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MOST AUTOMORPHISMS OF A HYPERBOLIC GROUP
HAVE VERY SIMPLE DYNAMICS

BY GILBERT LEVITT AND MARTIN LUSTIG

ABSTRACT. - Let G be a non-elementary hyperbolic group (e.g. a non-abelian free group of finite rank).
We show that, for "most" automorphisms a of G (in a precise sense), there exist distinct elements X^, X~
in the Gromov boundary QG of G such that limn^+oo ̂ (g) = X± for every g G G which is not
periodic under a. This follows from the fact that the homeomorphism Qa induced on 9G has North-South
(loxodromic) dynamics. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Soit G un groupe hyperbolique non elementaire (par exemple un groupe libre non abelien de
rang fini). Nous montrons que, pour "la pluparf des automorphismes a de G (en un sens bien precis), il
existe deux elements distincts X+,X~ dans Ie bord de Gromov 9G de G tels que limn^+oo ̂ (g) =
X± pour tout g C G non periodique sous 1'action de a. Ceci resulte du fait que 1'homeomorphisme Qa
induit sur 9G a une dynamique Nord-Sud (loxodromique). © 2000 Editions scientifiques et medicales
Elsevier SAS

0. Introduction and statement of results

Let a be an automorphism of a (word) hyperbolic group G. Fixing g G G, we consider the
sequence of iterates an{g), for n ̂  1. We assume that g is not a-periodic, so that ̂ (g) goes off
to infinity in G.

We will show that, for "most" automorphisms a of G (in a sense that will be made precise),
there exists a point X+ in the Gromov boundary QG such that an(g) converges to X^ for every
nonperiodic g. If G is free on a finite set A, this says that there exists a sequence of letters
a^1 € A U A~1 such that, for any non-periodic g , the A;th letter of o^ (g) equals a^1 for n large.

This dynamical behavior is best expressed in terms of the homeomorphism Qa induced by a
on QG: for most a G AutG, the map Oa has North-South dynamics in the following sense. We
say that Oa, or a, has North-South dynamics (also called loxodromic dynamics) if Qa has two
distinct fixed points X^,X~, and lim^+oo Oa^^X) = X± uniformly on compact subsets of
9G\{X^}.

This implies (see Proposition 2.3) that the set of a-periodic elements g C G is a virtually
cyclic subgroup (possibly finite), and linin-^+oo ̂ (g) = X± ifg^G is not a-periodic. For
an arbitrary automorphism, it is proved in [15] that an{g) limits onto a finite subset of 9G (that
may depend on g).

If for instance a is conjugation irn by m G G, then 9a is simply left-translation by m, and 9a
has North-South dynamics for all m outside of a finite set of conjugacy classes (those consisting
of torsion elements), see [5,11,12].
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508 G. LEVITT AND M. LUSTIG

In general, we consider an outer automorphism <? € Out G, viewed as a collection of ordinary
automorphisms a C Aut G. For a topological motivation, induce <^ by a continuous map j '.X —>
X with TTiX ̂  G. Automorphisms a G ^ correspond to lifts of / to the universal covering of
X. Different lifts may have very different properties. On the other hand, conjugate maps have
similar dynamical properties. This led Nielsen [18] to define lifts of / to be isogredient if they
are conjugate by a covering transformation.

Going back to group automorphisms, we therefore define a,{3 G ^ to be isogredient if
f3 = i^ o a o i~^1 for some h G G, with ih(g) = hgh~1 (the word "similar" was used in [9]).

We denote 5(^) the set of isogredience classes of automorphisms representing (?. If ^ = 1,
then <5(^) may be identified to the set of conjugacy classes of G modulo its center. We say
that s e 5(^) has North-South dynamics if automorphisms a G s have North-South dynamics
on9G.

THEOREM 0.1. - Let G be a hyperbolic group, and ^ C Out G. Assume G is non-elementary
(i.e. G is not virtually cyclic).

(1) All but finitely many s G S{ ̂ ) have North-South dynamics.
(2) The set S((!)) of isogredience classes is infinite.

Example 0.2. - When ^ is induced by a pseudo-Anosov homeomorphism (p of a closed
surface S, the "exceptional" automorphisms a € ^ (those that do not have North-South
dynamics) correspond to lifts of (p having a fixed point in the universal covering of E. The
set of exceptional classes in 5(^) is in one-to-one correspondence with the set of fixed points
of (^. It may be empty, see [8] for an explicit example. On the other hand, the number of fixed
points of ̂ k goes to infinity with k. Thus the number of exceptional isogredience classes cannot
be bounded in terms of G only.

This example suggests the possibility of using exceptional isogredience classes to develop
a fixed point theory for general outer automorphisms of free groups. Exceptional isogredience
classes would be the algebraic analogue of Nielsen classes of fixed points, and there should be a
(rational) zeta function obtained as a sum over exceptional classes of powers of <^ (compare [7]).

Example 0.3.-Suppose G is free. It follows from [3, Lemma 5.1] that some power of
<!> contains an exceptional isogredience class. It may be shown using [4] and [14] that the
isogredience class of a is the only exceptional class when a is the irreducible automorphism
a i—^ abc, b ̂ -> bob, c \—^ cabc studied in [13].

The proof of the first assertion of Theorem 0.1 when G is not free requires the following fact,
which is of independent interest:

PROPOSITION 0.4 (Quasiisometries of hyperbolic spaces have a quasi-fixed point or a quasi-
axis). - Let f be a (A, C)-quasiisometry of a 6-hyperbolic proper geodesic metric space (E^ d)
to itself. There exists M = M(6^ A, (7), independent ofE and f, with the following property: if
d(f(x\ x) > M for all x € E, then there exists a bi-infinite geodesic 7 such that the Hausdorff
distance between 7 and /(7) is finite.

Increasing M if necessary, we conclude (Corollary 1.4) that the action of / on 9E has North-
South dynamics, with fixed points the two endpoints of 7.

1. Quasiisometries of hyperbolic spaces

We start by proving Proposition 0.4. The proof may be seen as a generalization of the
well-known argument constructing the axis of an isometry of an R-tree having no fixed
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AUTOMORPHISMS OF A HYPERBOLIC GROUP 509

points (see [17]). We refer the reader to [5,11,12,23] for basic facts about hyperbolic spaces,
quasiisometries, and hyperbolic groups.

Let {E, d) be a proper (5-hyperbolic geodesic metric space. Properness is assumed mostly for
convenience, in particular E could be an R-tree in what follows.

For x, y G E, we denote [x, y] any geodesic segment from x to y . Given a point z, any point
p e [x, y] that is ^-close to both segments [x, z\ and [y, z\ will be called a projection of z onto
[x, y} (two projections are only a few 8 ' s apart).

Recall that /: E —» E is a (A, (7)-quasiisometry if

^d{x, y)-C<^ d(f(x)J{y)) ^ \d{x, y) + C

for all x, y C E, and there exists g satisfying the same inequalities such that f o g and g o f are
07-close to the identity. We let £(f) = mfxeEd(f(x),x) be the minimum displacement of /.
Note that £{g) ̂  \£{f) + 2C.

The following lemma is left as an exercise.

LEMMA 1.1 . - If f is a (A, C) -quasiisometry of a compact interval to itself, then £(f) ̂  C.

From now on, we fix 6,\,C. The quantities Ci,Mi,C2 introduced below depend only on
these three numbers, not on E, /, or the points under consideration. We also say that two points
x,y are close, or have bounded distance, if their distance may be bounded a priori by some
number depending only on 6, A, C.

The quasiisometry / has the following basic property: there exists C\ such that, for any
geodesic segment [x, y\, the image of [x, y} is contained in the C\ -neighborhood of [f(x), f(y)}.

Consider a geodesic triangle a, f(a), f2^). Let u be a projection of a onto [f(a), /^a)], and
v a projection of f(u) onto [/(a), f2^)}.

LEMMA 1.2. - There exists Mi such that, if£{f) > Mi, then v G [u, f2(a)}.

Proof. - Suppose v e [/(a), u\. Since f(v) is close to [./^(a), f(u)} and f{u) is close to v, the
point f2^) is close to [^(a), f(u)}. Thus, up to a bounded error, the points u and ^(u) both
lie on the segment [f2 (a) ̂  f {u}}. It follows that / or g is close to a map sending [u, f{u)} into
itself. Lemma 1.1 implies that some point of [u, f(u}\ is close to its image by /. D

We assume from now on that £(f) > Mi.

LEMMA 1.3. - There exists C^ with the following property', for any a G E, there exist three
points p, q, r, lying in this order on [a, /^a)], such that

(1) q is C'2-close to a projection of f{d) onto [a, /^a)];
(2) p is C'2-close to g{q)\
(3) r is C'2-close to f{q).

Proof. -With the same notations as above, it follows from Lemma 1.2 that u is close to
[/(a), f(u)}. Therefore g(u) is close to [a, u}. We also know that f[u) is close to [u, ./^(a)]. Let
p, q, r be projections onto [a, f2{a)} of g(u), u, f[u) respectively. Either they are in the correct
order a, p,q, r, f2 (a), or this may be achieved by moving them by a bounded amount. D

Note that f(q) is close to [f(p), f(r)}, hence to [q^ f'2(q)].
We now complete the proof of Proposition 0.4. View Lemma 1.3 as a way of assigning a point

q to any point a. We construct a sequence qn by iterating this process, with qo the point assigned
by Lemma 1.3 to an arbitrary starting point a G E. Since f(qn) is close to [q^ ./^f^n)]. the point
<^+i is close to /((7n).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



510 G. LEVITT AND M. LUSTIG

Note that by construction <^+i e [(^J^n)], while 9^+2 is close to /(^n+i), hence to
[(^/2(9n)] by assertion (3) of Lemma 1.3. Thus the broken geodesies 7^ = [<7n^n+i] U
[9n+i^n+2] are uniformly quasigeodesic. Also note that by assertion (2) of Lemma 1.3 we have

^(<7n^n+l) ^ ^(<7n+l),9n+l) - ̂ 2 ^ ̂ ) - C^

showing that the overlap between 7^ and 7^+1 is bounded below by a linear function of £(f).
It follows from [5, Theoreme 3.1.4] or [11, Theoreme 5.25] that the sequence qn is an infinite

quasigeodesic 7+ if £(f) is large enough. Since c?(/(gn)^n+i) is bounded, the point at infinity
of 7+ is fixed by Of (the homeomorphism induced by / on 9E). The quasigeodesic may be
extended in the other direction by applying the same construction to g , yielding a bi-infinite
quasigeodesic, hence a second fixed point for 9f. This proves Proposition 0.4.

COROLLARY 1.4. - Let f be a (A, C)-quasiisometry of a 6-hyperbolic proper geodesic metric
space (E, d) to itself. There exists N = N(6, A, C), independent ofE and /, with the following
property: ifd{f{x\x) > N for all x e E, then Of has North-South dynamics.

Proof. - Suppose £(f) > M. Let 7 be a bi-infinite geodesic joining two fixed points XQ, Xi of
9f. Consider X ̂  XQ, X^ in OE. Let 0 be a projection of X onto 7. A projection 0' of 9f{X) is
close to f(0). lf£{f) is large enough, the distance from 0 to 01 is bounded below and the oriented
segment 06' always points towards the same endpoint Xi of 7, independently of the choice of
X. Applying this argument to both / and g , we deduce that 9f has North-South dynamics. D

2. North-South dynamics

We first prove:

THEOREM 2.1.-Let ^ G OutG, with G hyperbolic. All but finitely many isogredience
classes s £ <S( ^>) have North-South dynamics on 9G.

Proof. - Let E be the Cayley graph of G with respect to some finite generating set A, with the
natural left-action of G. We identify the set of vertices of E with G, and 9E with 9G. We fix a
"basepoinf a C ^, and we represent it by a quasiisometry J : E -^ E sending a vertex g to the
vertex a(g), equivariant in the sense that a(h)J= Jh for every h G G.

Given f3 G ^, we write f3 = im o a and we consider the map J^ = mJ (this involves a choice
for m if the center of G is not trivial). Note that it maps a vertex g onto ma(g) (not onto
(3(g)=ma(g)m~1).

The map J^ satisfies (3{g)J^3 = J ^ g , it induces 9(3 on 9E (because a right-translation of G
induces the identity on the boundary), and the maps J^ are uniformly quasiisometric (because
they differ by left-translations).

If two maps J{3, J^, with /?,7 e ^, coincide at some point of E, then clearly (3 = 7. More
generally:

LEMMA 2.2. - Let /?, 7 € ^. If there exist g , h € G with

g~lW=h-lJ^h)^
then [3 and 7 are isogredient.

Proof. - Writing f3 = irn ° ̂  and 7 = in o a we get

g^ma^g) =h~lna(h)

4e SERIE - TOME 33 - 2000 - N° 4
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which we rewrite as

nm~1 = hg~lma(^gh~l)m~l = hg~l(3^gh~l)^

showing that 7 = inm-1 ° /3 = ̂ hg-1 ° /? ° (^hg-1 )-l ls isogredient to f3. D

By Corollary 1.4, there exists a number N (independent of f3) such that, if J p moves every
point of E more than N , then 9f3 has North-South dynamics. Since E is a locally finite
graph. Lemma 2.2 implies that this condition is fulfilled for all f3 G ^ outside of a finite set
of isogredience classes. This completes the proof of Theorem 2.1. D

Remark. - When G is a free group Fn, there is (using the notations of [4]) a one-to-one
correspondence between 5(^) and the set of connected components of the graph D((p), for
(^ € ^. In this case one may use Lemma 5.1 of [4] instead of Proposition 0.4 in the above proof.
Also note that, as a corollary of Theorem 4 of [9], the map 0/3 has at most 4 fixed points for
/3 e <^ outside of at most 4n — 4 isogredience classes. Another remark: <S(^) is infinite when
^ G Out Fn fixes a nontrivial conjugacy class, by Proposition 5.4 of [4].

PROPOSITION 2.3. - Suppose 9a has North-South dynamics, with attracting fixed point X^~
and repelling fixed point X~. Then:

(1) The subgroup P{a) C G consisting of all a-periodic elements is either finite or virtually
Z with limit set {X+, X~}.

(2) Ifg G G is not a-periodic, then lim^-^+oo ̂ ^(g) = X±.

Proof. - Given g e G of infinite order, we denote g±oo = lim^^+oo ̂ ±n- These are distinct
points of 9G. Note that 9a(g±oo) = a^)^00. The subgroup of G consisting of elements
whose action on 9G leaves {p00,^""00} invariant is the maximal virtually cyclic subgroup Ng
containing g. If h ̂  Ng, then {^°°, g~°°} is disjoint from its image by h. If 9a(g°°) = g°°, then
7V^ is a-invariant (i.e. a(Ng) = Ng).

Suppose (1) is false. Then there exist two Q^-periodic elements g^ h of infinite order generating
a non-elementary group. The points ^±00 and ^±00 are four distinct periodic points of 9 a, a
contradiction.

To prove (2), first suppose G is virtually cyclic. Then G maps onto Z or Z/2Z * Z/2Z with
finite kernel (see [21]). From this one deduces that the periodic subgroup P{a) has index at
most 2 and contains all elements of infinite order (an instructive example is conjugation by ab in
(a, 6 | a2 =b2 = 1)). Both ends of G are fixed by 9a\ all non-periodic torsion elements (if any)
converge towards one end under iteration of a, towards the other end under iteration of a"1.

Now consider the general case. It suffices to show lim^-^+oo ̂ n (g) = X^~. Since X^ is a
fixed point of 9a, we are free to replace a by a power if needed. We first note that there exists a
number C such that

(g.g^^^-c
for every g of infinite order (where ( , ) denotes Gromov's scalar product based at the identity
in the Cayley graph, and | is word length). This follows easily from Lemma 3.5 of [20] (if G is
free and A is a basis, C = —1/2 clearly works).

Suppose g is not a-periodic. Then limyi^oo l^^)! = 00- If furthermore g has infinite order,
applying the previous inequality to an(g) yields

lim an(g)= lim (0^))°°= lim 9an(goo)=X^
n—>-\-oo n—)-+oov / n—^+oo v /

(note that g°° ̂  X~, since otherwise N{g) would be a-invariant and g would be periodic).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



512 G. LEVITT AND M. LUSTIG

Now we consider a non a-periodic element g of finite order. We distinguish two cases. Suppose
first that {X^~,X~} is the limit set of an infinite a-invariant virtually cyclic subgroup H. We
may assume that H is maximal (it then contains all periodic elements). If g ^ H, choose h C H
of infinite order, with h'^00 = X~^~. Replacing a by a power, we may assume a(h) = h. We have
gh°° ^ h~°°, and therefore gk == hkghk has infinite order for k large enough. Since o^^gk)
converges to X^ as n —> +00, we find that a^ (g) converges to h~kX~{~ = X^, as desired. There
remains to rule out the possibility that non-periodic torsion elements g € H converge towards
X~ under iteration of a. If this happens, choose j ^ H. Since j and gj are not a-periodic (they
don't belong to H), we know that ̂ (j) and o^^gj) are close to X^ for n large. But o^^g) and
an(g~l) are close to X~. This is impossible.

If {X^~,X~} is not as above, then X^~ (respectively X~) is an attracting (respectively
repelling) fixed point for the action of a U 9a on the compact space G U 9G (see [14]). The
desired result Imiy^+oo ̂ (g) = X~^~ follows from an elementary dynamical argument. Indeed,
the sequence a71^), with n > 0, has some limit point X e 9G. We have X -^ X~ because X~
is repelling on G U 9G, and therefore 9an(X) converges to X^. We then deduce that X^ is
a limit point of a72^), and finally that o^^g} converges to X^~ because X4" is attracting on
GU9G. D

3. Isogredience classes

The main result of this section is the infiniteness of 5(<^) (but see also Proposition 3.7). We
first study four different situations where we can reach this conclusion. For now, we only assume
that G is any finitely generated group. We fix <? e Out G and a G ^.

• By definition, the automorphisms (3 =im° OL and 7 = in o a are isogredient if and only if
there exists g e G with 7 == ig o f3 o z .1 , or equivalently n = gma(g~l)c with c in the center
of G. Though we will not use it, we note that 5(^) is infinite if the center of G is finite and the
action of ^ on H^ (G\ R) has 1 as an eigenvalue.

Now assume that ^ preserves some R-tree (see [6], [17], [22] for basics about R-trees). This
means that there is an R-tree T equipped with an isometric action of G whose length function
satisfies £ o ^ == \£ for some A ^ 1. We always assume that the action is minimal and irreducible
(no global fixed point, no invariant line, no invariant end). We say g 6 G is hyperbolic if it is
hyperbolic as an isometry of T. We shall use the following fact due to Paulin [19]: any segment
[a, b] C T is contained in the axis of some hyperbolic g EG.

Because £o <I> == A^, it follows from [6] (see also [9], [16]) that, given a e ^, there is a (unique)
map H = Ha :T —>T with the following properties: H is a homothety with stretching factor A
(i.e. d(Hx, Hy) = \d(x^ y)), and it satisfies a(g)H = Hg for every g 6 G. If f3 = im ° <^ then
H/3 = mHa' If f3 =ig0 aoi~g1 is isogredient to a, then Hp = gHo,g~1 is conjugate to H^.

• First consider the case when A = 1. In this case the translation length of the isometry Hp is
an isogredience invariant of f3 and we easily get:

PROPOSITION 3.1.- Suppose £ o <? = £, where £ is the length function of an irreducible action
ofG on an T^-tree. Then S^) is infinite.

Proof. - Fix a 6 ^. Using Paulin's lemma, it is easy to construct m G G with the translation
length of mHoi arbitrarily large. The corresponding automorphisms im ° a are in distinct
isogredience classes. D

• The case A > 1 is harder.

PROPOSITION 3.2.-Suppose £ o <S> = \£, where A > 1 and £ is the length function of an
irreducible action of G on an I^-tree T. Assume that arc stabilizers are finite, and there exists
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AUTOMORPHISMS OF A HYPERBOLIC GROUP 513

'NQ eN such that, for every Q € T, the action ofStobQ on 7To(T\ {Q}) has at most NQ orbits.
Then S((!>) is infinite.

An arc stabilizer is the pointwise stabilizer of a nondegenerate segment [a,&], and StabQ
denotes the stabilizer of Q.

Proof. - Fix a e ^ and consider H = Ha. ̂  choose a point P e T as follows. It is the
unique fixed point of H if H has a fixed point in T. Otherwise lif has a unique fixed point Q
in the metric completion T of T, and a unique eigenray p (by definition, p is the image of an
isometric embedding p : (0, oo) -^ T such that ^p(^) = p(At) for all ^ > 0, see [9]). We let P be
any point on p. In both cases P e [H^P, HP}.

For further reference, we note that the stabilizer of any initial segment p(0, t) of an eigenray
is the same as the stabilizer of the whole eigenray, because Stabp(O^) and Stabp(0,A^) =
a{Siobp(0,t)) are finite groups with the same order. Suppose furthermore that H has two
eigenray s p ^ p ' , and g € G maps an initial segment of p onto an initial segment of p ' . From
the basic equation a(g)H = Hg it follows that ^-1Q/(^) fixes an initial segment of p, hence all
of p, and we deduce that g maps the whole of p onto p ' .

Returning to the main line of proof, we want to find v, w e G generating a free subgroup of
rank 2, such that:

(i) vP and wP belong to a component T+ of T \ {P}.
(ii) v^P and w"1? belong to another component T~.

(iii) If HP + P, then J^P e T^.
(iv) If I^P = P, then I:f(T+) 7^ T-.
Note that these conditions force v and w to be hyperbolic, with axes intersecting in a non-

degenerate segment containing P in its interior. Furthermore, the two axes induce the same
orientation on their intersection.

It is easy to construct v, w using Lemma 2.6 of [6] and Paulin's lemma, except in one "bad"
situation where (iv) cannot be achieved: HP = P, and T \ {P} has exactly two components,
which are permuted by H.

If H is bad, we have to change our initial choice of a e ^. We use the following observation.
Suppose H\, H^ are homotheties with the same dilation factor A > 1 and distinct fixed points
PI , ?2; if H^ (respectively H^) does not send the component of T \ {Pi} (respectively T \ {P^ })
containing ?2 (respectively Pi) into itself, then H^H^~1 is a hyperbolic isometry whose axis
contains [Pi,P2].

We choose m € G acting on T as a hyperbolic isometry with axis not containing P, and we
replace a by a' = im o a. Let H ' = mH = H^. We claim that Hf cannot be bad (with respect to
its fixed point P ' ) . Indeed, this follows from the above observation because the axis of H ' H ~ 1

does not contain P. Thus, when H is bad, we can find v, w satisfying the above conditions with
respect to H ' . For simplicity, we keep writing H, a rather than H ' , a ' .

Now assume by way of contradiction that there are only K isogredience classes in S((P).
Given an integer p, consider the set W consisting of words in the letters v^w containing each
letter exactly p times (we do not use v~1 or w~1). We fix p such that W has more than KS^NQ
elements, where s is the order of the stabilizer of the arc I = [P, vP] D [P, wP] and NQ is defined
in the statement of Proposition 3.2. We will consider the automorphisms ia- o a, for a G W, and
the corresponding homotheties aH.

Consider a = u\... u-^p € W, with each ui equal to v or w. The elements v, w were chosen in
such a way that the points

P, HI?, u^u^P,..., HI . . . H2pP, HI ... u-2pHP = aHP

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



514 G. LEVITT AND M. LUSTIG

all lie in this order on the segment [P, o-HP] (with the last two points possibly equal). Since P
belongs to the axis of both v and w, we find that, for any a G W, the length of [P, aHP] equals

L = p£(v) + p£(w) + d(P, HP)

independently of a. We also observe that, if a, r e W, then [P, aHP} H [P, rHP] contains the
segment I = [P, vP\ n [P, wP].

Furthermore the intersection [P, aHP} H [aHP, (aH)2?} consists only of aHP: this follows
from P C [u^P.Hu^P] if HP = P, from P e [H^P.u^P] if JfP 7^ P. This implies that
[P, aHP} is contained^ an eigenray pa of the homothety aH. Let Q^ denote the fixed point of
aH in the completion T (the origin of per).

Now we remark that [P, aHP} is the only fundamental domain of length L for the action of
aH on its eigenray pa. In particular, d(Qa, P) = -^ is independent of a e W.

Suppose for a moment that for every a e W the map aU has only one eigenray (this happens
in particular if Qa C T \ T). If ic conjugates ia o a and z^ o a (with a, T e TV and c <E G), then
c conjugates aU and rH. Therefore c sends po- onto pr, and the fundamental domain [P, aHP}
onto [P,TUP]. Since these segments both contain J, we find c C StabJ. This contradicts the
choice ofp in this special case, since we obtain }W\/s distinct isogredience classes in «5(^).

In general, if ic conjugates ia- o a and ir o a, we can only say that c sends Qa to Qr. Since
\W\ > KS^NQ, we can find distinct elements a, r(l),.... r(s2 + 1) in W such that some ^(j)
conjugates ia o a and z^) o a, and some element h(j) e StabQ,-^) sends an initial segment of
the [r(j)H] -eigenray c(j)pcr onto an initial segment of p^^.

We have pointed out earlier that h(j) sends the whole eigenray c(j)pa- onto pr(j)- Therefore
^O'^OO ^ StabJ. Thus there are at least 5+1 values of j for which the maps r{j)H have a
common eigenray containing J. This is a contradiction because at most s elements of G can have
the same action on J. This completes the proof of Proposition 3.2. D

• We also need:

PROPOSITION 3.3.-<?(^>) is infinite if G is hyperbolic, non-elementary, and ^ has finite
order in Out G.

Proof.-Let J be the subgroup of AutG consisting of all automorphisms whose image in
Out G is a power of <S>. The exact sequence {1} —^ K —> J -^ {<!>) -^ {1}, with K = G/Center
and (<!>) finite, shows that J is hyperbolic, non-elementary. The set of automorphisms a € ^
is a coset of J mod K. If a,f3 e ^ are isogredient, they are conjugate in J. The proof of
Proposition 3.3 is therefore concluded by applying the following fact, due to T. Delzant. D

LEMMA 3.4. -Let J be a non-elementary hyperbolic group. Let K be a normal subgroup
with abelian quotient. Every coset ofJ mod K contains infinitely many conjugacy classes.

Proof. - Fix u in the coset G under consideration. Suppose for a moment that we can find
c, d e K, generating a free group of rank 2, such that uc°° ̂  c~°° and ud°° ̂  d~°° (recall that
we denote ̂ ±oc = lim^_+oo ̂ ±n for g of infinite order). Consider xj, = ckuck and yj, = dkudk.
For k large, the above inequalities imply that these two elements have infinite order, and do not
generate a virtually cyclic group because x^°° (respectively y^°°) is close to c±oo (respectively
^±00) F^ ^ ̂  consider the elements Zn = x^y^. They belong to the coset G, because
J / K is abelian, and their stable norm goes to infinity with n. Therefore G contains infinitely
many conjugacy classes.

Let us now construct c, d as above. Choose a, b e K generating a free group of rank 2. We
first explain how to get c. There is a problem only if ua°° = a~°° and ub°° = b~°°. In that case
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there exist integers p , q with uapu~l = a~p and ubqu~l = b~q. We take c = apbq, noting that
ucu~1 = a-Pb-f is different from c-1 = b~qa~p.

Once we have c, we choose c' ^K with (c, c') free of rank 2, and we obtain d by applying the
preceding argument using c' and cc' instead of a and b. The group (c, d) is free of rank 2 because
d is a positive word in d and cc7. D

Remark. - As pointed out by Delzant, similar arguments show that S((!>) is infinite when ^
has infinite order but is hyperbolic in the sense of [1] (because J is hyperbolic, see [1]).

We can now prove:

THEOREM 3.5. -For every ^ G OutG, with G a non-elementary hyperbolic group, the set
<S(^>) is infinite.

Proof.-By Proposition 3.3, we may assume that <P has infinite order. By Paulin's theo-
rem [20], it preserves some R-tree T with a nontrivial minimal small action of G (recall that
an action of G is small if all arc stabilizers are virtually cyclic; the action of G on T is always
irreducible).

If A = 1, we use Proposition 3.1. If A > 1, we apply Proposition 3.2. The existence of NQ
follows from work of Bestvina and Feighn [2] (alternatively, one could for G torsion-free use ad
hoc trees as in [15]). Finiteness of arc stabilizers is stated as the next lemma. D

LEMMA 3.6. - Suppose £o <S> = \£, where t is the length function of a nontrivial small action
of a hyperbolic group G on an It-tree T. IfX > 1, then T has finite arc stabilisers.

Proof. - This is proved in [9, Lemma 2.8] when G is free. We sketch the proof of the general
case. We may assume that the action is minimal. Let c C T be an arc with infinite stabilizer S.
Let p be the index of S in the maximal virtually cyclic subgroup 5' that contains it. Fix a € ^,
and denote by H the associated homothety of T.

Since there is a finite union of arcs whose union meets every orbit, we can find, for k large,
disjoint subarcs c o , . . . , C p of ^^(c) such that ci = VICQ for some Vz G G. For each z, the
stabilizer of Ci lies between ak(S) = StabHk(c) and ak(S). From Stabc^ = ^Stabco^71

we get ak (S) = Viak (S)i^~1, hence Vj, ̂ ak{S). This is a contradiction since 1, v\,..., Vp all lie
in different cosets of ak (S) modulo o^ (S). D

If G is a free group Fn, we also prove:

PROPOSITION 3.7. - There exists a number Cn such that, for any ^ G 0\iiFn andany integer
k ^ 2, the natural map S( ̂ ) —^ S((!)k) is at most Cn-to-one.

Proof. - Let ai (1 ^ i ^ N) be pairwise non-isogredient automorphisms in ^ having
isogredient A;th powers. We want to bound N in terms of n only. We may assume that a^ is
a fixed automorphism f3.

Let T be an R-tree with trivial arc stabilizers preserved by ^ (see [9, Theorem 2.1]), and Hi
the homothety associated to ai. The H^s all have the same A;th power H^. For i -^ j, we have
Hi = gijHj for some nontrivial gij e Fn. Note that Hi and Hj cannot coincide on more than
one point since Fn acts on T with trivial arc stabilizers.

First suppose A > 1. Then H/s and all maps Hi fix the same point Q G T. The stabilizer
StabQ C Fn is o^-invariant and has rank < n by [10] (see [9]).

If Stab Q is trivial (in particular if Q e T \ T), then gij = 1 and ai = aj.
If Stab Q has rank ^ 2, we use induction on n since the restrictions of the a^s to Stab Q are

non-isogredient automorphisms representing the same outer automorphism [9, Lemma 5.1].
If StabQ is cyclic, generated by some u, we note that gij is a power of u and ai{u) is

independent of i. If ai(u) = u, then Hi commutes with u and H^ = H^ implies gij = 1. If
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ai(u) =- u~1, we write u^ = upai(up)~l, showing that o^ is isogredient to aj whenever gij is
an even power of u.

Now suppose A == 1. If Hp has no fixed point, then N = 1 since all H^s coincide on the axis
of H/3. Assume therefore that H^ has fixed points. If all maps Hi have a common fixed point Q,
we can argue as above. We complete the proof by showing how to reduce to this situation.

Let Qi be a fixed point of Hi, and ei some edge containing Qi and fixed by Hp. The action of
Fn on pairs {Qi, ei) has at most 6n — 6 orbits (twice the number of edges of the quotient graph
T/Fn\ After possibly dividing N by 6n — 6 we may assume there is only one orbit. Note that
the action on T of the element Czj G Fn sending (Q^e^) to (Qj.ej) commutes with H^ since
Ci and ej are both fixed by H/3. This implies that (3 fixes c^, and we can change ai within its
isogredience class so as to make all points Qi the same, while retaining the property a^ = f3. D
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