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NULL FORM ESTIMATES FOR (1/2,1/2) SYMBOLS AND
LOCAL EXISTENCE FOR A QUASILINEAR

DIRICHLET-WAVE EQUATION

BY HART F. SMITH AND CHRISTOPHER D. SOGGE

ABSTRACT. - We establish certain null form estimates of Klainerman-Machedon for parametrices of
variable coefficient wave equations for the convex obstacle problem, and for wave equations with metrics
of bounded curvature. These are then used to prove a local existence theorem for nonlinear Dirichlet-wave
equations outside of convex obstacles. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Nous etablissons certaines estimees de formes compatibles a la Klainerman-Machedon pour
des parametrix d5 equations d'ondes a coefficients variables dans Ie cas d'un obstacle convexe ou d'une
metrique a courbure bomee. Ces estimees sont utilisees pour demontrer un theoreme d'existence locale
pour des equations d'ondes non lineaires avec conditions de Dirichlet en dehors d'obstacles convexes.
© 2000 Editions scientifiques et medicales Elsevier SAS

1. Introduction

The purpose of this paper is to establish the following null form estimate

(1.1) \Q{dU,dv) ||^1^1+3) ^^(||^0||^2(R3)+||^1 ||^1(K3)) (||'yo||^2(^3)+||^1 ||^1(]R3)),

for solutions u and v to the Cauchy problem for certain wave equations

{Q^u(t,x)=^u(t,x\
\u(Q,x) =uo(x), 9tu(0,x) =u^{x).

The null form Q may be of any one of the following forms
3

Qo(du,dv)=9tu(t,x)9tv{t,x)- ̂  g^j(x)9^u(t,x)9^v(t,x),
^=i

Qao(du, dv) = 9x^u(t, x)9^^v(t, x) - 9^^u(t, x)9^v(t, x),

where Xa and x^ may represent t or any Xi. Here ̂ ^j^ ̂ {x) d^ d^ denotes the cometric
associated with Ag.

For the Euclidean metric on M3, the estimate (1.1) was established globally by Klainerman
and Machedon [2]. For smooth variable coefficient hyperbolic operators, local versions of (1.1)
were established by the second author in [11].
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/00/04/© 2000 Editions scientifiques et
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486 H.R SMITH AND C.D. SOGGE

This paper is concerned with two new cases. The first is the case that the wave equation is
satisfied by u and v for x belonging to an open subset Q C M3 which has smooth boundary 9Q,
such that QQ C M3 is strictly geodesically concave with respect to g. We then assume that u and
v satisfy Dirichlet conditions on <9J7,

u(t,x)\xean==0, v(t,x)\^QQ=Q.

In this case we prove (1.1) for t in a small time interval and x in the intersection of a small ball
with Q. We point out that when J7 is the complement of a strictly convex obstacle in R3, with g
the Euclidean metric, a partition of unity argument, together with the global Euclidean estimates
of [2], implies (1.1) globally in x, for t in any bounded interval.

The second case that our results apply to is where g is a metric on a ball in M3, such that
the components of the Riemann curvature tensor of g are bounded measurable functions, and
such that the coordinate functions xi are harmonic with respect to Ag. In such coordinates the
metric coefficients g^- have second derivatives belonging to BMO(M3), and the geodesic flow is
uniquely determined and bilipschitz. The solution operator for the wave equation in this situation
is studied in [8,9]. It can be written as the composition of an operator of Fourier integral type
described below, with an operator which preserves the Sobolev spaces H3 (M3), j == 1,2. It then
suffices to establish mapping properties for the Fourier integral part, which is the purpose of this
paper. The results of this paper will then imply that (1.1) holds for such metrics provided that the
norm is taken over a set of unit size.

In both of the above cases, the problem is reduced to establishing the following estimate

(1.2) 110(^/^^)11^^3^011/11^1^3)11^11^^3),

for an appropriate parametrix T of order 0.
For the obstacle problem, the main part of the parametrix takes the form

Tf^x)=Y^ (^± ̂ V(^o/(o^± J

where the phases ̂ ± (t, x, $) satisfy the eikonal equation

1^(^01 =±\\d^±^x^)\\^

(^(0^) =M,

and the symbols, which vanish for \^\ ̂  1, satisfy the following modified S^/g ^ / g estimates

(1.4) \^O^Na^a±^x^)\^CN^{l+\^~2M.

There is also a "diffractive" term, the estimation of which requires a modification of the argument
for the main term, as will be discussed in Section 4.

In the case of the wave equation for metrics of bounded curvature tensor, the parametrix is
more complicated. It takes the form

___ 00 />

(i.5) w^-EE / ̂ ^^^^^w^
± A;=17
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NULL FORM ESTIMATES FOR EXOTIC SYMBOLS 487

where /(O = E^=o A(0, and for k ̂  1 the support of 7fc(0 lies in 2^-1 <; |^| < 2/c+l.
The phases (^, each of which is homogeneous of degree 1 in ^, satisfy the eikonal

equation (1.3) for a corresponding family of metrics g/e, where g^ is a sequence of smooth
metrics approximating the singular metric g. This sequence of metrics satisfies the estimates

f C, \a\ ̂  1,
(1.6) \9^k(x)\<^{ Ck, |a|=2,

^o/c(|a|-2)/2 l^l^

It also satisfies

(1.7)
|g^)-g(n0| ^C2-^

|V,g^)-V,gCr)| ^€2-^.

The sequence of phases satisfies corresponding estimates

(1.8) SUp|9^^(^0| ^ {^,( | , |-2)/2 a ̂ '
|^|=1 ^5^ 5 UL ^ 2J-

It also satisfies, for k^ j,

(1.9)
sup (^ ̂ 0-(^(^ 0| ^G2-^
l^l-i

sup|V^^(^^0-V^^(^^0| ^G2-^2.
l^l-i

Finally, the symbols satisfy the following modified S^,^ ̂  estimates,

(1.10) ^O^Q^a^^x^^^CN^^-^.

One of the main motivations for establishing the estimate (1.1) is that it gives local existence
results for nonlinear wave equations with null form nonlinearities. Consider, for example, an N
component system of the form

( 9^u— AgZA = F(u^du\ x G i7,
(1.11) ' u{0,-)=uo, 9tu(0,')=u^

u{t,-)\Q^=0,

where Q has geodesically concave boundary as discussed above. We assume that F(u,du) =
(F1^, du),..., F ,̂ du)\ and

^(^^)=^a^(^.r)r^(^^(^\^),
3,k

with B^ ^ being a null form associated with g, a}^ € C°°(R x J7), and F^ e C00^).
If u is a solution of (1.11), then the vanishing of u and QfU on 9J? imposes the following

compatibility conditions on the data,

(1.12) uo(x)=u^{x)=0, if x (E QQ.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



488 H.E SMITH AND C.D. SOGGE

Conversely, under the hypotheses (1.12) on the data, we shall be able to obtain the following
local existence result, generalizing results from [2] and [11].

THEOREM 1.1. - Suppose that uj E H2~3 {Q\ j = 0,1, have compact support and satisfy
(1.12). Then there is a T^ > 0 and a unique solution u C ̂ ([0,7*] x Q) of (1.11) verifying

||Q(^Y^)||^([0,T.]x^)<00' 1<^^.

We will return to this theorem in Section 4, in which we also discuss the reduction of the
estimate (1.1) for the obstacle problem to that of (1.2), and handle the diffractive term. The main
work of this paper, which occupies Sections 2 and 3, is to establish estimate (1.2) for parametrices
of the above types. Since the main part of the parametrix associated with the convex obstacle
problem is a special case of the type (1.5) that arises from bounded curvature metrics, we shall
consider parametrices of the type (1.5) in Sections 2 and 3.

2. Further reductions

We begin by reducing the proof of estimate (1.2) to consideration of the case that /(^)
is supported in a dyadic annulus at scale 2^, and ^(^) is supported in a ball of radius c2k,
where one may choose c arbitrarily small but fixed. To do this, we fix f3 G C^^l/l, 2)) so that
E°°oo ̂ (2J5) = 1,5 > 0. We then set

fk^^W^m
so that f=Y,fk and supp fk C {^: 2k~l < |^| ^ 2fc+l}. We then write

fj= Y^ fk, 9k= ^ 9j,
k<j-\-N J^k-N

where N is a fixed number that is to be specified later. Recalling that the symbol of T vanishes
for small |^|, we have the following identity,

00 00

Q(dTf,dTg) = ̂  Q{dTf^ dTg,) + ̂  Q(dTf^ dTgk) =1+11.
.7=0 k=0

We consider I first. By the Strichartz estimates, which hold for the parametrix T by [10] and [7],
[8], we may bound

00 00

^||0(dT/,,dr^O||^^3^G^||/,||^3/2(K3)l|^1|^3/^
.7=0 t 1 x j=0

/ oo \ 1/2

<G ^2-^||/,||^^3) N^(R3)

\j=o /
^C\\f\\H^(R^\\g\\H2(^3y

It thus remains to estimate I I . To estimate its L2 norm, we first observe that, for N large
enough, the terms are essentially mutually orthogonal over k. This follows by a simple integration

4e SERIE - TOME 33 - 2000 - N° 4



NULL FORM ESTIMATES FOR EXOTIC SYMBOLS 489

by parts argument, which yields

I ( Q(dTf^ dTgk)Q{dTfk', dTg^ dt dx ^02-^-^111^11211^11211^11211^112,
I v

provided \k — k'\ ̂ 3. Consequently,

\\^Q{dTf^dTg,) ^ C^ \Q{dTf^dTg^\ ̂ ^ +C||/||^ | g\\^y
I I k ^O^3) k '

Thus, to establish (1.2), it suffices to establish the following estimate, uniformly over k:

\\Q(dTfk,dTgk) || ̂ 2^1+3^ < ^11 All ̂ 1(^3)11^11^2^3).

Finally, by the first estimate in (1.7), another application of the Strichartz estimates shows that
we may replace the metric g in the form QQ by the metric g k '

By writing T = T^ + T-, there are essentially two terms to consider: Q(dT^ f, dT^g), and
Q(dT^f,dT~g). In what follows we consider the term Q^dT-^f.dT^g)', the arguments hold
with minor modification for the latter term. To simplify notation we use (^(t,a;,^) to denote
^(^0.

In the formula for the operator dT^~, the terms where d hits the symbol a(t, x, ̂ ) are easily
handled by the Strichartz and energy estimates; thus it suffices to restrict attention to the term
where d falls on the phase. Let

qkj (t, x, ̂  r]) = Q (d^pk {t, x, ̂ /|$|), d^ (t, x, r]/\r]\}).

The next reduction is to introduce polar coordinates for the 77 variable, 77 = pcj, where p G R^
and uj G S'2, the unit two-sphere. We now fix k and introduce the operator T^ = T^ given by

T^(f^g) = ^ /e^^^+^^^a^t^^Oa,^^^)^-^^,^
j ^ k - N "

where / G L2(]R3) and g e L2(]R). A simple argument (see, e.g. [11]), now reduces the proof of
(1.2) to showing that, for g^ e L^R x 52), the following holds

(2.1) | [^(f^g^duj ^011 /11^^3 )11^11^^x52) ,
I -' L2{dxdt)

where the Fourier transforms of / and g^ are restricted as above.
The next step, following [I], is to decompose phase space into regions on which the null form

symbol q^ is essentially constant. Since the phases ̂  depend on the scale j, this cannot be
expressed simply in terms of the angle of $ to 77. To proceed, we set

6{l)=21-.

and if f3 is as above, we write

q^(t,x,^r])=f3{8(l)~1 x angle [d^k(t,x^),d^j (t,x,r]}\)qkj{t, X,^T]}.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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We then have

H.E SMITH AND C.D. SOGGE

qkj^x^^)=q^{t,x,^rj)^^q^^x^^),
1=1

where q^ (t, x, ̂  77) is supported in the region on which the angle is bounded by 2 • 2-A;/4.
Using this decomposition, we write T^ = ̂  T^, where (recall that k is fixed)

T^(f^)

^ = E /
A^~ t. AT u

(2.2) =
j^k-N'

,iipk (t,x,^) +ipifij (t,x,m)^^'ak (t, x, ̂ )aj (t, x, iM)q[j (t,x^, uj)fk ̂ )gj {p) d^ dp.

By (1.8), and (1.6) in the case of the null form Qo (recall that the metric g is replaced by g^),
the following estimates are valid for j ̂  k:

(2.3)
l̂ )^^-^,^)! ̂ CN^6(l)2^-^\

^O^Q^Q^q^x^^-q^x,^)^ ^ C^2-hN/51-H).

For the next step, if I is fixed, choose unit vectors ̂  € S2 so that the balls B(y, 6(1)) cover
6'2 with bounded overlap (independent of 6(1)). We then fix an associated partition of unity

i=E^)' ^o
^

consisting of (^(R^O) functions that are homogeneous of degree zero, and which satisfy

supp ̂  n S2 C B{^, 26(1)), D^ ̂ (^) = 0(6{l)-^) if |^[ = 1.

If we then write

/(O=E^(O
^

we have the following

LEMMA 2.1. - For fixed N as above sufficiently large, the following holds for I ^ 0,

E/^c^)^
,, J T^ ( r l ' r ' r l+ \L•2{dxdt)

1 | 2

^^E /T^^^)^ L2(R3) 11^0; \\L2^s2y+c\\f\\
L2{dxdt)

Proof.-We shall show that if G is a large constant and [^ - ̂ | ̂  CWZ), then for any
M>0,

(2.4) y^^(^^)^^)^^/(/^^Q(^^^&^GM2-fcM||^||2||^^

This follows by considering the operator (^^'a;)*^^'a'/. If

^ (t,^, ̂  ̂ )̂ ., (^ ̂ /, pV)/^ (^^, (^) ̂  o,
46 SERIE - TOME 33 - 2000 - N° 4



NULL FORM ESTIMATES FOR EXOTIC SYMBOLS 491

then the angle of V^(^,0 + pV^j(t,x,uj) to V^/c^^') + //V^(^,cc/) is
bounded below by 6(1), provided |̂  - ̂ ' > C6(l) for some large C, |$|J^ ^ 2^, and
p, // ^ ezk-N with A^ sufficiently large. On account of this,

(V,(^ (^ x, 0 + pV,^ (t, x^)) - (V,(^ (t, ̂ ') + p'V^ (t, a;, a/))| ̂  c2^(Z) ̂  c23/c/4

An easy integration by parts in x using (1.10) and the first part of (2.3) yields (2.4). D

LEMMA 2.2.-

T^{f^g^du <^C\\f^\\L2(^3)\\g^\\L2(Rxs2y
L2(dxdt)

Proof. - For fixed j and fixed (t, x), the function T°^{f^, gj^)(t, x) vanishes unless uj is in a
set of volume <5(0)2 = 2-A;/2. Thus,

| fT^{f^g^dw
I v L2{dxdt)

^V^9-fe/4 \rr0^(f „. ^1
^2^ I ^^^^^IlL2^^^)'

Because of (2.3), the operator

(2.5) Af(x) = /'e^^^afc^^^)^.^^^^)/^)^

has L2 -> L2 norm, for each fixed t, less than C6(0) = C^-^/4, with C independent of t.
For the obstacle problem, where, for all k, gk equal a fixed smooth metric g , this just follows
from standard L2 estimates for Fourier integral operators. The general case where there is a
^-dependence also follows from standard I/2 estimates along with (1.6). (See [8,9].)

The aforementioned bounds for Af immediately yield

\\T°^(f^g^)\\^^ <i ̂ -^H^ll^^)!!^!!^^) ̂  C72-/C/42^2||^||^(K3)||^||L.(R).

The lemma now follows since

^^-^II^-JI^^) ̂  IMÎ (M). n
J^k

3. Null form estimates

In this section, we show that, for each fixed k, fi, and I > 1, the following holds:

^CT^^Ilog^l^ll^ll^^^ll^H^^x^),(3.1) nl.ujT^(f^g^d^
L2(dxdt)

with constant C independent of A", I , and /^. Together with Lemmas 2.1 and 2.2, this implies
estimate (2.1), after summing over I , which in turn implies the desired estimate (1.2).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



492 H.F. SMITH AND C.D. SOGGE

We establish (3.1) by splitting the operator T'-" into two pieces. Let

(3.2)

T^(f,g) = ^ r^(/,<;,),
{j: 2J>2 f c/2(5(^)-l}

^(/,5) = E Ti"^)-
{j: 2^2^/26(0-1}

For the operator T^, note that 2-^/2 ^ <^) for the indices arising, since 2k/2 ̂  6(l)-1.
Hence, by the second part of (1.9) and the definition of ̂ ., the symbol of T^ vanishes unless

angle {d^k(t,x^),d^k(t,x^}} <^C6(l}.

Since the map ^ -^ d^k(t,x^)/\d^k(t,x^)\ is a G1 diffeomorphism of the unit sphere,
with uniform bounds over t,x, and k, for t small, it follows that the integrand vanishes unless
[^ - u}\ ̂  CT(7). Consequently, by the Schwarz inequality

/ ^l^^(^^^)^
L2{dxdt)

^^)||^(/,^)||^^,^.

For the piece T^, the estimate (3.1) is thus implied by the following

THEOREM 3.1. - The following holds, with C independent of I , uj, k,

II^^^II^^.^CTW-^llog^)!172!!/!!^^)!^!!^^.
We postpone the proof of Theorem 3.1, and first establish the somewhat easier

THEOREM 3.2. - The following holds, with C independent of I, p., k,

j ^^{f^^^dw
L2(dxdt)

<G^)|log^)|||^||^^)||^||^^,^).

Proof. - We split the sum over j in (3.2) into three distinct cases: 23 < 6(l)~2 6(l)~2 < 23 <2k/2^nd2k/2<2^6{l)-22k/2. ^ ^ ' U ^ ^

Case 1: ̂  ^ 6{l)-2. In this case the index j runs over 0(\\og6(l)\) values. Also, for fixed
j and fixed (t, x), the integrand vanishes unless uj lies in a set in S2 of area 6(l)2. Hence, by the
Schwarz inequality, it suffices to establish the following estimate, uniformly in j and uj\ '

(3.3) ll^^^)!!^^^^^!!/!!^^)^,!!^^.

We now write /(^ == E^(0 where ̂  is supported in a cone of angle 2-A;/2 about a unit
vector ̂ . The estimate (3.3) is a result of the following

(3.4) fT^(f^g,)T^(f^^,)dtdx

<G(l+2fc/2|r-^/l)-7vll/.||L2(M3)||^|lL2(M3)||^•||i.„.
The (t, x) integrand in (3.4) is dominated by

46 SERIE - TOME 33 - 2000 - N° 4



NULL FORM ESTIMATES FOR EXOTIC SYMBOLS 493

(3.5) 6(l)2 /'e^^^-^^^a^^a;^,^)/,^)^^)^^

j'^(t^)a,(t,x,fw)g,(p)dp

^,^^«^S5S ) J V \ ^ ) J V '

|2

where, by (1.10) and (2.3),

(3.6) Q^Q^^^^^'.^'r'^'^x^^1) ^c^^l-^D-^nW)

Since p ^ 6(l)~2 ^ 2fc/2, the operator rl~klclQ^ applied to the expression inside the absolute
value sign in (3.5) leads to an expression of the same form. Furthermore, on the ($, ̂ /) support
of the symbol in (3.5), the following holds,

<2-k/2a^^x^)-a^^x^/)\^c2k/2\^-^\.
Integration by parts in x now bounds the left-hand side of (3.4) by

6{l)2
j J ̂ (t,̂ )- ,̂̂ ') ,̂ ̂  x, e, OW/.' {0 ̂  <

(I+Z^I^-^'D
f gW, (t,x,^)^ ̂  ̂  p^ ̂  ̂  ^ ̂

where av , v ' ( t , x , ^ , ^ ' ) is a symbol satisfying the same estimates (3.6). Next, following [6], we
replace the phase ifk(t,x,^) by (V^yfe^a'',^),^), modulo an error that is absorbed into the
symbol, and similarly for yfc(<, x, ̂ /). The left-hand side of (3.4) is thus bounded by

6{l)2

(3.7)
(1+2^1^-^1)^

where

and

><//:(V^(^^n)/:/(V^(^^r))^(^(^a;^))2^^

/:(^)=22;cy l(l+2fc/2|^-^|+2fc|(^^-z)|)-4|/,(^ ̂

^*(5)=/( l+2J15-rl)-2|ft(r) d8^

hence

||/^||L2(dy) ^ C'II/^HL^RS), ||^||L2(ds) ^ C'||pj||L2(R).

The change of variables (t,x) —^ ((pj(t,x^)^\/^k(t^,^)) has Jacobian comparable to 6{l)2.
An application of the Schwarz inequality to (3.7) thus yields (3.4).

Case 2: 6(l)~2 < 23 ^ 2A;//2. Consider the operator T1^ obtained by replacing ̂ .^(t.x^.uj)
inEq. (2.2) by q^(t,x,^(j) - q^(t,x,^u;). The proof of the previous case, together with the
second set of estimates in (2.3), shows that for 23 ^ 2 k / 2 the following holds,

\lT^{f^g^duj
I"

^ C2 •7/2||/^||L2(R3)||^^||^2(]Kx5'2)•

\L2{dxdt)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



494 H.F. SMITH AND CD. SOGGE

Applying the Schwarz inequality overj such that 2-7 ^ 6(l)~2 yields the estimate of Theorem 3.2
for this case if T1^ is replaced by T1^. It thus remains to establish the same estimate for the
term

.»!,ci^s^(f^}
=^ei^t'x^ak(t,x,^q[^x^^)f^)d^ ̂  ( ̂ ^^a^p^g^dp.

\" / ^ "

The ^-integrand vanishes unless uj — <^| ^ 6(1), hence

S^(f^g^duj W(l)\\S^(f^\\^^."<l,CJ

\L'2{dxdt)

The proof of estimate (3.4) establishes the following bound,

y5^(/.,<?)5^(7^A(fa <C7(l+2fi/2^-^'l)-JVII/.ll^(R3)|^||^(R3)

x(s^p||Pff(•,^/)||^^)(sup||P/ff(•,y/)||^^),

where Pg is an operator of the form

^=E f^^^^^p^mp)^
3 J

written in the new coordinates

(s,y)= ((pk(t,x^),\/^k(t,x,^)),

and P ' g is the same form with y replaced by z/. Using (1.9) we may write Pg in the form

Pg(s^)=Y^ (^a^y,p)g,(p)dp,
3 J

where the new symbol satisfies

\9^a,^y^p)\ <C7(2^2^)-2)m2^^ m< 1.

A simple integration by parts establishes the following bound,

(3.8) j e^ pt}aj{s,y,p)gj{p)aj^s,y,pt)gj^p')dpdp'ds

^C7(l+^)22max^)/2)-l||^||^(K)l|^||L2(R).

Summing over j,jf such that 23 ^ ^(0~2,2^ ^ ^(0~2, yields the following,

s^p\\Pghw^C\\ogS(l)\\\g\\^^

which completes the proof for the second case.

4° SERIE - TOME 33 - 2000 - N° 4
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Case 3: 2fc/2 < 23 ^ 2/c/2(5(^)-l. There are 0(|log(^)|) terms j, so as in the first case it
suffices to establish the estimate (3.4) uniformly overj. Let

'^lr) = \Ty—^7T x (projection of V^^(t,^^) -V^^^.r,^) ontoV^^^)"1).ie-^
It follows from (1.8) that

|^M|^G^H.

Next note that, if q^(t,x^^)f^) is nonzero, then \^ - uj\ ̂  (7^(0. Also note that 2-J/2 ^
6(1). The following is thus seen to hold by (1.8),

|^^(t^),V,^(t^^)>|=[^^(t^),V,^(^rr^)-V^^

Since p6(l) < 2fc/2, it follows that for any N one may write

(2-fc/2^(^rc),V.))N(/le^^•^^a,(^^p^•^
\J /

as an expression of the same form as that in parentheses, but with a new symbol which satisfies
the following estimates

oa ^m~. ( A . n\\ < C 9l?IQ'l-m?ut,xop a3\i^x^P)\ ^^c^m^2

These estimates imply the following bound,

I L^(^-)a,(t^,pa;)^(p)dp <^Cg]{^x^)}.
I u

We next note that if /^(Q and J^> (^/) are nonzero, and \^ -^'\^C 2-/!;/2, then

^(t^),V,^(t,^0-V,^(t,.^^/)>^2fc|^-r|.

The proof of estimate (3.4) from the first case now carries over to the third case, where in
establishing the estimate (3.7) for the third case, one integrates by parts using

{{v{t,x)^^k^x^)-^^k^x^')}Y\v(t,x\V^.

Since we have handled all three cases, the proof of Theorem 3.2 is complete. D

The proof of Theorem 3.1 rests on the following two lemmas estimating the gradients of the
phase function.

LEMMA 1)3.-Let ^(t.x.t^x'^) = ̂ p(t,x^) - ̂ (t^x'^), where (p = (pk for some k.
Suppose that ̂  is a unit vector, and let 6 = angle (uj^ ^). If \^\ = 2k, then for some c > 0,

(3.9) 2fc/2|V^(^^^^^0|+|^.^^/^/,0|+2^(^^t/^/^)|

^c(2 fe/2 |V^(^^t /^ /^)|+2 fc/2^-^|),

for all j, k and 6 such that j ̂  k, and ^S > 2A;/2.
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Proof. - We have 2^ ^ 2^ ^ 2/c/26-l, so introducing the new variables

yAt,x)=Q^(t,x^\ ^=^/\^

the left-hand side of (3.9) is larger than

(3.10) 2'/2l2/-^l+2^-l(|^./-^|+|^^)-F(,/^/)|),

where F{t, y) is (p(t, x, uj} written in the coordinates (t, y). We begin by showing that the quantity
(3.10) is larger than

S^-2/|+^-^|).
To see this, note that the C1 distance of F(t, y) to (^ y} is of size 6, so that

F(t^y)-F(t\yf)=(^y-y/)^0{6\y-y/\).

Thus (3.10) dominates

2fc/2(l./-^|+^- l |F(^^)-F(t /^)|).

We will be done by establishing the following identity,

^^^-ll^^^^llg-g^^,^^),^^^/,))/!!^^ w62,
where g = gk. To see this, let x = x(t, y) denote x in the (t, y) coordinates. Then (^ d^(t, x, ̂ ))
is the backwards hamiltonian curve through (y, p.). Hamilton's equations thus yield

3

9tX, = - ̂  gmi(t,x)9^v(t,x,^/\\d^(t,x^)\\.
rn=l

Thus,

9tF(t,y)=9t^x^y)^)
3

=9t^(t,x,Lj)+^9^(p(t,x^)9^'Xi^^X.UJ^tXi

i=l

^ll^^^^llg-g^^^^),^^^/,))/!!^^^^)!!^.
To finish the proof of the lemma, let fj (t, y) denote 9^ ̂ (t,x, uj) in the (t, y) coordinates. Then
the C1 distance of fj to ̂  is comparable to 6, so that \Qtfj(t, y)\ ̂  6. Consequently,

^^^^.^^[^^[^^^-^(^^[^^(^-^l+^l^-^l). D
j=l

LEMMA 3.4. - Let ̂  x, ̂  ̂  = ̂  x, 0 - ̂  x, ̂ '\ where ^ = ̂  for some k. Suppose
that

uj — lei LJ —
^'̂  e [C-16,C6],
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that |^|, |^| € [(2k-\{2k^l], and that \p\, \p'\ C [0,2^]. Then for some c > 0, independent ofk, 6,

(3.11) |V^^^^^)+Vt,,^.r,p^p^)|^c(2^x angle (^ ^)+<52 |p-p'l).

Pw<9/ - Let w = Va^(t, x, ̂ ), w' = Va^(^ a;, <f), and ^ = Vx^(t, x, cj). Also let a = p - p ' .
The conditions of the statement imply that the angle of w or w' to IJL is comparable to 6.

By the eikonal equations, the left-hand side of (3.11) dominates

(3.12) |w — W' + 0^1 + I ||w|| — Hw'll + Q'l

where || • || denotes the norm in the metric g/c(^ x). We consider the case a ̂  0; the case a ̂  0
follows by symmetry upon exchanging ̂  and ^/. Also, by scaling a, we may assume that ||/^|| = 1.
The quantity (3.12) then dominates

|[w|| +a- HW+Q^H ^c<2~k([\\w\\ +a)2 - ||w+o^||2)

=c2~k\\w\\a
w

M
^ c^a.

We next observe that (3.12) dominates the following quantity (recall that ||^|| = 1)

(3.13) w
w

- l^-r\
w

Hw' -^ -
where r = H w ' 1 1 / H w l l e [c, c~1}. By making a linear transformation, we may replace the g norm
|| • || by the Euclidean norm | • |, and assume that

w w
a = (1,0,0), ;—- = (cos0,sm0,OY -—- = (\/1 — ^cos^, V 1 — ^sm^./z),

|w|- Iw'l /

where 0^ 7, z are small. The quantity (3.13) is then comparable to

2^(11 — cos0 — r(l — ^ ' l — z ^ c o s ^ ) + sm0 — r\/l — z^sm^ +|^|),

which in turn is comparable to

2 f e( | l -cos0-r(l -cos7)| + |sm(9-rsm7|

By the half angle formula, this equals

2 72k sm(9tan- -2rsin22 + sin (9 - 2r sin J-cos 2 + \z ) .
V I 2 2

Since cos(7/2) % 1, this in turn dominates

2 2

2 f c ( sin6>| tan- -tan^
\^ ^ z^

) > 02'° {6\e - 7| + \z\) ̂  c2kS x angler, ̂ ). a
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Proof of Theorem 3.1. - To complete the proof, we make a further decomposition

ml,UJ _ \ ^ ml,LJ

1 ~ Z^ ^S^'
l/,J',S,^

where

(3.14) ^^(^^^L^^^+^^^a^^,^^

The index z/ corresponds to a set of unit vectors ̂  evenly spaced by cc2~k^6(l)~l, for some
small c to be determined independent of k and 1. The index jf runs over the integers such that

<2k^2j^{2k/26(l)~l.

The indices z and s run over lattices such that

2 / c/2^eZ^ 2k/26(l)s^fL.

The symbol ̂ ,^(^ a;, ̂  p) is supported in the set where |$| e ̂ -^ 2fc+ l], p e [2^-1,2^'+1],
and where

——^ ^c2-/c/2^)-l, V^fc(^.z;^)-^|^2.2- /c/2, |t-5 ^2•2- fc/^(0- l.

The symbol furthermore satisfies the estimates

(3.15) K.^^^^)^^.,.^^^?)! ̂  CT(02-^+^^1-IQI).

A few remarks are in order here. First, as a result of (1.8) and (1.9), the function

^ipyj(t,x,uj)-ipipk{t,x,uj)

satisfies the symbol estimates (3.15), which allowed us to replace the phase (pj(t^x^) by
(pk(t,x,uj) in formula (3.14). Next, since 6(1) ̂  2-/i;/4,

2~j/2<i2~k/86(l)^6(l).

It follows from (1.9) and the definition of ̂  that the angle of V^/c (^ x-> ̂ ) to V^fc (t-i x^ ^) is
comparable to 6(1), hence that the angle of uj to ^ is comparable to 6(1). By making the number
c above small, it follows that the angle of uj to ̂  is comparable to 6(1).

We begin by showing that

(^e) ^pEK^^'M^^^r1-nl^LJ
L r ^ j ^ s ^ z V^ f^j^s' ,z'

s.z

This will follow from showing that

C\ \^l\ \\T1^ (rpl^ \*| | ^ CN6(l)v / II ^j,s, ̂ v^^^s'^'y 1 1 ^^,.,A ^./^^ i 1 ^ (l+2 f c/2 |z-z / |+2 f e/2^)|5-5 / | )7 v '
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To establish (3.17), we express T^^(T^^Y as an integral kernel of the form

K(t^t^x')

_ L^(^,0-^(^^^^0+^(^(^^)-^^^^^-))a^

Integration by parts in ^ and p, together with the estimates (3.15) and the support conditions,
shows that the kernel \K(t, x\ i ' , x ' ) \ is bounded by

[ ___________c^dY___________^
j (l+2fc/2|V^(^.^,t^a;^0|+|^^t/^/,0|+2^|^^^/,.^/^)|)N s p'

R.J

where ^ is as in Lemma 3.3. For each ^ in the domain of integration, the change of variables
(t^x) -^ (V^fc(^^0^/c(^^^)) has Jacobian comparable to ^(Z)2 ; consequently, by Schur's
Lemma and Lemma 3.3, for each fixed ^ and p the integrand is an operator on L^^dtdx) with
norm bounded by

CN^-3

(1 + 2A;/2|;^ - z'\ + 2k/t26(l)\s - sf\)N '

The volume of R^j is comparable to 2^+^(0 ~2, and the estimate (3.17) follows.
We next establish the following estimate

(3.18) sup^lfeJ^^.JI^^CT^-V^
J ' ' 3.v

This will follow from showing that

mo^ \\(r1^ Yr1^ \<————————CN6W~1________^.î  \\^^j,s,z) ^^j^s^} ^ (l+2- /c/2^(^)2|2^ -2^|+2 /C/2^(^)|^-^ /|)N

provided that \j — j'\ ̂  3. For \j — j'\ ̂  2, the estimate holds as if j = j\
of (3.19) follows from that fact that
provided that \j - j'\ ̂  3. For \j - j'\ ̂  2, the estimate holds as if j = j ' . That (3.18) is a result

^ 1+2-^6^-2^ ^ ̂ W
3

where the sum is over;?' such that I3 > 2k^26(l)~l.
To establish (3.19), we note that (T^, JT^.,,To establish (3.19), we note that (T1^ ^*T1^, ^ ^ has an integral kernel of the form

K^,p^',p')

^ L^^^^^-^^^^.S^+^^t^^-^^t^.p'^^^^t^^^)^^,^^^,^,^,^)^^.

Integration by parts in (t, a") yields the following bound,

K(^ n-i=' ^ < ( _______________CN6[l?K^p-^',p') < j (i+a-^iv^^^^o+v^^^,^,^)!)^^^'^^-^ ^ j (1+2-^|V^<?(^
Rs,z
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where ^ is as in Lemma 3.4, and Rs,z is a set of volume 2~'2k6(l)~l. The change of variables
(^P) -^ V^((/^(^^0 + ^pk(t,x,puj)) has, for each fixed (^), Jacobian factor comparable
to 8(l)2. The estimate (3.19) now follows from Schur's Lemma and Lemma 3.4.

To conclude the proof of Theorem 3.1, we split T1^ into a finite number of pieces so that we
may assume that

/rpl^ Yrr.1^ _ r.

\-'-v,j,s,z) -L v ' , j ' , s ' , z ' ~ u

unless z = z ' and s = s\ and
rpl^ /rpl,^ V ̂  0

f ' , j ' ,s ' ,z ' \ i ^ , j , s , z } u?

unless v == v ' and j = j ' . We now consider an arbitrary finite truncation of the following sum to
M elements

rpl^ljj __ \ ^ ml.,UJ

~ Z^ ^,J,S^'

L'J,S,Z

The proof of the Cotlar-Stein Lemma yields the following,

llr^H2^ ̂ C6(l)-l^\\(Tl^. YT1^. ll^llr^ (T1^ Vll172
|| || ^^^ Z^ll V^l^l^l^l / ^^2^2,51^111 I I ^2,j2,Sl^l ^^2,j2,S2^27 I I

x l l f r ^ V^^ [ | l / 2 _ | [ / ^ , o ; \*^,cc; | 1/2
II V ^2,J'2,S22;2/ ^3,J'3,S22;2 II 1 1 \ VN JN ,SN ,ZN ) ^N+1 JN+I ,SN ,ZN I '>

and by estimates (3.16) and (3.18) this implies

[r^H2^ ^ MG^^Q-3^2 log6(0 'v.

Letting N -^ oo completes the proof of Theorem 3.1. D

4. Null form estimates for the wave equation on geodesically concave manifolds

In this section we work locally on a three-dimensional Riemannian manifold Q with metric g
and with smooth boundary QQ, such that Q is strictly geodesically concave with respect to g.
The typical example is Q the complement in M3 of a strictly convex open set, with the Euclidean
metric understood. By the Cauchy problem on Q with Dirichlet condition we understand the
following system

f Q^u(t, x) = Ag^(^ x) + F(t, x\
\ u(t,x)=0 lix^QQ,
[ u(0,x) =uo(x), 9tu(0,x) =u-t(x).

We work in a local coordinate patch centered at the origin such that Q is defined by x^ ^ 0. For
k = 1,2 we set

^(^-{y^w/ia^o},
where Hk(^)ls the space of restrictions of elements of H1^ (M3).

THEOREM 4.1. -Suppose that u and v satisfy the Cauchy problem on Q with Dirichlet
condition, with respective data

UQ.VQ e H^{Q), u^v^H^(n), F.G.DF.DG^L^^-S.^L2^)).

Suppose also that the data vanishes for x\ ̂  6, where 6 > 0 is a constant depending on J7. Then
the following hold, for any of the null forms Q,
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DQ(du^dv)\^ ^_^^)^C7(ho||^^)+hi||^^)+ E IÎ IL^
v H^i

X (lN^)+|H^)+ ̂  H^^lLi^a-^x^))-
v l^ l^ l

O(^^)|L^Q_^^) < C^ ho||^(^) + hl||L2(^) + \\F\\^L^[-6,6}xQ) )

X ||^0||^(^+||^||^^) + ̂  l|^L^([-M]x^) •
v H^l

Before proving this result, we should point out that it immediately yields Theorem 1.1. This
just follows from the standard existence argument given in [2].

Proof of Theorem 4.1. -For convenience, in this proof we refer to the discussion in [10]
regarding the parametrix for the Dirichlet problem; however, all of the results used are due to
Melrose and Taylor [3-5], and Zworski [13]. Since we are working locally, we may assume that
Q is a compact manifold, hence that the Dirichlet Laplacian —A is strictly positive on L2.

In the estimate for DQ, the terms where the D act on the coefficients of Q may be
handled by energy estimates. Hence, by symmetry we may replace \\DQ{du,dv)\\L2^_g ̂ ]xr?)
by \\Q(d9u^ dv) ||^2 ([-6,6] x oy where Qu is any space or time derivative of u. The next step is to
reduce Theorem 4.1 to the following pair of estimates for the homogeneous problem,

Q(d9^u,dv)\\^^^^ ^ C{\\UQ\\H^ + \\ui\\H^w)(\\vo\\H^w + Ihill^(^)).

\\Q{du,dv)\\^^^^ ^ C(\\UO\\H^) + \\UI\\L^W)(\\VO\\H^W + Ihillj^))-
(4.1)
To do this, we first reduce Theorem 4.1 to the case G = 0. To this end, we integrate by parts to
write the contribution to v from G as

^fsm((^^^^
J v—A
o

t
=cos(W^)A-lG(0^)-A-lG(^)+ [cos{(t-s)VZA)^~19sG(s,x)ds

=1+11^111,

where A~1 denotes the inverse Laplacian on Q with Dirichlet conditions, which maps ^(J?)
to H^2^) by elliptic regularity.

To handle J, we note that

II^^O^II^^^C-IG^^II^^^G^II^GII^^^^
j^i

This term can thus be absorbed into the initial data VQ .
Next, let v ( t ^ x , s ) = cos((t — ^V^A^A^c^G^rK). Then v ( t ^ x ^ s ) is a solution of the

homogeneous wave equation in (t, x) for each 5, with initial data satisfying

^ •' ̂ w + IIW' • ' ̂ ll̂ ) < c\\Ws^. )[|̂ .
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Note that the ^-derivative of II cancels the term in the ^-derivative of 777 coming from the upper
limit of integration. Hence, we may write

i
d(77+777)= I d v ( t , x , s ) d s + d ^ ( I I )

Assuming that the second estimate of Theorem 4.1 holds in the case G = 0, we may bound
t v 6

.fdv(^s)ds) ^ [\\Q(du^dv^s))\\^_^^ds
0 / L2([-<5,5]xr?) ^

^ C(\\uo\\^w + llmlk^) + \\F\\^\\9tG\\^L^
The first estimate of the theorem is handled identically.

It remains to handle the term dc(77). We do this by showing that

(4.3) IKA-^II^^^ <; C ̂  ||^G|L^((_^).
H^l

Energy estimates show that \\d9xU\\L^^ and ||dn||^oo^ are bounded by the appropriate norms
of UQ , ̂ i, and F, yielding the desired estimate.

The proof of (4.3) is based on the following estimate, which holds globally on M3 for functions
/such that /(O e7^,

ll/lli^3)^C7|[|^[/|^^||A/||^3).

This estimate is verified by noting that it is dilation invariant, so that one may reduce to the case
11 ̂ V 1 1 L2 (R3) = |||^|/||L2(R3) = 1, for which it follows easily by separately considering the low
and high frequencies of /. We then bound

6

ll^'^ll^^d-^ix^^^/ll^^ll^^llc?^,-)!!^^^
-6

^c\\G\\L^L^[-6,6}xn)\\G\\^H^[-6,6]x^--t^a-^^x^^ll^l l^^Ct-^^x^

2

<^( E II^IL^a-^xJ >
v l/vl<-1 /'\a\^l

which concludes the proof of (4.3), and the reduction of the theorem to the case G = 0.
It remains to reduce Theorem 4.1 to the case F = 0. Consider the second estimate of the

theorem. We note that

* ,__ t
^sm((^-s)V-A) f /sm((t-5)^/^A) , \

d ^———-F{s,x)ds= d[—————^-——}-F(s,x))ds
J V-^ J \ V-A /
o o

which reduces the second estimate to the case F = 0; that is, the second estimate of (4.1).
As we have remarked previously, the first estimate of the theorem is reduced to considering

\\Q(d9u, dv)\\L2^_^s] x ny To handle Q(dOtU, dv), we note that OtU solves the Cauchy problem
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with data in H})(Q) x -L2^), with inhomogeneity in L\L^ thus controlling \\Q(d9tU^ dv)\\L-2
Is reduced to the second estimate of Theorem 4.1, which we have already reduced to (4.1).

Next consider Q(dOxU, dv). We apply the identity (4.2) with G replaced by F, and as before
reduce to considering the term Q (9^ ( I I ) , dv). To bound the Lj^ norm of this term, we note that

IIQ^A-1^^)!!2^^.^^)
^ ll^^'^II^L^h^x^ll^llir^^t-^x^)
^c711FllL,OOL^([-<$,<5]x^)ll^||L,lL^([-6,6]x^2)lld^lli-LS([-^<5]x^)

^fE ll^llL^a-^x^)) (ll^oll^^+ll^lll^^))2.
^H^l /

This concludes the reduction of Theorem 4.1 to the pair of estimates (4.1).
To establish the estimates (4.1), we note that, as discussed in [10] immediately preceding

formulas (2.12) and (2.24) of that paper, for some 6 as in the statement of the theorem, the
solution v may be written, modulo smoothing operators acting on the data, as a finite sum of
terms of the form

Tg^x) = [e^^^a^x^^g^d^

where the phases are the solutions to the eikonal equation for some smooth extension of the
metric g to an open neighborhood of the origin in R3, and the data g G H2^3) satisfies

-2(R3) ^ C{\\VQ\\H^) + \\Vl\\H^w)'1 1 ^

The solution u may be similarly written, with data / belonging respectively to H2^3) or
H1^3), in the cases of the two estimates (4.1). The amplitude a(t^x^\ which is smooth in
all variables and vanishes for x\ ̂  C 6 , is of one of two types. Either it satisfies the modified
5^/3 ̂  estimates (1.4) of this paper, or it satisfies the following estimates:

(4.4) \xi9k^9^N9^9^x^) ^^^^(l+I^D^^''''^*^'.

(We remark that in [10] these estimates on the symbol were shown to hold for N == 0; that the
estimates hold for general N follows from the fact that these modified estimates are preserved
under the equivalence of phase theorem of Hormander as seen, for example, by the asymptotic
formula for the transformed symbol, and the fact that the symbol in our case is obtained by a
change of phase from the product of a standard symbol with cutoff functions that satisfy (4.4).)

In either case, the operator QyT is an operator of the same type, with a symbol of one higher
order, hence the estimates (4.1), and consequently Theorem 4.1, are reduced to verifying the
following estimate

(4.5) \\Q(dTf^dTg) \^ ^_^^^C\\f\\H^^\\g\\H^^)^

for T an operator as above with a symbol satisfying either (1.4) or (4.4).
We remark that in [10], the Strichartz estimates were shown to hold for both symbol types:

\\Tf\\L^Lt{[-6,6]xQ) ̂  ^11/11^1/2(^3).
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We first verify that the reductions of the second section of this paper hold for symbols
satisfying the estimates (4.4). There are two places where the arguments need to be modified.
The first is to verify that the estimate (4.5) holds if, in the formula for dT, the d acts on the
symbol a(t,x,^}. Consider the term dTf, where the d hits the symbol satisfying (4.4). In this
case, one obtains an operator 5'/ of the same form but with symbol of order 2/3. The resulting
contribution to the left hand side of (4.5) is controlled by noting that

\\{Sf){dTg)\\^ ^ \\Sf\\^\\dTg\\^L^ ^C\\f\\H. \\g\\n^

where the last estimate for Sf follows by interpolating the following estimates

\\Sf\\^L^C\\f\\Hr^^

\\Sf\\L^L^ ^C'||/||^2/3(^3).

Similarly one may bound

\\{dTf)(Sg)\ ̂  lldT/IÎ IIIÎ I5/6 !̂!̂  ̂ II/IÎ N .̂

The other modification is to verify that the operator (2.5) has norm of order 2-/c//4, if now the
symbol ak(t, x, £,) satisfies (4.4). This follows by expressing

Xn

Af(x) = f 22^3 (1 + 24fc/3r2) ''ArfW dr^
o

where Ar is the operator obtained by replacing a/c (t, x, ̂ ) by the symbol

ak,r(t,x^)=c2-2k/3{l+c24k/3r2)^^ak(t,x,r^^ x=(x^x^)

which satisfies, for each r, the estimates (1.4), with constants independent of r. One then has the
bound

||A/||^(R3) ^ sup \\Arfh^ ^ 072-^11/11^
r

with, as before, the 2-/i;//4 = 6(0) factor coming from (2.3). This procedure of "freezing the x^
coefficient" will be used in subsequent steps.

We are thus reduced to establishing estimate (3.1). The above technique of freezing the x^
coefficient reduces to the case that the symbol d k ( t ^ x ^ ) in formula (2.2) satisfies the good
estimates (1.4), and the symbol dj(t^x^puj) satisfies the estimates (4.4) above. (Note that one
cannot freeze the x^ coefficient of aj (t^ x, puj), since ^(p) is not localised to a dyadic interval.)

We next note that the proofs of Theorems 3.1 and 3.2 go through if ^g(p) is supported in the
region where p ^ (23k/4. This follows since, in this case, we have 227/3 ^ 2fc//2, hence 9x loses at
most 2fc/2 against the symbol aj (t, x, puj). The only step in the proof that needs to be modified
is to replace the right hand side of (3.8) by

^(i+^o^111-^)/3)-1!!^!!^^!!^!!^^,

to reflect the (|, |) estimates on d j ( t ^ x ^ p ^ ) .
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We thus assume that ^g(p) is supported in the region where p > 23/l;/4. Notice that p ^
2k/26{l)~l, since 6{l) ̂  2-^4. Consequently r^(/^) = T[^(f,g). We will show that

(4.6) ll^(^)ILwi) ̂ C6(i)-^ log^)!372!!/!!^^)!!^!^^.
We do this by setting

T^(f.g)= E ^(^)-
{j: '23k/4<^'2^22k/36{l)-l}

f^{f.g)= E ^O^)-
{ j : '23>22k/36{l)-l}

For the term f^ (f,g), the index j runs over at most \\og6(l)\ terms. Thus, the bound (4.6) for
this term results from the following bound (uniform over j)

^''(/^^IlL.^^^^W"37^0^^!172!!/!!^^3)!!^!!^^
This estimate follows from the argument for (^, ^) symbols by freezing the ^3 coefficient in
dj (t, x^ puj\ which is possible now that the index j is fixed.

To handle the term f[^{f, g), we modify the argument of Theorem 3.1 by taking the partition
of unity such that the symbol a^ g ^ (t, x, ̂  p) is supported in the set

--^ ^-^(Q-1, \^^(t^)-z ^2.2-2^3, \t-s ^^-^(O^

and adjusting the spacing of the index points (z^, s, z) accordingly. With these changes, and using
the modified 52/3,2/3 estimates for the symbol, estimates (3.17) and (3.19) are respectively
replaced by

\rpl^ (rpi^ ^11 <________________CN^(I)____________________

l^j^A^^ I I - - ( i_p yk/^z -zf\+yk/36{l)\s-sf\)N'

11/^,0; Yrpi^ \\ ^______________________CN^{I)_________________________

||^z.,j,s,^ l^J^s,z\\^ (l+2-2/ i ;/3^(02 |2^-2^ +2k/3S(l)\^-^f\)N'

where we use the appropriate modification of Lemma 3.3. Since the indices now run over
23 6(1) ̂  22A;//3, the rest of the proof of Theorem 3.1 goes through. D

In the case that Q is the complement in R3 of a strictly convex obstacle, with the Euclidean
metric understood, a partition of unity argument allows one to extend Theorem 4.1 to hold
globally on j7 (but still over a finite time interval). Precisely, from the result of Klainerman-
Machedon [2] that the conclusion of the theorem holds globally on Minkowski space, together
with finite propagation velocity and energy estimates, we may conclude the following extension.

THEOREM 4.2. - Let Q be the complement in R3 of a strictly convex, smoothly bounded-
compact subset. Suppose that u and v satisfy the Cauchy problem for the Euclidean metric on Q
"with Dirichlet condition, with respective data

u^vo^H^W^ u^v^H^W^ ^G^PGGL^-U];^)).

Then the/allowing hold, for any of the null forms Q,
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\\DQ(du^)\\^ ^_^^)^^(ho||^^)+||m||^(^+ E II^L^a-uix^))v HO /

x (ll^||^^)+||^i||^(r2)+ E II^L^a-ujx^V
v l^ l^ l /

\\Q(du,dv)\\^^_^^^ ^ ̂ (hollj^) + hilk^) + ||-^||L^([-i,i]xr2))

x (lM^)+ ll̂ ill̂ ) + ̂  ll^^ll^^^.^^)).
v i ̂ , i <^ 1 /

|a|^l
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