Annales scientifiques de l'É.N.S.

GILBERT LEVITT MARTIN LUSTIG Most automorphisms of a hyperbolic group have very simple dynamics

Annales scientifiques de l'É.N.S. 4^e série, tome 33, nº 4 (2000), p. 507-517 http://www.numdam.org/item?id=ASENS_2000_4_33_4_507_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 2000, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

MOST AUTOMORPHISMS OF A HYPERBOLIC GROUP HAVE VERY SIMPLE DYNAMICS

BY GILBERT LEVITT AND MARTIN LUSTIG

ABSTRACT. – Let G be a non-elementary hyperbolic group (e.g. a non-abelian free group of finite rank). We show that, for "most" automorphisms α of G (in a precise sense), there exist distinct elements $X^+, X^$ in the Gromov boundary ∂G of G such that $\lim_{n\to+\infty} \alpha^{\pm n}(g) = X^{\pm}$ for every $g \in G$ which is not periodic under α . This follows from the fact that the homeomorphism $\partial \alpha$ induced on ∂G has North–South (loxodromic) dynamics. © 2000 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Soit G un groupe hyperbolique non élémentaire (par exemple un groupe libre non abélien de rang fini). Nous montrons que, pour "la plupart" des automorphismes α de G (en un sens bien précis), il existe deux éléments distincts X^+, X^- dans le bord de Gromov ∂G de G tels que $\lim_{n\to+\infty} \alpha^{\pm n}(g) = X^{\pm}$ pour tout $g \in G$ non périodique sous l'action de α . Ceci résulte du fait que l'homéomorphisme $\partial \alpha$ induit sur ∂G a une dynamique Nord–Sud (loxodromique). © 2000 Éditions scientifiques et médicales Elsevier SAS

0. Introduction and statement of results

Let α be an automorphism of a (word) hyperbolic group G. Fixing $g \in G$, we consider the sequence of iterates $\alpha^n(g)$, for $n \ge 1$. We assume that g is not α -periodic, so that $\alpha^n(g)$ goes off to infinity in G.

We will show that, for "most" automorphisms α of G (in a sense that will be made precise), there exists a point X^+ in the Gromov boundary ∂G such that $\alpha^n(g)$ converges to X^+ for every nonperiodic g. If G is free on a finite set A, this says that there exists a sequence of letters $a_k^{\pm 1} \in A \cup A^{-1}$ such that, for any non-periodic g, the kth letter of $\alpha^n(g)$ equals $a_k^{\pm 1}$ for n large.

This dynamical behavior is best expressed in terms of the homeomorphism $\partial \alpha$ induced by α on ∂G : for most $\alpha \in \operatorname{Aut} G$, the map $\partial \alpha$ has North–South dynamics in the following sense. We say that $\partial \alpha$, or α , has North–South dynamics (also called loxodromic dynamics) if $\partial \alpha$ has two distinct fixed points X^+, X^- , and $\lim_{n \to +\infty} \partial \alpha^{\pm n}(X) = X^{\pm}$ uniformly on compact subsets of $\partial G \setminus \{X^{\mp}\}$.

This implies (see Proposition 2.3) that the set of α -periodic elements $g \in G$ is a virtually cyclic subgroup (possibly finite), and $\lim_{n\to+\infty} \alpha^{\pm n}(g) = X^{\pm}$ if $g \in G$ is not α -periodic. For an arbitrary automorphism, it is proved in [15] that $\alpha^n(g)$ limits onto a finite subset of ∂G (that may depend on g).

If for instance α is conjugation i_m by $m \in G$, then $\partial \alpha$ is simply left-translation by m, and $\partial \alpha$ has North–South dynamics for all m outside of a finite set of conjugacy classes (those consisting of torsion elements), see [5,11,12].

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. – 0012-9593/00/04/© 2000 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

In general, we consider an outer automorphism $\Phi \in \text{Out } G$, viewed as a collection of ordinary automorphisms $\alpha \in \text{Aut } G$. For a topological motivation, induce Φ by a continuous map $f: X \to X$ with $\pi_1 X \simeq G$. Automorphisms $\alpha \in \Phi$ correspond to lifts of f to the universal covering of X. Different lifts may have very different properties. On the other hand, conjugate maps have similar dynamical properties. This led Nielsen [18] to define lifts of f to be isogredient if they are conjugate by a covering transformation.

Going back to group automorphisms, we therefore define $\alpha, \beta \in \Phi$ to be *isogredient* if $\beta = i_h \circ \alpha \circ i_h^{-1}$ for some $h \in G$, with $i_h(g) = hgh^{-1}$ (the word "similar" was used in [9]).

We denote $\mathcal{S}(\Phi)$ the set of isogredience classes of automorphisms representing Φ . If $\Phi = 1$, then $\mathcal{S}(\Phi)$ may be identified to the set of conjugacy classes of G modulo its center. We say that $s \in \mathcal{S}(\Phi)$ has North–South dynamics if automorphisms $\alpha \in s$ have North–South dynamics on ∂G .

THEOREM 0.1. – Let G be a hyperbolic group, and $\Phi \in \text{Out } G$. Assume G is non-elementary (i.e. G is not virtually cyclic).

(1) All but finitely many $s \in S(\Phi)$ have North–South dynamics.

(2) The set $S(\Phi)$ of isogredience classes is infinite.

Example 0.2. – When Φ is induced by a pseudo-Anosov homeomorphism φ of a closed surface Σ , the "exceptional" automorphisms $\alpha \in \Phi$ (those that do not have North–South dynamics) correspond to lifts of φ having a fixed point in the universal covering of Σ . The set of exceptional classes in $\mathcal{S}(\Phi)$ is in one-to-one correspondence with the set of fixed points of φ . It may be empty, see [8] for an explicit example. On the other hand, the number of fixed points of φ^k goes to infinity with k. Thus the number of exceptional isogredience classes cannot be bounded in terms of G only.

This example suggests the possibility of using exceptional isogredience classes to develop a fixed point theory for general outer automorphisms of free groups. Exceptional isogredience classes would be the algebraic analogue of Nielsen classes of fixed points, and there should be a (rational) zeta function obtained as a sum over exceptional classes of powers of Φ (compare [7]).

Example 0.3. – Suppose G is free. It follows from [3, Lemma 5.1] that some power of Φ contains an exceptional isogredience class. It may be shown using [4] and [14] that the isogredience class of α is the only exceptional class when α is the irreducible automorphism $a \mapsto abc, b \mapsto bab, c \mapsto cabc$ studied in [13].

The proof of the first assertion of Theorem 0.1 when G is not free requires the following fact, which is of independent interest:

PROPOSITION 0.4 (Quasiisometries of hyperbolic spaces have a quasi-fixed point or a quasiaxis). – Let f be a (λ, C) -quasiisometry of a δ -hyperbolic proper geodesic metric space (E, d)to itself. There exists $M = M(\delta, \lambda, C)$, independent of E and f, with the following property: if d(f(x), x) > M for all $x \in E$, then there exists a bi-infinite geodesic γ such that the Hausdorff distance between γ and $f(\gamma)$ is finite.

Increasing M if necessary, we conclude (Corollary 1.4) that the action of f on ∂E has North–South dynamics, with fixed points the two endpoints of γ .

1. Quasiisometries of hyperbolic spaces

We start by proving Proposition 0.4. The proof may be seen as a generalization of the well-known argument constructing the axis of an isometry of an \mathbf{R} -tree having no fixed

 4^e série – tome $33 - 2000 - N^\circ 4$

508

points (see [17]). We refer the reader to [5,11,12,23] for basic facts about hyperbolic spaces, quasiisometries, and hyperbolic groups.

Let (E, d) be a proper δ -hyperbolic geodesic metric space. Properness is assumed mostly for convenience, in particular E could be an **R**-tree in what follows.

For $x, y \in E$, we denote [x, y] any geodesic segment from x to y. Given a point z, any point $p \in [x, y]$ that is δ -close to both segments [x, z] and [y, z] will be called a projection of z onto [x, y] (two projections are only a few δ 's apart).

Recall that $f: E \to E$ is a (λ, C) -quasiisometry if

$$\frac{1}{\lambda}d(x,y) - C \leqslant d\big(f(x),f(y)\big) \leqslant \lambda d(x,y) + C$$

for all $x, y \in E$, and there exists g satisfying the same inequalities such that $f \circ g$ and $g \circ f$ are C-close to the identity. We let $\ell(f) = \inf_{x \in E} d(f(x), x)$ be the minimum displacement of f. Note that $\ell(g) \leq \lambda \ell(f) + 2C$.

The following lemma is left as an exercise.

LEMMA 1.1. – If f is a (λ, C) -quasiisometry of a compact interval to itself, then $\ell(f) \leq C$.

From now on, we fix δ, λ, C . The quantities C_1, M_1, C_2 introduced below depend only on these three numbers, not on E, f, or the points under consideration. We also say that two points x, y are close, or have bounded distance, if their distance may be bounded a priori by some number depending only on δ, λ, C .

The quasiisometry f has the following basic property: there exists C_1 such that, for any geodesic segment [x, y], the image of [x, y] is contained in the C_1 -neighborhood of [f(x), f(y)].

Consider a geodesic triangle $a, f(a), f^2(a)$. Let u be a projection of a onto $[f(a), f^2(a)]$, and v a projection of f(u) onto $[f(a), f^2(a)]$.

LEMMA 1.2. – There exists M_1 such that, if $\ell(f) > M_1$, then $v \in [u, f^2(a)]$.

Proof. – Suppose $v \in [f(a), u]$. Since f(v) is close to $[f^2(a), f(u)]$ and f(u) is close to v, the point $f^2(u)$ is close to $[f^2(a), f(u)]$. Thus, up to a bounded error, the points u and $f^2(u)$ both lie on the segment $[f^2(a), f(u)]$. It follows that f or g is close to a map sending [u, f(u)] into itself. Lemma 1.1 implies that some point of [u, f(u)] is close to its image by f. \Box

We assume from now on that $\ell(f) > M_1$.

LEMMA 1.3. – There exists C_2 with the following property: for any $a \in E$, there exist three points p, q, r, lying in this order on $[a, f^2(a)]$, such that

(1) q is C_2 -close to a projection of f(a) onto $[a, f^2(a)]$;

- (2) p is C_2 -close to g(q);
- (3) r is C_2 -close to f(q).

Proof. – With the same notations as above, it follows from Lemma 1.2 that u is close to [f(a), f(u)]. Therefore g(u) is close to [a, u]. We also know that f(u) is close to $[u, f^2(a)]$. Let p, q, r be projections onto $[a, f^2(a)]$ of g(u), u, f(u) respectively. Either they are in the correct order $a, p, q, r, f^2(a)$, or this may be achieved by moving them by a bounded amount. \Box

Note that f(q) is close to [f(p), f(r)], hence to $[q, f^2(q)]$.

We now complete the proof of Proposition 0.4. View Lemma 1.3 as a way of assigning a point q to any point a. We construct a sequence q_n by iterating this process, with q_0 the point assigned by Lemma 1.3 to an arbitrary starting point $a \in E$. Since $f(q_n)$ is close to $[q_n, f^2(q_n)]$, the point q_{n+1} is close to $f(q_n)$.

Note that by construction $q_{n+1} \in [q_n, f^2(q_n)]$, while q_{n+2} is close to $f(q_{n+1})$, hence to $[q_n, f^2(q_n)]$ by assertion (3) of Lemma 1.3. Thus the broken geodesics $\gamma_n = [q_n, q_{n+1}] \cup [q_{n+1}, q_{n+2}]$ are uniformly quasigeodesic. Also note that by assertion (2) of Lemma 1.3 we have

$$d(q_n, q_{n+1}) \ge d(g(q_{n+1}), q_{n+1}) - C_2 \ge \ell(g) - C_2,$$

showing that the overlap between γ_n and γ_{n+1} is bounded below by a linear function of $\ell(f)$.

It follows from [5, Théorème 3.1.4] or [11, Théorème 5.25] that the sequence q_n is an infinite quasigeodesic γ^+ if $\ell(f)$ is large enough. Since $d(f(q_n), q_{n+1})$ is bounded, the point at infinity of γ^+ is fixed by ∂f (the homeomorphism induced by f on ∂E). The quasigeodesic may be extended in the other direction by applying the same construction to g, yielding a bi-infinite quasigeodesic, hence a second fixed point for ∂f . This proves Proposition 0.4.

COROLLARY 1.4. – Let f be a (λ, C) -quasiisometry of a δ -hyperbolic proper geodesic metric space (E, d) to itself. There exists $N = N(\delta, \lambda, C)$, independent of E and f, with the following property: if d(f(x), x) > N for all $x \in E$, then ∂f has North–South dynamics.

Proof. – Suppose $\ell(f) > M$. Let γ be a bi-infinite geodesic joining two fixed points X_0, X_1 of ∂f . Consider $X \neq X_0, X_1$ in ∂E . Let θ be a projection of X onto γ . A projection θ' of $\partial f(X)$ is close to $f(\theta)$. If $\ell(f)$ is large enough, the distance from θ to θ' is bounded below and the oriented segment $\theta\theta'$ always points towards the same endpoint X_i of γ , independently of the choice of X. Applying this argument to both f and g, we deduce that ∂f has North–South dynamics. \Box

2. North–South dynamics

We first prove:

THEOREM 2.1. – Let $\Phi \in \text{Out } G$, with G hyperbolic. All but finitely many isogredience classes $s \in S(\Phi)$ have North–South dynamics on ∂G .

Proof. – Let *E* be the Cayley graph of *G* with respect to some finite generating set *A*, with the natural left-action of *G*. We identify the set of vertices of *E* with *G*, and ∂E with ∂G . We fix a "basepoint" $\alpha \in \Phi$, and we represent it by a quasiisometry $J: E \to E$ sending a vertex *g* to the vertex $\alpha(g)$, equivariant in the sense that $\alpha(h)J = Jh$ for every $h \in G$.

Given $\beta \in \Phi$, we write $\beta = i_m \circ \alpha$ and we consider the map $J_\beta = mJ$ (this involves a choice for m if the center of G is not trivial). Note that it maps a vertex g onto $m\alpha(g)$ (not onto $\beta(g) = m\alpha(g)m^{-1}$).

The map J_{β} satisfies $\beta(g)J_{\beta} = J_{\beta}g$, it induces $\partial\beta$ on ∂E (because a right-translation of G induces the identity on the boundary), and the maps J_{β} are uniformly quasiisometric (because they differ by left-translations).

If two maps J_{β}, J_{γ} , with $\beta, \gamma \in \Phi$, coincide at some point of E, then clearly $\beta = \gamma$. More generally:

LEMMA 2.2. – Let $\beta, \gamma \in \Phi$. If there exist $g, h \in G$ with

$$g^{-1}J_{\beta}(g) = h^{-1}J_{\gamma}(h),$$

then β and γ are isogredient.

Proof. – Writing $\beta = i_m \circ \alpha$ and $\gamma = i_n \circ \alpha$ we get

 $g^{-1}m\alpha(g) = h^{-1}n\alpha(h)$

4^e Série – Tome 33 – 2000 – N° 4

which we rewrite as

$$nm^{-1} = hg^{-1}m\alpha(gh^{-1})m^{-1} = hg^{-1}\beta(gh^{-1}),$$

showing that $\gamma = i_{nm^{-1}} \circ \beta = i_{hg^{-1}} \circ \beta \circ (i_{hg^{-1}})^{-1}$ is isogredient to β . \Box

By Corollary 1.4, there exists a number N (independent of β) such that, if J_{β} moves every point of E more than N, then $\partial\beta$ has North–South dynamics. Since E is a locally finite graph, Lemma 2.2 implies that this condition is fulfilled for all $\beta \in \Phi$ outside of a finite set of isogredience classes. This completes the proof of Theorem 2.1. \Box

Remark. – When G is a free group F_n , there is (using the notations of [4]) a one-to-one correspondence between $S(\Phi)$ and the set of connected components of the graph $D(\varphi)$, for $\varphi \in \Phi$. In this case one may use Lemma 5.1 of [4] instead of Proposition 0.4 in the above proof. Also note that, as a corollary of Theorem 4 of [9], the map $\partial\beta$ has at most 4 fixed points for $\beta \in \Phi$ outside of at most 4n - 4 isogredience classes. Another remark: $S(\Phi)$ is infinite when $\Phi \in \text{Out } F_n$ fixes a nontrivial conjugacy class, by Proposition 5.4 of [4].

PROPOSITION 2.3. – Suppose $\partial \alpha$ has North–South dynamics, with attracting fixed point X^+ and repelling fixed point X^- . Then:

- The subgroup P(α) ⊂ G consisting of all α-periodic elements is either finite or virtually Z with limit set {X⁺, X⁻}.
- (2) If $g \in G$ is not α -periodic, then $\lim_{n \to +\infty} \alpha^{\pm n}(g) = X^{\pm}$.

Proof. – Given $g \in G$ of infinite order, we denote $g^{\pm \infty} = \lim_{n \to +\infty} g^{\pm n}$. These are distinct points of ∂G . Note that $\partial \alpha(g^{\pm \infty}) = \alpha(g)^{\pm \infty}$. The subgroup of G consisting of elements whose action on ∂G leaves $\{g^{\infty}, g^{-\infty}\}$ invariant is the maximal virtually cyclic subgroup N_g containing g. If $h \notin N_g$, then $\{g^{\infty}, g^{-\infty}\}$ is disjoint from its image by h. If $\partial \alpha(g^{\infty}) = g^{\infty}$, then N_g is α -invariant (i.e. $\alpha(N_g) = N_g$).

Suppose (1) is false. Then there exist two α -periodic elements g, h of infinite order generating a non-elementary group. The points $g^{\pm \infty}$ and $h^{\pm \infty}$ are four distinct periodic points of $\partial \alpha$, a contradiction.

To prove (2), first suppose G is virtually cyclic. Then G maps onto Z or Z/2Z * Z/2Z with finite kernel (see [21]). From this one deduces that the periodic subgroup $P(\alpha)$ has index at most 2 and contains all elements of infinite order (an instructive example is conjugation by ab in $\langle a, b | a^2 = b^2 = 1 \rangle$). Both ends of G are fixed by $\partial \alpha$; all non-periodic torsion elements (if any) converge towards one end under iteration of α , towards the other end under iteration of α^{-1} .

Now consider the general case. It suffices to show $\lim_{n\to+\infty} \alpha^n(g) = X^+$. Since X^+ is a fixed point of $\partial \alpha$, we are free to replace α by a power if needed. We first note that there exists a number C such that

$$\left(g,g^{\infty}\right) \geqslant \frac{1}{2}|g| - C$$

for every g of infinite order (where (,) denotes Gromov's scalar product based at the identity in the Cayley graph, and || is word length). This follows easily from Lemma 3.5 of [20] (if G is free and A is a basis, C = -1/2 clearly works).

Suppose g is not α -periodic. Then $\lim_{n\to\infty} |\alpha^n(g)| = \infty$. If furthermore g has infinite order, applying the previous inequality to $\alpha^n(g)$ yields

$$\lim_{n \to +\infty} \alpha^n(g) = \lim_{n \to +\infty} \left(\alpha^n(g) \right)^\infty = \lim_{n \to +\infty} \partial \alpha^n \left(g^\infty \right) = X^+$$

(note that $g^{\infty} \neq X^{-}$, since otherwise N(g) would be α -invariant and g would be periodic).

Now we consider a non α -periodic element g of finite order. We distinguish two cases. Suppose first that $\{X^+, X^-\}$ is the limit set of an infinite α -invariant virtually cyclic subgroup H. We may assume that H is maximal (it then contains all periodic elements). If $g \notin H$, choose $h \in H$ of infinite order, with $h^{\pm \infty} = X^{\pm}$. Replacing α by a power, we may assume $\alpha(h) = h$. We have $gh^{\infty} \neq h^{-\infty}$, and therefore $g_k = h^k g h^k$ has infinite order for k large enough. Since $\alpha^n(g_k)$ converges to X^+ as $n \to +\infty$, we find that $\alpha^n(g)$ converges to $h^{-k}X^+ = X^+$, as desired. There remains to rule out the possibility that non-periodic torsion elements $g \in H$ converge towards X^- under iteration of α . If this happens, choose $j \notin H$. Since j and gj are not α -periodic (they don't belong to H), we know that $\alpha^n(j)$ and $\alpha^n(gj)$ are close to X^+ for n large. But $\alpha^n(g)$ and $\alpha^n(g^{-1})$ are close to X^- . This is impossible.

If $\{X^+, X^-\}$ is not as above, then X^+ (respectively X^-) is an attracting (respectively repelling) fixed point for the action of $\alpha \cup \partial \alpha$ on the compact space $G \cup \partial G$ (see [14]). The desired result $\lim_{n \to +\infty} \alpha^n(g) = X^+$ follows from an elementary dynamical argument. Indeed, the sequence $\alpha^n(g)$, with n > 0, has some limit point $X \in \partial G$. We have $X \neq X^-$ because X^- is repelling on $G \cup \partial G$, and therefore $\partial \alpha^n(X)$ converges to X^+ . We then deduce that X^+ is a limit point of $\alpha^n(g)$, and finally that $\alpha^n(g)$ converges to X^+ because X^+ is attracting on $G \cup \partial G$. \Box

3. Isogredience classes

The main result of this section is the infiniteness of $S(\Phi)$ (but see also Proposition 3.7). We first study four different situations where we can reach this conclusion. For now, we only assume that G is any finitely generated group. We fix $\Phi \in \text{Out } G$ and $\alpha \in \Phi$.

• By definition, the automorphisms $\beta = i_m \circ \alpha$ and $\gamma = i_n \circ \alpha$ are isogredient if and only if there exists $g \in G$ with $\gamma = i_g \circ \beta \circ i_g^{-1}$, or equivalently $n = gm\alpha(g^{-1})c$ with c in the center of G. Though we will not use it, we note that $\mathcal{S}(\Phi)$ is infinite if the center of G is finite and the action of Φ on $H_1(G; \mathbf{R})$ has 1 as an eigenvalue.

Now assume that Φ preserves some **R**-tree (see [6], [17], [22] for basics about **R**-trees). This means that there is an **R**-tree T equipped with an isometric action of G whose length function satisfies $\ell \circ \Phi = \lambda \ell$ for some $\lambda \ge 1$. We always assume that the action is minimal and irreducible (no global fixed point, no invariant line, no invariant end). We say $g \in G$ is hyperbolic if it is hyperbolic as an isometry of T. We shall use the following fact due to Paulin [19]: any segment $[a, b] \subset T$ is contained in the axis of some hyperbolic $g \in G$.

Because $\ell \circ \Phi = \lambda \ell$, it follows from [6] (see also [9], [16]) that, given $\alpha \in \Phi$, there is a (unique) map $H = H_{\alpha}: T \to T$ with the following properties: H is a homothety with stretching factor λ (i.e. $d(Hx, Hy) = \lambda d(x, y)$), and it satisfies $\alpha(g)H = Hg$ for every $g \in G$. If $\beta = i_m \circ \alpha$, then $H_{\beta} = mH_{\alpha}$. If $\beta = i_g \circ \alpha \circ i_q^{-1}$ is isogredient to α , then $H_{\beta} = gH_{\alpha}g^{-1}$ is conjugate to H_{α} .

• First consider the case when $\lambda = 1$. In this case the translation length of the isometry H_{β} is an isogredience invariant of β and we easily get:

PROPOSITION 3.1. – Suppose $\ell \circ \Phi = \ell$, where ℓ is the length function of an irreducible action of *G* on an **R**-tree. Then $S(\Phi)$ is infinite.

Proof. – Fix $\alpha \in \Phi$. Using Paulin's lemma, it is easy to construct $m \in G$ with the translation length of mH_{α} arbitrarily large. The corresponding automorphisms $i_m \circ \alpha$ are in distinct isogredience classes. \Box

• The case $\lambda > 1$ is harder.

PROPOSITION 3.2. – Suppose $\ell \circ \Phi = \lambda \ell$, where $\lambda > 1$ and ℓ is the length function of an irreducible action of G on an **R**-tree T. Assume that arc stabilizers are finite, and there exists

 4^e série – tome $33 - 2000 - N^\circ 4$

 $N_0 \in \mathbf{N}$ such that, for every $Q \in T$, the action of $\operatorname{Stab} Q$ on $\pi_0(T \setminus \{Q\})$ has at most N_0 orbits. Then $\mathcal{S}(\Phi)$ is infinite.

An arc stabilizer is the pointwise stabilizer of a nondegenerate segment [a, b], and Stab Q denotes the stabilizer of Q.

Proof. – Fix $\alpha \in \Phi$ and consider $H = H_{\alpha}$. We choose a point $P \in T$ as follows. It is the unique fixed point of H if H has a fixed point in T. Otherwise H has a unique fixed point Q in the metric completion \overline{T} of T, and a unique eigenray ρ (by definition, ρ is the image of an isometric embedding $\rho: (0, \infty) \to T$ such that $H\rho(t) = \rho(\lambda t)$ for all t > 0, see [9]). We let P be any point on ρ . In both cases $P \in [H^{-1}P, HP]$.

For further reference, we note that the stabilizer of any initial segment $\rho(0,t)$ of an eigenray is the same as the stabilizer of the whole eigenray, because $\operatorname{Stab}\rho(0,t)$ and $\operatorname{Stab}\rho(0,\lambda t) = \alpha(\operatorname{Stab}\rho(0,t))$ are finite groups with the same order. Suppose furthermore that H has two eigenrays ρ, ρ' , and $g \in G$ maps an initial segment of ρ onto an initial segment of ρ' . From the basic equation $\alpha(g)H = Hg$ it follows that $g^{-1}\alpha(g)$ fixes an initial segment of ρ , hence all of ρ , and we deduce that g maps the *whole* of ρ onto ρ' .

Returning to the main line of proof, we want to find $v, w \in G$ generating a free subgroup of rank 2, such that:

(i) vP and wP belong to a component T^+ of $T \setminus \{P\}$.

(ii) $v^{-1}P$ and $w^{-1}P$ belong to another component T^{-} .

(iii) If $HP \neq P$, then $H^{\pm 1}P \in T^{\pm}$.

(iv) If HP = P, then $H(T^+) \neq T^-$.

Note that these conditions force v and w to be hyperbolic, with axes intersecting in a nondegenerate segment containing P in its interior. Furthermore, the two axes induce the same orientation on their intersection.

It is easy to construct v, w using Lemma 2.6 of [6] and Paulin's lemma, except in one "bad" situation where (iv) cannot be achieved: HP = P, and $T \setminus \{P\}$ has exactly two components, which are permuted by H.

If H is bad, we have to change our initial choice of $\alpha \in \Phi$. We use the following observation. Suppose H_1, H_2 are homotheties with the same dilation factor $\lambda > 1$ and distinct fixed points P_1, P_2 ; if H_1 (respectively H_2) does not send the component of $T \setminus \{P_1\}$ (respectively $T \setminus \{P_2\}$) containing P_2 (respectively P_1) into itself, then $H_2H_1^{-1}$ is a hyperbolic isometry whose axis contains $[P_1, P_2]$.

We choose $m \in G$ acting on T as a hyperbolic isometry with axis not containing P, and we replace α by $\alpha' = i_m \circ \alpha$. Let $H' = mH = H_{\alpha'}$. We claim that H' cannot be bad (with respect to its fixed point P'). Indeed, this follows from the above observation because the axis of $H'H^{-1}$ does not contain P. Thus, when H is bad, we can find v, w satisfying the above conditions with respect to H'. For simplicity, we keep writing H, α rather than H', α' .

Now assume by way of contradiction that there are only K isogredience classes in $S(\Phi)$. Given an integer p, consider the set W consisting of words in the letters v, w containing each letter exactly p times (we do not use v^{-1} or w^{-1}). We fix p such that W has more than Ks^2N_0 elements, where s is the order of the stabilizer of the arc $I = [P, vP] \cap [P, wP]$ and N_0 is defined in the statement of Proposition 3.2. We will consider the automorphisms $i_{\sigma} \circ \alpha$, for $\sigma \in W$, and the corresponding homotheties σH .

Consider $\sigma = u_1 \dots u_{2p} \in W$, with each u_i equal to v or w. The elements v, w were chosen in such a way that the points

$$P, u_1P, u_1u_2P, \dots, u_1 \dots u_{2p}P, u_1 \dots u_{2p}HP = \sigma HP$$

all lie in this order on the segment $[P, \sigma HP]$ (with the last two points possibly equal). Since P belongs to the axis of both v and w, we find that, for any $\sigma \in W$, the length of $[P, \sigma HP]$ equals

$$L = p\ell(v) + p\ell(w) + d(P, HP)$$

independently of σ . We also observe that, if $\sigma, \tau \in W$, then $[P, \sigma HP] \cap [P, \tau HP]$ contains the segment $I = [P, vP] \cap [P, wP]$.

Furthermore the intersection $[P, \sigma HP] \cap [\sigma HP, (\sigma H)^2 P]$ consists only of σHP : this follows from $P \in [u_{2p}^{-1}P, Hu_1P]$ if HP = P, from $P \in [H^{-1}P, u_1P]$ if $HP \neq P$. This implies that $[P, \sigma HP]$ is contained in an eigenray ρ_{σ} of the homothety σH . Let Q_{σ} denote the fixed point of σH in the completion \overline{T} (the origin of ρ_{σ}).

Now we remark that $[P, \sigma HP]$ is the only fundamental domain of length L for the action of σH on its eigenray ρ_{σ} . In particular, $d(Q_{\sigma}, P) = \frac{L}{\lambda - 1}$ is independent of $\sigma \in W$.

Suppose for a moment that for every $\sigma \in W$ the map σH has only one eigenray (this happens in particular if $Q_{\sigma} \in \overline{T} \setminus T$). If i_c conjugates $i_{\sigma} \circ \alpha$ and $i_{\tau} \circ \alpha$ (with $\sigma, \tau \in W$ and $c \in G$), then c conjugates σH and τH . Therefore c sends ρ_{σ} onto ρ_{τ} , and the fundamental domain $[P, \sigma HP]$ onto $[P, \tau HP]$. Since these segments both contain I, we find $c \in \text{Stab } I$. This contradicts the choice of p in this special case, since we obtain |W|/s distinct isogredience classes in $S(\Phi)$.

In general, if i_c conjugates $i_{\sigma} \circ \alpha$ and $i_{\tau} \circ \alpha$, we can only say that c sends Q_{σ} to Q_{τ} . Since $|W| > Ks^2N_0$, we can find distinct elements $\sigma, \tau(1), \ldots, \tau(s^2 + 1)$ in W such that some $i_{c(j)}$ conjugates $i_{\sigma} \circ \alpha$ and $i_{\tau(j)} \circ \alpha$, and some element $h(j) \in \text{Stab} Q_{\tau(j)}$ sends an initial segment of the $[\tau(j)H]$ -eigenray $c(j)\rho_{\sigma}$ onto an initial segment of $\rho_{\tau(j)}$.

We have pointed out earlier that h(j) sends the whole eigenray $c(j)\rho_{\sigma}$ onto $\rho_{\tau(j)}$. Therefore $h(j)c(j) \in \text{Stab } I$. Thus there are at least s + 1 values of j for which the maps $\tau(j)H$ have a common eigenray containing I. This is a contradiction because at most s elements of G can have the same action on I. This completes the proof of Proposition 3.2. \Box

• We also need:

PROPOSITION 3.3. – $S(\Phi)$ is infinite if G is hyperbolic, non-elementary, and Φ has finite order in Out G.

Proof. – Let J be the subgroup of Aut G consisting of all automorphisms whose image in Out G is a power of Φ . The exact sequence $\{1\} \to K \to J \to \langle \Phi \rangle \to \{1\}$, with K = G/Center and $\langle \Phi \rangle$ finite, shows that J is hyperbolic, non-elementary. The set of automorphisms $\alpha \in \Phi$ is a coset of J mod K. If $\alpha, \beta \in \Phi$ are isogredient, they are conjugate in J. The proof of Proposition 3.3 is therefore concluded by applying the following fact, due to T. Delzant. \Box

LEMMA 3.4. – Let J be a non-elementary hyperbolic group. Let K be a normal subgroup with abelian quotient. Every coset of J mod K contains infinitely many conjugacy classes.

Proof. – Fix u in the coset C under consideration. Suppose for a moment that we can find $c, d \in K$, generating a free group of rank 2, such that $uc^{\infty} \neq c^{-\infty}$ and $ud^{\infty} \neq d^{-\infty}$ (recall that we denote $g^{\pm \infty} = \lim_{n \to +\infty} g^{\pm n}$ for g of infinite order). Consider $x_k = c^k uc^k$ and $y_k = d^k ud^k$. For k large, the above inequalities imply that these two elements have infinite order, and do not generate a virtually cyclic group because $x_k^{\pm \infty}$ (respectively $y_k^{\pm \infty}$) is close to $c^{\pm \infty}$ (respectively $d^{\pm \infty}$). Fix k, and consider the elements $z_n = x_k^{n+1} y_k^{-n}$. They belong to the coset C, because J/K is abelian, and their stable norm goes to infinity with n. Therefore C contains infinitely many conjugacy classes.

Let us now construct c, d as above. Choose $a, b \in K$ generating a free group of rank 2. We first explain how to get c. There is a problem only if $ua^{\infty} = a^{-\infty}$ and $ub^{\infty} = b^{-\infty}$. In that case

4^e SÉRIE – TOME 33 – 2000 – N° 4

there exist integers p, q with $ua^p u^{-1} = a^{-p}$ and $ub^q u^{-1} = b^{-q}$. We take $c = a^p b^q$, noting that $ucu^{-1} = a^{-p}b^{-q}$ is different from $c^{-1} = b^{-q}a^{-p}$.

Once we have c, we choose $c' \in K$ with $\langle c, c' \rangle$ free of rank 2, and we obtain d by applying the preceding argument using c' and cc' instead of a and b. The group $\langle c, d \rangle$ is free of rank 2 because d is a positive word in c' and cc'. \Box

Remark. – As pointed out by Delzant, similar arguments show that $S(\Phi)$ is infinite when Φ has infinite order but is hyperbolic in the sense of [1] (because J is hyperbolic, see [1]).

We can now prove:

THEOREM 3.5. – For every $\Phi \in \text{Out } G$, with G a non-elementary hyperbolic group, the set $S(\Phi)$ is infinite.

Proof. – By Proposition 3.3, we may assume that Φ has infinite order. By Paulin's theorem [20], it preserves some **R**-tree T with a nontrivial minimal small action of G (recall that an action of G is small if all arc stabilizers are virtually cyclic; the action of G on T is always irreducible).

If $\lambda = 1$, we use Proposition 3.1. If $\lambda > 1$, we apply Proposition 3.2. The existence of N_0 follows from work of Bestvina and Feighn [2] (alternatively, one could for G torsion-free use ad hoc trees as in [15]). Finiteness of arc stabilizers is stated as the next lemma. \Box

LEMMA 3.6. – Suppose $\ell \circ \Phi = \lambda \ell$, where ℓ is the length function of a nontrivial small action of a hyperbolic group G on an **R**-tree T. If $\lambda > 1$, then T has finite arc stabilizers.

Proof. – This is proved in [9, Lemma 2.8] when G is free. We sketch the proof of the general case. We may assume that the action is minimal. Let $c \subset T$ be an arc with infinite stabilizer S. Let p be the index of S in the maximal virtually cyclic subgroup \overline{S} that contains it. Fix $\alpha \in \Phi$, and denote by H the associated homothety of T.

Since there is a finite union of arcs whose union meets every orbit, we can find, for k large, disjoint subarcs c_0, \ldots, c_p of $H^k(c)$ such that $c_i = v_i c_0$ for some $v_i \in G$. For each *i*, the stabilizer of c_i lies between $\alpha^k(S) = \operatorname{Stab} H^k(c)$ and $\alpha^k(\overline{S})$. From $\operatorname{Stab} c_i = v_i \operatorname{Stab} c_0 v_i^{-1}$ we get $\alpha^k(\overline{S}) = v_i \alpha^k(\overline{S}) v_i^{-1}$, hence $v_i \in \alpha^k(\overline{S})$. This is a contradiction since $1, v_1, \ldots, v_p$ all lie in different cosets of $\alpha^k(\overline{S})$ modulo $\alpha^k(S)$. \Box

If G is a free group F_n , we also prove:

PROPOSITION 3.7. – There exists a number C_n such that, for any $\Phi \in \text{Out } F_n$ and any integer $k \ge 2$, the natural map $S(\Phi) \to S(\Phi^k)$ is at most C_n -to-one.

Proof. – Let α_i $(1 \le i \le N)$ be pairwise non-isogredient automorphisms in Φ having isogredient kth powers. We want to bound N in terms of n only. We may assume that α_i^k is a fixed automorphism β .

Let T be an **R**-tree with trivial arc stabilizers preserved by Φ (see [9, Theorem 2.1]), and H_i the homothety associated to α_i . The H_i 's all have the same kth power H_β . For $i \neq j$, we have $H_i = g_{ij}H_j$ for some nontrivial $g_{ij} \in F_n$. Note that H_i and H_j cannot coincide on more than one point since F_n acts on T with trivial arc stabilizers.

First suppose $\lambda > 1$. Then H_{β} and all maps H_i fix the same point $Q \in \overline{T}$. The stabilizer Stab $Q \subset F_n$ is α_i -invariant and has rank < n by [10] (see [9]).

If Stab Q is trivial (in particular if $Q \in \overline{T} \setminus T$), then $g_{ij} = 1$ and $\alpha_i = \alpha_j$.

If $\operatorname{Stab} Q$ has rank ≥ 2 , we use induction on n since the restrictions of the α_i 's to $\operatorname{Stab} Q$ are non-isogredient automorphisms representing the same outer automorphism [9, Lemma 5.1].

If Stab Q is cyclic, generated by some u, we note that g_{ij} is a power of u and $\alpha_i(u)$ is independent of i. If $\alpha_i(u) = u$, then H_i commutes with u and $H_i^k = H_j^k$ implies $g_{ij} = 1$. If

 $\alpha_i(u) = u^{-1}$, we write $u^{2p} = u^p \alpha_i(u^p)^{-1}$, showing that α_i is isogredient to α_j whenever g_{ij} is an even power of u.

Now suppose $\lambda = 1$. If H_{β} has no fixed point, then N = 1 since all H_i 's coincide on the axis of H_{β} . Assume therefore that H_{β} has fixed points. If all maps H_i have a common fixed point Q, we can argue as above. We complete the proof by showing how to reduce to this situation.

Let Q_i be a fixed point of H_i , and e_i some edge containing Q_i and fixed by H_β . The action of F_n on pairs (Q_i, e_i) has at most 6n - 6 orbits (twice the number of edges of the quotient graph T/F_n). After possibly dividing N by 6n - 6 we may assume there is only one orbit. Note that the action on T of the element $c_{ij} \in F_n$ sending (Q_i, e_i) to (Q_j, e_j) commutes with H_β since e_i and e_j are both fixed by H_β . This implies that β fixes c_{ij} , and we can change α_i within its isogredience class so as to make all points Q_i the same, while retaining the property $\alpha_i^k = \beta$. \Box

Acknowledgements

We thank T. Delzant and F. Paulin for helpful comments about Proposition 0.4, and Delzant for Lemma 3.4.

REFERENCES

- [1] BESTVINA M., FEIGHN M., A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85–101.
- [2] BESTVINA M., FEIGHN M., Bounding the complexity of group actions on real trees, unpublished manuscript.
- [3] BESTVINA M., FEIGHN M., HANDEL M., Solvable subgroups of $Out(F_n)$ are virtually abelian, Preprint.
- [4] COHEN M.M., LUSTIG M., On the dynamics and the fixed subgroup of a free group automorphism, *Invent. Math.* 196 (1989) 613–638.
- [5] COORNAERT M., DELZANT T., PAPADOPOULOS A., Géométrie et Théorie des Groupes, Lecture Notes, Vol. 1441, Springer, 1990.
- [6] CULLER M., MORGAN J.W., Group actions on R-trees, Proc. London Math. Soc. 55 (1987) 571–604.
- [7] CURTILLET J.-C., Geodäten auf flachen Flächen und eine Zetafunktion für Automorphismen von freien Gruppen, Ph.D. Thesis, Bochum, 1997.
- [8] DICKS W., LLIBRE J., Orientation-preserving self-homeomorphisms of the surface of genus two have points of period at most two, *Proc. Amer. Math. Soc.* **124** (1996) 1583–1591.
- [9] GABORIAU D., JAEGER A., LEVITT G., LUSTIG M., An index for counting fixed points of automorphisms of free groups, *Duke Math. J.* **93** (1998) 425–452.
- [10] GABORIAU D., LEVITT G., The rank of actions on R-trees, Ann. Sci. ENS 28 (1995) 549-570.
- [11] Ghys E., de la Harpe P. (Eds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhäuser, 1990.
- [12] GROMOV M., Hyperbolic groups, in: Gersten S.M. (Ed.), *Essays in Group Theory*, MSRI Publ., Vol. 8, Springer, 1987, pp. 75–263.
- [13] JÄGER A., LUSTIG M., Free group automorphisms with many fixed points at infinity, Math. Z. (to appear).
- [14] LEVITT G., LUSTIG M., Periodic ends, growth rates, Hölder dynamics for automorphisms of free groups, Comment. Math. Helv. (to appear) (available from http://picard.ups-tlse.fr/~levitt/).
- [15] LEVITT G., LUSTIG M., Dynamics of automorphisms of free groups and hyperbolic groups, Preprint (available from http://picard.ups-tlse.fr/~levitt/).
- [16] LUSTIG M., Automorphisms, train tracks and non-simplicial **R**-tree actions, Comm. in Alg. (to appear).
- [17] MORGAN J.W., SHALEN P.B., Valuations, trees, and degenerations of hyperbolic structures, I, Ann. Math. 120 (1984) 401–476.

4^e SÉRIE – TOME 33 – 2000 – N° 4

- [18] NIELSEN J., Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189–358; English transl. in: Collected Mathematical Papers, Birkhäuser, 1986.
- [19] PAULIN F., The Gromov topology on R-trees, *Topology Appl.* **32** (1989) 197–221.
- [20] PAULIN F., Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. ENS 30 (1997) 147-167.
- [21] SCOTT P., WALL T., Topological methods in group theory, in: Wall T. (Ed.), Homological Group Theory, LMS Lect. Notes, Vol. 36, Camb. Univ. Press, 1979, pp. 137–203.
- [22] SHALEN P.B., Dendrology of groups: an introduction, in: Gersten S.M. (Ed.), *Essays in Group Theory*, MSRI Publ., Vol. 8, Springer, 1987, pp. 265–319.
- [23] SHORT H. ET AL., Notes on word hyperbolic groups, in: Ghys E., Haefliger A., Verjovsky A. (Eds.), Group Theory from a Geometrical Viewpoint, World Scientific, 1991, pp. 3–63.

(Manuscript received June 28, 1999.)

Gilbert LEVITT Laboratoire Émile-Picard, UMR CNRS 5580, Université Paul-Sabatier, 31062 Toulouse cedex 4, France E-mail: levitt@picard.ups-tlse.fr

Martin LUSTIG Laboratoire de mathématiques fondamentales et appliquées, Université d'Aix-Marseille-III, 13397 Marseille cedex 20, France E-mail: Martin.Lustig@math.u-3mrs.fr