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POLYNOMIAL INVARIANTS FOR FIBERED
3-MANIFOLDS AND TEICHMULLER GEODESICS

FOR FOLIATIONS

BY CURTIS T. McMULLEN 1

ABSTRACT. - Let F C H^M3^) be a fibered face of the Thurston norm ball for a hyperbolic 3-
manifold M.

Any (f) e R+ • F determines a measured foliation :F of M. Generalizing the case of Teichmuller geodesies
and fibrations, we show JF carries a canonical Riemann surface structure on its leaves, and a transverse
Teichmuller flow with pseudo-Anosov expansion factor K((f)) > 1.

We introduce a polynomial invariant OF ^ Z[7:fi(M,Z)/torsion] whose roots determine K(({)). The
Newton polygon of OF allows one to compute fibered faces in practice, as we illustrate for closed braids
in S3. Using fibrations we also obtain a simple proof that the shortest geodesic on moduli space A4g has
length 0(1 / g ) . © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Soit M une variete hyperbolique de dimension 3, et F C Hl(M3,R) une face fibree de la
boule unite dans la norme de Thurston.

Chaque 0 C IR+ • F determine un feuilletage mesure F de M. Generalisant Ie cas des geodesiques de
Teichmuller et des fibrations, nous demontrons que ^ porte une structure complexe canonique sur les
feuilles, et admet unflot transverse de Teichmuller, avec facteur d'expansion pseudo-Anosov K((f)) > 1.

Nous introduisons un invariant polynomial OF G Z[jyi(M,Z)/torsion], dont les racines determinent
K((/)). Le poly gone de Newton de OF permet Ie calcul pratique des faces fibrees, comme nous Fillustrons
pour les tresses fermees dans S3. Nous obtenons aussi, en utilisant les fibrations, une preuve simple du fait
que la geodesique la plus courte sur Pespace de modules M.g est de longueur 0(1 / g ) . © 2000 Editions
scientifiques et medicales Elsevier SAS

1. Introduction

Every fibration of a 3-manifold M over the circle determines a closed loop in the moduli space
of Riemann surfaces. In this paper we introduce a polynomial invariant for M that packages the
Teichmuller lengths of these loops, and we extend the theory of Teichmuller geodesies from
fibrations to measured foliations.

Riemann surfaces and fibered 3-manifolds. Let M be a compact oriented 3-manifold,
possibly with boundary. Suppose M fibers over the circle S1 = R/Z, with fiber S and pseudo-

1 Research partially supported by the NSF.
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520 C.T.McMULLEN

Anosov monodromy ip:S -^ S:

^OS——^M

S1.
Then there is:

• a natural complex structure Js along the fibers Ss = 7^~l(s), and
• a flow /: M x R —)• M, circulating the fibers at unit speed,

y such that the conformal distortion of / is minimized.
Indeed, the mapping-class ^ determines a loop in the moduli space of complex structures

on S, represented by a unique Teichmiiller geodesic

7:51^.M^.

The complex structure on the fibers is given by (Ss, Js) = 7(^). The time t map of the flow /
is determined by the condition that on each fiber, ft: (Ss, Js) —)> (Ss+t, Js-^-t) is a Teichmiiller
mapping. Outside a finite subset of Ss, ft is locally an affine stretch of the form

(i.i) /t0r+^)=^+zjr-y
where K > 1 is the expansion factor of the monodromy ̂ . The Teichmiiller length of the loop 7
in moduli space is \ogK.

This well-known interplay between topology and complex analysis was developed by
Teichmiiller, Thurston and Bers (see [4]). The fibration TT, the resulting geometric structure
on M and the expansion factor K are all determined (up to isotopy) by the cohomology class
(t)=[S]eHl(M,R).

Fibered faces. In this paper we extend the theory of Teichmiiller geodesies from fibrations
to measured foliations.

The Thurston norm ||̂ ||r on Jf^M.M) leads to a coherent picture of all the cohomology
classes represented by fibrations and measured foliations of M. To describe this picture, we begin
by defining the Thurston norm, which is a generalization of the genus of a knot; it measures
the minimal complexity of an embedded surface in a given cohomology class. For an integral
cohomology class (/>, the norm is given by:

H^l l r = inf{ \x(So)\: (S, 9S) C (M, 9M) is dual to ^},

where So C S excludes any S2 or D2 components of 5'. The Thurston norm is extended to real
classes by homogeneity and continuity. The unit ball of the Thurston norm is a polyhedron with
rational vertices.

An embedded, oriented surface S C M is a fiber if it is the preimage of a point under a fibration
M —>• S1. Any fiber minimizes |̂ (5')| in its cohomology class. Moreover, [6'] belongs to the cone
R+ • F over an open fibered face F of the unit ball in the Thurston norm. Every integral class
in M+ • F is realized by a fibration M3 —^ S1; more generally, every real cohomology class
(f) G M+ • F is represented by a measured foliation F of M. Such a foliation is determined by a
closed, nowhere-vanishing 1-form u; on M, with TT = Kera; and with measure

f^(T)= ^/-
46 SERIE - TOME 33 - 2000 - N° 4



POLYNOMIAL INVARIANTS FOR FIBERED 3-MANIFOLDS 521

for any connected transversal T to f'. For an integral class, the leaves of F are closed and come
from a fibration TT : M —^ S1 with uj = 7r*(dt).

Generalizing the case of fibrations, we will show (Section 9):

THEOREM 1.1. - For any measured foliation F of M, there is a complex structure J on the
leaves of T, a unit speedflow

/:(M,JQxR->(M,.F),

and a K > 1, such that ft maps leaves to leaves by Teichmiiller mappings with expansion
factor K^.

The foliation T, the complex structure J along its leaves, the transverse flow f and the stretch
factor K are all determined up to isotopy by the cohomology class [̂ ] e Tf^M, R).

Here / has unit speed if it is generated by a vector field v with uj(v) = 1, where uj is the defining
1-form of F. The complex structure J makes each leaf Foi of F into a Riemann surface, and

ft ''Fa —> Fft

is a Teichmuller mapping with expansion factor K if

. , 9fi ( K ^ - ^ q9fi _(K^-\\ q
9ft \K^l)\q\^-QJ-,-[K^~\)W\

for some holomorphic quadratic differential q(z)dz2 on Tor Away from the zeros of q, such a
mapping has the form of an affine stretch as in (1.1).

Quantum geodesies. Theorem 1.1 provides, for a general measured foliation T with typical
leaf 6', a 'quantum geodesic'

7: M/TT^M, Z) -^ Teich(S)/Hi(M, Z).

Here H\ (M, Z) acts on M by translation by the periods 77 of cj, and on Teich(S') by monodromy
around loops in M. Generically 77 is a dense subgroup of R, in which case R/77 and
Teich(5')/77i(M,Z) are 'quantum spaces' in the sense of Connes [12]. The map 7 plays the
role of a closed Teichmuller geodesic for the virtual mapping class determined by f'.

The Teichmuller polynomial. Next we introduce a polynomial invariant Op for a fibered
face F C H^(M, R). This polynomial determines the Teichmuller expansion factors K((f)) for all
^=[jneR+-F.

Like the Alexander polynomial, Op naturally resides in the group ring Z[C?], where G =
77i(M,Z)/torsion. Observe that Z[G] can be thought of as a ring of complex-valued functions
on the character variety G = Hom(C?, C*), with

( ̂  ̂  • 9) 0°) = Y^ o'gP(9)'

To define 0p, we first show F determines a 2-dimensional lamination £ C M, transverse to
every fiber [S] G M+ • F and with S D £ equal to the expanding lamination for the monodromy
^: S —> S. Next we define, for every character p C G, a group of twisted cycles Z^(£, Cp). Here a
cycle p. is simply an additive, holonomy-invariant function ^(T) on compact, open transversals T
to £, with values in the complex line bundle specified by p.

ANNALES SCffiNTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



522 C.T. McMULLEN

The Teichmuller polynomial 0p G Z[G] defines the largest hypersurface V C G such that

(1-2) dim^CC, Cp) > 0 for all p e V.

More precisely, we associate to £ a module T(£) over Z[G], and (6^) is the smallest principal
ideal containing all the minor determinants in a presentation matrix for T(C). Thus 0p is well-
defined up to multiplication by a unit ±g e Z[G].

Information packaged in OF. Let 6^ = ̂ dg . ̂  be the Teichmuller polynomial of a
fibered face F of the Thurston norm ball in H^(M, R). In Sections 3-6 we will show:

(1) The Teichmuller polynomial is symmetric', that is, Op = S dg • g~^ up to a unit in Z[G].
(2) For any fiber [S] = ̂  € M+ • F, the expansion factor k = K((/)) of its monodromy ^ is the

largest root of the polynomial equation

(1.3) eF(k^=^agk^=0.

(3) Eq. (1.3) also determines the expansion factor for any measured foliation
[JT] = (f) e R+ . F.

(4) The function l/\ogK((f)) is real-analytic and strictly concave on R+ • F.
(5) The cone M+ • F is dual to a vertex of the Nekton polygon

N(OF) = (the convex hull of [g: dg ^ 0}) C H^M, R).

To see the relation of 0p to expansion factors, note that a fibration M -^ S1 with fiber S
determines a measured lamination (A,^o) e MC(S\ such that the transverse measure p,o on
A is expanded by a factor K > 1 under monodromy. Thus the suspension of /^o gives a cycle
/^ C Z^(C, Cp) with character

^^^•M

for loops 7 C M. Therefore (9^(p) = 0 (as in (1.2) above), and thus K can be recovered from
the zeros of Op.

The relation between F and the Newton polygon of Op ((1) above) comes from the fact that
K(cf)) -^ oo as (f) -^ 9F.

A formula for 0F(t,u). One can also approach the Teichmuller polynomial from a 2-
dimensional perspective. Let ^: S -> S be a pseudo-Anosov mapping, and let (t^... ,^) be
a multiplicative basis for

H = Hom(H\S,Z)^,Z) ̂  Z\

where H1 (5, Z)^ is the ^-invariant cohomology of S. (When ̂  acts trivially on cohomology, we
can identify H with Hi(S, Z).) By evaluating cohomology classes on loops, we obtain a natural
map Ti-i (5) -^ H. Choose a lift

^:S-^S

of ^ to the If-covering space of 5'.
Let M = S x [0, l]/((;r, 1) ~ (^(.r), 0)) be the mapping torus of ^, let

G = Hi (M, Z)/torsion ̂  ̂  C Z,

4e SERIE - TOME 33 - 2000 - N° 4



POLYNOMIAL INVARIANTS FOR FIBERED 3-MANIFOLDS 523

and let F c H\M,R) be the fibered face with [S] G R+ • F. Then we can regard 0p as a
Laurent polynomial

0F(t,u) (E Z[C?] == Z[^] e Z[n] = z[^1,.. ..t^1,^1],

where IA corresponds to |/0].
To give a concrete expression for OF, let E and V denote the edges and vertices of an invariant

train track T C S carrying the expanding lamination of '0. Then ^ acts by matrices PaW and
Pv(t) on the free ^[H] -modules generated by the lifts of E and V to 6'. In terms of this action
we show (Section 3):

(6) The Teichmuller polynomial is given by

_ . . dei(ul - PEW)
^^^^(uI-PyW)'

Using this formula, many of the properties of Op follow from the theory of Perron-Frobenius
matrices over a ring of Laurent polynomials, developed in Appendix A.

Fixed-points on PM£s(S). Let MCs(S) denote the space of measured laminations A =
(A, p) on S twisted by s G H1(S, M), meaning ^ transforms by e8^ under 7 G 7Ti(6').

The mapping-class ̂  acts on M-Cs(S) for all s C H^^S, R)^, once we have chosen the lift ̂ .
As in the untwisted case, ̂  has a unique pair of fixed-points [A±] in PMCs(S), whose supports
A± are independent of s. In Section 8 we show:

(7) The eigenvector A+ G M-Cs(S) satisfies

^ • A+ = k(s)A^

where u = k(s) > 0 is the largest root of the polynomial Op^.u) = 0. The function
log k(s) is convex on H\S, R)^.

Short geodesies on moduli space. It is known that the shortest geodesic loop on moduli
space M.g has Teichmuller length L(M.g) x 1 / g (see [40]). In Section 10 we show mapping-
classes with invariant cohomology provide a natural source of such short geodesies.

More precisely, let ̂ : S —^ S be a pseudo-Anosov mapping on a closed surface of genus g ^ 2,
leaving invariant a primitive cohomology class

^0:7Tl(5)^Z.

Let S —^ S be the corresponding Z-covering space, with deck group generated by h: S —^ S, and
fix a lift ^ of ^ to S. Then for all n ^> 0, the surface Rn = S / ' ( h ' ^ z ^ ) has genus gn ^< n, and
h: S —^ S descends to a pseudo-Anosov mapping-class ̂ n '• Rn —> Rn'

This renormalization construction gives mappings ̂ n with expansion factors satisfying

X(^)=^(^) l/n+0(l/n2),

and hence produces closed Teichmuller geodesies of length

^^^o^-2)—
n 9n

This estimate is obtained by realizing the surfaces Rn as fibers in the mapping torus of ^; see
Section 10.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



524 c.T. McMULLEN

Fig. 1. The 4 component fibered link L(/3), for the pure braid f3 = a\^

Fig. 2. The fibered face of Thurston norm ball for M = S3 - L(f3).

Closed braids. The Teichmtiller polynomial leads to a practical algorithm for computing a
fibered face F c H^M, R) from the dynamics on a particular fiber [S] G R+ • F.

Closed braids in S3 provide a natural source of fibered 3-manifolds to which this algorithm
can be applied, as we demonstrate in Section 11. For example. Fig. 1 shows a 4-component link
L((3) obtained by closing the braid /? = a\a^ after passing it through the unknot a. The disk
spanned by a meets /3 in 3 points, providing a fiber S C M = S3 - L(f3) isomorphic to a 4-times
punctured sphere.

The corresponding fibered face is a 3-dimensional polyhedron

FcH\M,] \^1B>4-

its projection to H\S,R) ̂  M3 is shown in Fig. 2. Details of this example and others are
presented in Section 11.

Comparison with the Alexander polynomial. In [33] we defined a norm || HA on
H\M, R) using the Alexander polynomial of M, and established the inequality

MA^MT

between the Alexander and Thurston norms (when &i(M) > 1). This inequality suggested that
the Thurston norm should be refined to polynomial invariant, and Op provides such an invariant
for the fibered faces of the Thurston norm ball.

The Alexander polynomial AM and the Teichmtiller polynomial 0p are compared in Table 1.
Both polynomials are attached to modules over Z[G], namely A(M) and T(C). These modules
give rise to groups of (co)cycles with twisted coefficients, and A and 0p describe the locus of
characters p e G where dimZ^M, Cp) > 1 and dimZ^C, Cp) > 0 respectively.

4'̂  SERIE - TOME 33 - 2000 - N° 4



POLYNOMIAL INVARIANTS FOR FIBERED 3-MANIFOLDS 525

Table 1
Alexander

3-manifold M
Alexander module A(M)

Hom(A(M), B) = Z\M, B)

Alexander polynomial AM
Alexander norm on H^(M, Z)

||^||A=&i(Ker^)+p(M)

\\(I)\\A = W\T for the cohomology class of a fibration M —^ S1

Extended Torelli group of S acts on
^(S) with twisted coefficients

Teichmiiller

Fibered face F for M
Teichmuller module T(C)
Hom(T(r), B) = Zi(C, B)

Teichmuller polynomial OF
Thurston norm on H^(M, Z)

\W\T=mf[\x(S)\: [S]=(^]

Extended Torelli group acts on
MC(S) with twisted coefficients

The polynomials A and OF are related to the Alexander and Thurston norms on H\M,R),
and these norms agree on the cohomology classes of fibrations. Moreover, if the lamination C, for
the fibered face F has transversally oriented leaves, then AM divides OF and F is also a face of
the Alexander norm ball (Section 7).

From a 2-dimensional perspective, the polynomials attached to a fibered manifold M can
be described in terms of a mapping-class ^ € Mod(5'). The description is most uniform for ^
in the Torelli group Tor(6'), the subgroup of Mod(S') that acts trivially on H = H^S.T). By
providing ^ with a lift ^ to the H -covering space of S, we obtain the extended Torelli group
Tor(S'), a central extension satisfying:

0 -> Hi (S, Z) -^ Tor(6') -^ Tor(5') -^ 0.

The lifted mappings ^ G Tor(5) preserve twisted coefficients for any s G ^(^.R), so we
obtain a linear representation of Tor(5) on H1 (S, Cs) and sipiecewise-linear action on MCs(S).
For example, when S is a sphere with n + 1 boundary components, the pure braid group Pn is a
subgroup of Tor(S'), and its action on H^S, Cs) is the Gassner representation of Pn [6].

Characteristic polynomials for these actions then give the Alexander and Teichmuller
invariants AM and Op-

Other foliations. Gabai has shown that every norm-minimizing surface S C M is the leaf
of a taut foliation F (see [21]), and the construction of pseudo-Anosov flows transverse to taut
foliations is a topic of current research. It would be interesting to obtain polynomial invariants
for these more general foliations, and in particular for the non-fibered faces of the Thurston norm
ball.

Notes and references. Contributions related to this paper have been made by many authors.
For a pseudo-Anosov mapping with transversally orientable foliations. Fried investigated a

twisted Lefschetz zeta-function <^(t, u) similar to Opd. u). For example, the homology directions
of these special pseudo-Anosov mappings can be recovered from the support of C,(t, u), just as
R+ • F can be recovered from Op\ and the concavity of I/ \og(K ((/))) holds in a general setting.
See [18,20].

Laminations, foliations and branched surfaces with affine invariant measures have been
studied in [25,13,31,8,38] and elsewhere. The Thurston norm can also be studied using taut

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



526 C.T. McMULLEN

foliations [22], branched surfaces [37,34] and Seiberg-Witten theory [27]. Another version of
Theorem 1.1 is presented by Thurston in [45, Theorem 5.8].

Background on pseudo-Anosov mappings, laminations and train tracks can be found, for
example, in [16], [42, §8.9], [44,4,24,5] and the references therein. Additional notes and
references are collected at the end of each section.

2. The module of a lamination

Laminations. Let A be a Hausdorff topological space. We say A is an n-dimensional
lamination if there exists a collection of compact, totally disconnected spaces Ka such that A
is covered by open sets Ua homeomorphic to Ka x R71.

The leaves of A are its connected components.
A compact, totally disconnected set T C A is a transversal for A if there is an open

neighborhood U of T and a homeomorphism

(2.1) a/.T^rxir.rx {0}).
Any compact open subset of a transversal is again a transversal.

Modules and cycles. We define the module of a lamination, T(A), to be the Z-module
generated by all transversals [T], modulo the relations:

(i) [T] = [T] + [T"] if T is the disjoint union of T ' and T"; and
(ii) [T] = [ T ' } if there is a neighborhood U of T U T ' such (2.1) holds for both T and T'.

Equivalently, (ii) identifies transversals that are equivalent under holonomy (sliding along the
leaves of the lamination).

For any Z-module B, we define the space of n-cycles on an n-dimensional lamination A with
values in B by:

Zn(A,B)=Hom(r(A),B).
For example, cycles fi e Zn(\ R) correspond to finitely-additive transverse signed measures; the
measure of a transversal fi(T) is holonomy invariant by relation (ii), and it satisfies

^(rur^cD+^r)
by relation (i).

Action of homeomorphisms. Let ^: Ai —^ A2 be a homeomorphism between laminations.
Then ̂  determines an isomorphism

^*:r(A2)^r(Ai),
defined by pulling back transversals:

^([T])=[^-\T)].

Applying Hom(-, B\ we obtain a pushforward map on cycles,

^:^(Ai,B)^Z^(A2,B),

satisfying (^(^))(T) = ̂ -\T)) and thus generalizing the pushforward of measures.

46 SERIE - TOME 33 - 2000 - N° 4
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The mapping-torus. Now let ^ ' . X —^ X be a homeomorphism of an n-dimensional
lamination to itself. The mapping torus £ of ^ is the (n + 1)-dimensional lamination denned
by

£=Ax[0,l]/((^,l)~(^),0)).

The lamination C fibers over S1 with fiber A and monodromy ^. Since cycles on C correspond
to ^-invariant cycles on A, we have:

PROPOSITION 2.1.- The module of the mapping torus of i^'. \—> \ is given by

T(£) = Coker(^* - I ) = T(A)/(^* - J)(T(A)).

Example: (Zp,.r + 1). -Let A = Zp be the p-adic integers, considered as a 0-dimensional
lamination, and let ^: A -^ A be the map ^(x) = x + 1. Then the mapping torus C of ^ is a
1 -dimensional solenoid, satisfying

rco^Z[i/p],
where Z[l/p] C Q is the subring generated by 1/p. Indeed, the transversals Tn = p^Zp and
their translates generate T(A), so their images [Tn] generate T(£). Since Tn is the union ofp
translates of 7n+i, we have [Tn] = pITn+iL and therefore T(C) ̂  Z[l/p] by the map sending
[rjtop-71.

Observe that

Zi(£,R) = Hom(Z[l/p],R) = R,

showing there is a unique finitely-additive probability measure on Zp invariant under x i—^ x + 1.

Twisted cycles. Next we describe cycles with twisted coefficients. _
Let A —^ A be a Galois covering space with abelian deck group G. Then G acts on T(A),

making the latter into a module over the group ring Z[G]. Any G-module B determines a bundle
of twisted local coefficients over A, and we define

ZJA,B)=HomG(T(A),B).

For example, any homomorphism

p:G-^R+

makes R into a module Rp over Z[G]. The cycles ^ G Zn(\, ̂ p) can then be interpreted as either:
(i) cycles on A satisfying g^fi = p(g)fi(T) for all g € G; or

(ii) cycles on A with values (locally) in the real line bundle over A determined by
pe^ l(A,M+).

Geodesic laminations on surfaces. Now let 6' be a compact orientable surface with
^(S) < 0. Fix a complete hyperbolic metric of finite volume on int(S').

A geodesic lamination A C S is a compact lamination whose leaves are hyperbolic geodesies.
A train track r C S is a finite 1-complex such that

(i) every x € r lies in the interior of a smooth arc embedded in r,
(ii) any two such arcs are tangent at x, and

(iii) for each component U of S — T, the double of U along the smooth part of 9U has negative
Euler characteristic.

A geodesic lamination A is carried by a train track r if there is a continuous collapsing map
f: A —> r such that for each leaf Ao C A,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



528 C.T. McMULLEN

(i) /|Ao is an immersion, and
(ii) Ao is the geodesic representative of the path or loop /: Ao —> 5.

Collapsing maps between train tracks are defined similarly. Every geodesic lamination is carried
by some train track [24, 1.6.5].

The vertices (or switches) of a train track, V C r, are the points where 3 or more smooth arcs
come together. The edges E of r are the components of r — V\ some 'edges' may be closed
loops.

A train track is trivalent if only 3 edges come together at each vertex. A trivalent train track has
minimal complexity for A if it has the minimal number of edges among all trivalent r carrying A.

The module of a train track. Let T(r) denote the Z-module generated by the edges E of
T, modulo the relations

[el]+•••+[e,]=[e / l ]+.••+[e /J

for each vertex v C V with incoming edges (e^) and outgoing edges (e7). (The distinction
between incoming and outgoing edges depends on the choice of a direction along r at v.) Since
there is one relation for each vertex, we obtain a presentation for T(r) of the form:

(2.2) JY -^ JF -^ T(r) -^ 0.

As for a geodesic lamination, we define the 1-cycles on r with values in B by

Zi(T,5)=Hom(r(r),B).

THEOREM 2.2. - Let A C S be a geodesic lamination, and let T be a train track carrying A
with minimal complexity. Then there is a natural isomorphism

T(\)^T(r).

COROLLARY 2.3. - For any geodesic lamination A, the module T(\) is finitely-generated.

COROLLARY 2.4. - If A is connected and carried by a train track r of minimal complexity,
then we have

T(\^ ̂  J\^r}\ ̂  [ z ifr is orientable,1{\)-L ®^/2 otherwise.

(Here \(r) is the Euler characteristic of r.)

Proof. - Use the fact that the transpose D* : Z^ —> JV of the presentation matrix (2.2) for T(r)
behaves like a boundary map, and ̂  n^Vi is in the image of D* iff ̂  n^ =0 (in the orientable
case) or ̂  n^ = 0 (mod 2) (in the non-orientable case). D

Proof of Theorem 2.2. - Let TO = T. The collapsing map fo'. X —> TQ determines a map of
modules

/o*:r(ro)^r(A)
sending each edge e 6 E to the transversal defined by

T=fS(e)=fQ-\x)

for any x 6 e. We will show f^ is an isomorphism.

4e SERIE - TOME 33 - 2000 - N° 4
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°\ c a\ / a\ c

Y Y Y ^ Y V
Fig. 3. Three possible splittings.

We begin by using A to guide a sequence of splittings of TO into finer and finer train tracks T^,
converging to A itself, in the sense that there are collapsing maps fn: A —^ Tn converging to the
inclusion A C S. We will also have collapsing maps Qn: Tn-\-i —^ Tn such that fn = gn ° fn-\-\-
Each Tn will be of minimal complexity.

The train track Tn+i is constructed from Tn as follows. First, observe that each edge of Tn
carries at least one leaf of A (since Tn has minimal complexity). Thus each cusp of a component
U of S — r (where tangent edges a, b in r come together) corresponds to pair of adjacent leaves
An, \b of A. Choose a particular cusp, and split Tn between a and b so that the train track continues
to follow \a and A^. When we split past a vertex, we obtain a new trivalent train track Tn-\-i. There
are 3 possible results of splitting, recorded in Fig. 3.

In the middle case, the leaves Ai and A2 diverge, and we obtain a train track Tn-\-i carrying A
but with fewer edges than Tn; this is impossible, since Tn has minimal complexity.

In the right and left cases, we obtain a train track r^+i of the same complexity as Tn, with a
natural collapsing map gn-\-i: r^+i —^ Tn. Since the removed and added edges e and / are both
in the span of (a, &, c, d), the module map

(2.3) g^.T(rn)^T(rn^

is an isomorphism.
By repeatedly splitting every cusp of S — r, we obtain train tracks with longer and longer

edges, following the leaves of A more and more closely; thus the collapsing maps can be chosen
such that fn: A —^ Tn converges to the identity. Compare [42, Proposition 8.9.2], [24, §2].

To prove T(A) ̂  r(ro), we will define a map

0:r(A)-.Too=limr(Tj

(where the direct limit is taken with respect to the collapsing maps g^). Given any transversal T
to A, there is a neighborhood U of T in A homeomorphic to T x M. Then for all n:» 0, we have

supd{fn(x\x)<d(T,9U),
x^X

and thus all the leaves of A carried by r H U are accounted for by T. Therefore T is equivalent
to a finite sum of edges in T(T^):

^([ei]+---+[ed)=[r],
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and we define 0(T) = \e\ ] + • • • + [ej.
It is now straightforward to verify that <j) is a map of modules, inverting the map Too —^ T(\)

obtained as the inverse limit of the collapsings f^: T(rn) -^ T(\). But the maps g^ of (2.3) are
isomorphisms, so we have T(\) ̂  Too ̂  T(ro). D

Twisted train tracks. Train tracks also provide a convenient description of twisted cycles
on a geodesic lamination.

Let A C S be a geodesic lamination carried by a train track r. Let

7T:S-^S

be a Galois covering space with abelian deck group G. We can then construct modules T(A) and
T(r) attached to the induced covering spaces of A and r. The deck group acts naturally on A
and T, so we obtain modules over the group ring Z[G]. The arguments of Theorem 2.2 can then
be applied to the lift of a collapsing map /: A —^ r, to establish:

THEOREM 2.5. - The ^[G]-modules T(A) aW r(r) are naturally isomorphic. A choice of
lifts for the edges and vertices (E, V) ofrto^r determines a finite presentation

^[G^ -^ Z[G]^ -^ r(?) -^ 0

/or T( r) ̂  a Z[G]-m6»< .̂

Example. - Let <? be a sphere with 4 disks removed. Let S —^ 5 be the maximal abelian
covering of 6', with deck group

G = Hi (S, Z) = (A, B, C} ̂  Z3

generated by counterclockwise loops around 3 boundary components of S.
Let r C S be the train track shown in Fig. 4. Then for suitable lifts of the edges of T, the

module T( ̂ r) is generated over Z[C?] by (a, 6, c, d, e, /), with the relations:

b = a + d,
A^c^a+e,

& = c + / ,

c^-^+cv,

Fig. 4. Presenting a track track.
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coming from the 4 vertices of r. Simplifying, we find T(r) is generated by (a,&,c) with the
single relation

(1 + A)a + AB(\ + C)c = (1 + ABC)b.

This relation shows, for example, that

dimZKr,C,)={3 iW)^(B)-p(C7)=-l,
' [2 otherwise,

for any 1 -dimensional representation p: G —>• C*.

Notes.
(1) The usual (positive, countably-additive) transverse measures on a geodesic lamination A

generally span a proper subspace M(\) of the space of cycles Z\(\, IR). Indeed, a generic
measured lamination A on a closed surface cuts 5' into ideal triangles, so any train track
T carrying A is the 1-skeleton of a triangulation of 5'. At the same time A is typically
uniquely ergodic, and therefore

dim M(A) = 1 < dim Zi(A,R) = dim Zi(T,R) = 6g(S) - 6.

(2) Bonahon has shown that cycles fi G Zi(A,M) correspond to transverse invariant Holder
distributions', that is, the pairing

(/,^) = j f(x) d^x)

T

can be defined for any transversal T and Holder continuous function /: T —> R [8,
Theorem 17]. See also [8, Theorem 11] for a variant of Theorem 2.2, and [7] for additional
results.

(3) One can also describe Zi(A,R) as a space of closed currents carried by A, since these
cycles are distributional in nature and they need not be compactly supported (when A is
noncompact).

3. The Teichmiiller polynomial

In this section we define the Teichmiiller polynomial Op of a fibered face F, and establish the
determinant formula

0p(t, u) == det(ul - PEW) I det(W - Py(f)).

We begin by introducing some notation that will be used throughout the sequel.
Let M3 be a compact, connected, orientable, irreducible, atoroidal 3-manifold. Let TV'.M —>

S1 be a fibration with fiber S C M and monodromy ̂ . Then:
• 5' is a compact, orientable surface with "^(S) < 0, and
• -0: S —^ S is a pseudo-Anosov map, with an expanding invariant lamination
• A C *5, unique up to isotopy.

Adjusting ̂  by isotopy, we can assume ^(A) = A.
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By the general theory of pseudo-Anosov mappings, there is a positive transverse measure
IJL C Z\(\, M), unique up to scale, and '0*(/^) = k{ji for some k > 1. Then [A] = [(A, p)] is a fixed-
point of ^ in the space of projective measured laminations PAd£(S). Moreover [^("y)] —>• [A]
for every simple closed curve [7] e PA^/^*?).

Associated to (M, 5) we also have:
• C C M, the mapping torus of '0: A -^ A, and
• F c ̂ (M, R), the open face of unit ball in the Thurston norm with [S] G M+ • F.

We say -F is sifiberedface of the Thurston norm ball, since every point in H^(M, Z) H R+ • F is
represented by a fibration of M over the circle [43, Theorem 5].

The flow lines of ̂ . Using ̂  we can present M in the form

M = (S x R)/{(s,t) - (^(s\t - 1)),

and the lines [s] x IR descend to the leaves of an oriented 1-dimensional foliation ^ of M, the
flow lines of ip. The 2-dimensional lamination C C M is swept out by the leaves of ^ passing
through A.

Invariance of C. We now show £ depends only on F.
THEOREM 3.1 (Fried). - Let [57] G M+ • F be a fiber ofM. Then after an isotopy,
• S' is transverse to the flow lines ̂  ofip, and
• the first return map of the flow coincides with the pseudo-Anosov monodromy ̂  : S' —^ 5".

For this result, see [17, Theorem 7 and Lemma] and [19].

COROLLARY 3.2. - Any two fibers [S], [5"] C M+ • F determine the same lamination £cM
(up to isotopy).

Proof. - Consider two fibers S and S" for the same face F. Let ^, ̂ ' denote their respective
monodromy transformations. A, A7 their expanding laminations, and C, £,' C M the mapping tori
ofA,V.

By the theorem above, we can assume S ' is transverse to ̂  and hence transverse to C.
Let [i1 = C D S ' . Then // C 5" is a ^'-invariant lamination with no isolated leaves. By

invariance, ^ must contain the expanding or contracting lamination of ^/. Since flowing along ̂
expands the leaves of £, we find // D A'.

By irreducibility of ^/, the complementary regions S ' — \' are n-gons or punctured n-gons. In
such regions, the only geodesic laminations are isolated leaves running between cusps. Since p!
has no isolated leaves, we conclude that // == A7 and thus C = C (up to isotopy). D

Modules and the Teichmiiller polynomial. By the preceding corollary, the lamination
Cc M depends only on F. Associated to the pair (M, F) we now have:

• G = H\(M, Z)/torsion, a free abelian group;
• M —^ M, the Galois covering space corresponding to 7Ti(M) —^ G;
• C ̂ M, the preimage of the lamination C determined by F\ and
• T(£), the Z[G]-module of transversals to C.

Since C is compact, T(£) is finitely-generated and T(C) is finitely-presented over the ring Z[G].
Choose a presentation

Z[Gf-°-Z[G]5 ̂  T(£) ̂  0,

and let / C Z[G] be the ideal generated by the s x s minors of D. The ideal I is the Fitting ideal
of the module T(C\ and it is independent of the choice of presentation; see [28, Ch. XIII, §10],
[36].
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Using the fact that Z[G] is a unique factorization domain, we define the Teichmuller
polynomial of (M, F) by

(3.1) 0F=gcd(f: /€J)eZ[G].

The polynomial Op is well-defined up to multiplication by a unit =L^ C Z[G], and it depends
only on (M,F).

Note that Z[G] can be identified with a ring of complex algebraic functions on the character
variety

G=Hom(G,C*)

by setting (^ Og • g)(p) = ̂  agp(g).

THEOREM 3.3. - The locus 0p(p) = 0 is the largest hypersurface V C G such that
dim Z^(C, Cp) > Ofor all p e V.

Proof. - A character p belongs to the zero locus of the ideal I <^> the presentation matrix p{M)
has rank r < s <^> we have

dime Z^Cp) = dim Hom(T(£),Cp) = s - r > 0;

and the greatest common divisor of the elements of I defines the largest hypersurface contained
in V(I). D

Computing the Teichmiiller polynomial. We now describe a procedure for computing OF
as an explicit Laurent polynomial.

Consider again a fiber S C M with monodromy ̂  and expanding lamination A. Associated to
this data we have:

• H = Homers', Z)^, Z) ̂  Z\ the dual of the ^-invariant cohomology of 5;
• S —> S, the Galois covering space corresponding to the natural map

7ri(S)^Ht(S^)^H',

• T C S, a ^-invariant train track carrying A; and
• A, T C S, the preimages of A, r C S.

Note that pullback by S C M determines a surjection ^(M.Z) -^ H^S,^, and hence a
natural inclusion

H C G = Hi(M, Z)/torsion = Hom(H\M, Z), Z).

Alternatively, we can regard S as a component of the preimage of S in the covering M —^ M
with deck group G\ then H C G is the stabilizer of S C M.

Now choose a lift

^:S'^5

of the pseudo-Anosov mapping ^. Then we obtain a splitting

G = H C Z^,

where ̂  <E G acts on M = S x R by

(3.2) ^t)=(^(s\t-l).
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If we further choose a basis (t\,..., tb) for H, written multiplicatively, and set u = [^], then we
obtain an isomorphism

Z[G]^Z[^1,...^1,^1]
between the group ring of G and the ring of integral Laurent polynomials in the variables ti
andu.

Remark. - Under the fibration M — 5'1, the element u € H\(M,'Z) /torsion maps to —1 in
H^ (S\ Z) ̂  Z, as can be seen from (3.2).

A presentation for T(C). The next step in the computation of Op is to obtain a concrete
description of the module T(£).

We begin by using the train track r to give a presentation of T(A) over Z[H]. Let E and V
denote the sets of edges and vertices of the train track r C S. By choosing a lift of each edge and
vertex to the covering space S —^ S with deck group H, we can identify the edges and vertices
of T with the products H x E and H x V. These lifts yield a presentation

(3.3) ^[H^ -^ ZCT^ -. T( r) -^ 0

for T( r) ̂  T(A) as a Z^]-module.
Since r is ^-invariant, there is an H -invariant collapsing map

'0(r) —>• T\

By expressing each edge in the target as a sum of the edges in the domain which collapse to it,
we obtain a natural map of Z[H] -modules

PE'.^IH^ -^ZIH^.

There is a similar map Py on vertices.
We can regard PE and Py as matrices Pa(f), PvW whose entries are Laurent polynomials in

t= (t\,..., tb). In the terminology of Appendix A, such a matrix is Perron-Frobenius if it has a
power such that every entry is a nonzero Laurent polynomial with positive coefficients.

THEOREM 3.4. - PE^) is a Perron-Frobenius matrix of Laurent polynomials.

Proof. - For any e, / e E, the matrix entry (PE)ef is a sum of monomials t^ for all a such
that ^(a • e) collapses to /. Thus each nonzero entry is a positive, integral Laurent monomial,
and since ̂  is pseudo-Anosov there is some iterate P^(t) with every entry nonzero. D

The matrices PaW and Py(t) are compatible with the presentation (3.3) for T(r), so we
obtain a commutative diagram

ZL?^ ——^ Z^]^ ——^ T(r) ——^ 0

(3.4) pv(t)\ PEW\ P(t)
} t v

ZITf]^ ——^ Ztff]^ ——^ T^) ——^ 0.

Here P(Q = ^* under the natural identification T(r) = T(A).
The next result makes precise the fact that twisted cycles on C correspond to ^-invariant

twisted cycles on A (compare Proposition 2.1).
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THEOREM 3.5. - There is a natural isomorphism

T(r) ^ Coker(^J - P(t))

as modules over Z[G].

Here ul — P(t) is regarded as an endomorphism of T( r) (g) Z[^] over Z[G] = Z[I:f] (g) Z[^].

Pwo^ - The lamination C fibers over S'1 with fiber A and monodromy ^: A -^ A, so we can
regard £ as A x M, equipped with the action of G = H 0 Z^. The product structure on C gives
an isomorphism T(£) ̂  T(A) ̂  T(T) as modules over Z|7T|, so to describe T(C) as a Z[G]-
module we need only determine the action of u under this isomorphism. But u acts on A x R by
(x,t) ̂  Wx),t- 1), so for any transversal T e T(A) we have uT = ̂ (T) = P(t)T, and the
theorem follows. D

The determinant formula. The main result of this section is:

THEOREM 3.6. - The Teichmuller polynomial of the fibered face F is given by.

^ n ^ ^ det(ul - PEW)(3.5) Opd, u) = ————
det(ul — PyW)

when b\{M) > 1.

Remarks. -
(1) If b\(M) = 1 then the numerator must be multiplied by (u — 1) if r is orientable. Compare

Corollary 2.4.
(2) To understand the determinant formula, recall that by Theorem 3.3, the locus Op(t. u) = 0

in G consists of characters for which we have

dimZ2CC,Cp)>0.

Now a cocycle for C is the same as a ^-invariant cocycle for A, so we expect to have
Opd, u) = det(ul — P(t)). But the module T(A) is not quite free in general, so we need
the formula above to make sense of the determinant.

Proof of Theorem 3.6. - To simplify notation, let A = Z[G], let T be the A-module T(A) (g)
Z[G], and let P: T -^ T be the automorphism P = -0*.

Let K denote the field of fractions of A. For each / e A, / 7^ 0, we can invert / to
obtain the ring Af = A[l//] c K, and there is a naturally determined A f -module Tf with
automorphism Pf coming from P (see e.g. [2, Ch. 3]). The presentation (3.3) for T determines
a presentation

(3.6) A^-^Af^Tf^O

forTf.
Now let 0 = 0F(t, u) e A be the Teichmuller polynomial for (M, F) (defined by (3.1)), and

define A G K by
det(uI-PEW)

^'^"^deK.T-P^))'
Our goal is to show 0 = A up to a unit in A. The method is to show that 0 = A up to a unit

in Af for many different /. We break the argument up into 5 main steps.
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I. The map Df : A^r —> A^ is infective whenever f = (t^ — l)g for some i, 1 ^ z ̂  b, and
some g ̂  0 in A.

To see this assertion, we use the dynamics of pseudo-Anosov maps. It is enough to show that
the transpose D^: Af -^ AY is surjective — then D'r has a right inverse, so Df has a left inverse.
We prefer to work with D^ since it behaves like a geometric boundary map.

Given a basis element ii for H = Hom^^S', Z)^, Z), choose an oriented simple closed curve
7 C 5' such that [7] = ti. (Such a 7 exists because every ti is represented by a primitive homology
class on 5', and every such class contains a simple closed curve.) Then [^(7)] = iz as well,
since ^ fixes all homology classes in H. On the other hand, for n sufficiently large, ^(7) is
close to the expanding lamination A of ^. Thus by replacing 7 with ^(7), n ^> 0, we can
assume that 7 is carried with full support by r.

Now choose any vertex v € V, and lift 7 to an edge path 7 C r, starting at the (previously
fixed) lift v of v. Since [7] = ti, the arc 7 connects v to tzV. Letting e e AE denote the weighted
edges occurring in 7, we then have

D'i[e]=(±ti-l)v^AV,

where the sign depends on the orientation of the switch at v.
In any case, when f =(t^ — \)g, the factor (±.ti — 1) is a unit in Af, and thus D^ is surjective

and Df is injective.

II. IfTf is a free A/-module and Df is injective, then 0 = A up to a unit in Af.
Indeed, if Tf is free then

Tf^Tf-^T^^O

presents T(C)f as a quotient of free modules. It is not hard to check that the formation of the
Fitting ideal commutes with the inversion of /, and thus (0) C Af is the smallest principal
ideal containing the Fitting ideal of T(C)f. From the presentation of T(C)f above, we have
0 = det(ul - P(t)) up to a unit in Af.

To bring A into play, note that by injectivity of Df we have an exact sequence:

O^Aj-^Af^Tf^O.

Since Tf is free, this sequence splits, and thus PE can be expressed as a block triangular matrix
with Py and P on the diagonal. Therefore

det(W - Py(t)) det(ul - P(t)) = det{ul - PaW),

which gives 0 = A up to a unit in Af.

III. The set

I' = {/ € A: Tf is free and Df is injective]

generates an ideal I C A containing (tj — l)for i = 1, ...,&.
Let f = (t^ — 1), so Df is injective. Then the \V\ x \V\ -minors of D generate the ideal (1)

in Af.
Consider a typical minor (V x E ' ) of D with determinant g -^ 0, where E = E ' U E " . Set

h = fg. Then the composition

A^^Af^Af

46 SERIE - TOME 33 - 2000 - N° 4



POLYNOMIAL INVARIANTS FOR FIBERED 3-MANIFOLDS 537

is an isomorphism (since its determinant is now a unit). Therefore the projection A^ -^ T^ is
an isomorphism, so Th is free.

Since the minor determinants g generate the ideal (1) in Ay, we conclude that f = (t] — 1)
belongs to the ideal I generated by all such h = fg.

IV. There are a, c C A such that (a) D I , (c) D I and

(3.7) a0 = cA.

Write A/0 = a / c C K as a ratio of a, c G A with no common factor. By definition, for any
/ € I ' we have 0 = Z\ up to a unit in Ay; therefore a / c = d / ^ for some unit d € A* and
n e Z. Since gcd(a, c) = 1, a and c are divisors of /. As / G 77 was arbitrary, the principal ideals
generated by a and c both contain -T, and hence I .

V. IV^ /?flv^ 0 = A up to a unit in A.
Let (p) be the smallest principal ideal satisfying

(p)DJD(^-l,...,^-!)

(the second inclusion by (III) above). If the rank b of ^(fi^Z)^ is 2 or more, then
gcd(t^ — l , . . . , ^ j — 1)=1 and thus (p) = 1. Since a, c in (3.7) generate principal ideals containing
J, they are both units and we are done.

To finish, we treat the case b = 1. In this case we have (p) D (t\ — 1), so we can only conclude
that 0 = A up to a factors of (t\ - 1) and (t\ + 1).

But A and 0 have no such factors. Indeed, A is a ratio of monic polynomials of positive
degree in u, so it has no factor that depends only on i\.

Similarly, if we specialize to (t\, u) = (1, n) (by a homomorphism (f): A -^ Z), then P: T —> T
becomes an endomorphism of a finitely generated abelian group, and T(£) = Coker(^J — P)
specializes to the group K == Coker(nl — P). For n ̂ > 0, the image of (ul — P) has finite index
in T, so K is a finite group. Thus (0(0)) = (n), the annihilator of K; in particular, 0(0) 7^ O.
This shows (ti — 1) does not divide 0. The same argument proves gcd(0,ti +!)=!, and thus
0 = A up to a unit in A. D

Notes. The train track r in Fig. 4 provides a typical example where the module T(r) is not
free over Z[H]. Indeed, letting H = Hi(S, Z) ̂  Z3, we showed in Section 2 that the dimension
of

Zi(T,Cp)=Hom(T,Cp)

jumps at p = (— 1, — 1, — 1), while its dimension would be constant if T were a free module. Thus
/ e Z[JT| must vanish at p = (—1, —1, —1) for T(r)f to be free — showing the ideal I in the
proof above contains (^i + 1,^2 + 1^3 + 1).

4. Symplectic symmetry

In this section we show the characteristic polynomial of a pseudo-Anosov map ^: S —> S is
symmetric. This symmetry arises because ̂  preserves a natural symplectic structure on M.C(S\

We then show the Teichmuller polynomial Op packages all the characteristic polynomials of
fibers [S] e R+ • P, and thus Op is also symmetric.
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Symmetry. Let A be the expanding lamination of a pseudo-Anosov mapping i / } : S —^ S. The
characteristic polynomial of ^ is given by p(k) = det(A"J — P), where

P:Zi(A,R)-^Zi(A,R)

is the induced map on cycles, P = ̂ ^.

THEOREM 4.1. - The characteristic polynomial p(k) of a pseudo-Anosov mapping is sym-
metric; that is, p(k) = k d p ( l / k ) where d = deg(p).

Proof. - Since ^ is pseudo-Anosov, each component of 5" — A is an ideal polygon, possibly
with one puncture. Since these polygons and their ideal vertices are permuted by '0, we can
choose n > 0 such that ̂ n preserves each complementary component D of S — A and fixes its
ideal vertices.

By Theorem 2.2, there is a natural isomorphism Z\(\ R) ̂  Z\(r, R), where r is a ^-invariant
train track carrying A. By [24, Theorem 1.3.6], there exists a complete train track r ' containing
r. The train track r is completed to r ' by adding a maximal set of edges joining the cusps of the
complementary regions S — r. Since ̂ n fixes these cusps, ̂ ( r ' ) is carried by r ' .

Now recall that the vector space Z\(r' ,W) can be interpreted as a tangent space to M£(S),
and hence it carries a natural symplectic form uj. If r ' is orientable (which only happens on a
punctured torus), then uj is just the pullback of the intersection form on S under the natural map

Zi(r',R)^7:fi(5,M).

If r ' is nonorientable, then uj is defined using the intersection pairing on a covering of S branched
over the complementary regions S — r ' ; see [24, §3.2].

For brevity of notation, let

(ycy')=(Zi (T.iocZier',]
and let

p=^:y->y, Q=^^v'^v'\
±enPn=Q\V.

Both P and Q respect the symplectic form uj on V. If (V\uj) is symplectic — that is, if
uj\V is non-degenerate — then P is a symplectic matrix and the symmetry of its characteristic
polynomial p(k) is immediate. Unfortunately, (V, uj) need not be symplectic — for example, V
may be odd-dimensional.

To handle the general case, we first decompose V into generalized eigenspaces for Q\ that is,
we write

00

Vf^C=Q)Va = Q)\J Ker^J- Q)1.
a 1

Grouping together the eigenspaces with \a\ = 1, we get a Q-invariant decomposition V =U @S
with

U(^)C= (]) Va and S(S)C= Q) V^.
|a|=i H/I

For x e VQ and y € V/s, the fact that Q preserves uj implies

uj(x,y)=uj(Qx,Qy)=Q
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unless af3 = 1. Thus U and S are uj -orthogonal, and therefore (L^o;) and (S,uj) are both
symplectic.

Since ^n fixes all the edges in r ' — T, Q acts by the identity on V / V . Therefore 5' is a
subspace of V, and

V = S © (U n V) = 5 © W

Since P72 = Q, the splitting V = S © IV is preserved by P; P|S' is symplectic; and the
eigenvalues of P\W are roots of unity. Therefore

p(k) = det(kl - P\S) • det(kl - P\W).

The first term is symmetric because P|5' is a symplectic matrix, and the second term is symmetric
because the eigenvalues of P\W lie on S1 and are symmetric about the real axis. Thus p(k) is
symmetric. D

Characteristic polynomials of fibers. We now return to the study of the Teichmtiller
polynomial Op = ̂  ag ' g e Z[G]. Given (f) <E H^(M, Z) = Hom(G, Z), we obtain a polynomial
in a single variable k by setting

0F(k^=^agk^g\

Recall that C denotes the mapping torus of the expanding lamination A of any fiber
[S] G R+ • F (Corollary 3.2); and C is transversally orientable iff A is.

THEOREM 4.2. - The characteristic polynomial of the monodrorny of a fiber [S} =
<j) G M+ • F is given by

p(k)=0F W ' [
(k — 1) ifC is transversally orientable,
1 otherwise,

up to a unit ^A^.

Proof. -Let i^u G G be a basis adapted to the splitting G = H ® Z determined by the
choice of a lift of the monodromy, ^: S -^ S. Then (j)(ti) = 0 and (j)(u) = 1, so k^: G -^ C*
has coordinates (t, u) = (1, k) G G. Thus

OF^} = 0F(\.u)\^k = det{kl - PEW) /det(kl - Py(l))
by the determinant formula (3.5).

Applying the functor Hom(-,R) to the commutative diagram (3.4), with t = 1, we obtain the
adjoint diagram

Dd)*
0 ——^ ^i(r,M) ——^ R^ ——^ R^ ——^R^ ——^ 0

P(ir ?£;(!)* Pv(l)* id
Y Y D(ir Y Y

0 ——^ ^i(T,M) ——^ R^ —-^ R^ ——^ R7^1 ——^ 0.

Here m == 1 if C (and hence r) is orientable, and m = 0 otherwise (compare Corollary 2.4).
Since the rows of the diagram above are exact, the characteristic polynomial of P = P(l)* is

given by the alternating product

deKfcJ-P^DKfc-l)"^ ,
p{k)~ det(kI-PvW) ~ F{ ){ ) '
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COROLLARY 4.3. - The Teichmuller polynomial is symmetric', that is,

0F=^dg 'g=±h^dg • g ~ 1

for some unit ±h e Z[G'].

Proof. - Since M+ • F c H\M,W) is open, we can choose [S] = (f) <E R+ • F such that the
values (f)(g) over the finite set of g with a? 7^ 0 are all distinct. Then symmetry of 0p follows
from symmetry of the characteristic polynomial p(k) = Op^) =^agkcf)(g). n

Notes. Although the characteristic polynomial f(u) = det(ul - P) of a pseudo-Anosov
mapping ^ is always symmetric, f(u) may factor over Z into a product of non-symmetric
polynomials. In particular, the minimal polynomial of a pseudo-Anosov expansion factor K > 1
need not by symmetric. For example, the largest root K = 1.83929... of the non-symmetric
polynomial x3 - x2 - x - 1 is a pseudo-Anosov expansion factor; see [I], [20, §5].

5. Expansion factors

In this section we study the expansion factor K((J)) for a cohomology class (f) e M+ • F, and
prove it is strictly convex and determined by 0p.

Definitions. Let [S] = (f) G M+ D F be a fiber with monodromy ̂  and expanding measured
lamination A e MC(S). The expansion factor K((f)) > 1 is the expanding eigenvalue of
^: .M£(5') -^ •MAS'); that is, the constant such that

^ • A = K((f>)A.

The function

L((/))=\ogK((/))
gives the Teichmuller length of the unique geodesic loop in the moduli space ofRiemann surfaces
represented by

^eModC?)^7ri(A^J.
(Compare [4].)

THEOREM 5.1.- The expansion factor satisfies

(5.1) K(ct))=sup{k>l: 0F{k^=0}

for any fiber [S] = (f) e R+ • F.

Proof. - By Theorem 4.2, p(k) = Op^) is the characteristic polynomial of the map

P:Zi(A,IR)-^Zi(A,IR)

determined by monodromy of S, and the largest eigenvalue of P is K((/)), with eigenvector the
expanding measure associated to A. D

Since the right-hand side of (5.1) is defined for real cohomology classes, we will use it to
extend the definition of K((/)) and L(0) to the entire cone R+ • F. Then we have the homogeneity
properties:
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K(a^=K(^/^

L(a(t))=a~lL((t)).

Here is a useful fact established in [18, Theorem F].

THEOREM 5.2 Fried. - The expansion factor K((J)) is continuous on F and tends to infinity
as^)-> QF.

Next we derive some convexity properties of the expansion factor. These properties are
illustrated in Fig. 7 of Section 11.

THEOREM 5.3. - For any k > 1, the level set

r = { 0 e ] R + - F : K((f))=k}

is a convex hypersurface with R+ • F = M+ • F.

Proof. - By homogeneity, F meets every ray in R+ • F, and thus R+F = R+ • F. For convexity,
it suffices to consider the level set F where \ogK((f)) = 1.

Choose a fiber [S] G M+ • F and a lift ^ of its monodromy. Then we obtain a splitting
H\M, R) = J^, R)^ C M and associated coordinates (s, ^/) on ̂ (M, R) and 0, n) = (e5, e^)
onG^expT^M.R).

By the determinant formula (3.5), 0p(t, tQ is the ratio between the characteristic polynomials
of PaW and Pv(t). By Theorem 3.4, Pjs(t) is a Perron-Frobenius matrix of Laurent
polynomials; let E(t) > 1 denote its leading eigenvalue for t € R^_. Since Py(t) is simply
a permutation matrix, we have 0F(t,E(t)) = 0 for all t. By Theorem A.I of Appendix A,
y = log E(e8) is a convex function of s, so its graph ̂ f is convex.

To complete the proof, we show F ' = F. First note that F ' C F. Indeed, if 0 = (s, ?/) C F',
then QF(es,ey) = 0 and so K((f)) ̂  e. But by Theorem A.I, the ray R+ • (f) meets F' at most
once; since u = E(t) is the largest zero of 6^(t, n), we have K((f>) = e, and thus (s, u) G 7^.

Since r ' is a graph over H^(S, R), it is properly embedded in H^(M, R); but F is connected,
so^=^ / . D

COROLLARY 5.4. - The function y = l/\ogK((f)) on the cone ]R+ • F is real-analytic, strictly
concave, homogeneous of degree 1, and

y((t)) -^0 as (f) -> 9F.

Proof. - The homogeneity of y((f)) follows from that of K((f)).
Let r be the convex hypersurface on which log K((/)) = 1. Since F is a component of the

analytic set Op^) = 0, and K((f)) is homogeneous, K((J)) is real-analytic.
To prove concavity, let (^3 = a<j)\ + (1 — a)(j)^ be a convex combination of <f)\, (f)^ G M+ • I7,

and let yi = l/logX(^), so ̂ -1^ G F. By convexity ofF, the segment [y^(f)\,y^(f)^\ meets
the ray through (^3 at a point? which is farther from the origin than y^^. Since

_ ay\{y^(t)\) + (1 - o^y^y^^2) ̂  <fe
ay^ + (1 - a)?/2 a^/i + (1 - a)yz'

we find

%~1 ^ (^l +(1 -o;)^)

and therefore ^/((/)) is concave.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



542 C.T. McMULLEN

Finally y((p) converges to zero at 9F by Theorem 5.2, so by real-analyticity it must be strictly
concave. D

Notes.
(1) The concavity of l/logJC(0) was established by Fried; see [18, Theorem E], [20,

Proposition 8], as well as [31] and [32]. Our proof of concavity is rather different and
uses only general properties of Perron-Frobenius matrices (presented in Appendix A).

(2) By Corollary 5.4, the expansion factor K((f)) assumes its minimum at a unique point
(f) C F, providing a canonical center for any fibered face of the Thurston norm ball.
Question. Is the minimum always achieved at a rational cohomology class?

6. The Thurston norm

Let F c H^(M, R) be a fibered face of the Thurston norm ball. In this section we use the fact
that K((/)) blows up at OF to show one can compute the cone R+ • F from the polynomial 0p.
This observation is conveniently expressed in terms of a second norm on ^(M.R) attached
t00F.

Norms and Newton polygons. Write the Teichmuller polynomial 0p ^ ̂ [G] as

^F=^ag-g.

The Newton polygon N(0p) c Hi (M, M) is the convex hull of the finite set of integral homology
classes g with dg ^ 0. We define the Teichmuller norm of (f) e H\M, R) (relative to F) by:

IHIe^ = sup ( / ) ( g - h ) .
dg^O^ah

The norm of (f) measures the length of the projection of the Newton polygon, (t)(N(0p)) C M.
Multiplication of 0p by a unit just translates N(0p\ so the Teichmuller norm is well-defined.

THEOREM 6.1. - For any fibered face F of the Thurston norm ball, there exists a face D of
the Teichmuller norm ball,

Dc{^: |H|e,= 1},

such that R+ • F = R+ • D.

Proof. - Pick a fiber [S] G R+ • F with monodromy ̂ . Choose coordinates (t, u) = (e5, e^) on

^(M.R+^exp^^,]

and let E(t) be the leading eigenvalue of the Perron-Frobenius matrix Pad). As we saw in
Section 5, we have M+ • F = M+ • F, where F is the graph of the function

y=f(s)=\ogE(es).

Now the determinant formula (3.5) shows 0F(t,u) is a factor of det(nJ - PEW) with
0F(t,E(t)) = 0, so by Theorem A.l(C) of Appendix A, M+ • F coincides with the dual cone
G(^) of the leading term v^ of 0p(t,u). Equivalently, R+ • (f) meets the graph of f(s) iff (f)
achieves its maximum on N(0p) at the vertex v c N(0p) corresponding to n<
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Since OF is symmetric (Corollary 4.3), so is its Newton polygon, and thus the unit ball
B of the Teichmuller norm is dual to the convex body N(0p). Under this duality, the linear
functionals <j) achieving their maximum at v correspond to the cone over a face D C B\ and
therefore

R 771 r^ (r>,d\ _ TO 7~) [—1-I- • r = C/ \U j — M.4- • U. 1_1

Skew norms. Although in some examples the Thurston and Teichmuller norms actually
agree (see Section 11), in general the norm faces F and D of Theorem 6.1 are skew to one
another.

Here is a construction showing that F and D carry different information in general. Let A C S
be the expanding lamination of a pseudo-Anosov mapping ^, and let C C M be its mapping
torus. Assume b\(M) ̂  2.

Assume moreover that ^ has a fixed-point x in the center of an ideal n-gon of S — A, with
n ̂  3. (In the measured foliation picture, x is an n-prong singularity.) Then the mapping torus
of x gives an oriented loop X C M transverse to 5'. Construct a 3-dimensional submanifold

M' ^M

by removing a tubular neighborhood of X C M, small enough that we still have C C M'. Let
S" = 5 n M'\ it is a fiber of M'.

Let F and F' be the faces of the Thurston norm balls whose cones contain [S] and [5"]. We
wish to compare the norms of (f) and (f)' = %*(0) for <p G M+ • F.

First, the Teichmuller norms agree: that is,

(6.1) • ||̂ ||0, = ||0||0..

Indeed, the mapping torus of the expanding lamination is C' = C for both M' and M, and
therefore 1^(0?') = OF , which gives (6.1).

On the other hand, the Thurston norms satisfy

(6.2) V\\T=\\(f>\\T^^X).

Indeed, let [R] = (j) be a fiber in M and let [R'} = [R D M'} be the corresponding fiber in M'.
Then we have

\W\\T = |x(^)l= \x(R - X)\ = \xW\ + \R n x| = IHIr + </>(X).
By (6.1) and (6.2), the Teichmuller and Thurston norms can agree on at most one of the cones

R+ • F and R+ • F\ With an appropriate choice of X, one can construct examples where the
Thurston norm is not even a constant multiple of the Teichmuller norm on R+ • F.

Notes.
(1) Theorem 6.1 provides an effective algorithm to determine a fibered face F of M from a

single fiber S and its monodromy ̂ .
The first step is to find a ^-invariant train track r. Bestvina and Handel have given an
elegant algorithm to find such a train track, based on entropy reduction [5]. Versions of
this algorithm have been implemented by T. White, B. Menasco — J. Ringland, T. Hall
and P. Brinkman; see [9].
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Once T is found, it is straightforward to compute the matrices PaW and Py(t) giving the
action of ^ on T. The determinant formula

0F(t.u) = det{ul - PEW) I det(ul - Py(t))

then gives the Teichmiiller polynomial for F, and the Newton polygon of Op determines
the cone R+ • F as we have seen above. Finally F itself can be recovered as the intersection
of IR+ • F with the unit sphere | |^HA = 1 in the Alexander norm on ./^(M.M) (see
Section 7).

(2) For any fiber [5'] G M+ • F with expanding lamination A, we have

\\lS]\\e,=-xW.

where the Euler characteristic is computed with Cech cohomology. To verify this equation,
use the determinant formula for Op and observe that \(\) = \(r) = \V\ — \E\.

7. The Alexander norm

In this section we show that a fibered face F can be computed from the Alexander polynomial
of M when A is transversely orientable.

The Alexander polynomial and norm. Assume b\(M) > 1, let G = I:fi(M,Z)/torsion,
andletG=Hom(G,C*).

Recall that the Teichmiiller polynomial of a fibered face defines, via its zero set, the largest
hypersurface V C G such dimZ2(^,Cp) > 0 for all p e V (Theorem 3.3). Similarly, the
Alexander polynomial of M,

AM=^ag-g^^[G],

defines the largest hypersurface on which dimH\M,Cp) > 0. (See [33, Corollary 3.2].) The
Alexander norm on H^(M, R) is defined by

|| (f)\\ A = sup (f)(g-h).
dg^O^CLh,

(By convention, \\(J)\\A = 0 if AM = 0.)

THEOREM 7.1. - Let F be a fibered face in H\M,R) with bi(M) ̂  2. Then we have:
(1) F C A for a unique face A of the Alexander norm ball, and
(2) F == A and AM divides OF if the lamination C associated to F is transversally

orientable.

Remark. - Transverse orientability of C is equivalent to transverse orientability of A C S for a
fiber S G M+ • F, and to orientability of a train track r carrying A.

Proof of Theorem 7.1. - In [33] we show

IHlA^IHIr

for all (f) G H1(M,R), with equality if 0 comes from a fibration M -^ 5'1; this gives part (1) of
the theorem.
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For part (2), pick a fiber [S] G R+ • F with monodromy ip and invariant lamination A. Let
(t, u) be coordinates on the character variety G adapted to the splitting G =- H 0 Z coming from
the choice of a lift ̂  of ^.

If £ is transversally orientable, then A is carried by an orientable train track r. Since r fills the
surface S, we obtain a surjective map:

(7.1) TT: Zi(T,Q) ̂  ̂ i(r,Q) -^ H^(S,Ct)

for any character t ^ H .
Let P(t) and Q(^) denote the action of ^ on Zi(r,Ct) and H\(S,Ct) respectively. Fixing a

nontrivial character t, we have

/\^ ̂ ) = det(ul - Q(0) and Opd, u) = det(ul - P(t))

up to a unit in Z[G]. By (7.1), /IM(^ u) is a divisor of 0^(t, iQ. It follows that AM divides OF
(using an algebraic argument as in Section 3 to lift the divisibility to Z[G]).

The action of ^ on Ker(Tr) corresponds to the action of ^ by permutations on the components
of S — T, so it does not include the leading eigenvalue E(t) of P(t). Therefore AM(t, E(t)) = 0,
so we can apply Theorem A.l(C) of the Appendix to conclude that there is a face A of the
Alexander norm ball with R+ • A = R+ • F (just as in Theorem 6.1). By (1) we have F c A, and
therefore F = A. D

Note. Dunfield has given an example where the fibered face F is a proper subset of the
Alexander face A; see [14].

8. Twisted measured laminations

In this section we add another interpretation to the Teichmtiller polynomial, by showing Qp
determines the eigenvalues of ^ G Mod(6') on the space of twisted (or affine) measured
laminations M.Cs{S). We will establish:

THEOREM 8.1. - A pseudo-Anosov mapping ^ : S -^ S has a unique pair of fixed-points

A^,A_^MCs(S)

for any s e H^(S, R)^. The supporting geodesic laminations (A+, A_) o/(A+, A_) coincide "with
the expanding and contracting laminations ofip respectively, and we have

^ • A+ = A;A+,

where k > 0 is the largest root of the equation (9^(e5, k) = 0.

M,Cs(S). Fix a cohomology class s ^ H1(S,R). We can interpret s as a homomorphism

5:^1(5^)-^,

determining an element t C ̂ (S, R+) by

t = e8: Hi(S, Z) -> R+ = S'Li(R).
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Thus s (or t) gives R the structure of a module Rs (or Mf) over the ring Z[^i(6', Z)].
The space of twisted measured laminations, MCs(S), is the set of all A = (A, /^) such that:
• A c 5' is a compact geodesic lamination,
• IJL € ^i(A, Rg) is a cycle, and
• fi(T) > 0 for every nonempty transversal T to A.

Here ̂  can be thought of as a transverse measure taking values in a fixed flat R-bundle Lg -^ 5'.
For s = 0, the bundle Lg is trivial, so MCo(S) reduces to the space of ordinary measured
laminations M£(S). Let PMCs(S) = MCs(S)/R^ denote the projective space of rays in
MCs(S).

Using train tracks, one can give MCs(S) local charts and a topology. A basic result from [25]
is:

THEOREM 8.2 (Hatcher-Oertel). - The spaces MCs(S)form a fiber bundle over H\M, R+).
In particular, MCs(S) ̂  R" for all s.

Perron-Frobenius eigenvectors. Let ^: S -^ S be a pseudo-Anosov mapping with mon-
odromy ^ and expanding lamination A carried by an invariant train track r. As in (3.4), we
obtain a matrix

PEW'.^H^^ZIH^

describing the action of ^ on the edges of r, and PEW is a Perron-Frobenius matrix of Laurent
polynomials by Theorem 3.4. We can think of PEW as a map

PE : H\S,R^f -^ End^),

whose values are traditional Perron-Frobenius matrices over R.
As in Section 4, we can apply the functor Hom(-, R^) to (3.4) to obtain the adjoint diagram:

(8.1)
0 ———^ ̂ l(TA) ———^ RE -D(^ ̂ V

PW PEW pvaY
y v \'

0 ——^ Z,(r,Rt) ——^ ̂  D(t)^ ̂ v

For each t, the largest eigenvalue E(t) of PEW is positive and simple, with a positive
eigenvector fJi(t) e IR^.

THEOREM 8.3. - For each t <E -Hrl(5',]R+), the leading eigenvalue u = E(f) ofPE^Y is the
largest root of the polynomial equation

0F(t,u)=0,

and its positive eigenvector /^(Q belongs to Z\(r, R^).

Proof. - First suppose t = 1 is the trivial cohomology class. Then PEW is an integral Perron-
Frobenius matrix, and hence u = E(l) > 1 is the largest root of the polynomial det(ul - PEW).
On the other hand, Py(l) is a permutation matrix, with eigenvalues on the unit circle, so
det(ul - Py(l)) has no root at u = E(l). Since Theorem 3.6 expresses 0^(1,^) as the ratio
of these two determinants, E(l) is the largest root of the polynomial (9^(1, u) = 0.

To see /z(l) is a cycle, just note that D(l)*/^(l) = 0 because (8.1) is commutative and Py(l)
has no eigenvector with eigenvalue E(l).
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The same reasoning applies whenever E(t) is not an eigenvalue of Py(t), and thus the
Theorem holds for generic t. By continuity, it holds for all t C ̂ (6', R+). D

Proof of Theorem 8.1. - Suppose '0 • A = EA. As we saw in Corollary 3.2, the only possibilities
for the support of A are the expanding and contracting geodesic laminations A+, A- of ^. In the
case A = (A+,/^), positivity of fi on transversals implies fi is a positive eigenvector of PE(T)*,
t = e5, under the isomorphism

Zi(A+A)=Zi(rA).

Since PaW is a Perron-Frobenius matrix, its positive eigenvector is unique up to scale, and
thus k = E(t). By Theorem 8.3, k is the largest root of Opd, k) = Op^, k) == 0. D

COROLLARY 8.4. - Let k(s) be the eigenvalue of

^:MCs(S)^MCs(S)

at A+. Then \ogk(s) is a convex function on ^(S^R)^.

Proof. - Apply Theorem A. 1 of Appendix A. D

Notes.
(1) It can happen that ^ ' A+ = k(s)A^ with 0 < k(s) < 1, even though A+ c MCs(S) is

supported on the expanding lamination of ^. Indeed, k(s) depends on the choice of a lift
^ of '0, and changing this lift by h <E H changes k(s) to e^k^s).

(2) Question. Given a Riemann surface X G Teich(6'), is there a natural isomorphism
MCs(S) ̂  Qs(X) between the space of twisted measured laminations and the space of
twisted quadratic differentials, denned as holomorphic sections of K(X)2 0 Lg? Hubbard
and Masur established this correspondence in the untwisted case [26].

(3) The existence of a fixed-point for ̂  on M.Cs(S) is also shown in [38, Proposition 2.3].

9. Teichmiiller flows

We now turn to the study of measured foliations T of M.
Assume M is oriented and T is transversally oriented; then the leaves of F are also oriented.

Measured foliations so oriented correspond bijectively to closed, nowhere-vanishing 1-forms uj
on M, and we let [^] = M e H\M, R). A flow /: M x R -^ M has unit speed (relative to JF)
if it is generated by a vector field v with uj(v) = 1. Such a flow preserves the foliation T and its
transverse measure.

In this section we prove:

THEOREM 9.1.- Let F be a fibered face of the Thurston norm ball for M. Then any
(j) e R+ • F determines:

• a measured foliation F of M with [F} = (f),
• a complex structure J on the leaves of T, and
• a unit-speed Teichmiiller flow

/:(M,^)xR^(M,^)

with stretch factor K(ft) = K^)^.
The data (T, J, /) is unique up to isotopy.
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The idea of the proof is to use the results on twisted measured laminations in Section 8 to
construct the analytic structure (JF, J, /) from the purely combinatorial information provided by
the cohomology class (j).

From measured laminations to quadratic differentials. As usual we choose a fiber [S] e
R+ • F with monodromy ̂  and expanding and contracting laminations A±. Choose a lift ̂  of ^
to the ^-covering space S of S, and write

G = H^M, Z)/torsion = H C Z^.

Let G act on S by

(h,^)•s=^^(h(s))\

this action embeds G into the mapping-class group Mod(5').

THEOREM 9.2. - There exist measured laminations A+ e .M£(5), supported on A±, ^MC/Z
that for all g G G w^ /z<2v^

(9.1) ^A+^^A^

where K = K((/)) is the expansion factor of(f).

Proof. - Writing ( / ) = (s, y), the condition K = K((f)) means y > 0 is the largest solution to
the equation Op^K^K^ = 0. By Theorem 8.1 there exists a twisted measured lamination
A+ e M£s\ogK(S\ supported on A+, with '0 • A+ = J^A+. The lift of A+ to S then gives
a lamination A+ satisfying (9.1).

To construct A_, note that K((/)) = K(—(/)) because the expansion and contraction factors of
a pseudo-Anosov mapping are reciprocal. Thus the same construction applied to —<p yields A_
satisfying (9.1). D

Although int(6') has infinite topological complexity, it has a natural quasi-isometry type
coming from the lift of a finite volume hyperbolic metric on int(5). Complex structures
compatible with this qu^si-isometry type are parameterized by the (infinite-dimensional)
Teichmtiller space Tetchy).

THEOREM 9.3. - There is a Riemann surface X e Teich(S') and a holomorphic quadratic
differential q(z) dz2 on X such that:

(1) G C Mod(5') acts by commuting Teichmuller mappings g(x) on X, preserving the
foliations ofq, and

(2) The map g(x) stretches the vertical and horizontal leaves ofq by (K'^, K^^), where
K=KW.

Proof. - Integrating the transverse measures on A±, we will collapse their complementary
regions and obtain a map /: S —^ X.

On any small open set Ua C S, we can introduce local coordinates (u, v) such that u and v are
constant on the leaves of A_ and A+ respectively. Then there is a continuous map

fa'^^C

given by fa(u,v) = x(u) + iy(v), where x(u) and y(v) are monotone functions whose
distributional derivatives (x'(u), y'(v)) are the transverse measures for (A_, A+). The coordinate
^a = fa is unique up to

(9.2) ^ ̂  ±Za + &;
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the sign ambiguity arises because the laminations are not oriented.
Since the coordinate change (9.2) is holomorphic, we can assemble the charts

Va=fa(Ua)

to form a Riemann surface X. The forms dz^ on Ua are invariant under (9.2), so they patch
together to yield a holomorphic quadratic differential q on X. Finally the maps fa piece together
to give the collapsing map^: S —> X. _ _

The construction of /: S —> X is functorial in the measured laminations (A_, A+). That is, if
we apply the same construction to (a~lA-, a^A-^), we obtain a new marked surface f :S —^ X'
and a unique map F : X —^ Xf such that F o f = f. Moreover F is a Teichmtiller mapping,
stretching the vertical and horizontal leaves of^by^z"1 and a^ respectively.

Since g <E G multiplies the laminations (A_,A+) by (.K-(^),X+<^)), this functoriality
provides the desired lifting of G to Teichmtiller mappings on X. D

Isotopy. Finally we quote the following topological result of Blank and Laudenbach,
recently treated by Cantwell and Conlon [29,35,11]:

THEOREM 9.4. - Any two measured foliations F, F ' representing the same cohomology class
on M are isotopic.

Proof of Theorem 9.7. - We will construct (F, J, /) from the Riemann surface X, its quadratic
differential q and the action of G given by Theorem 9.3.

Let F be the measured foliation of X x R with leaves Xr =X x [r] and with transverse
measure dr. Let ft '.X x R —> X x R be the unit speed flow ft(x,r) = (x,r +1). Let J be
the unique complex structure on TF such that (XQ, Jo) = X and such that ft: XQ —^ Xt is a
Teichmtiller mapping stretching the vertical and horizontal leaves of q by (^-t, K^). Finally,
let G act on X x R by

(9.3) g • (x, r) = {g(x\ r + (f)(g)},

where g(x) is the Teichmtiller mapping of X to itself provided by Theorem 9.3.
With this action, G preserves the structure (F,J,ft\ and therefore the quotient N =

(X x R)/G carries a measured foliation F, a complex structure J on TF, and a unit speed
Teichmtiller flow ft :N -^ N.

To complete the construction, we will show N can be identified with M in such a way
that [F} = (f). To construct a homeomorphism N ^ M, first note that of) pulls back to a trivial
cohomology class on X ̂  S, so there exists a smooth function ^: X -^ R such that

^(/iGr))=^)+0(/0

for all h C H C G. Set a = (f)(^) > 0, so (f)(h, i) = (f)(h) + ai. Then the homeomorphism of X x R
given by

(x, r) i—> (x, ar + £,(x))
conjugates the action of g = (h, i) by

(9.4) g-(x,r)=(g(x),r+i)

to the original action (9.3). Thus both actions have the same quotient space. On the other hand,
the quotient of X x M by the action of G given by (9.4) is:

N = (X x R)/G = ( ( X / H ) x R) /Z ̂  M,
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because Z acts on X / H ^ S by a map isotopic to ^.
Thus we have identified N with M. It is easy to see that [̂ ] = (f) under this identification, so

we have completed the construction of (T, J, /).
To prove uniqueness, the first step is to apply Theorem 9.4 to see that (f) determines T up to

isotopy. Then, given two Teichmuller flows j\ and /2 for the same foliation F, we can pick a fiber
S which is nearly parallel to the leaves of T and transverse to both flows. Each flow determines,
via its distortion of complex structure, a pair of ^-invariant twisted measured laminations [A±]
for S. The uniqueness of (F, J, /) then follows from the uniqueness of these twisted laminations,
guaranteed by Theorem 8.1. D

Note. Our original approach to Theorem 9.1 involved taking the geometric limit of the
pseudo-Anosov flows known to exist for fibered classes in Jf^M.Q) by ordinary Teichmuller
theory. An examination of the expansion factor K([f]) led to the more algebraic approach
presented here.

10. Short geodesies on moduli space

Let S be a closed surface of genus g ^ 2, and let Mg = Teich(S')/Mod(5') be its moduli space,
endowed with the Teichmuller metric. Then closed geodesies on Mg correspond bijectively to
conjugacy classes of pseudo-Anosov elements ^ C Mod(S') ̂  ̂ \(Mg). The length L(^) of the
geodesic for ̂  is given by

LW=\ogKW,
where KW > 1 is the pseudo-Anosov expansion factor for ^. From [40] we have:

THEOREM 10.1 (Penner). - The length of the shortest geodesic on the moduli space Mg of
Riemann surfaces of genus g satisfies L(Mg) x 1 / g .

(Here A x B means we have A/C ^ B ^ CA for a universal constant C.)
In this section we show any closed fibered hyperbolic 3-manifold with b\(M) ̂  2 provides a

source of short geodesies on moduli space as above.
Indeed, let S C M be a fiber of genus g ^ 2 with monodromy ^. The assumption b\ (M) ̂  2

is equivalent to the condition that ̂  fixes a primitive cohomology class

^eH\S^).

Let S -^JS be the Z-covering space corresponding to $o, with deck group generated by h: S -^ S,
and let ̂  be a lift of ^ to S'.

THEOREM 10.2. - For all n sufficiently large,

Rn=S/{hn^)

is a closed surface of genus Qn ̂  ri, and h:S —>S descends to a pseudo-Anosov mapping class
^n ^ Mod(Rn) with

(10.1) L(^)=LW+0{n-2)^-^^
n ' / 9n

Proof. - Corresponding to the commuting maps ̂  and h on S, we have a covering space

M=SxR-^M
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with deck group "LH (B Z^, where

Define a map

H(s, t) = (/i(s), t) and ^(5, t) = (V<5), ^ - F

(^, o: Hi(M, Z) -^ z^ e z^ -^ z2

by sending H to (0,1) and ^ to (-1,0). Then the first factor ^: ̂ i(M,Z) -^ Z is the same as
the cohomology class corresponding to the fiber 5'.

Now (f) belongs to the cone on a fibered face F, so (j)n = ncf) + ^ also comes from a fibration
TT^ : M -^ S1 for all n > 0. Since Z(I:fn^^) corresponds to the kernel of <^n, the Z-covering space
Myi —> M corresponding to TVn is given by

M^ = M/(ir^) ̂  S/^^} x R = Rn x R.

Similarly, the monodromy of TT^ is induced by the action of H~1 on M, so it can be identified
with '0^1: Rn -^ Rn (up to isotopy).

Now || • | IT is linear on R+ • F, so we have

ll<Mr = |x(-Rn)| = 2^ - 2 = n^(e) - 0o(e) ̂  ̂

for some e C ^fi(M,Z) (the Euler class). Finally the expansion factor is differentiable and
homogeneous of degree — 1, so we have

X(^) = K^n) = KW^ + 0(n-2),

giving (10.1). D

Notes.
(1) The exchange of deck transformations and dynamics in the statement of Theorem 10.2

is often called renormalization. Compare [46], where the same construction is used to
analyze rotation maps.

(2) It is easy to see that L(M\) = log(3 + \/5)/2 is the log of the leading eigenvalue of
[2 \ \. For genus 2 we have L(Mz) ̂  0.543533 ... = log k, where k4 - k3 - k2 - k +
1 = 0 [47], and in general L(Mg) ̂  (log6)/^ [3].

(3) It can be shown that the minimal expansion factor Kn for an n x n integral Perron-
Frobenius matrix is the largest root of x71 = x + 1; it satisfies Kn = 2^ + 0(l/n2). The
factor Kn is realized by the matrix

( 1 if j =i + 1 modn,
M^= 1 if(U)=(l,3),

0 otherwise,

which is the adjacency matrix of a cyclic graph with one shortcut; see Fig. 5 for the case
n = 8. (For a detailed development of the Perron-Frobenius theory, see [30, §4].)
Since the expansion factor of ip agrees with that of a Perron-Frobenius matrix attached to
a train track with at most 6g — 6 edges, we have L(Mg) ̂  (log2)/(6^ — 6).

(4) Question. Does lim^oo 9 • L(Mg) exist? What is its value?
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Fig. 5. An 8-vertex graph in which the number of paths of length n grows as slowly as possible.

11. Examples: Closed braids

Closed braids provide a natural source of fibered link complements M3 = S3 — L(/3). In this
section we present the computation of Op and the fibered face F c H^(M, R) for some simple
braids.

Braids. Let S = D2 — \J^ Ui be the complement of n disjoint round disks lying along a
diameter of the closed unit disk D2. Let Diff^^, 9D) be the group of diffeomorphisms of S to
itself, preserving orientation and fixing 9D2 pointwise.

The braid group Bn is the group of connected components of Diff^S', 9D). It has standard
generators a ^ % = l , . . . , n - l , which interchange 9Ui and <9L^+i by performing a half Dehn
twist to the left (see [6,10]).

There is a natural map Bn —> Mod(6') sending a braid (3 e Bn to a mapping class ̂  e Mod(6').
Moreover (3 determines a canonical lift ̂  of ^ to the -^-covering space of S, by the requirement
that ̂  fixes the preimage of 9D2 pointwise.

There is a natural basis ti = [9Ui] for ^1(6', Z), on which (3 acts by f3(ti) = taz, and
b = rankJf is just the number of cycles of the permutation (T.

Links. Let M be the fibered 3-manifold with fiber S and monodromy ^. There is a natural
model for M as a link complement M = S3 - L(f3) in the 3-sphere. To construct the link L(f3),
simply close the braid /3 while passing it through an unknot a (see Fig. 1 of Section 1). The
surface S embeds into M as a disk spanning a, punctured by the n strands of f3.

The meridians of components of L(f3) give a natural basis for H\(M,T)\ in particular the
meridian of a corresponds to the natural lifting ̂  of '0.

Train tracks and braids on three strands. We will now compute 0p(t, u) and F in three
examples, where F is the fibered face carrying S.

These examples all come from braids f3 in the semigroup of B^ generated by a\ and a^1.
This semigroup is easy to work with because it preserves a pair of train tracks r\, T2, where TI is
shown in Fig. 4 and r^ is the reflection of r\ through a vertical line.

As an additional simplification, each train track r^ is a spine for 5, and thus the Thurston and
Teichmtiller norms agree in these examples: we have

MT=\x(S)\=\xW\=\X(r)\=We,

for all fibers [S] e M+ • F (see Note (2) of Section 6). In particular, the fibered face F coincides
with a face of the Teichmtiller norm ball, so it is easily computed from Qp.

I. The simplest pseudo-Anosov braid. For the first example, consider the simplest pseudo-
Anosov braid, (3 = (T\(T^ . Its three strands are permuted cyclically, so H = Hom^^, Z)^, Z)
is of rank one, generated by t = t\ +1^ + ^3.
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Fig. 6. The links 6J = LCo-io-^1) and 9Ji = LCcrio-^3).

The train tracks r\ and T2 differ only in their switching conditions, so their vertex and edge
modules Zj^, Z^]^ are naturally identified. Using this identification, we can express the action
of o-i, o-2~1 on these modules as 4 x 4 and 6 x 6 matrices of Laurent polynomials.

Now the determinant formula gives Op as the characteristic polynomial for the action of ^ on
the 2-dimensional subspace

KerZW^ZM^Z^.

By restricting a\ and o^1 to this subspace, and projecting to the coordinates for the edge subset
E ' = {a, c}, we obtain the simpler 2 x 2 matrices:

( t ^ -1^ ( 1 ° \[o i ) 9 ^ (t)=^-1 f-1)^t)=

Restricting to Ker-D(t)* removes the factor of det(nJ - PyW) from det(nJ - PEW), and
therefore we have:

(11.1) 0F(t,u)=det{uI-f3(t)),

where (3(t) is the appropriate product of the matrices above.
Setting f3(t) = (7\(t)a^(t), we find the Teichmuller polynomial is given by

0F(t,u)=l-u(l-\-t-}-t~1) +U2.

Its Newton polygon is a diamond, and its norm is:

||(̂ )||̂  =max(|24|22/|).

(Here (s, y) denotes the cohomology class evaluating to s and y on the meridian of a and /?
respectively.)

The fibered face F C H^(M, R) is the same as the face of the Teichmuller norm ball meeting
M+ • [S] = M+ • (0,1), and therefore F = [ 1/2} x [-1/2,1/2] in these (5, y) -coordinates.

The closed braid L(/3) can be simplified to a projection with 6 crossings (see Fig. 6), and it is
denoted 6j in Rolfsen's tables [41]. In this projection, the two components of L(/3) are clearly
interchangeable. In fact, the Thurston norm ball for S3 - L(f3) has 4 faces, all fibered, and

(s,y)\\T-2\s +2\y\

foT2i\\(s,y)eH\M,R).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



554 C.T. McMULLEN

Fig. 7. Norm ball and expansion factor.

II. The Thurston and Alexander norms. The braid (3 = o\(7^ also permutes its strands
cyclically. By (11.1) in this case we obtain

0F(t, U) = t~2 - u(t + 1 + t~1 + t~2 + t~3) + U2.

Fig. 7 shows the Teichmtiller norm ball for this example in (5, y) coordinates, along with the
graph y = \ogk(s), where k(s) eigenvalue of ^ on MCs(S) discussed in Section 8. The graph
r is also the level set log K((J)) = 1 of the expansion function on R+ • F. This picture illustrates
the fact that r is convex, that the cones over F and r coincide, and that K((/)) tends to infinity
at<9F.

To compute the full Thurston norm ball for this example, we appeal to the inequality [ | < / > H A ^
\\(f) | \T between the Alexander and Thurston norms (see Section 7). Because of this inequality,
the two norms agree if they coincide on the extreme points of the Alexander norm ball. Now a
straightforward computation gives

AM(t, U) = t~2 + u(t - 1 + t~1 - t~2 + t~3) +

in the present example. The polynomials AM and Op have the same Newton polygon, and thus
the Alexander, Thurston and Teichmtiller norms all coincide on F. But the endpoints of ±F are
the extreme points of the Alexander norm ball, and therefore

\\(s,y)\\T=\\(s,y)\\A=m^(\2s+2y\,\4s\)

foT3i\\(s,y)^Hl(M,R).
For example, the simplest surface spanning both components of L({3) has genus g = 2, since

||(±l,±l)||r=4.
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Finally we remark that the closed braid L(a\a^3) is actually the same as the link 9ji of
Rolfsen's tables (see Fig. 6). We have thus established:

The Thurston and Alexander norms coincide for the link 9jp

In [33] we found that the two norms coincide for all examples in Rolfsen's table of links with
10 or fewer crossings, except 9|p and possibly 92^ 9jo, 9jp and 9^,. The link 9ji can now be
removed from the list of possible exceptions.

III. Pure braids. We conclude by discussing pure braids f3 in the semigroup generated by
the full twists a2, a^"2. A pure braid acts trivially on Hi(S, Z), and thus the Thurston norm ball
is 4-dimensional. We take (ti, t^ ^3, u) as a basis for H^(M, Z), where ti is the meridian of the
zth strand of f3 and u is the meridian of a.

By cutting down to the kernel of D(t)* on Z^]^ as before, we obtain an action of the full
twists on a rank 2 module over Z^i,^,^]. Setting (t^t^t^) = (a,6,c) to improve readability,
we find that o\ and a^2 act on this module by:

2 fab ab+b\ -2 _ ( 1 0 \
^-{O 1 ) - a2 -^- l+&- lc- l b-^c-1)'

For a concrete example, we consider the pure braid f3 = (7\o^ whose link L(f3) appears in
Fig. 1 of Section 1. Applying (11.1) with the matrices above, we find its Teichmuller polynomial
is given by:

0F(a,b,c,u)

= — — - — — ( l - b 4 c 3 ( l + c + a c ) + ( a + 1)6(1 +c)(l + &c)(l + ̂ c2))+^2.
b^c3 yc5 v

The projection of the fibered face F for this example to H1 (S, R) is shown in Fig. 2 of Section 1.
Since the coefficient of u° is a^c"3 = t0'"2'"^, we find the Thurston norm on R+ • F is

given by

| |(S,^)||T=-51+252+353+2^

For example, [|(-1,1, -1, I )HT = 2, showing that L(f3) is spanned by a Seifert surface of genus 0
running in alternating directions along the strands of f3. It is interesting to locate this surface
explicitly in Fig. 1.

Notes.
(1) For a general construction of pseudo-Anosov mappings, including the examples above as

special cases, see [39,15].
(2) The Thurston norm of the 62 is also discussed in [17, p. 264] and [38, Ex. 2.2].

Appendix A. Positive polynomials and Perron-Frobenius matrices

This Appendix develops the theory of Perron-Frobenius matrices over a ring of Laurent
polynomials. These results are used in Sections 5-8.

Laurent polynomials. Let (^ i , . . . , Sb) be coordinates for s C M5, and let

(t^..^tb)={es\...,esb)
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be coordinates for t = e8 in R^. An integral Laurent polynomial p(t) is an element of the
ring Z[^1,.. .,^1] generated by the coordinates ti and their inverses. We can write such a
polynomial as

(A.I) P(t)=^aatoi,
a^A

where the exponents a = (ai , . . . , ab) range over a finite set A c Z6, where t^ = t^ • • • t^\ and
where the coefficients da € Z are nonzero.

Newton polygons. The Newton polygon N(p) C M6 of p(t) = ̂  a^ is the convex hull
of the set of exponents A c Z^.

If we think of (si) as a basis for an abstract real vector space V, then N(p) also naturally
resides in V. Each monomial t^ appearing in p(t) determines an open dual cone C^) c V*
consisting of the linear maps (j): V —> R that achieve their maximum on N(p) precisely at a.
Equivalently,

C(t^) ={(f): <^(a) > (f)(f3) for all (3 + a in A}.

Positivity and Perron-Frobenius. A Laurent polynomial p(t) -^ 0 is positive if it has
coefficients a a > 0.

Let

P(t) = Pi,(t) e M,(z[^1,.. .,^1])
be an n x n matrix of Laurent polynomials, with each entry either zero or positive. If for some
k > 0, every entry of P^(f) is a positive Laurent polynomial, we say P(t) is an (integral) Perron-
Frobenius matrix. By convention, we exclude the case where n == 1 and P(l) = [1].

The matrix P(t) is a traditional Perron-Frobenius matrix for every fixed value t e R^. In
particular, the largest eigenvalue E(t) of P(t) is simple, real and positive [23]. Since P(l) is an
integral matrix (^ [1]), we always have £'(1) > 1.

The main result of this section is:

THEOREM A.I. - Let E(t) be the leading eigenvalue of a Perron-Frobenius matrix P(t).
Then:

(A) The function f(s) = \ogE(e8) is a convex function ofs e Rb.
(B) The graph ofy == f(s) meets each ray from the origin in M6 x R at most once.
(C) The rays passing through the graph ofy = f(s) coincide with the dual cone C(ud) of the

polynomial

0F(t, u)=ud+ &i(Q^-1 + ... + bd(t\

for any factor 0p(t, u) ofdei(ul - P(t)) satisfying Opd, E(t)) = 0.

Positivity and convexity. In addition to Laurent polynomials, it is also useful to consider
finite power sums p(t) = ̂  a^ with real exponents a G R\ and real coefficients a^ € R. As
for a Laurent polynomial, we say a nonzero power sum is positive if its coefficients are positive.

PROPOSITION A.2. - Ifp(t) =- Y, a^ is a positive power sum, then

f(s)=\ogp(es)

is a convex function ofs^.
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Proof. - By restricting f(s) to a line and applying a translation, we are reduced to showing
/"(O) ̂  0 when p(t) is a power sum in one variable t. But then

.//^ _ (S ̂ XE a2^) - (E o^q)2 ^ „
J (0)-————(E^————^ 9

by Cauchy-Schwarz. D

Proof of Theorem A.I (A). - Since E(t) agrees with the spectral radius of P(t), and Pzj(t) ̂  0,
we have

/ \ ] ' / n

E(t)= lim ^^(0 .
n—^oo V z-^ •7 /

v -ij /

Therefore \ogE(e8) = limn"1 \ogEn(e8), where En(t) = ]̂  P^jW- Since the nonzero entries
of P(t) are positive, En(t) is a positive Laurent polynomial, and thus log -En(e5) is convex by the
preceding result. Therefore the limit f(s) == \ogE(e8) is also convex.

Proof of Theorem A.l(B). - Let (5, y) be coordinates on R^ x R, and let Rbea. ray through the
origin. (B) is immediate when R is contained in y-oxis. Dispensing with that case, we can pass
to functions of a single variable t = e8 by restricting to the plane spanned R and the ^/-axis, and
we can assume R is the graph of a linear function of the form y = 75, for s > 0.

Now the function f(s) is convex and real analytic. Thus f(s) is either strictly convex or affine
(f(s) = as + b).

To treat the affine case, note b = f(0) = log£'(l) > 0, since the leading eigenvalue of the
integral Perron-Frobenius matrix P(l) is greater than one. Thus the equation y = 75 = f(s) =
as + b has at most one solution, and we are done.

Now assume f(t) is strictly convex. Recall that f(t) is a limit of the convex functions
fn(t) = n~1 \ogEn(t). If the ray R crosses the graph of y = f(s) twice, then it also crosses
the graph of y = fn(s) twice for some finite value of n.

Fixing such an n, let (3n = /^/^ where a^ is the term with largest exponent appearing in the
power sum En(t). Then /^(s) —^ f3n as s —^ oo, so by strict convexity we have fn(s) < /3n for all
finite s. Since fn(s) has more than one term, and 0/3 > 1, we also have:

(A.2) /„(.)= l^g£tl(es)>^+l^g^>^.
n n

Now suppose y = fn(s) crosses the line y = 75 twice. Then by convexity, the slopes satisfy
f3n > fnW > 7 at the second intersection point. But (A.2) then implies fn(s) > 75 for all s > 0,
so in fact the ray y = 75 has no intersections with the graph of y = fn(s).

ProofofTheorem A.I(C). - Passing again to functions of a single variable t = e8, we consider
the condition that the ray y = 75, s > 0, passes through the graph of y = E(t).

By assumption, u = E(t) is the largest root of the equation

0F(t,u) =^a^ r^ = u^ + 6i(0^-1 + • • • + bd(t) = 0.

Since the coefficients bi(t) are homogeneous of degree i in the roots of 0, we have

^(Oxsupl^)!17'.
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2/1 /7 5

Fig. 8. A ray crossing the eigenvalue graph y = f(s) = log E(e8).

In particular, as t —^ +00, E(t) grows like t^ with

(A.3) f3=supa/(d-i\

the sup taken over all monomials t^u1 appearing in 0 other than ud. Thus as s —^ oo the convex
function y = f(s) = log E(es) is asymptotic to a linear function of the form y = f3s + 6.

Now consider the ray R through (1,7), with equation y = 75, s > 0. By (B), this ray meets
y = f(s) iff 7 > (3 (see Fig. 8). By (A.3), we have 7 > f3 iff

6^7 > a + Z7

for all monomials t^u'1 in 0 or/z^r than ud. Thus J? meets ^/ = f(s) iff the linear functional

<j)(a, i) = 1 • a + 7 • z

achieves its maximum on the Newton polygon N(0) at the vertex (a, i) = (0, d) coming from ud.
This condition says exactly that R belongs to the dual cone (7(z^). D
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