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DYNAMICS OF Out(FJ ON THE BOUNDARY
OF OUTER SPACE

BY VINCENT GUIRARDEL

ABSTRACT. - In this paper, we study the dynamics of the action of Out(Fn) on the boundary QCVn
of outer space: we describe a proper closed Out(.Fn)-invariant subset Tn of QCVn such that Out(Fn) acts
properly discontinuously on the complementary open set. Moreover, we prove that there is precisely one
minimal non-empty closed invariant subset Mn in Tn- This set Mn is the closure of the Out(^n)-orbit
of any simplicial action lying in J^n- We also prove that Mn contains every action having at most n — 1
ergodic measures. This makes us suspect that Mn = ̂ n. Thus Fn would be the limit set of Out(Fn), the
complement of Tn being its set of discontinuity. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Dans cet article, nous etudions la dynamique de 1'action du groupe Out(Fn) sur la frontiere
QCVn de Poutre-espace : nous decrivons un sous-ensemble ferme propre J^n de OCVn invariant sous
F action de Out(Fn) et tel que Out(-Fn) agisse proprement discontinument sur Pouvert complementaire.
Nous prouvons ensuite qu'il existe un unique ferme non-vide invariant non vide M.n dans J^n. Cet ensemble
M.n est F adherence de Porbite de toute action simpliciale appartenant a Tn' Nous demontrons enfin que
Mn contient toutes les actions ayant au plus n — 1 mesures ergodiques. Ce dernier resultat rend probable
Pegalite de Mn et de J^n, de sorte que 7n serait P ensemble limite de Out(Fn\ Ie complementaire de J^n
etant son domaine de discontinuite. © 2000 Editions scientifiques et medicales Elsevier SAS

Outer space CVn has been introduced by M. Culler and K. Vogtmann as an analogue of
Teichmtiller space for the group Out(^) of outer automorphisms of the non-abelian free
group Fn. Outer space is the set of minimal free isometric actions of Fn on simplicial R-
trees modulo equivariant homothety. It has a natural compactification CVn in the set of minimal
isometric actions of Fn on R-trees. Both CVn and CVn are endowed with a natural action of
Out(Fn) by precomposition.

Like the Teichmtiller space Ts of a closed surface S, CVn is a contractible space, the action
of Ovit(Fn) on CVn is properly discontinuous and not cocompact. The quotient being a finite
disjoint union of open simplices, it may be thought of as having finite volume (see [9]). Moreover,
every outer automorphism of Fn fixes a point in CVn (see [6,21]).

Outer space has proven to be useful in the study of Out(I^). M. Culler and K. Vogtmann
computed the virtual cohomological dimension of Out(jF^) ([9]) using outer space. Furthermore,
M. Bestvina and M. Feighn showed that Out(Fn) is (2n — 3)-connected at infinity by using
some Morse theory on a bordified version of outer space [5]. However, outer space happens to
be more complicated than Teichmiiller space and not much is known about this space and its
compactification.

Thurston theory shows that the mapping class group of a closed orientable surface S acts with
dense orbits on 9Ts, the boundary of Thurston's compactification of Ts (see [13] for instance).
When the surface is not orientable, there is an open invariant subspace of full measure in QTs
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/00/04/© 2000 Editions scientifiques et
medicales Elsevier SAS. All rights reserved



434 V. GUIRARDEL

Fig. 1. A typical action in On (trivial groups are omitted).

consisting of measured foliations having a regular closed one-sided leaf [11]. The action is
not properly discontinuous on this set since infinite order Dehn twists fix some of its points.
Surprisingly, it seems to be unknown whether the mapping class group acts with dense orbits on
the complementary closed set.

In this paper, we try to understand the analogous problem in outer space: does Out(F^) act
with dense orbits on the boundary of outer space? The answer to this question is no.

DEFINITION. - Let On be the set ofsimplicial Fn-actions T such that
• T has trivial edge stabilisers,
• T has cyclic vertex stabilisers,
• whenever Stab v ̂  {1}, Stab v acts transitively on the set of incident orbits.

Equivalently, T lies in On if and only if every non-trivial group in the graph of groups T / F n is
cyclic and is attached to a terminal vertex of T / F n .

Fig. 1 shows a typical action in On. Because of its friendly face with antennae, I was suggested
to christen the actions in On Martian actions (many thanks to Claire!). The set On can also be
seen to be the set of simplicial actions in CVn with finite stabilizer in Out(Fn). It is clearly
invariant under the action of 0\it(Fn).

THEOREM 1. - The set On is open in CVn and Out(Fn) acts properly discontinuously on On.

Since CVn $± On, the closed set Fn = CVn \ On is a proper invariant compact subset of
QCVn. M. Feighn pointed out that the intersection of the closure of the spine of outer space [9]
with QCVn is a subset of Fn.

THEOREM 2. - Let n ̂  3. Let T be a simplicial action lying in Fn and let T ' be a small
action of Fn on an R-tree. Then there exists a sequence Ok of elements ofOut(Fn) such that

lim T/.ak=T.
k—>oo

This theorem has an interesting corollary about the dynamics of Out(Fn) on 9C Vn'.

COROLLARY. - For n ̂  3, there exists precisely one minimal non-empty closed invariant
subset in CVn. This set M.n is the closure of the orbit of any simplicial action lying in Fn
under the action of Out(Fn).

It would be interesting to know whether Fn = M.n. If the equality held, Fn would be equal to
the intersection of the closure of the spine of CVn with QCVn. Moreover, Fn could be thought
of as a limit set of Out(F^) and On as a domain of discontinuity like in the theory of Kleinian
groups.

An argument by Bestvina and Feighn [4] shows that any action in CVn in which there exists
an arc with non-trivial stabilizer lies in M.n. Furthermore, since any action in CVn can be
decomposed as a graph of actions with dense orbits (see [19,14]), proving Fn = M.n reduces
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DYNAMICS OF Out(^) ON THE BOUNDARY OF OUTER SPACE 435

to showing that any action in CVn with dense orbits belongs to M.n- We prove that this is true
under a technical condition:

THEOREM 3. - Let n ̂  3 and let T C CVn be an action ofFn with dense orbits. Assume that
the Lebesgue measure on T is the sum of at most n — 1 ergodic measures. Then T lies in M.n'

Remark. - There is a bound coming from the topological dimension of OCVn for the number
of ergodic measures of an action in QCVn (see [4,14] and Section 5.1). This bound can be seen to
be 3n — 4. Therefore, we suspect that Theorem 3 still holds with no assumption on the Lebesgue
measure so that J:n= M-n-

We also note that if a G Out(Fn) is irreducible with irreducible powers, then it has only two
fixed points in CVn [22] which implies that they are uniquely ergodic and hence lie in M.n'

After some definitions in Section 1, we introduce in Section 2 the folding to approximate
technique to obtain approximations of a simplicial action. This technique rules out some natural
candidates to be open, and leads to the definition of the set On' In Section 3, we prove that On
is open and that the action of Out(Fn) on On is properly discontinuous (Theorem 1). In
Section 4, we use the folding to approximate technique to study the dynamics of Out(Fn) on
^ = CVn \ On and prove Theorem 2. In Section 5, we introduce the tools of measure theory
on R-trees needed to prove Theorem 3.

This work is a part of a Ph-D thesis defended at the Universite Toulouse III in January 1998.
Many thanks to my advisor Gilbert Levitt who encouraged me, carefully checked my work, and
suggested many improvements.

1. Preliminaries

1.1. Group actions on R-trees

Basic facts about R-trees may be found in [28,29].

DEFINITION. -An R-tree is a metric space T such that between two points x,y € T, there
exists precisely one topological arc (denoted by [x,y}\ and this arc is isometric to an interval
in R.

In this paper, every R-tree will be endowed with an isometric action of a finitely generated
group. For simplicity, we will denote by the same letter T the tree and the action. We will also
simply say action to talk about an action on an R-tree. Most often, the group considered will
be the free group Fn on n letters. If an isometry g of an R-tree has no fixed point, then it has a
translation axis isometric to R and we say that g is hyperbolic. When g has a fixed point, it is
called elliptic. The characteristic set Char g of g is either its axis or the set of its fixed points,
depending on whether g is elliptic or hyperbolic.

An action on an R-tree is said to be minimal if it has no proper invariant subtree and if it is
not reduced to one point. If an action of a finitely generated group F on an R-tree T has no
global fixed point, then there is a unique invariant minimal subtree of T and it is the union of the
translation axes of hyperbolic elements in r. All the actions we consider are henceforth assumed
to be minimal.

We will call simplicial R-tree (or simply a simplicial tree) a connected simply-connected
simplicial 1-complex together with a metric which makes it an R-tree. For shortness' sake, we
will say simplicial action to mean a simplicial isometric action on a simplicial R-tree. We will
always assume that a simplicial action has no inversion i.e. that no edge is flipped by any element
of r since one can reduce to this case by performing a barycentric subdivision.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



436 V. GUIRARDEL

A morphism of R-trees f : T —>• T9 is a continuous map such that every arc in T may be
subdivided into finitely many intervals which are isometrically embedded in T ' by /. We will
also be interested in maps preserving alignment i.e. such that a € [b,c] =^ f(a) € [f(.b),f(c)].
Note that a morphism of M-trees which preserves alignment is an isometry.

In an R-tree T, a germ at a point x C T is a germ of isometric applications [0, e\ —^ T sending
0 to x. The set of germs at a point x G T is in one to one correspondence with the connected
components of T \ [x}. A point x € T is called a branchpoint if there are at least three germs
at a:. In a simplicial tree, the branch points are the vertices of valence at least three. We will
sometimes use the projection of a point re on a closed subtree 5': it is the point in 5' closest to x.

1.2. The topology on a set of actions on M-trees

Two actions of a group F on IR-trees T and T ' are identified if there exists an equivariant
isometry between T and T1. Sometimes, in projectivised spaces, we will identify T and T' if
there exists an equivariant homothety between them.

On any set of minimal actions of a fixed finitely generated group F, one can consider the
translation lengths topology. This topology is based on the length function of an action (T, F).
It is the function IT\F —> IR+ defined by

^(7) = inf cKx^.x).
x^T

The translation lengths topology is the smallest topology that makes continuous the functions
T i—^ ^r(7) for 7 G r. An abelian action is an action whose length function is the absolute value
of a morphism r —> M. For sets ofnon-abelian actions of a finitely generated group, this topology
isHausdorff(see[8]).

A set of minimal actions of a fixed finitely generated group r on M-trees can also be equipped
with the equivariant Gromov topology. This topology roughly says that two actions are close if
they look the same metrically in restriction to a finite subtree while only considering the action
of a finite subset of r. Here finite subtree means a subtree which is the convex hull of finitely
many points. Let's give a definition to make this more precise:

DEFINITION. - Consider two actions of a finitely generated group r on two R-trees T and T ' ,
and take e > 0, a finite subset F of r, and two finite subtrees K C T and K/ C T ' . An F-
equivariant ^-approximation between K and K ' is a binary relation R C K x Kf satisfying the
three following conditions'.

• for every point x G K, there exists a point x ' € K ' such that xRx';
• for every point x ' € K ' ' , there exists a point x G K such that xRx';
• ifxRx' and y R y ' , then for all g , h C F, the numbers dr(g.x, h.y) and dr^g.x^ h.y') are

e-close to each other.

When xRx'', we say that x ' is an approximation point of x. If T is an action, for any e > 0,
any finite subset F of -T, and any finite subtree K C T, consider the set Vr(£,F, K) consisting
of actions (T\ F) such that there exists a finite subtree K ' C T ' with an F-equivariant e-
approximation between K and K ' . By definition, the sets Vr(£,F,K) form a neighbourhood
basis of T in the equivariant Gromov topology. Note that ^-approximations behave nicely with
respect to the Hausdorff topology: an F-equivariant ^-approximation between K and K ' such
that K ' is at a Hausdorff-distance T] from K[, naturally defines an F-equivariant (e + 26)-
approximation between K et K[.

The equivariant Gromov topology is always finer than the translation lengths topology and is
equivalent to the equivariant Gromov topology on sets ofnon-abelian actions (see [25]).
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A group is said to be small if it doesn't contain any subgroup isomorphic to the free group F^.
An arc in an M-tree is called non-degenerate if it contains more than one point. A small action
is an action such that the stabilizer of any non-degenerate arc is small. Note that throughout this
article, the stabilizer of a set is understood to be its pointwise stabilizer. We assume from now on
that r itself is not small. Then any small action of jT is non-abelian. Moreover, the projectivised
space of small actions of r is compact in both topologies (see [8,24]).

The set of actions of r on R-trees is naturally endowed with a right action of Aut(F) by
precomposition. Since two actions are identified if there exists an equivariant isometry between
them, the subgroup Inn(T) of inner automorphisms acts trivially on this set, hence we are left
with an action of the group Out(F) = Aut(r)/Inn(r) of outer automorphisms of F.

1.3. Outer space and very small actions

DEFINITION. - Outer space {sometimes called Culler-Vogtmann space) is the set CVn of free
(minimal isometric) actions of Fn on simplicial ̂ L-trees modulo equivariant homothety.

CVn is invariant under the action of Out(F^). It is a disjoint union of open simplices obtained
by equivariantly modifying the lengths of the edges of a tree in CVn, and Out(Fn) preserves this
decomposition. __

CVn is contained in the projectivised space of small actions of Fn. Its closure CVn in this
space is therefore compact. Moreover, Cohen and Lustig [7] and Bestvina and Feighn [4] have
proved that CVn is exactly the space of very small actions of Fn.

DEFINITION. - An action of Fn on an R-tree T is said to be very small if
• it is small,
• triod stabilisers are trivial (a triod is the convex hull of three points which are not aligned),
• for every k ̂  0 and every g C Fn, Fix gk = Fix g.

2. Origami: folding to approximate

2.1. Definitions of folds

The goal of this section is to describe a tool which will be fundamental in this paper: we use
folds to get approximations of some simplicial trees. The idea of folding is not new, J.R. Stallings
already used this technique in [30], and many others used this notion (see [3] and [12] for
instance). However, we will consider not only edge-folding but rather path'foiding in simplicial
trees. We first need some technical conditions so that the folds behave nicely.

DEFINITION. - Let T be a simplicial action of Fn without inversion. Let a, f3 be two
embedded edge-paths in T starting from the same point x. We assume that a and f3 run through
the same number of edges and we denote by a\,..., a? and by /?i , . . . , (3p the edges of a and f3.
We say that a and f3 satisfy the hypothesis (H) if

( H I ) for all i = 1,...,;?, Oz and f3i have the same length,
(HI) a\ and f3i are distinct edges,
(H3) there exists an equivariant orientation of the edges ofT (called the folding orientation)

such that Oi and f3i are positively oriented for i = 1,... ,p. In this case, we say that a
and f3 are well oriented.

Clearly, (H3) means that there exists an orientation of the quotient graph T / F n such that the
projections of a and (3 are well oriented.

ANNALES SCIENTIFIQUES DE CECOLE NORMALE SUPERIEURE



438 V. GUIRARDEL

DEFINITION. - Let T be a simplicial action of Fn without inversion and let a\ and [3\ be two
oriented edges satisfying (H).

The elementary fold between a\ and f3\ is the quotient of T by the smallest equivariant
equivalence relation in T which identifies a\ with f3\ and also identifies their terminal vertices.
The simplicial complex r/ai~/?i thus obtained is a tree (see for instance [3]), it has a natural
metric and an isometric action of Fn without inversion. The quotient map f '.T —>• T/ai~/3i is
called the folding map.

DEFINITION. - Let T be a simplicial action of Fn without inversion and let a and f3 be two
edge paths satisfying (H).

The fold between a = a\... a? and {3 = a\... a? is the quotient T / a ^ / 3 of T by the
smallest equivariant equivalence relation in T which identifies ai with f3i for i = 1.. .p. It is
a composition of elementary folds fi

T A Ti = T/a,^ 4 T2 = T^/Ma^f.W A . . . ̂  Tp = T/a^.

The elementary folds fi are called intermediate folds. We denote by qi= fio • • • o f\'.T —^Ti
and by q= fpo ' • • o f^:T —^ T / a r ^ p the folding map.

This decomposition shows that T/a~/3 is a simplicial tree with a natural isometric action ofFn
with no inversion.

2.2. Preimage of an edge

We define the preimage of an edge e' of a simplicial tree T ' under a simplicial map /: T —^ T '
to be the set f~~l(e) of edges which map to e under / (and not the set of points in T which are
mapped to a point of the closed edge e). The main interest of the hypothesis (H3) is the following
remark.

LEMMA 2.1.- If f:T —> T/Qi^/3i is the elementary fold between the edges a\ and [3\
satisfying (H) then f~^(e) is either a single edge or a set of edges having the same origin
according to the folding orientation. We say that these edges are centrifugal.

Remark. - If (H3) is not satisfied, then f~l(e) may be unbounded.

Proof. - r/o;i~^i is the quotient of T by the equivalence relation generated by the binary
relation ~i described by e ~i e' if there exists g € Fn such that [g.e.g.e'} = [a\,{3\}. One
needs only to notice that if e ~i e1 ~i e", then e, e7, e" are centrifugal. D

Note that Lemma 2.1 implies that if a, f3 satisfy (H) then none of the intermediate folds can
be isometries (i.e. the intermediate folds satisfy (H2)) because fi(a^) = f\([3z) would contradict
the lemma.

The following corollary is the tool which allows us to get approximations from folds.

COROLLARY 2.2. - Take two edge paths a and f3 in a simplicial tree satisfying (H), and
denote by q'.T —> T / a r ^ / 3 the folding map. Suppose that each intermediate fold fi is a fold
between two edges with trivial stabiliser.

If e, e1 are two adjacent edges in T which are identified by q, then they are identified under the
first intermediate fold f\.

Remark. - The hypothesis on the intermediate folds fi can be weakened but the corollary is
false with no hypothesis at all on fi.
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Proof. - Assume on the contrary that there exists an index i > 0 such that <^(e) 7^ qi(e') and
^+i(e) = ̂ +i(e'). This implies that <^(e) ̂  qi(e') are centrifugal.

Suppose first that ^(o^+i) and ^(/^+i) don't lie in the same orbit of Ti. Then, the fact that
Stab ^(o^+i) = Stab ^(/?^+i) = { 1 } implies that an edge is identified with ^(o^+i) and ^(/3^+i)
through fi^\ only if it equals ^(o^+i) or ^(/3^+i). Therefore, we can assume without loss of
generality that <^(e) = ^(o^+i) and ^(e') = ^(ft+i). Thanks to the previous corollary, <^-i(e)
and ^_i(o^+i) have the same origin, and similarly for ^_i(e7) and ^_i(^+i). But this prevents
them from being adjacent, which is a contradiction.

Suppose now that there exists an h C Fn such that ^.^(o^+i) = ̂ (/^+i) (this /i is unique
because Stab ^(o^+i) =={!} ) . In this case, the set of edges which are identified with ^(o^+i) by
fi^\ is exactly h^.q^a^) so we can assume that <^(e) = (^(o^+i) and ^(eQ = ^(/^.o^+i) for
some A- 7^ 0. Now let A and B be the preimages of ^(o^+i) and <^(A+i) under fi. The previous
corollary implies that A and B are two sets of centrifugal edges whose centers are PA and PB , the
terminal points of ^-i(o^) and ^_i(/3^). Now since ^_i(e') € /i^.A, and because qz-i(e) and
qi_\(e') are centrifugal, /i^.A is a set of centrifugal edges with center RA- Therefore, hk fixes PA
and h sends PA to pa, so h fixes the midpoint of [pA^Pa] which is the origin of ^_i(c^). Hence
/^ fixes qi-\(ai) which contradicts the assumption on the fold fi. D

2.3. Folding to approximate

We are now ready to prove the folding to approximate lemma.

FOLDING TO APPROXIMATE LEMMA. - Let T be a simplicial action ofFn without inversion.
Let a and f3 be two paths in T with origin x satisfying the (H) condition such that Stab x is
infinite. Let Wk be a sequence of distinct elements in Stab x and let T^ = T/a^wk.P. Assume
that each intermediate fold is a fold between edges with trivial stabiliser.

Then T^ converges to T as k —> oo.

Proof. - We only need to prove that two incident edges e, e' of T are identified by only finitely
many folds q^ '.T —> T^. As a matter of fact, this will imply that any finite subtree of T
isometrically embeds in T^ under q^. To prove the convergence in the equivariant Gromov
topology, take K to be a finite subtree of T and F a finite subset of Fn, and let K/ be the convex
hull of K and F.K. For k large enough, q^ is an isometry in restriction to K ' hence it gives an
F-equivariant 0-approximation between K and q^^K).

Now we prove that two incident edges e, e' of T are identified by only finitely many folds q^.
Thanks to the previous corollary, we only need to check that they are identified by finitely many
of the elementary folds /w between a\ and Wfc./?i.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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When a\ and f3\ are not in the same orbit, e and e' are identified by f[^ if and only if
there exists g C Fn such that Q\e,e'} == {a\,Wk'13\}- This occurs for at most one k since
Stab a\ = {1}, g is unique.

When f3\ =h.a\ (his then unique), e and e7 are identified by f[ ^ for some index k if and only
if there exists g e Fn such that <7.e = a\ and ^.e' = (w/c./i)^ .01 for some %/c C Z \ {0}. If A;o and
A; are such indices, then g.ef == (1 /̂1)^0 .a\ = (wkh)^ .a\ so (w^h)1^ = (w^h)^ and Wkh lies
in the finite set of roots of (wkoh)^ko which can hold for at most finitely many k. D

3. An open invariant subset of outer space

3.1. Looking for an open invariant subset

This folding to approximate lemma will be the cornerstone of Section 4. But first, this lemma
will show us that some natural candidates for open and invariant sets are in fact not open.

The first candidate for open set in CVn is the set Cn of very small actions T in which there is a
non-degenerate arc I containing no branch point of T and such that Stab I == {1} . It is a natural
candidate because the set of systems of isometrics which give an action in Cn is precisely the set
of systems of isometries whose suspension have a family of compact simply-connected leaves,
and this property is stable under perturbation (see Proposition IV. 1 in [18]). Moreover, thanks to
the exhaustive study of CVz by M. Culler and K. Vogtmann, it is easy to check that C^ is open
in CV^. However, Cn is not open for n > 3: for instance if T € C is the action shown on Fig. 2,
a folding operation allows us to approximate T by a very small simplicial action whose edge
stabilizers are not trivial. Thus, this approximating action doesn't lie in Cn-

In view of this example, we see that the presence of a non cyclic vertex stabilizer allows
many approximations, so we may consider a second candidate for open set: the set C^ of
very small simplicial actions with cyclic edge and vertex stabilizers. Once again, it is natural
because one can prove that the set of systems of isometries which define an action in C^ is open
([15, Theorem 4.4.5]). One also checks that C^ is open in CV^. But for n ̂  3, the folding to
approximate lemma shows that C^ is not open (see Fig. 3). The reason is that one can perform
folds at a vertex with non-trivial stabilizer which is not terminal in the quotient graph T / F n
(a vertex is terminal if it has valence 1).

This leads us to consider the following set On ''

DEFINITION. - We define On to be the set of simplicial Fn-actions T such that
• T has trivial arc stabilizers,
• T has cyclic vertex stabilizers,
• whenever Stab v -^ {1}, Stab v acts transitively on the set of incident edges.

T e ̂  r^r/a^a ̂  c.

( ^ • • • ^ - l ) < ( _ ^
\^ ^ Folding a

onw/^a
<^.. î)______W 'vv' (^^-i) (w^)

" { T } ' " W '
T/F^ T^/F^

Fig. 2. T G Cn is approximated by T^ = T/a^w^.a ^ Cn. Cn is not open in CVn for n ̂  3.
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pWr=r/a~^.p^Te^,

<fl,̂ '
Folding
a on b .ft

^w^J/^ r̂
J;c,A'*a&")

(a) W <c) (a '̂cfe"*)

r/F, 7 /̂F,

W

Fig. 3. T £ Cn is approximated by T^ = T/a~w,,./3 ̂  Cn. Cn is not open in CVn for n ̂  3.

T T "̂) _ 7V *
—l/a~a -a

jFb/̂ /mg
a on a .a

<a-^ a.=a .a

<a>
{1 }

T/F,

0
{1}

<aS<a> 0
{1}<a'>

T /̂F-
Fig. 4. T e On is approximated by T^ ^ Wn 3 On. On is not open in the set of small actions.

Equivalent T lies in On if the edge groups of the graph of groups T / Fn are trivial, and if the
only non-trivial vertex groups are cyclic and are attached to terminal vertices ofT/Fn.

3.2. On is open in 'CVn
THEOREM 1. - The set On is open in ~CVn and Out(Fn) acts properly discontinuous]^ on On'

Remark. - Using the folding to approximate lemma, one proves that On is not open in the
whole set of small actions as shown on Fig. 4.

Proof of Theorem 1. - With no additional work, we will prove the well known fact that CVn
is open in the set of all actions of Fn. The proof of Theorem 1 goes as follows: we start with an
action T e On and consider a fundamental domain D for this action. Given an action T ' e CVn
close enough to T in the equivariant Gromov topology, there is a finite subtree D' in T ' which
approximates D. The main step is to build a fundamental domain A for T ' starting from D ' .

Fundamental domain and adapted basis for an action in On
Let T be an action in On and consider the quotient metric graph of groups Q = T / F n . Let r

be a maximal subtree of Q and f a preferred lift so that we get (using Bass-Serre theory) an
identification between Fn and 7i-i(Q, r) and an equivariant isometry between T and the universal
cover of Q. Now choose an orientation for every edge in Q \ r and one generator for every non-
trivial vertex group of Q. The set of elements in 71-1 (Q, r) corresponding to the edges of Q \ r with
the chosen orientations and to the chosen generators of the vertex groups provides a preferred
basis B of Fn.
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This basis B has the following property: for every 7 e B U B~1, either 7.f D r is a single
point that we denote by \^ (this happens when 7 corresponds to a vertex group generator) or
there is an edge joining f to 7.7" (when 7 comes from an edge in Q \ r) in which case we call \^
the midpoint of this edge. We define D to be the union of r and of the segments joining \^ to f
(7 G B U B~1). The following properties clearly hold:

LEMMA 3.1. -For every 7 e BUB~1,
• ^.DnD={^},
• ^ is a terminal point of D,
• ^ == ^_i ;y^J o/zfy ̂ 7 ̂  elliptic in which case ̂  is the only fixed point 0/7.

Observe also that D is a fundamental domain for T in the following sense:

LEMMA 3.2. - .D m^^ every orbit in T and if x, y G D are such that y = w.x for some
w C Fn \ {1}, then either

• x = \^-\, y = ;\^y, a^J w = 7/<9r 5wn^ hyperbolic generator 7 C 5 U B~~1,
• or x = y = ̂  and w = 7^ for an elliptic 7 G B U B~1.

Constructing A from D'
We now define V^(T) a neighbourhoodof T: we set F = { 1 } U B U B~1 and set ^(T) =

Vr(£, F, 7)) to be the set of actions T7 € CVn such that there exists a finite subtree D' in T' with
an .F-equivariant ^-approximation between D and D ' . We are going to show that if T ' G Ve(T)
for some small enough e, then T' e On.

Denote by d the length of the shortest edge in D, and assume that e is small enough compared
to d. Then any element 7 6 B U ̂ -1 which is hyperbolic in T must be hyperbolic in T ' . Note
however that an elliptic element in B U B~1 may be hyperbolic in Tf (but its translation length
must be small compared to d). We start by changing D' into D[ such that ^.D[ r\ D[ =0 for
7€BUB- 1 .

DEFINITION. - L^ K be a finite tree and 6 > 0. We call 6-interior ofK the set mt§(K) of
points ofK which are the midpoint of a segment ofK of length 26.

Clearly, ints(K) is a finite subtree of K and if K has diameter at least 26, intg(K) is non-empty
and K lies in the ^-neighbourhood of ints(K).

LEMMA 3.3. - Let 6 = 3e, and let D[ = in4(D'). Ife is small enough compared to d, then

V7e5uB- l 7.̂ 1 n 2^=0.

Proof. - Assume on the contrary that there exists y ' = 7. a/ e D[ Fl ^.D[ for some 7 G
B U B~1 and argue towards a contradiction. By definition of the ^-interior, there are some points
x[,x^y[,y^ e D' such that x[,x\x^ (respectively y[,y\y'z) are aligned in this order and 6-far
from each other (we say that a, 6, c are aligned in this order if b 6 [a, c]).

Consider some approximation points x\,x,xz,y\,y,y^ in D of x[,x\x^y[,y\y^. Since
^// = 7-a'7, d{^f.x,y) ^ £. But ^/y € [7.^,^] since 7.a; and ?/ lie in the two subtrees ^.D and
D which intersect only in {^/y}. Therefore, x is £-close to ̂ 1 and every branch point of D is at
least (d — ^)-far from a;.

The distance from x to its projection p on the segment [x\, 3:2] is at most 3^/2. As a matter of
fact, in an R-tree the distance from a point a to its projection on a segment [b, c] is the Gromov
product

(b\c)a = \ {d(a, b) + d(a, c) - d(b, c)).
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Xa Xa~,

Fig. 5. The fundamental dpmain D C T, and its approximations, D' and D[ C T ' .

Now the fact that d(x,x\) and d(x,x^) are greater than <5 - e > 3e/2 implies that p has to be
distinct from x\ and rz-2. Moreover, p cannot be a branch point of D if £ is small compared to d.
This means that x must lie in [x^ x^. But then, since [x-y-i^] doesn't contain any branch point
of D, either ̂ -\,x\,x,x^ or ^-1,^2, a^i are aligned in this order. Since d(x,x\),d(x,x-i) ̂
6 - e > e, this prevents x from being ^-close to ̂ -i which gives a contradiction. D

Since D' is in the ^-neighbourhood of D[, there is an F-equivariant e\ -approximation between
D and D[ for e\ = e + 2^ = 7^. Hence, we forget the approximation between D and D1 and we
concentrate on the approximation between D and D[. For every 7 € B U B~1 we choose an
approximation point \' € D[ of ^/y.

It will now be easy to construct a fundamental domain A for T ' by adding to D^ the
segments 1^ defined as follows (see Fig. 5):

DEFINITION. - For every 7 e B U B~1, we define the points Tr-y in T ' and the segments Z-y C T '
as follows:

• If ^ is elliptic in T ' , we call Tr/y = TLy-i the projection of D[ on Fix-r/ 7 and we take
1^ = J^_i to be the segment joining D[ to TT^.

• If^ is hyperbolic in T\ we call Tr/y the midpoint of the intersection of Axis T ' (7) with the

segment joining D[ to ̂ .D[ (so that 7.^-1 = TT^). We then take 1^ to be the segment joining
D[ tO TT/y.

We then define A = D[ U IJ-ycauB-i ^-y^

Remark. - Note that by minimality, A meets every orbit of T ' : the fact that for all 7 e B U B -1,
7.Z\ H A ̂  0 implies that jFn./\ is connected and invariant, and hence must be equal to T ' .

LEMMA 3.4. - The arc 1^ is contained in the e\ -neighbourhood of'^.

Proof. - Since 1^ is contained in the segment joining D[ to 7..Dp every segment [p,q] with
p e D[ and q G 7.^ contains 1^. Hence J^ C [x^-X^-iL but since ̂  = 7-X7-1. we g^
^^•^-i)^^!- a

This lemma implies that there is an F-equivariant (^2 == 3^i ̂ approximation between D and A
for which TT^ is an approximation point of ̂ .

A is a fundamental domain for T'
LEMMA 3.5. - If e is small enough compared to d, then TLy is a terminal point of A, and for

all-i^B\jB-\

^.AuA= {TT^}.
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Fig. 6. Zl and the germs rj^.

Moreover, one has TT^ == Try ^a^ wzfy i f ^ = ^ ' o r ^ = ^ ' ~ 1 with 7 ̂ //^c m T 1 ' . Finally, if^
is elliptic in T ' , then the germ of A at TT^ is not fixed by 7, and if^ is hyperbolic, the germ of A
at TT-y points towards the negative half-axis 0/7.

Proof. - By construction, it is clear that for all 7 e B U B~1,

7.(^i UJ^ UJ^-i) H {D[ UI^ UJ^-i) = {^}.

To prove that 7.zl D A = {^ } we just have to check that

7.Jy H A = 0

for 7' e B U B~1 \ {7,7-1}. But since Jy is contained in the £1 -neighbourhood of Try, and since
7.;Yy is far apart from D (at least at a distance d), we see that 7.71-̂  must be far apart from A.

Now by construction, TT^ is a terminal point of 7^ U 1^ U Z-y-i and must remain terminal
in A since the intervals added to D[ Ul^U J^-i are far from 1^ U Z^-i. The last claims follow
immediately. D

To prove that A is a fundamental domain for T', we use the same technique as [10]. We first
introduce some notations.

DEFINITION. - Let 7 C B U B~1.
• If^fis hyperbolic in T ' , we call rj^ the germ of the positive axis of^ at TT^. We also set

S^ = [x € T ' \ [^} | germ^([^,a;]) = ̂ }.

• If^is elliptic in T ' , we call rf^ = 7^-1 the germ of A at TT^. We also set

&v = [x e (T', F^) \ {^} [ 3k > 0 ^.r. germ^([7r^,.r]) = 7^.^}.

LEMMA 3.6. - IfT' is very small, or ifT is free simplicial, and ife is small enough, then the
sets S^ are pairwise disjoint and do not meet A.

Proof. - Assume that 7 e B U B-1 is hyperbolic in T ' . Since ̂  and the germ of A at ̂
point respectively towards the positive and negative half-axis of 7, S^ does not intersect A.
TT^-i =7-1.7^^

Assume now that 7 e B U B-1 is elliptic in Tf. Then 7 has to be elliptic in T (so that T is not
free). Here we use the hypothesis that T ' is very small: since 7 does not fix 7^, ̂ k does not fix
^ so the germs 7^ are all distinct and 5^, 5^-i and zl are pairwise disjoint.
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There remains only to prove that &y D «Sy == 0 when TT^ 7^ Tiy. But then S^ = S^ U TT^ is
a subtree of T ' which cannot intersect <?y because otherwise their union would be connected
hence would contain [71-̂ , Tiy] C Zi which is impossible. D

Remark. - We note the following facts:
• 7.7Ly-l = 7T^.

• 7.(Z\\{^-i})c5^.
• 7.5yC^foral l7 /e(BuB- l) \{7- l}.

COROLLARY 3.7. - The finite tree A is a fundamental domain for T ' in the following sense:
• A meets every orbit in T ' \
• Assume that x, y € A are such that x = w.y with w ~^-1. Then

- either x -^ y in which case x = TT^-I, y = TT^ andw = ̂ forsome^ G BUB"1 hyperbolic
in T ' ,

- or x = y = TT^ and w = 7^ for some 7 C B U B~1 elliptic in T ' .

Proof. - We have already noted that A meets every orbit. Now write w = 7? . . . 71 as a reduced
word with 7^ e B U £?~1. The previous remark shows that 7^. . . 71 .x e <Sy, U {TT^ }. Moreover,
if for some index z, 7^ . . . 71 .a; 7^ TT^-I , then 7,4-1... 71 .x <E S^,. We thus get inductively that
7p.. . 71 .x C S-vp so 7p.. . 71 .rr can't lie in A. Therefore, x = TT^-I and if p = 1, we are done.
Otherwise, we have TT^ = TT -i which implies 72 = 71 since w is reduced. We obtain recursively
that w = 7^, and 71 is elliptic in T1 since TT^ = TT -i. D

On is open in CVn __
PROPOSITION 3.8. - On is open in CVn and CVn is open in the set of all actions of Fn on

R-trees.

Proof. - Take T ' close enough to an action T in On and assume moreover that T ' is very small
in the case when T is not free. Then the set A constructed above is a fundamental domain in the
sense of Corollary 3.7.

First of all, T ' is simplicial because T ' is the union of the translates of A and w.A may only
meet WQ.A in some WQ.TT^. Moreover, if T is free. Corollary 3.7 shows that T ' is free.

If T is not free. Corollary 3.7 implies that edge stabilizers are trivial and that vertex stabilizers
are cyclic. Now if x has non-trivial stabilizer, we may assume (up to the action of Fn) that x = TT^
and Stab x == 7Z for some 7 C B U B~1. But since A and the sets Sy cover T', the set of germs
at TT^ is 7^7. This implies that Stab x acts transitively on the set of edges incident to x. We
thus conclude that T ' C On. D

The stabilizer in Out(Fn) of every T e On is finite
LEMMA 3.9. - The stabiliser in Out(Fn) of every T G On is finite.

Proof. - Assume that a e Aut(Fn) fixes T i.e. that there is an equivariant homothety h
between T and T.a. This homothety naturally induces a homothety of the finite metric graph
T / F n , which implies that h must be an isometry. Since Id:T -^ T.a is a-equivariant (i.e.
ld(g.x) = a(g)M(x)) f =ldoh:T —>T is a-equivariant.

In [I], it is proved that / induces an automorphism ̂  of the graph of groups Q = T / F n in the
following sense:

DEFINITION. -If Q is a graph of groups, an automorphism (p ofQ consists in
• an automorphism ip of the underlying graph (an isometry in our case),
• an isomorphism ^py : Fy —^ F^ for each vertex v G Q,
• for every oriented edge e ofQ, an isomorphism, (pe '• Fe —^ F^e) such that (pe = ̂ e,
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• for each vertex v € Q, an element 7^ e ̂ \(Q, ̂ p(v)),
• for every oriented edge e of Q, an element 7e C 7Ti(Q,(^(o(e))) such that 6e :== 7o(<i)7e ^

^o(e).
such that the/allowing diagram commutes:

n ^ p
^ e —————^ 2 o(e)

^ \I^°^o(e)
Y • Y

r Me)^ r^ (^(e) ———^ ^ y,(o(e))

Remark. - When edge stabilizers are trivial, the diagram automatically commutes.

Such a morphism (^ induces a on the fundamental group of Q in the following sense: one
defines y?* : 71-1 (Q, 2;) —^ TTI (Q, (^(zQ) by setting, for every loop (go, e\, ̂ i , . . . , e^, ̂ n) m the graph
of groups Q

(p^goei. ..engn) = (7^^o(^o)7^o1) (7ei^0°i)7ii1) • • • (7e^(^n)7^1) (7^^J^n)7^1)-

Then there exists a path j?^ in the graph of groups Q joining v to (p(v) such that the induced
morphism Ip^ : 71-1 (Q, ̂ (v)) —>• 71-1 (Q, v) is such that Ip^ o y?* induces a on 71-1 (Q, v) (see [1]).

Denote by Aut(Q) the group of automorphisms of the graph of groups Q and Auto(Q) ihe finite
index subgroup of Aut(Q) consisting of automorphism inducing the identity on the underlying
graph of Q. We only have to prove that Auto(Q) has finite image in Out(7ri(0, v)).

Let (go, e\,g\,..., en,gn) be a loop based at v in the graph of groups Q. If Vi is a terminal
vertex of Q, e^-i = ei and since J^ is abelian, 7^ ̂ 7^ commutes with ^pvi(gi)- This implies

(7e^-le^-l7^1_l)(7^^^(^)7^1)(7e,e^7^1) =7e,_ie,-i^(^)e,7^^.

If ̂  is not a terminal point in Q then 7g^7^ ^ ̂  = { 1 } so

(7ez-iez-i7e;ti) (7^^te)7^1) (7e.^7^1) = 7e,_^,-i^(^)e,7^1.

Therefore, when v = VQ = Vn is not terminal (which we may assume without loss of generality),
we derive that

^(goei.. .en9n) = 7^o^o(^oMei)^i(^i). . .(pvr,-i(9n-i)^(en)^(gn)^o1'

Therefore, the image in Out(7ri(Q,v)) of Auto(Q) is a quotient of the direct product of the
automorphism groups of the vertex groups jT^, which are finite since J^ are cyclic. D

The action of Out(Fn) on On is properly discontinuous
There is a natural decomposition of On into open simplices: if T e On, we call (j(T) c On

the set of actions obtained by changing equivariantly the lengths of the edges of T (each
length remaining non-zero). These open simplices form a partition of On which is preserved by
Out(Fn). Moreover, there are finitely many orbits of simplices since such an orbit corresponds to
an unmarked graph of groups (with no metric) which appears as a quotient of an action in On'

We also consider the set cr(T) (which may not be a closed simplex) of actions in On obtained
by changing equivariantly the lengths of the edges of T (here 0 is allowed but the action obtained
must lie in On). We then call St(T) the star of T, i.e. the set of actions T ' such that T e ̂ (TQ.
Equivalently, St(T) is the set of simplicial actions T ' such that there exists an equivariant
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application from T ' to T which preserves alignment. Of course, St(T) is a union of open
simplices and if T ' <E St(T), St(T) C S^T'). This union is finite because if On was an infinite
sequence of such simplices, then up to taking a subsequence, there would exist On ^ Ovit(Fn)
sending On to 0-0 and stabilizing a(T), but this contradicts the fact that the stabilizer of the
barycenter of a(T) is finite.

PROPOSITION 3.10. - For all T € On, St(T) is open in 'CVn.

Remark. - This proposition implies that an action T in On \ CVn may only be approximated
in CVn by actions T ' whose quotient graphs have a separating edge. Indeed, for T ' C CVn close
enough to T, T ' lies in a(T) which means that there is an equivariant map T ' —^ T preserving
alignment. The preimage of a terminal edge of T / F n is a separating edge in T ' / F n . Since the
quotient graphs of the actions contained in the spine of outer space have no separating edge, this
means that the closure in CVn of the spine of outer space is contained in Fn = CVn \ On-

Proof. - We consider T' close enough to T and A C T ' the fundamental domain of T '
constructed above. We note that A is the convex hull of the points Tr/y for 7 C B U B~1 (because
this convex hull meets every orbit of T ' by minimality of r').

To prove the proposition we have to find an equivariant map from T ' to T preserving
alignment. The following lemma gives a map from A to D, linear on each edge of A, which
preserves alignment and sends Tr/y to ^7. Because of Corollary 3.7, such an application naturally
extends to an equivariant map from T ' to T which preserves alignment. D

LEMMA 3.11. -Let D and A be two finite trees together with an e -approximation between
them. Assume that for every terminal vertex 7Ty of A there is an approximation point ̂  which is
terminal in D.Ife is small compared to the length d of the shortest edge of D, then there exists
a natural application f : A —> D linear on the edges of A, preserving alignment and sending TT^
to^.

Proof. - We first define / on the terminal vertices of A by sending Tr-y to ̂ . To extend / to a
branch point b of Z\, we consider a triod (TT^ , TT^, ̂ 73) such that [b] = [7^, TL-yJ D [TT^? ^73] F1
[71-73, TT^ ] and we want to set [f(b)]= [^, ̂ 721 n \X^»^73 ] n [^73. X^ 1. Note that f(b) is either
a branch point or a terminal point of D (this happens when / identifies two terminal points of A)
hence it is a vertex of D.

The point f(b) is independent of the choice of the triod because f(b) is (36-/2)-close of an
approximation point b' of b and two vertices of D are at least at a distance d. By construction, /
preserves alignment in restriction to the set of branch points and terminal vertices of D, just
extend / linearly on edges to conclude. D

PROPOSITION 3.12. - The action ofOut(Fn) on On is properly discontinuous.

Proof. - Let K be a compact subset of On- Since K is covered by a finite number of stars
St(Ti) each of which is a finite union of open simplices, K is covered by finitely many open
simplices. Since the decomposition of On into simplices is equivariant, the proposition reduces
to proving that the stabilizer of an open simplex is finite. Thus, the proposition follows from the
fact that the barycenter of a simplex in On has finite stabilizer. D

This completes the proof of Theorem 1. D

4. Dynamics of Out(Fn) on J='n

In this section, we study the dynamics of Out(Fn) on the closed invariant subset Fn =
CVn \ On of the boundary of outer space.
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THEOREM 2. - Let T be simplicial in Fn and let T ' be any small action (n > 3). Then there
exists a sequence ajc of elements ofOut(Fn) such that

lim T'.ak=T.
k—>oo

The following corollary is a straightforward consequence of Theorem 2:

COROLLARY 4.1.- For n ̂  3, there exists precisely one minimal non-empty closed invariant
subset of outer space. This set M.n Is the closure of the orbit of any simplicial action lying in J^n
under the action ofOut(Fn).

Remark. - In [14], D. Gaboriau and G. Levitt show that the topological dimension of 9CVn
equals 3n — 5, thus refining a theorem by Bestvina and Feighn [4]. It is easy to find a simplex
of simplicial actions of dimension 3n — 5 in Tn and hence in Mn (see Fig. 8). Therefore, the
topological dimension of every open set in A^n equals 3n — 5.

Another easy consequence of Theorem 2 is that the set of actions in M-n having trivial
stabilizer in Out(.Fn) ^s a dense Gg in A^n.

The proof of Theorem 2 is analogous to the proof of the minimality of the action of the
mapping class group of an orientable surface on the boundary of its Teichmiiller space. The
first step is a theorem by Cohen-Lustig about dynamics of Dehn twists in CVn which is the
analogue of the fact that if z(c, F) 7^ 0 for a curve c and a measured foliation f', then iterating
Dehn twists around c on F makes it converge to c. In a second step, we introduce a particular
kind of action which we call "special curve". A special curve T has the property that given any
action T ' e CVn, there exists an automorphism ao 6 Out(Fn) such that '^(T, T'.ao) -^ (T. Using
the dynamics of Dehn twists, we see that the Out(Fn) -orbit of Tf accumulates on T. In a third
step, using the folding to approximate technique, we show that any simplicial action T C Tn may
be approximated by a "special curve", which proves Theorem 3.

T=CV^

~. z /b 'o.-\
/

x cv\j)
Fig. 7. The boundary of outer space.

n-\ circles, 3/2-4 edges

Fig. 8. A (3n — 5)-dimensional simplex in M.n-
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4.1. Dynamics of Dehn twists

In [7], M. Cohen and M. Lustig study the dynamics of multiple Dehn twists. This theorem will
be the engine enabling us to show that Out(Fn) -orbits accumulate on some actions.

DEFINITION ([7]). - Let Q be a graph of groups and eo be an oriented edge ofQ. Consider an
element ZQ of the center of the edge group 7e- ̂  still denote by e the element of the Bass group
f3(Q) corresponding to an edge e. The single Dehn twist with twistor ZQ is the automorphism of
^\(Q^ v) induced by the automorphism D of f3(Q) defined by

• D(eo) = eo.ieo(zo\ D(e^) = e^.i^-^zo)-1,
• D(e) = efor every edge e distinct from eo, e^1,
• D(r) = r for every element r of a vertex group.

The non-oriented edge corresponding to eo is called the twisted edge. A multiple Dehn twist of
Q is the (commuting) composition of single Dehn twists D^ on distinct edges.

Recall that a graph of actions on R-trees Q is a graph of groups Q together with the following
data: for every vertex v € Q there is an action of the vertex group Fy on an R-tree Ty (which
may be reduced to one point), and for every oriented edge e, an attaching point pe € Tt{e) fixed
by ie(Fe). A graph of actions naturally defines an R-tree TQ endowed with an action of T[\(Q)
(see [19], or [7, combination lemma]).

If Q is a graph of groups, we denote by triv(Q) the set of edges of Q with trivial edge group (it
can be identified with the union of the open edges with trivial group in the geometric realization
of the graph underlying Q). If Q is a subtree of T, triv(Q) is the set of edges of Q with trivial
stabilizer.

COHEN AND LUSTIG'S THEOREM ABOUT DYNAMICS OF DEHN TWISTS ([7]). -
The data. Let T be a very small simplicial action ofFn and let Q = T/Fn be the quotient

graph of groups whose fundamental group is identified with Fn. Consider a union A of connected
components of Q \ triv(Q). For every component AQ of A, we consider an ̂ -tree T^o endowed
with a small action of FAQ = 7Ti(Ao) and an attaching point pe G T^o for each edge in Q\ A
incident on AQ.

The construction. Let T' be the simplicial action obtained by collapsing to one point
every connected component of the preimage of A in T. The graph of groups Q' = T' /Fn is
obtained by collapsing each connected component AQ of A and the corresponding vertex group
is FAQ = 7Ti(Ao). We denote by -TAQ the action obtained by dividing by k the metric ofTAo.
We denote by Qk the graph of actions obtained from Q' by attaching to a vertex AQ the tree
^TAQ, and the trivial action for any vertex ofQ' which is not the image of a component of A.
The attaching points are the points pe. We denote by Tk the Fn-action corresponding to Qk.

The result. Under the hypothesis that every edge group in AQ has no fixed point in TAQ,
there exists Dehn twists Dk on Q such that the sequence of actions T^ = T^.Dk converges to T
as k —)• oo (in the projectivised space).

Here is a consequence of this theorem: let T be a very small simplicial action for which
none of the edge stabilizers is trivial, and assume that T ' is a small action such that for every
edge e of T, the stabilizer of e has no fixed point in T ' ' . Then there exists Dehn twists Dk
such that T'.Dk kz^ T (just take A = T / F n ) . Therefore, we may think of an action T e ~CVn
whose edge stabilizers are all non-trivial as an analogue of a (non-connected) curve in a surface.
In this analogy, assuming that every edge stabilizer of T has no fixed point in T ' corresponds
to supposing that the intersection number of every connected component of a (non-connected)
curve (~ T) with a measured foliation (~ T ' ) is non-zero. So, by analogy, (and to make notations
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lighter), we will say "z(T, T ' ) -^ 0" when it is satisfied. So we may restate this particular case of
the theorem as follows:

COROLLARY 4.2. - IfT € CVn is a "curve " and if T ' is a small action such that "z(T, T ' ) ̂
O", then there exist Dehn twists Dk such that T'.Dk converges to T.

Remark. - We have no satisfactory definition of what could be an intersection number z(T, T ' )
for reasonable actions T, T ' e CVn, that's why we keep quotes in the notation "z(T, T ' ) ̂  (T.

4.2. "Special curves": some actions on which every Out(F^)-orbit accumulates

DEFINITION. - We say that an action T G CVn is a "special curve" if it is a "curve" (i.e.
it is simplicial, very small, and every edge stabiliser is non-trivial) and if there exists a basis
(a i , . . . , an) of Fn such that for all g G Fn fixing an edge in T, g or g~1 is a conjugate of a
positive word in the di 's .

This condition is essentially technical. However, it is useful in the following proposition:

PROPOSITION 4.3. - Let T e ~CVn be a "special curve". Then the Out(FJ-orbit of'any small
action accumulates on T.

Proof. - Using Corollary 4.2 we only have to prove that there exists a e Out(Fy,) such that
"KT.T'.a) 7^ O". We know that there exists a basis B of Fn such that every edge stabilizer
of T is generated by a conjugate of a positive word in B. Therefore, the problem reduces to
showing that there exists a basis B' of Fn such that every non-trivial positive word in this basis
is hyperbolic in T ' : one can just take a to be the automorphism sending B to B ' . So we just have
to prove the following lemma. D

LEMMA 4.4. - For any small action T of Fn, there exists a basis in which every non-trivial
positive word in this basis is hyperbolic in T.

Proof. - We first show that for any action of Fn with no global fixed point, there exists a basis
of Fn containing a hyperbolic element. Start with any basis (a i , . . . , an} of Fn and assume that
every ca is elliptic. Then a^oy is elliptic if and only if Fix a, H Fix aj -^ 0. If for every i ̂  j, the
basis (a i , . . . , a^-i, a^Oj, c^+i, . . . , dn) is composed of elliptic elements only, then T has a global
fixed point (Serre's lemma).

We now prove that any small action has a basis composed of hyperbolic elements. We first
notice that if a is hyperbolic and b is elliptic, ab is hyperbolic unless Fix b H Axis a contains
exactly one point x. Moreover, if b.Axis a ̂  Axis a, one easily checks that for k large enough,
akb is hyperbolic. But if &.Axis a = Axis a, then b2 and ab2a~l fix this axis and don't commute
which contradicts the fact that T is small. Now, starting with a basis (ai , . . . ,a^) of Fn such
that ai is hyperbolic, there exist integers ki such that the basis (ai, a^a^.... a^dn) consists of
hyperbolic elements.

From this basis (6i , . . . ,6^) , we can deduce another basis consisting of hyperbolic ele-
ments whose axes have a common non-degenerate segment I and whose orientations co-
incide: take I to be any non-degenerate interval in Axis (61) and note that for ki large
enough, b^bib^ is hyperbolic and its axis contains I . So one may take a basis of the form
(bi,(b^b2b^)±\...,(b^nbnb^n)±l). To prove that every positive word in this basis is hyper-
bolic, we just have to notice that if a and b are hyperbolic isometries such that the intersection
of their axes contains a non-degenerate interval I and whose orientations coincide, then ab is
hyperbolic, its axis contains I and its orientation coincides with those of a and b. D
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4.3. Approximation of a simplicial action in Tn by a "special curve"

Because of Proposition 4.3, the proof of Theorem 2 reduces to the following proposition:

PROPOSITION 4.5. -The set of "special curves" is dense in the set of simplicial actions
in Fn.

To prove this proposition, we will proceed in three steps. In the first step, we essentially
approximate a simplicial action T C Fn by a simplicial action T / e Tn with trivial edge
stabilizers and cyclic vertex stabilizers using the dynamic of Dehn twists. In the second step,
using the folding to approximate technique, we approximate Tf by an action T" with trivial edge
stabilizers and whose quotient graph is a tree. Finally in the third step, using once again the
folding to approximate technique, we approximate T" by a "special curve".

First step: approximation to get rid of components of Q \ triv(Q) with non-cyclic
fundamental group

Remember that triv(Q) denotes the set of edges of Q with trivial edge group.

PROPOSITION 4.6. - Any simplicial action T € Tn may be approximated by a simplicial
action T ' G Tn whose quotient graph of groups Q' = T ' / F n has the following properties:

• Every component ofQf \ triv^O has cyclic fundamental group (as a graph of groups).
• At most one component ofQ' \ trr^O') is not reduced to one point.

Proof. - Consider the union A of the components of Q \ triv(Q) whose fundamental group is
not cyclic (as a graph of groups). Consider a component Ao of A, FAQ its fundamental group
and m ̂  2 the rank of this free group. We consider a simplicial action T^ of Ao whose quotient
graph of groups is a (m — l)-rose whose edge stabilizers are trivial, and whose vertex stabilizer
is infinite cyclic. We choose any attaching points for edges of Q \ A incident on Ao.

To apply Cohen and Lustig's theorem, we need the edge groups of Ao not to fix any point
in TAQ- To achieve this, we apply the following lemma to a set [g\,... , g k ] consisting of one
generator of each edge group of Ao and we change TAQ to TAQ-OI.

LEMMA 4.7. - Let g\,... ,gk be a finite set of elements ofFAQ- If TAQ is an action as above,
there exists an automorphism a of FAQ such that g\,..., gk are hyperbolic in TAQ-OL.

Proof. - There is a natural basis (a i , . . . , dm) of IA() such that g G 7"Ao is elliptic in T^o if and
only if g is conjugate to a\. If (p is the automorphism of FAQ fixing 02, . . . , dm and sending a\ to
ai02, then for every g e FAQ there exists at most one p G Z such that ̂ (g) is conjugate to a\, so
that we can take a to be a power of (p. D

Now consider the sequence of actions T^ constructed in the theorem about dynamics of Dehn
twists. We know that T^ converges to T. But T^ is simplicial, very small, and lies in Tn since
there exists a non-terminal vertex of Q^ = T ^ / F n with non-trivial group (by choice of the actions
TAo). By construction, no component of Q^ \ triv(Q^) has a non-cyclic fundamental group. This
proves the first part of Proposition 4.6.

Now assume that T satisfies the first part of Proposition 4.6 and not the second one. Then
take A to be the union of all but one connected components of Q \ triv(Q) not reduced to one
point. For every component Ao of A, we consider a free action of the cyclic group TTi(Ao) on a
line TAQ - Using the theorem about dynamics of Dehn twists, we get an approximation of T which
is very small and which lies in Fn (because it has a non-trivial edge stabilizer). This conclude
the proof of Proposition 4.6. D
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Second step: approximation by an action whose quotient graph is a tree
PROPOSITION 4.8. - For n ̂  3, any simplicial action in J^n may be approximated by a

simplicial action T ' e Tn with trivial edge stabilisers such that T ' / Fn is a tree.

Proof. - Thanks to Proposition 4.6, we may assume that the quotient graph of groups Q =
T / F n satisfies the following: every component of Q \ triv(Q) has cyclic fundamental group and
Q \ triv(Q) has at most one component not reduced to one point. Therefore, either T has trivial
edge stabilizers or Q \ triv(Q) contains exactly one component not reduced to one point, and this
component has cyclic fundamental group (as a graph of groups). First of all, we approximate T
so that the lengths of its edges are all rational. We then multiply the metric by an integer and
maybe subdivide some edges so that every edge in T has length 1. We first consider the case
when T has trivial edge stabilizers: the treatment of the other case is similar but is a bit more
technical.

When T has trivial edge stabilizers
Since T has trivial edge stabilizers and cyclic vertex stabilizers, the hypothesis T G Tn

means that there exists a non-terminal vertex x G Q with non-trivial stabilizer. We prove the
proposition by induction on the number of edges in T / F n : the idea is to perform on T ^folding to
approximate operation from such a vertex and to choose the folding paths so that the folded action
has trivial edge stabilizers and contains a vertex with non-trivial stabilizer whose projection in
the quotient graph of groups is not terminal. The following lemma tells us about the length of
paths required to perform such an interesting fold.

LEMMA FOR FOLDING SUB-PATHS. - Let T be a simplicial action with trivial edge stabilizers
and whose edges all have length 1. Let a = a\a^... and f3 = f3\^... be two (maybe infinite)
paths in Q = T / F n with same origin x and well oriented with respect to an orientation of Q.
Assume that the vertex x has non-trivial group and that a\ ̂  J3\. We also suppose that one of the
following conditions is satisfied'.

(1) a and f3 are infinite',
(2) a is strictly longer than f3 and the terminal vertex off3 has a non-trivial group.

Then there exist sub-paths a'\ff of a, [3 with the same (non-zero) length such that for any lift
a' and f3f of a' and 13' with same initial vertex x and for every sequence of distinct elements
Wk C Stab x, the actions T^ = T / a ' r ^ w k . f t ' converge to T, T^ has trivial edge stabilisers,
and its quotient graph of groups T^/Fn has a non-terminal vertex with non-trivial group (in
particular, T^ e Tn\

Remark. - The action T^ still has edges of length 1 and its quotient graph T^/Fn has strictly
fewer edges than T.

Proof. - We denote by T^ the action obtained after the zth intermediate fold of a with Wk .f3,
QW ^ TfV^, q,'. T -^ T^ the folding map and ̂  : Q -^ Q^ the induced application.

We first notice that if for i > 1 the edges ^-i(a,) and ^-i(wfc.A) C T^\ that define the %th
intermediate fold are in the same orbit, then their common vertex xi has non-trivial stabilizer,
and its projection xi-\ e Q^\ is not a terminal vertex since it belongs to the interior of the well
oriented hence immersed path ^_i(o^_i U a,). Moreover, the fact that those edges g,_i (a,) and
qz-i(wk.(3i) lie in the same orbit does not depend on Wk since the fold between two paths is the
quotient by the smallest equivariant relation identifying them.

Therefore, if there exists an index i such that (^-i(o^) and gz-i(wfc.A) lie in the same orbit,
we consider the smallest such %o (^o > 1) and take a' and f3' to be the restriction of a and f3 to the
first ZQ - 1 edges. Therefore, every T^ has trivial edge stabilizers for i < io and we can apply
the folding to approximate lemma to conclude.
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If there is no such index z, we can apply the folding to approximate lemma to any of the T^ \
but we are looking for an index i such that Q^ has a non-terminal vertex with non-trivial group.
In this situation, every intermediate fold reduces by one the number of edges of the quotient
graph which prevents a and f3 from being both infinite. Hence the second assumption must hold.
This implies that we can take i = \f3\ (i.e. ft' == f3 and a' is the restriction of a having the same
length as /3). Indeed, if v denotes the terminal vertex of f3, q^iv) lies in the interior of the well
oriented arc q^^a) so its projection in Q^ is non-terminal and has non-trivial group. D

Now, going back to the proof of Proposition 4.8 in the case that T has trivial edge stabilizers
(and edges with length 1), we argue by induction on the number of edges in T / F n using the
lemma for folding sub-paths.

To apply this lemma, it is sufficient to find an infinite path a in Q = T / F n which is well
oriented for some orientation of the edges of a in Q, starting at a vertex x with non-trivial group
and such that there exists an edge e in Q with origin x not contained in a. As a matter of fact,
we can then inductively construct a well oriented path ^starting at e, by following any edge
with the right orientation (whenever it is already in a or /3). The only case where this can't be
done is when f3 reaches a terminal vertex of Q, but the stabilizer of this vertex has to be non-
trivial by minimality. Therefore, in this situation, we can apply the lemma for folding sub-paths
to conclude.

We may assume that Q is not a tree because otherwise there is nothing to prove. Hence, there
exists an embedded circle in Q. If there exists such a circle C not containing x, we define a to
be the path following a simple arc joining x to C before turning around C infinitely many times.
Since x is not terminal in Q, there exists an edge e with origin x which is not in a. A similar
argument works if x has valence at least 3 and x G C.

Therefore, the only remaining case is when x has valence 2 and every embedded circle in Q
contains x which may only happen when Q has the homotopy type of a circle (as a simple graph).
Let C be the unique embedded circle in Q (x e C by hypothesis). We distinguish two cases. If
there exists a vertex v -^ x in Q whose group is non-trivial and such that the length of the two
simple paths a and f3 joining x to v are distinct, we can apply the lemma for folding sub-paths.

If no such vertex exists, it means that Q can be obtained from C by gluing finitely many trees
(maybe 0) on the point u which is antipodal to x in C (u may not be a vertex if \C\ is odd in
which case Q = C). In this case, we take a and f3 to be the two simple paths joining x to u in C
(maybe in the bary centric subdivision of Q). We consider two lifts a and f3 of a and f3 with same
origin x and Wk a sequence of distinct elements in Stab x. It is clear that every intermediate fold
of q^: T —> r^ = T/o:~wfc./3 is a fold between edges with trivial stabilizers so we can apply the
folding to approximate lemma. Moreover, Q^ = T^/Fn is a tree so we just have to check that
T^ ^ On- If (^k} denotes the map induced by q^ on the level of quotient graphs, the group of
(^(u) is always non-trivial. It is even non-cyclic when the group of u is non-trivial. Therefore,
T^ G Tn as soon as the group of u is non-trivial or when Q is not a circle (because ̂ (u) is not
terminal in Q^). In the remaining situation where Q is a circle and the group of u is trivial, the
only vertex with non-trivial group is x. This implies that the group of x is free of rank n — 1, and
hence cannot be cyclic for n ̂  3. Therefore the stabilizer of q^^x) is non-cyclic and T^ € Tn
which concludes the proof of Proposition 4.8 in the case when T has trivial edge stabilizers.

When T has non-trivial edge stabilizers
In this case, we show how to approximate T by an action satisfying the hypotheses of the

previous case, i.e. an action with trivial edge stabilizers and such that there exists a non-terminal
vertex in its quotient graph with non-trivial group.

We denote by Q the quotient graph of groups T / F n as usual. As before, we can assume that
edges of T have length 1, that every component of Q \ triv(Q) has cyclic fundamental group and
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Q \ triv(Q) has exactly one component I which is not reduced to one point. Since the fundamental
group of I as a graph of groups is cyclic, and since its edge groups are non-trivial, 71-1 (J) has a
global fixed point in T, so I must be a tree (an HNN extension is never trivial). Moreover, the fact
that T is very small says that I is an interval and that every edge morphism is an isomorphism
onto the corresponding vertex group which means that the connected components of the preimage
of I in T are intervals. We are going to prove a folding to approximate lemma for edge stabilisers
by performing a fold on an action obtained thanks to Cohen-Lustig's theorem about dynamics
of Dehn twists.

In order to apply Cohen-Lustig's theorem, we set A = J, and take Tj to be a line with a non-
trivial action of 7Ti(J) ̂  Z by translations. We choose a point x in 7j and take every attaching
point pe to be x. We consider Tk and T^ = Tk.Dk as in Cohen and Lustig's theorem. Note
that the graphs of groups Qk == T ^ / F n and Q^ = T^/Fn may be obtained from Q = T / F n by
collapsing I to a vertex vi and by adding an edge ej and gluing its endpoints to vi.

FOLDING TO APPROXIMATE LEMMA FOR EDGE STABILIZERS. - Let T be a very small
simplicial action in Tn such that every component ofQ\ triv(Q) has cyclic fundamental group
and Q \ triv(Q) has exactly one component I which is not reduced to one point. Let T^ be the
sequence of actions constructed in Cohen andLustig's theorem with A= I as above.

Assume that a and /3 are two paths in Q^ \ <°j with origin vi. We choose some lifts a^ and
(3^ of a and f3 and we assume that they satisfy condition (H) and that when folding a^ on
(3^, every intermediate fold is a fold between edges with trivial stabiliser.

Under the assumption that the first edges a\ and /3\ of a and /3 correspond to edges in Q with
distinct initial points, the actions T^ obtained from T^ by folding a^ along /3^ converge to T
as k —> oo.

Proof. - We prove convergence in the translation lengths topology. The theorem about
dynamics of Dehn twists tells us that T^ converges to T.

If g € Fn has a fixed point in T then its translation length in T^ approaches 0 when k tends to
infinity, and since a folding map decreases distances, lrw(g) ̂ ° 0.

If g e Fn is hyperbolic in T, then for large enough k, it is hyperbolic in T^. Moreover, because
a\ and ]3\ correspond to edges in Q with distinct initial points, a path in Q entering I from (the
edge corresponding to) Q'i~1 and leaving I through f3i will be twisted more and more so that
the corresponding path in Q^ will go through ej more and more often between ai~1 and /3\.
A similar fact holds for a path entering I from /3i~1 and leaving I through o;i. This implies that
for k large enough, the projection of the axis of g in Q^ never successively runs through a\-1

and f3i or /^-1 and a\. Corollary 2.2 says that two adjacent edges which are not identified by
the first elementary fold are not identified in T^ = T/a^^/3^. Therefore, for large enough k,
the folding map isometrically embeds the axis of g into T^ so ^7W(o) = ^T' (g) anc! therefore
converges to Zr(^). Q

The folding to approximate lemma for edge stabilisers allows us to prove a version of the
lemma for folding sub-paths for edge stabilizers:

LEMMA FOR FOLDING SUB-PATHS FOR EDGE STABILIZERS. -Let T be a simplicial action
whose edges have length 1, such that every component of Q\ triv(Q) has cyclic fundamental
group and Q \ triv(Q) has exactly one component I which is not reduced to one point. As above,
consider T^ an approximation ofT provided by Cohen and Lustig 's theorem.

Let a = aio'2 ... and /3 = f3i/3^... be two {possibly infinite) paths in Q^ \ ej with the same
origin x, well oriented with respect to an orientation ofQ and such that a\ and f3\ correspond
to edges in Q with distinct initial points.

We also suppose that one of the following conditions is satisfied:
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(1) a and f3 are infinite',
(2) a is strictly longer than f3 and the terminal vertex of [3 has non-trivial stabiliser.

Then there exist sub-paths a' , ] 3 ' of a, f3 with the same (nonzero) length such that for any lift a'
and /?' of a' and j3' with the same initial vertex x, the actions T^ = T ^ / a ' r ^ f s ' converge to T,
T^ has trivial edge stabilisers, and its quotient graph of groups T^/Fn has a non-terminal
vertex with non-trivial group (in particular, T^ G J^n)'

The proof is similar to the proof in the trivial-edge stabilizer case. With this lemma for folding
sub-paths for edge stabilisers at hand, we just have to repeat the argument used when T had
trivial edge stabilizers to find some paths a and f3 satisfying its hypotheses. The only additional
case is when Q^ \ ej is a tree. This means that Q is a tree, and by minimality, I doesn't contain
any terminal point of Q. We then consider two endpoints Sa and 8/3 of Q^ lying in two distinct
components of Q^ \ vi corresponding to non-adjacent components of Q \ I . We take a and f3
to be the simple paths joining vi to Sa and sp respectively. If their lengths are distinct, we can
apply the lemma for folding sub-paths for edge stabilisers and we are done since we thus get an
approximation of T lying in Tn with trivial edge stabilizer to which we can apply Proposition 4.8
(already proved in the case of trivial edge stabilizers). If a and f3 have the same length, we
approximate T by changing some edge lengths slightly (keeping them rational) so that the lengths
of a and f3 become different. After subdivision, we can once again apply the lemma for folding
sub-paths for edge stabilizers to conclude. This concludes the proof of Proposition 4.8. D

Third step: approximation by a "special curve"
PROPOSITION 4.9. - For n ̂  3, any action T e Fn with trivial edge stabilisers and whose

quotient graph is a tree may be approximated by a "special curve " .

Thanks to Proposition 4.8, this proposition will conclude the proof of Proposition 4.3 and
therefore of Theorem 2.

Proof. - Recall that a "special curve" is a very small simplicial action such that there exists a
basis (ai , . . . , an} of Fn in which every edge stabilizer is non-trivial and generated by a conjugate
of a positive word in {a\,..., dn) •

As above, up to approximation, subdivision and rescaling, we can assume that every edge
in T has length 1. We are going to perform folding operations on T to create non-trivial edge
stabilizers, and we will argue by induction on the number of orbits of edges with trivial stabilizer.
As above, we denote by Q = T / F n and by triv(Q) the set of edges in Q with trivial group. We
also denote by triv(Q) the union of triv(Q) together with the vertices of Q adjacent to an edge of
triv(Q).

The induction hypothesis is the following: we assume that we know how to prove the
proposition for every action T / e J^n whose quotient graph Q' is a tree such that ^n\(Q') <
^triv(Q) and

1. tru^OO is connected,
2. triv((y) is empty, or contains a vertex whose group is not cyclic, or a vertex with non-trivial

group which is not terminal in trh^QQ,
3. there exist a free basis (a i , . . . , an) of Fn, a lift Q' of Q' and for every connected component

C of Q' \ trr^Q7), a possibly empty subset Be C { a i , . . . , an] such that
(a) for all aj G Be, dj fixes a point in G,
(b) the stabilizer of every edge or vertex in C has a basis composed of positive words in

Be.
Note that condition 3(a) implies that two sets Be and Be' are disjoint for C 7^ C ' , and

condition 3(b) shows that the union of the sets Be equals { a i , . ._,0n}. The action T we are
starting with satisfies the induction hypothesis: choose any lift Q of Q in T, and for every
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Fig. 9. Folding a and /? in the first case. Edges with non-trivial stabilizer are represented in bold face.

component C of Q \ triv(Q) (which is a single vertex) consider a free basis Be of Stab C and
take (ai, . . . .On) to be the union of the Be. Moreover, if an action T satisfies the induction
hypothesis and triv(Q) is empty, then T is a "special curve" so there is nothing to prove.

First case: triv((3) contains a vertex x which is terminal in triv(Q) and has non-cyclic group
(see Fig. 9 where bold edges correspond to edges with non-trivial stabilizer). Let x be the lift
of x in Q, let s^ and s/3 be two terminal vertices of triv(Q) distinct from x. Note that Stab SQ
and Stab s/3 must be non-trivial since either Sa is terminal in Q or it is the endpoint of an edge
of Q with non-trivial stabilizer. Let a and (3 be the paths joining x to Sa and sp respectively.
Since we want triv(Q) to remain connected after folding, we choose Sa and s^ so that |an/3| is
minimal, which means that a and {3 bifurcate as soon as they meet a branch point p of triv(Q). In
particular, we take Sa = sp only if triv(Q) is a segment. If a and /3 do not have the same length,
we shorten the longest one so that this condition is satisfied.

To apply the folding to approximate lemma (Section 2.3) to a and /3, we just have to choose
a sequence of distinct elements Wk € Stab x. Let C be the component of Q \ triv(Q) containing
x and let [g\,... ,g?] be a basis of Stab x consisting of positive words in Be' Since Stab x is
not cyclic, we can choose a sequence Wk of positive words in [g\,... , g p ] which are not proper
powers in Fn and which are not conjugate to elements of Fn that already fix an edge in T.

The hypotheses of the folding to approximate lemma are clearly satisfied, so T^ = T / a ^ w k . / 3
converge to T. Hence, we just have to prove that T^ satisfy the induction hypothesis. Recall that
[x,p] denotes a D (3 and that q^: T -^ T^ is the folding map. The stabilizer of q^^x,?]) is
generated by w/c, and Q^ = T^ / Fn may be obtained from Q by gluing a \ [x,p] on f3 \ [x,p].
Therefore, Q^ is a tree, and tnv^Q^) is connected since [x,p\ is a terminal segment oftriv(Q).
Moreover, T^ is very small since Wk is not a proper power and Fix jw Wk = q^dx, p]) contains
no triod. Condition 2 is also satisfied by T^: if Sa = s^, tri^Q^) is empty; if SQ ̂  s/3 and if
dr(x,Sa) == dr(x,s/3) then q^\Sa) has non-cyclic stabilizer and its projection to Q^ lies in
triv^^); if Sa / s/3 and if dr(x, Sa) < dr(x, sp) (without loss of generality), then q^^Sa) has
non-trivial stabilizer and is not terminal in trh^Q^). _

To see that condition 3 is satisfied, we consider the component S/s of Q \ [p] containing s p . We
obtain a lift Q^ of Q^ by taking q^^Q \ S p ) U ̂ (w^). We change the basis (a i , . . . , dn)
by conjugating by Wk the elements of Be for each component C of Q \ triv(Q) contained in 5^.
It is a free basis because Wk may be written in the basis (ai , . . . , dn) without using the letters of
Be for C C S^. It is now clear that r^ satisfies the induction hypothesis.

Second case: triv(Q) containsa vertex x with non-trivial stabilizer and which is not terminal
in triv(Q). Let x be the lift of x in Q and let Sa and s/3 be two terminal points of Q lying in distinct
components of Q \ {x}. Note that Stab Sa and Stab s/3 must be non-trivial. Let a and /3 be the
simple paths joining x to Sa and sp respectively. If a and f3 do not have the same length, we
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shorten the longest one so that this condition is satisfied. We take any sequence Wk of distinct
elements in Stab x and we consider the folded actions T^ = T / a r ^ w k . p . It is an approximation
of T when k is large enough thanks to the folding to approximate lemma.

The quotient graph Q^ = T^/Fn is obtained from Q by identifying a and /3, and the
stabilizers of the edges contained in q^^a) = g^^/3) are trivial. Therefore, triv^^) is
connected, T^ is very small, and Q^ is a tree. Since the stabilizers of Sa and s^ are non-trivial,
trn^Q^) contains a non-terminal point with non-trivial stabilizer when d(x, s^) i=- d(x, s / s ) and
a point with non-cyclic stabilizer when d(x, Sa) = d(x, 8/3).

To see that condition 3 of the induction hypothesis is satisfied, we consider the component Sp
of Q \ [q] containing s / 3 . As above, we consider the lift Q^ of Q^ defined by

Q^=qW{Q\S^Uqw(wk.Sp).

We change the basis (ai , . . . , dn) by conjugating by Wk the elements of Be for each component
C of Q \ triv(Q) contained in 5^. We get that T^ satisfies the induction hypothesis which ends
the proof of Proposition 4.9 and hence of Theorem 2. D

5. Does Out(F^) act with dense orbits on ^n?

We still don't know whether Out(Fn) acts with dense orbits on Tn' This question is equivalent
to asking whether A^n = ̂ n. To prove this equality, it would be sufficient to approximate every
non-simplicial action by a simplicial action lying in ^n. In [4], Bestvina and Feighn show how
to approximate a very small action T by a simplicial very small action T ' . Their argument shows
that if T has a non-trivial arc stabilizer, then T' may be assumed to have a non-trivial edge
stabilizer so T' € Tn and T € Mn- They also prove that if a geometric approximation of T has
an orientable surface component, then T can be approximated by a very small simplicial action
with a non-trivial edge stabilizer and hence lies in Mn'

If T is a very small action of Fn, Gaboriau and Levitt show in [14] that T has only finitely
many orbits of branch points. Therefore, we can apply [19] to conclude that T may be seen as
the action corresponding to a graph of actions on R-trees whose vertex actions have dense orbits.
Therefore, proving that A4n == fn reduces to showing that any very small action with dense
orbits lies in M.n- The following theorem partially answers this question (see Section 5.1 for
definitions):

THEOREM. - Let n ̂  3 and let T be a very small action with dense orbits. If the Lebesgue
measure on T is the sum of at most n — 1 ergodic measures, then T G M.n-

We will see in Section 5.1 that because of the topological dimension of CVn, the Lebesgue
measure is always a sum of at most 3n — 4 ergodic measures.

Remark. - Let a be an irreducible automorphism of Fn with irreducible powers. This means
that no power of a fixes a free factor of Fn up to conjugation. Then Lustig has proved that a
has exactly two fixed points in CVn and no other periodic point [22]. This implies that those
fixed points are uniquely ergodic. As a matter of fact, there is a natural way to associate to
an action T e CVn a simplex a(T) C CVn built on its set of invariant measures. If T is not
uniquely ergodic, this simplex is not reduced to one point and some power of a fixes this
simplex pointwise which is impossible. Therefore, Theorem 3 implies that the fixed points of
an irreducible automorphism with irreducible powers must lie in M.n'
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5.1. Measures on R-trees

Length measures and uniquely ergodic actions
The classical measure theory is not adapted to M-trees because they are not locally compact.

In [26] is proposed an alternative called length measure. For shortnesses sake, we will sometimes
use the shortcut measure to mean a length measure.

DEFINITION. -A length measure ^ on an ]§L-tree T consists of a finite Borel measure ^i for
every compact interval I ofT such that if J C I , f^j = (^i)\i-

If T is endowed with an action of a group r, we say that a length measure is invariant if
^ j = (g^)^f^i. The Lebesgue measure of an M-tree is the collection of the Lebesgue measures
of the intervals of T. If r acts by isometrics on T, then the Lebesgue measure is invariant. If
IJL is a length measure on an M-tree T, we write /^(J) for f^i(I). We say that JJL is non-atomic or
positive if every //j is non-atomic or positive.

Remark. - It may happen that an action with dense orbits has an invariant measure with atoms,
but this is impossible if every orbit is dense in the segments.

Let f '.T —> T ' be a map such that every segment I in T may be subdivided into finitely
many intervals on which / preserves alignment (this is the case when / is a morphism of R-
trees or a map preserving alignment). Any non-atomic measure ^/ on T ' may be carried to a
measure [i = /*// in the following way: let J be a segment in T and subdivide I into finitely
many subsegments Ip on which / preserves alignment. Then take fJii to be the only (non-atomic)
measure on I such that for every interval J inside some I p , ^ i ( J ) = //^j.(/(J)).

Measures and maps preserving alignment
From now on, we only consider positive invariant measures.
Let T be an M-tree with an isometric action of F. If q: T —^ T ' is an equivariant 1-Lipschitz

map preserving alignment, by carrying to T the Lebesgue measure of T\ we obtain an invariant
positive measure whose density with respect to the Lebesgue measure is at most 1. Conversely,
given a invariant positive measure IJL on T whose density with respect to the Lebesgue measure is
at most 1, we consider the pseudo-metric on T given by dp,(x, y) = f^([x, y]). One easily checks
that making this pseudo-metric Hausdorff gives an M-tree T^. This tree is naturally endowed
with an isometric action of r and the quotient map q: T —>• T^ preserves alignment. Note that if
IJL is obtained by pulling back // under /: T —^ T ' then T^ is isometric to T'..

Here are some simple properties of maps preserving alignment:

LEMMA 5.1. - Let T and T' be ISi-trees endowed with an isometric action of a group -T and
let q:T —^Tf be an equivariant map preserving alignment.

Then the preimage of a convex set is convex. For every 7 G -T, Char 7^ 7 = ^(Chary 7).
Moreover, if^f is hyperbolic in T and elliptic in T' then 7 has only one fixed point a = g(Axis T 7)
in T'.

Proof. - Let K ' be a convex set in T ' and let a, b G K = q^^^K'). Every x G [a, b] is sent by q
to a point in [q(a), q(b)] so K is convex. Now, g(Charr 7) C Charr7 7 because a point a lies in
the characteristic set of 7 if and only if a G [7"1 .a, 7.0]. If 7 is hyperbolic in T\ then ^(Chary 7)
is connected and 7-invariant, so it must contain the axis of 7 in r'. If 7 is elliptic in T\ then
the preimage of a fixed point of 7 in T ' is connected and 7-invariant. Hence it must intersect
the characteristic set of 7 in T. Therefore, Char 7^ 7 = ̂ Char^ 7) and 7 fixes at most one point
in T ' when it is hyperbolic in T. D

COROLLARY. - Let T and T ' be two minimal Fn actions and q:T —>T1 be a map preserving
alignment. IfT is very small then so is T ' .
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Proof. - From the previous lemma, T ' is small because any element fixing the non-degenerate
arc [x,y] fixes the arc joining the subtrees q~\x) and q~^(y). The previous lemma allows one
to deduce that Fix 7^ 7 = Fixr' 7^ from Fix-r 7 = Fixr 7^. Finally, Fixr' 7 = q(^T 7) shows
that 7 may not fix any triod in T ' . D

Ergodic measures
A homothety of a length measure ^ is the multiplication of every jjii by a same positive real

number.

DEFINITION. - We say that an R-tree endowed with an isometric action of a group F is
uniquely ergodic if the Lebesgue measure is the only non-^ero positive invariant measure on T
up to homothety.

In particular, if T is uniquely ergodic, and if q: T -^ T ' is equivariant and preserves alignment,
then q is a homothety.

If T is an action of a group F, we denote by M(T) the convex cone of invariant positive
measures on T.

A subset E C T is said to be measurable if each intersection of E with an arc of T is
measurable. Thus, a function /: T —> R is measurable if its restriction to every interval of T
is measurable. We say that a measurable subset E C T has ^-measure 0 if for every arc I of
T, fii(E U I ) = 0, and E has /^-full measure if T \ E has measure 0. A function /: T —> R is
constant /^-almost everywhere if there exists c G R such that f~^(c) has full /^-measure.

DEFINITION. -A measure [i <E M(T) \ {0} is said to be ergodic if the following equivalent
conditions hold'.

(1) every I'-invariant measurable function is constant ^-almost everywhere',
(2) every measure v € M(t) with density at most one with respect to ^ is homothetic to /r,
(3) [i is extremal in M(T\ i.e. ^=^1+^2 ^ith ^i,/^2 e M(T), then ^ and ^ are

homothetic to fi\
(4) every measurable invariant subset ofT either has full or 0 measure with respect to [i.

Proof of the equivalence of the conditions. - (1) => (2) because if v C M(T) has density
at most one with respect to /^, on every arc I we may write Y]_ = fip.i for some measurable
functions fi defined p.i -almost everywhere, and the fi are the restrictions /^-almost everywhere
of an invariant measurable function /: T -^ R. (2) =^ (3) =^ (4) are clear. If / is a F-invariant
measurable function which is not constant almost everywhere, then there exists M € M such that
neither A+ = [x G T | f(x) ̂  M] nor A- = [x C T \ f(x) < M] have /^-measure 0. D

Note that if T is uniquely ergodic, then the Lebesgue measure is ergodic. We denote by Mo(T)
the set of non-atomic invariant positive measures on T and Mi(T) C Mo(T) the set of invariant
positive measures with density at most 1 with respect to the Lebesgue measure. Both Mo(T) and
Mi (T) are convex.

LEMMA 5.2. -A non-atomic measure ^ is ergodic if and only if M\(T^) has dimension 1.

Proof. - The measure ^ is ergodic if and only if every non-zero measure whose density is at
most 1 with respect to ̂  is homothetic to [i. Now there is a natural isomorphism between the set
of measures on T with density at most 1 with respect to [i and the set of measures on T^ with
density at most 1 with respect to the Lebesgue measure: \iq'.T —>T^ denotes the quotient map,
the isomorphism is given by v € M\(T^) i-̂  (fv. D
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Weak topology on sets of measures
The set M(T) is naturally endowed with the weak topology (see [26]). For this topology, a

sequence ^{k) of measures converges to IJL if and only if for every interval I and every continuous
function /: I -^ IR,

ff^^ff^,.

This topology is not project! vely compact in general. One should keep in mind the following
phenomenon [26]: if I is an arc in T, if b G I \ 91 is a branch point of T, and if 6k is the Dirac
measure at Xk ^ I with Xk -^ b, then 6k does not converge to the Dirac measure at b.

If T is a minimal action of a finitely generated group, then there exists a finite tree K C T
such that every arc I of T may be subdivided into finitely many sub-arcs which may be sent
into K by an element of r. Therefore, the set MQ(T) of non-atomic length measures on T is
naturally identified with the set of (usual) measures /2 on K which are r- invariant i.e. such that
for all 7 € r,

(7|Kn7-l.-^<)*At|J<n7-l.K = ̂ Kn^.K-

The topology induced on Mo(T) by the weak topology coincides with the usual topology on the
space of invariant measures on K. This implies that M\(T) is compact (but it contains the null
measure). This identification may be extended to the set of measures for which no branch point
of T has non-zero measure, but we won't need this fact. Note that on Mo(T), the applications
IJL H->- jji(I) are continuous for every arc I (because the measures in Mo(T) have no atom).

Measures and simplices
LEMMA 5.3. - Let T be a minimal action of a non-abelian finitely generated group r with

dense orbits. Then the map OT from Mo(T) \ {0} to the set of actions ofF on R-trees modulo
equivariant isometry defined by cr^(/^) = T^ is one-to-one.

Remark. - This lemma is of course false if we don't assume that T has dense orbits. This map
<JT is linear in the following sense:

^(T(ti^i+^2) = ^l^O-(^i) + ^2^cr(^2) ^or a^ ^1^2 ^ 0.

The map (TT is continuous on Mo(T) because fi ^-> /^(J) is continuous for every interval /.

Proof. - We can assume that T is not a line since we know in this case that T is uniquely
ergodic. Since T is minimal, every T^ is minimal (the preimage of an invariant subtree is
an invariant subtree). Assume that / :T^ —^ T^ is an equivariant isometry for some /xi,/^ ^
Mo(T). We denote by qi: T —> T^ the quotient maps.

For 7,6 E r, we denote by bridge j. (7,6) the segment joining the characteristic sets of 7 and
6 (if they are disjoint) or their intersection point when they meet in exactly one point. We don't
define bridge.? (7,6) if the intersection of their characteristic sets contains more than one point.

. Y' 6 §•

\ y
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Let x,y be two distinct points in T. We want to prove that ^\([x,y]) = lJii({x,y}\ Since the
orbits of F are dense in T, and since T is not a line, the branch points of T are dense in every
segment: if I is an arc and if x € J, we find a branch point in I close to x by projecting to I
any branch point of T that is close enough to x. Now, since T is non-abelian, every segment
is contained in the axis of a hyperbolic element (see [8] or [25, Lemma 4.3]). This implies that
for every e > 0, we can find elements 7,7/,(U/ e F hyperbolic in T whose axes are pairwise
disjoint and

x € bridge y (7,7') and y € bridge y ( 6 , 6 ' )

with

/,, (bridge^. 7')). ̂  (bridge ̂  (M')) ^ e fo rze {1,2}.

One has ^(bridge^ (7,7')) = bridge^ (7,7') and ^(.r) € bridge^ (7,7') (and similar facts
for y with 6 , 6 ' instead of 7,7'). This implies that

^(M)-^(bridge^ (7,7'), bridge^ (M'))] ̂ e.

But / sends bridge^ (7,7') and bridge^ (M') respectively to bridge^ (7,7') and
bridge^ (MO. We deduce that i^i([x,y]) is 46-close to /^([a^D and this holds for every
e > 0 so that fJi\ = ̂ . D

COROLLARY 5.4. - Let T be a very small Fn-action with dense orbits. Then Mo(T) is a finite
dimensional convex set and Mo(T) is projectively compact. Moreover, T has at most 3n — 4
non-atomic ergodic measures (up to homothety), and every measure in Mo(T) is a sum of these
ergodic measures. Moreover, M\(T) is compact, and (TT and (crr)|Mi(T)\{0} define two simplices
in outer space.

Proof. - First notice that if ^ i , . . . , f^p are ergodic measures which are mutually not homo-
thetic, then they are linearly independent in M(T). This is because there exist disjoint measurable
sets E\,..., Ep that cover T such that Ei has full /^ -measure.

On the other hand, the set of very small actions of Fn which are not free simplicial (i.e. the
non-projective boundary of outer space) has topological dimension 3n — 4 (see [14]). Since (TT is
linear, continuous and injective, Mo(T) has dimension at most 3n — 4, and T has at most 3n — 4
non-atomic ergodic measures up to homothety.

We now prove that any measure ^ is a sum of ergodic measures. The set of measures M^(T)
with density at most 1 with respect to ^ is compact since it is isomorphic to the set of invariant
measures on a finite tree K with density at most 1 with respect to p.. The Krein-Millman theorem
shows that JJL is a convex combination of extremal points of M^(T) [20, Theorem IV.1.5, p. 88].
Such an extremal point must be ergodic (if non-zero). D

5.2. Limits and maps preserving alignment

The following proposition is crucial in this section:

PROPOSITION 5.5. - Let T be a minimal non-abelian action with dense orbits of a finitely
generated group F, and assume that T is not a line. Assume we are given actions Tp, Tp and
T ' such that Tp t=l^ T and T ' tz^ T ' , and assume that we have equivariant 1-Lipschitz maps
preserving alignment q?: Tp —> T ' .

Then there exists a natural equivariant 1 -Lipschitz map q: T —> T ' preserving alignment.
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Remark. - This proposition can easily be checked to hold under the weaker assumption that
Qp is 1 -Lipschitz and has a backtracking constant going to 0 as p tends to infinity.

Proof. - Let Kp and Kp be two exhaustions of T and T ' by finite subtrees, Fp an exhaustion
of r by finite subsets, and Cp a sequence of numbers decreasing towards zero. By passing to a
subsequence, we may assume that

• there is an Fp-equivariant Cp -approximation Rp between Kp c T and Hp C Tp,
• there is an Fp-equivariant £p -approximation Rp between Kp C T / and Hp C Tp.
Here is a method to construct x ' = q(x) e T ' . Take x C T and assume that p is large enough

so that x e Kp. Let x? ^ I:Zp be an Rp- approximation point of x and let x? = qp(Xp). Let
y ' be an R -approximation point of the projection of x ' on Hp. We are going to prove that
d(x p, 7:Z7) p-lt30 o and that ^//, converges in T ' to a point which we will define to be q(x).

As in the proof of Lemma 5.3, for every e > 0, we can find hyperbolic elements 7,6 G r such
that

• Axis (7) H Axis (<5) = 0,
• x e bridge^ (7,^),
• the diameter of bridge j. (7,6) is at most e.

An easy argument about the Gromov topology shows that for p large enough, 7 and 8 are
hyperbolic in Tp, their axes do not intersect, they are at most 2^-far from each other, and Xp
is £-close to bridge rj. (7, (5).

Lemma 5.1 implies that the characteristic sets of 7 and 6 intersect in at most one point. More-
over, ^[bridgCy (7,^)] = bridge r p , (7,<5). Since q? is 1-Lipschitz, d(Xp, bridge y/ (7,<5))^£
and the diameter of bridge j./ (7,6) is at most Ie. To show the first part of the claim, just no-
tice that for p large enough, Hp contains bridge y, (7,6) because it meets Char 7 and Char 6 (this
is a simple argument about the Gromov topology).

Let x'p be the projection of x ' on Hp and let y ' be an approximation point of x'p in T ' . The
condition ^(Char 7 D Char 6) ̂  1 being a closed condition in the equivariant Gromov topology
(see for instance [25]), Char^r/ 7 D Char^/ ^ contains at most one point. Moreover, since the
diameter of bridge y/ (7,6) is at most 2e for every p, so is the diameter of bridge j./ (7,6). For
sufficiently large p, y? is 2$--close to bridge^/ (7,<5), which implies that for p,q large enough,
d(y p, ?/') ̂  6^, so ^/p is Cauchy. Note that T may not be complete (and in this case its completion
is not minimal). But the argument above shows that if 70,60 are fixed hyperbolic elements of
r such that x G bridge/^ (70, ^o), d(y'p, bridge j., (70, ^o)) tends to 0 as p tends to infinity. Since
bridge y/ (70, So) is compact, y? converges to a point in this set which proves the claim.

The limit q(x) of y'p is independent of the choices made since we may apply the claim to the
sequence obtained by alternating the terms of two sequences y ' ^ and y ' ^ corresponding to
different choices. The fact that q is equivariant and 1-Lipshitz is clear. To prove that q preserves
alignment, pick a,b,c G T aligned in this order, i.e. such that (a\c)b = 0. Some approximation
points dp,bp,Cp in Tp satisfy (ap[cp)^ ^ 3£p/2. Since a 1-Lipschitz map preserving alignment
decreases the Gromov product, (a'^c'p)^" ^ (ap\Cp)y ^ 3£p/2 where (ip,bp,Cp are the images
through q of dp,bp,Cp and a ^ b ^ c ' p are their projection on Hp (this projection is 1-Lipschitz
and preserves alignment). We deduce that (q(a)\q(c))q(b) = 0, and q preserves alignment. D

5.3. Approximation of actions with few ergodic measures

THEOREM 3. - Let n ̂  3 and let T be a very small action with dense orbits. If the Lebesgue
measure on T is the sum of at most n — 1 ergodic measures, then T G M-n-

Remark. - There exist actions for which the Lebesgue measure is non-ergodic since Keynes-
Newton and Keane have shown how to build interval exchanges for which the Lebesgue measure
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is non-ergodic [17,16]. In fact, the number of ergodic measures of an orientable measured
foliation on a compact orientable surface with fundamental group Fn is at most n — 1 and
equality is reached (see [27] for instance). The number of ergodic measures of a non-orientable
measured foliation on a non-orientable surface with fundamental group Fn is at most 3n — 4.
More recently, Martin proved that there exist non-ergodic systems of isometries of exotic type
[23]. There is a very easy way to construct non-geometric very small actions with dense orbits
for which the Lebesgue measure is not ergodic: start from two non-geometric free F^ -actions
TI, T^ with dense orbits. Given two base points *i and *2 m T\,T^ the action T =T\ * T^ of
FS * Fs has dense orbits and is free. The Lebesgue measure of T is not ergodic since one may
multiply by Ai and A2 the metrics on T\ and T^.

Proof. - We have to approximate T by simplicial actions in Fn- We first prove the theorem
when the Lebesgue measure on T is ergodic, since the proof is simpler.

Take a sequence of very small (or even free) simplicial actions Tp converging to T. Given an
edge Cp e Tp, we consider the action Tp obtained by collapsing to a point every edge which is not
in the orbit of e? (Tp may be seen as (Tp)^ where f^p is the restriction of the Lebesgue measure
on Fn.ep). The collapsing map q? : Tp -^ Tp is 1-Lipschitz and preserves alignment.

We show that e? may be chosen so that a subsequence of Tp converges to a very small action
T ' (without rescaling the metric on Tp): take g € Fn hyperbolic in T. Since Tp has at most
3n - 3 orbits of edges, there is an edge e? of Tp whose orbit contributes at least l/3n - 3
to the translation length of g (if I is a fundamental domain for the action of g on its axis,
\I n Fn.epI ^ lTp(ep)/3n - 3). Compactness of CVn and the fact that IT^Q) remains bounded
away from 0, implies that up to taking a subsequence, we may assume that Tp converges to a
very small action T ' .

Proposition 5.5 and ergodicity then show that T ' is homothetic to T. Moreover, since the
quotient graph of Tp has exactly one edge, Tp cannot lie in On- Tp being simplicial, we get that
Tp G Mn. Therefore, T ' (and hence T) lies in Mn-

Now let's turn to the proof of the general case. First, Bestvina and Feighn show that T may
be approximated by simplicial very small actions Tp such that there exist equivariant morphisms
of R-trees fp:Tp—>T [4]. Let A be the Lebesgue measure on T, and let ^i , . . . . ̂  be ergodic
measures such that A == [L\ + • • • + ^k for some k ^ n - 1. Denote by ̂  = f^jii the pull-back
measure on Tp. The density of v^ with respect to the Lebesgue measure on Tp is at most 1. Let
Tp = (Tp)^p be the corresponding simplicial action.

We show that Tp converges to T^ when p -^ oo. For every g e Fn, IT^Q) ̂  ^Tp(g) so if g is
elliptic in T then ̂  (g) converges to ̂  (g) = 0. When g is hyperbolic in ̂ , g is hyperbolic in Tp
for large p. Let I be an interval of length lTp(g) in Axisrp (g) and subdivide I into sub-intervals
isometrically embedded in T through fp. This subdivision may be refined so that there exists
a finite union E of the sub-intervals such that fp(E) is an interval of length lr(g) contained in
Axis T (g), and such that fp is one-to-one in restriction to E \ QE. This implies that fp is isometric
in restriction to each component of E, so that the Lebesgue measure of I \ E is lTp(g) - lr(g)
and thus tends to 0 as p tends to infinity. In the same way, ^(p) — ^T^ = ̂ (1 \ E\ hence
tends to 0 since v^(I \ E) is smaller than the Lebesgue measure of (J \ E). This shows that Tp
converges to T^ when p —^ oo.

The argument in the ergodic case tells us that for each i e { ! , . . . , A-}, up to taking a
subsequence, we can collapse edges in Tp to obtain actions Tp'1 having exactly one orbit of
edges, and which converge to some action T^ homothetic to T^ since the Lebesgue measure
of T^ is ergodic. Let 0 < iz ^ 1 be such that T" = ti.T^. We denote by erf the measure on Tp
corresponding to this collapse: a^ is the restriction of v^ to the non-collapsed edges. With these
notation, r^=(Tp)^.
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Now consider the measure o- on Tp denned by

^ 1 .
P-2^<

1

^ET"^

Then (Tp)ap tends to T as j? tends to infinity. Since each of is non-zero on at most 1 orbit of
edges, (Tp)crp has at most k ^ n — 1 orbits of edges. To conclude, just notice that any very small
simplicial action having at most n — 1 orbits of edges cannot lie in On' D
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