbb{Z} H \oplus \mathbb{Z} \widetilde{\Psi} \rightarrow \mathbb{Z}^{2}
$$

by sending H to $(0,1)$ and $\widetilde{\Psi}$ to $(-1,0)$. Then the first factor $\phi: H_{1}(M, \mathbb{Z}) \rightarrow \mathbb{Z}$ is the same as the cohomology class corresponding to the fiber S.

Now ϕ belongs to the cone on a fibered face F, so $\phi_{n}=n \phi+\xi$ also comes from a fibration $\pi_{n}: M \rightarrow S^{1}$ for all $n \gg 0$. Since $\mathbb{Z}\left(H^{n} \widetilde{\Psi}\right)$ corresponds to the kernel of ϕ_{n}, the \mathbb{Z}-covering space $M_{n} \rightarrow M$ corresponding to π_{n} is given by

$$
M_{n}=\widetilde{M} /\left\langle H^{n} \widetilde{\Psi}\right\rangle \cong \widetilde{S} /\left\langle h^{n} \widetilde{\psi}\right\rangle \times \mathbb{R}=R_{n} \times \mathbb{R}
$$

Similarly, the monodromy of π_{n} is induced by the action of H^{-1} on \widetilde{M}, so it can be identified with $\psi_{n}^{-1}: R_{n} \rightarrow R_{n}$ (up to isotopy).

Now $\|\cdot\|_{T}$ is linear on $\mathbb{R}_{+} \cdot F$, so we have

$$
\left\|\phi_{n}\right\|_{T}=\left|\chi\left(R_{n}\right)\right|=2 g_{n}-2=n \phi(e)-\phi_{0}(e) \asymp n
$$

for some $e \in H_{1}(M, \mathbb{Z})$ (the Euler class). Finally the expansion factor is differentiable and homogeneous of degree -1 , so we have

$$
K\left(\psi_{n}\right)=K\left(\phi_{n}\right)=K(\phi)^{1 / n}+\mathrm{O}\left(n^{-2}\right)
$$

giving (10.1).

Notes.

(1) The exchange of deck transformations and dynamics in the statement of Theorem 10.2 is often called renormalization. Compare [46], where the same construction is used to analyze rotation maps.
(2) It is easy to see that $L\left(\mathcal{M}_{1}\right)=\log (3+\sqrt{5}) / 2$ is the \log of the leading eigenvalue of $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. For genus 2 we have $L\left(\mathcal{M}_{2}\right) \leqslant 0.543533 \ldots=\log k$, where $k^{4}-k^{3}-k^{2}-k+$ $1=0$ [47], and in general $L\left(\mathcal{M}_{g}\right) \leqslant(\log 6) / g$ [3].
(3) It can be shown that the minimal expansion factor K_{n} for an $n \times n$ integral PerronFrobenius matrix is the largest root of $x^{n}=x+1$; it satisfies $K_{n}=2^{1 / n}+\mathrm{O}\left(1 / n^{2}\right)$. The factor K_{n} is realized by the matrix

$$
M_{i j}= \begin{cases}1 & \text { if } j=i+1 \bmod n \\ 1 & \text { if }(i, j)=(1,3) \\ 0 & \text { otherwise }\end{cases}
$$

which is the adjacency matrix of a cyclic graph with one shortcut; see Fig. 5 for the case $n=8$. (For a detailed development of the Perron-Frobenius theory, see [30, §4].)
Since the expansion factor of ψ agrees with that of a Perron-Frobenius matrix attached to a train track with at most $6 g-6$ edges, we have $L\left(\mathcal{M}_{g}\right) \geqslant(\log 2) /(6 g-6)$.
(4) Question. Does $\lim _{g \rightarrow \infty} g \cdot L\left(\mathcal{M}_{g}\right)$ exist? What is its value?

Fig. 5. An 8 -vertex graph in which the number of paths of length n grows as slowly as possible.

11. Examples: Closed braids

Closed braids provide a natural source of fibered link complements $M^{3}=S^{3}-L(\beta)$. In this section we present the computation of Θ_{F} and the fibered face $F \subset H^{1}(M, \mathbb{R})$ for some simple braids.

Braids. Let $S=D^{2}-\bigcup_{1}^{n} U_{i}$ be the complement of n disjoint round disks lying along a diameter of the closed unit disk D^{2}. Let $\operatorname{Diff}^{+}(S, \partial D)$ be the group of diffeomorphisms of S to itself, preserving orientation and fixing ∂D^{2} pointwise.
The braid group B_{n} is the group of connected components of $\operatorname{Diff}^{+}(S, \partial D)$. It has standard generators $\sigma_{i}, i=1, \ldots, n-1$, which interchange ∂U_{i} and ∂U_{i+1} by performing a half Dehn twist to the left (see $[6,10]$).

There is a natural map $B_{n} \rightarrow \operatorname{Mod}(S)$ sending a braid $\beta \in B_{n}$ to a mapping class $\psi \in \operatorname{Mod}(S)$. Moreover β determines a canonical lift $\widetilde{\psi}$ of ψ to the H-covering space of S, by the requirement that $\tilde{\psi}$ fixes the preimage of ∂D^{2} pointwise.

There is a natural basis $t_{i}=\left[\partial U_{i}\right]$ for $H_{1}(S, \mathbb{Z})$, on which β acts by $\beta\left(t_{i}\right)=t_{\sigma i}$, and $b=\operatorname{rank} H$ is just the number of cycles of the permutation σ.

Links. Let M be the fibered 3-manifold with fiber S and monodromy ψ. There is a natural model for M as a link complement $M=S^{3}-L(\beta)$ in the 3 -sphere. To construct the link $L(\beta)$, simply close the braid β while passing it through an unknot α (see Fig. 1 of Section 1). The surface S embeds into M as a disk spanning α, punctured by the n strands of β.

The meridians of components of $L(\beta)$ give a natural basis for $H_{1}(M, \mathbb{Z})$; in particular the meridian of α corresponds to the natural lifting $\widetilde{\psi}$ of ψ.

Train tracks and braids on three strands. We will now compute $\Theta_{F}(t, u)$ and F in three examples, where F is the fibered face carrying S.

These examples all come from braids β in the semigroup of B_{3} generated by σ_{1} and σ_{2}^{-1}. This semigroup is easy to work with because it preserves a pair of train tracks τ_{1}, τ_{2}, where τ_{1} is shown in Fig. 4 and τ_{2} is the reflection of τ_{1} through a vertical line.

As an additional simplification, each train track τ_{i} is a spine for S, and thus the Thurston and Teichmüller norms agree in these examples: we have

$$
\|\phi\|_{T}=|\chi(S)|=|\chi(\lambda)|=|\chi(\tau)|=\|\phi\|_{\Theta_{F}}
$$

for all fibers $[S] \in \mathbb{R}_{+} \cdot F$ (see Note (2) of Section 6). In particular, the fibered face F coincides with a face of the Teichmüller norm ball, so it is easily computed from Θ_{F}.
I. The simplest pseudo-Anosov braid. For the first example, consider the simplest pseudoAnosov braid, $\beta=\sigma_{1} \sigma_{2}^{-1}$. Its three strands are permuted cyclically, so $H=\operatorname{Hom}\left(H^{1}(S, \mathbb{Z})^{\psi}, \mathbb{Z}\right)$ is of rank one, generated by $t=t_{1}+t_{2}+t_{3}$.

```
4e}\mathrm{ SÉRIE - TOME 33-2000- N + 4
```


Fig. 6. The links $6_{2}^{2}=L\left(\sigma_{1} \sigma_{2}^{-1}\right)$ and $9_{51}^{2}=L\left(\sigma_{1} \sigma_{2}^{-3}\right)$.

The train tracks τ_{1} and τ_{2} differ only in their switching conditions, so their vertex and edge modules $\mathbb{Z}[t]^{V}, \mathbb{Z}[t]^{E}$ are naturally identified. Using this identification, we can express the action of $\sigma_{1}, \sigma_{2}^{-1}$ on these modules as 4×4 and 6×6 matrices of Laurent polynomials.

Now the determinant formula gives Θ_{F} as the characteristic polynomial for the action of ψ on the 2-dimensional subspace

$$
\operatorname{Ker} D(t)^{*}: \mathbb{Z}[t]^{E} \rightarrow \mathbb{Z}[t]^{V}
$$

By restricting σ_{1} and σ_{2}^{-1} to this subspace, and projecting to the coordinates for the edge subset $E^{\prime}=\{a, c\}$, we obtain the simpler 2×2 matrices:

$$
\sigma_{1}(t)=\left(\begin{array}{cc}
t & t \\
0 & 1
\end{array}\right), \quad \sigma_{2}^{-1}(t)=\left(\begin{array}{cc}
1 & 0 \\
t^{-1} & t^{-1}
\end{array}\right)
$$

Restricting to $\operatorname{Ker} D(t)^{*}$ removes the factor of $\operatorname{det}\left(u I-P_{V}(t)\right)$ from $\operatorname{det}\left(u I-P_{E}(t)\right)$, and therefore we have:

$$
\begin{equation*}
\Theta_{F}(t, u)=\operatorname{det}(u I-\beta(t)) \tag{11.1}
\end{equation*}
$$

where $\beta(t)$ is the appropriate product of the matrices above.
Setting $\beta(t)=\sigma_{1}(t) \sigma_{2}^{-1}(t)$, we find the Teichmüller polynomial is given by

$$
\Theta_{F}(t, u)=1-u\left(1+t+t^{-1}\right)+u^{2}
$$

Its Newton polygon is a diamond, and its norm is:

$$
\|(s, y)\|_{\Theta_{F}}=\max (|2 s|,|2 y|)
$$

(Here (s, y) denotes the cohomology class evaluating to s and y on the meridian of α and β respectively.)

The fibered face $F \subset H^{1}(M, \mathbb{R})$ is the same as the face of the Teichmüller norm ball meeting $\mathbb{R}_{+} \cdot[S]=\mathbb{R}_{+} \cdot(0,1)$, and therefore $F=\{1 / 2\} \times[-1 / 2,1 / 2]$ in these (s, y)-coordinates.

The closed braid $L(\beta)$ can be simplified to a projection with 6 crossings (see Fig. 6), and it is denoted 6_{2}^{2} in Rolfsen's tables [41]. In this projection, the two components of $L(\beta)$ are clearly interchangeable. In fact, the Thurston norm ball for $S^{3}-L(\beta)$ has 4 faces, all fibered, and

$$
\|(s, y)\|_{T}=2|s|+2|y|
$$

for all $(s, y) \in H^{1}(M, \mathbb{R})$.

Fig. 7. Norm ball and expansion factor.
II. The Thurston and Alexander norms. The braid $\beta=\sigma_{1} \sigma_{2}^{-3}$ also permutes its strands cyclically. By (11.1) in this case we obtain

$$
\Theta_{F}(t, u)=t^{-2}-u\left(t+1+t^{-1}+t^{-2}+t^{-3}\right)+u^{2}
$$

Fig. 7 shows the Teichmüller norm ball for this example in (s, y) coordinates, along with the graph $y=\log k(s)$, where $k(s)$ eigenvalue of ψ on $\mathcal{M} \mathcal{L}_{s}(S)$ discussed in Section 8. The graph Γ is also the level set $\log K(\phi)=1$ of the expansion function on $\mathbb{R}_{+} \cdot F$. This picture illustrates the fact that Γ is convex, that the cones over F and Γ coincide, and that $K(\phi)$ tends to infinity at ∂F.

To compute the full Thurston norm ball for this example, we appeal to the inequality $\|\phi\|_{A} \leqslant$ $\|\phi\|_{T}$ between the Alexander and Thurston norms (see Section 7). Because of this inequality, the two norms agree if they coincide on the extreme points of the Alexander norm ball. Now a straightforward computation gives

$$
\Delta_{M}(t, u)=t^{-2}+u\left(t-1+t^{-1}-t^{-2}+t^{-3}\right)+u^{2}
$$

in the present example. The polynomials Δ_{M} and Θ_{F} have the same Newton polygon, and thus the Alexander, Thurston and Teichmüller norms all coincide on F. But the endpoints of $\pm F$ are the extreme points of the Alexander norm ball, and therefore

$$
\|(s, y)\|_{T}=\|(s, y)\|_{A}=\max (|2 s+2 y|,|4 s|)
$$

for all $(s, y) \in H^{1}(M, \mathbb{R})$.
For example, the simplest surface spanning both components of $L(\beta)$ has genus $g=2$, since $\|(\pm 1, \pm 1)\|_{T}=4$.

Finally we remark that the closed braid $L\left(\sigma_{1} \sigma_{2}^{-3}\right)$ is actually the same as the link 9_{51}^{2} of Rolfsen's tables (see Fig. 6). We have thus established:

The Thurston and Alexander norms coincide for the link 9_{51}^{2}.
In [33] we found that the two norms coincide for all examples in Rolfsen's table of links with 10 or fewer crossings, except 9_{21}^{3}, and possibly $9_{41}^{2}, 9_{50}^{2}, 9_{51}^{2}$, and 9_{15}^{3}. The link 9_{51}^{2} can now be removed from the list of possible exceptions.
III. Pure braids. We conclude by discussing pure braids β in the semigroup generated by the full twists $\sigma_{1}^{2}, \sigma_{2}^{-2}$. A pure braid acts trivially on $H_{1}(S, \mathbb{Z})$, and thus the Thurston norm ball is 4-dimensional. We take $\left(t_{1}, t_{2}, t_{3}, u\right)$ as a basis for $H^{1}(M, \mathbb{Z})$, where t_{i} is the meridian of the i th strand of β and u is the meridian of α.

By cutting down to the kernel of $D(t)^{*}$ on $\mathbb{Z}[H]^{E}$ as before, we obtain an action of the full twists on a rank 2 module over $\mathbb{Z}\left[t_{1}, t_{2}, t_{3}\right]$. Setting $\left(t_{1}, t_{2}, t_{3}\right)=(a, b, c)$ to improve readability, we find that σ_{1} and σ_{2}^{-2} act on this module by:

$$
\sigma_{1}^{2}=\left(\begin{array}{cc}
a b & a b+b \\
0 & 1
\end{array}\right), \quad \sigma_{2}^{-2}=\left(\begin{array}{cc}
1 & 0 \\
b^{-1}+b^{-1} c^{-1} & b^{-1} c^{-1}
\end{array}\right)
$$

For a concrete example, we consider the pure braid $\beta=\sigma_{1}^{2} \sigma_{2}^{-6}$ whose link $L(\beta)$ appears in Fig. 1 of Section 1. Applying (11.1) with the matrices above, we find its Teichmüller polynomial is given by:

$$
\begin{aligned}
& \Theta_{F}(a, b, c, u) \\
& \quad=\frac{a}{b^{2} c^{3}}-\frac{u}{b^{3} c^{3}}\left(1-b^{4} c^{3}(1+c+a c)+(a+1) b(1+c)(1+b c)\left(1+b^{2} c^{2}\right)\right)+u^{2} .
\end{aligned}
$$

The projection of the fibered face F for this example to $H^{1}(S, \mathbb{R})$ is shown in Fig. 2 of Section 1.
Since the coefficient of u^{0} is $a b^{-2} c^{-3}=t^{(1,-2,-3)}$, we find the Thurston norm on $\mathbb{R}_{+} \cdot F$ is given by

$$
\|(s, y)\|_{T}=-s_{1}+2 s_{2}+3 s_{3}+2 y
$$

For example, $\|(-1,1,-1,1)\|_{T}=2$, showing that $L(\beta)$ is spanned by a Seifert surface of genus 0 running in alternating directions along the strands of β. It is interesting to locate this surface explicitly in Fig. 1.

Notes.
(1) For a general construction of pseudo-Anosov mappings, including the examples above as special cases, see $[39,15]$.
(2) The Thurston norm of the 6_{2}^{2} is also discussed in [17, p. 264] and [38, Ex. 2.2].

Appendix A. Positive polynomials and Perron-Frobenius matrices

This Appendix develops the theory of Perron-Frobenius matrices over a ring of Laurent polynomials. These results are used in Sections 5-8.

Laurent polynomials. Let $\left(s_{1}, \ldots, s_{b}\right)$ be coordinates for $s \in \mathbb{R}^{b}$, and let

$$
\left(t_{1}, \ldots, t_{b}\right)=\left(e^{s_{1}}, \ldots, e^{s_{b}}\right)
$$

be coordinates for $t=e^{s}$ in \mathbb{R}_{+}^{b}. An integral Laurent polynomial $p(t)$ is an element of the ring $\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{b}^{ \pm 1}\right]$ generated by the coordinates t_{i} and their inverses. We can write such a polynomial as

$$
\begin{equation*}
p(t)=\sum_{\alpha \in A} a_{\alpha} t^{\alpha}, \tag{A.1}
\end{equation*}
$$

where the exponents $\alpha=\left(\alpha_{1}, \ldots, \alpha_{b}\right)$ range over a finite set $A \subset \mathbb{Z}^{b}$, where $t^{\alpha}=t_{1}^{\alpha_{1}} \cdots t_{b}^{\alpha_{b}}$, and where the coefficients $a_{\alpha} \in \mathbb{Z}$ are nonzero.

Newton polygons. The Newton polygon $N(p) \subset \mathbb{R}^{b}$ of $p(t)=\sum_{A} a_{\alpha} t^{\alpha}$ is the convex hull of the set of exponents $A \subset \mathbb{Z}^{b}$.
If we think of $\left(s_{i}\right)$ as a basis for an abstract real vector space V, then $N(p)$ also naturally resides in V. Each monomial t^{α} appearing in $p(t)$ determines an open dual cone $C\left(t^{\alpha}\right) \subset V^{*}$ consisting of the linear maps $\phi: V \rightarrow \mathbb{R}$ that achieve their maximum on $N(p)$ precisely at α. Equivalently,

$$
C\left(t^{\alpha}\right)=\{\phi: \phi(\alpha)>\phi(\beta) \text { for all } \beta \neq \alpha \text { in } A\}
$$

Positivity and Perron-Frobenius. A Laurent polynomial $p(t) \neq 0$ is positive if it has coefficients $a_{\alpha}>0$.

Let

$$
P(t)=P_{i j}(t) \in M_{n}\left(\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{b}^{ \pm 1}\right]\right)
$$

be an $n \times n$ matrix of Laurent polynomials, with each entry either zero or positive. If for some $k>0$, every entry of $P_{i j}^{k}(t)$ is a positive Laurent polynomial, we say $P(t)$ is an (integral) PerronFrobenius matrix. By convention, we exclude the case where $n=1$ and $P(1)=[1]$.

The matrix $P(t)$ is a traditional Perron-Frobenius matrix for every fixed value $t \in \mathbb{R}_{+}^{b}$. In particular, the largest eigenvalue $E(t)$ of $P(t)$ is simple, real and positive [23]. Since $P(1)$ is an integral matrix $(\neq[1])$, we always have $E(1)>1$.

The main result of this section is:
Theorem A.1. - Let $E(t)$ be the leading eigenvalue of a Perron-Frobenius matrix $P(t)$. Then:
(A) The function $f(s)=\log E\left(e^{s}\right)$ is a convex function of $s \in \mathbb{R}^{b}$.
(B) The graph of $y=f(s)$ meets each ray from the origin in $\mathbb{R}^{b} \times \mathbb{R}$ at most once.
(C) The rays passing through the graph of $y=f(s)$ coincide with the dual cone $C\left(u^{d}\right)$ of the polynomial

$$
\Theta_{F}(t, u)=u^{d}+b_{1}(t) u^{d-1}+\cdots+b_{d}(t)
$$

for any factor $\Theta_{F}(t, u)$ of $\operatorname{det}(u I-P(t))$ satisfying $\Theta_{F}(t, E(t))=0$.
Positivity and convexity. In addition to Laurent polynomials, it is also useful to consider finite power sums $p(t)=\sum a_{\alpha} t^{\alpha}$ with real exponents $\alpha \in \mathbb{R}^{b}$, and real coefficients $a_{\alpha} \in \mathbb{R}$. As for a Laurent polynomial, we say a nonzero power sum is positive if its coefficients are positive.

Proposition A.2. - If $p(t)=\sum a_{\alpha} t^{\alpha}$ is a positive power sum, then

$$
f(s)=\log p\left(e^{s}\right)
$$

is a convex function of $s \in \mathbb{R}^{b}$.

Proof. - By restricting $f(s)$ to a line and applying a translation, we are reduced to showing $f^{\prime \prime}(0) \geqslant 0$ when $p(t)$ is a power sum in one variable t. But then

$$
f^{\prime \prime}(0)=\frac{\left(\sum a_{\alpha}\right)\left(\sum \alpha^{2} a_{\alpha}\right)-\left(\sum \alpha a_{\alpha}\right)^{2}}{\left(\sum a_{\alpha}\right)^{2}} \geqslant 0
$$

by Cauchy-Schwarz.
Proof of Theorem A.1(A). - Since $E(t)$ agrees with the spectral radius of $P(t)$, and $P_{i j}(t) \geqslant 0$, we have

$$
E(t)=\lim _{n \rightarrow \infty}\left(\sum_{i, j} P_{i j}^{n}(t)\right)^{1 / n}
$$

Therefore $\log E\left(e^{s}\right)=\lim n^{-1} \log E_{n}\left(e^{s}\right)$, where $E_{n}(t)=\sum_{i, j} P_{i j}^{n}(t)$. Since the nonzero entries of $P(t)$ are positive, $E_{n}(t)$ is a positive Laurent polynomial, and thus $\log E_{n}\left(e^{s}\right)$ is convex by the preceding result. Therefore the limit $f(s)=\log E\left(e^{s}\right)$ is also convex.

Proof of Theorem A.l(B). - Let (s, y) be coordinates on $\mathbb{R}^{b} \times \mathbb{R}$, and let R be a ray through the origin. (B) is immediate when R is contained in y-axis. Dispensing with that case, we can pass to functions of a single variable $t=e^{s}$ by restricting to the plane spanned R and the y-axis, and we can assume R is the graph of a linear function of the form $y=\gamma s$, for $s>0$.

Now the function $f(s)$ is convex and real analytic. Thus $f(s)$ is either strictly convex or affine $(f(s)=a s+b)$.

To treat the affine case, note $b=f(0)=\log E(1)>0$, since the leading eigenvalue of the integral Perron-Frobenius matrix $P(1)$ is greater than one. Thus the equation $y=\gamma s=f(s)=$ $a s+b$ has at most one solution, and we are done.

Now assume $f(t)$ is strictly convex. Recall that $f(t)$ is a limit of the convex functions $f_{n}(t)=n^{-1} \log E_{n}(t)$. If the ray R crosses the graph of $y=f(s)$ twice, then it also crosses the graph of $y=f_{n}(s)$ twice for some finite value of n.

Fixing such an n, let $\beta_{n}=\beta / n$ where $a_{\beta} t^{\beta}$ is the term with largest exponent appearing in the power sum $E_{n}(t)$. Then $f_{n}^{\prime}(s) \rightarrow \beta_{n}$ as $s \rightarrow \infty$, so by strict convexity we have $f_{n}^{\prime}(s)<\beta_{n}$ for all finite s. Since $f_{n}(s)$ has more than one term, and $a_{\beta}>1$, we also have:

$$
\begin{equation*}
f_{n}(s)=\frac{\log E_{n}\left(e^{s}\right)}{n}>\beta_{n} s+\frac{\log a_{\beta}}{n} \geqslant \beta_{n} s \tag{A.2}
\end{equation*}
$$

Now suppose $y=f_{n}(s)$ crosses the line $y=\gamma s$ twice. Then by convexity, the slopes satisfy $\beta_{n}>f_{n}^{\prime}(s)>\gamma$ at the second intersection point. But (A.2) then implies $f_{n}(s)>\gamma s$ for all $s>0$, so in fact the ray $y=\gamma s$ has no intersections with the graph of $y=f_{n}(s)$.

Proof of Theorem A.1(C). - Passing again to functions of a single variable $t=e^{s}$, we consider the condition that the ray $y=\gamma s, s>0$, passes through the graph of $y=E(t)$.

By assumption, $u=E(t)$ is the largest root of the equation

$$
\Theta_{F}(t, u)=\sum a_{\alpha i} t^{\alpha} u^{i}=u^{d}+b_{1}(t) u^{d-1}+\cdots+b_{d}(t)=0
$$

Since the coefficients $b_{i}(t)$ are homogeneous of degree i in the roots of Θ, we have

$$
E(t) \asymp \sup \left|b_{i}(t)\right|^{1 / i}
$$

Fig. 8. A ray crossing the eigenvalue graph $y=f(s)=\log E\left(e^{s}\right)$.

In particular, as $t \rightarrow+\infty, E(t)$ grows like t^{β} with

$$
\begin{equation*}
\beta=\sup \alpha /(d-i) \tag{A.3}
\end{equation*}
$$

the sup taken over all monomials $t^{\alpha} u^{i}$ appearing in Θ other than u^{d}. Thus as $s \rightarrow \infty$ the convex function $y=f(s)=\log E\left(e^{s}\right)$ is asymptotic to a linear function of the form $y=\beta s+\delta$.

Now consider the ray R through ($1, \gamma$), with equation $y=\gamma s, s>0$. By (B), this ray meets $y=f(s)$ iff $\gamma>\beta$ (see Fig. 8). By (A.3), we have $\gamma>\beta$ iff

$$
d \gamma>\alpha+i \gamma
$$

for all monomials $t^{\alpha} u^{i}$ in Θ other than u^{d}. Thus R meets $y=f(s)$ iff the linear functional

$$
\phi(\alpha, i)=1 \cdot \alpha+\gamma \cdot i
$$

achieves its maximum on the Newton polygon $N(\Theta)$ at the vertex $(\alpha, i)=(0, d)$ coming from u^{d}. This condition says exactly that R belongs to the dual cone $C\left(u^{d}\right)$.

Acknowledgements

I'd like to thank N. Dunfield and the referee for many helpful comments.

REFERENCES

[1] Arnoux P., Yoccoz J.-C., Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris 292 (1981) 75-78.
[2] Atiyah M., MacDonald I., Commutative Algebra, Addison-Wesley, 1969.
[3] BAUER M., An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361-370.
[4] Bers L., An extremal problem for quasiconformal maps and a theorem by Thurston, Acta Math. 141 (1978) 73-98.
[5] Bestvina M., Handel M., Train-tracks for surface homeomorphisms, Topology 34 (1995) 109140.
[6] Birman J.S., Braids, Links and Mapping-Class Groups, Annals of Math. Studies, Vol. 82, Princeton University Press, 1974.
[7] Bonahon F., Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. 30 (1997) 205-240.
[8] Bonahon F., Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103-122.

```
4e SÉRIE - TOME 33-2000 - N N 4
```

[9] Brinkman P., An implementation of the Bestvina-Handel algorithm for surface homeomorphisms, J. Exp. Math., to appear.
[10] Burde G., Zieschang H., Knots, Walter de Gruyter \& Co., 1985.
[11] Cantwell J., Conlon L., Isotopies of foliated 3-manifolds without holonomy, Adv. Math. 144 (1999) 13-49.
[12] Connes A., Noncommutative Geometry, Academic Press, 1994.
[13] Cooper D., Long D.D., Reid A.W., Finite foliations and similarity interval exchange maps, Topology 36 (1997) 209-227.
[14] Dunfield N., Alexander and Thurston norms of fibered 3-manifolds, Preprint, 1999.
[15] Fathi A., Démonstration d'un théorème de Penner sur la composition des twists de Dehn, Bull. Sci. Math. France 120 (1992) 467-484.
[16] Fathi A., Laudenbach F., Poénaru V., Travaux de Thurston sur les Surfaces, Astérisque, Vol. 6667, 1979.
[17] Fried D., Fibrations over S^{1} with pseudo-Anosov monodromy, in: Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66-67, 1979, pp. 251-265.
[18] Fried D., Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helvetici 57 (1982) 237-259.
[19] FRIED D., The geometry of cross sections to flows, Topology 21 (1982) 353-371.
[20] FRIED D., Growth rate of surface homeomorphisms and flow equivalence, Ergod. Theory Dynamical Syst. 5 (1985) 539-564.
[21] Gabai D., Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503.
[22] Gabai D., Foliations and genera of links, Topology 23 (1984) 381-394.
[23] Gantmacher F.R., The Theory of Matrices, Vol. II, Chelsea, New York, 1959.
[24] Harer J.L., Penner R.C., Combinatorics of Train Tracks, Annals of Math. Studies, Vol. 125, Princeton University Press, 1992.
[25] Hatcher A., Oertel U., Affine lamination spaces for surfaces, Pacific J. Math. 154 (1992) 87-101.
[26] Hubbard J., Masur H., Quadratic differentials and foliations, Acta Math. 142 (1979) 221-274.
[27] Kronheimer P., Mrowka T., Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931-937.
[28] Lang S., Algebra, Addison-Wesley, 1984.
[29] LaUdenbach F., Blank S., Isotopie de formes fermées en dimension trois, Invent. Math. 54 (1979) 103-177.
[30] Lind D., Marcus B., An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
[31] Long D., Oertel U., Hyperbolic surface bundles over the circle, in: Progress in Knot Theory and Related Topics, Travaux en Cours, Vol. 56, Hermann, 1997, pp. 121-142.
[32] Matsumoto S., Topological entropy and Thurston's norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763-778.
[33] McMullen C., The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Preprint, 1998.
[34] Mosher L., Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3-manifolds, J. Differential Geom. 34 (1991) 1-36.
[35] Ngô V.Q., Roussarie R., Sur l'isotopie des formes fermées en dimension 3, Invent. Math. 64 (1981) 69-87.
[36] Northcott D.G., Finite Free Resolutions, Cambridge University Press, 1976.
[37] Oertel U., Homology branched surfaces: Thurston's norm on $H_{2}\left(M^{3}\right)$, in: Epstein D.B. (Ed.), LowDimensional Topology and Kleinian Groups, Cambridge Univ. Press, 1986, pp. 253-272.
[38] Oertel U., Affine laminations and their stretch factors, Pacific J. Math. 182 (1998) 303-328.
[39] Penner R., A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179-198.
[40] Penner R., Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443-450.
[41] Rolfsen D., Knots and Links, Publish or Perish, Inc., 1976.
[42] Thurston W.P., Geometry and Topology of Three-Manifolds, Lecture Notes, Princeton University, 1979.
[43] Thurston W.P., A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 339 (1986) 99130.
[44] Thurston W.P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417-432.
[45] Thurston W.P., Three-manifolds, foliations and circles, I, Preprint, 1997.
[46] Yoccoz J.-C., Petits Diviseurs en Dimension 1, Astérisque, Vol. 231, 1995.
[47] Zhirov A.YU., On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197-198.
(Manuscript received July 8, 1999.)

Curtis T. McMullen
Mathematics Department, Harvard University, 1 Oxford St, Cambridge, MA 02138-2901, USA

[^0]: ${ }^{1}$ Research partially supported by the NSF.
 ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. - 0012-9593/00/04/© 2000 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

