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THE TOPOLOGY OF LARGE 7^-SURFACES
BOUNDED BY A CONVEX CURVE

BY BEATE SEMMLER

ABSTRACT. - We shall consider embedded compact surfaces M of constant non-zero mean curvature H
(H-surf aces) in hyperbolic space Ett3. Let L denote a horosphere of HI3. Assume that M is contained in the
horoball bounded by L and that the boundary of M is a strictly convex Jordan curve r in L. We establish
the following:

(i) case H > 1. There is an ^)(T), depending only on the geometry of F, such that whenever M is a
H-surf ace bounded by F1, with 1 < H < f)(F), then M is topologically a disk.

(ii) case H ^ 1. Then M is a graph over the domain Q C L bounded by r with respect to the geodesies
orthogonal to Q\ in particular, M is topologically a disk.

© 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - On considere une surface M plongee, compacte, a courbure moyenne constante (non nulle)
dans 1'espace hyperbolique HI3. Soit L une horosphere de Iffl3. On suppose que M est contenue dans
Phoroballe bordee par L, et que Ie bord de M est une courbe de Jordan strictement convexe dans L. On
etablit les resultats suivants :

(i) Cas H > 1. II existe un nombre -^CO, qui depende uniquement de la geometric de r, tel que, quand
M est une H-surface bordee par r, avec 1 < H < ̂ )(T), alors M est topologiquement un disque.

(ii) Cas H ^ 1. Alors M est un graphe geodesique orthogonal au-dessus du domaine Q C L borde par
r ; en particulier, M est topologiquement un disque.

© 2000 Editions scientifiques et medicales Elsevier SAS

1. Introduction

Let P be a plane in Euclidean space R3 and let R^ be one of the two halfspaces determined
by P. Consider embedded compact surfaces M of constant non-zero mean curvature H (H-
surfaces) in R3 with boundary 9M = r a convex curve in P. It is known that, if H is sufficiently
small in terms of the geometry of r, then a IT-surface M has genus zero. This result is
established in [3] where they use a rescaling and a version of a compactness theorem to show
this. Our proof of the same result will use another technique and will also work in the hyperbolic
case. Indeed, in Hyperbolic space H3, homotheties do not exist, hence we can not apply the
compactness theorem for H -surfaces in H3 proved in [2] to give a similar proof as in [3].

In this paper we shall mainly investigate the hyperbolic case to obtain a result in the same
spirit as inR3.

Let L be a horosphere in Eff3 and let £ be the horoball of IHI3 bounded by L; the mean curvature
of L is one and the mean curvature vector of L points into £. We consider embedded compact
j^-surfaces M, H greater than one, in /C with boundary 9M = r a convex curve in L. We will
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/00/03/© 2000 Editions scientifiques et
medicales Elsevier SAS. All rights reserved



34^ B. SEMMLER

show that, if H is sufficiently close to one in terms of the geometry of F, then M has genus zero
(Theorem 2). If M is an embedded compact H -surface in ^, bounded by F and H ^ 1, then M
is a geodesic graph (Theorem 4). The case for H less than one and F in a hyperbolic plane is
treated in [2].

2. The Euclidean case

THEOREM 1 ([3, Theorem 2]). - Let P C P = {^3 == 0} ̂  a ^m'crfy com^x- c-Mrn?. There
is an f)(P), depending only on the geometry ofP, such that whenever M C M^. is a compact
embedded H-surface bounded by F, with 0 < H < ̂ (F), then M is topologically a disk and
either M is a graph over the domain QcP bounded by F or M ft (J? x [0, oo)) is a graph over
Q and M \ (Q x [0, oo)) is a graph over 9Q x [0, oo) = r x M+, with respect to the lines normal
to r xM+.

We need the following lemma which is proved in [3]:

LEMMA 2.1 ([3]). -Let r C P be a strictly convex curve. There is a r > 0, depending only
upon the extreme values of the curvature ofP, such that whenever M C M^. is an H-surface with
boundary F, there is a p e J? (p depends on M) such that M H (D(p, r) x [0, oo)) is a graph
over D(p, r). (Here D(p, r) denotes the Euclidean disk in P centered at p, of radius r.)

Proof of Theorem 7. - Let M be an Jif-surface. Let r > 0 and p e J? be given by the lemma.
Let G be the unique vertical catenoid meeting P in the circle Co = 9D(p, p) where p < r
and p is smaller than the smallest radius of curvature of F (the latter condition allows us to
translate Co horizontally in j7 so as to touch every point of F), and the angle between G
and P along Co is Tr/2. Let F = G n (P x [0,1]) and let Ci be the circle of E at height
one. Let V = [v e P | Co + v C Q} and let D(R) be a sufficiently large disk in P such that
Ci + v C D(R) x {1} for all v G V.

We know that a highest point q of M is in Q x [0, oo), and the height d of q is at most 2 / H .
The part of M over P(d/2) = [x^ = d / 2 ] is a vertical graph. Also M \ (.f? x [0, oo)) is a graph
over r x M+, with respect to the lines normal to F x M+, of height at most 1 / H .

Let t be the smallest value of the curvature of F and luj the circumscribed diameter of Q.
Note by c the point in Q such that F c D(c^). As of now, we will work with H sufficiently
small such that H < ̂  and H < \/2uj.

First of all, we will prove that, if d < 1 / H , then M is a graph over Q. Let (3(t\ 0 ̂  t < oo,
be a line segment in P(1/2H) = [x^ = 1/(2H)] starting at (3(0) = c x { 1 / ( 2 H ) } . We consider
a straight cylinder Z(r) of radius 1/(2H) and axis a in the horizontal plane P(1/(2H)) where
a meets ^(Q orthogonally at some t = r. Let Z(r) be the half-cylinder of Z(r) by cutting Z(r)
with a vertical plane^intersecting P(1/(2H)) along a. We take Z(r) so that f3(t) n Z(r) = 0 for
^ < T. For T large, Z(r) is disjoint from M. Now one can move Z(r) towards M along f3. By
the maximum principle, as QZ n P approaches F by horizontal translation, the first contact with
M can not be at an interior point of M. Therefore no accident will occur before reaching F. This
implies that the diameter of a smallest disk centered at c x [t] that contains M n [x3 = h] is
smaller than 2o; + ( 1 / H ) for 0 ̂  h ̂  \ / H . Let 5+ be the upper hemisphere of the sphere of
mean curvature H centered at c x { 1 / H ] . Translate 5+ downward, so the moving 5+ does not
touch M before it arrives at P, i.e., M is below 5+ when (95+ is on P. Then by the maximum
principle and because H < C, one can translate S^~ horizontally to touch every point of F and
that is why M c Q x [0, oo). Hence M is a graph over Q.

Henceforth we assume that d ̂  1 / H . The part of M over P(d/2) is a vertical graph.

4'̂  SERIE - TOME 33 - 2000 - N° 3



THE TOPOLOGY OF LARGE J^-SURFACES BOUNDED BY A CONVEX CURVE 347

(i) If an H -graph M' over a domain £> in the plane P(t) where 9M' C P(t) has height h, then
the radius of the smallest disk in P(t) containing strictly S) is at least A(/i; H) = ̂ (2h/H)-h2.
To see this, suppose, on the contrary, that the domain S) is contained in a disk D(c, r) C P(0
where r < A(/i; JT). Let S be the ^-sphere centered at c x [t] and denoted by S(h) the part of S
over the plane P(t + (l/^) - ft-). M' is contained in the vertical cylinder over S) and the radius
of 9S(h) is strictly greater than r, so by moving S(h) towards M' the first contact with M' must
occur at an interior point of S(h) with a boundary point of M'. This means that the height of M'
is less than h which gives a contradiction.

(ii) Let Q(t) be the domain in P(t) bounded by M U P(t) for t (E [d/2, d], and let J9t(r) be the
disk in P(t) centered at Ci = c x [t], of radius r.

Let rw == inf^{j7(t) C Dt(r)} and r^n = sup^W) D Df(r)].
We want to prove: If Tmax > 2o; then Tmin > ^max - 2ci;.
We know that M \ (D(c,uj) x [0,oo)) is a graph over 9(D(c,uj) x [0,oo)), with respect to

the lines normal to 9D(c,u}) x R+. So, for some point p. in (9Dt(7max) H M, we consider all
reflection by vertical planes and looking at the set of images of [i in P(t). This set is contained
in the interior of the domain in R^_ bounded by M U j7; in particular in Q(t) since each vertical
plane is orthogonal to P(t) and so the symmetry with respect to vertical planes leaves P(t)
invariant.

Doing elementary calculations, we see that the set of images of [i contains the disk D^max —
2uj). In more detail, denoted by /?o the half geodesic in P(t) starting at Ct and passing through
/^, and by /3^ the half geodesic in P(t) where the angle between f3o and f3^ at ^ is (j), \(f)\ €
[0, arcos((^/rmax)L Consider the family of vertical planes V^(s) orthogonal to f3^ at f3^(s + (jo)
(Fig. 1). Apply the Alexandrov reflection technique to M with the planes V^(s)\ by decreasing s
from oo, no accident will occur up till QD^Y i.e. s = 0. When // denotes the reflected image
of ji with respect to the plane 1^(0), the line segment I joining p. to // is contained in j7(t).

Now we have cos (f) = (uj + dist(/2, l^)(0))/'Tmax and sin (f) = dist(ci, 0/7max.
The distance from // to Cf is equal to

x((f)) = dist(//, Ct) = ̂ /(dist(/2, y^(0)) - cj)2 + dist^Cf, 0,

Dt(o))

Fig. 1.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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therefore x((f)) = \A'iLix + ^UJ1 ~ 4^max cos (j), thus x((f)) ̂  Tmax — 2o; and this implies rmin >
^max - 20;.

(iii) Now we are able to show that, if H is sufficiently small, then M H {D(R) x [ 1, d — 1 ]} == 0
and M D {P x [d — l,d]] is a graph over P(d — 1). For h = 1, we get from (i) that Tmax is
at least ^ ( 2 / H ) — 1 on P(d — 1); to apply (i) we need d / 2 > 1 so we work with H such
that 1/(2H) > 1. From (ii), by assuming 1/H > (1/2) + 2o;2, it follows that rmin + 2cc; ^
^ / ( 2 / H ) - 1 . Therefore, if 1/H > (1/2){(P + 4^)2 + 1} then rmin > R + 2cj.

Set

()=min^;yj{?+4^)2+l}') V

The end of the proof is the same as in [3]. D

3. The hyperbolic case

We work in the upper half-space model of hyperbolic space, that is,

B3 = {(Xi,Xz,X3) (E M3 I X3 > 0}

with the hyperbolic metric, i.e. the Euclidean metric divided by x^. In the following, we will
represent by dist the hyperbolic geodesic distance in HI3; r will be the hyperbolic parameter of
arc length (in general used for geodesies and planes) and t the euclidean parameter associated
with the model (used for horospheres).

Let L(t) denote the horizontal horosphere [x^ = t] and let £ be the non compact component
ofH3 bounded by L(l) such that the mean curvature vector ofL(l) points towards £.

THEOREM 2. - Let r C L(l) be a strictly convex curve. There is an -fiCO, depending only on
the geometry of P, such that -whenever M C /C is a compact embedded H-surface bounded by
r, with 1 < H < ̂ )(P), then M is topologically a disk and either M is a graph over the domain
Q C L(l) bounded by r with respect to the geodesies orthogonal to Q or M D (J? x [1, oo)) is a
geodesic graph over J7 and M \(Q x [1, oo)) is a graph over 9Q x [1, oo) = r x [1, oo), with
respect to the geodesies orthogonal to r x [1, oo).

3.1. Properties of compact surfaces in a horoball

Before proving Theorem 2, we give a representative example of hyperbolic calculations, we
establish some basic properties of an H -surface as in Theorem 2 and we state a lemma whose
proof we will give later.

Notation and Example. Let q € L(l) be the point (0,0,1) and let 7(7-) C £ denote the
vertical geodesic through q orthogonal to L(l) parametrized such that r = dist(7(r), L(l)).
Consider the family Py(T-) C H3 of planes orthogonal to 7 at 7(7-). Let p ^ 7(7-) be a point in
some L(^), t > 1, denoted by R the geodesic distance from p to 7(7-) and by a the angle between
the a;3-axis and the euclidean line joining (0,0,0) to p; (Fig. 2).

L(^) intersects 7(7-) at r == In t. R is related to a by tan a = sinh R\ since the hyperbolic metric
on L(t) is the euclidean metric divided by t, the hyperbolic length from p to 7(ln t) in L(Q is
equal to sinhjR (notice that the geodesic distance from p to 7(ln^) which is 2arcsinh(sinhJ?/2),
is naturally smaller than the former). The geodesic passing through p and realizing the distance
R from p to 7(7-) is lying on P^(\n(t cosh R) and this implies that the length of the segment of 7
joining L(t) to this plane is equal to In cosh R. The intersection between L(t) and P^(\n(t cosh R)

4® SERIE - TOME 33 - 2000 - N° 3
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Y(T)

L(t)

P(ln(tcoshR))

HI)

is a hyperbolic circle C with hyperbolic center at ^(\n(tcoshR\ of hyperbolic radius R. By
hyperbolic reflection with respect to P^(\n(tcoshR), the image ofL(t) is a horosphere, denoted
by 0(tcosh2^), containing also C and intersecting 7(7-) at r = \n(t cosh2 R)', so the distance
between both horospheres on 7(7-) is 2 In cosh R.

Basic properties. Let M be denned as in Theorem 2. Let % be the compact component of
£ bounded by M and the domain Q C L(l) such that 9Q = 9M. Let H be the mean curvature
vector of M; we orient M by H. Then:

(i) H points towards U == % U (Q x (0,1]).
(ii) Each point g e M at maximal distance from L(l) is contained in the solid vertical geodesic

cylinder over H denoted by (^.
(iii) Let 7 be any geodesic orthogonal to L(l) passing through a point of Q\ if M is contained

in the solid Killing cylinder over Q with respect to 7 (i.e. the integral curves of the Killing vector
field associated to the hyperbolic translation along 7) then M is a Killing graph over Q with
respect to 7.

(iv) M \ (Q x [1, oo)) is a graph over F x [1, oo), with respect to the geodesies orthogonal
to r x [l,oo); this part of M outside € is also a graph over F x [l,oo) with respect to the
horocycles in L(t), t e [1, oo), normal to F x [1, oo).

(v) Let q € M be a point at maximal distance d from L(l) and let 7(7-) C £ be the geodesic
through q orthogonal to L(l) parametrized such that r = dist(7(r),L(l)). Consider the family
P-y(T-) C HI3 of planes orthogonal to 7 at 7(r). Let R = maxp^r dist(p,7). Then the part of M
lying above P^((d/2) + In cosh R) is a Killing graph with respect to 7.

Proof. - (i) Consider the family of horospheres L(t) = [x^ = t] ' , if t is large enough, then
L(t) D M = 0; decrease t and consider the first horosphere that touches M. At this point of
contact, the mean curvature vector of L(t) points upward and since the mean curvature of L(t)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Ue^

Ul)

Fig. 3.

(which is equal to one) is smaller than the mean curvature of M, the maximum principle implies
that H points towards H, hence the same is true at each point of M.

(ii) Let d = dist(9,L(l)) and let 7 be the geodesic through q orthogonal to L(l). Suppose, on
the contrary, that q ^ € so qo = 7 nL(l) is not in Q. Let i) be a half horocycle in L(l) starting at a
point po of r passing through qo and such that dist(po. Qo) = infper dist(p, qo). Now consider the
unique geodesic plane E C HI3 \ £ tangent to L( 1) at PQ ; note by (3 the half geodesic in E, starting
at po, which is contained in the vertical half plane determined by () and q. Let P(r) be the family
of planes in H3, 0 ̂  r < oo, such that for each point b of f3, there exists one P(r) intersecting f3
orthogonally at b. Parametrize so that P(0) contains the initial point po of f3 (Fig. 3).

Apply the Alexandrov reflection technique to M with the planes P(r) (cf. [5]). For r large,
P(r) is disjoint from M. Now, if we approach M by P(r), there will be a first contact point
of some P(r) with M. One continues to decrease r and considers the symmetry of the part of
M swept out by P(r) with respect to P(r). These symmetries of M are in S. Notice that the
symmetry through P(r) of the relevant part of L(l) is contained in /C. (Here relevant part means
the part of L(l) lying on the same side of P(r) as the part of M swept out by P(r).) So, by the
maximum principle, no accident can occur until P(0) and the part of M in question is a Killing
graph over P(0) with respect to the geodesic (3 (the integral curves of the Killing vector field
associated to the hyperbolic translation along f3 are invariant by reflection with respect to P(r)).
But the Killing segment joining q to P(0) and its symmetry through P(0) are lying above L(ed)
whereas 03 is below this horosphere which gives a contradiction and therefore q must be in C.

(lit) In this case we can do Alexandrov reflection with the family of planes orthogonal to 7
until a plane below L(l) without any accident, so M is a Killing graph over L(l).

(iv) Let 7p be a geodesic through a point p of P orthogonal to L(l) at p and let Tp be the
vertical plane tangent to r at p. Consider any half geodesic f3g orthogonal to Tp at some point g
of 7p where r and f3g are on opposite sides of Tp. As in (ii), we apply the Alexandrov reflection
technique to M with the family P(r) of planes orthogonal to f3g. Therefore the relevant part of
M is a Killing graph over P(0) = Tp with respect to the geodesic f3g.

We can do this for each point g of 7? and each such half geodesic (3g; and also for 7p associated
to each point p of P; this means that on each geodesic orthogonal to P x [1, oo) there is only one
point of M, hence M \ (J7 x [1, oo)) is a geodesic graph and the first assertion of (iv) follows.

Let p be a point of P and let Tp be as above. Note by ^)(s) the half horocycle in L(l) starting
at p = i}(0) and orthogonal to Tp U L(l) at p where P and ^)(s) are on opposite sides of Tp.
Let T(s) be a family of vertical planes such that T(s) intersects () orthogonally at ^(s) and
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T(0) = Tp. Apply the Alexandrov reflection process to M and the planes T(s). Notice that
hyperbolic symmetry through each T(s) leaves L(l) and all horocycles orthogonal to T(s) in
all L(t) invariant. One can translate T(s) along () until QQ = r and the part of M swept out by
r(0) = Tp is a graph over Tp with respect to the horocycle orthogonal to Tp.

(v) From (ii) we know that q lies in the solid geodesic cylinder € over Q. We apply the
Alexandrov reflection technique to M with the planes P-y(r); the first accident occurs when the
image of an interior point pi of M touches r. This point pi is situated on an integral curve of
the Killing vector field with respect to 7(7-) over F; the Killing coordinate of such point pi is
at most d + In cosh R where R = maxp^r dist(p, 7) (see Notation and Example). Therefore the
result follows. D

We will prove the following Lemma 3 after the proof of Theorem 4.

LEMMA 3. - Let r C L(l) be a strictly convex curve. There is a r > 0, depending only upon
the extreme values of the curvature of r, such that "whenever M C /2 is an H-surface, H > 1,
with boundary r, there is a p C Q (p depends on M) such that the part ofM in the solid Killing
cylinder over D(p, sinhr) C L(l) with respect to the vertical geodesic 7? passing through p is a
Killing graph over D(p, sinhr) with respect to 7p.

(Here D(p, sinhr) denotes the disk in L(l) centered at p such that 9D(p, sinhr) is the
hyperbolic circle centered at 7p(r = In cosh r) of hyperbolic radius r.)

3.2. Proof of the main result

Proof of Theorem 2. - Let M be an ^-surface as in Theorem 2. Let uj be the hyperbolic radius
of a smallest hyperbolic circle such that the domain in L(l) bounded by this circle contains j7.
Note by c the point in Q such that F C D(c, sinner), and by 7c(r) the vertical geodesic passing
through c; parametrized such that r = dist(7c(r),L(l)).

By property (ii) we know that the points at maximal distance d from L(l) are contained in the
solid vertical geodesic cylinder € over Q. In the proof of property (iv), we saw that, if Tp is a
vertical plane tangent to r at a point p e F, then the part of M in the half space determined by
Tp which does not contain r is a Killing graph over Tp with respect to any geodesic orthogonal
to Tp at some point of Tp n C.

The same is still true if we choose some point p ' in 9D(c,sinhLj) C L(l), Tp' the vertical
plane tangent to <9D(c, sinh a;) at p ' and /3p' the geodesic orthogonal to Tp' at p ' . Now consider
the point g in L(l) where the Killing segment k (with respect to / 3 p ' ) that joins the point
Tp' n {D(c,sinlw) x [l,oo)] nL(ed)=pf x {e^}, intersects L(l) (Fig. 4).

We want to evaluate the hyperbolic distance K between g and the geodesic 7p/ = Tp' n
{.D(c,sinhcc0 x [l,oo)}. Recall that sinh of K is the hyperbolic length in L(l) from g to
7p/ D L(l) = p ' and this value is also equal to the euclidean distance between g and p ' in
L(l). Let a be the euclidean center of the Killing segment k (this makes sense since k looks
like a part of a circle) and let b be the euclidean radius of k. We have b2 = 1 -{- (ed — b)2 and
sinh2 K = b2 — (e^ — b — I)2. Therefore sinh K is equal to \/2sinhd.

Since the part of M outside the vertical geodesic cylinder over D(c,sinho;) C L(l) is a
Killing graph with respect to f3p' and Tp' for each point p ' € 9-D(c,sinhc<;), no point of M
in the vertical half plane containing f3p' with boundary ^pi can be a distance greater than
/^ from 7p^, for each p1. This implies that M is contained in the solid Killing cylinder over
D(c, V^sinhd + sinlw) C L(l) with respect to 7c.

Now we will distinguish two cases.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



352

L(e6)

L(l)

L(l)

Fig. 5.

(1) Small case ___
Suppose that \/2smhd + sinlw is strictly smaller than sinhr^ where TH is the radius of the

sphere of mean curvature H.
We will first see that M stays inside in the Killing cylinder with respect to 7c(r) over the

domain in L(l) bounded by D(c.sinhcj). Let 5+ be the upper hemisphere of the ^-sphere
centered at -fc(d + Incosh(r^)). Translate 5+ downward, so the moving 5+ does not touch
M before it arrives at L(l), i.e., M is below 5+ when 9S~^ is on L(l) (Fig. 5).

Next consider the family S^(r) of upper half spheres with center at 7c(r) for r e [7-0, Ti] =
[In cosher. In cosh rn] and 9S^(r) on L(l). This continuous family consists of surfaces in £
where the mean curvature starts from cotlw, decreases to cothrjy = H and where 9S^~(r) is a
foliation of the compact region in L(l) bounded by 9D(c, sinhr^) U 9D(c, sinho;). So, for each
T, r is contained in the domain of L(l) bounded by 9S~^(r). Since M is below S^ = 5'+(ri)
and when we decrease r from TI to TO, the maximum principle implies that M is still below

4^^ SERIE - TOME 33 - 2000 - N° 3
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Z(o)

Z(To)

L(l)

Fig. 6.

S^T-o), the upper half sphere of radius uj. Therefore M is contained in the Killing cylinder with
respect to 7c over 9D(c, sinlw) C L(l).

Our aim is now to show that, if H is sufficiently small in terms of LJ then M is even contained
in the Killing cylinder over Q with respect to 7c and so we can conclude by property (iii) that M
is a Killing graph over Q.

Let 6 = sup^ {Q D D(c, sinh r)}. To establish the result we consider the family Z(r) of Killing
cylinders over 9D(c, sinhr) C L(l) with respect to 7c for r € [6, u)]. The mean curvature vector
of Z(r) points into the component of 1H3 bounded by Z(r) which contains 7c and the mean
curvature varies continuously in r from coth(26) decreasing to coth(2cj) (Fig. 6).

Now, suppose on the contrary, that M is not in the solid Killing cylinder over Q. Since M is
lying in Z(uj) and by decreasing r from uj to 6 there will be some TO where Z(ro) touches M for
the first time at an interior point of M such that Z(ro) is tangent to M and the mean curvature
vector of both surfaces points in the same direction. However, if H < coth2ro, this is impossible
by the maximum principle. Therefore M is contained in the Killing cylinder over j7 with respect
to 7c for H smaller than coth(2o;).

Thus M is a Killing graph over Q with respect to 7c.
To finish our investigation for small ./if-surfaces, we will show that M is even a geodesic graph

over Q with respect to the geodesies orthogonal to Q. Let p be a point in Q and let 7? be the
vertical geodesic passing through p. Since M is below the upper half sphere of radius uj centered
on 7c with boundary D(c,sinlw) C L(l), M is also below the upper half sphere of radius luj
centered on 7^ with boundary in L(l). We consider Killing cylinders with axes 7p and conclude
by the same argument as before that M is a Killing graph over Q with respect to 7?. We can
repeat this for each point p in Q\ this means that on each vertical geodesic there is only one point
of M, hence M is a geodesic graph over Q\ in particular M is topologically a disk.

(2) Large case
Henceforth we assume that d is bounded from below in terms of H, i.e.

/2sinhd + sinlw ^ sinhr^ =

Let r > 0 and p e Q be given by Lemma 3. Let G be the unique vertical catenoid cousin
meeting L(l) in the circle Co = 9D(p, sinhp) where p < r and sinh p is smaller than the smallest
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radius of curvature of F in L(l) (the latter condition allows us to translate Co horizontally in Q
so as to touch every point of F), and G has its waist at L(l) (see [4] for catenoid cousins).

Let i7 == G D (L(l) x [1,X3 = e • cosh3 cj]) and let C\ be the circle of S at euclidean height
[x3 = e ' cosh3^}. (The hyperbolic height of E is equal to 1 + 3 In cosher.) E is a Killing
graph with respect to 7^ over the non compact component of L(l) n Co. Let V = [v e L(l) |
Co + v C p ] and let D(c,smhR) be a sufficiently large disk in L(l) centered at c such that
C\ + v C D(c, sinh R) x {xz = e • cosh3^} for all v e V (here, we translate the hyperbolic objects
v, respectively D(c, sinh R), from L(l) to L(e • cosh3^) with respect to the vertical geodesic 7^,
respectively 7c, and note them by v, respectively D(c, sinhJ?)).

As of now, we choose H such that d / 2 > 1 + 3 In cosh a;.
Let 0(t) be the family of horospheres in HI3 such that 0(1) is tangent to the horosphere L(t) at

L(t)n^O(t)^L(t).
First we will show that, if H is sufficiently small, then M Fl {the region in the solid Killing

cylinder over J9(c, sinh R) with respect to 7c bounded below by L(e • cosh3^) and from above by
0(ed~l/coshu})] is empty. To establish this result we adapt our strategy from the proof in the
euclidean case; we work this out in three steps in the same spirit as in (i)-(iii) Theorem 1.

By property (v), the part of M lying above P^((d/2) + In cosh uj) is a Killing graph with
respect to 7c. M is below L(ed). Note by E the domain in £ bounded by P^((d/2) + In cosh uj)
and L^). The hyperbolic distance between this plane and this horosphere is realized on 7c and
equal to (d/2) — In cosher.

(i) Let Q(t) be the domain in 0(t) bounded by M H 0(t) for t e [e^cosh^.e^]. The part
of M n E above 0(t) is also a Killing graph with respect to 7c. Our aim is now to show that
the radius of the smallest disk in 0(t) containing Q(t) and centered on 7c can not be too small
in terms of h = d - \nt and H. Let M' be a ff-Killing graph over 0^^) with respect to 7c,
QM' c C^e^"^) and with a highest point on L(ec^) (here highest means the x^ coordinate). Then
the hyperbolic radius of the smallest disk in O^^) centered on 7c containing strictly ^(e^"^)
is at least

A(/i; H) = arcosh (\j1-^- {e-h - e-2/l) + e-71).

To see this, suppose, on the contrary, that QM' is contained in a disk of O^^) of radius
smaller than \(h\H). Therefore M' must lie in the Killing cylinder over the disk of radius
A(/i; H) with respect to 7c. Next consider the H-sphere S with center at 7c(d - arcoth.^), tangent
to L(ed) at 7c(d) = 7c n L(ed) and denoted by S(h) the part of S over ©(e^) (Fig. 7).

We will show that the hyperbolic radius of the hyperbolic circle OS(h) = S(h) H O^^) is
exactly \(h\H). Let a C 7c be the hyperbolic center of S and b C 7c the hyperbolic center of
QS(h). When q is some point in 9S(h), consider the geodesic triangle Aa, &, q. The angle at b is
7T/2; by using hyperbolic trigonometry formulas [1] we obtain that

coshrn = coshdist(a, b) • coshdist(&, q)

(here TH is the radius of the ^-sphere). On the other hand, the distance from b to O^^) is
In cosh dist(&, q) (see in Notation and Example above) and so dist(a, b) = d — h — In cosh dist(&, q).
It is straightforward to check that

cosh2 dist(6, q)

= (2 cosh TH - cosh(rn -h)- sinh(r7if - h)) (cosh(r^ - h) - sinh(r^ - h))
=e2rH{e-h-e-2h)+e-h',
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L(e1)

(d/2 +ln cosho)
L(l)

Fig. 7.

so, by taking H = cothrj-f into account, we find out that

dist(b,q)=\(h;H).

(Notice that by constmction 9S(h) is also the intersection ©(e^"^) Fl P(d — h— In cosh A) or
©(e^) H He^-^/cosh2 A).)

We continue the proof of (i). Translate S(h) along 7c upward to be disjoint from M'. Now
come back down; the moving S(h) does not touch M' before it arrives at O^"^) again; one
continues displacement of S(h) along 7c and the first contact with M' must occur at an interior
point of S(h) with a boundary point of M'. This means that no point of M' is on L^) which
gives a contradiction.

In the following, when we desire to use this result, there is some obstacle (quite different
from the euclidean case): how one can ensure that, for fixed h, the part of M over O^"^)
in E has its boundary on ©(e^""^)? However what we need in (iii) below, is only to find a
disk in C^e^"^) of hyperbolic radius at least arcsinh(sinh R + 2sinhc<;). Since, for h fixed, the
largest radius on ©(e^^) in E is equal to r(h) = arcosh(e(d^2)~h/coshu;)', we assume up to
now that d is big enough (or H is small enough) such that \/sinhr(/i) > (sinh R + 2 sinho;). (To
evaluate r(h) we apply again Notation and Example: the distance on 7c between ©(e^"^) and
P^((d/2) + Incoslw) which is (d/2) — h— In cosh a;, must be equal to lncoshr(/i).)

The assumption above implies that if each point of M in ©(e^"^) is at most a distance

arcsinh((sinh jR + 2 sinh a;)2)

from 7c then M is a Killing graph over ©(e^"^) with boundary on (^(e^"^).
(ii) Let Q(t) be the domain in L(t) bounded by M n L(t) for t e [e^coslw.e^] and let

Pt(sinhr) be the disk in L(t) centered on 7c of hyperbolic radius r. Let Tmax = inf^{^7(^) C
Dt(sinhr)} and 7min = supy.{j?(t) D jDt(sinhr)}. We want to prove: If sinhr-max > (2/f) sinner
then sinh 7min > sinhrmax — (2/t) sinhcc;.

By property (iv) we know that M \ [D(c, sinlw) x [1, oo)} is a graph over 9{D(c, sinhccQ x
[1, oo)} with respect to the horocycles in L(f), t € [1, oo), normal to Q{D(c, sinh a;) x [1, oo)}.

As the hyperbolic metric on L(t) is the Euclidean metric divided by t, and the hyperbolic
symmetries in vertical planes induce euclidean symmetries in L(t), the euclidean calculation in
(ii), Proof of Theorem 1, yields (ii) here.
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(iii) Now we apply (i) for h = In cosh a;; so we need that

/ f
sinhr(h) = \ ——-.— - 1 > (sinh^? + 2 sinho;)2

V cosh a;

and because v^sinhd + sinner ^ \ / ^ / H 2 — 1 we work with H such that

1
> sinlw + cosh2 uj^/\ + (sinhJ? + 2 sinhcc;)4.

Let q be a point in O^"^) D M at maximal distance from 7c; (i) implies that this hyperbolic
distance from q to 7c is greater than

r-o == min(arcsinh((sinhJ?+ 2 sinhc^)2), A(ln cosher; H)).

The point 9 is also lying on some horizontal horosphere L(to) for to smaller than ed~h/cosh2 ro
and the hyperbolic length, denoted by sinhr-i, from q to 7c in L(to) is greater than sinhro. Now
(ii) implies that there is a disk in L(to) centered at 7c U L(to) of radius (the hyperbolic length in
L(to)) greater than sinh r\ - (2 /to) sinlw and this disk is contained in the interior of the domain
in H3 bounded by M U Q (Fig. 8).

Next consider the horosphere 0(1') which intersects L(to) in the hyperbolic circle centered
on 7c of radius r-2 = arcsinh{sinhri - (2 /to) sinhcj} and denoted by 0+ the part of 0(t1) above
L(to). When 03' is the domain in E3 bounded by L(^o) and the part of M above L(^o); we observe
that C^ is contained in S'. To see this we move 0^ downward to be disjoint from 25'; then come
back upward; by the maximum principle the moving C^ can not touch M before it arrives again
at its starting position.

Remark that the distance between (9(f) and O^^) on 7c is equal to 21n(coshri/coshr2).
Since sinh 7-2 = sinhr-i - ( I / t o ) sinho;; to = e^ /(cosh uj cosh2 r-i) and if we assume furthermore
that ri is sufficiently large in terms of H and uj then t ' = e^ cosh2 r2/(cosho; cosh2 r\) > e^-71-1.

Ue^

L(to)

L(e cosh co)

L(l)

Py^d/2 +ln coshco)

Fig. 8.
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Therefore the part of M lying in the Killing cylinder with respect to 7c over the hyperbolic
disk in P^((d/2)+lncoshci;) of radius r^ is contained in the slice between Ue^) and C^e^"^""1).
(Since the highest points of M are in the vertical geodesic cylinder over Q, M has points in this
domain for 7-2 large enough.)

Let P^(r) c Ifl3 be the family of planes orthogonal to 7c at 7c(r); we can apply the
Alexandrov reflection technique to M with P^(r); by decreasing r from oo until TO =
(d/2) + Incoshcj no accident will occur. The symmetry of OCe^"71"1) through P^(ro) is
exactly L(e • cosh3^) and this implies that the intersection between M and the part of the solid
Killing cylinder over D(c,smhr^) C L(l) bounded below by L(e • cosh3^) and from above by
©(e^^/coslw) is empty.

To finish our investigation, we will choose H such that sinhr-2 > sinhJ?. We know that

2
sinhr-2 = sinhri — — sinlw > sinhri — 2sinhc<; > sinhro — 2sinhc<;

to

hence we take H such that A(lncoslw;JT) > arcsinh(sinh.R + 2sinlw), i.e.,

H+l , cosh2^ , . , _ .——- > coshcj + —,———-(sinhJ?+2sinho;)2.H - 1 cosher - 1

Now, in the second part of the proof, we will show that Q x [1, (e • cosh3^] C OS.
Recall that by Lemma 3 the family Co(t) of disks obtained by translating Go with respect to

the vertical geodesic 7p, (i.e. Co(t) = 9D(p(t\ sinhp) C L(^), for t e [ti, k] = [1, e • cosh3^]), is
contained in S. Let E(f) denote the family of the translated E where QE(t) n L(t) = Co(t). Our
result above implies that the upper boundary of E(t) for all t e [^1,^2] and E(t^) are contained
in ® and therefore E(t) must also lie in 03. Otherwise when one translates E(t^) down to E(t\),
there would be a first point of contact of some E(t) with M. This contact point occurs on the
inner side of M; the mean curvature vector of both surfaces points in the same direction. This
is impossible since the point of contact is an interior point of both M and E(t) and the mean
curvature of E(t) (which is equal to one) is smaller than H.

We know that the upper boundary component of E + v, for v G V, at height t^ is contained
in OS. Hence E + v C S for each v € V by similar reasoning as above: the family E + sv, s €
[0,1] can have no first point of interior contact with M as s goes from 0 to 1.

Our choice of Co guarantees that for each q e F, there is a v e V such that Co + v is tangent
to r at q. The angle 0 between E and non compact component of L(l) D Co along Co is equal
to arcsin(cosh~1 p). Therefore the outer angle that 03 makes with L(l) at q is smaller than 0; in
particular M stays outside the solid vertical geodesic cylinder over F between L(l) and L(^).

Since the horizontal translations E + sv,v e V,0 ^ s < 1 are all in % and P(p,sinhr) x
[t\,tz\ c S by Lemma 3, we conclude that Q x [^1,^2] C S. Also M meets the solid Killing
cylinder over D(^c(r = ln^),sinhJ?) C L(^) with respect to 7c in a Killing graph above
C^-Vcosho;).

The part of M in (^7 x [l,oo)) is even a geodesic graph over j7; we find this out by
coming down with planes Pq orthogonal to the vertical geodesic 7g passing through q, q
any point in j7; and we consider the symmetries of M with respect to Pq until Pq is below
0(ed~l/coshuJ) n (H x [1, oo)). For J7 small, we are far from F, so no accident will occur and
on any geodesic 7g is exactly one point of M.

The part of M outside Q x [ 1, oo) is of genus zero, so M is topologically a disk and Theorem 2
is established. D
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THEOREM 4. - Let r C L(l) be a strictly convex curve. If M C ^ is a compact embedded
H-surface bounded by P, -with H ^ 1 then M is a graph over the domain Q C L(l) bounded by
r with respect to the geodesies orthogonal to J7; in particular, M is topologically a disk.

Proof. - M is compact hence there exists a compact half sphere S^ with 9S^ on L(l) and M
below 5+. The mean curvature of S^ is greater than H. We conclude by the same argument as
in the proof of Theorem 2: we are in the situation of the Small case. D

The following proof is quite similar to the proof in the euclidean case of Lemma 2.1 in [3].

Proof of Lemma 3. - Let uj be the hyperbolic radius of a smallest hyperbolic circle such that
the domain in L(l) bounded by this circle contains Q. Note by c the point in Q such that
r C .D(c,sinlw), and by 7(7-) the vertical geodesic passing through c; parametrized such that
T = dist(7(r),L(l)). Consider the family Py(r) C H3 of planes orthogonal to 7 at 7(7-). For
p C Q, let r]p(r) be the orbit through p of the hyperbolic translation along 7, i.e. the integral
curve of the Killing vector field associated to the hyperbolic translation.

Apply the Alexandrov reflection technique to M with the planes Py(r) by decreasing T from
oo. If we can come down to Py(0), then M is a Killing graph above J? and the lemma is clear.
Otherwise there is a TO where the reflected surfaces with respect to Py(ro) touches r for the
first time at a point q e F. So rjq intersects M exactly once; and the segment of r]q(r) for
T e [In cosh/?Q, 2 • TO - In cosh pq] is contained in int03 where pq denote the hyperbolic distance
from q to 7 (to find the values of r see in Notation and Example). Also the part of M above
Py(ro) is a Killing graph with respect to 7.

Next consider Alexandrov reflection with vertical planes Q\ let v be the normal to Q in
L(l), \v\ == 1. Suppose one can do Alexandrov reflection of M, moving the plane Q slightly
beyond q, and denote by J(v) the segment in Q joining q to its reflected image by this plane Q ' .
Since the part of M swept out by Q is a geodesic graph over Q with respect to the geodesies
orthogonal to Q (property (iv)), the vertical domain G(v) bounded by J(v), the segment r]q(r)
and its reflected image through Q\ r G [In cosh pq, 2 • TO — In cosh pq], and by the segment of
the geodesic orthogonal to Q' joining the point r)q(2 ' TO - In cosh pq) to its reflected image is
contained in int 03.

Fig. 9.
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Suppose we could repeat this reasoning for a family of directions v G L(l), \v\ = 1, such that,
for some p <E Q and r > 0, we have D(p, sinhr) C (J-y JW' Note by 7p the vertical geodesic
passing through p and by P^p(r) the family of planes orthogonal to 7?; then we would have
that the domain in the solid Killing cylinder over D(p, sinhr) with respect to 7p between L(l)
and P-yp(Ti) is also contained in int® where P^p(r\) is the plane orthogonal to 7p that intersects
rjq(r) at r = 2ro — In cosh pq (i.e., the point of M that touches F for the first time by applying
Alexandrov technique with respect to the planes P-y(r) above). Hence the points of M in this
Killing cylinder are only above P^(ri). Now we can apply the Alexandrov reflection technique
to M with the planes P^(r)\ by decreasing r from oo until r\ no accident will occur (the
plane P/yOo) is always below Pyp(ri)), so the part of M in the solid Killing cylinder over
D(j?,sinhr) C L(l) is a Killing graph with respect to 7p as desired (see Fig. 9). So we have
to understand the horizontal directions v for which Alexandrov reflection goes beyond a point
qer.

First recall, that for horizontal directions v, one can always do Alexandrov reflection up till
r. Let k be the minimum curvature of F and let C C L(l) be a circle of curvature k. So if C is
tangent to F at g, then r is inside C. Let p be chosen so that the tubular neighborhood of T of
radius p is an embedded annulus.

Then for each horizontal v, we can do Alexandrov reflection with vertical planes at least
a distance p / 2 beyond each point of F and so at least a distance p / 2 beyond the first time
the horizontal plane meets the circle C. Now consider those planes which left behind q. This
will hold for those directions in some neighborhood V = [v G L(l); \v\ = 1} of the inward
pointing normal to C at q. It is clear from the geometry of the circle, that Uvev ̂ ^ contains
a disk D(p, sinhr), r > 0 which depends on p and C but not on q. This completes the proof of
Lemma 3. D
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