Annales scientifiques de l'É.N.S.

CURTIS T. MCMULLEN

Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations

Annales scientifiques de l'É.N.S. 4^e série, tome 33, nº 4 (2000), p. 519-560 http://www.numdam.org/item?id=ASENS_2000_4_33_4_519_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 2000, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

POLYNOMIAL INVARIANTS FOR FIBERED 3-MANIFOLDS AND TEICHMÜLLER GEODESICS FOR FOLIATIONS

BY CURTIS T. MCMULLEN¹

ABSTRACT. – Let $F \subset H^1(M^3, \mathbb{R})$ be a fibered face of the Thurston norm ball for a hyperbolic 3-manifold M.

Any $\phi \in \mathbb{R}_+ \cdot F$ determines a measured foliation \mathcal{F} of M. Generalizing the case of Teichmüller geodesics and fibrations, we show \mathcal{F} carries a canonical *Riemann surface* structure on its leaves, and a transverse *Teichmüller flow* with pseudo-Anosov expansion factor $K(\phi) > 1$.

We introduce a polynomial invariant $\Theta_F \in \mathbb{Z}[H_1(M,\mathbb{Z})/\text{torsion}]$ whose roots determine $K(\phi)$. The Newton polygon of Θ_F allows one to compute fibered faces in practice, as we illustrate for closed braids in S^3 . Using fibrations we also obtain a simple proof that the shortest geodesic on moduli space \mathcal{M}_g has length O(1/g). © 2000 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Soit M une variété hyperbolique de dimension 3, et $F \subset H^1(M^3, \mathbb{R})$ une face fibrée de la boule unité dans la norme de Thurston.

Chaque $\phi \in \mathbb{R}_+ \cdot F$ détermine un feuilletage mesuré \mathcal{F} de M. Généralisant le cas des géodésiques de Teichmüller et des fibrations, nous démontrons que \mathcal{F} porte une structure complexe canonique sur les feuilles, et admet un *flot transverse de Teichmüller*, avec facteur d'expansion pseudo-Anosov $K(\phi) > 1$.

Nous introduisons un invariant polynomial $\Theta_F \in \mathbb{Z}[H_1(M,\mathbb{Z})/\text{torsion}]$, dont les racines déterminent $K(\phi)$. Le polygone de Newton de Θ_F permet le calcul pratique des faces fibrées, comme nous l'illustrons pour les tresses fermées dans S^3 . Nous obtenons aussi, en utilisant les fibrations, une preuve simple du fait que la géodésique la plus courte sur l'espace de modules \mathcal{M}_g est de longueur O(1/g). © 2000 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

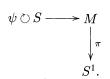
Every fibration of a 3-manifold M over the circle determines a closed loop in the moduli space of Riemann surfaces. In this paper we introduce a polynomial invariant for M that packages the Teichmüller lengths of these loops, and we extend the theory of Teichmüller geodesics from fibrations to measured foliations.

Riemann surfaces and fibered 3-manifolds. Let M be a compact oriented 3-manifold, possibly with boundary. Suppose M fibers over the circle $S^1 = \mathbb{R}/\mathbb{Z}$, with fiber S and pseudo-

¹ Research partially supported by the NSF.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. – 0012-9593/00/04/© 2000 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

Anosov monodromy $\psi: S \to S$:



Then there is:

• a natural complex structure J_s along the fibers $S_s = \pi^{-1}(s)$, and

• a flow $f: M \times \mathbb{R} \to M$, circulating the fibers at unit speed,

such that the conformal distortion of f is minimized.

Indeed, the mapping-class ψ determines a loop in the moduli space of complex structures on S, represented by a unique Teichmüller geodesic

$$\gamma: S^1 \to \mathcal{M}_{q,n}.$$

The complex structure on the fibers is given by $(S_s, J_s) = \gamma(s)$. The time t map of the flow f is determined by the condition that on each fiber, $f_t: (S_s, J_s) \to (S_{s+t}, J_{s+t})$ is a Teichmüller mapping. Outside a finite subset of S_s , f_t is locally an affine stretch of the form

(1.1)
$$f_t(x+iy) = K^t x + iK^{-t} y,$$

where K > 1 is the *expansion factor* of the monodromy ψ . The Teichmüller length of the loop γ in moduli space is log K.

This well-known interplay between topology and complex analysis was developed by Teichmüller, Thurston and Bers (see [4]). The fibration π , the resulting geometric structure on M and the expansion factor K are all determined (up to isotopy) by the cohomology class $\phi = [S] \in H^1(M, \mathbb{R})$.

Fibered faces. In this paper we extend the theory of Teichmüller geodesics from fibrations to measured foliations.

The Thurston norm $\|\phi\|_T$ on $H^1(M, \mathbb{R})$ leads to a coherent picture of all the cohomology classes represented by fibrations and measured foliations of M. To describe this picture, we begin by defining the Thurston norm, which is a generalization of the genus of a knot; it measures the minimal complexity of an embedded surface in a given cohomology class. For an integral cohomology class ϕ , the norm is given by:

$$\|\phi\|_T = \inf\{|\chi(S_0)|: (S, \partial S) \subset (M, \partial M) \text{ is dual to } \phi\},\$$

where $S_0 \subset S$ excludes any S^2 or D^2 components of S. The Thurston norm is extended to real classes by homogeneity and continuity. The unit ball of the Thurston norm is a polyhedron with rational vertices.

An embedded, oriented surface $S \subset M$ is a *fiber* if it is the preimage of a point under a fibration $M \to S^1$. Any fiber minimizes $|\chi(S)|$ in its cohomology class. Moreover, [S] belongs to the cone $\mathbb{R}_+ \cdot F$ over an open *fibered face* F of the unit ball in the Thurston norm. Every integral class in $\mathbb{R}_+ \cdot F$ is realized by a fibration $M^3 \to S^1$; more generally, every real cohomology class $\phi \in \mathbb{R}_+ \cdot F$ is represented by a *measured foliation* \mathcal{F} of M. Such a foliation is determined by a closed, nowhere-vanishing 1-form ω on M, with $T\mathcal{F} = \text{Ker}\,\omega$ and with measure

$$\mu(T) = \left| \int_{T} \omega \right|$$

4^e Série – Tome 33 – 2000 – N° 4

520

for any connected transversal T to \mathcal{F} . For an integral class, the leaves of \mathcal{F} are closed and come from a fibration $\pi: M \to S^1$ with $\omega = \pi^*(dt)$.

Generalizing the case of fibrations, we will show (Section 9):

THEOREM 1.1. – For any measured foliation \mathcal{F} of M, there is a complex structure J on the leaves of \mathcal{F} , a unit speed flow

$$f:(M,\mathcal{F})\times\mathbb{R}\to(M,\mathcal{F}),$$

and a K > 1, such that f_t maps leaves to leaves by Teichmüller mappings with expansion factor $K^{|t|}$.

The foliation \mathcal{F} , the complex structure J along its leaves, the transverse flow f and the stretch factor K are all determined up to isotopy by the cohomology class $[\mathcal{F}] \in H^1(M, \mathbb{R})$.

Here f has unit speed if it is generated by a vector field v with $\omega(v) = 1$, where ω is the defining 1-form of \mathcal{F} . The complex structure J makes each leaf \mathcal{F}_{α} of \mathcal{F} into a Riemann surface, and

$$f_t: \mathcal{F}_\alpha \to \mathcal{F}_\beta$$

is a Teichmüller mapping with expansion factor K if

$$\mu(f_t) = \frac{\bar{\partial}f_t}{\partial f_t} = \left(\frac{K^2 - 1}{K^2 + 1}\right) \frac{\bar{q}}{|q|}$$

for some holomorphic quadratic differential $q(z) dz^2$ on \mathcal{F}_{α} . Away from the zeros of q, such a mapping has the form of an affine stretch as in (1.1).

Quantum geodesics. Theorem 1.1 provides, for a general measured foliation \mathcal{F} with typical leaf S, a 'quantum geodesic'

$$\gamma: \mathbb{R}/H_1(M,\mathbb{Z}) \to \operatorname{Teich}(S)/H_1(M,\mathbb{Z}).$$

Here $H_1(M,\mathbb{Z})$ acts on \mathbb{R} by translation by the periods Π of ω , and on Teich(S) by monodromy around loops in M. Generically Π is a dense subgroup of \mathbb{R} , in which case \mathbb{R}/Π and Teich(S)/ $H_1(M,\mathbb{Z})$ are 'quantum spaces' in the sense of Connes [12]. The map γ plays the role of a closed Teichmüller geodesic for the virtual mapping class determined by \mathcal{F} .

The Teichmüller polynomial. Next we introduce a polynomial invariant Θ_F for a fibered face $F \subset H^1(M, \mathbb{R})$. This polynomial determines the Teichmüller expansion factors $K(\phi)$ for all $\phi = [\mathcal{F}] \in \mathbb{R}_+ \cdot F$.

Like the Alexander polynomial, Θ_F naturally resides in the group ring $\mathbb{Z}[G]$, where $G = H_1(M,\mathbb{Z})/\text{torsion}$. Observe that $\mathbb{Z}[G]$ can be thought of as a ring of complex-valued functions on the character variety $\hat{G} = \text{Hom}(G, \mathbb{C}^*)$, with

$$\left(\sum a_g \cdot g\right)(\rho) = \sum a_g \rho(g).$$

To define Θ_F , we first show F determines a 2-dimensional lamination $\mathcal{L} \subset M$, transverse to every fiber $[S] \in \mathbb{R}_+ \cdot F$ and with $S \cap \mathcal{L}$ equal to the expanding lamination for the monodromy $\psi: S \to S$. Next we define, for every character $\rho \in \widehat{G}$, a group of twisted cycles $Z_2(\mathcal{L}, \mathbb{C}_\rho)$. Here a *cycle* μ is simply an additive, holonomy-invariant function $\mu(T)$ on compact, open transversals Tto \mathcal{L} , with values in the complex line bundle specified by ρ .

The *Teichmüller polynomial* $\Theta_F \in \mathbb{Z}[G]$ defines the largest hypersurface $V \subset \widehat{G}$ such that

(1.2)
$$\dim Z_2(\mathcal{L}, \mathbb{C}_{\rho}) > 0 \quad \text{for all } \rho \in V.$$

More precisely, we associate to \mathcal{L} a module $T(\widetilde{\mathcal{L}})$ over $\mathbb{Z}[G]$, and (Θ_F) is the smallest principal ideal containing all the minor determinants in a presentation matrix for $T(\widetilde{\mathcal{L}})$. Thus Θ_F is well-defined up to multiplication by a unit $\pm g \in \mathbb{Z}[G]$.

Information packaged in Θ_F . Let $\Theta_F = \sum a_g \cdot g$ be the Teichmüller polynomial of a fibered face F of the Thurston norm ball in $H^1(M, \mathbb{R})$. In Sections 3–6 we will show:

- (1) The Teichmüller polynomial is symmetric; that is, $\Theta_F = \sum a_g \cdot g^{-1}$ up to a unit in $\mathbb{Z}[G]$.
- (2) For any fiber $[S] = \phi \in \mathbb{R}_+ \cdot F$, the expansion factor $k = K(\phi)$ of its monodromy ψ is the largest root of the polynomial equation

(1.3)
$$\Theta_F(k^{\phi}) = \sum a_g k^{\phi(g)} = 0.$$

- (3) Eq. (1.3) also determines the expansion factor for any measured foliation $[\mathcal{F}] = \phi \in \mathbb{R}_+ \cdot F.$
- (4) The function $1/\log K(\phi)$ is real-analytic and strictly concave on $\mathbb{R}_+ \cdot F$.
- (5) The cone $\mathbb{R}_+ \cdot F$ is dual to a vertex of the Newton polygon

$$N(\Theta_F) = (\text{the convex hull of } \{g: a_q \neq 0\}) \subset H_1(M, \mathbb{R}).$$

To see the relation of Θ_F to expansion factors, note that a fibration $M \to S^1$ with fiber S determines a measured lamination $(\lambda, \mu_0) \in \mathcal{ML}(S)$, such that the transverse measure μ_0 on λ is expanded by a factor K > 1 under monodromy. Thus the suspension of μ_0 gives a cycle $\mu \in Z_2(\mathcal{L}, \mathbb{C}_\rho)$ with character

$$\rho(\gamma) = K^{[S] \cdot [\gamma]}$$

for loops $\gamma \subset M$. Therefore $\Theta_F(\rho) = 0$ (as in (1.2) above), and thus K can be recovered from the zeros of Θ_F .

The relation between F and the Newton polygon of Θ_F ((1) above) comes from the fact that $K(\phi) \to \infty$ as $\phi \to \partial F$.

A formula for $\Theta_F(t, u)$. One can also approach the Teichmüller polynomial from a 2dimensional perspective. Let $\psi: S \to S$ be a pseudo-Anosov mapping, and let (t_1, \ldots, t_b) be a multiplicative basis for

$$H = \operatorname{Hom}(H^1(S,\mathbb{Z})^{\psi},\mathbb{Z}) \cong \mathbb{Z}^b,$$

where $H^1(S, \mathbb{Z})^{\psi}$ is the ψ -invariant cohomology of S. (When ψ acts trivially on cohomology, we can identify H with $H_1(S, \mathbb{Z})$.) By evaluating cohomology classes on loops, we obtain a natural map $\pi_1(S) \to H$. Choose a lift

$$\widetilde{\psi}:\widetilde{S}\to\widetilde{S}$$

of ψ to the *H*-covering space of *S*.

Let $M = S \times [0, 1] / \langle (x, 1) \sim (\psi(x), 0) \rangle$ be the mapping torus of ψ , let

$$G = H_1(M, \mathbb{Z})/\text{torsion} \cong H \oplus \mathbb{Z},$$

4^e Série – Tome 33 – 2000 – N° 4

and let $F \subset H^1(M, \mathbb{R})$ be the fibered face with $[S] \in \mathbb{R}_+ \cdot F$. Then we can regard Θ_F as a Laurent polynomial

$$\Theta_F(t,u) \in \mathbb{Z}[G] = \mathbb{Z}[H] \oplus \mathbb{Z}[u] = \mathbb{Z}[t_1^{\pm 1}, \dots, t_b^{\pm 1}, u^{\pm 1}],$$

where u corresponds to $[\tilde{\psi}]$.

To give a concrete expression for Θ_F , let E and V denote the edges and vertices of an invariant train track $\tau \subset S$ carrying the expanding lamination of ψ . Then $\tilde{\psi}$ acts by matrices $P_E(t)$ and $P_V(t)$ on the free $\mathbb{Z}[H]$ -modules generated by the lifts of E and V to \tilde{S} . In terms of this action we show (Section 3):

(6) The Teichmüller polynomial is given by

$$\Theta_F(t,u) = \frac{\det(uI - P_E(t))}{\det(uI - P_V(t))}.$$

Using this formula, many of the properties of Θ_F follow from the theory of Perron–Frobenius matrices over a ring of Laurent polynomials, developed in Appendix A.

Fixed-points on $\mathbb{PML}_s(S)$. Let $\mathcal{ML}_s(S)$ denote the space of measured laminations $\Lambda = (\lambda, \mu)$ on S twisted by $s \in H^1(S, \mathbb{R})$, meaning μ transforms by $e^{s(\gamma)}$ under $\gamma \in \pi_1(S)$.

The mapping-class ψ acts on $\mathcal{ML}_s(S)$ for all $s \in H^1(S, \mathbb{R})^{\psi}$, once we have chosen the lift ψ . As in the untwisted case, ψ has a unique pair of fixed-points $[\Lambda_{\pm}]$ in $\mathbb{PML}_s(S)$, whose supports λ_{\pm} are independent of s. In Section 8 we show:

(7) The eigenvector $\Lambda_+ \in \mathcal{ML}_s(S)$ satisfies

$$\psi \cdot \Lambda_+ = k(s)\Lambda_+,$$

where u = k(s) > 0 is the largest root of the polynomial $\Theta_F(e^s, u) = 0$. The function $\log k(s)$ is convex on $H^1(S, \mathbb{R})^{\psi}$.

Short geodesics on moduli space. It is known that the shortest geodesic loop on moduli space \mathcal{M}_g has Teichmüller length $L(\mathcal{M}_g) \simeq 1/g$ (see [40]). In Section 10 we show mapping-classes with invariant cohomology provide a natural source of such short geodesics.

More precisely, let $\psi: S \to S$ be a pseudo-Anosov mapping on a closed surface of genus $g \ge 2$, leaving invariant a primitive cohomology class

$$\xi_0: \pi_1(S) \to \mathbb{Z}.$$

Let $\widetilde{S} \to S$ be the corresponding \mathbb{Z} -covering space, with deck group generated by $h: \widetilde{S} \to \widetilde{S}$, and fix a lift $\widetilde{\psi}$ of ψ to \widetilde{S} . Then for all $n \gg 0$, the surface $R_n = \widetilde{S}/\langle h^n \widetilde{\psi} \rangle$ has genus $g_n \asymp n$, and $h: \widetilde{S} \to \widetilde{S}$ descends to a pseudo-Anosov mapping-class $\psi_n: R_n \to R_n$.

This renormalization construction gives mappings ψ_n with expansion factors satisfying

$$K(\psi_n) = K(\phi)^{1/n} + O(1/n^2),$$

and hence produces closed Teichmüller geodesics of length

$$L(\psi_n) = \frac{L(\psi)}{n} + \mathcal{O}(n^{-2}) \asymp \frac{1}{q_n}.$$

This estimate is obtained by realizing the surfaces R_n as fibers in the mapping torus of ψ ; see Section 10.

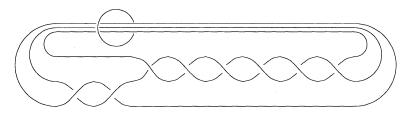


Fig. 1. The 4 component fibered link $L(\beta)$, for the pure braid $\beta = \sigma_1^2 \sigma_2^{-6}$.

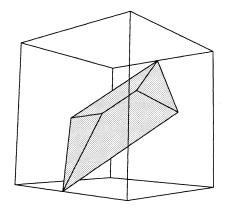


Fig. 2. The fibered face of Thurston norm ball for $M = S^3 - L(\beta)$.

Closed braids. The Teichmüller polynomial leads to a practical algorithm for computing a fibered face $F \subset H^1(M, \mathbb{R})$ from the dynamics on a particular fiber $[S] \in \mathbb{R}_+ \cdot F$.

Closed braids in S^3 provide a natural source of fibered 3-manifolds to which this algorithm can be applied, as we demonstrate in Section 11. For example, Fig. 1 shows a 4-component link $L(\beta)$ obtained by closing the braid $\beta = \sigma_1^2 \sigma_2^{-6}$ after passing it through the unknot α . The disk spanned by α meets β in 3 points, providing a fiber $S \subset M = S^3 - L(\beta)$ isomorphic to a 4-times punctured sphere.

The corresponding fibered face is a 3-dimensional polyhedron

$$F \subset H^1(M, \mathbb{R}) \cong \mathbb{R}^4;$$

its projection to $H^1(S, \mathbb{R}) \cong \mathbb{R}^3$ is shown in Fig. 2. Details of this example and others are presented in Section 11.

Comparison with the Alexander polynomial. In [33] we defined a norm $\|\cdot\|_A$ on $H^1(M,\mathbb{R})$ using the Alexander polynomial of M, and established the inequality

$$\|\phi\|_A \leqslant \|\phi\|_T$$

between the Alexander and Thurston norms (when $b_1(M) > 1$). This inequality suggested that the Thurston norm should be refined to polynomial invariant, and Θ_F provides such an invariant for the fibered faces of the Thurston norm ball.

The Alexander polynomial Δ_M and the Teichmüller polynomial Θ_F are compared in Table 1. Both polynomials are attached to modules over $\mathbb{Z}[G]$, namely A(M) and $T(\widetilde{\mathcal{L}})$. These modules give rise to groups of (co)cycles with twisted coefficients, and Δ and Θ_F describe the locus of characters $\rho \in \widehat{G}$ where dim $Z^1(M, \mathbb{C}_{\rho}) > 1$ and dim $Z_2(\mathcal{L}, \mathbb{C}_{\rho}) > 0$ respectively.

 4^e série – tome $33 - 2000 - N^\circ 4$

Alexander	Teichmüller
3-manifold M	Fibered face F for M
Alexander module $A(M)$	Teichmüller module $T(\widetilde{\mathcal{L}})$
$\operatorname{Hom}(A(M),B) = Z^{1}(M,B)$	$\operatorname{Hom}(T(\widetilde{\mathcal{L}}),B) = Z_2(\widetilde{\mathcal{L}},B)$
Alexander polynomial Δ_M	Teichmüller polynomial Θ_F
Alexander norm on $H^1(M,\mathbb{Z})$	Thurston norm on $H^1(M,\mathbb{Z})$
$\ \phi\ _A = b_1(\operatorname{Ker}\phi) + p(M)$	$\ \phi\ _T = \inf\{ \chi(S) : [S] = \phi\}$
$\ \phi\ _A = \ \phi\ _T$ for the cohomology class of a fibration $M \to S^1$	
Extended Torelli group of S acts on	Extended Torelli group acts on
$H^1(S)$ with twisted coefficients	$\mathcal{ML}(S)$ with twisted coefficients

Table 1

The polynomials Δ and Θ_F are related to the Alexander and Thurston norms on $H^1(M, \mathbb{R})$, and these norms agree on the cohomology classes of fibrations. Moreover, if the lamination \mathcal{L} for the fibered face F has transversally oriented leaves, then Δ_M divides Θ_F and F is also a face of the Alexander norm ball (Section 7).

From a 2-dimensional perspective, the polynomials attached to a fibered manifold M can be described in terms of a mapping-class $\psi \in Mod(S)$. The description is most uniform for ψ in the *Torelli group* Tor(S), the subgroup of Mod(S) that acts trivially on $H = H_1(S, \mathbb{Z})$. By providing ψ with a lift $\tilde{\psi}$ to the H-covering space of S, we obtain the *extended Torelli group* $\widetilde{Tor}(S)$, a central extension satisfying:

$$0 \to H_1(S, \mathbb{Z}) \to \widetilde{\mathrm{Tor}}(S) \to \mathrm{Tor}(S) \to 0.$$

The lifted mappings $\psi \in \operatorname{Tor}(S)$ preserve twisted coefficients for any $s \in H^1(S, \mathbb{R})$, so we obtain a *linear* representation of $\operatorname{Tor}(S)$ on $H^1(S, \mathbb{C}_s)$ and a *piecewise-linear* action on $\mathcal{ML}_s(S)$. For example, when S is a sphere with n + 1 boundary components, the pure braid group P_n is a subgroup of $\operatorname{Tor}(S)$, and its action on $H^1(S, \mathbb{C}_s)$ is the *Gassner representation* of P_n [6].

Characteristic polynomials for these actions then give the Alexander and Teichmüller invariants Δ_M and Θ_F .

Other foliations. Gabai has shown that every norm-minimizing surface $S \subset M$ is the leaf of a taut foliation \mathcal{F} (see [21]), and the construction of pseudo-Anosov flows transverse to taut foliations is a topic of current research. It would be interesting to obtain polynomial invariants for these more general foliations, and in particular for the non-fibered faces of the Thurston norm ball.

Notes and references. Contributions related to this paper have been made by many authors.

For a pseudo-Anosov mapping with transversally orientable foliations, Fried investigated a twisted Lefschetz zeta-function $\zeta(t, u)$ similar to $\Theta_F(t, u)$. For example, the homology directions of these special pseudo-Anosov mappings can be recovered from the support of $\zeta(t, u)$, just as $\mathbb{R}_+ \cdot F$ can be recovered from Θ_F ; and the concavity of $1/\log(K(\phi))$ holds in a general setting. See [18,20].

Laminations, foliations and branched surfaces with affine invariant measures have been studied in [25,13,31,8,38] and elsewhere. The Thurston norm can also be studied using taut

foliations [22], branched surfaces [37,34] and Seiberg–Witten theory [27]. Another version of Theorem 1.1 is presented by Thurston in [45, Theorem 5.8].

Background on pseudo-Anosov mappings, laminations and train tracks can be found, for example, in [16], [42, §8.9], [44,4,24,5] and the references therein. Additional notes and references are collected at the end of each section.

2. The module of a lamination

Laminations. Let λ be a Hausdorff topological space. We say λ is an *n*-dimensional *lamination* if there exists a collection of compact, totally disconnected spaces K_{α} such that λ is covered by open sets U_{α} homeomorphic to $K_{\alpha} \times \mathbb{R}^{n}$.

The *leaves* of λ are its connected components.

A compact, totally disconnected set $T \subset \lambda$ is a *transversal* for λ if there is an open neighborhood U of T and a homeomorphism

(2.1)
$$(U,T) \cong (T \times \mathbb{R}^n, T \times \{0\}).$$

Any compact open subset of a transversal is again a transversal.

Modules and cycles. We define the *module of a lamination*, $T(\lambda)$, to be the \mathbb{Z} -module generated by all transversals [T], modulo the relations:

(i) [T] = [T'] + [T''] if T is the disjoint union of T' and T''; and

(ii) [T] = [T'] if there is a neighborhood U of $T \cup T'$ such (2.1) holds for both T and T'.

Equivalently, (ii) identifies transversals that are equivalent under holonomy (sliding along the leaves of the lamination).

For any \mathbb{Z} -module B, we define the space of *n*-cycles on an *n*-dimensional lamination λ with values in B by:

$$Z_n(\lambda, B) = \operatorname{Hom}(T(\lambda), B).$$

For example, cycles $\mu \in Z_n(\lambda, \mathbb{R})$ correspond to finitely-additive transverse signed measures; the measure of a transversal $\mu(T)$ is holonomy invariant by relation (ii), and it satisfies

$$\mu(T \sqcup T') = \mu(T) + \mu(T')$$

by relation (i).

Action of homeomorphisms. Let $\psi: \lambda_1 \to \lambda_2$ be a homeomorphism between laminations. Then ψ determines an isomorphism

$$\psi^*: T(\lambda_2) \to T(\lambda_1),$$

defined by pulling back transversals:

$$\psi^*([T]) = \left[\psi^{-1}(T)\right].$$

Applying Hom (\cdot, B) , we obtain a pushforward map on cycles,

$$\psi_*: Z_n(\lambda_1, B) \to Z_n(\lambda_2, B),$$

satisfying $(\psi_*(\mu))(T) = \mu(\psi^{-1}(T))$ and thus generalizing the pushforward of measures.

4° SÉRIE – TOME 33 – 2000 – N° 4

The mapping-torus. Now let $\psi: \lambda \to \lambda$ be a homeomorphism of an *n*-dimensional lamination to itself. The mapping torus \mathcal{L} of ψ is the (n + 1)-dimensional lamination defined by

$$\mathcal{L} = \lambda \times [0,1] / \langle (x,1) \sim (\psi(x),0) \rangle.$$

The lamination \mathcal{L} fibers over S^1 with fiber λ and monodromy ψ . Since cycles on \mathcal{L} correspond to ψ -invariant cycles on λ , we have:

PROPOSITION 2.1. – The module of the mapping torus of $\psi : \lambda \rightarrow \lambda$ is given by

$$T(\mathcal{L}) = \operatorname{Coker}(\psi^* - I) = T(\lambda) / (\psi^* - I) (T(\lambda)).$$

Example: $(\mathbb{Z}_p, x + 1)$. – Let $\lambda = \mathbb{Z}_p$ be the *p*-adic integers, considered as a 0-dimensional lamination, and let $\psi : \lambda \to \lambda$ be the map $\psi(x) = x + 1$. Then the mapping torus \mathcal{L} of ψ is a 1-dimensional solenoid, satisfying

$$T(\mathcal{L}) \cong \mathbb{Z}[1/p],$$

where $\mathbb{Z}[1/p] \subset \mathbb{Q}$ is the subring generated by 1/p. Indeed, the transversals $T_n = p^n \mathbb{Z}_p$ and their translates generate $T(\lambda)$, so their images $[T_n]$ generate $T(\mathcal{L})$. Since T_n is the union of p translates of T_{n+1} , we have $[T_n] = p[T_{n+1}]$, and therefore $T(\mathcal{L}) \cong \mathbb{Z}[1/p]$ by the map sending $[T_n]$ to p^{-n} .

Observe that

$$Z_1(\mathcal{L},\mathbb{R}) = \operatorname{Hom}(\mathbb{Z}[1/p],\mathbb{R}) = \mathbb{R},$$

showing there is a unique finitely-additive probability measure on \mathbb{Z}_p invariant under $x \mapsto x+1$.

Twisted cycles. Next we describe cycles with twisted coefficients.

Let $\lambda \to \lambda$ be a Galois covering space with abelian deck group G. Then G acts on $T(\lambda)$, making the latter into a module over the group ring $\mathbb{Z}[G]$. Any G-module B determines a bundle of twisted local coefficients over λ , and we define

$$Z_n(\lambda, B) = \operatorname{Hom}_G(T(\lambda), B).$$

For example, any homomorphism

$$\rho: G \to \mathbb{R}_+$$

makes \mathbb{R} into a module \mathbb{R}_{ρ} over $\mathbb{Z}[G]$. The cycles $\mu \in Z_n(\lambda, \mathbb{R}_{\rho})$ can then be interpreted as either:

- (i) cycles on λ satisfying $g_*\mu = \rho(g)\mu(T)$ for all $g \in G$; or
- (ii) cycles on λ with values (locally) in the real line bundle over λ determined by $\rho \in H^1(\lambda, \mathbb{R}_+)$.

Geodesic laminations on surfaces. Now let S be a compact orientable surface with $\chi(S) < 0$. Fix a complete hyperbolic metric of finite volume on int(S).

A geodesic lamination $\lambda \subset S$ is a compact lamination whose leaves are hyperbolic geodesics. A train track $\tau \subset S$ is a finite 1-complex such that

- (i) every $x \in \tau$ lies in the interior of a smooth arc embedded in τ ,
- (ii) any two such arcs are tangent at x, and
- (iii) for each component U of $S \tau$, the double of U along the smooth part of ∂U has negative Euler characteristic.

A geodesic lamination λ is *carried* by a train track τ if there is a continuous *collapsing map* $f: \lambda \to \tau$ such that for each leaf $\lambda_0 \subset \lambda$,

(i) $f|\lambda_0$ is an immersion, and

(ii) λ_0 is the geodesic representative of the path or loop $f: \lambda_0 \to S$.

Collapsing maps between train tracks are defined similarly. Every geodesic lamination is carried by some train track [24, 1.6.5].

The vertices (or switches) of a train track, $V \subset \tau$, are the points where 3 or more smooth arcs come together. The edges E of τ are the components of $\tau - V$; some 'edges' may be closed loops.

A train track is *trivalent* if only 3 edges come together at each vertex. A trivalent train track has *minimal complexity* for λ if it has the minimal number of edges among all trivalent τ carrying λ .

The module of a train track. Let $T(\tau)$ denote the \mathbb{Z} -module generated by the edges E of τ , modulo the relations

$$[e_1] + \dots + [e_r] = [e'_1] + \dots + [e'_s]$$

for each vertex $v \in V$ with incoming edges (e_i) and outgoing edges (e'_j) . (The distinction between incoming and outgoing edges depends on the choice of a direction along τ at v.) Since there is one relation for each vertex, we obtain a presentation for $T(\tau)$ of the form:

(2.2)
$$\mathbb{Z}^V \xrightarrow{D} \mathbb{Z}^E \to T(\tau) \to 0.$$

As for a geodesic lamination, we define the 1-cycles on τ with values in B by

$$Z_1(\tau, B) = \operatorname{Hom}(T(\tau), B).$$

THEOREM 2.2. – Let $\lambda \subset S$ be a geodesic lamination, and let τ be a train track carrying λ with minimal complexity. Then there is a natural isomorphism

$$T(\lambda) \cong T(\tau).$$

COROLLARY 2.3. – For any geodesic lamination λ , the module $T(\lambda)$ is finitely-generated.

COROLLARY 2.4. – If λ is connected and carried by a train track τ of minimal complexity, then we have

$$T(\lambda) \cong \mathbb{Z}^{|\chi(\tau)|} \oplus \begin{cases} \mathbb{Z} & \text{if } \tau \text{ is orientable,} \\ \mathbb{Z}/2 & \text{otherwise.} \end{cases}$$

(Here $\chi(\tau)$ is the Euler characteristic of τ .)

Proof. – Use the fact that the transpose $D^* : \mathbb{Z}^E \to \mathbb{Z}^V$ of the presentation matrix (2.2) for $T(\tau)$ behaves like a boundary map, and $\sum n_i v_i$ is in the image of D^* iff $\sum n_i = 0$ (in the orientable case) or $\sum n_i = 0 \pmod{2}$ (in the non-orientable case). \Box

Proof of Theorem 2.2. – Let $\tau_0 = \tau$. The collapsing map $f_0: \lambda \to \tau_0$ determines a map of modules

$$f_0^*: T(\tau_0) \to T(\lambda)$$

sending each edge $e \in E$ to the transversal defined by

$$T = f_0^*(e) = f_0^{-1}(x)$$

for any $x \in e$. We will show f_0^* is an isomorphism.

4^e SÉRIE – TOME 33 – 2000 – N° 4

528

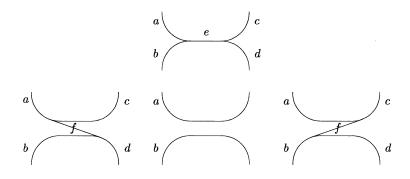


Fig. 3. Three possible splittings.

We begin by using λ to guide a sequence of splittings of τ_0 into finer and finer train tracks τ_n , converging to λ itself, in the sense that there are collapsing maps $f_n : \lambda \to \tau_n$ converging to the inclusion $\lambda \subset S$. We will also have collapsing maps $g_n : \tau_{n+1} \to \tau_n$ such that $f_n = g_n \circ f_{n+1}$. Each τ_n will be of minimal complexity.

The train track τ_{n+1} is constructed from τ_n as follows. First, observe that each edge of τ_n carries at least one leaf of λ (since τ_n has minimal complexity). Thus each cusp of a component U of $S - \tau$ (where tangent edges a, b in τ come together) corresponds to pair of adjacent leaves λ_a, λ_b of λ . Choose a particular cusp, and split τ_n between a and b so that the train track continues to follow λ_a and λ_b . When we split past a vertex, we obtain a new trivalent train track τ_{n+1} . There are 3 possible results of splitting, recorded in Fig. 3.

In the middle case, the leaves λ_1 and λ_2 diverge, and we obtain a train track τ_{n+1} carrying λ but with fewer edges than τ_n ; this is impossible, since τ_n has minimal complexity.

In the right and left cases, we obtain a train track τ_{n+1} of the same complexity as τ_n , with a natural collapsing map $g_{n+1}: \tau_{n+1} \to \tau_n$. Since the removed and added edges e and f are both in the span of $\langle a, b, c, d \rangle$, the module map

$$(2.3) g_n^*: T(\tau_n) \to T(\tau_{n+1})$$

is an isomorphism.

By repeatedly splitting every cusp of $S - \tau$, we obtain train tracks with longer and longer edges, following the leaves of λ more and more closely; thus the collapsing maps can be chosen such that $f_n: \lambda \to \tau_n$ converges to the identity. Compare [42, Proposition 8.9.2], [24, §2].

To prove $T(\lambda) \cong T(\tau_0)$, we will define a map

$$\phi: T(\lambda) \to T_{\infty} = \lim T(\tau_n)$$

(where the direct limit is taken with respect to the collapsing maps g_n^*). Given any transversal T to λ , there is a neighborhood U of T in λ homeomorphic to $T \times \mathbb{R}$. Then for all $n \gg 0$, we have

$$\sup_{x \in \lambda} d(f_n(x), x) < d(T, \partial U),$$

and thus all the leaves of λ carried by $\tau \cap U$ are accounted for by T. Therefore T is equivalent to a finite sum of edges in $T(\tau_n)$:

$$f_n^*([e_1] + \dots + [e_i]) = [T],$$

and we define $\phi(T) = [e_1] + \cdots + [e_i]$.

It is now straightforward to verify that ϕ is a map of modules, inverting the map $T_{\infty} \to T(\lambda)$ obtained as the inverse limit of the collapsings $f_n^*: T(\tau_n) \to T(\lambda)$. But the maps g_n^* of (2.3) are isomorphisms, so we have $T(\lambda) \cong T_{\infty} \cong T(\tau_0)$. \Box

Twisted train tracks. Train tracks also provide a convenient description of twisted cycles on a geodesic lamination.

Let $\lambda \subset S$ be a geodesic lamination carried by a train track τ . Let

 $\pi\,{:}\,\widetilde{S}\,{\to}\,S$

be a Galois covering space with abelian deck group G. We can then construct modules $T(\tilde{\lambda})$ and $T(\tilde{\tau})$ attached to the induced covering spaces of λ and τ . The deck group acts naturally on $\tilde{\lambda}$ and $\tilde{\tau}$, so we obtain modules over the group ring $\mathbb{Z}[G]$. The arguments of Theorem 2.2 can then be applied to the lift of a collapsing map $f: \lambda \to \tau$, to establish:

THEOREM 2.5. – The $\mathbb{Z}[G]$ -modules $T(\lambda)$ and $T(\tilde{\tau})$ are naturally isomorphic. A choice of lifts for the edges and vertices (E, V) of τ to $\tilde{\tau}$ determines a finite presentation

$$\mathbb{Z}[G]^V \xrightarrow{D} \mathbb{Z}[G]^E \to T(\widetilde{\tau}) \to 0$$

for $T(\tilde{\tau})$ as a $\mathbb{Z}[G]$ -module.

Example. – Let S be a sphere with 4 disks removed. Let $\widetilde{S} \to S$ be the maximal abelian covering of S, with deck group

$$G = H_1(S, \mathbb{Z}) = \langle A, B, C \rangle \cong \mathbb{Z}^3$$

generated by counterclockwise loops around 3 boundary components of S.

Let $\tau \subset S$ be the train track shown in Fig. 4. Then for suitable lifts of the edges of τ , the module $T(\tilde{\tau})$ is generated over $\mathbb{Z}[G]$ by $\langle a, b, c, d, e, f \rangle$, with the relations:

$$b = a + d,$$

$$A^{-1}d = a + e,$$

$$b = c + f,$$

$$c = B^{-1}e + Cf$$

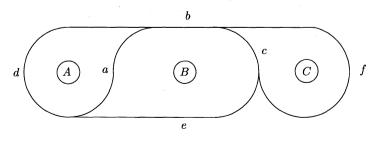


Fig. 4. Presenting a track track.

4^e SÉRIE – TOME 33 – 2000 – N° 4

530

coming from the 4 vertices of τ . Simplifying, we find $T(\tilde{\tau})$ is generated by $\langle a, b, c \rangle$ with the single relation

$$(1 + A)a + AB(1 + C)c = (1 + ABC)b.$$

This relation shows, for example, that

$$\dim Z_1(\tau, \mathbb{C}_{\rho}) = \begin{cases} 3 & \text{if } \rho(A) = \rho(B) = \rho(C) = -1, \\ 2 & \text{otherwise,} \end{cases}$$

for any 1-dimensional representation $\rho: G \to \mathbb{C}^*$.

Notes.

(1) The usual (positive, countably-additive) transverse measures on a geodesic lamination λ generally span a *proper* subspace M(λ) of the space of cycles Z₁(λ, ℝ). Indeed, a generic measured lamination λ on a closed surface cuts S into ideal triangles, so any train track τ carrying λ is the 1-skeleton of a triangulation of S. At the same time λ is typically uniquely ergodic, and therefore

$$\dim M(\lambda) = 1 < \dim Z_1(\lambda, \mathbb{R}) = \dim Z_1(\tau, \mathbb{R}) = 6g(S) - 6.$$

(2) Bonahon has shown that cycles $\mu \in Z_1(\lambda, \mathbb{R})$ correspond to transverse invariant *Hölder* distributions; that is, the pairing

$$\langle f, \mu \rangle = \int_{T} f(x) d\mu(x)$$

can be defined for any transversal T and Hölder continuous function $f: T \to \mathbb{R}$ [8, Theorem 17]. See also [8, Theorem 11] for a variant of Theorem 2.2, and [7] for additional results.

(3) One can also describe Z₁(λ, ℝ) as a space of closed *currents* carried by λ, since these cycles are distributional in nature and they need not be compactly supported (when λ is noncompact).

3. The Teichmüller polynomial

In this section we define the Teichmüller polynomial Θ_F of a fibered face F, and establish the *determinant formula*

$$\Theta_F(t, u) = \det(uI - P_E(t)) / \det(uI - P_V(t)).$$

We begin by introducing some notation that will be used throughout the sequel.

Let M^3 be a compact, connected, orientable, irreducible, atoroidal 3-manifold. Let $\pi: M \to S^1$ be a fibration with fiber $S \subset M$ and monodromy ψ . Then:

- S is a compact, orientable surface with $\chi(S) < 0$, and
- $\psi: S \to S$ is a pseudo-Anosov map, with an expanding invariant lamination
- $\lambda \subset S$, unique up to isotopy.

Adjusting ψ by isotopy, we can assume $\psi(\lambda) = \lambda$.

By the general theory of pseudo-Anosov mappings, there is a *positive* transverse measure $\mu \in Z_1(\lambda, \mathbb{R})$, unique up to scale, and $\psi_*(\mu) = k\mu$ for some k > 1. Then $[\Lambda] = [(\lambda, \mu)]$ is a fixed-point of ψ in the space of projective measured laminations $\mathbb{PML}(S)$. Moreover $[\psi^n(\gamma)] \to [\Lambda]$ for every simple closed curve $[\gamma] \in \mathbb{PML}(S)$.

Associated to (M, S) we also have:

• $\mathcal{L} \subset M$, the mapping torus of $\psi : \lambda \to \lambda$, and

• $F \subset H^1(M, \mathbb{R})$, the open face of unit ball in the Thurston norm with $[S] \in \mathbb{R}_+ \cdot F$.

We say F is a *fibered face* of the Thurston norm ball, since every point in $H^1(M, \mathbb{Z}) \cap \mathbb{R}_+ \cdot F$ is represented by a fibration of M over the circle [43, Theorem 5].

The flow lines of ψ . Using ψ we can present M in the form

$$M = (S \times \mathbb{R}) / \langle (s, t) \sim (\psi(s), t-1) \rangle,$$

and the lines $\{s\} \times \mathbb{R}$ descend to the leaves of an oriented 1-dimensional foliation Ψ of M, the *flow lines* of ψ . The 2-dimensional lamination $\mathcal{L} \subset M$ is swept out by the leaves of Ψ passing through λ .

Invariance of \mathcal{L} . We now show \mathcal{L} depends only on F.

THEOREM 3.1 (Fried). – Let $[S'] \in \mathbb{R}_+ \cdot F$ be a fiber of M. Then after an isotopy,

- S' is transverse to the flow lines Ψ of ψ , and
- the first return map of the flow coincides with the pseudo-Anosov monodromy $\psi': S' \to S'$.

For this result, see [17, Theorem 7 and Lemma] and [19].

COROLLARY 3.2. – Any two fibers $[S], [S'] \in \mathbb{R}_+ \cdot F$ determine the same lamination $\mathcal{L} \subset M$ (up to isotopy).

Proof. – Consider two fibers S and S' for the same face F. Let ψ, ψ' denote their respective monodromy transformations, λ, λ' their expanding laminations, and $\mathcal{L}, \mathcal{L}' \subset M$ the mapping tori of λ, λ' .

By the theorem above, we can assume S' is transverse to Ψ and hence transverse to \mathcal{L} .

Let $\mu' = \mathcal{L} \cap S'$. Then $\mu' \subset S'$ is a ψ' -invariant lamination with no isolated leaves. By invariance, μ' must contain the expanding or contracting lamination of ψ' . Since flowing along Ψ expands the leaves of \mathcal{L} , we find $\mu' \supset \lambda'$.

By irreducibility of ψ' , the complementary regions $S' - \lambda'$ are *n*-gons or punctured *n*-gons. In such regions, the only geodesic laminations are isolated leaves running between cusps. Since μ' has no isolated leaves, we conclude that $\mu' = \lambda'$ and thus $\mathcal{L} = \mathcal{L}'$ (up to isotopy). \Box

Modules and the Teichmüller polynomial. By the preceding corollary, the lamination $\mathcal{L} \subset M$ depends only on F. Associated to the pair (M, F) we now have:

- $G = H_1(M, \mathbb{Z})$ /torsion, a free abelian group;
- $\widetilde{M} \to M$, the Galois covering space corresponding to $\pi_1(M) \to G$;
- $\mathcal{L} \subset \overline{M}$, the preimage of the lamination \mathcal{L} determined by F; and
- $T(\mathcal{L})$, the $\mathbb{Z}[G]$ -module of transversals to \mathcal{L} .

Since \mathcal{L} is compact, $T(\mathcal{L})$ is finitely-generated and $T(\widetilde{\mathcal{L}})$ is finitely-presented over the ring $\mathbb{Z}[G]$. Choose a presentation

$$\mathbb{Z}[G]^r \xrightarrow{D} \mathbb{Z}[G]^s \to T(\widetilde{\mathcal{L}}) \to 0,$$

and let $I \subset \mathbb{Z}[G]$ be the ideal generated by the $s \times s$ minors of D. The ideal I is the *Fitting ideal* of the module $T(\tilde{\mathcal{L}})$, and it is independent of the choice of presentation; see [28, Ch. XIII, §10], [36].

 4^e série – tome $33 - 2000 - n^\circ 4$

Using the fact that $\mathbb{Z}[G]$ is a unique factorization domain, we define the *Teichmüller* polynomial of (M, F) by

(3.1)
$$\Theta_F = \gcd(f: f \in I) \in \mathbb{Z}[G].$$

The polynomial Θ_F is well-defined up to multiplication by a unit $\pm g \in \mathbb{Z}[G]$, and it depends only on (M, F).

Note that $\mathbb{Z}[G]$ can be identified with a ring of complex algebraic functions on the character variety

$$\widehat{G} = \operatorname{Hom}(G, \mathbb{C}^*)$$

by setting $(\sum a_g \cdot g)(\rho) = \sum a_g \rho(g)$.

THEOREM 3.3. – The locus $\Theta_F(\rho) = 0$ is the largest hypersurface $V \subset \widehat{G}$ such that dim $Z_2(\mathcal{L}, \mathbb{C}_{\rho}) > 0$ for all $\rho \in V$.

Proof. – A character ρ belongs to the zero locus of the ideal $I \Leftrightarrow$ the presentation matrix $\rho(M)$ has rank $r < s \Leftrightarrow$ we have

$$\dim_{\mathbb{C}} Z_2(\mathcal{L}, \mathbb{C}_{\rho}) = \dim \operatorname{Hom}(T(\widetilde{\mathcal{L}}), \mathbb{C}_{\rho}) = s - r > 0;$$

and the greatest common divisor of the elements of I defines the largest hypersurface contained in V(I). \Box

Computing the Teichmüller polynomial. We now describe a procedure for computing Θ_F as an explicit Laurent polynomial.

Consider again a fiber $S \subset M$ with monodromy ψ and expanding lamination λ . Associated to this data we have:

- $H = \text{Hom}(H^1(S, \mathbb{Z})^{\psi}, \mathbb{Z}) \cong \mathbb{Z}^b$, the dual of the ψ -invariant cohomology of S;
- $\widetilde{S} \to S$, the Galois covering space corresponding to the natural map

$$\pi_1(S) \to H_1(S,\mathbb{Z}) \to H;$$

- $\tau \subset S$, a ψ -invariant train track carrying λ ; and
- $\widetilde{\lambda}, \widetilde{\tau} \subset \widetilde{S}$, the preimages of $\lambda, \tau \subset S$.

Note that pullback by $S \subset M$ determines a surjection $H^1(M,\mathbb{Z}) \to H^1(S,\mathbb{Z})^{\psi}$, and hence a natural inclusion

$$H \subset G = H_1(M, \mathbb{Z})/\text{torsion} = \text{Hom}(H^1(M, \mathbb{Z}), \mathbb{Z}).$$

Alternatively, we can regard \widetilde{S} as a component of the preimage of S in the covering $\widetilde{M} \to M$ with deck group G; then $H \subset G$ is the stabilizer of $\widetilde{S} \subset \widetilde{M}$.

Now *choose* a lift

$$\widetilde{\psi}: \widetilde{S} \to \widetilde{S}$$

of the pseudo-Anosov mapping ψ . Then we obtain a splitting

$$G = H \oplus \mathbb{Z}\widetilde{\Psi},$$

where $\widetilde{\Psi} \in G$ acts on $\widetilde{M} = \widetilde{S} \times \mathbb{R}$ by

(3.2)
$$\widetilde{\Psi}(s,t) = \left(\widetilde{\psi}(s), t-1\right).$$

If we further choose a basis (t_1, \ldots, t_b) for H, written multiplicatively, and set $u = [\widetilde{\Psi}]$, then we obtain an isomorphism

$$\mathbb{Z}[G] \cong \mathbb{Z}[t_1^{\pm 1}, \dots t_b^{\pm 1}, u^{\pm 1}]$$

between the group ring of G and the ring of integral Laurent polynomials in the variables t_i and u.

Remark. – Under the fibration $M \to S^1$, the element $u \in H_1(M, \mathbb{Z})/\text{torsion}$ maps to -1 in $H_1(S^1, \mathbb{Z}) \cong \mathbb{Z}$, as can be seen from (3.2).

A presentation for $T(\tilde{\mathcal{L}})$. The next step in the computation of Θ_F is to obtain a concrete description of the module $T(\tilde{\mathcal{L}})$.

We begin by using the train track τ to give a presentation of $T(\lambda)$ over $\mathbb{Z}[H]$. Let E and V denote the sets of edges and vertices of the train track $\tau \subset S$. By choosing a lift of each edge and vertex to the covering space $\tilde{S} \to S$ with deck group H, we can identify the edges and vertices of $\tilde{\tau}$ with the products $H \times E$ and $H \times V$. These lifts yield a presentation

(3.3)
$$\mathbb{Z}[H]^V \xrightarrow{D} \mathbb{Z}[H]^E \to T(\tilde{\tau}) \to 0$$

for $T(\tilde{\tau}) \cong T(\tilde{\lambda})$ as a $\mathbb{Z}[H]$ -module.

Since τ is ψ -invariant, there is an *H*-invariant collapsing map

$$\widetilde{\psi}(\widetilde{\tau}) \to \widetilde{\tau}.$$

By expressing each edge in the target as a sum of the edges in the domain which collapse to it, we obtain a natural map of $\mathbb{Z}[H]$ -modules

$$P_E: \mathbb{Z}[H]^E \to \mathbb{Z}[H]^E.$$

There is a similar map P_V on vertices.

We can regard P_E and P_V as matrices $P_E(t)$, $P_V(t)$ whose entries are Laurent polynomials in $t = (t_1, \ldots, t_b)$. In the terminology of Appendix A, such a matrix is *Perron–Frobenius* if it has a power such that every entry is a nonzero Laurent polynomial with positive coefficients.

THEOREM 3.4. – $P_E(t)$ is a Perron–Frobenius matrix of Laurent polynomials.

Proof. – For any $e, f \in E$, the matrix entry $(P_E)_{ef}$ is a sum of monomials t^{α} for all α such that $\tilde{\psi}(\alpha \cdot e)$ collapses to f. Thus each nonzero entry is a positive, integral Laurent monomial, and since ψ is pseudo-Anosov there is some iterate $P_E^N(t)$ with every entry nonzero. \Box

The matrices $P_E(t)$ and $P_V(t)$ are compatible with the presentation (3.3) for $T(\tilde{\tau})$, so we obtain a commutative diagram

(3.4)
$$\mathbb{Z}[H]^V \longrightarrow \mathbb{Z}[H]^E \longrightarrow T(\tilde{\tau}) \longrightarrow 0$$
$$P_{V(t)} \downarrow \qquad P_{E(t)} \downarrow \qquad P(t) \downarrow \qquad P(t) \downarrow \qquad \mathbb{Z}[H]^V \longrightarrow \mathbb{Z}[H]^E \longrightarrow T(\tilde{\tau}) \longrightarrow 0.$$

Here $P(t) = \psi^*$ under the natural identification $T(\tilde{\tau}) = T(\lambda)$.

The next result makes precise the fact that twisted cycles on \mathcal{L} correspond to ψ -invariant twisted cycles on λ (compare Proposition 2.1).

 4^e série – tome $33 - 2000 - n^\circ 4$

THEOREM 3.5. – There is a natural isomorphism

$$T(\widetilde{\mathcal{L}}) \cong \operatorname{Coker}(uI - P(t))$$

as modules over $\mathbb{Z}[G]$.

Here uI - P(t) is regarded as an endomorphism of $T(\tilde{\tau}) \otimes \mathbb{Z}[u]$ over $\mathbb{Z}[G] = \mathbb{Z}[H] \otimes \mathbb{Z}[u]$.

Proof. – The lamination \mathcal{L} fibers over S^1 with fiber λ and monodromy $\psi : \lambda \to \lambda$, so we can regard $\widetilde{\mathcal{L}}$ as $\widetilde{\lambda} \times \mathbb{R}$, equipped with the action of $G = H \oplus \mathbb{Z}\widetilde{\Psi}$. The product structure on $\widetilde{\mathcal{L}}$ gives an isomorphism $T(\widetilde{\mathcal{L}}) \cong T(\widetilde{\lambda}) \cong T(\widetilde{\tau})$ as modules over $\mathbb{Z}[H]$, so to describe $T(\widetilde{\mathcal{L}})$ as a $\mathbb{Z}[G]$ module we need only determine the action of u under this isomorphism. But u acts on $\widetilde{\lambda} \times \mathbb{R}$ by $(x,t) \mapsto (\widetilde{\psi}(x), t-1)$, so for any transversal $T \in T(\widetilde{\lambda})$ we have $uT = \widetilde{\psi}^*(T) = P(t)T$, and the theorem follows. \Box

The determinant formula. The main result of this section is:

THEOREM 3.6. – The Teichmüller polynomial of the fibered face F is given by:

(3.5)
$$\Theta_F(t,u) = \frac{\det(uI - P_E(t))}{\det(uI - P_V(t))}$$

when $b_1(M) > 1$.

Remarks. –

- (1) If $b_1(M) = 1$ then the numerator must be multiplied by (u 1) if τ is orientable. Compare Corollary 2.4.
- (2) To understand the determinant formula, recall that by Theorem 3.3, the locus $\Theta_F(t, u) = 0$ in \widehat{G} consists of characters for which we have

dim
$$Z_2(\mathcal{L}, \mathbb{C}_{\rho}) > 0.$$

Now a cocycle for \mathcal{L} is the same as a ψ -invariant cocycle for λ , so we expect to have $\Theta_F(t, u) = \det(uI - P(t))$. But the module $T(\lambda)$ is not quite free in general, so we need the formula above to make sense of the determinant.

Proof of Theorem 3.6. – To simplify notation, let $A = \mathbb{Z}[G]$, let T be the A-module $T(\lambda) \otimes \mathbb{Z}[G]$, and let $P: T \to T$ be the automorphism $P = \tilde{\psi}^*$.

Let K denote the field of fractions of A. For each $f \in A$, $f \neq 0$, we can invert f to obtain the ring $A_f = A[1/f] \subset K$, and there is a naturally determined A_f -module T_f with automorphism P_f coming from P (see e.g. [2, Ch. 3]). The presentation (3.3) for T determines a presentation

for T_f .

Now let $\Theta = \Theta_F(t, u) \in A$ be the Teichmüller polynomial for (M, F) (defined by (3.1)), and define $\Delta \in K$ by

$$\Delta = \Delta(t, u) = \frac{\det(uI - P_E(t))}{\det(uI - P_V(t))}.$$

Our goal is to show $\Theta = \Delta$ up to a unit in A. The method is to show that $\Theta = \Delta$ up to a unit in A_f for many different f. We break the argument up into 5 main steps.

I. The map $D_f: A_f^V \to A_f^E$ is injective whenever $f = (t_i^2 - 1)g$ for some $i, 1 \le i \le b$, and some $g \ne 0$ in A.

To see this assertion, we use the dynamics of pseudo-Anosov maps. It is enough to show that the transpose $D_f^*: A_f^E \to A_f^V$ is surjective — then D_f^* has a right inverse, so D_f has a left inverse. We prefer to work with D_f^* since it behaves like a geometric boundary map.

Given a basis element t_i for $H = \text{Hom}(H^1(S, \mathbb{Z})^{\psi}, \mathbb{Z})$, choose an oriented simple closed curve $\gamma \subset S$ such that $[\gamma] = t_i$. (Such a γ exists because every t_i is represented by a primitive homology class on S, and every such class contains a simple closed curve.) Then $[\psi^n(\gamma)] = t_i$ as well, since ψ fixes all homology classes in H. On the other hand, for n sufficiently large, $\psi^n(\gamma)$ is close to the expanding lamination λ of ψ . Thus by replacing γ with $\psi^n(\gamma)$, $n \gg 0$, we can assume that γ is carried with full support by τ .

Now choose any vertex $v \in V$, and lift γ to an edge path $\tilde{\gamma} \subset \tilde{\tau}$, starting at the (previously fixed) lift \tilde{v} of v. Since $[\gamma] = t_i$, the arc $\tilde{\gamma}$ connects v to $t_i v$. Letting $e \in A^E$ denote the weighted edges occurring in $\tilde{\gamma}$, we then have

$$D^*[e] = (\pm t_i - 1)v \in A^V,$$

where the sign depends on the orientation of the switch at v.

In any case, when $f = (t_i^2 - 1)g$, the factor $(\pm t_i - 1)$ is a unit in A_f , and thus D_f^* is surjective and D_f is injective.

II. If T_f is a free A_f -module and D_f is injective, then $\Theta = \Delta$ up to a unit in A_f . Indeed, if T_f is free then

$$T_f \xrightarrow{ul-P} T_f \to T(\widetilde{\mathcal{L}})_f \to 0$$

presents $T(\widetilde{\mathcal{L}})_f$ as a quotient of free modules. It is not hard to check that the formation of the Fitting ideal commutes with the inversion of f, and thus $(\Theta) \subset A_f$ is the smallest principal ideal containing the Fitting ideal of $T(\widetilde{\mathcal{L}})_f$. From the presentation of $T(\widetilde{\mathcal{L}})_f$ above, we have $\Theta = \det(uI - P(t))$ up to a unit in A_f .

To bring Δ into play, note that by injectivity of D_f we have an exact sequence:

$$0 \to A_f^V \xrightarrow{D_f} A_f^E \to T_f \to 0.$$

Since T_f is free, this sequence splits, and thus P_E can be expressed as a block triangular matrix with P_V and P on the diagonal. Therefore

$$\det(uI - P_V(t))\det(uI - P(t)) = \det(uI - P_E(t)),$$

which gives $\Theta = \Delta$ up to a unit in A_f .

III. The set

 $I' = \{f \in A: T_f \text{ is free and } D_f \text{ is injective}\}$

generates an ideal $I \subset A$ containing $(t_i^2 - 1)$ for i = 1, ..., b.

Let $f = (t_i^2 - 1)$, so D_f is injective. Then the $|V| \times |V|$ -minors of D generate the ideal (1) in A_f .

Consider a typical minor $(V \times E')$ of D with determinant $g \neq 0$, where $E = E' \sqcup E''$. Set h = fg. Then the composition

$$A_h^V \xrightarrow{D_h} A_h^E \to A_h^{E'}$$

 4^e série – tome $33 - 2000 - n^\circ 4$

is an isomorphism (since its determinant is now a unit). Therefore the projection $A_h^{E''} \to T_h$ is an isomorphism, so T_h is free.

Since the minor determinants g generate the ideal (1) in A_f , we conclude that $f = (t_i^2 - 1)$ belongs to the ideal I generated by all such h = fg.

IV. There are
$$a, c \in A$$
 such that $(a) \supset I$, $(c) \supset I$ and

Write $\Delta/\Theta = a/c \in K$ as a ratio of $a, c \in A$ with no common factor. By definition, for any $f \in I'$ we have $\Theta = \Delta$ up to a unit in A_f ; therefore $a/c = d/f^n$ for some unit $d \in A^*$ and $n \in \mathbb{Z}$. Since gcd(a, c) = 1, a and c are divisors of f. As $f \in I'$ was arbitrary, the principal ideals generated by a and c both contain I', and hence I.

V. We have $\Theta = \Delta$ up to a unit in A.

Let (p) be the smallest principal ideal satisfying

$$(p) \supset I \supset \left(t_1^2 - 1, \dots, t_b^2 - 1\right)$$

(the second inclusion by (III) above). If the rank b of $H^1(S,\mathbb{Z})^{\psi}$ is 2 or more, then $gcd(t_1^2-1,\ldots,t_b^2-1)=1$ and thus (p)=1. Since a, c in (3.7) generate principal ideals containing I, they are both units and we are done.

To finish, we treat the case b = 1. In this case we have $(p) \supset (t_1^2 - 1)$, so we can only conclude that $\Theta = \Delta$ up to a factors of $(t_1 - 1)$ and $(t_1 + 1)$.

But Δ and Θ have no such factors. Indeed, Δ is a ratio of monic polynomials of positive degree in u, so it has no factor that depends only on t_1 .

Similarly, if we specialize to $(t_1, u) = (1, n)$ (by a homomorphism $\phi: A \to \mathbb{Z}$), then $P: T \to T$ becomes an endomorphism of a finitely generated abelian group, and $T(\mathcal{L}) = \operatorname{Coker}(uI - P)$ specializes to the group $K = \operatorname{Coker}(nI - P)$. For $n \gg 0$, the image of (uI - P) has finite index in T, so K is a finite group. Thus $(\phi(\Theta)) = (n)$, the annihilator of K; in particular, $\phi(\Theta) \neq 0$. This shows $(t_1 - 1)$ does not divide Θ . The same argument proves $\operatorname{gcd}(\Theta, t_1 + 1) = 1$, and thus $\Theta = \Delta$ up to a unit in A. \Box

Notes. The train track τ in Fig. 4 provides a typical example where the module $T(\tilde{\tau})$ is not free over $\mathbb{Z}[H]$. Indeed, letting $H = H_1(S, \mathbb{Z}) \cong \mathbb{Z}^3$, we showed in Section 2 that the dimension of

$$Z_1(\tau, \mathbb{C}_{\rho}) = \operatorname{Hom}(T, \mathbb{C}_{\rho})$$

jumps at $\rho = (-1, -1, -1)$, while its dimension would be constant if T were a free module. Thus $f \in \mathbb{Z}[H]$ must vanish at $\rho = (-1, -1, -1)$ for $T(\tau)_f$ to be free — showing the ideal I in the proof above contains $(t_1 + 1, t_2 + 1, t_3 + 1)$.

4. Symplectic symmetry

In this section we show the characteristic polynomial of a pseudo-Anosov map $\psi: S \to S$ is symmetric. This symmetry arises because ψ preserves a natural symplectic structure on $\mathcal{ML}(S)$.

We then show the Teichmüller polynomial Θ_F packages all the characteristic polynomials of fibers $[S] \in \mathbb{R}_+ \cdot F$, and thus Θ_F is also symmetric.

Symmetry. Let λ be the expanding lamination of a pseudo-Anosov mapping $\psi: S \to S$. The *characteristic polynomial* of ψ is given by $p(k) = \det(kI - P)$, where

$$P: Z_1(\lambda, \mathbb{R}) \to Z_1(\lambda, \mathbb{R})$$

is the induced map on cycles, $P = \psi_*$.

THEOREM 4.1. – The characteristic polynomial p(k) of a pseudo-Anosov mapping is symmetric; that is, $p(k) = k^d p(1/k)$ where $d = \deg(p)$.

Proof. – Since ψ is pseudo-Anosov, each component of $S - \lambda$ is an ideal polygon, possibly with one puncture. Since these polygons and their ideal vertices are permuted by ψ , we can choose n > 0 such that ψ^n preserves each complementary component D of $S - \lambda$ and fixes its ideal vertices.

By Theorem 2.2, there is a natural isomorphism $Z_1(\lambda, \mathbb{R}) \cong Z_1(\tau, \mathbb{R})$, where τ is a ψ -invariant train track carrying λ . By [24, Theorem 1.3.6], there exists a *complete* train track τ' containing τ . The train track τ is completed to τ' by adding a maximal set of edges joining the cusps of the complementary regions $S - \tau$. Since ψ^n fixes these cusps, $\psi^n(\tau')$ is carried by τ' .

Now recall that the vector space $Z_1(\tau', \mathbb{R})$ can be interpreted as a tangent space to $\mathcal{ML}(S)$, and hence it carries a natural symplectic form ω . If τ' is orientable (which only happens on a punctured torus), then ω is just the pullback of the intersection form on S under the natural map

$$Z_1(\tau',\mathbb{R}) \to H_1(S,\mathbb{R}).$$

If τ' is nonorientable, then ω is defined using the intersection pairing on a covering of S branched over the complementary regions $S - \tau'$; see [24, §3.2].

For brevity of notation, let

$$(V \subset V') = (Z_1(\tau, \mathbb{R}) \subset Z_1(\tau', \mathbb{R})),$$

and let

$$P=\psi_*\,{:}\,V\to V,\qquad Q=\left(\psi^n\right)_*\,{:}\,V'\to V';$$

then $P^n = Q|V$.

Both P and Q respect the symplectic form ω on V'. If (V, ω) is symplectic — that is, if $\omega | V$ is non-degenerate — then P is a symplectic matrix and the symmetry of its characteristic polynomial p(k) is immediate. Unfortunately, (V, ω) need not be symplectic — for example, V may be odd-dimensional.

To handle the general case, we first decompose V' into generalized eigenspaces for Q; that is, we write

$$V' \otimes \mathbb{C} = \bigoplus V_{\alpha} = \bigoplus_{\alpha} \bigcup_{1}^{\infty} \operatorname{Ker}(\alpha I - Q)^{i}.$$

Grouping together the eigenspaces with $|\alpha| = 1$, we get a Q-invariant decomposition $V' = U \oplus S$ with

$$U \otimes \mathbb{C} = \bigoplus_{|\alpha|=1} V_{\alpha}$$
 and $S \otimes \mathbb{C} = \bigoplus_{|\alpha|\neq 1} V_{\alpha}$.

For $x \in V_{\alpha}$ and $y \in V_{\beta}$, the fact that Q preserves ω implies

$$\omega(x, y) = \omega(Qx, Qy) = 0$$

4^e Série – Tome 33 – 2000 – N° 4

unless $\alpha\beta = 1$. Thus U and S are ω -orthogonal, and therefore (U, ω) and (S, ω) are both symplectic.

Since ψ^n fixes all the edges in $\tau' - \tau$, Q acts by the identity on V'/V. Therefore S is a subspace of V, and

$$V = S \oplus (U \cap V) = S \oplus W.$$

Since $P^n = Q$, the splitting $V = S \oplus W$ is preserved by P; P|S is symplectic; and the eigenvalues of P|W are roots of unity. Therefore

$$p(k) = \det(kI - P|S) \cdot \det(kI - P|W).$$

The first term is symmetric because P|S is a symplectic matrix, and the second term is symmetric because the eigenvalues of P|W lie on S^1 and are symmetric about the real axis. Thus p(k) is symmetric. \Box

Characteristic polynomials of fibers. We now return to the study of the Teichmüller polynomial $\Theta_F = \sum a_g \cdot g \in \mathbb{Z}[G]$. Given $\phi \in H^1(M, \mathbb{Z}) = \text{Hom}(G, \mathbb{Z})$, we obtain a polynomial in a single variable k by setting

$$\Theta_F(k^\phi) = \sum a_g k^{\phi(g)}.$$

Recall that \mathcal{L} denotes the mapping torus of the expanding lamination λ of any fiber $[S] \in \mathbb{R}_+ \cdot F$ (Corollary 3.2); and \mathcal{L} is transversally orientable iff λ is.

THEOREM 4.2. – The characteristic polynomial of the monodromy of a fiber $[S] = \phi \in \mathbb{R}_+ \cdot F$ is given by

$$p(k) = \Theta_F(k^{\phi}) \cdot \begin{cases} (k-1) & \text{if } \mathcal{L} \text{ is transversally orientable,} \\ 1 & \text{otherwise,} \end{cases}$$

up to a unit $\pm k^n$.

Proof. – Let $t_i, u \in G$ be a basis adapted to the splitting $G = H \oplus \mathbb{Z}$ determined by the choice of a lift of the monodromy, $\tilde{\psi}: \tilde{S} \to \tilde{S}$. Then $\phi(t_i) = 0$ and $\phi(u) = 1$, so $k^{\phi}: G \to \mathbb{C}^*$ has coordinates $(t, u) = (1, k) \in \hat{G}$. Thus

$$\Theta_F(k^{\phi}) = \Theta_F(1, u)|_{u=k} = \det(kI - P_E(1))/\det(kI - P_V(1))$$

by the determinant formula (3.5).

Applying the functor $\text{Hom}(\cdot, \mathbb{R})$ to the commutative diagram (3.4), with t = 1, we obtain the adjoint diagram

$$0 \longrightarrow Z_{1}(\tau, \mathbb{R}) \longrightarrow \mathbb{R}^{E} \xrightarrow{D(1)^{*}} \mathbb{R}^{V} \longrightarrow \mathbb{R}^{m} \longrightarrow 0$$
$$\downarrow^{P(1)^{*}} \qquad \downarrow^{P_{E}(1)^{*}} \qquad \downarrow^{P_{V}(1)^{*}} \qquad \downarrow^{\text{id}}$$
$$0 \longrightarrow Z_{1}(\tau, \mathbb{R}) \longrightarrow \mathbb{R}^{E} \xrightarrow{D(1)^{*}} \mathbb{R}^{V} \longrightarrow \mathbb{R}^{m} \longrightarrow 0.$$

Here m = 1 if \mathcal{L} (and hence τ) is orientable, and m = 0 otherwise (compare Corollary 2.4).

Since the rows of the diagram above are exact, the characteristic polynomial of $P = P(1)^*$ is given by the alternating product

$$p(k) = \frac{\det(kI - P_E(1))(k-1)^m}{\det(kI - P_V(1))} = \Theta_F(k^{\phi})(k-1)^m.$$

COROLLARY 4.3. – The Teichmüller polynomial is symmetric; that is,

$$\Theta_F = \sum a_g \cdot g = \pm h \sum a_g \cdot g^{-1}$$

for some unit $\pm h \in \mathbb{Z}[G]$.

Proof. – Since $\mathbb{R}_+ \cdot F \subset H^1(M, \mathbb{R})$ is open, we can choose $[S] = \phi \in \mathbb{R}_+ \cdot F$ such that the values $\phi(g)$ over the finite set of g with $a_g \neq 0$ are all distinct. Then symmetry of Θ_F follows from symmetry of the characteristic polynomial $p(k) = \Theta_F(k^{\phi}) = \sum a_g k^{\phi(g)}$. \Box

Notes. Although the characteristic polynomial $f(u) = \det(uI - P)$ of a pseudo-Anosov mapping ψ is always symmetric, f(u) may factor over \mathbb{Z} into a product of non-symmetric polynomials. In particular, the minimal polynomial of a pseudo-Anosov expansion factor K > 1 need *not* by symmetric. For example, the largest root K = 1.83929... of the non-symmetric polynomial $x^3 - x^2 - x - 1$ is a pseudo-Anosov expansion factor; see [1], [20, §5].

5. Expansion factors

In this section we study the expansion factor $K(\phi)$ for a cohomology class $\phi \in \mathbb{R}_+ \cdot F$, and prove it is strictly convex and determined by Θ_F .

Definitions. Let $[S] = \phi \in \mathbb{R}_+ \cap F$ be a fiber with monodromy ψ and expanding measured lamination $\Lambda \in \mathcal{ML}(S)$. The *expansion factor* $K(\phi) > 1$ is the expanding eigenvalue of $\psi : \mathcal{ML}(S) \to \mathcal{ML}(S)$; that is, the constant such that

$$\psi \cdot \Lambda = K(\phi)\Lambda.$$

The function

$$L(\phi) = \log K(\phi)$$

gives the *Teichmüller length* of the unique geodesic loop in the moduli space of Riemann surfaces represented by

$$\psi \in \operatorname{Mod}(S) \cong \pi_1(\mathcal{M}_{g,n}).$$

(Compare [4].)

THEOREM 5.1. – The expansion factor satisfies

(5.1)
$$K(\phi) = \sup\{k > 1: \Theta_F(k^{\phi}) = 0\}$$

for any fiber $[S] = \phi \in \mathbb{R}_+ \cdot F$.

Proof. – By Theorem 4.2, $p(k) = \Theta_F(k^{\phi})$ is the characteristic polynomial of the map

$$P: Z_1(\lambda, \mathbb{R}) \to Z_1(\lambda, \mathbb{R})$$

determined by monodromy of S, and the largest eigenvalue of P is $K(\phi)$, with eigenvector the expanding measure associated to Λ . \Box

Since the right-hand side of (5.1) is defined for real cohomology classes, we will use it to extend the definition of $K(\phi)$ and $L(\phi)$ to the entire cone $\mathbb{R}_+ \cdot F$. Then we have the homogeneity properties:

4^e SÉRIE – TOME 33 – 2000 – N° 4

$$K(a\phi) = K(\phi)^{1/a},$$

$$L(a\phi) = a^{-1}L(\phi).$$

Here is a useful fact established in [18, Theorem F].

THEOREM 5.2 Fried. – The expansion factor $K(\phi)$ is continuous on F and tends to infinity as $\phi \rightarrow \partial F$.

Next we derive some convexity properties of the expansion factor. These properties are illustrated in Fig. 7 of Section 11.

THEOREM 5.3. – For any k > 1, the level set

$$\Gamma = \left\{ \phi \in \mathbb{R}_+ \cdot F \colon K(\phi) = k \right\}$$

is a convex hypersurface with $\mathbb{R}_+ \cdot \Gamma = \mathbb{R}_+ \cdot F$.

Proof. – By homogeneity, Γ meets every ray in $\mathbb{R}_+ \cdot F$, and thus $\mathbb{R}_+\Gamma = \mathbb{R}_+ \cdot F$. For convexity, it suffices to consider the level set Γ where $\log K(\phi) = 1$.

Choose a fiber $[S] \in \mathbb{R}_+ \cdot F$ and a lift ψ of its monodromy. Then we obtain a splitting $H^1(M, \mathbb{R}) = H^1(S, \mathbb{R})^{\psi} \oplus \mathbb{R}$ and associated coordinates (s, y) on $H^1(M, \mathbb{R})$ and $(t, u) = (e^s, e^y)$ on $\widehat{G} = \exp H^1(M, \mathbb{R})$.

By the determinant formula (3.5), $\Theta_F(t, u)$ is the ratio between the characteristic polynomials of $P_E(t)$ and $P_V(t)$. By Theorem 3.4, $P_E(t)$ is a Perron-Frobenius matrix of Laurent polynomials; let E(t) > 1 denote its leading eigenvalue for $t \in \mathbb{R}^b_+$. Since $P_V(t)$ is simply a permutation matrix, we have $\Theta_F(t, E(t)) = 0$ for all t. By Theorem A.1 of Appendix A, $y = \log E(e^s)$ is a convex function of s, so its graph Γ' is convex.

To complete the proof, we show $\Gamma' = \Gamma$. First note that $\Gamma' \subset \Gamma$. Indeed, if $\phi = (s, y) \in \Gamma'$, then $\Theta_F(e^s, e^y) = 0$ and so $K(\phi) \ge e$. But by Theorem A.1, the ray $\mathbb{R}_+ \cdot \phi$ meets Γ' at most once; since u = E(t) is the *largest* zero of $\Theta_F(t, u)$, we have $K(\phi) = e$, and thus $(s, u) \in \Gamma$.

Since Γ' is a graph over $H^1(S, \mathbb{R})$, it is properly embedded in $H^1(M, \mathbb{R})$; but Γ is connected, so $\Gamma = \Gamma'$. \Box

COROLLARY 5.4. – The function $y = 1/\log K(\phi)$ on the cone $\mathbb{R}_+ \cdot F$ is real-analytic, strictly concave, homogeneous of degree 1, and

$$y(\phi) \to 0$$
 as $\phi \to \partial F$.

Proof. – The homogeneity of $y(\phi)$ follows from that of $K(\phi)$.

Let Γ be the convex hypersurface on which $\log K(\phi) = 1$. Since Γ is a component of the analytic set $\Theta_F(e^{\phi}) = 0$, and $K(\phi)$ is homogeneous, $K(\phi)$ is real-analytic.

To prove concavity, let $\phi_3 = \alpha \phi_1 + (1 - \alpha)\phi_2$ be a convex combination of $\phi_1, \phi_2 \in \mathbb{R}_+ \cdot F$, and let $y_i = 1/\log K(\phi_i)$, so $y_i^{-1}\phi_i \in \Gamma$. By convexity of Γ , the segment $[y_1^{-1}\phi_1, y_2^{-1}\phi_2]$ meets the ray through ϕ_3 at a point p which is farther from the origin than $y_3^{-1}\phi_3$. Since

$$p = \frac{\alpha y_1(y_1^{-1}\phi_1) + (1-\alpha)y_2(y_2^{-1}\phi_2)}{\alpha y_1 + (1-\alpha)y_2} = \frac{\phi_3}{\alpha y_1 + (1-\alpha)y_2},$$

we find

$$y_3^{-1} \leq (\alpha y_1 + (1 - \alpha)y_2)^{-1}$$

and therefore $y(\phi)$ is concave.

Finally $y(\phi)$ converges to zero at ∂F by Theorem 5.2, so by real-analyticity it must be strictly concave. \Box

Notes.

- (1) The concavity of $1/\log K(\phi)$ was established by Fried; see [18, Theorem E], [20, Proposition 8], as well as [31] and [32]. Our proof of concavity is rather different and uses only general properties of Perron–Frobenius matrices (presented in Appendix A).
- (2) By Corollary 5.4, the expansion factor K(φ) assumes its minimum at a unique point φ ∈ F, providing a *canonical center* for any fibered face of the Thurston norm ball.
 Question. Is the minimum always achieved at a *rational* cohomology class?

6. The Thurston norm

Let $F \subset H^1(M, \mathbb{R})$ be a fibered face of the Thurston norm ball. In this section we use the fact that $K(\phi)$ blows up at ∂F to show one can compute the cone $\mathbb{R}_+ \cdot F$ from the polynomial Θ_F . This observation is conveniently expressed in terms of a second norm on $H^1(M, \mathbb{R})$ attached to Θ_F .

Norms and Newton polygons. Write the Teichmüller polynomial $\Theta_F \in \mathbb{Z}[G]$ as

$$\Theta_F = \sum a_g \cdot g.$$

The Newton polygon $N(\Theta_F) \subset H_1(M, \mathbb{R})$ is the convex hull of the finite set of integral homology classes g with $a_g \neq 0$. We define the *Teichmüller norm* of $\phi \in H^1(M, \mathbb{R})$ (relative to F) by:

$$\|\phi\|_{\Theta_F} = \sup_{a_g \neq 0 \neq a_h} \phi(g-h).$$

The norm of ϕ measures the length of the projection of the Newton polygon, $\phi(N(\Theta_F)) \subset \mathbb{R}$. Multiplication of Θ_F by a unit just translates $N(\Theta_F)$, so the Teichmüller norm is well-defined.

THEOREM 6.1. – For any fibered face F of the Thurston norm ball, there exists a face D of the Teichmüller norm ball,

$$D \subset \{\phi \colon \|\phi\|_{\Theta_F} = 1\},\$$

such that $\mathbb{R}_+ \cdot F = \mathbb{R}_+ \cdot D$.

Proof. – Pick a fiber $[S] \in \mathbb{R}_+ \cdot F$ with monodromy ψ . Choose coordinates $(t, u) = (e^s, e^y)$ on

$$H^1(M,\mathbb{R}_+) \cong \exp(H^1(S,\mathbb{R})^{\psi} \oplus \mathbb{R}),$$

and let E(t) be the leading eigenvalue of the Perron-Frobenius matrix $P_E(t)$. As we saw in Section 5, we have $\mathbb{R}_+ \cdot \Gamma = \mathbb{R}_+ \cdot F$, where Γ is the graph of the function

$$y = f(s) = \log E(e^s).$$

Now the determinant formula (3.5) shows $\Theta_F(t, u)$ is a factor of $\det(uI - P_E(t))$ with $\Theta_F(t, E(t)) = 0$, so by Theorem A.1(C) of Appendix A, $\mathbb{R}_+ \cdot \Gamma$ coincides with the dual cone $C(u^d)$ of the leading term u^d of $\Theta_F(t, u)$. Equivalently, $\mathbb{R}_+ \cdot \phi$ meets the graph of f(s) iff ϕ achieves its maximum on $N(\Theta_F)$ at the vertex $v \in N(\Theta_F)$ corresponding to u^d .

 4^e série – tome $33 - 2000 - n^\circ 4$

542

Since Θ_F is symmetric (Corollary 4.3), so is its Newton polygon, and thus the unit ball B of the Teichmüller norm is dual to the convex body $N(\Theta_F)$. Under this duality, the linear functionals ϕ achieving their maximum at v correspond to the cone over a face $D \subset B$; and therefore

$$\mathbb{R}_+ \cdot F = C(u^d) = \mathbb{R}_+ \cdot D.$$

Skew norms. Although in some examples the Thurston and Teichmüller norms actually agree (see Section 11), in general the norm faces F and D of Theorem 6.1 are skew to one another.

Here is a construction showing that F and D carry different information in general. Let $\lambda \subset S$ be the expanding lamination of a pseudo-Anosov mapping ψ , and let $\mathcal{L} \subset M$ be its mapping torus. Assume $b_1(M) \ge 2$.

Assume moreover that ψ has a fixed-point x in the center of an ideal n-gon of $S - \lambda$, with $n \ge 3$. (In the measured foliation picture, x is an n-prong singularity.) Then the mapping torus of x gives an oriented loop $X \subset M$ transverse to S. Construct a 3-dimensional submanifold

$$M' \stackrel{i}{\hookrightarrow} M$$

by removing a tubular neighborhood of $X \subset M$, small enough that we still have $\mathcal{L} \subset M'$. Let $S' = S \cap M'$; it is a fiber of M'.

Let F and F' be the faces of the Thurston norm balls whose cones contain [S] and [S']. We wish to compare the norms of ϕ and $\phi' = i^*(\phi)$ for $\phi \in \mathbb{R}_+ \cdot F$.

First, the Teichmüller norms agree: that is,

$$\|\phi'\|_{\Theta'_{F}} = \|\phi\|_{\Theta_{F}}.$$

Indeed, the mapping torus of the expanding lamination is $\mathcal{L}' = \mathcal{L}$ for both M' and M, and therefore $i_*(\Theta_{F'}) = \Theta_F$, which gives (6.1).

On the other hand, the Thurston norms satisfy

(6.2)
$$\|\phi'\|_T = \|\phi\|_T + \phi(X).$$

Indeed, let $[R] = \phi$ be a fiber in M and let $[R'] = [R \cap M']$ be the corresponding fiber in M'. Then we have

$$\|\phi'\|_T = |\chi(R')| = |\chi(R-X)| = |\chi(R)| + |R \cap X| = \|\phi\|_T + \phi(X).$$

By (6.1) and (6.2), the Teichmüller and Thurston norms can agree on at most one of the cones $\mathbb{R}_+ \cdot F$ and $\mathbb{R}_+ \cdot F'$. With an appropriate choice of X, one can construct examples where the Thurston norm is not even a constant multiple of the Teichmüller norm on $\mathbb{R}_+ \cdot F$.

Notes.

(1) Theorem 6.1 provides an effective algorithm to determine a fibered face F of M from a single fiber S and its monodromy ψ .

The first step is to find a ψ -invariant train track τ . Bestvina and Handel have given an elegant algorithm to find such a train track, based on entropy reduction [5]. Versions of this algorithm have been implemented by T. White, B. Menasco — J. Ringland, T. Hall and P. Brinkman; see [9].

Once τ is found, it is straightforward to compute the matrices $P_E(t)$ and $P_V(t)$ giving the action of $\tilde{\psi}$ on $\tilde{\tau}$. The determinant formula

$$\Theta_F(t, u) = \det(uI - P_E(t)) / \det(uI - P_V(t))$$

then gives the Teichmüller polynomial for F, and the Newton polygon of Θ_F determines the cone $\mathbb{R}_+ \cdot F$ as we have seen above. Finally F itself can be recovered as the intersection of $\mathbb{R}_+ \cdot F$ with the unit sphere $\|\phi\|_A = 1$ in the *Alexander norm* on $H^1(M, \mathbb{R})$ (see Section 7).

(2) For any fiber $[S] \in \mathbb{R}_+ \cdot F$ with expanding lamination λ , we have

$$\|[S]\|_{\Theta_F} = -\chi(\lambda),$$

where the Euler characteristic is computed with Čech cohomology. To verify this equation, use the determinant formula for Θ_F and observe that $\chi(\lambda) = \chi(\tau) = |V| - |E|$.

7. The Alexander norm

In this section we show that a fibered face F can be computed from the Alexander polynomial of M when λ is transversely orientable.

The Alexander polynomial and norm. Assume $b_1(M) > 1$, let $G = H_1(M, \mathbb{Z})/\text{torsion}$, and let $\widehat{G} = \text{Hom}(G, \mathbb{C}^*)$.

Recall that the Teichmüller polynomial of a fibered face defines, via its zero set, the largest hypersurface $V \subset \hat{G}$ such dim $Z_2(\mathcal{L}, \mathbb{C}_{\rho}) > 0$ for all $\rho \in V$ (Theorem 3.3). Similarly, the *Alexander polynomial* of M,

$$\Delta_M = \sum a_g \cdot g \in \mathbb{Z}[G],$$

defines the largest hypersurface on which dim $H^1(M, \mathbb{C}_{\rho}) > 0$. (See [33, Corollary 3.2].) The Alexander norm on $H^1(M, \mathbb{R})$ is defined by

$$\|\phi\|_A = \sup_{a_g \neq 0 \neq a_h} \phi(g-h).$$

(By convention, $\|\phi\|_A = 0$ if $\Delta_M = 0$.)

THEOREM 7.1. – Let F be a fibered face in $H^1(M, \mathbb{R})$ with $b_1(M) \ge 2$. Then we have:

- (1) $F \subset A$ for a unique face A of the Alexander norm ball, and
- (2) F = A and Δ_M divides Θ_F if the lamination \mathcal{L} associated to F is transversally orientable.

Remark. – Transverse orientability of \mathcal{L} is equivalent to transverse orientability of $\lambda \subset S$ for a fiber $S \in \mathbb{R}_+ \cdot F$, and to orientability of a train track τ carrying λ .

Proof of Theorem 7.1. – In [33] we show

$$\|\phi\|_A \leqslant \|\phi\|_T$$

for all $\phi \in H^1(M, \mathbb{R})$, with equality if ϕ comes from a fibration $M \to S^1$; this gives part (1) of the theorem.

 $4^e~\text{Série} - \text{tome}~33 - 2000 - \text{n}^\circ~4$

544

For part (2), pick a fiber $[S] \in \mathbb{R}_+ \cdot F$ with monodromy ψ and invariant lamination λ . Let (t, u) be coordinates on the character variety \widehat{G} adapted to the splitting $G = H \oplus \mathbb{Z}$ coming from the choice of a lift $\widetilde{\psi}$ of ψ .

If \mathcal{L} is transversally orientable, then λ is carried by an orientable train track τ . Since τ fills the surface S, we obtain a surjective map:

(7.1)
$$\pi: Z_1(\tau, \mathbb{C}_t) \cong H_1(\tau, \mathbb{C}_t) \twoheadrightarrow H_1(S, \mathbb{C}_t)$$

for any character $t \in \hat{H}$.

Let P(t) and Q(t) denote the action of $\tilde{\psi}$ on $Z_1(\tau, \mathbb{C}_t)$ and $H_1(S, \mathbb{C}_t)$ respectively. Fixing a nontrivial character t, we have

$$\Delta_M(t, u) = \det(uI - Q(t)) \quad \text{and} \quad \Theta_F(t, u) = \det(uI - P(t))$$

up to a unit in $\mathbb{Z}[G]$. By (7.1), $\Delta_M(t, u)$ is a divisor of $\Theta_F(t, u)$. It follows that Δ_M divides Θ_F (using an algebraic argument as in Section 3 to lift the divisibility to $\mathbb{Z}[G]$).

The action of ψ on Ker(π) corresponds to the action of ψ by permutations on the components of $S - \tau$, so it does not include the leading eigenvalue E(t) of P(t). Therefore $\Delta_M(t, E(t)) = 0$, so we can apply Theorem A.1(C) of the Appendix to conclude that there is a face A of the Alexander norm ball with $\mathbb{R}_+ \cdot A = \mathbb{R}_+ \cdot F$ (just as in Theorem 6.1). By (1) we have $F \subset A$, and therefore F = A. \Box

Note. Dunfield has given an example where the fibered face F is a *proper* subset of the Alexander face A; see [14].

8. Twisted measured laminations

In this section we add another interpretation to the Teichmüller polynomial, by showing Θ_F determines the eigenvalues of $\psi \in Mod(S)$ on the space of twisted (or affine) measured laminations $\mathcal{ML}_s(S)$. We will establish:

THEOREM 8.1. – A pseudo-Anosov mapping $\psi: S \to S$ has a unique pair of fixed-points

$$\Lambda_+, \Lambda_- \in \mathbb{P}\mathcal{ML}_s(S)$$

for any $s \in H^1(S, \mathbb{R})^{\psi}$. The supporting geodesic laminations (λ_+, λ_-) of (Λ_+, Λ_-) coincide with the expanding and contracting laminations of ψ respectively, and we have

$$\psi \cdot \Lambda_+ = k\Lambda_+,$$

where k > 0 is the largest root of the equation $\Theta_F(e^s, k) = 0$.

 $\mathcal{ML}_{s}(S)$. Fix a cohomology class $s \in H^{1}(S, \mathbb{R})$. We can interpret s as a homomorphism

$$s: H_1(S, \mathbb{Z}) \to \mathbb{R},$$

determining an element $t \in H^1(S, \mathbb{R}_+)$ by

$$t = e^s : H_1(S, \mathbb{Z}) \to \mathbb{R}_+ = SL_1(\mathbb{R}).$$

Thus s (or t) gives \mathbb{R} the structure of a module \mathbb{R}_s (or \mathbb{R}_t) over the ring $\mathbb{Z}[H_1(S,\mathbb{Z})]$.

The space of *twisted measured laminations*, $\mathcal{ML}_s(S)$, is the set of all $\Lambda = (\lambda, \mu)$ such that:

- $\lambda \subset S$ is a compact geodesic lamination,
- $\mu \in Z_1(\lambda, \mathbb{R}_s)$ is a cycle, and
- $\mu(T) > 0$ for every nonempty transversal T to λ .

Here μ can be thought of as a transverse measure taking values in a fixed flat \mathbb{R} -bundle $L_s \to S$. For s = 0, the bundle L_s is trivial, so $\mathcal{ML}_0(S)$ reduces to the space of ordinary measured laminations $\mathcal{ML}(S)$. Let $\mathbb{PML}_s(S) = \mathcal{ML}_s(S)/\mathbb{R}_+$ denote the projective space of rays in $\mathcal{ML}_s(S)$.

Using train tracks, one can give $\mathcal{ML}_s(S)$ local charts and a topology. A basic result from [25] is:

THEOREM 8.2 (Hatcher–Oertel). – The spaces $\mathcal{ML}_s(S)$ form a fiber bundle over $H^1(M, \mathbb{R}_+)$. In particular, $\mathcal{ML}_s(S) \cong \mathbb{R}^n$ for all s.

Perron–Frobenius eigenvectors. Let $\psi: S \to S$ be a pseudo-Anosov mapping with monodromy ψ and expanding lamination λ carried by an invariant train track τ . As in (3.4), we obtain a matrix

$$P_E(t): \mathbb{Z}[H]^E \to \mathbb{Z}[H]^E$$

describing the action of ψ on the edges of $\tilde{\tau}$, and $P_E(t)$ is a Perron–Frobenius matrix of Laurent polynomials by Theorem 3.4. We can think of $P_E(t)$ as a map

$$P_E: H^1(S, \mathbb{R}_+)^{\psi} \to \operatorname{End}(\mathbb{R}^E),$$

whose values are traditional Perron–Frobenius matrices over \mathbb{R} .

As in Section 4, we can apply the functor Hom (\cdot, \mathbb{R}_t) to (3.4) to obtain the adjoint diagram:

(8.1)

$$0 \longrightarrow Z_{1}(\tau, \mathbb{R}_{t}) \longrightarrow \mathbb{R}^{E} \xrightarrow{D(t)^{*}} \mathbb{R}^{V}$$

$$\downarrow^{P(t)^{*}} \qquad \downarrow^{P_{E}(t)^{*}} \qquad \downarrow^{P_{V}(t)^{*}}$$

$$0 \longrightarrow Z_{1}(\tau, \mathbb{R}_{t}) \longrightarrow \mathbb{R}^{E} \xrightarrow{D(t)^{*}} \mathbb{R}^{V}.$$

For each t, the largest eigenvalue E(t) of $P_E(t)^*$ is positive and simple, with a positive eigenvector $\mu(t) \in \mathbb{R}^E$.

THEOREM 8.3. – For each $t \in H^1(S, \mathbb{R}_+)$, the leading eigenvalue u = E(t) of $P_E(t)^*$ is the largest root of the polynomial equation

$$\Theta_F(t, u) = 0,$$

and its positive eigenvector $\mu(t)$ belongs to $Z_1(\tau, \mathbb{R}_t)$.

Proof. – First suppose t = 1 is the trivial cohomology class. Then $P_E(1)$ is an integral Perron-Frobenius matrix, and hence u = E(1) > 1 is the largest root of the polynomial det $(uI - P_E(1))$. On the other hand, $P_V(1)$ is a permutation matrix, with eigenvalues on the unit circle, so det $(uI - P_V(1))$ has no root at u = E(1). Since Theorem 3.6 expresses $\Theta_F(1, u)$ as the ratio of these two determinants, E(1) is the largest root of the polynomial $\Theta_F(1, u) = 0$.

To see $\mu(1)$ is a cycle, just note that $D(1)^*\mu(1) = 0$ because (8.1) is commutative and $P_V(1)$ has no eigenvector with eigenvalue E(1).

4^e SÉRIE – TOME 33 – 2000 – N° 4

546

The same reasoning applies whenever E(t) is not an eigenvalue of $P_V(t)$, and thus the Theorem holds for generic t. By continuity, it holds for all $t \in H^1(S, \mathbb{R}_+)$. \Box

Proof of Theorem 8.1. – Suppose $\psi \cdot \Lambda = E\Lambda$. As we saw in Corollary 3.2, the only possibilities for the support of Λ are the expanding and contracting geodesic laminations λ_+, λ_- of ψ . In the case $\Lambda = (\lambda_+, \mu)$, positivity of μ on transversals implies μ is a positive eigenvector of $P_E(t)^*$, $t = e^s$, under the isomorphism

$$Z_1(\lambda_+, \mathbb{R}_t) = Z_1(\tau, \mathbb{R}_t).$$

Since $P_E(t)^*$ is a Perron–Frobenius matrix, its positive eigenvector is unique up to scale, and thus k = E(t). By Theorem 8.3, k is the largest root of $\Theta_F(t, k) = \Theta_F(e^s, k) = 0$. \Box

COROLLARY 8.4. – Let k(s) be the eigenvalue of

$$\psi: \mathcal{ML}_s(S) \to \mathcal{ML}_s(S)$$

at Λ_+ . Then $\log k(s)$ is a convex function on $H^1(S, \mathbb{R})^{\psi}$.

Proof. – Apply Theorem A.1 of Appendix A. \Box

Notes.

- It can happen that ψ · Λ₊ = k(s)Λ₊ with 0 < k(s) < 1, even though Λ₊ ∈ ML_s(S) is supported on the expanding lamination of ψ. Indeed, k(s) depends on the choice of a lift ψ̃ of ψ, and changing this lift by h ∈ H changes k(s) to e^{φ(h)}k(s).
- (2) Question. Given a Riemann surface X ∈ Teich(S), is there a natural isomorphism *ML_s(S)* ≅ Q_s(X) between the space of twisted measured laminations and the space of twisted quadratic differentials, defined as holomorphic sections of K(X)² ⊗ L_s? Hubbard and Masur established this correspondence in the untwisted case [26].
- (3) The existence of a fixed-point for ψ on $\mathcal{ML}_s(S)$ is also shown in [38, Proposition 2.3].

9. Teichmüller flows

We now turn to the study of measured foliations \mathcal{F} of M.

Assume M is oriented and \mathcal{F} is transversally oriented; then the leaves of \mathcal{F} are also oriented. Measured foliations so oriented correspond bijectively to closed, nowhere-vanishing 1-forms ω on M, and we let $[\mathcal{F}] = [\omega] \in H^1(M, \mathbb{R})$. A flow $f: M \times \mathbb{R} \to M$ has *unit speed* (relative to \mathcal{F}) if it is generated by a vector field v with $\omega(v) = 1$. Such a flow preserves the foliation \mathcal{F} and its transverse measure.

In this section we prove:

THEOREM 9.1. – Let F be a fibered face of the Thurston norm ball for M. Then any $\phi \in \mathbb{R}_+ \cdot F$ determines:

- a measured foliation \mathcal{F} of M with $[\mathcal{F}] = \phi$,
- a complex structure J on the leaves of \mathcal{F} , and
- a unit-speed Teichmüller flow

$$f:(M,\mathcal{F})\times\mathbb{R}\to(M,\mathcal{F})$$

with stretch factor $K(f_t) = K(\phi)^{|t|}$.

The data (\mathcal{F}, J, f) is unique up to isotopy.

The idea of the proof is to use the results on twisted measured laminations in Section 8 to construct the analytic structure (\mathcal{F}, J, f) from the purely combinatorial information provided by the cohomology class ϕ .

From measured laminations to quadratic differentials. As usual we choose a fiber $[S] \in \mathbb{R}_+ \cdot F$ with monodromy ψ and expanding and contracting laminations λ_{\pm} . Choose a lift $\tilde{\psi}$ of ψ to the *H*-covering space \tilde{S} of *S*, and write

$$G = H_1(M, \mathbb{Z}) / \text{torsion} = H \oplus \mathbb{Z} \psi.$$

Let G act on \widetilde{S} by

$$(h,i) \cdot s = \psi^i(h(s));$$

this action embeds G into the mapping-class group $Mod(\widetilde{S})$.

THEOREM 9.2. – There exist measured laminations $\widetilde{\Lambda}_{\pm} \in \mathcal{ML}(\widetilde{S})$, supported on $\widetilde{\lambda}_{\pm}$, such that for all $g \in G$ we have

$$(9.1) q \cdot \tilde{A}_{+} = K^{\pm \phi(g)} \tilde{A}_{+},$$

where $K = K(\phi)$ is the expansion factor of ϕ .

Proof. – Writing $\phi = (s, y)$, the condition $K = K(\phi)$ means y > 0 is the largest solution to the equation $\Theta_F(K^s, K^y) = 0$. By Theorem 8.1 there exists a twisted measured lamination $\Lambda_+ \in \mathcal{ML}_{s \log K}(S)$, supported on λ_+ , with $\psi \cdot \Lambda_+ = K^y \Lambda_+$. The lift of Λ_+ to \widetilde{S} then gives a lamination $\widetilde{\Lambda}_+$ satisfying (9.1).

To construct Λ_- , note that $K(\phi) = K(-\phi)$ because the expansion and contraction factors of a pseudo-Anosov mapping are reciprocal. Thus the same construction applied to $-\phi$ yields $\tilde{\Lambda}_-$ satisfying (9.1). \Box

Although $int(\tilde{S})$ has infinite topological complexity, it has a natural quasi-isometry type coming from the lift of a finite volume hyperbolic metric on int(S). Complex structures compatible with this quasi-isometry type are parameterized by the (infinite-dimensional) Teichmüller space $Teich(\tilde{S})$.

THEOREM 9.3. – There is a Riemann surface $X \in \text{Teich}(\widetilde{S})$ and a holomorphic quadratic differential $q(z) dz^2$ on X such that:

- (1) $G \subset Mod(S)$ acts by commuting Teichmüller mappings g(x) on X, preserving the foliations of q, and
- (2) The map g(x) stretches the vertical and horizontal leaves of q by $(K^{-\phi(g)}, K^{+\phi(g)})$, where $K = K(\phi)$.

Proof. – Integrating the transverse measures on $\widetilde{\Lambda}_{\pm}$, we will collapse their complementary regions and obtain a map $f: \widetilde{S} \to X$.

On any small open set $U_{\alpha} \subset \widetilde{S}$, we can introduce local coordinates (u, v) such that u and v are constant on the leaves of \widetilde{A}_{-} and \widetilde{A}_{+} respectively. Then there is a continuous map

$$f_{\alpha}: U_{\alpha} \to \mathbb{C}$$

given by $f_{\alpha}(u, v) = x(u) + iy(v)$, where x(u) and y(v) are monotone functions whose distributional derivatives (x'(u), y'(v)) are the transverse measures for $(\tilde{\Lambda}_{-}, \tilde{\Lambda}_{+})$. The coordinate $z_{\alpha} = f_{\alpha}$ is unique up to

$$(9.2) z_{\alpha} \mapsto \pm z_{\alpha} + b;$$

4^e Série – Tome 33 – 2000 – N° 4

the sign ambiguity arises because the laminations are not oriented.

Since the coordinate change (9.2) is holomorphic, we can assemble the charts

$$V_{\alpha} = f_{\alpha}(U_{\alpha})$$

to form a Riemann surface X. The forms dz_{α}^2 on U_{α} are invariant under (9.2), so they patch together to yield a holomorphic quadratic differential q on X. Finally the maps f_{α} piece together to give the collapsing map $f: \widetilde{S} \to X$.

The construction of $f: \widetilde{S} \to X$ is functorial in the measured laminations $(\widetilde{A}_{-}, \widetilde{A}_{+})$. That is, if we apply the same construction to $(a^{-1}\widetilde{A}_{-}, a^{+1}\widetilde{A}_{+})$, we obtain a new marked surface $f': \widetilde{S} \to X'$ and a unique map $F: X \to X'$ such that $F \circ f = f'$. Moreover F is a Teichmüller mapping, stretching the vertical and horizontal leaves of q by a^{-1} and a^{+1} respectively.

Since $g \in G$ multiplies the laminations (Λ_-, Λ_+) by $(K^{-\phi(g)}, K^{+\phi(g)})$, this functoriality provides the desired lifting of G to Teichmüller mappings on X. \Box

Isotopy. Finally we quote the following topological result of Blank and Laudenbach, recently treated by Cantwell and Conlon [29,35,11]:

THEOREM 9.4. – Any two measured foliations \mathcal{F} , \mathcal{F}' representing the same cohomology class on M are isotopic.

Proof of Theorem 9.1. – We will construct (\mathcal{F}, J, f) from the Riemann surface X, its quadratic differential q and the action of G given by Theorem 9.3.

Let \mathcal{F} be the measured foliation of $X \times \mathbb{R}$ with leaves $X_r = X \times \{r\}$ and with transverse measure dr. Let $\tilde{f}_t : X \times \mathbb{R} \to X \times \mathbb{R}$ be the unit speed flow $\tilde{f}_t(x,r) = (x,r+t)$. Let \tilde{J} be the unique complex structure on $T\mathcal{F}$ such that $(X_0, \tilde{J}_0) = X$ and such that $\tilde{f}_t : X_0 \to X_t$ is a Teichmüller mapping stretching the vertical and horizontal leaves of q by (K^{-t}, K^{+t}) . Finally, let G act on $X \times \mathbb{R}$ by

(9.3)
$$g \cdot (x,r) = (g(x), r + \phi(g)),$$

where g(x) is the Teichmüller mapping of X to itself provided by Theorem 9.3.

With this action, G preserves the structure (\mathcal{F}, J, f_t) , and therefore the quotient $N = (X \times \mathbb{R})/G$ carries a measured foliation \mathcal{F} , a complex structure J on $T\mathcal{F}$, and a unit speed Teichmüller flow $f_t : N \to N$.

To complete the construction, we will show N can be identified with M in such a way that $[\mathcal{F}] = \phi$. To construct a homeomorphism $N \cong M$, first note that ϕ pulls back to a trivial cohomology class on $X \cong \widetilde{S}$, so there exists a smooth function $\xi: X \to \mathbb{R}$ such that

$$\xi(h(x)) = \xi(x) + \phi(h)$$

for all $h \in H \subset G$. Set $a = \phi(\tilde{\psi}) > 0$, so $\phi(h, i) = \phi(h) + ai$. Then the homeomorphism of $X \times \mathbb{R}$ given by

$$(x,r) \mapsto (x,ar + \xi(x))$$

conjugates the action of q = (h, i) by

(9.4)
$$g \cdot (x,r) = (g(x), r+i)$$

to the original action (9.3). Thus both actions have the same quotient space. On the other hand, the quotient of $X \times \mathbb{R}$ by the action of G given by (9.4) is:

$$N = (X \times \mathbb{R})/G = ((X/H) \times \mathbb{R})/\mathbb{Z} \cong M,$$

because \mathbb{Z} acts on $X/H \cong S$ by a map isotopic to ψ .

Thus we have identified N with M. It is easy to see that $[\mathcal{F}] = \phi$ under this identification, so we have completed the construction of (\mathcal{F}, J, f) .

To prove uniqueness, the first step is to apply Theorem 9.4 to see that ϕ determines \mathcal{F} up to isotopy. Then, given two Teichmüller flows f_1 and f_2 for the same foliation \mathcal{F} , we can pick a fiber S which is nearly parallel to the leaves of \mathcal{F} and transverse to both flows. Each flow determines, via its distortion of complex structure, a pair of ψ -invariant twisted measured laminations $[\Lambda_{\pm}]$ for S. The uniqueness of (\mathcal{F}, J, f) then follows from the uniqueness of these twisted laminations, guaranteed by Theorem 8.1. \Box

Note. Our original approach to Theorem 9.1 involved taking the geometric limit of the pseudo-Anosov flows known to exist for fibered classes in $H^1(M, \mathbb{Q})$ by ordinary Teichmüller theory. An examination of the expansion factor $K([\mathcal{F}])$ led to the more algebraic approach presented here.

10. Short geodesics on moduli space

Let S be a closed surface of genus $g \ge 2$, and let $\mathcal{M}_g = \operatorname{Teich}(S)/\operatorname{Mod}(S)$ be its moduli space, endowed with the Teichmüller metric. Then closed geodesics on \mathcal{M}_g correspond bijectively to conjugacy classes of pseudo-Anosov elements $\psi \in \operatorname{Mod}(S) \cong \pi_1(\mathcal{M}_g)$. The length $L(\psi)$ of the geodesic for ψ is given by

$$L(\psi) = \log K(\psi),$$

where $K(\psi) > 1$ is the pseudo-Anosov expansion factor for ψ . From [40] we have:

THEOREM 10.1 (Penner). – The length of the shortest geodesic on the moduli space \mathcal{M}_g of Riemann surfaces of genus g satisfies $L(\mathcal{M}_g) \approx 1/g$.

(Here $A \simeq B$ means we have $A/C \leq B \leq CA$ for a universal constant C.)

In this section we show any closed fibered hyperbolic 3-manifold with $b_1(M) \ge 2$ provides a source of short geodesics on moduli space as above.

Indeed, let $S \subset M$ be a fiber of genus $g \ge 2$ with monodromy ψ . The assumption $b_1(M) \ge 2$ is equivalent to the condition that ψ fixes a primitive cohomology class

$$\xi_0 \in H^1(S, \mathbb{Z}).$$

Let $\widetilde{S} \to S$ be the \mathbb{Z} -covering space corresponding to ξ_0 , with deck group generated by $h: \widetilde{S} \to \widetilde{S}$, and let $\widetilde{\psi}$ be a lift of ψ to \widetilde{S} .

THEOREM 10.2. – For all n sufficiently large,

$$R_n = \widetilde{S} / \langle h^n \widetilde{\psi} \rangle$$

is a closed surface of genus $g_n \asymp n$, and $h: \widetilde{S} \to \widetilde{S}$ descends to a pseudo-Anosov mapping class $\psi_n \in Mod(R_n)$ with

(10.1)
$$L(\psi_n) = \frac{L(\psi)}{n} + \mathcal{O}(n^{-2}) \approx \frac{1}{g_n}$$

Proof. – Corresponding to the commuting maps $\tilde{\psi}$ and h on \tilde{S} , we have a covering space

$$\widetilde{M} = \widetilde{S} \times \mathbb{R} \to M$$

 4^e Série – Tome $33 - 2000 - N^\circ 4$

with deck group $\mathbb{Z}H \oplus \mathbb{Z}\widetilde{\Psi}$, where

$$H(s,t) = (h(s),t)$$
 and $\Psi(s,t) = (\Psi(s),t-1).$

Define a map

$$(\phi,\xi): H_1(M,\mathbb{Z}) \to \mathbb{Z}H \oplus \mathbb{Z}\widetilde{\Psi} \to \mathbb{Z}^2$$

by sending H to (0,1) and $\widetilde{\Psi}$ to (-1,0). Then the first factor $\phi: H_1(M,\mathbb{Z}) \to \mathbb{Z}$ is the same as the cohomology class corresponding to the fiber S.

Now ϕ belongs to the cone on a fibered face F, so $\phi_n = n\phi + \xi$ also comes from a fibration $\pi_n : M \to S^1$ for all $n \gg 0$. Since $\mathbb{Z}(H^n \widetilde{\Psi})$ corresponds to the kernel of ϕ_n , the \mathbb{Z} -covering space $M_n \to M$ corresponding to π_n is given by

$$M_n = \widetilde{M} / \langle H^n \widetilde{\Psi} \rangle \cong \widetilde{S} / \langle h^n \widetilde{\psi} \rangle \times \mathbb{R} = R_n \times \mathbb{R}.$$

Similarly, the monodromy of π_n is induced by the action of H^{-1} on \widetilde{M} , so it can be identified with $\psi_n^{-1}: R_n \to R_n$ (up to isotopy).

Now $\|\cdot\|_T$ is linear on $\mathbb{R}_+ \cdot F$, so we have

$$\|\phi_n\|_T = |\chi(R_n)| = 2g_n - 2 = n\phi(e) - \phi_0(e) \asymp n$$

for some $e \in H_1(M, \mathbb{Z})$ (the Euler class). Finally the expansion factor is differentiable and homogeneous of degree -1, so we have

$$K(\psi_n) = K(\phi_n) = K(\phi)^{1/n} + O(n^{-2}),$$

giving (10.1). □

Notes.

- (1) The exchange of deck transformations and dynamics in the statement of Theorem 10.2 is often called *renormalization*. Compare [46], where the same construction is used to analyze rotation maps.
- (2) It is easy to see that $L(\mathcal{M}_1) = \log(3 + \sqrt{5})/2$ is the log of the leading eigenvalue of $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. For genus 2 we have $L(\mathcal{M}_2) \leq 0.543533... = \log k$, where $k^4 k^3 k^2 k + 1 = 0$ [47], and in general $L(\mathcal{M}_g) \leq (\log 6)/g$ [3].
- (3) It can be shown that the minimal expansion factor K_n for an $n \times n$ integral Perron– Frobenius matrix is the largest root of $x^n = x + 1$; it satisfies $K_n = 2^{1/n} + O(1/n^2)$. The factor K_n is realized by the matrix

$$M_{ij} = \begin{cases} 1 & \text{if } j = i + 1 \mod n \\ 1 & \text{if } (i, j) = (1, 3), \\ 0 & \text{otherwise,} \end{cases}$$

which is the adjacency matrix of a cyclic graph with one shortcut; see Fig. 5 for the case n = 8. (For a detailed development of the Perron–Frobenius theory, see [30, §4].) Since the expansion factor of ψ agrees with that of a Perron–Frobenius matrix attached to a train track with at most 6q - 6 edges, we have $L(\mathcal{M}_q) \ge (\log 2)/(6q - 6)$.

(4) **Question.** Does $\lim_{g\to\infty} g \cdot L(\mathcal{M}_g)$ exist? What is its value?

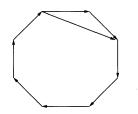


Fig. 5. An 8-vertex graph in which the number of paths of length n grows as slowly as possible.

11. Examples: Closed braids

Closed braids provide a natural source of fibered link complements $M^3 = S^3 - L(\beta)$. In this section we present the computation of Θ_F and the fibered face $F \subset H^1(M, \mathbb{R})$ for some simple braids.

Braids. Let $S = D^2 - \bigcup_{i=1}^{n} U_i$ be the complement of *n* disjoint round disks lying along a diameter of the closed unit disk D^2 . Let Diff⁺ $(S, \partial D)$ be the group of diffeomorphisms of *S* to itself, preserving orientation and fixing ∂D^2 pointwise.

The braid group B_n is the group of connected components of Diff⁺ $(S, \partial D)$. It has standard generators σ_i , i = 1, ..., n - 1, which interchange ∂U_i and ∂U_{i+1} by performing a half Dehn twist to the left (see [6,10]).

There is a natural map $B_n \to Mod(S)$ sending a braid $\beta \in B_n$ to a mapping class $\psi \in Mod(S)$. Moreover β determines a *canonical* lift $\tilde{\psi}$ of ψ to the *H*-covering space of *S*, by the requirement that $\tilde{\psi}$ fixes the preimage of ∂D^2 pointwise.

There is a natural basis $t_i = [\partial U_i]$ for $H_1(S, \mathbb{Z})$, on which β acts by $\beta(t_i) = t_{\sigma i}$, and $b = \operatorname{rank} H$ is just the number of cycles of the permutation σ .

Links. Let M be the fibered 3-manifold with fiber S and monodromy ψ . There is a natural model for M as a link complement $M = S^3 - L(\beta)$ in the 3-sphere. To construct the link $L(\beta)$, simply close the braid β while passing it through an unknot α (see Fig. 1 of Section 1). The surface S embeds into M as a disk spanning α , punctured by the n strands of β .

The meridians of components of $L(\beta)$ give a natural basis for $H_1(M,\mathbb{Z})$; in particular the meridian of α corresponds to the natural lifting $\tilde{\psi}$ of ψ .

Train tracks and braids on three strands. We will now compute $\Theta_F(t, u)$ and F in three examples, where F is the fibered face carrying S.

These examples all come from braids β in the semigroup of B_3 generated by σ_1 and σ_2^{-1} . This semigroup is easy to work with because it preserves a pair of train tracks τ_1, τ_2 , where τ_1 is shown in Fig. 4 and τ_2 is the reflection of τ_1 through a vertical line.

As an additional simplification, each train track τ_i is a spine for S, and thus the Thurston and Teichmüller norms agree in these examples: we have

$$\|\phi\|_T = |\chi(S)| = |\chi(\lambda)| = |\chi(\tau)| = \|\phi\|_{\Theta_F}$$

for all fibers $[S] \in \mathbb{R}_+ \cdot F$ (see Note (2) of Section 6). In particular, the fibered face F coincides with a face of the Teichmüller norm ball, so it is easily computed from Θ_F .

I. The simplest pseudo-Anosov braid. For the first example, consider the simplest pseudo-Anosov braid, $\beta = \sigma_1 \sigma_2^{-1}$. Its three strands are permuted cyclically, so $H = \text{Hom}(H^1(S, \mathbb{Z})^{\psi}, \mathbb{Z})$ is of rank one, generated by $t = t_1 + t_2 + t_3$.

4^e SÉRIE – TOME 33 – 2000 – N° 4

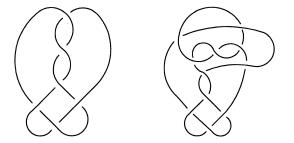


Fig. 6. The links $6_2^2 = L(\sigma_1 \sigma_2^{-1})$ and $9_{51}^2 = L(\sigma_1 \sigma_2^{-3})$.

The train tracks τ_1 and τ_2 differ only in their switching conditions, so their vertex and edge modules $\mathbb{Z}[t]^V, \mathbb{Z}[t]^E$ are naturally identified. Using this identification, we can express the action of σ_1, σ_2^{-1} on these modules as 4×4 and 6×6 matrices of Laurent polynomials.

Now the determinant formula gives Θ_F as the characteristic polynomial for the action of ψ on the 2-dimensional subspace

$$\operatorname{Ker} D(t)^* : \mathbb{Z}[t]^E \to \mathbb{Z}[t]^V.$$

By restricting σ_1 and σ_2^{-1} to this subspace, and projecting to the coordinates for the edge subset $E' = \{a, c\}$, we obtain the simpler 2 × 2 matrices:

$$\sigma_1(t) = \begin{pmatrix} t & t \\ 0 & 1 \end{pmatrix}, \qquad \sigma_2^{-1}(t) = \begin{pmatrix} 1 & 0 \\ t^{-1} & t^{-1} \end{pmatrix}.$$

Restricting to Ker $D(t)^*$ removes the factor of det $(uI - P_V(t))$ from det $(uI - P_E(t))$, and therefore we have:

(11.1)
$$\Theta_F(t,u) = \det(uI - \beta(t)),$$

where $\beta(t)$ is the appropriate product of the matrices above.

Setting $\beta(t) = \sigma_1(t)\sigma_2^{-1}(t)$, we find the Teichmüller polynomial is given by

$$\Theta_F(t,u) = 1 - u(1 + t + t^{-1}) + u^2.$$

Its Newton polygon is a diamond, and its norm is:

$$||(s,y)||_{\Theta_F} = \max(|2s|, |2y|).$$

(Here (s, y) denotes the cohomology class evaluating to s and y on the meridian of α and β respectively.)

The fibered face $F \subset H^1(M, \mathbb{R})$ is the same as the face of the Teichmüller norm ball meeting $\mathbb{R}_+ \cdot [S] = \mathbb{R}_+ \cdot (0, 1)$, and therefore $F = \{1/2\} \times [-1/2, 1/2]$ in these (s, y)-coordinates.

The closed braid $L(\beta)$ can be simplified to a projection with 6 crossings (see Fig. 6), and it is denoted 6_2^2 in Rolfsen's tables [41]. In this projection, the two components of $L(\beta)$ are clearly interchangeable. In fact, the Thurston norm ball for $S^3 - L(\beta)$ has 4 faces, all fibered, and

$$|(s, y)||_T = 2|s| + 2|y|$$

for all $(s, y) \in H^1(M, \mathbb{R})$.

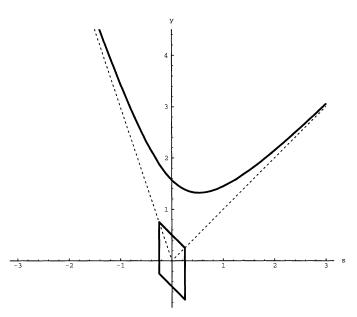


Fig. 7. Norm ball and expansion factor.

II. The Thurston and Alexander norms. The braid $\beta = \sigma_1 \sigma_2^{-3}$ also permutes its strands cyclically. By (11.1) in this case we obtain

$$\Theta_F(t,u) = t^{-2} - u(t+1+t^{-1}+t^{-2}+t^{-3}) + u^2.$$

Fig. 7 shows the Teichmüller norm ball for this example in (s, y) coordinates, along with the graph $y = \log k(s)$, where k(s) eigenvalue of ψ on $\mathcal{ML}_s(S)$ discussed in Section 8. The graph Γ is also the level set $\log K(\phi) = 1$ of the expansion function on $\mathbb{R}_+ \cdot F$. This picture illustrates the fact that Γ is convex, that the cones over F and Γ coincide, and that $K(\phi)$ tends to infinity at ∂F .

To compute the full Thurston norm ball for this example, we appeal to the inequality $\|\phi\|_A \leq \|\phi\|_T$ between the Alexander and Thurston norms (see Section 7). Because of this inequality, the two norms agree if they coincide on the extreme points of the Alexander norm ball. Now a straightforward computation gives

$$\Delta_M(t,u) = t^{-2} + u(t-1+t^{-1}-t^{-2}+t^{-3}) + u^2$$

in the present example. The polynomials Δ_M and Θ_F have the same Newton polygon, and thus the Alexander, Thurston and Teichmüller norms all coincide on F. But the endpoints of $\pm F$ are the extreme points of the Alexander norm ball, and therefore

$$||(s,y)||_T = ||(s,y)||_A = \max(|2s+2y|,|4s|)$$

for all $(s, y) \in H^1(M, \mathbb{R})$.

For example, the simplest surface spanning both components of $L(\beta)$ has genus g = 2, since $\|(\pm 1, \pm 1)\|_T = 4$.

 4^e série – tome 33 – 2000 – $n^\circ~4$

Finally we remark that the closed braid $L(\sigma_1 \sigma_2^{-3})$ is actually the same as the link 9_{51}^2 of Rolfsen's tables (see Fig. 6). We have thus established:

The Thurston and Alexander norms coincide for the link 9_{51}^2 .

In [33] we found that the two norms coincide for all examples in Rolfsen's table of links with 10 or fewer crossings, except 9_{21}^3 , and possibly 9_{41}^2 , 9_{50}^2 , 9_{51}^2 , and 9_{15}^3 . The link 9_{51}^2 can now be removed from the list of possible exceptions.

III. Pure braids. We conclude by discussing *pure braids* β in the semigroup generated by the full twists $\sigma_1^2, \sigma_2^{-2}$. A pure braid acts trivially on $H_1(S, \mathbb{Z})$, and thus the Thurston norm ball is 4-dimensional. We take (t_1, t_2, t_3, u) as a basis for $H^1(M, \mathbb{Z})$, where t_i is the meridian of the *i*th strand of β and u is the meridian of α .

By cutting down to the kernel of $D(t)^*$ on $\mathbb{Z}[H]^E$ as before, we obtain an action of the full twists on a rank 2 module over $\mathbb{Z}[t_1, t_2, t_3]$. Setting $(t_1, t_2, t_3) = (a, b, c)$ to improve readability, we find that σ_1 and σ_2^{-2} act on this module by:

$$\sigma_1^2 = \begin{pmatrix} ab & ab+b\\ 0 & 1 \end{pmatrix}, \qquad \sigma_2^{-2} = \begin{pmatrix} 1 & 0\\ b^{-1} + b^{-1}c^{-1} & b^{-1}c^{-1} \end{pmatrix}.$$

For a concrete example, we consider the pure braid $\beta = \sigma_1^2 \sigma_2^{-6}$ whose link $L(\beta)$ appears in Fig. 1 of Section 1. Applying (11.1) with the matrices above, we find its Teichmüller polynomial is given by:

$$\begin{aligned} \Theta_F(a,b,c,u) \\ &= \frac{a}{b^2 c^3} - \frac{u}{b^3 c^3} \left(1 - b^4 c^3 (1 + c + ac) + (a+1)b(1+c)(1+bc) \left(1 + b^2 c^2 \right) \right) + u^2. \end{aligned}$$

The projection of the fibered face F for this example to $H^1(S, \mathbb{R})$ is shown in Fig. 2 of Section 1. Since the coefficient of u^0 is $ab^{-2}c^{-3} = t^{(1,-2,-3)}$, we find the Thurston norm on $\mathbb{R}_+ \cdot F$ is given by

$$||(s,y)||_T = -s_1 + 2s_2 + 3s_3 + 2y.$$

For example, $\|(-1, 1, -1, 1)\|_T = 2$, showing that $L(\beta)$ is spanned by a Seifert surface of genus 0 running in alternating directions along the strands of β . It is interesting to locate this surface explicitly in Fig. 1.

Notes.

- (1) For a general construction of pseudo-Anosov mappings, including the examples above as special cases, see [39,15].
- (2) The Thurston norm of the 6_2^2 is also discussed in [17, p. 264] and [38, Ex. 2.2].

Appendix A. Positive polynomials and Perron-Frobenius matrices

This Appendix develops the theory of Perron–Frobenius matrices over a ring of Laurent polynomials. These results are used in Sections 5–8.

Laurent polynomials. Let (s_1, \ldots, s_b) be coordinates for $s \in \mathbb{R}^b$, and let

$$(t_1,\ldots,t_b) = \left(e^{s_1},\ldots,e^{s_b}\right)$$

be coordinates for $t = e^s$ in \mathbb{R}^b_+ . An integral *Laurent polynomial* p(t) is an element of the ring $\mathbb{Z}[t_1^{\pm 1}, \ldots, t_b^{\pm 1}]$ generated by the coordinates t_i and their inverses. We can write such a polynomial as

(A.1)
$$p(t) = \sum_{\alpha \in A} a_{\alpha} t^{\alpha},$$

where the exponents $\alpha = (\alpha_1, \ldots, \alpha_b)$ range over a finite set $A \subset \mathbb{Z}^b$, where $t^{\alpha} = t_1^{\alpha_1} \cdots t_b^{\alpha_b}$, and where the coefficients $a_{\alpha} \in \mathbb{Z}$ are nonzero.

Newton polygons. The Newton polygon $N(p) \subset \mathbb{R}^b$ of $p(t) = \sum_A a_\alpha t^\alpha$ is the convex hull of the set of exponents $A \subset \mathbb{Z}^b$.

If we think of (s_i) as a basis for an abstract real vector space V, then N(p) also naturally resides in V. Each monomial t^{α} appearing in p(t) determines an open dual cone $C(t^{\alpha}) \subset V^*$ consisting of the linear maps $\phi: V \to \mathbb{R}$ that achieve their maximum on N(p) precisely at α . Equivalently,

$$C(t^{\alpha}) = \left\{ \phi: \ \phi(\alpha) > \phi(\beta) \text{ for all } \beta \neq \alpha \text{ in } A \right\}.$$

Positivity and Perron–Frobenius. A Laurent polynomial $p(t) \neq 0$ is *positive* if it has coefficients $a_{\alpha} > 0$.

Let

$$P(t) = P_{ij}(t) \in M_n(\mathbb{Z}[t_1^{\pm 1}, \dots, t_h^{\pm 1}])$$

be an $n \times n$ matrix of Laurent polynomials, with each entry either zero or positive. If for some k > 0, every entry of $P_{ij}^k(t)$ is a positive Laurent polynomial, we say P(t) is an (integral) Perron-Frobenius matrix. By convention, we exclude the case where n = 1 and P(1) = [1].

The matrix P(t) is a traditional Perron–Frobenius matrix for every fixed value $t \in \mathbb{R}^b_+$. In particular, the largest eigenvalue E(t) of P(t) is simple, real and positive [23]. Since P(1) is an integral matrix ($\neq [1]$), we always have E(1) > 1.

The main result of this section is:

THEOREM A.1. – Let E(t) be the leading eigenvalue of a Perron-Frobenius matrix P(t). Then:

- (A) The function $f(s) = \log E(e^s)$ is a convex function of $s \in \mathbb{R}^b$.
- (B) The graph of y = f(s) meets each ray from the origin in $\mathbb{R}^b \times \mathbb{R}$ at most once.
- (C) The rays passing through the graph of y = f(s) coincide with the dual cone $C(u^d)$ of the polynomial

$$\Theta_F(t,u) = u^d + b_1(t)u^{d-1} + \dots + b_d(t)$$

for any factor $\Theta_F(t, u)$ of det(uI - P(t)) satisfying $\Theta_F(t, E(t)) = 0$.

Positivity and convexity. In addition to Laurent polynomials, it is also useful to consider finite *power sums* $p(t) = \sum a_{\alpha}t^{\alpha}$ with *real exponents* $\alpha \in \mathbb{R}^{b}$, and real coefficients $a_{\alpha} \in \mathbb{R}$. As for a Laurent polynomial, we say a nonzero power sum is *positive* if its coefficients are positive.

PROPOSITION A.2. $-If p(t) = \sum a_{\alpha}t^{\alpha}$ is a positive power sum, then

$$f(s) = \log p(e^s)$$

is a convex function of $s \in \mathbb{R}^{b}$.

 4^e série – tome $33 - 2000 - n^\circ 4$

Proof. – By restricting f(s) to a line and applying a translation, we are reduced to showing $f''(0) \ge 0$ when p(t) is a power sum in one variable t. But then

$$f''(0) = \frac{(\sum a_{\alpha})(\sum \alpha^2 a_{\alpha}) - (\sum \alpha a_{\alpha})^2}{(\sum a_{\alpha})^2} \ge 0,$$

by Cauchy–Schwarz.

Proof of Theorem A.1(A). – Since E(t) agrees with the spectral radius of P(t), and $P_{ij}(t) \ge 0$, we have

$$E(t) = \lim_{n \to \infty} \left(\sum_{i,j} P_{ij}^n(t) \right)^{1/n}.$$

Therefore $\log E(e^s) = \lim n^{-1} \log E_n(e^s)$, where $E_n(t) = \sum_{i,j} P_{ij}^n(t)$. Since the nonzero entries of P(t) are positive, $E_n(t)$ is a positive Laurent polynomial, and thus $\log E_n(e^s)$ is convex by the preceding result. Therefore the limit $f(s) = \log E(e^s)$ is also convex.

Proof of Theorem A.1(B). – Let (s, y) be coordinates on $\mathbb{R}^b \times \mathbb{R}$, and let R be a ray through the origin. (B) is immediate when R is contained in y-axis. Dispensing with that case, we can pass to functions of a single variable $t = e^s$ by restricting to the plane spanned R and the y-axis, and we can assume R is the graph of a linear function of the form $y = \gamma s$, for s > 0.

Now the function f(s) is convex and real analytic. Thus f(s) is either strictly convex or affine (f(s) = as + b).

To treat the affine case, note $b = f(0) = \log E(1) > 0$, since the leading eigenvalue of the integral Perron–Frobenius matrix P(1) is greater than one. Thus the equation $y = \gamma s = f(s) = as + b$ has at most one solution, and we are done.

Now assume f(t) is strictly convex. Recall that f(t) is a limit of the convex functions $f_n(t) = n^{-1} \log E_n(t)$. If the ray R crosses the graph of y = f(s) twice, then it also crosses the graph of $y = f_n(s)$ twice for some finite value of n.

Fixing such an n, let $\beta_n = \beta/n$ where $a_\beta t^\beta$ is the term with largest exponent appearing in the power sum $E_n(t)$. Then $f'_n(s) \to \beta_n$ as $s \to \infty$, so by strict convexity we have $f'_n(s) < \beta_n$ for all finite s. Since $f_n(s)$ has more than one term, and $a_\beta > 1$, we also have:

(A.2)
$$f_n(s) = \frac{\log E_n(e^s)}{n} > \beta_n s + \frac{\log a_\beta}{n} \ge \beta_n s.$$

Now suppose $y = f_n(s)$ crosses the line $y = \gamma s$ twice. Then by convexity, the slopes satisfy $\beta_n > f'_n(s) > \gamma$ at the second intersection point. But (A.2) then implies $f_n(s) > \gamma s$ for all s > 0, so in fact the ray $y = \gamma s$ has *no* intersections with the graph of $y = f_n(s)$.

Proof of Theorem A.1(C). – Passing again to functions of a single variable $t = e^s$, we consider the condition that the ray $y = \gamma s$, s > 0, passes through the graph of y = E(t).

By assumption, u = E(t) is the largest root of the equation

$$\Theta_F(t,u) = \sum a_{\alpha i} t^{\alpha} u^i = u^d + b_1(t)u^{d-1} + \dots + b_d(t) = 0.$$

Since the coefficients $b_i(t)$ are homogeneous of degree i in the roots of Θ , we have

$$E(t) \asymp \sup |b_i(t)|^{1/i}$$
.

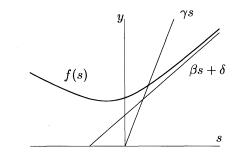


Fig. 8. A ray crossing the eigenvalue graph $y = f(s) = \log E(e^s)$.

In particular, as $t \to +\infty$, E(t) grows like t^{β} with

(A.3)
$$\beta = \sup \alpha / (d-i),$$

the sup taken over all monomials $t^{\alpha}u^i$ appearing in Θ other than u^d . Thus as $s \to \infty$ the convex function $y = f(s) = \log E(e^s)$ is asymptotic to a linear function of the form $y = \beta s + \delta$.

Now consider the ray R through $(1, \gamma)$, with equation $y = \gamma s$, s > 0. By (B), this ray meets y = f(s) iff $\gamma > \beta$ (see Fig. 8). By (A.3), we have $\gamma > \beta$ iff

$$d\gamma > \alpha + i\gamma$$

for all monomials $t^{\alpha}u^i$ in Θ other than u^d . Thus R meets y = f(s) iff the linear functional

$$\phi(\alpha, i) = 1 \cdot \alpha + \gamma \cdot i$$

achieves its maximum on the Newton polygon $N(\Theta)$ at the vertex $(\alpha, i) = (0, d)$ coming from u^d . This condition says exactly that R belongs to the dual cone $C(u^d)$. \Box

Acknowledgements

I'd like to thank N. Dunfield and the referee for many helpful comments.

REFERENCES

- [1] ARNOUX P., YOCCOZ J.-C., Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris 292 (1981) 75–78.
- [2] ATIYAH M., MACDONALD I., Commutative Algebra, Addison-Wesley, 1969.
- [3] BAUER M., An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361-370.
- [4] BERS L., An extremal problem for quasiconformal maps and a theorem by Thurston, *Acta Math.* **141** (1978) 73–98.
- [5] BESTVINA M., HANDEL M., Train-tracks for surface homeomorphisms, *Topology* **34** (1995) 109–140.
- [6] BIRMAN J.S., *Braids, Links and Mapping-Class Groups*, Annals of Math. Studies, Vol. 82, Princeton University Press, 1974.
- [7] BONAHON F., Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. 30 (1997) 205–240.
- [8] BONAHON F., Transverse Hölder distributions for geodesic laminations, *Topology* **36** (1997) 103–122.

4^e SÉRIE – TOME 33 – 2000 – N° 4

- [9] BRINKMAN P., An implementation of the Bestvina–Handel algorithm for surface homeomorphisms, J. Exp. Math., to appear.
- [10] BURDE G., ZIESCHANG H., Knots, Walter de Gruyter & Co., 1985.
- [11] CANTWELL J., CONLON L., Isotopies of foliated 3-manifolds without holonomy, Adv. Math. 144 (1999) 13–49.
- [12] CONNES A., Noncommutative Geometry, Academic Press, 1994.
- [13] COOPER D., LONG D.D., REID A.W., Finite foliations and similarity interval exchange maps, Topology 36 (1997) 209–227.
- [14] DUNFIELD N., Alexander and Thurston norms of fibered 3-manifolds, Preprint, 1999.
- [15] FATHI A., Démonstration d'un théorème de Penner sur la composition des twists de Dehn, Bull. Sci. Math. France 120 (1992) 467–484.
- [16] FATHI A., LAUDENBACH F., POÉNARU V., Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66– 67, 1979.
- [17] FRIED D., Fibrations over S¹ with pseudo-Anosov monodromy, in: Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66–67, 1979, pp. 251–265.
- [18] FRIED D., Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helvetici 57 (1982) 237–259.
- [19] FRIED D., The geometry of cross sections to flows, *Topology* **21** (1982) 353–371.
- [20] FRIED D., Growth rate of surface homeomorphisms and flow equivalence, Ergod. Theory Dynamical Syst. 5 (1985) 539–564.
- [21] GABAI D., Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503.
- [22] GABAI D., Foliations and genera of links, Topology 23 (1984) 381-394.
- [23] GANTMACHER F.R., The Theory of Matrices, Vol. II, Chelsea, New York, 1959.
- [24] HARER J.L., PENNER R.C., Combinatorics of Train Tracks, Annals of Math. Studies, Vol. 125, Princeton University Press, 1992.
- [25] HATCHER A., OERTEL U., Affine lamination spaces for surfaces, Pacific J. Math. 154 (1992) 87-101.
- [26] HUBBARD J., MASUR H., Quadratic differentials and foliations, Acta Math. 142 (1979) 221-274.
- [27] KRONHEIMER P., MROWKA T., Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931–937.
- [28] LANG S., Algebra, Addison-Wesley, 1984.
- [29] LAUDENBACH F., BLANK S., Isotopie de formes fermées en dimension trois, *Invent. Math.* 54 (1979) 103–177.
- [30] LIND D., MARCUS B., An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
- [31] LONG D., OERTEL U., Hyperbolic surface bundles over the circle, in: Progress in Knot Theory and Related Topics, Travaux en Cours, Vol. 56, Hermann, 1997, pp. 121–142.
- [32] MATSUMOTO S., Topological entropy and Thurston's norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763–778.
- [33] MCMULLEN C., The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Preprint, 1998.
- [34] MOSHER L., Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3-manifolds, J. Differential Geom. 34 (1991) 1–36.
- [35] NGÔ V.Q., ROUSSARIE R., Sur l'isotopie des formes fermées en dimension 3, Invent. Math. 64 (1981) 69–87.
- [36] NORTHCOTT D.G., Finite Free Resolutions, Cambridge University Press, 1976.
- [37] OERTEL U., Homology branched surfaces: Thurston's norm on $H_2(M^3)$, in: Epstein D.B. (Ed.), Low-Dimensional Topology and Kleinian Groups, Cambridge Univ. Press, 1986, pp. 253–272.
- [38] OERTEL U., Affine laminations and their stretch factors, Pacific J. Math. 182 (1998) 303-328.
- [39] PENNER R., A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179–198.
- [40] PENNER R., Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443-450.
- [41] ROLFSEN D., Knots and Links, Publish or Perish, Inc., 1976.
- [42] THURSTON W.P., Geometry and Topology of Three-Manifolds, Lecture Notes, Princeton University, 1979.

- [43] THURSTON W.P., A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 339 (1986) 99–130.
- [44] THURSTON W.P., On the geometry and dynamics of diffeomorphisms of surfaces, *Bull. Amer. Math.* Soc. 19 (1988) 417–432.
- [45] THURSTON W.P., Three-manifolds, foliations and circles, I, Preprint, 1997.
- [46] YOCCOZ J.-C., Petits Diviseurs en Dimension 1, Astérisque, Vol. 231, 1995.
- [47] ZHIROV A.YU., On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197-198.

(Manuscript received July 8, 1999.)

Curtis T. MCMULLEN Mathematics Department, Harvard University, 1 Oxford St, Cambridge, MA 02138-2901, USA

560