Annales scientifiques de l’é.n.S.

Gilbert Levitt
Martin Lustig
Most automorphisms of a hyperbolic group have very simple dynamics

Annales scientifiques de l'É.N.S. 4^{e} série, tome 33, no 4 (2000), p. 507-517
http://www.numdam.org/item?id=ASENS_2000_4_33_4_507_0
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 2000, tous droits réservés.
L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

MOST AUTOMORPHISMS OF A HYPERBOLIC GROUP HAVE VERY SIMPLE DYNAMICS

By Gilbert LEVITT and Martin LUSTIG

AbSTRACT. - Let G be a non-elementary hyperbolic group (e.g. a non-abelian free group of finite rank). We show that, for "most" automorphisms α of G (in a precise sense), there exist distinct elements X^{+}, X^{-} in the Gromov boundary ∂G of G such that $\lim _{n \rightarrow+\infty} \alpha^{ \pm n}(g)=X^{ \pm}$for every $g \in G$ which is not periodic under α. This follows from the fact that the homeomorphism $\partial \alpha$ induced on ∂G has North-South (loxodromic) dynamics. © 2000 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. - Soit G un groupe hyperbolique non élémentaire (par exemple un groupe libre non abélien de rang fini). Nous montrons que, pour "la plupart" des automorphismes α de G (en un sens bien précis), il existe deux éléments distincts X^{+}, X^{-}dans le bord de Gromov ∂G de G tels que $\lim _{n \rightarrow+\infty} \alpha^{ \pm n}(g)=$ $X^{ \pm}$pour tout $g \in G$ non périodique sous l'action de α. Ceci résulte du fait que l'homéomorphisme $\partial \alpha$ induit sur ∂G a une dynamique Nord-Sud (loxodromique). © 2000 Éditions scientifiques et médicales Elsevier SAS

0. Introduction and statement of results

Let α be an automorphism of a (word) hyperbolic group G. Fixing $g \in G$, we consider the sequence of iterates $\alpha^{n}(g)$, for $n \geqslant 1$. We assume that g is not α-periodic, so that $\alpha^{n}(g)$ goes off to infinity in G.
We will show that, for "most" automorphisms α of G (in a sense that will be made precise), there exists a point X^{+}in the Gromov boundary ∂G such that $\alpha^{n}(g)$ converges to X^{+}for every nonperiodic g. If G is free on a finite set A, this says that there exists a sequence of letters $a_{k}^{ \pm 1} \in A \cup A^{-1}$ such that, for any non-periodic g, the k th letter of $\alpha^{n}(g)$ equals $a_{k}^{ \pm 1}$ for n large.
This dynamical behavior is best expressed in terms of the homeomorphism $\partial \alpha$ induced by α on ∂G : for most $\alpha \in$ Aut G, the map $\partial \alpha$ has North-South dynamics in the following sense. We say that $\partial \alpha$, or α, has North-South dynamics (also called loxodromic dynamics) if $\partial \alpha$ has two distinct fixed points X^{+}, X^{-}, and $\lim _{n \rightarrow+\infty} \partial \alpha^{ \pm n}(X)=X^{ \pm}$uniformly on compact subsets of $\partial G \backslash\left\{X^{\mp}\right\}$.

This implies (see Proposition 2.3) that the set of α-periodic elements $g \in G$ is a virtually cyclic subgroup (possibly finite), and $\lim _{n \rightarrow+\infty} \alpha^{ \pm n}(g)=X^{ \pm}$if $g \in G$ is not α-periodic. For an arbitrary automorphism, it is proved in [15] that $\alpha^{n}(g)$ limits onto a finite subset of ∂G (that may depend on g).

If for instance α is conjugation i_{m} by $m \in G$, then $\partial \alpha$ is simply left-translation by m, and $\partial \alpha$ has North-South dynamics for all m outside of a finite set of conjugacy classes (those consisting of torsion elements), see [5,11,12].

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. - 0012-9593/00/04/© 2000 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

In general, we consider an outer automorphism $\Phi \in$ Out G, viewed as a collection of ordinary automorphisms $\alpha \in$ Aut G. For a topological motivation, induce Φ by a continuous map $f: X \rightarrow$ X with $\pi_{1} X \simeq G$. Automorphisms $\alpha \in \Phi$ correspond to lifts of f to the universal covering of X. Different lifts may have very different properties. On the other hand, conjugate maps have similar dynamical properties. This led Nielsen [18] to define lifts of f to be isogredient if they are conjugate by a covering transformation.

Going back to group automorphisms, we therefore define $\alpha, \beta \in \Phi$ to be isogredient if $\beta=i_{h} \circ \alpha \circ i_{h}^{-1}$ for some $h \in G$, with $i_{h}(g)=h g h^{-1}$ (the word "similar" was used in [9]).

We denote $\mathcal{S}(\Phi)$ the set of isogredience classes of automorphisms representing Φ. If $\Phi=1$, then $\mathcal{S}(\Phi)$ may be identified to the set of conjugacy classes of G modulo its center. We say that $s \in \mathcal{S}(\Phi)$ has North-South dynamics if automorphisms $\alpha \in s$ have North-South dynamics on ∂G.

THEOREM 0.1. - Let G be a hyperbolic group, and $\Phi \in \operatorname{Out} G$. Assume G is non-elementary (i.e. G is not virtually cyclic).
(1) All but finitely many $s \in \mathcal{S}(\Phi)$ have North-South dynamics.
(2) The set $\mathcal{S}(\Phi)$ of isogredience classes is infinite.

Example 0.2. - When Φ is induced by a pseudo-Anosov homeomorphism φ of a closed surface Σ, the "exceptional" automorphisms $\alpha \in \Phi$ (those that do not have North-South dynamics) correspond to lifts of φ having a fixed point in the universal covering of Σ. The set of exceptional classes in $\mathcal{S}(\Phi)$ is in one-to-one correspondence with the set of fixed points of φ. It may be empty, see [8] for an explicit example. On the other hand, the number of fixed points of φ^{k} goes to infinity with k. Thus the number of exceptional isogredience classes cannot be bounded in terms of G only.

This example suggests the possibility of using exceptional isogredience classes to develop a fixed point theory for general outer automorphisms of free groups. Exceptional isogredience classes would be the algebraic analogue of Nielsen classes of fixed points, and there should be a (rational) zeta function obtained as a sum over exceptional classes of powers of Φ (compare [7]).

Example 0.3. - Suppose G is free. It follows from [3, Lemma 5.1] that some power of Φ contains an exceptional isogredience class. It may be shown using [4] and [14] that the isogredience class of α is the only exceptional class when α is the irreducible automorphism $a \mapsto a b c, b \mapsto b a b, c \mapsto c a b c$ studied in [13].

The proof of the first assertion of Theorem 0.1 when G is not free requires the following fact, which is of independent interest:

PROPOSITION 0.4 (Quasiisometries of hyperbolic spaces have a quasi-fixed point or a quasiaxis). - Let f be a (λ, C)-quasiisometry of a δ-hyperbolic proper geodesic metric space (E, d) to itself. There exists $M=M(\delta, \lambda, C)$, independent of E and f, with the following property: if $d(f(x), x)>M$ for all $x \in E$, then there exists a bi-infinite geodesic γ such that the Hausdorff distance between γ and $f(\gamma)$ is finite.

Increasing M if necessary, we conclude (Corollary 1.4) that the action of f on ∂E has NorthSouth dynamics, with fixed points the two endpoints of γ.

1. Quasiisometries of hyperbolic spaces

We start by proving Proposition 0.4. The proof may be seen as a generalization of the well-known argument constructing the axis of an isometry of an \mathbf{R}-tree having no fixed

$$
4^{e} \text { SÉRIE - TOME } 33-2000-\mathrm{N}^{\circ} 4
$$

points (see [17]). We refer the reader to [5,11,12,23] for basic facts about hyperbolic spaces, quasiisometries, and hyperbolic groups.

Let (E, d) be a proper δ-hyperbolic geodesic metric space. Properness is assumed mostly for convenience, in particular E could be an R-tree in what follows.

For $x, y \in E$, we denote $[x, y]$ any geodesic segment from x to y. Given a point z, any point $p \in[x, y]$ that is δ-close to both segments $[x, z]$ and $[y, z]$ will be called a projection of z onto $[x, y]$ (two projections are only a few δ 's apart).

Recall that $f: E \rightarrow E$ is a (λ, C)-quasiisometry if

$$
\frac{1}{\lambda} d(x, y)-C \leqslant d(f(x), f(y)) \leqslant \lambda d(x, y)+C
$$

for all $x, y \in E$, and there exists g satisfying the same inequalities such that $f \circ g$ and $g \circ f$ are C-close to the identity. We let $\ell(f)=\inf _{x \in E} d(f(x), x)$ be the minimum displacement of f. Note that $\ell(g) \leqslant \lambda \ell(f)+2 C$.

The following lemma is left as an exercise.
Lemma 1.1. - If f is $a(\lambda, C)$-quasiisometry of a compact interval to itself, then $\ell(f) \leqslant C$.
From now on, we fix δ, λ, C. The quantities C_{1}, M_{1}, C_{2} introduced below depend only on these three numbers, not on E, f, or the points under consideration. We also say that two points x, y are close, or have bounded distance, if their distance may be bounded a priori by some number depending only on δ, λ, C.

The quasiisometry f has the following basic property: there exists C_{1} such that, for any geodesic segment $[x, y]$, the image of $[x, y]$ is contained in the C_{1}-neighborhood of $[f(x), f(y)]$.

Consider a geodesic triangle $a, f(a), f^{2}(a)$. Let u be a projection of a onto $\left[f(a), f^{2}(a)\right]$, and v a projection of $f(u)$ onto $\left[f(a), f^{2}(a)\right]$.

Lemma 1.2. - There exists M_{1} such that, if $\ell(f)>M_{1}$, then $v \in\left[u, f^{2}(a)\right]$.
Proof. - Suppose $v \in[f(a), u]$. Since $f(v)$ is close to $\left[f^{2}(a), f(u)\right]$ and $f(u)$ is close to v, the point $f^{2}(u)$ is close to $\left[f^{2}(a), f(u)\right]$. Thus, up to a bounded error, the points u and $f^{2}(u)$ both lie on the segment $\left[f^{2}(a), f(u)\right]$. It follows that f or g is close to a map sending $[u, f(u)]$ into itself. Lemma 1.1 implies that some point of $[u, f(u)]$ is close to its image by f.

We assume from now on that $\ell(f)>M_{1}$.
LEmMA 1.3. - There exists C_{2} with the following property: for any $a \in E$, there exist three points p, q, r, lying in this order on $\left[a, f^{2}(a)\right]$, such that
(1) q is C_{2}-close to a projection of $f(a)$ onto $\left[a, f^{2}(a)\right]$;
(2) p is C_{2}-close to $g(q)$;
(3) r is C_{2}-close to $f(q)$.

Proof. - With the same notations as above, it follows from Lemma 1.2 that u is close to $[f(a), f(u)]$. Therefore $g(u)$ is close to $[a, u]$. We also know that $f(u)$ is close to $\left[u, f^{2}(a)\right]$. Let p, q, r be projections onto $\left[a, f^{2}(a)\right]$ of $g(u), u, f(u)$ respectively. Either they are in the correct order $a, p, q, r, f^{2}(a)$, or this may be achieved by moving them by a bounded amount.

Note that $f(q)$ is close to $[f(p), f(r)]$, hence to $\left[q, f^{2}(q)\right]$.
We now complete the proof of Proposition 0.4. View Lemma 1.3 as a way of assigning a point q to any point a. We construct a sequence q_{n} by iterating this process, with q_{0} the point assigned by Lemma 1.3 to an arbitrary starting point $a \in E$. Since $f\left(q_{n}\right)$ is close to $\left[q_{n}, f^{2}\left(q_{n}\right)\right]$, the point q_{n+1} is close to $f\left(q_{n}\right)$.

Note that by construction $q_{n+1} \in\left[q_{n}, f^{2}\left(q_{n}\right)\right]$, while q_{n+2} is close to $f\left(q_{n+1}\right)$, hence to $\left[q_{n}, f^{2}\left(q_{n}\right)\right]$ by assertion (3) of Lemma 1.3. Thus the broken geodesics $\gamma_{n}=\left[q_{n}, q_{n+1}\right] \cup$ $\left[q_{n+1}, q_{n+2}\right]$ are uniformly quasigeodesic. Also note that by assertion (2) of Lemma 1.3 we have

$$
d\left(q_{n}, q_{n+1}\right) \geqslant d\left(g\left(q_{n+1}\right), q_{n+1}\right)-C_{2} \geqslant \ell(g)-C_{2}
$$

showing that the overlap between γ_{n} and γ_{n+1} is bounded below by a linear function of $\ell(f)$.
It follows from [5, Théorème 3.1.4] or [11, Théorème 5.25] that the sequence q_{n} is an infinite quasigeodesic γ^{+}if $\ell(f)$ is large enough. Since $d\left(f\left(q_{n}\right), q_{n+1}\right)$ is bounded, the point at infinity of γ^{+}is fixed by ∂f (the homeomorphism induced by f on ∂E). The quasigeodesic may be extended in the other direction by applying the same construction to g, yielding a bi-infinite quasigeodesic, hence a second fixed point for ∂f. This proves Proposition 0.4.

COROLLARY 1.4. - Let f be a (λ, C)-quasiisometry of a δ-hyperbolic proper geodesic metric space (E, d) to itself. There exists $N=N(\delta, \lambda, C)$, independent of E and f, with the following property: if $d(f(x), x)>N$ for all $x \in E$, then ∂f has North-South dynamics.

Proof. - Suppose $\ell(f)>M$. Let γ be a bi-infinite geodesic joining two fixed points X_{0}, X_{1} of ∂f. Consider $X \neq X_{0}, X_{1}$ in ∂E. Let θ be a projection of X onto γ. A projection θ^{\prime} of $\partial f(X)$ is close to $f(\theta)$. If $\ell(f)$ is large enough, the distance from θ to θ^{\prime} is bounded below and the oriented segment $\theta \theta^{\prime}$ always points towards the same endpoint X_{i} of γ, independently of the choice of X. Applying this argument to both f and g, we deduce that ∂f has North-South dynamics.

2. North-South dynamics

We first prove:
THEOREM 2.1.-Let $\Phi \in$ Out G, with G hyperbolic. All but finitely many isogredience classes $s \in \mathcal{S}(\Phi)$ have North-South dynamics on ∂G.

Proof. - Let E be the Cayley graph of G with respect to some finite generating set A, with the natural left-action of G. We identify the set of vertices of E with G, and ∂E with ∂G. We fix a "basepoint" $\alpha \in \Phi$, and we represent it by a quasiisometry $J: E \rightarrow E$ sending a vertex g to the vertex $\alpha(g)$, equivariant in the sense that $\alpha(h) J=J h$ for every $h \in G$.

Given $\beta \in \Phi$, we write $\beta=i_{m} \circ \alpha$ and we consider the map $J_{\beta}=m J$ (this involves a choice for m if the center of G is not trivial). Note that it maps a vertex g onto $m \alpha(g)$ (not onto $\left.\beta(g)=m \alpha(g) m^{-1}\right)$.

The map J_{β} satisfies $\beta(g) J_{\beta}=J_{\beta} g$, it induces $\partial \beta$ on ∂E (because a right-translation of G induces the identity on the boundary), and the maps J_{β} are uniformly quasiisometric (because they differ by left-translations).

If two maps J_{β}, J_{γ}, with $\beta, \gamma \in \Phi$, coincide at some point of E, then clearly $\beta=\gamma$. More generally:

Lemma 2.2. - Let $\beta, \gamma \in \Phi$. If there exist $g, h \in G$ with

$$
g^{-1} J_{\beta}(g)=h^{-1} J_{\gamma}(h),
$$

then β and γ are isogredient.
Proof. - Writing $\beta=i_{m} \circ \alpha$ and $\gamma=i_{n} \circ \alpha$ we get

$$
g^{-1} m \alpha(g)=h^{-1} n \alpha(h)
$$

which we rewrite as

$$
n m^{-1}=h g^{-1} m \alpha\left(g h^{-1}\right) m^{-1}=h g^{-1} \beta\left(g h^{-1}\right)
$$

showing that $\gamma=i_{n m^{-1}} \circ \beta=i_{h g^{-1}} \circ \beta \circ\left(i_{h g^{-1}}\right)^{-1}$ is isogredient to β.
By Corollary 1.4, there exists a number N (independent of β) such that, if J_{β} moves every point of E more than N, then $\partial \beta$ has North-South dynamics. Since E is a locally finite graph, Lemma 2.2 implies that this condition is fulfilled for all $\beta \in \Phi$ outside of a finite set of isogredience classes. This completes the proof of Theorem 2.1.

Remark. - When G is a free group F_{n}, there is (using the notations of [4]) a one-to-one correspondence between $\mathcal{S}(\Phi)$ and the set of connected components of the graph $D(\varphi)$, for $\varphi \in \Phi$. In this case one may use Lemma 5.1 of [4] instead of Proposition 0.4 in the above proof. Also note that, as a corollary of Theorem 4 of [9], the map $\partial \beta$ has at most 4 fixed points for $\beta \in \Phi$ outside of at most $4 n-4$ isogredience classes. Another remark: $\mathcal{S}(\Phi)$ is infinite when $\Phi \in \operatorname{Out} F_{n}$ fixes a nontrivial conjugacy class, by Proposition 5.4 of [4].

Proposition 2.3. - Suppose $\partial \alpha$ has North-South dynamics, with attracting fixed point X^{+} and repelling fixed point X^{-}. Then:
(1) The subgroup $P(\alpha) \subset G$ consisting of all α-periodic elements is either finite or virtually \mathbf{Z} with limit set $\left\{X^{+}, X^{-}\right\}$.
(2) If $g \in G$ is not α-periodic, then $\lim _{n \rightarrow+\infty} \alpha^{ \pm n}(g)=X^{ \pm}$.

Proof. - Given $g \in G$ of infinite order, we denote $g^{ \pm \infty}=\lim _{n \rightarrow+\infty} g^{ \pm n}$. These are distinct points of ∂G. Note that $\partial \alpha\left(g^{ \pm \infty}\right)=\alpha(g)^{ \pm \infty}$. The subgroup of G consisting of elements whose action on ∂G leaves $\left\{g^{\infty}, g^{-\infty}\right\}$ invariant is the maximal virtually cyclic subgroup N_{g} containing g. If $h \notin N_{g}$, then $\left\{g^{\infty}, g^{-\infty}\right\}$ is disjoint from its image by h. If $\partial \alpha\left(g^{\infty}\right)=g^{\infty}$, then N_{g} is α-invariant (i.e. $\alpha\left(N_{g}\right)=N_{g}$).

Suppose (1) is false. Then there exist two α-periodic elements g, h of infinite order generating a non-elementary group. The points $g^{ \pm \infty}$ and $h^{ \pm \infty}$ are four distinct periodic points of $\partial \alpha$, a contradiction.

To prove (2), first suppose G is virtually cyclic. Then G maps onto \mathbf{Z} or $\mathbf{Z} / 2 \mathbf{Z} * \mathbf{Z} / 2 \mathbf{Z}$ with finite kernel (see [21]). From this one deduces that the periodic subgroup $P(\alpha)$ has index at most 2 and contains all elements of infinite order (an instructive example is conjugation by $a b$ in $\left\langle a, b \mid a^{2}=b^{2}=1\right\rangle$). Both ends of G are fixed by $\partial \alpha$; all non-periodic torsion elements (if any) converge towards one end under iteration of α, towards the other end under iteration of α^{-1}.

Now consider the general case. It suffices to show $\lim _{n \rightarrow+\infty} \alpha^{n}(g)=X^{+}$. Since X^{+}is a fixed point of $\partial \alpha$, we are free to replace α by a power if needed. We first note that there exists a number C such that

$$
\left(g, g^{\infty}\right) \geqslant \frac{1}{2}|g|-C
$$

for every g of infinite order (where (,) denotes Gromov's scalar product based at the identity in the Cayley graph, and || is word length). This follows easily from Lemma 3.5 of [20] (if G is free and A is a basis, $C=-1 / 2$ clearly works).

Suppose g is not α-periodic. Then $\lim _{n \rightarrow \infty}\left|\alpha^{n}(g)\right|=\infty$. If furthermore g has infinite order, applying the previous inequality to $\alpha^{n}(g)$ yields

$$
\lim _{n \rightarrow+\infty} \alpha^{n}(g)=\lim _{n \rightarrow+\infty}\left(\alpha^{n}(g)\right)^{\infty}=\lim _{n \rightarrow+\infty} \partial \alpha^{n}\left(g^{\infty}\right)=X^{+}
$$

(note that $g^{\infty} \neq X^{-}$, since otherwise $N(g)$ would be α-invariant and g would be periodic).

Now we consider a non α-periodic element g of finite order. We distinguish two cases. Suppose first that $\left\{X^{+}, X^{-}\right\}$is the limit set of an infinite α-invariant virtually cyclic subgroup H. We may assume that H is maximal (it then contains all periodic elements). If $g \notin H$, choose $h \in H$ of infinite order, with $h^{ \pm \infty}=X^{ \pm}$. Replacing α by a power, we may assume $\alpha(h)=h$. We have $g h^{\infty} \neq h^{-\infty}$, and therefore $g_{k}=h^{k} g h^{k}$ has infinite order for k large enough. Since $\alpha^{n}\left(g_{k}\right)$ converges to X^{+}as $n \rightarrow+\infty$, we find that $\alpha^{n}(g)$ converges to $h^{-k} X^{+}=X^{+}$, as desired. There remains to rule out the possibility that non-periodic torsion elements $g \in H$ converge towards X^{-}under iteration of α. If this happens, choose $j \notin H$. Since j and $g j$ are not α-periodic (they don't belong to H), we know that $\alpha^{n}(j)$ and $\alpha^{n}(g j)$ are close to X^{+}for n large. But $\alpha^{n}(g)$ and $\alpha^{n}\left(g^{-1}\right)$ are close to X^{-}. This is impossible.

If $\left\{X^{+}, X^{-}\right\}$is not as above, then X^{+}(respectively X^{-}) is an attracting (respectively repelling) fixed point for the action of $\alpha \cup \partial \alpha$ on the compact space $G \cup \partial G$ (see [14]). The desired result $\lim _{n \rightarrow+\infty} \alpha^{n}(g)=X^{+}$follows from an elementary dynamical argument. Indeed, the sequence $\alpha^{n}(g)$, with $n>0$, has some limit point $X \in \partial G$. We have $X \neq X^{-}$because X^{-} is repelling on $G \cup \partial G$, and therefore $\partial \alpha^{n}(X)$ converges to X^{+}. We then deduce that X^{+}is a limit point of $\alpha^{n}(g)$, and finally that $\alpha^{n}(g)$ converges to X^{+}because X^{+}is attracting on $G \cup \partial G$.

3. Isogredience classes

The main result of this section is the infiniteness of $\mathcal{S}(\Phi)$ (but see also Proposition 3.7). We first study four different situations where we can reach this conclusion. For now, we only assume that G is any finitely generated group. We fix $\Phi \in \operatorname{Out} G$ and $\alpha \in \Phi$.

- By definition, the automorphisms $\beta=i_{m} \circ \alpha$ and $\gamma=i_{n} \circ \alpha$ are isogredient if and only if there exists $g \in G$ with $\gamma=i_{g} \circ \beta \circ i_{g}^{-1}$, or equivalently $n=g m \alpha\left(g^{-1}\right) c$ with c in the center of G. Though we will not use it, we note that $\mathcal{S}(\Phi)$ is infinite if the center of G is finite and the action of Φ on $H_{1}(G ; \mathbf{R})$ has 1 as an eigenvalue.

Now assume that Φ preserves some \mathbf{R}-tree (see [6], [17], [22] for basics about \mathbf{R}-trees). This means that there is an \mathbf{R}-tree T equipped with an isometric action of G whose length function satisfies $\ell \circ \Phi=\lambda \ell$ for some $\lambda \geqslant 1$. We always assume that the action is minimal and irreducible (no global fixed point, no invariant line, no invariant end). We say $g \in G$ is hyperbolic if it is hyperbolic as an isometry of T. We shall use the following fact due to Paulin [19]: any segment $[a, b] \subset T$ is contained in the axis of some hyperbolic $g \in G$.

Because $\ell \circ \Phi=\lambda \ell$, it follows from [6] (see also [9], [16]) that, given $\alpha \in \Phi$, there is a (unique) map $H=H_{\alpha}: T \rightarrow T$ with the following properties: H is a homothety with stretching factor λ (i.e. $d(H x, H y)=\lambda d(x, y)$), and it satisfies $\alpha(g) H=H g$ for every $g \in G$. If $\beta=i_{m} \circ \alpha$, then $H_{\beta}=m H_{\alpha}$. If $\beta=i_{g} \circ \alpha \circ i_{g}^{-1}$ is isogredient to α, then $H_{\beta}=g H_{\alpha} g^{-1}$ is conjugate to H_{α}.

- First consider the case when $\lambda=1$. In this case the translation length of the isometry H_{β} is an isogredience invariant of β and we easily get:

Proposition 3.1. - Suppose $\ell \circ \Phi=\ell$, where ℓ is the length function of an irreducible action of G on an \mathbf{R}-tree. Then $\mathcal{S}(\Phi)$ is infinite.

Proof. - Fix $\alpha \in \Phi$. Using Paulin's lemma, it is easy to construct $m \in G$ with the translation length of $m H_{\alpha}$ arbitrarily large. The corresponding automorphisms $i_{m} \circ \alpha$ are in distinct isogredience classes.

- The case $\lambda>1$ is harder.

Proposition 3.2. - Suppose $\ell \circ \Phi=\lambda \ell$, where $\lambda>1$ and ℓ is the length function of an irreducible action of G on an \mathbf{R}-tree T. Assume that arc stabilizers are finite, and there exists

```
4e}\mathrm{ SÉRIE - TOME 33-2000 - N N 4
```

$N_{0} \in \mathbf{N}$ such that, for every $Q \in T$, the action of $\operatorname{Stab} Q$ on $\pi_{0}(T \backslash\{Q\})$ has at most N_{0} orbits. Then $\mathcal{S}(\Phi)$ is infinite.

An arc stabilizer is the pointwise stabilizer of a nondegenerate segment $[a, b]$, and $\operatorname{Stab} Q$ denotes the stabilizer of Q.

Proof. - Fix $\alpha \in \Phi$ and consider $H=H_{\alpha}$. We choose a point $P \in T$ as follows. It is the unique fixed point of H if H has a fixed point in T. Otherwise H has a unique fixed point Q in the metric completion \bar{T} of T, and a unique eigenray ρ (by definition, ρ is the image of an isometric embedding $\rho:(0, \infty) \rightarrow T$ such that $H \rho(t)=\rho(\lambda t)$ for all $t>0$, see [9]). We let P be any point on ρ. In both cases $P \in\left[H^{-1} P, H P\right]$.

For further reference, we note that the stabilizer of any initial segment $\rho(0, t)$ of an eigenray is the same as the stabilizer of the whole eigenray, because $\operatorname{Stab} \rho(0, t)$ and $\operatorname{Stab} \rho(0, \lambda t)=$ $\alpha(\operatorname{Stab} \rho(0, t))$ are finite groups with the same order. Suppose furthermore that H has two eigenrays ρ, ρ^{\prime}, and $g \in G$ maps an initial segment of ρ onto an initial segment of ρ^{\prime}. From the basic equation $\alpha(g) H=H g$ it follows that $g^{-1} \alpha(g)$ fixes an initial segment of ρ, hence all of ρ, and we deduce that g maps the whole of ρ onto ρ^{\prime}.

Returning to the main line of proof, we want to find $v, w \in G$ generating a free subgroup of rank 2, such that:
(i) $v P$ and $w P$ belong to a component T^{+}of $T \backslash\{P\}$.
(ii) $v^{-1} P$ and $w^{-1} P$ belong to another component T^{-}.
(iii) If $H P \neq P$, then $H^{ \pm 1} P \in T^{ \pm}$.
(iv) If $H P=P$, then $H\left(T^{+}\right) \neq T^{-}$.

Note that these conditions force v and w to be hyperbolic, with axes intersecting in a nondegenerate segment containing P in its interior. Furthermore, the two axes induce the same orientation on their intersection.

It is easy to construct v, w using Lemma 2.6 of [6] and Paulin's lemma, except in one "bad" situation where (iv) cannot be achieved: $H P=P$, and $T \backslash\{P\}$ has exactly two components, which are permuted by H.

If H is bad, we have to change our initial choice of $\alpha \in \Phi$. We use the following observation. Suppose H_{1}, H_{2} are homotheties with the same dilation factor $\lambda>1$ and distinct fixed points P_{1}, P_{2}; if H_{1} (respectively H_{2}) does not send the component of $T \backslash\left\{P_{1}\right\}$ (respectively $T \backslash\left\{P_{2}\right\}$) containing P_{2} (respectively P_{1}) into itself, then $H_{2} H_{1}^{-1}$ is a hyperbolic isometry whose axis contains $\left[P_{1}, P_{2}\right]$.

We choose $m \in G$ acting on T as a hyperbolic isometry with axis not containing P, and we replace α by $\alpha^{\prime}=i_{m} \circ \alpha$. Let $H^{\prime}=m H=H_{\alpha^{\prime}}$. We claim that H^{\prime} cannot be bad (with respect to its fixed point P^{\prime}). Indeed, this follows from the above observation because the axis of $H^{\prime} H^{-1}$ does not contain P. Thus, when H is bad, we can find v, w satisfying the above conditions with respect to H^{\prime}. For simplicity, we keep writing H, α rather than $H^{\prime}, \alpha^{\prime}$.

Now assume by way of contradiction that there are only K isogredience classes in $\mathcal{S}(\Phi)$. Given an integer p, consider the set W consisting of words in the letters v, w containing each letter exactly p times (we do not use v^{-1} or w^{-1}). We fix p such that W has more than $K s^{2} N_{0}$ elements, where s is the order of the stabilizer of the arc $I=[P, v P] \cap[P, w P]$ and N_{0} is defined in the statement of Proposition 3.2. We will consider the automorphisms $i_{\sigma} \circ \alpha$, for $\sigma \in W$, and the corresponding homotheties σH.

Consider $\sigma=u_{1} \ldots u_{2 p} \in W$, with each u_{i} equal to v or w. The elements v, w were chosen in such a way that the points

$$
P, u_{1} P, u_{1} u_{2} P, \ldots, u_{1} \ldots u_{2 p} P, u_{1} \ldots u_{2 p} H P=\sigma H P
$$

all lie in this order on the segment $[P, \sigma H P]$ (with the last two points possibly equal). Since P belongs to the axis of both v and w, we find that, for any $\sigma \in W$, the length of $[P, \sigma H P]$ equals

$$
L=p \ell(v)+p \ell(w)+d(P, H P)
$$

independently of σ. We also observe that, if $\sigma, \tau \in W$, then $[P, \sigma H P] \cap[P, \tau H P]$ contains the segment $I=[P, v P] \cap[P, w P]$.

Furthermore the intersection $[P, \sigma H P] \cap\left[\sigma H P,(\sigma H)^{2} P\right]$ consists only of $\sigma H P$: this follows from $P \in\left[u_{2 p}^{-1} P, H u_{1} P\right]$ if $H P=P$, from $P \in\left[H^{-1} P, u_{1} P\right]$ if $H P \neq P$. This implies that [$P, \sigma H P]$ is contained in an eigenray ρ_{σ} of the homothety σH. Let Q_{σ} denote the fixed point of σH in the completion \bar{T} (the origin of ρ_{σ}).

Now we remark that $[P, \sigma H P]$ is the only fundamental domain of length L for the action of σH on its eigenray ρ_{σ}. In particular, $d\left(Q_{\sigma}, P\right)=\frac{L}{\lambda-1}$ is independent of $\sigma \in W$.

Suppose for a moment that for every $\sigma \in W$ the map σH has only one eigenray (this happens in particular if $Q_{\sigma} \in \bar{T} \backslash T$). If i_{c} conjugates $i_{\sigma} \circ \alpha$ and $i_{\tau} \circ \alpha$ (with $\sigma, \tau \in W$ and $c \in G$), then c conjugates σH and τH. Therefore c sends ρ_{σ} onto ρ_{τ}, and the fundamental domain $[P, \sigma H P]$ onto $[P, \tau H P]$. Since these segments both contain I, we find $c \in \operatorname{Stab} I$. This contradicts the choice of p in this special case, since we obtain $|W| / s$ distinct isogredience classes in $\mathcal{S}(\Phi)$.

In general, if i_{c} conjugates $i_{\sigma} \circ \alpha$ and $i_{\tau} \circ \alpha$, we can only say that c sends Q_{σ} to Q_{τ}. Since $|W|>K s^{2} N_{0}$, we can find distinct elements $\sigma, \tau(1), \ldots, \tau\left(s^{2}+1\right)$ in W such that some $i_{c(j)}$ conjugates $i_{\sigma} \circ \alpha$ and $i_{\tau(j)} \circ \alpha$, and some element $h(j) \in \operatorname{Stab} Q_{\tau(j)}$ sends an initial segment of the $[\tau(j) H]$-eigenray $c(j) \rho_{\sigma}$ onto an initial segment of $\rho_{\tau(j)}$.

We have pointed out earlier that $h(j)$ sends the whole eigenray $c(j) \rho_{\sigma}$ onto $\rho_{\tau(j)}$. Therefore $h(j) c(j) \in \operatorname{Stab} I$. Thus there are at least $s+1$ values of j for which the maps $\tau(j) H$ have a common eigenray containing I. This is a contradiction because at most s elements of G can have the same action on I. This completes the proof of Proposition 3.2.

- We also need:

PROPOSITION 3.3. $-\mathcal{S}(\Phi)$ is infinite if G is hyperbolic, non-elementary, and Φ has finite order in Out G.

Proof. - Let J be the subgroup of Aut G consisting of all automorphisms whose image in Out G is a power of Φ. The exact sequence $\{1\} \rightarrow K \rightarrow J \rightarrow\langle\Phi\rangle \rightarrow\{1\}$, with $K=G /$ Center and $\langle\Phi\rangle$ finite, shows that J is hyperbolic, non-elementary. The set of automorphisms $\alpha \in \Phi$ is a coset of $J \bmod K$. If $\alpha, \beta \in \Phi$ are isogredient, they are conjugate in J. The proof of Proposition 3.3 is therefore concluded by applying the following fact, due to T. Delzant.

Lemma 3.4. - Let J be a non-elementary hyperbolic group. Let K be a normal subgroup with abelian quotient. Every coset of J mod K contains infinitely many conjugacy classes.

Proof. - Fix u in the coset C under consideration. Suppose for a moment that we can find $c, d \in K$, generating a free group of rank 2 , such that $u c^{\infty} \neq c^{-\infty}$ and $u d^{\infty} \neq d^{-\infty}$ (recall that we denote $g^{ \pm \infty}=\lim _{n \rightarrow+\infty} g^{ \pm n}$ for g of infinite order). Consider $x_{k}=c^{k} u c^{k}$ and $y_{k}=d^{k} u d^{k}$. For k large, the above inequalities imply that these two elements have infinite order, and do not generate a virtually cyclic group because $x_{k}^{ \pm \infty}$ (respectively $y_{k}^{ \pm \infty}$) is close to $c^{ \pm \infty}$ (respectively $\left.d^{ \pm \infty}\right)$. Fix k, and consider the elements $z_{n}=x_{k}^{n+1} y_{k}^{-n}$. They belong to the coset C, because J / K is abelian, and their stable norm goes to infinity with n. Therefore C contains infinitely many conjugacy classes.

Let us now construct c, d as above. Choose $a, b \in K$ generating a free group of rank 2 . We first explain how to get c. There is a problem only if $u a^{\infty}=a^{-\infty}$ and $u b^{\infty}=b^{-\infty}$. In that case
there exist integers p, q with $u a^{p} u^{-1}=a^{-p}$ and $u b^{q} u^{-1}=b^{-q}$. We take $c=a^{p} b^{q}$, noting that $u c u^{-1}=a^{-p} b^{-q}$ is different from $c^{-1}=b^{-q} a^{-p}$.

Once we have c, we choose $c^{\prime} \in K$ with $\left\langle c, c^{\prime}\right\rangle$ free of rank 2, and we obtain d by applying the preceding argument using c^{\prime} and $c c^{\prime}$ instead of a and b. The group $\langle c, d\rangle$ is free of rank 2 because d is a positive word in c^{\prime} and $c c^{\prime}$.

Remark. - As pointed out by Delzant, similar arguments show that $\mathcal{S}(\Phi)$ is infinite when Φ has infinite order but is hyperbolic in the sense of [1] (because J is hyperbolic, see [1]).

We can now prove:
THEOREM 3.5. - For every $\Phi \in$ Out G, with G a non-elementary hyperbolic group, the set $\mathcal{S}(\Phi)$ is infinite.

Proof. - By Proposition 3.3, we may assume that Φ has infinite order. By Paulin's theorem [20], it preserves some \mathbf{R}-tree T with a nontrivial minimal small action of G (recall that an action of G is small if all arc stabilizers are virtually cyclic; the action of G on T is always irreducible).

If $\lambda=1$, we use Proposition 3.1. If $\lambda>1$, we apply Proposition 3.2. The existence of N_{0} follows from work of Bestvina and Feighn [2] (alternatively, one could for G torsion-free use ad hoc trees as in [15]). Finiteness of arc stabilizers is stated as the next lemma.

LEMMA 3.6. - Suppose $\ell \circ \Phi=\lambda \ell$, where ℓ is the length function of a nontrivial small action of a hyperbolic group G on an \mathbf{R}-tree T. If $\lambda>1$, then T has finite arc stabilizers.

Proof. - This is proved in [9, Lemma 2.8] when G is free. We sketch the proof of the general case. We may assume that the action is minimal. Let $c \subset T$ be an arc with infinite stabilizer S. Let p be the index of S in the maximal virtually cyclic subgroup \bar{S} that contains it. Fix $\alpha \in \Phi$, and denote by H the associated homothety of T.

Since there is a finite union of arcs whose union meets every orbit, we can find, for k large, disjoint subarcs c_{0}, \ldots, c_{p} of $H^{k}(c)$ such that $c_{i}=v_{i} c_{0}$ for some $v_{i} \in G$. For each i, the stabilizer of c_{i} lies between $\alpha^{k}(S)=\operatorname{Stab} H^{k}(c)$ and $\alpha^{k}(\bar{S})$. From $\operatorname{Stab} c_{i}=v_{i} \operatorname{Stab} c_{0} v_{i}^{-1}$ we get $\alpha^{k}(\bar{S})=v_{i} \alpha^{k}(\bar{S}) v_{i}^{-1}$, hence $v_{i} \in \alpha^{k}(\bar{S})$. This is a contradiction since $1, v_{1}, \ldots, v_{p}$ all lie in different cosets of $\alpha^{k}(\bar{S})$ modulo $\alpha^{k}(S)$.

If G is a free group F_{n}, we also prove:
PROPOSITION 3.7. - There exists a number C_{n} such that, for any $\Phi \in \mathrm{Out} F_{n}$ and any integer $k \geqslant 2$, the natural map $\mathcal{S}(\Phi) \rightarrow \mathcal{S}\left(\Phi^{k}\right)$ is at most C_{n}-to-one.

Proof. - Let $\alpha_{i}(1 \leqslant i \leqslant N)$ be pairwise non-isogredient automorphisms in Φ having isogredient k th powers. We want to bound N in terms of n only. We may assume that α_{i}^{k} is a fixed automorphism β.

Let T be an \mathbf{R}-tree with trivial arc stabilizers preserved by Φ (see [9, Theorem 2.1]), and H_{i} the homothety associated to α_{i}. The H_{i} 's all have the same k th power H_{β}. For $i \neq j$, we have $H_{i}=g_{i j} H_{j}$ for some nontrivial $g_{i j} \in F_{n}$. Note that H_{i} and H_{j} cannot coincide on more than one point since F_{n} acts on T with trivial arc stabilizers.

First suppose $\lambda>1$. Then H_{β} and all maps H_{i} fix the same point $Q \in \bar{T}$. The stabilizer $\operatorname{Stab} Q \subset F_{n}$ is α_{i}-invariant and has rank $\leq n$ by [10] (see [9]).

If $\operatorname{Stab} Q$ is trivial (in particular if $Q \in \bar{T} \backslash T$), then $g_{i j}=1$ and $\alpha_{i}=\alpha_{j}$.
If $\operatorname{Stab} Q$ has rank $\geqslant 2$, we use induction on n since the restrictions of the α_{i} 's to $\operatorname{Stab} Q$ are non-isogredient automorphisms representing the same outer automorphism [9, Lemma 5.1].

If $\operatorname{Stab} Q$ is cyclic, generated by some u, we note that $g_{i j}$ is a power of u and $\alpha_{i}(u)$ is independent of i. If $\alpha_{i}(u)=u$, then H_{i} commutes with u and $H_{i}^{k}=H_{j}^{k}$ implies $g_{i j}=1$. If
$\alpha_{i}(u)=u^{-1}$, we write $u^{2 p}=u^{p} \alpha_{i}\left(u^{p}\right)^{-1}$, showing that α_{i} is isogredient to α_{j} whenever $g_{i j}$ is an even power of u.

Now suppose $\lambda=1$. If H_{β} has no fixed point, then $N=1$ since all H_{i} 's coincide on the axis of H_{β}. Assume therefore that H_{β} has fixed points. If all maps H_{i} have a common fixed point Q, we can argue as above. We complete the proof by showing how to reduce to this situation.

Let Q_{i} be a fixed point of H_{i}, and e_{i} some edge containing Q_{i} and fixed by H_{β}. The action of F_{n} on pairs $\left(Q_{i}, e_{i}\right)$ has at most $6 n-6$ orbits (twice the number of edges of the quotient graph T / F_{n}). After possibly dividing N by $6 n-6$ we may assume there is only one orbit. Note that the action on T of the element $c_{i j} \in F_{n}$ sending $\left(Q_{i}, e_{i}\right)$ to $\left(Q_{j}, e_{j}\right)$ commutes with H_{β} since e_{i} and e_{j} are both fixed by H_{β}. This implies that β fixes $c_{i j}$, and we can change α_{i} within its isogredience class so as to make all points Q_{i} the same, while retaining the property $\alpha_{i}^{k}=\beta$.

Acknowledgements

We thank T. Delzant and F. Paulin for helpful comments about Proposition 0.4, and Delzant for Lemma 3.4.

REFERENCES

[1] Bestvina M., Feighn M., A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85-101.
[2] Bestvina M., Feighn M., Bounding the complexity of group actions on real trees, unpublished manuscript.
[3] Bestvina M., Feighn M., Handel M., Solvable subgroups of $\operatorname{Out}\left(F_{n}\right)$ are virtually abelian, Preprint.
[4] Cohen M.M., Lustig M., On the dynamics and the fixed subgroup of a free group automorphism, Invent. Math. 196 (1989) 613-638.
[5] Coornaert M., Delzant T., Papadopoulos A., Géométrie et Théorie des Groupes, Lecture Notes, Vol. 1441, Springer, 1990.
[6] Culler M., Morgan J.W., Group actions on R-trees, Proc. London Math. Soc. 55 (1987) 571-604.
[7] Curtillet J.-C., Geodäten auf flachen Flächen und eine Zetafunktion für Automorphismen von freien Gruppen, Ph.D. Thesis, Bochum, 1997.
[8] Dicks W., Llibre J., Orientation-preserving self-homeomorphisms of the surface of genus two have points of period at most two, Proc. Amer. Math. Soc. 124 (1996) 1583-1591.
[9] Gaboriau D., Jaeger A., Levitt G., Lustig M., An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425-452.
[10] Gaboriau D., Levitt G., The rank of actions on R-trees, Ann. Sci. ENS 28 (1995) 549-570.
[11] Ghys E., de la Harpe P. (Eds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhäuser, 1990.
[12] Gromov M., Hyperbolic groups, in: Gersten S.M. (Ed.), Essays in Group Theory, MSRI Publ., Vol. 8, Springer, 1987, pp. 75-263.
[13] Jäger A., Lustig M., Free group automorphisms with many fixed points at infinity, Math. Z. (to appear).
[14] Levitt G., Lustig M., Periodic ends, growth rates, Hölder dynamics for automorphisms of free groups, Comment. Math. Helv. (to appear) (available from http://picard.ups-tlse.fr/~levitt/).
[15] Levitt G., Lustig M., Dynamics of automorphisms of free groups and hyperbolic groups, Preprint (available from http://picard.ups-tlse.fr/~levitt/).
[16] Lustig M., Automorphisms, train tracks and non-simplicial R-tree actions, Comm. in Alg. (to appear).
[17] Morgan J.W., Shalen P.B., Valuations, trees, and degenerations of hyperbolic structures, I, Ann. Math. 120 (1984) 401-476.

```
4e SÉRIE - TOME 33-2000-N N 4
```

[18] Nielsen J., Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189-358; English transl. in: Collected Mathematical Papers, Birkhäuser, 1986.
[19] Paulin F., The Gromov topology on R-trees, Topology Appl. 32 (1989) 197-221.
[20] Paulin F., Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. ENS 30 (1997) 147-167.
[21] Scott P., WALl T., Topological methods in group theory, in: Wall T. (Ed.), Homological Group Theory, LMS Lect. Notes, Vol. 36, Camb. Univ. Press, 1979, pp. 137-203.
[22] Shalen P.B., Dendrology of groups: an introduction, in: Gersten S.M. (Ed.), Essays in Group Theory, MSRI Publ., Vol. 8, Springer, 1987, pp. 265-319.
[23] Short H. ET AL., Notes on word hyperbolic groups, in: Ghys E., Haefliger A., Verjovsky A. (Eds.), Group Theory from a Geometrical Viewpoint, World Scientific, 1991, pp. 3-63.
(Manuscript received June 28, 1999.)

Gilbert LEVITT

Laboratoire Émile-Picard, UMR CNRS 5580,
Université Paul-Sabatier,
31062 Toulouse cedex 4, France
E-mail: levitt@picard.ups-tlse.fr

Martin LUSTIG
Laboratoire de mathématiques fondamentales et appliquées,
Université d'Aix-Marseille-III,
13397 Marseille cedex 20, France
E-mail: Martin.Lustig@math.u-3mrs.fr

